
FreeBSD Developers’ Handbook

The FreeBSD Documentation Project

FreeBSD Developers’ Handbook
by The FreeBSD Documentation Project
Published August 2000
Copyright © 2000, 2001 by The FreeBSD Documentation Project

Welcome to the Developers’ Handbook. This manual is awork in progressand is the work of many individuals.
Many sections do not yet exist and some of those that do exist need to be updated. If you are interested in helping
with this project, send email to the FreeBSD documentation project mailing list <freebsd-doc@FreeBSD.org >.
The latest version of this document is always available from the FreeBSD World Wide Web server
(http://www.FreeBSD.org/). It may also be downloaded in a variety of formats and compression options from the
FreeBSD FTP server (ftp://ftp.FreeBSD.org/pub/FreeBSD/doc) or one of the numerous mirror sites
(http://www.freebsd.org/handbook/mirrors-ftp.html).

Redistribution and use in source (SGML DocBook) and ’compiled’ forms (SGML, HTML, PDF, PostScript, RTF and so forth) with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (SGML DocBook) must retain the above copyright notice, this list of conditions
and the following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and other
formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Important: THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Table of Contents
I. Introduction ..i

1. Developing on FreeBSD..1
2. The BSD Vision..1
3. Architectural Overview...2
4. The Layout of /usr/src...3

II. Basics...4

5. Programming Tools...5
5.1. Synopsis..5
5.2. Introduction...5
5.3. Introduction to Programming...5
5.4. Compiling withcc ..8
5.5. Make...16
5.6. Debugging...21
5.7. Using Emacs as a Development Environment..25
5.8. Further Reading..36

6. Secure Programming...38
6.1. Synopsis..38
6.2. Secure Design Methodology...38
6.3. Buffer Overflows..38
6.4. SetUID issues..41
6.5. Limiting your program’s environment..41
6.6. Trust..43
6.7. Race Conditions..43

III. Kernel ..44

7. History of the Unix Kernel..45
8. Locking Notes...46

8.1. Mutexes...46
8.2. Lock Manager Locks..49
8.3. Atomically Protected Variables..49

IV. Memory Management..50

9. Virtual Memory System..51
9.1. The FreeBSD VM System..51

10. DMA..55
10.1. DMA: What it is and How it Works...55

V. I/O System...68

11. UFS..69

3

VI. Interprocess Communication..70

12. Signals...71

VII. Networking ..72

13. Sockets..73
14. IPv6 Internals..74

14.1. IPv6/IPsec Implementation...74

VIII. Network Filesystems..95

15. AFS..96

IX. Terminal Handling ...97

16. Syscons..98

X. Sound...99

17. OSS..100

XI. Device Drivers...101

18. Writing FreeBSD Device Drivers..102
18.1. Introduction...102
18.2. Dynamic Kernel Linker Facility - KLD..102
18.3. Accessing a device driver...104
18.4. Character Devices...104
18.5. Network Drivers..108

19. ISA device drivers...110
19.1. Synopsis..110
19.2. Basic information..110
19.3. Device_t pointer..112
19.4. Config file and the order of identifying and probing during auto-configuration............................113
19.5. Resources..115
19.6. Bus memory mapping...118
19.7. DMA...126
19.8. xxx_isa_probe...128
19.9. xxx_isa_attach..135
19.10. xxx_isa_detach...139
19.11. xxx_isa_shutdown..140

20. PCI Devices...142
20.1. Probe and Attach...142
20.2. Bus Resources...146

21. Common Access Method SCSI Controllers..150
21.1. Synopsis..150
21.2. General architecture..150
21.3. Polling...171

4

21.4. Asynchronous Events...172
21.5. Interrupts...173
21.6. Errors Summary..180
21.7. Timeout Handling...181

22. USB Devices...183
22.1. Introduction...183
22.2. Host Controllers..184
22.3. USB Device Information..186
22.4. Device probe and attach..188
22.5. USB Drivers Protocol Information...189

23. NewBus...192

XII. Architectures ...193

24. x86 Assembly Language Programming..194
24.1. Synopsis..194
24.2. The Tools..194
24.3. System Calls...195
24.4. Return Values..197
24.5. Creating Portable Code...199
24.6. Our First Program...204
24.7. Writing Unix Filters..206
24.8. Buffered Input and Output..209
24.9. Command-line Arguments..216
24.10. Unix Environment...221
24.11. Working with Files..227
24.12. Caveats..239
24.13. Acknowledgements...241

25. Alpha...242
26. IA-64...243

XIII. Debugging ...244

27. Truss..245

XIV. Compatibility Layers ...246

28. Linux...247

XV. Appendices...248

Bibliography..249

5

List of Tables
8-1. Mutex List..47
8-2. lockmgr(9) Lock List...49

List of Examples
5-1. A sample.emacs file..28

1

I. Introduction

Chapter 1. Developing on FreeBSD
This will need to discuss FreeBSD as a development platform, the vision of BSD, architectural overview, layout of
/usr/src, history, etc.

Thank you for considering FreeBSD as your development platform! We hope it will not let you down.

1

Chapter 2. The BSD Vision

1

Chapter 3. Architectural Overview

2

Chapter 4. The Layout of /usr/src
The complete source code to FreeBSD is available from our public CVS repository. The source code is normally
installed in/usr/src which contains the following subdirectories.

Directory Description

bin/ Source for files in/bin

contrib/ Source for files from contributed software.

crypto/ DES source

etc/ Source for files in/etc

games/ Source for files in/usr/games

gnu/ Utilities covered by the GNU Public License

include/ Source for files in/usr/include

kerberosIV/ Source for Kerbereros version IV

kerberos5/ Source for Kerbereros version 5

lib/ Source for files in/usr/lib

libexec/ Source for files in/usr/libexec

release/ Files required to produce a FreeBSD release

sbin/ Source for files in/sbin

secure/ FreeSec sources

share/ Source for files in/sbin

sys/ Kernel source files

tools/ Tools used for maintenance and testing of FreeBSD

usr.bin/ Source for files in/usr/bin

usr.sbin/ Source for files in/usr/sbin

3

II. Basics

Chapter 5. Programming Tools
This chapter was written by James Raynard <jraynard@FreeBSD.org >. Modifications for the Developers’
Handbook by Murray Stokely <murray@FreeBSD.org >.

5.1. Synopsis
This document is an introduction to using some of the programming tools supplied with FreeBSD, although much of
it will be applicable to many other versions of Unix. It doesnot attempt to describe coding in any detail. Most of the
document assumes little or no previous programming knowledge, although it is hoped that most programmers will
find something of value in it

5.2. Introduction
FreeBSD offers an excellent development environment. Compilers for C, C++, and Fortran and an assembler come
with the basic system, not to mention a Perl interpreter and classic Unix tools such assed andawk. If that is not
enough, there are many more compilers and interpreters in the Ports collection. FreeBSD is very compatible with
standards such as POSIX and ANSI C, as well with its own BSD heritage, so it is possible to write applications that
will compile and run with little or no modification on a wide range of platforms.

However, all this power can be rather overwhelming at first if you’ve never written programs on a Unix platform
before. This document aims to help you get up and running, without getting too deeply into more advanced topics.
The intention is that this document should give you enough of the basics to be able to make some sense of the
documentation.

Most of the document requires little or no knowledge of programming, although it does assume a basic competence
with using Unix and a willingness to learn!

5.3. Introduction to Programming
A program is a set of instructions that tell the computer to do various things; sometimes the instruction it has to
perform depends on what happened when it performed a previous instruction. This section gives an overview of the
two main ways in which you can give these instructions, or “commands” as they are usually called. One way uses an
interpreter, the other acompiler. As human languages are too difficult for a computer to understand in an
unambiguous way, commands are usually written in one or other languages specially designed for the purpose.

5

Chapter 5. Programming Tools

5.3.1. Interpreters
With an interpreter, the language comes as an environment, where you type in commands at a prompt and the
environment executes them for you. For more complicated programs, you can type the commands into a file and get
the interpreter to load the file and execute the commands in it. If anything goes wrong, many interpreters will drop
you into a debugger to help you track down the problem.

The advantage of this is that you can see the results of your commands immediately, and mistakes can be corrected
readily. The biggest disadvantage comes when you want to share your programs with someone. They must have the
same interpreter, or you must have some way of giving it to them, and they need to understand how to use it. Also
users may not appreciate being thrown into a debugger if they press the wrong key! From a performance point of
view, interpreters can use up a lot of memory, and generally do not generate code as efficiently as compilers.

In my opinion, interpreted languages are the best way to start if you have not done any programming before. This
kind of environment is typically found with languages like Lisp, Smalltalk, Perl and Basic. It could also be argued
that the Unix shell (sh , csh) is itself an interpreter, and many people do in fact write shell “scripts” to help with
various “housekeeping” tasks on their machine. Indeed, part of the original Unix philosophy was to provide lots of
small utility programs that could be linked together in shell scripts to perform useful tasks.

5.3.2. Interpreters available with FreeBSD
Here is a list of interpreters that are available as FreeBSD packages (ftp://ftp.FreeBSD.org:pub/FreeBSD/packages/),
with a brief discussion of some of the more popular interpreted languages.

To get one of these packages, all you need to do is to click on the hotlink for the package, then run

pkg_add package name

as root. Obviously, you will need to have a fully functional FreeBSD 2.1.0 or later system for the package to work!

BASIC

Short for Beginner’s All-purpose Symbolic Instruction Code. Developed in the 1950s for teaching University
students to program and provided with every self-respecting personal computer in the 1980s, BASIC has been
the first programming language for many programmers. It’s also the foundation for Visual Basic.

The Bywater Basic Interpreter (ftp://ftp.FreeBSD.org:pub/FreeBSD/packages/lang/bwbasic-2.10.tgz) and the
Phil Cockroft’s Basic Interpreter (ftp://ftp.FreeBSD.org:pub/FreeBSD/packages/lang/pbasic-2.0.tgz) (formerly
Rabbit Basic) are available as FreeBSD FreeBSD packages (ftp://ftp.FreeBSD.org:pub/FreeBSD/packages/)

6

Chapter 5. Programming Tools

Lisp

A language that was developed in the late 1950s as an alternative to the “number-crunching” languages that
were popular at the time. Instead of being based on numbers, Lisp is based on lists; in fact the name is short for
“List Processing”. Very popular in AI (Artificial Intelligence) circles.

Lisp is an extremely powerful and sophisticated language, but can be rather large and unwieldy.

FreeBSD has GNU Common Lisp (ftp://ftp.FreeBSD.org:pub/FreeBSD/packages/gcl-2.0.tgz) available as a
package.

Perl

Very popular with system administrators for writing scripts; also often used on World Wide Web servers for
writing CGI scripts.

The latest version (version 5) comes with FreeBSD.

Scheme

A dialect of Lisp that is rather more compact and cleaner than Common Lisp. Popular in Universities as it is
simple enough to teach to undergraduates as a first language, while it has a high enough level of abstraction to
be used in research work.

FreeBSD has packages of the Elk Scheme Interpreter
(ftp://ftp.FreeBSD.org:pub/FreeBSD/packages/lang/elk-3.0.tgz), the MIT Scheme Interpreter
(ftp://ftp.FreeBSD.org:pub/FreeBSD/packages/lang/mit-scheme-7.3.tgz) and the SCM Scheme Interpreter
(ftp://ftp.FreeBSD.org:pub/FreeBSD/packages/lang/scm-4e1.tgz).

Icon

The Icon Programming Language (ftp://ftp.FreeBSD.org:pub/FreeBSD/packages/lang/icon-9.0.tgz).

Logo

Brian Harvey’s LOGO Interpreter (ftp://ftp.FreeBSD.org:pub/FreeBSD/packages/lang/ucblogo-3.3.tgz).

Python

The Python Object-Oriented Programming Language
(ftp://ftp.FreeBSD.org:pub/FreeBSD/packages/lang/python-1.2)

7

Chapter 5. Programming Tools

5.3.3. Compilers
Compilers are rather different. First of all, you write your code in a file (or files) using an editor. You then run the
compiler and see if it accepts your program. If it did not compile, grit your teeth and go back to the editor; if it did
compile and gave you a program, you can run it either at a shell command prompt or in a debugger to see if it works
properly.1

Obviously, this is not quite as direct as using an interpreter. However it allows you to do a lot of things which are
very difficult or even impossible with an interpreter, such as writing code which interacts closely with the operating
system—or even writing your own operating system! It’s also useful if you need to write very efficient code, as the
compiler can take its time and optimise the code, which would not be acceptable in an interpreter. And distributing a
program written for a compiler is usually more straightforward than one written for an interpreter—you can just give
them a copy of the executable, assuming they have the same operating system as you.

Compiled languages include Pascal, C and C++. C and C++ are rather unforgiving languages, and best suited to
more experienced programmers; Pascal, on the other hand, was designed as an educational language, and is quite a
good language to start with. Unfortunately, FreeBSD doesn’t have any Pascal support, except for a Pascal-to-C
converter in the ports.

As the edit-compile-run-debug cycle is rather tedious when using separate programs, many commercial compiler
makers have produced Integrated Development Environments (IDEs for short). FreeBSD does not have an IDE as
such; however it is possible to use Emacs for this purpose. This is discussed inSection 5.7.

5.4. Compiling with cc

This section deals only with the GNU compiler for C and C++, since that comes with the base FreeBSD system. It
can be invoked by eithercc or gcc . The details of producing a program with an interpreter vary considerably
between interpreters, and are usually well covered in the documentation and on-line help for the interpreter.

Once you’ve written your masterpiece, the next step is to convert it into something that will (hopefully!) run on
FreeBSD. This usually involves several steps, each of which is done by a separate program.

1. Pre-process your source code to remove comments and do other tricks like expanding macros in C.

2. Check the syntax of your code to see if you have obeyed the rules of the language. If you have not, it will
complain!

3. Convert the source code into assembly language—this is very close to machine code, but still understandable by
humans. Allegedly.2

4. Convert the assembly language into machine code—yep, we are talking bits and bytes, ones and zeros here.

8

Chapter 5. Programming Tools

5. Check that you have used things like functions and global variables in a consistent way. For example, if you
have called a non-existent function, it will complain.

6. If you are trying to produce an executable from several source code files, work out how to fit them all together.

7. Work out how to produce something that the system’s run-time loader will be able to load into memory and run.

8. Finally, write the executable on the file system.

The wordcompilingis often used to refer to just steps 1 to 4—the others are referred to aslinking. Sometimes step 1
is referred to aspre-processingand steps 3-4 asassembling.

Fortunately, almost all this detail is hidden from you, ascc is a front end that manages calling all these programs
with the right arguments for you; simply typing

% cc foobar.c

will causefoobar.c to be compiled by all the steps above. If you have more than one file to compile, just do
something like

% cc foo.c bar.c

Note that the syntax checking is just that—checking the syntax. It will not check for any logical mistakes you may
have made, like putting the program into an infinite loop, or using a bubble sort when you meant to use a binary sort.3

There are lots and lots of options forcc , which are all in the man page. Here are a few of the most important ones,
with examples of how to use them.

-o filename

The output name of the file. If you do not use this option,cc will produce an executable calleda.out . 4

% cc foobar.c executable isa.out

% cc -o foobar foobar.c executable isfoobar

-c

Just compile the file, do not link it. Useful for toy programs where you just want to check the syntax, or if you
are using aMakefile .

% cc -c foobar.c

9

Chapter 5. Programming Tools

This will produce anobject file(not an executable) calledfoobar.o . This can be linked together with other
object files into an executable.

-g

Create a debug version of the executable. This makes the compiler put information into the executable about
which line of which source file corresponds to which function call. A debugger can use this information to show
the source code as you step through the program, which isveryuseful; the disadvantage is that all this extra
information makes the program much bigger. Normally, you compile with-g while you are developing a
program and then compile a “release version” without-g when you’re satisfied it works properly.

% cc -g foobar.c

This will produce a debug version of the program.5

-O

Create an optimised version of the executable. The compiler performs various clever tricks to try and produce
an executable that runs faster than normal. You can add a number after the-O to specify a higher level of
optimisation, but this often exposes bugs in the compiler’s optimiser. For instance, the version ofcc that comes
with the 2.1.0 release of FreeBSD is known to produce bad code with the-O2 option in some circumstances.

Optimisation is usually only turned on when compiling a release version.

% cc -O -o foobar foobar.c

This will produce an optimised version offoobar .

The following three flags will forcecc to check that your code complies to the relevant international standard, often
referred to as the ANSI standard, though strictly speaking it is an ISO standard.

-Wall

Enable all the warnings which the authors ofcc believe are worthwhile. Despite the name, it will not enable all
the warningscc is capable of.

10

Chapter 5. Programming Tools

-ansi

Turn off most, but not all, of the non-ANSI C features provided bycc . Despite the name, it does not guarantee
strictly that your code will comply to the standard.

-pedantic

Turn off all cc ’s non-ANSI C features.

Without these flags,cc will allow you to use some of its non-standard extensions to the standard. Some of these are
very useful, but will not work with other compilers—in fact, one of the main aims of the standard is to allow people
to write code that will work with any compiler on any system. This is known asportable code.

Generally, you should try to make your code as portable as possible, as otherwise you may have to completely
re-write the program later to get it to work somewhere else—and who knows what you may be using in a few years
time?

% cc -Wall -ansi -pedantic -o foobar foobar.c

This will produce an executablefoobar after checkingfoobar.c for standard compliance.

-l library

Specify a function library to be used during when linking.

The most common example of this is when compiling a program that uses some of the mathematical functions
in C. Unlike most other platforms, these are in a separate library from the standard C one and you have to tell
the compiler to add it.

The rule is that if the library is calledlib something .a , you givecc the argument-l something . For
example, the math library islibm.a , so you givecc the argument-lm . A common “gotcha” with the math
library is that it has to be the last library on the command line.

% cc -o foobar foobar.c -lm

This will link the math library functions intofoobar .

If you are compiling C++ code, you need to add-lg++ , or -lstdc++ if you are using FreeBSD 2.2 or later, to
the command line argument to link the C++ library functions. Alternatively, you can runc++ instead ofcc ,
which does this for you.c++ can also be invoked asg++ on FreeBSD.

% cc -o foobar foobar.cc -lg++ For FreeBSD 2.1.6 and earlier
% cc -o foobar foobar.cc -lstdc++ For FreeBSD 2.2 and later
% c++ -o foobar foobar.cc

11

Chapter 5. Programming Tools

Each of these will both produce an executablefoobar from the C++ source filefoobar.cc . Note that, on Unix
systems, C++ source files traditionally end in.C , .cxx or .cc , rather than the MS-DOS style.cpp (which was
already used for something else).gcc used to rely on this to work out what kind of compiler to use on the
source file; however, this restriction no longer applies, so you may now call your C++ files.cpp with impunity!

5.4.1. Common cc Queries and Problems

1. I am trying to write a program which uses thesin() function and I get an error like this. What does it mean?

/var/tmp/cc0143941.o: Undefined symbol ‘_sin’ referenced from text segment

When using mathematical functions likesin() , you have to tellcc to link in the math library, like so:

% cc -o foobar foobar.c -lm

2. All right, I wrote this simple program to practice using-lm . All it does is raise 2.1 to the power of 6.

#include <stdio.h >

int main() {
float f;

f = pow(2.1, 6);
printf("2.1 ^ 6 = %f\n", f);
return 0;

}

and I compiled it as:

% cc temp.c -lm

like you said I should, but I get this when I run it:

12

Chapter 5. Programming Tools

% ./a.out
2.1 ^ 6 = 1023.000000

This isnot the right answer! What is going on?

When the compiler sees you call a function, it checks if it has already seen a prototype for it. If it has not, it assumes
the function returns an int, which is definitely not what you want here.

3. So how do I fix this?

The prototypes for the mathematical functions are inmath.h . If you include this file, the compiler will be able to
find the prototype and it will stop doing strange things to your calculation!

#include <math.h >

#include <stdio.h >

int main() {
...

After recompiling it as you did before, run it:

% ./a.out
2.1 ^ 6 = 85.766121

If you are using any of the mathematical functions,alwaysincludemath.h and remember to link in the math library.

4. I compiled a file calledfoobar.c and I cannot find an executable calledfoobar . Where’s it gone?

Remember,cc will call the executablea.out unless you tell it differently. Use the-o filename option:

% cc -o foobar foobar.c

5. OK, I have an executable calledfoobar , I can see it when I runls , but when I type infoobar at the command
prompt it tells me there is no such file. Why can it not find it?

Unlike MS-DOS, Unix does not look in the current directory when it is trying to find out which executable you want
it to run, unless you tell it to. Either type./foobar , which means “run the file calledfoobar in the current
directory”, or change your PATH environment variable so that it looks something like

13

Chapter 5. Programming Tools

bin:/usr/bin:/usr/local/bin:.

The dot at the end means “look in the current directory if it is not in any of the others”.

6. I called my executabletest , but nothing happens when I run it. What is going on?

Most Unix systems have a program calledtest in /usr/bin and the shell is picking that one up before it gets to
checking the current directory. Either type:

% ./test

or choose a better name for your program!

7. I compiled my program and it seemed to run all right at first, then there was an error and it said something about
core dumped . What does that mean?

The namecore dumpdates back to the very early days of Unix, when the machines used core memory for storing
data. Basically, if the program failed under certain conditions, the system would write the contents of core memory
to disk in a file calledcore , which the programmer could then pore over to find out what went wrong.

8. Fascinating stuff, but what I am supposed to do now?

Usegdb to analyse the core (seeSection 5.6).

9. When my program dumped core, it said something about asegmentation fault . What’s that?

This basically means that your program tried to perform some sort of illegal operation on memory; Unix is designed
to protect the operating system and other programs from rogue programs.

Common causes for this are:

• Trying to write to a NULL pointer, eg

char *foo = NULL;
strcpy(foo, "bang!");

• Using a pointer that hasn’t been initialised, eg

char *foo;
strcpy(foo, "bang!");

14

Chapter 5. Programming Tools

The pointer will have some random value that, with luck, will point into an area of memory that isn’t available to
your program and the kernel will kill your program before it can do any damage. If you’re unlucky, it’ll point
somewhere inside your own program and corrupt one of your data structures, causing the program to fail
mysteriously.

• Trying to access past the end of an array, eg

int bar[20];
bar[27] = 6;

• Trying to store something in read-only memory, eg

char *foo = "My string";
strcpy(foo, "bang!");

Unix compilers often put string literals like"My string" into read-only areas of memory.

• Doing naughty things withmalloc() andfree() , eg

char bar[80];
free(bar);

or

char *foo = malloc(27);
free(foo);
free(foo);

Making one of these mistakes will not always lead to an error, but they are always bad practice. Some systems and
compilers are more tolerant than others, which is why programs that ran well on one system can crash when you try
them on an another.

15

Chapter 5. Programming Tools

10.Sometimes when I get a core dump it saysbus error . It says in my Unix book that this means a hardware
problem, but the computer still seems to be working. Is this true?

No, fortunately not (unless of course you really do have a hardware problem. . .). This is usually another way of
saying that you accessed memory in a way you shouldn’t have.

11.This dumping core business sounds as though it could be quite useful, if I can make it happen when I want to.
Can I do this, or do I have to wait until there’s an error?

Yes, just go to another console or xterm, do

% ps

to find out the process ID of your program, and do

% kill -ABRT pid

wherepid is the process ID you looked up.

This is useful if your program has got stuck in an infinite loop, for instance. If your program happens to trap
SIGABRT, there are several other signals which have a similar effect.

Alternatively, you can create a core dump from inside your program, by calling theabort() function. See the man
page of abort(3) to learn more.

If you want to create a core dump from outside your program, but don’t want the process to terminate, you can use
thegcore program. See the man page of gcore(1) for more information.

5.5. Make

5.5.1. What is make?
When you’re working on a simple program with only one or two source files, typing in

% cc file1.c file2.c

is not too bad, but it quickly becomes very tedious when there are several files—and it can take a while to compile,
too.

16

Chapter 5. Programming Tools

One way to get around this is to use object files and only recompile the source file if the source code has changed. So
we could have something like:

% cc file1.o file2.o ... file37.c ...

if we’d changedfile37.c , but not any of the others, since the last time we compiled. This may speed up the
compilation quite a bit, but doesn’t solve the typing problem.

Or we could write a shell script to solve the typing problem, but it would have to re-compile everything, making it
very inefficient on a large project.

What happens if we have hundreds of source files lying about? What if we’re working in a team with other people
who forget to tell us when they’ve changed one of their source files that we use?

Perhaps we could put the two solutions together and write something like a shell script that would contain some kind
of magic rule saying when a source file needs compiling. Now all we need now is a program that can understand
these rules, as it’s a bit too complicated for the shell.

This program is calledmake. It reads in a file, called amakefile, that tells it how different files depend on each other,
and works out which files need to be re-compiled and which ones don’t. For example, a rule could say something like
“if fromboz.o is older thanfromboz.c , that means someone must have changedfromboz.c , so it needs to be
re-compiled.” The makefile also has rules telling makehowto re-compile the source file, making it a much more
powerful tool.

Makefiles are typically kept in the same directory as the source they apply to, and can be calledmakefile ,
Makefile or MAKEFILE. Most programmers use the nameMakefile , as this puts it near the top of a directory
listing, where it can easily be seen.6

5.5.2. Example of using make

Here’s a very simple make file:

foo: foo.c
cc -o foo foo.c

It consists of two lines, a dependency line and a creation line.

The dependency line here consists of the name of the program (known as thetarget), followed by a colon, then
whitespace, then the name of the source file. Whenmake reads this line, it looks to see iffoo exists; if it exists, it
compares the timefoo was last modified to the timefoo.c was last modified. Iffoo does not exist, or is older than
foo.c , it then looks at the creation line to find out what to do. In other words, this is the rule for working out when
foo.c needs to be re-compiled.

17

Chapter 5. Programming Tools

The creation line starts with a tab (press thetab key) and then the command you would type to createfoo if you
were doing it at a command prompt. Iffoo is out of date, or does not exist,make then executes this command to
create it. In other words, this is the rule which tells make how to re-compilefoo.c .

So, when you typemake, it will make sure thatfoo is up to date with respect to your latest changes tofoo.c . This
principle can be extended toMakefile s with hundreds of targets—in fact, on FreeBSD, it is possible to compile the
entire operating system just by typingmake world in the appropriate directory!

Another useful property of makefiles is that the targets don’t have to be programs. For instance, we could have a
make file that looks like this:

foo: foo.c
cc -o foo foo.c

install:
cp foo /home/me

We can tell make which target we want to make by typing:

% make target

make will then only look at that target and ignore any others. For example, if we typemake foo with the makefile
above, make will ignore the install target.

If we just typemake on its own, make will always look at the first target and then stop without looking at any others.
So if we typedmake here, it will just go to the foo target, re-compilefoo if necessary, and then stop without going
on to the install target.

Notice that the install target doesn’t actually depend on anything! This means that the command on the following line
is always executed when we try to make that target by typingmake install . In this case, it will copyfoo into
the user’s home directory. This is often used by application makefiles, so that the application can be installed in the
correct directory when it has been correctly compiled.

This is a slightly confusing subject to try and explain. If you don’t quite understand howmake works, the best thing
to do is to write a simple program like “hello world” and a make file like the one above and experiment. Then
progress to using more than one source file, or having the source file include a header file. Thetouch command is
very useful here—it changes the date on a file without you having to edit it.

5.5.3. Make and include-files
C code often starts with a list of files to include, for example stdio.h. Some of these files are system-include files,
some of them are from the project you’re now working on:

18

Chapter 5. Programming Tools

#include <stdio.h >

#include "foo.h"

int main(....

To make sure that this file is recompiled the momentfoo.h is changed, you have to add it in yourMakefile :

foo: foo.c foo.h

The moment your project is getting bigger and you have more and more own include-files to maintain, it will be a
pain to keep track of all include files and the files which are depending on it. If you change an include-file but forget
to recompile all the files which are depending on it, the results will be devastating.gcc has an option to analyze your
files and to produce a list of include-files and their dependencies:-MM.

If you add this to your Makefile:

depend:
gcc -E -MM *.c > .depend

and runmake depend , the file.depend will appear with a list of object-files, C-files and the include-files:

foo.o: foo.c foo.h

If you changefoo.h , next time you runmake all files depending onfoo.h will be recompiled.

Don’t forget to runmake depend each time you add an include-file to one of your files.

5.5.4. FreeBSD Makefiles
Makefiles can be rather complicated to write. Fortunately, BSD-based systems like FreeBSD come with some very
powerful ones as part of the system. One very good example of this is the FreeBSD ports system. Here’s the essential
part of a typical portsMakefile :

MASTER_SITES= ftp://freefall.cdrom.com/pub/FreeBSD/LOCAL_PORTS/
DISTFILES= scheme-microcode+dist-7.3-freebsd.tgz

.include <bsd.port.mk >

Now, if we go to the directory for this port and typemake, the following happens:

1. A check is made to see if the source code for this port is already on the system.

2. If it isn’t, an FTP connection to the URL in MASTER_SITES is set up to download the source.

19

Chapter 5. Programming Tools

3. The checksum for the source is calculated and compared it with one for a known, good, copy of the source. This
is to make sure that the source was not corrupted while in transit.

4. Any changes required to make the source work on FreeBSD are applied—this is known aspatching.

5. Any special configuration needed for the source is done. (Many Unix program distributions try to work out
which version of Unix they are being compiled on and which optional Unix features are present—this is where
they are given the information in the FreeBSD ports scenario).

6. The source code for the program is compiled. In effect, we change to the directory where the source was
unpacked and domake—the program’s own make file has the necessary information to build the program.

7. We now have a compiled version of the program. If we wish, we can test it now; when we feel confident about
the program, we can typemake install . This will cause the program and any supporting files it needs to be
copied into the correct location; an entry is also made into a package database, so that the port can easily be
uninstalled later if we change our mind about it.

Now I think you’ll agree that’s rather impressive for a four line script!

The secret lies in the last line, which tellsmake to look in the system makefile calledbsd.port.mk . It’s easy to
overlook this line, but this is where all the clever stuff comes from—someone has written a makefile that tellsmake

to do all the things above (plus a couple of other things I didn’t mention, including handling any errors that may
occur) and anyone can get access to that just by putting a single line in their own make file!

If you want to have a look at these system makefiles, they’re in/usr/share/mk , but it’s probably best to wait until
you’ve had a bit of practice with makefiles, as they are very complicated (and if you do look at them, make sure you
have a flask of strong coffee handy!)

5.5.5. More advanced uses of make

Make is a very powerful tool, and can do much more than the simple example above shows. Unfortunately, there are
several different versions ofmake, and they all differ considerably. The best way to learn what they can do is
probably to read the documentation—hopefully this introduction will have given you a base from which you can do
this.

The version of make that comes with FreeBSD is theBerkeley make; there is a tutorial for it in
/usr/share/doc/psd/12.make . To view it, do

% zmore paper.ascii.gz

in that directory.

20

Chapter 5. Programming Tools

Many applications in the ports useGNU make, which has a very good set of “info” pages. If you have installed any
of these ports,GNU makewill automatically have been installed asgmake. It’s also available as a port and package
in its own right.

To view the info pages forGNU make, you will have to edit thedir file in the /usr/local/info directory to add
an entry for it. This involves adding a line like

* Make: (make). The GNU Make utility.

to the file. Once you have done this, you can typeinfo and then selectmake from the menu (or inEmacs, doC-h
i).

5.6. Debugging

5.6.1. The Debugger
The debugger that comes with FreeBSD is calledgdb (GNU debugger). You start it up by typing

% gdb progname

although most people prefer to run it insideEmacs. You can do this by:

M-x gdb RET progname RET

Using a debugger allows you to run the program under more controlled circumstances. Typically, you can step
through the program a line at a time, inspect the value of variables, change them, tell the debugger to run up to a
certain point and then stop, and so on. You can even attach to a program that’s already running, or load a core file to
investigate why the program crashed. It’s even possible to debug the kernel, though that’s a little trickier than the user
applications we’ll be discussing in this section.

gdb has quite good on-line help, as well as a set of info pages, so this section will concentrate on a few of the basic
commands.

Finally, if you find its text-based command-prompt style off-putting, there’s a graphical front-end for it xxgdb
(../../ports/devel.html) in the ports collection.

This section is intended to be an introduction to usinggdb and does not cover specialised topics such as debugging
the kernel.

21

Chapter 5. Programming Tools

5.6.2. Running a program in the debugger
You’ll need to have compiled the program with the-g option to get the most out of usinggdb . It will work without,
but you’ll only see the name of the function you’re in, instead of the source code. If you see a line like:

... (no debugging symbols found) ...

whengdb starts up, you’ll know that the program wasn’t compiled with the-g option.

At the gdb prompt, typebreak main . This will tell the debugger to skip over the preliminary set-up code in the
program and start at the beginning of your code. Now typerun to start the program—it will start at the beginning of
the set-up code and then get stopped by the debugger when it callsmain() . (If you’ve ever wondered wheremain()

gets called from, now you know!).

You can now step through the program, a line at a time, by pressingn. If you get to a function call, you can step into
it by pressings . Once you’re in a function call, you can return from stepping into a function call by pressingf . You
can also useup anddown to take a quick look at the caller.

Here’s a simple example of how to spot a mistake in a program withgdb . This is our program (with a deliberate
mistake):

#include <stdio.h >

int bazz(int anint);

main() {
int i;

printf("This is my program\n");
bazz(i);
return 0;

}

int bazz(int anint) {
printf("You gave me %d\n", anint);
return anint;

}

This program sets i to be5 and passes it to a functionbazz() which prints out the number we gave it.

When we compile and run the program we get

% cc -g -o temp temp.c
% ./temp
This is my program
anint = 4231

22

Chapter 5. Programming Tools

That wasn’t what we expected! Time to see what’s going on!

% gdb temp
GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.13 (i386-unknown-freebsd), Copyright 1994 Free Software Foundation, Inc.
(gdb) break main Skip the set-up code
Breakpoint 1 at 0x160f: file temp.c, line 9. gdb puts breakpoint atmain()

(gdb) run Run as far asmain()

Starting program: /home/james/tmp/temp Program starts running

Breakpoint 1, main () at temp.c:9 gdb stops atmain()

(gdb) n Go to next line
This is my program Program prints out
(gdb) s step intobazz()

bazz (anint=4231) at temp.c:17 gdb displays stack frame
(gdb)

Hang on a minute! How did anint get to be4231 ? Didn’t we set it to be5 in main() ? Let’s move up tomain() and
have a look.

(gdb) up Move up call stack
#1 0x1625 in main () at temp.c:11 gdb displays stack frame
(gdb) p i Show us the value of i
$1 = 4231 gdb displays4231

Oh dear! Looking at the code, we forgot to initialise i. We meant to put

. . .
main() {

int i;

i = 5;
printf("This is my program\n");

. . .

but we left thei=5; line out. As we didn’t initialise i, it had whatever number happened to be in that area of memory
when the program ran, which in this case happened to be4231 .

23

Chapter 5. Programming Tools

Note: gdb displays the stack frame every time we go into or out of a function, even if we’re using up and down to
move around the call stack. This shows the name of the function and the values of its arguments, which helps us
keep track of where we are and what’s going on. (The stack is a storage area where the program stores
information about the arguments passed to functions and where to go when it returns from a function call).

5.6.3. Examining a core file
A core file is basically a file which contains the complete state of the process when it crashed. In “the good old
days”, programmers had to print out hex listings of core files and sweat over machine code manuals, but now life is a
bit easier. Incidentally, under FreeBSD and other 4.4BSD systems, a core file is calledprogname .core instead of
just core , to make it clearer which program a core file belongs to.

To examine a core file, start upgdb in the usual way. Instead of typingbreak or run , type

(gdb) core progname .core

If you’re not in the same directory as the core file, you’ll have to dodir /path/to/core/file first.

You should see something like this:

% gdb a.out
GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.13 (i386-unknown-freebsd), Copyright 1994 Free Software Foundation, Inc.
(gdb) core a.out.core
Core was generated by ‘a.out’.
Program terminated with signal 11, Segmentation fault.
Cannot access memory at address 0x7020796d.
#0 0x164a in bazz (anint=0x5) at temp.c:17
(gdb)

In this case, the program was calleda.out , so the core file is calleda.out.core . We can see that the program
crashed due to trying to access an area in memory that was not available to it in a function calledbazz .

Sometimes it’s useful to be able to see how a function was called, as the problem could have occurred a long way up
the call stack in a complex program. Thebt command causesgdb to print out a back-trace of the call stack:

(gdb) bt
#0 0x164a in bazz (anint=0x5) at temp.c:17
#1 0xefbfd888 in end ()

24

Chapter 5. Programming Tools

#2 0x162c in main () at temp.c:11
(gdb)

Theend() function is called when a program crashes; in this case, thebazz() function was called frommain() .

5.6.4. Attaching to a running program
One of the neatest features aboutgdb is that it can attach to a program that’s already running. Of course, that
assumes you have sufficient permissions to do so. A common problem is when you are stepping through a program
that forks, and you want to trace the child, but the debugger will only let you trace the parent.

What you do is start up anothergdb , useps to find the process ID for the child, and do

(gdb) attach pid

in gdb , and then debug as usual.

“That’s all very well,” you’re probably thinking, “but by the time I’ve done that, the child process will be over the
hill and far away”. Fear not, gentle reader, here’s how to do it (courtesy of thegdb info pages):

. . .
if ((pid = fork()) < 0) /* _Always_ check this */

error();
else if (pid == 0) { /* child */

int PauseMode = 1;

while (PauseMode)
sleep(10); /* Wait until someone attaches to us */
. . .

} else { /* parent */
. . .

Now all you have to do is attach to the child, set PauseMode to0, and wait for thesleep() call to return!

25

Chapter 5. Programming Tools

5.7. Using Emacs as a Development Environment

5.7.1. Emacs
Unfortunately, Unix systems don’t come with the kind of
everything-you-ever-wanted-and-lots-more-you-didn’t-in-one-gigantic-package integrated development
environments that other systems have.7 However, it is possible to set up your own environment. It may not be as
pretty, and it may not be quite as integrated, but you can set it up the way you want it. And it’s free. And you have the
source to it.

The key to it all is Emacs. Now there are some people who loathe it, but many who love it. If you’re one of the
former, I’m afraid this section will hold little of interest to you. Also, you’ll need a fair amount of memory to run
it—I’d recommend 8MB in text mode and 16MB in X as the bare minimum to get reasonable performance.

Emacs is basically a highly customisable editor—indeed, it has been customised to the point where it’s more like an
operating system than an editor! Many developers and sysadmins do in fact spend practically all their time working
inside Emacs, leaving it only to log out.

It’s impossible even to summarise everything Emacs can do here, but here are some of the features of interest to
developers:

• Very powerful editor, allowing search-and-replace on both strings and regular expressions (patterns), jumping to
start/end of block expression, etc, etc.

• Pull-down menus and online help.

• Language-dependent syntax highlighting and indentation.

• Completely customisable.

• You can compile and debug programs within Emacs.

• On a compilation error, you can jump to the offending line of source code.

• Friendly-ish front-end to theinfo program used for reading GNU hypertext documentation, including the
documentation on Emacs itself.

• Friendly front-end togdb , allowing you to look at the source code as you step through your program.

• You can read Usenet news and mail while your program is compiling.

And doubtless many more that I’ve overlooked.

Emacs can be installed on FreeBSD using the Emacs port (../../ports/editors.html).

Once it’s installed, start it up and doC-h t to read an Emacs tutorial—that means hold down thecontrol key, press
h, let go of thecontrol key, and then presst. (Alternatively, you can you use the mouse to selectEmacs Tutorial
from theHelp menu).

26

Chapter 5. Programming Tools

Although Emacs does have menus, it’s well worth learning the key bindings, as it’s much quicker when you’re
editing something to press a couple of keys than to try and find the mouse and then click on the right place. And,
when you’re talking to seasoned Emacs users, you’ll find they often casually throw around expressions like “M-x

replace-s RET foo RET bar RET ” so it’s useful to know what they mean. And in any case, Emacs has far too
many useful functions for them to all fit on the menu bars.

Fortunately, it’s quite easy to pick up the key-bindings, as they’re displayed next to the menu item. My advice is to
use the menu item for, say, opening a file until you understand how it works and feel confident with it, then try doing
C-x C-f. When you’re happy with that, move on to another menu command.

If you can’t remember what a particular combination of keys does, selectDescribe Key from theHelp menu and
type it in—Emacs will tell you what it does. You can also use theCommand Apropos menu item to find out all the
commands which contain a particular word in them, with the key binding next to it.

By the way, the expression above means hold down the Meta key, press x, release the Meta key, typereplace-s
(short forreplace-string —another feature of Emacs is that you can abbreviate commands), press the return key,
typefoo (the string you want replaced), press the return key, type bar (the string you want to replacefoo with) and
press return again. Emacs will then do the search-and-replace operation you’ve just requested.

If you’re wondering what on earth the Meta key is, it’s a special key that many Unix workstations have.
Unfortunately, PC’s don’t have one, so it’s usually thealt key (or if you’re unlucky, the escape key).

Oh, and to get out of Emacs, doC-x C-c (that means hold down the control key, press x, press c and release the
control key). If you have any unsaved files open, Emacs will ask you if you want to save them. (Ignore the bit in the
documentation where it saysC-z is the usual way to leave Emacs—that leaves Emacs hanging around in the
background, and is only really useful if you’re on a system which doesn’t have virtual terminals).

5.7.2. Configuring Emacs
Emacs does many wonderful things; some of them are built in, some of them need to be configured.

Instead of using a proprietary macro language for configuration, Emacs uses a version of Lisp specially adapted for
editors, known as Emacs Lisp. This can be quite useful if you want to go on and learn something like Common Lisp,
as it’s considerably smaller than Common Lisp (although still quite big!).

The best way to learn Emacs Lisp is to download the Emacs Tutorial
(ftp://prep.ai.mit.edu:pub/gnu/elisp-manual-19-2.4.tar.gz)

However, there’s no need to actually know any Lisp to get started with configuring Emacs, as I’ve included a sample
.emacs file, which should be enough to get you started. Just copy it into your home directory and restart Emacs if
it’s already running; it will read the commands from the file and (hopefully) give you a useful basic setup.

27

Chapter 5. Programming Tools

5.7.3. A sample .emacs file
Unfortunately, there’s far too much here to explain it in detail; however there are one or two points worth mentioning.

• Everything beginning with a; is a comment and is ignored by Emacs.

• In the first line, the-*- Emacs-Lisp -*- is so that we can edit the.emacs file itself within Emacs and get all
the fancy features for editing Emacs Lisp. Emacs usually tries to guess this based on the filename, and may not get
it right for .emacs .

• The tab key is bound to an indentation function in some modes, so when you press the tab key, it will indent the
current line of code. If you want to put a tab character in whatever you’re writing, hold the control key down while
you’re pressing the tab key.

• This file supports syntax highlighting for C, C++, Perl, Lisp and Scheme, by guessing the language from the
filename.

• Emacs already has a pre-defined function callednext-error . In a compilation output window, this allows you to
move from one compilation error to the next by doingM-n; we define a complementary function,
previous-error , that allows you to go to a previous error by doingM-p. The nicest feature of all is thatC-c

C-c will open up the source file in which the error occurred and jump to the appropriate line.

• We enable Emacs’s ability to act as a server, so that if you’re doing something outside Emacs and you want to edit
a file, you can just type in

% emacsclient filename

and then you can edit the file in your Emacs!8

Example 5-1. A sample.emacs file

;; -*-Emacs-Lisp-*-

;; This file is designed to be re-evaled; use the variable first-time
;; to avoid any problems with this.
(defvar first-time t

"Flag signifying this is the first time that .emacs has been evaled")

;; Meta
(global-set-key "\M- " ’set-mark-command)
(global-set-key "\M-\C-h" ’backward-kill-word)
(global-set-key "\M-\C-r" ’query-replace)
(global-set-key "\M-r" ’replace-string)
(global-set-key "\M-g" ’goto-line)

28

Chapter 5. Programming Tools

(global-set-key "\M-h" ’help-command)

;; Function keys
(global-set-key [f1] ’manual-entry)
(global-set-key [f2] ’info)
(global-set-key [f3] ’repeat-complex-command)
(global-set-key [f4] ’advertised-undo)
(global-set-key [f5] ’eval-current-buffer)
(global-set-key [f6] ’buffer-menu)
(global-set-key [f7] ’other-window)
(global-set-key [f8] ’find-file)
(global-set-key [f9] ’save-buffer)
(global-set-key [f10] ’next-error)
(global-set-key [f11] ’compile)
(global-set-key [f12] ’grep)
(global-set-key [C-f1] ’compile)
(global-set-key [C-f2] ’grep)
(global-set-key [C-f3] ’next-error)
(global-set-key [C-f4] ’previous-error)
(global-set-key [C-f5] ’display-faces)
(global-set-key [C-f8] ’dired)
(global-set-key [C-f10] ’kill-compilation)

;; Keypad bindings
(global-set-key [up] "\C-p")
(global-set-key [down] "\C-n")
(global-set-key [left] "\C-b")
(global-set-key [right] "\C-f")
(global-set-key [home] "\C-a")
(global-set-key [end] "\C-e")
(global-set-key [prior] "\M-v")
(global-set-key [next] "\C-v")
(global-set-key [C-up] "\M-\C-b")
(global-set-key [C-down] "\M-\C-f")
(global-set-key [C-left] "\M-b")
(global-set-key [C-right] "\M-f")
(global-set-key [C-home] "\M- <")
(global-set-key [C-end] "\M- >")
(global-set-key [C-prior] "\M- <")
(global-set-key [C-next] "\M- >")

;; Mouse
(global-set-key [mouse-3] ’imenu)

;; Misc

29

Chapter 5. Programming Tools

(global-set-key [C-tab] "\C-q\t") ; Control tab quotes a tab.
(setq backup-by-copying-when-mismatch t)

;; Treat ’y’ or <CR> as yes, ’n’ as no.
(fset ’yes-or-no-p ’y-or-n-p)

(define-key query-replace-map [return] ’act)
(define-key query-replace-map [?\C-m] ’act)

;; Load packages
(require ’desktop)
(require ’tar-mode)

;; Pretty diff mode
(autoload ’ediff-buffers "ediff" "Intelligent Emacs interface to diff" t)
(autoload ’ediff-files "ediff" "Intelligent Emacs interface to diff" t)
(autoload ’ediff-files-remote "ediff"

"Intelligent Emacs interface to diff")

(if first-time
(setq auto-mode-alist

(append ’(("\\.cpp$" . c++-mode)
("\\.hpp$" . c++-mode)

("\\.lsp$" . lisp-mode)
("\\.scm$" . scheme-mode)
("\\.pl$" . perl-mode)
) auto-mode-alist)))

;; Auto font lock mode
(defvar font-lock-auto-mode-list

(list ’c-mode ’c++-mode ’c++-c-mode ’emacs-lisp-mode ’lisp-mode ’perl-mode ’scheme-
mode)

"List of modes to always start in font-lock-mode")

(defvar font-lock-mode-keyword-alist
’((c++-c-mode . c-font-lock-keywords)

(perl-mode . perl-font-lock-keywords))
"Associations between modes and keywords")

(defun font-lock-auto-mode-select ()
"Automatically select font-lock-mode if the current major mode is

in font-lock-auto-mode-list"
(if (memq major-mode font-lock-auto-mode-list)

(progn
(font-lock-mode t))

)

30

Chapter 5. Programming Tools

)

(global-set-key [M-f1] ’font-lock-fontify-buffer)

;; New dabbrev stuff
;(require ’new-dabbrev)
(setq dabbrev-always-check-other-buffers t)
(setq dabbrev-abbrev-char-regexp "\\sw\\|\\s_")
(add-hook ’emacs-lisp-mode-hook

’(lambda ()
(set (make-local-variable ’dabbrev-case-fold-search) nil)
(set (make-local-variable ’dabbrev-case-replace) nil)))

(add-hook ’c-mode-hook
’(lambda ()

(set (make-local-variable ’dabbrev-case-fold-search) nil)
(set (make-local-variable ’dabbrev-case-replace) nil)))

(add-hook ’text-mode-hook
’(lambda ()

(set (make-local-variable ’dabbrev-case-fold-search) t)
(set (make-local-variable ’dabbrev-case-replace) t)))

;; C++ and C mode...
(defun my-c++-mode-hook ()

(setq tab-width 4)
(define-key c++-mode-map "\C-m" ’reindent-then-newline-and-indent)
(define-key c++-mode-map "\C-ce" ’c-comment-edit)
(setq c++-auto-hungry-initial-state ’none)
(setq c++-delete-function ’backward-delete-char)
(setq c++-tab-always-indent t)
(setq c-indent-level 4)
(setq c-continued-statement-offset 4)
(setq c++-empty-arglist-indent 4))

(defun my-c-mode-hook ()
(setq tab-width 4)
(define-key c-mode-map "\C-m" ’reindent-then-newline-and-indent)
(define-key c-mode-map "\C-ce" ’c-comment-edit)
(setq c-auto-hungry-initial-state ’none)
(setq c-delete-function ’backward-delete-char)
(setq c-tab-always-indent t)

;; BSD-ish indentation style
(setq c-indent-level 4)
(setq c-continued-statement-offset 4)
(setq c-brace-offset -4)
(setq c-argdecl-indent 0)

31

Chapter 5. Programming Tools

(setq c-label-offset -4))

;; Perl mode
(defun my-perl-mode-hook ()

(setq tab-width 4)
(define-key c++-mode-map "\C-m" ’reindent-then-newline-and-indent)
(setq perl-indent-level 4)
(setq perl-continued-statement-offset 4))

;; Scheme mode...
(defun my-scheme-mode-hook ()

(define-key scheme-mode-map "\C-m" ’reindent-then-newline-and-indent))

;; Emacs-Lisp mode...
(defun my-lisp-mode-hook ()

(define-key lisp-mode-map "\C-m" ’reindent-then-newline-and-indent)
(define-key lisp-mode-map "\C-i" ’lisp-indent-line)
(define-key lisp-mode-map "\C-j" ’eval-print-last-sexp))

;; Add all of the hooks...
(add-hook ’c++-mode-hook ’my-c++-mode-hook)
(add-hook ’c-mode-hook ’my-c-mode-hook)
(add-hook ’scheme-mode-hook ’my-scheme-mode-hook)
(add-hook ’emacs-lisp-mode-hook ’my-lisp-mode-hook)
(add-hook ’lisp-mode-hook ’my-lisp-mode-hook)
(add-hook ’perl-mode-hook ’my-perl-mode-hook)

;; Complement to next-error
(defun previous-error (n)

"Visit previous compilation error message and corresponding source code."
(interactive "p")
(next-error (- n)))

;; Misc...
(transient-mark-mode 1)
(setq mark-even-if-inactive t)
(setq visible-bell nil)
(setq next-line-add-newlines nil)
(setq compile-command "make")
(setq suggest-key-bindings nil)
(put ’eval-expression ’disabled nil)
(put ’narrow-to-region ’disabled nil)
(put ’set-goal-column ’disabled nil)

;; Elisp archive searching

32

Chapter 5. Programming Tools

(autoload ’format-lisp-code-directory "lispdir" nil t)
(autoload ’lisp-dir-apropos "lispdir" nil t)
(autoload ’lisp-dir-retrieve "lispdir" nil t)
(autoload ’lisp-dir-verify "lispdir" nil t)

;; Font lock mode
(defun my-make-face (face colour &optional bold)

"Create a face from a colour and optionally make it bold"
(make-face face)
(copy-face ’default face)
(set-face-foreground face colour)
(if bold (make-face-bold face))
)

(if (eq window-system ’x)
(progn

(my-make-face ’blue "blue")
(my-make-face ’red "red")
(my-make-face ’green "dark green")
(setq font-lock-comment-face ’blue)
(setq font-lock-string-face ’bold)
(setq font-lock-type-face ’bold)
(setq font-lock-keyword-face ’bold)
(setq font-lock-function-name-face ’red)
(setq font-lock-doc-string-face ’green)
(add-hook ’find-file-hooks ’font-lock-auto-mode-select)

(setq baud-rate 1000000)
(global-set-key "\C-cmm" ’menu-bar-mode)
(global-set-key "\C-cms" ’scroll-bar-mode)
(global-set-key [backspace] ’backward-delete-char)

; (global-set-key [delete] ’delete-char)
(standard-display-european t)
(load-library "iso-transl")))

;; X11 or PC using direct screen writes
(if window-system

(progn
;; (global-set-key [M-f1] ’hilit-repaint-command)
;; (global-set-key [M-f2] [?\C-u M-f1])
(setq hilit-mode-enable-list

’(not text-mode c-mode c++-mode emacs-lisp-mode lisp-mode
scheme-mode)

hilit-auto-highlight nil
hilit-auto-rehighlight ’visible

33

Chapter 5. Programming Tools

hilit-inhibit-hooks nil
hilit-inhibit-rebinding t)

(require ’hilit19)
(require ’paren))

(setq baud-rate 2400) ; For slow serial connections
)

;; TTY type terminal
(if (and (not window-system)

(not (equal system-type ’ms-dos)))
(progn

(if first-time
(progn

(keyboard-translate ?\C-h ?\C-?)
(keyboard-translate ?\C-? ?\C-h)))))

;; Under UNIX
(if (not (equal system-type ’ms-dos))

(progn
(if first-time

(server-start))))

;; Add any face changes here
(add-hook ’term-setup-hook ’my-term-setup-hook)
(defun my-term-setup-hook ()

(if (eq window-system ’pc)
(progn

;; (set-face-background ’default "red")
)))

;; Restore the "desktop" - do this as late as possible
(if first-time

(progn
(desktop-load-default)
(desktop-read)))

;; Indicate that this file has been read at least once
(setq first-time nil)

;; No need to debug anything now

(setq debug-on-error nil)

;; All done
(message "All done, %s%s" (user-login-name) ".")

34

Chapter 5. Programming Tools

5.7.4. Extending the Range of Languages Emacs Understands
Now, this is all very well if you only want to program in the languages already catered for in the.emacs file (C, C++,
Perl, Lisp and Scheme), but what happens if a new language called “whizbang” comes out, full of exciting features?

The first thing to do is find out if whizbang comes with any files that tell Emacs about the language. These usually
end in.el , short for “Emacs Lisp”. For example, if whizbang is a FreeBSD port, we can locate these files by doing

% find /usr/ports/lang/whizbang -name "*.el" -print

and install them by copying them into the Emacs site Lisp directory. On FreeBSD 2.1.0-RELEASE, this is
/usr/local/share/emacs/site-lisp .

So for example, if the output from the find command was

/usr/ports/lang/whizbang/work/misc/whizbang.el

we would do

cp /usr/ports/lang/whizbang/work/misc/whizbang.el /usr/local/share/emacs/site-lisp

Next, we need to decide what extension whizbang source files have. Let’s say for the sake of argument that they all
end in.wiz . We need to add an entry to our.emacs file to make sure Emacs will be able to use the information in
whizbang.el .

Find the auto-mode-alist entry in.emacs and add a line for whizbang, such as:

. . .
("\\.lsp$" . lisp-mode)
("\\.wiz$" . whizbang-mode)
("\\.scm$" . scheme-mode)
. . .

This means that Emacs will automatically go intowhizbang-mode when you edit a file ending in.wiz .

Just below this, you’ll find the font-lock-auto-mode-list entry. Addwhizbang-mode to it like so:

;; Auto font lock mode
(defvar font-lock-auto-mode-list

35

Chapter 5. Programming Tools

(list ’c-mode ’c++-mode ’c++-c-mode ’emacs-lisp-mode ’whizbang-mode ’lisp-mode ’perl-
mode ’scheme-mode)

"List of modes to always start in font-lock-mode")

This means that Emacs will always enablefont-lock-mode (ie syntax highlighting) when editing a.wiz file.

And that’s all that’s needed. If there’s anything else you want done automatically when you open up a.wiz file, you
can add awhizbang-mode hook (seemy-scheme-mode-hook for a simple example that addsauto-indent).

5.8. Further Reading

• Brian Harvey and Matthew WrightSimply SchemeMIT 1994. ISBN 0-262-08226-8

• Randall SchwartzLearning PerlO’Reilly 1993 ISBN 1-56592-042-2

• Patrick Henry Winston and Berthold Klaus Paul HornLisp (3rd Edition)Addison-Wesley 1989 ISBN
0-201-08319-1

• Brian W. Kernighan and Rob PikeThe Unix Programming EnvironmentPrentice-Hall 1984 ISBN 0-13-937681-X

• Brian W. Kernighan and Dennis M. RitchieThe C Programming Language (2nd Edition)Prentice-Hall 1988
ISBN 0-13-110362-8

• Bjarne StroustrupThe C++ Programming LanguageAddison-Wesley 1991 ISBN 0-201-53992-6

• W. Richard StevensAdvanced Programming in the Unix EnvironmentAddison-Wesley 1992 ISBN 0-201-56317-7

• W. Richard StevensUnix Network ProgrammingPrentice-Hall 1990 ISBN 0-13-949876-1

Notes
1. If you run it in the shell, you may get a core dump.

2. To be strictly accurate,cc converts the source code into its own, machine-independentp-codeinstead of
assembly language at this stage.

3. In case you didn’t know, a binary sort is an efficient way of sorting things into order and a bubble sort isn’t.

4. The reasons for this are buried in the mists of history.

5. Note, we didn’t use the-o flag to specify the executable name, so we will get an executable calleda.out .
Producing a debug version calledfoobar is left as an exercise for the reader!

6. They don’t use theMAKEFILE form as block capitals are often used for documentation files likeREADME.

36

Chapter 5. Programming Tools

7. At least, not unless you pay out very large sums of money.

8. Many Emacs users set their EDITOR environment toemacsclient so this happens every time they need to edit
a file.

37

Chapter 6. Secure Programming
This chapter was written by Murray Stokely <murray@FreeBSD.org >.

6.1. Synopsis
This chapter describes some of the security issues that have plagued Unix programmers for decades and some of the
new tools available to help programmers avoid writing exploitable code.

6.2. Secure Design Methodology
Writing secure applications takes a very scrutinous and pessimistic outlook on life. Applications should be run with
the principle of “least privilege” so that no process is ever running with more than the bare minimum access that it
needs to accomplish its function. Previously tested code should be reused whenever possible to avoid common
mistakes that others may have already fixed.

One of the pitfalls of the Unix environment is how easy it is to make assumptions about the sanity of the environment.
Applications should never trust user input (in all its forms), system resources, inter-process communication, or the
timing of events. Unix processes do not execute synchronously so logical operations are rarely atomic.

6.3. Buffer Overflows
Buffer Overflows have been around since the very beginnings of the Von-Neuman1 architecture. They first gained
widespread notoriety in 1988 with the Morris Internet worm. Unfortunately, the same basic attack remains effective
today. Of the 17 CERT security advisories of 1999, 10 of them were directly caused by buffer-overflow software
bugs. By far the most common type of buffer overflow attack is based on corrupting the stack.

Most modern computer systems use a stack to pass arguments to procedures and to store local variables. A stack is a
last in first out (LIFO) buffer in the high memory area of a process image. When a program invokes a function a new
"stack frame" is created. This stack frame consists of the arguments passed to the function as well as a dynamic
amount of local variable space. The "stack pointer" is a register that holds the current location of the top of the stack.
Since this value is constantly changing as new values are pushed onto the top of the stack, many implementations
also provide a "frame pointer" that is located near the beginning of a stack frame so that local variables can more
easily be addressed relative to this value.1 The return address for function calls is also stored on the stack, and this
is the cause of stack-overflow exploits since overflowing a local variable in a function can overwrite the return
address of that function, potentially allowing a malicious user to execute any code he or she wants.

38

Chapter 6. Secure Programming

Although stack-based attacks are by far the most common, it would also be possible to overrun the stack with a
heap-based (malloc/free) attack.

The C programming language does not perform automatic bounds checking on arrays or pointers as many other
languages do. In addition, the standard C library is filled with a handful of very dangerous functions.

strcpy (char *dest, const char *src) May overflow the dest buffer

strcat (char *dest, const char *src) May overflow the dest buffer

getwd (char *buf) May overflow the buf buffer

gets (char *s) May overflow the s buffer

[vf]scanf (const char *format, ...) May overflow its arguments.

realpath (char *path, char resolved_path[]) May overflow the path buffer

[v]sprintf (char *str, const char *format, ...) May overflow the str buffer.

6.3.1. Example Buffer Overflow
The following example code contains a buffer overflow designed to overwrite the return address and skip the
instruction immediately following the function call. (Inspired by4)

#include <stdio.h>

void manipulate(char *buffer) {
char newbuffer[80];
strcpy(newbuffer,buffer);

}

int main() {
char ch,buffer[4096];
int i=0;

while ((buffer[i++] = getchar()) != ’\n’) {};

i=1;
manipulate(buffer);
i=2;
printf("The value of i is : %d\n",i);
return 0;

}

Let us examine what the memory image of this process would look like if we were to input 160 spaces into our little
program before hitting return.

39

Chapter 6. Secure Programming

[XXX figure here!]

Obviously more malicious input can be devised to execute actual compiled instructions (such as exec(/bin/sh)).

6.3.2. Avoiding Buffer Overflows
The most straightforward solution to the problem of stack-overflows is to always use length restricted memory and
string copy functions.strncpy andstrncat are part of the standard C library. These functions accept a length
value as a parameter which should be no larger than the size of the destination buffer. These functions will then copy
up to ‘length’ bytes from the source to the destination. However there are a number of problems with these functions.
Neither function guarantees NUL termination if the size of the input buffer is as large as the destination. The length
parameter is also used inconsistently between strncpy and strncat so it is easy for programmers to get confused as to
their proper usage. There is also a significant performance loss compared tostrcpy when copying a short string into
a large buffer sincestrncpy NUL fills up the the size specified.

In OpenBSD, another memory copy implementation has been created to get around these problem. Thestrlcpy

andstrlcat functions guarantee that they will always null terminate the destination string when given a non-zero
length argument. For more information about these functions see6. The OpenBSDstrlcpy andstrlcat

instructions have been in FreeBSD since 3.3.

6.3.2.1. Compiler based run-time bounds checking

Unfortunately there is still a very large assortment of code in public use which blindly copies memory around
without using any of the bounded copy routines we just discussed. Fortunately, there is another solution. Several
compiler add-ons and libraries exist to do Run-time bounds checking in C/C++.

StackGuard is one such add-on that is implemented as a small patch to the gcc code generator. From the StackGuard
website, http://immunix.org/stackguard.html :

"StackGuard detects and defeats stack smashing attacks by protecting the return address on the stack from being altered.
StackGuard places a "canary" word next to the return address when a function is called. If the canary word has been altered
when the function returns, then a stack smashing attack has been attempted, and the program responds by emitting an
intruder alert into syslog, and then halts."

"StackGuard is implemented as a small patch to the gcc code generator, specifically the function_prolog() and
function_epilog() routines. function_prolog() has been enhanced to lay down canaries on the stack when functions start, and
function_epilog() checks canary integrity when the function exits. Any attempt at corrupting the return address is thus
detected before the function returns."

40

Chapter 6. Secure Programming

Recompiling your application with StackGuard is an effective means of stopping most buffer-overflow attacks, but it
can still be compromised.

6.3.2.2. Library based run-time bounds checking

Compiler-based mechanisms are completely useless for binary-only software for which you cannot recompile. For
these situations there are a number of libraries which re-implement the unsafe functions of the C-library (strcpy ,
fscanf , getwd , etc..) and ensure that these functions can never write past the stack pointer.

• libsafe

• libverify

• libparnoia

Unfortunately these library-based defenses have a number of shortcomings. These libraries only protect against a
very small set of security related issues and they neglect to fix the actual problem. These defenses may fail if the
application was compiled with -fomit-frame-pointer. Also, the LD_PRELOAD and LD_LIBRARY_PATH
environment variables can be overwritten/unset by the user.

6.4. SetUID issues
There are at least 6 different IDs associated with any given process. Because of this you have to be very careful with
the access that your process has at any given time. In particular, all seteuid applications should give up their
privileges as soon as it is no longer required.

The real user ID can only be changed by a superuser process. Thelogin program sets this when a user initially logs
in and it is seldom changed.

The effective user ID is set by theexec() functions if a program has its seteuid bit set. An application can call
seteuid() at any time to set the effective user ID to either the real user ID or the saved set-user-ID. When the
effective user ID is set byexec() functions, the previous value is saved in the saved set-user-ID.

6.5. Limiting your program’s environment
The traditional method of restricting a process is with thechroot() system call. This system call changes the root
directory from which all other paths are referenced for a process and any child processes. For this call to succeed the
process must have execute (search) permission on the directory being referenced. The new environment does not

41

Chapter 6. Secure Programming

actually take effect until youchdir() into your new environment. It should also be noted that a process can easily
break out of a chroot environment if it has root privilege. This could be accomplished by creating device nodes to
read kernel memory, attaching a debugger to a process outside of the jail, or in many other creative ways.

The behavior of thechroot() system call can be controlled somewhat with the kern.chroot_allow_open_directories
sysctl variable. When this value is set to 0,chroot() will fail with EPERM if there are any directories open. If set
to the default value of 1, thenchroot() will fail with EPERM if there are any directories open and the process is
already subject to achroot() call. For any other value, the check for open directories will be bypassed completely.

6.5.1. FreeBSD’s jail functionality
The concept of a Jail extends upon thechroot() by limiting the powers of the superuser to create a true ‘virtual
server’. Once a prison is setup all network communication must take place through the specified IP address, and the
power of "root privilege" in this jail is severely constrained.

While in a prison, any tests of superuser power within the kernel using thesuser() call will fail. However, some
calls tosuser() have been changed to a new interfacesuser_xxx() . This function is responsible for recognizing
or denying access to superuser power for imprisoned processes.

A superuser process within a jailed environment has the power to :

• Manipulate credential withsetuid , seteuid , setgid , setegid , setgroups , setreuid , setregid ,
setlogin

• Set resource limits withsetrlimit

• Modify some sysctl nodes (kern.hostname)

• chroot()

• Set flags on a vnode:chflags , fchflags

• Set attributes of a vnode such as file permission, owner, group, size, access time, and modification time.

• Bind to privileged ports in the Internet domain (ports < 1024)

Jail is a very useful tool for running applications in a secure environment but it does have some shortcomings.
Currently, the IPC mechanisms have not been converted to thesuser_xxx so applications such as MySQL can not
be run within a jail. Superuser access may have a very limited meaning within a jail, but there is no way to specify
exactly what "very limited" means.

6.5.2. POSIX.1e Process Capabilities
Posix has released a working draft that adds event auditing, access control lists, fine grained privileges, information
labeling, and mandatory access control.

42

Chapter 6. Secure Programming

This is a work in progress and is the focus of the TrustedBSD (http://www.trustedbsd.org) project. Some of the initial
work has been committed to FreeBSD-current (cap_set_proc(3)).

6.6. Trust
An application should never assume that anything about the users environment is sane. This includes (but is certainly
not limited to) : user input, signals, environment variables, resources, IPC, mmaps, the file system working directory,
file descriptors, the # of open files, etc.

You should never assume that you can catch all forms of invalid input that a user might supply. Instead, your
application should use positive filtering to only allow a specific subset of inputs that you deem safe. Improper data
validation has been the cause of many exploits, especially with CGI scripts on the world wide web. For filenames
you need to be extra careful about paths ("../", "/"), symbolic links, and shell escape characters.

Perl has a really cool feature called "Taint" mode which can be used to prevent scripts for using data derived outside
the program in an unsafe way. This mode will check command line arguments, environment variables, locale
information, the results of certain syscalls (readdir() , readlink() , getpwxxx() , and all file input.

6.7. Race Conditions
A race condition is anomalous behavior caused by the unexpected dependence on the relative timing of events. In
other words, a programmer incorrectly assumed that a particular event would always happen before another.

Some of the common causes of race conditions are signals, access checks, and file opens. Signals are asynchronous
events by nature so special care must be taken in dealing with them. Checking access withaccess(2) then
open(2) is clearly non-atomic. Users can move files in between the two calls. Instead, privileged applications
shouldseteuid() and then callopen() directly. Along the same lines, an application should always set a proper
umask beforeopen() to obviate the need for spuriouschmod() calls.

43

III. Kernel

Chapter 7. History of the Unix Kernel
Some history of the Unix/BSD kernel, system calls, how do processes work, blocking, scheduling, threads (kernel),
context switching, signals, interrupts, modules, etc.

45

Chapter 8. Locking Notes
This chapter is maintained by the FreeBSD SMP Next Generation Project <freebsd-smp@FreeBSD.org >.

This document outlines the locking used in the FreeBSD kernel to permit effective multi-processing within the
kernel. Locking can be achieved via several means. Data structures can be protected by mutexes or lockmgr(9) locks.
A few variables are protected simply by always using atomic operations to access them.

8.1. Mutexes
A mutex is simply a lock used to guarantee mutual exclusion. Specifically, a mutex may only be owned by one entity
at a time. If another entity wishes to obtain a mutex that is already owned, it must wait until the mutex is released. In
the FreeBSD kernel, mutexes are owned by processes.

Mutexes may be recursively acquired, but they are intended to be held for a short period of time. Specifically, one
may not sleep while holding a mutex. If you need to hold a lock across a sleep, use a lockmgr(9) lock.

Each mutex has several properties of interest:

Variable Name

The name of the struct mtx variable in the kernel source.

Logical Name

The name of the mutex assigned to it bymtx_init . This name is displayed in KTR trace messages and witness
errors and warnings and is used to distinguish mutexes in the witness code.

Type

The type of the mutex in terms of theMTX_* flags. The meaning for each flag is related to its meaning as
documented in mutex(9).

MTX_DEF

A sleep mutex

MTX_SPIN

A spin mutex

MTX_COLD

This mutex is initialized very early. Thus, it must be declared viaMUTEX_DECLARE, and theMTX_COLDflag
must be passed tomtx_init .

46

Chapter 8. Locking Notes

MTX_TOPHALF

This spin mutex does not disable interrupts.

MTX_NORECURSE

This mutex is not allowed to recurse.

Protectees

A list of data structures or data structure members that this entry protects. For data structure members, the name
will be in the form of structure name.member name.

Dependent Functions

Functions that can only be called if this mutex is held.

Table 8-1. Mutex List

Variable Name Logical Name Type Protectees Dependent
Functions

47

Chapter 8. Locking Notes

Variable Name Logical Name Type Protectees Dependent
Functions

sched_lock “sched lock” MTX_SPIN|
MTX_COLD

_gmonparam ,
cnt.v_swtch ,
cp_time ,
curpriority ,
mtx.mtx_blocked ,
mtx.mtx_contested ,
proc.p_contested ,
proc.p_blocked ,
proc.p_flag
(P_PROFIL XXX,
P_INMEM, P_SINTR,
P_TIMEOUT,
P_SWAPINREQXXX,
P_INMENXXX),
proc.p_nice ,
proc.p_procq ,
proc.p_blocked ,
proc.p_estcpu ,
proc.p_nativepri ,
proc.p_priority ,
proc.p_usrpri ,
proc.p_rtprio ,
proc.p_rqindex ,
proc.p_stats-
>p_prof ,
proc.p_stats-
>p_ru , proc.p_stat ,
proc.p_cpticks
proc.p_iticks ,
proc.p_uticks ,
proc.p_sticks ,
proc.p_swtime ,
proc.p_slptime ,
proc.p_runtime ,
proc.p_pctcpu ,
proc.p_oncpu ,
proc.p_asleep ,
proc.p_wchan ,
proc.p_wmesg,
proc.p_slpq ,
proc.p_vmspace
(XXX - in
statclock), pscnt ,
slpque ,
itqueuebits ,
itqueues ,
rtqueuebits ,
rtqueues ,
queuebits , queues ,
idqueuebits ,
idqueues ,
switchtime ,

setrunqueue ,
remrunqueue ,
mi_switch ,
chooseproc ,
schedclock ,
resetpriority ,
updatepri ,
maybe_resched ,
cpu_switch ,
cpu_throw

48

Chapter 8. Locking Notes

Variable Name Logical Name Type Protectees Dependent
Functions

vm86pcb_lock “vm86pcb lock” MTX_DEF| MTX_COLDvm86pcb vm86_bioscall

Giant “Giant” MTX_DEF| MTX_COLDnearly everything lots

callout_lock “callout lock” MTX_SPIN callfree ,
callwheel ,
nextsoftcheck ,
proc.p_itcallout ,
proc.p_slpcallout ,
softticks , ticks

8.2. Lock Manager Locks
Locks that are provided via the lockmgr(9) interface are lock manager locks. These locks are reader-writer locks and
may be held by a sleeping process.

Table 8-2. lockmgr(9) Lock List

Variable Name Protectees

allproc_lock allproc zombproc pidhashtbl proc.p_list
proc.p_hash nextpid

proctree_lock proc.p_children proc.p_sibling

8.3. Atomically Protected Variables
An atomically protected variable is a special variable that is not protected by an explicit lock. Instead, all data
accesses to the variables use special atomic operations as described in atomic(9). Very few variables are treated this
way, although other synchronization primitives such as mutexes are implemented with atomically protected variables.

• astpending

• mtx.mtx_lock

49

IV. Memory Management

Chapter 9. Virtual Memory System

9.1. The FreeBSD VM System
Contributed by Matthew Dillon <dillon@FreeBSD.org >. 6 Feb 1999

9.1.1. Management of physical memory— vm_page_t

Physical memory is managed on a page-by-page basis through thevm_page_t structure. Pages of physical memory
are categorized through the placement of their respectivevm_page_t structures on one of several paging queues.

A page can be in a wired, active, inactive, cache, or free state. Except for the wired state, the page is typically placed
in a doubly link list queue representing the state that it is in. Wired pages are not placed on any queue.

FreeBSD implements a more involved paging queue for cached and free pages in order to implement page coloring.
Each of these states involves multiple queues arranged according to the size of the processor’s L1 and L2 caches.
When a new page needs to be allocated, FreeBSD attempts to obtain one that is reasonably well aligned from the
point of view of the L1 and L2 caches relative to the VM object the page is being allocated for.

Additionally, a page may be held with a reference count or locked with a busy count. The VM system also
implements an “ultimate locked” state for a page using the PG_BUSY bit in the page’s flags.

In general terms, each of the paging queues operates in a LRU fashion. A page is typically placed in a wired or active
state initially. When wired, the page is usually associated with a page table somewhere. The VM system ages the
page by scanning pages in a more active paging queue (LRU) in order to move them to a less-active paging queue.
Pages that get moved into the cache are still associated with a VM object but are candidates for immediate reuse.
Pages in the free queue are truly free. FreeBSD attempts to minimize the number of pages in the free queue, but a
certain minimum number of truly free pages must be maintained in order to accommodate page allocation at
interrupt time.

If a process attempts to access a page that does not exist in its page table but does exist in one of the paging queues (
such as the inactive or cache queues), a relatively inexpensive page reactivation fault occurs which causes the page to
be reactivated. If the page does not exist in system memory at all, the process must block while the page is brought in
from disk.

FreeBSD dynamically tunes its paging queues and attempts to maintain reasonable ratios of pages in the various
queues as well as attempts to maintain a reasonable breakdown of clean v.s. dirty pages. The amount of rebalancing
that occurs depends on the system’s memory load. This rebalancing is implemented by the pageout daemon and
involves laundering dirty pages (syncing them with their backing store), noticing when pages are activity referenced
(resetting their position in the LRU queues or moving them between queues), migrating pages between queues when
the queues are out of balance, and so forth. FreeBSD’s VM system is willing to take a reasonable number of

51

Chapter 9. Virtual Memory System

reactivation page faults to determine how active or how idle a page actually is. This leads to better decisions being
made as to when to launder or swap-out a page.

9.1.2. The unified buffer cache— vm_object_t

FreeBSD implements the idea of a generic “VM object”. VM objects can be associated with backing store of various
types—unbacked, swap-backed, physical device-backed, or file-backed storage. Since the filesystem uses the same
VM objects to manage in-core data relating to files, the result is a unified buffer cache.

VM objects can beshadowed. That is, they can be stacked on top of each other. For example, you might have a
swap-backed VM object stacked on top of a file-backed VM object in order to implement a MAP_PRIVATE
mmap()ing. This stacking is also used to implement various sharing properties, including, copy-on-write, for forked
address spaces.

It should be noted that avm_page_t can only be associated with one VM object at a time. The VM object
shadowing implements the perceived sharing of the same page across multiple instances.

9.1.3. Filesystem I/O— struct buf

vnode-backed VM objects, such as file-backed objects, generally need to maintain their own clean/dirty info
independent from the VM system’s idea of clean/dirty. For example, when the VM system decides to synchronize a
physical page to its backing store, the VM system needs to mark the page clean before the page is actually written to
its backing s tore. Additionally, filesystems need to be able to map portions of a file or file metadata into KVM in
order to operate on it.

The entities used to manage this are known as filesystem buffers,struct buf ’s, and also known asbp ’s. When a
filesystem needs to operate on a portion of a VM object, it typically maps part of the object into a struct buf and the
maps the pages in the struct buf into KVM. In the same manner, disk I/O is typically issued by mapping portions of
objects into buffer structures and then issuing the I/O on the buffer structures. The underlying vm_page_t’s are
typically busied for the duration of the I/O. Filesystem buffers also have their own notion of being busy, which is
useful to filesystem driver code which would rather operate on filesystem buffers instead of hard VM pages.

FreeBSD reserves a limited amount of KVM to hold mappings from struct bufs, but it should be made clear that this
KVM is used solely to hold mappings and does not limit the ability to cache data. Physical data caching is strictly a
function ofvm_page_t ’s, not filesystem buffers. However, since filesystem buffers are used placehold I/O, they do
inherently limit the amount of concurrent I/O possible. As there are usually a few thousand filesystem buffers
available, this is not usually a problem.

52

Chapter 9. Virtual Memory System

9.1.4. Mapping Page Tables - vm_map_t, vm_entry_t
FreeBSD separates the physical page table topology from the VM system. All hard per-process page tables can be
reconstructed on the fly and are usually considered throwaway. Special page tables such as those managing KVM are
typically permanently preallocated. These page tables are not throwaway.

FreeBSD associates portions of vm_objects with address ranges in virtual memory throughvm_map_t and
vm_entry_t structures. Page tables are directly synthesized from thevm_map_t /vm_entry_t / vm_object_t

hierarchy. Remember when I mentioned that physical pages are only directly associated with avm_object . Well,
that isn’t quite true.vm_page_t ’s are also linked into page tables that they are actively associated with. One
vm_page_t can be linked into severalpmaps, as page tables are called. However, the hierarchical association holds
so all references to the same page in the same object reference the samevm_page_t and thus give us buffer cache
unification across the board.

9.1.5. KVM Memory Mapping
FreeBSD uses KVM to hold various kernel structures. The single largest entity held in KVM is the filesystem buffer
cache. That is, mappings relating tostruct buf entities.

Unlike Linux, FreeBSD does NOT map all of physical memory into KVM. This means that FreeBSD can handle
memory configurations up to 4G on 32 bit platforms. In fact, if the mmu were capable of it, FreeBSD could
theoretically handle memory configurations up to 8TB on a 32 bit platform. However, since most 32 bit platforms are
only capable of mapping 4GB of ram, this is a moot point.

KVM is managed through several mechanisms. The main mechanism used to manage KVM is thezone allocator.
The zone allocator takes a chunk of KVM and splits it up into constant-sized blocks of memory in order to allocate a
specific type of structure. You can usevmstat -m to get an overview of current KVM utilization broken down by
zone.

9.1.6. Tuning the FreeBSD VM system
A concerted effort has been made to make the FreeBSD kernel dynamically tune itself. Typically you do not need to
mess with anything beyond themaxusers andNMBCLUSTERSkernel config options. That is, kernel compilation
options specified in (typically)/usr/src/sys/i386/conf/ CONFIG_FILE . A description of all available kernel
configuration options can be found in/usr/src/sys/i386/conf/LINT .

In a large system configuration you may wish to increasemaxusers . Values typically range from 10 to 128. Note
that raisingmaxusers too high can cause the system to overflow available KVM resulting in unpredictable
operation. It is better to leave maxusers at some reasonable number and add other options, such asNMBCLUSTERS, to
increase specific resources.

53

Chapter 9. Virtual Memory System

If your system is going to use the network heavily, you may want to increaseNMBCLUSTERS. Typical values range
from 1024 to 4096.

TheNBUFparameter is also traditionally used to scale the system. This parameter determines the amount of KVA the
system can use to map filesystem buffers for I/O. Note that this parameter has nothing whatsoever to do with the
unified buffer cache! This parameter is dynamically tuned in 3.0-CURRENT and later kernels and should generally
not be adjusted manually. We recommend that younot try to specify anNBUFparameter. Let the system pick it. Too
small a value can result in extremely inefficient filesystem operation while too large a value can starve the page
queues by causing too many pages to become wired down.

By default, FreeBSD kernels are not optimized. You can set debugging and optimization flags with the
makeoptions directive in the kernel configuration. Note that you should not use-g unless you can accommodate
the large (typically 7 MB+) kernels that result.

makeoptions DEBUG="-g"
makeoptions COPTFLAGS="-O -pipe"

Sysctl provides a way to tune kernel parameters at run-time. You typically do not need to mess with any of the sysctl
variables, especially the VM related ones.

Run time VM and system tuning is relatively straightforward. First, use softupdates on your UFS/FFS filesystems
whenever possible./usr/src/contrib/sys/softupdates/README contains instructions (and restrictions) on
how to configure it up.

Second, configure sufficient swap. You should have a swap partition configured on each physical disk, up to four,
even on your “work” disks. You should have at least 2x the swap space as you have main memory, and possibly even
more if you do not have a lot of memory. You should also size your swap partition based on the maximum memory
configuration you ever intend to put on the machine so you do not have to repartition your disks later on. If you want
to be able to accommodate a crash dump, your first swap partition must be at least as large as main memory and
/var/crash must have sufficient free space to hold the dump.

NFS-based swap is perfectly acceptable on -4.x or later systems, but you must be aware that the NFS server will take
the brunt of the paging load.

54

Chapter 10. DMA

10.1. DMA: What it is and How it Works
Copyright © 1995,1997 Frank Durda IV <uhclem@FreeBSD.org >, All Rights Reserved. 10 December 1996. Last
Update 8 October 1997.

Direct Memory Access (DMA) is a method of allowing data to be moved from one location to another in a computer
without intervention from the central processor (CPU).

The way that the DMA function is implemented varies between computer architectures, so this discussion will limit
itself to the implementation and workings of the DMA subsystem on the IBM Personal Computer (PC), the IBM
PC/AT and all of its successors and clones.

The PC DMA subsystem is based on the Intel 8237 DMA controller. The 8237 contains four DMA channels that can
be programmed independently and any one of the channels may be active at any moment. These channels are
numbered 0, 1, 2 and 3. Starting with the PC/AT, IBM added a second 8237 chip, and numbered those channels 4, 5,
6 and 7.

The original DMA controller (0, 1, 2 and 3) moves one byte in each transfer. The second DMA controller (4, 5, 6,
and 7) moves 16-bits from two adjacent memory locations in each transfer, with the first byte always coming from an
even-numbered address. The two controllers are identical components and the difference in transfer size is caused by
the way the second controller is wired into the system.

The 8237 has two electrical signals for each channel, named DRQ and -DACK. There are additional signals with the
names HRQ (Hold Request), HLDA (Hold Acknowledge), -EOP (End of Process), and the bus control signals
-MEMR (Memory Read), -MEMW (Memory Write), -IOR (I/O Read), and -IOW (I/O Write).

The 8237 DMA is known as a “fly-by” DMA controller. This means that the data being moved from one location to
another does not pass through the DMA chip and is not stored in the DMA chip. Subsequently, the DMA can only
transfer data between an I/O port and a memory address, but not between two I/O ports or two memory locations.

Note: The 8237 does allow two channels to be connected together to allow memory-to-memory DMA operations
in a non-“fly-by” mode, but nobody in the PC industry uses this scarce resource this way since it is faster to move
data between memory locations using the CPU.

In the PC architecture, each DMA channel is normally activated only when the hardware that uses a given DMA
channel requests a transfer by asserting the DRQ line for that channel.

55

Chapter 10. DMA

10.1.1. A Sample DMA transfer
Here is an example of the steps that occur to cause and perform a DMA transfer. In this example, the floppy disk
controller (FDC) has just read a byte from a diskette and wants the DMA to place it in memory at location
0x00123456. The process begins by the FDC asserting the DRQ2 signal (the DRQ line for DMA channel 2) to alert
the DMA controller.

The DMA controller will note that the DRQ2 signal is asserted. The DMA controller will then make sure that DMA
channel 2 has been programmed and is unmasked (enabled). The DMA controller also makes sure that none of the
other DMA channels are active or want to be active and have a higher priority. Once these checks are complete, the
DMA asks the CPU to release the bus so that the DMA may use the bus. The DMA requests the bus by asserting the
HRQ signal which goes to the CPU.

The CPU detects the HRQ signal, and will complete executing the current instruction. Once the processor has
reached a state where it can release the bus, it will. Now all of the signals normally generated by the CPU (-MEMR,
-MEMW, -IOR, -IOW and a few others) are placed in a tri-stated condition (neither high or low) and then the CPU
asserts the HLDA signal which tells the DMA controller that it is now in charge of the bus.

Depending on the processor, the CPU may be able to execute a few additional instructions now that it no longer has
the bus, but the CPU will eventually have to wait when it reaches an instruction that must read something from
memory that is not in the internal processor cache or pipeline.

Now that the DMA “is in charge”, the DMA activates its -MEMR, -MEMW, -IOR, -IOW output signals, and the
address outputs from the DMA are set to 0x3456, which will be used to direct the byte that is about to transferred to
a specific memory location.

The DMA will then let the device that requested the DMA transfer know that the transfer is commencing. This is
done by asserting the -DACK signal, or in the case of the floppy disk controller, -DACK2 is asserted.

The floppy disk controller is now responsible for placing the byte to be transferred on the bus Data lines. Unless the
floppy controller needs more time to get the data byte on the bus (and if the peripheral does need more time it alerts
the DMA via the READY signal), the DMA will wait one DMA clock, and then de-assert the -MEMW and -IOR
signals so that the memory will latch and store the byte that was on the bus, and the FDC will know that the byte has
been transferred.

Since the DMA cycle only transfers a single byte at a time, the FDC now drops the DRQ2 signal, so the DMA knows
that it is no longer needed. The DMA will de-assert the -DACK2 signal, so that the FDC knows it must stop placing
data on the bus.

The DMA will now check to see if any of the other DMA channels have any work to do. If none of the channels have
their DRQ lines asserted, the DMA controller has completed its work and will now tri-state the -MEMR, -MEMW,
-IOR, -IOW and address signals.

Finally, the DMA will de-assert the HRQ signal. The CPU sees this, and de-asserts the HOLDA signal. Now the
CPU activates its -MEMR, -MEMW, -IOR, -IOW and address lines, and it resumes executing instructions and
accessing main memory and the peripherals.

56

Chapter 10. DMA

For a typical floppy disk sector, the above process is repeated 512 times, once for each byte. Each time a byte is
transferred, the address register in the DMA is incremented and the counter in the DMA that shows how many bytes
are to be transferred is decremented.

When the counter reaches zero, the DMA asserts the EOP signal, which indicates that the counter has reached zero
and no more data will be transferred until the DMA controller is reprogrammed by the CPU. This event is also called
the Terminal Count (TC). There is only one EOP signal, and since only DMA channel can be active at any instant,
the DMA channel that is currently active must be the DMA channel that just completed its task.

If a peripheral wants to generate an interrupt when the transfer of a buffer is complete, it can test for its -DACKn
signal and the EOP signal both being asserted at the same time. When that happens, it means the DMA will not
transfer any more information for that peripheral without intervention by the CPU. The peripheral can then assert one
of the interrupt signals to get the processors’ attention. In the PC architecture, the DMA chip itself is not capable of
generating an interrupt. The peripheral and its associated hardware is responsible for generating any interrupt that
occurs. Subsequently, it is possible to have a peripheral that uses DMA but does not use interrupts.

It is important to understand that although the CPU always releases the bus to the DMA when the DMA makes the
request, this action is invisible to both applications and the operating systems, except for slight changes in the
amount of time the processor takes to execute instructions when the DMA is active. Subsequently, the processor
must poll the peripheral, poll the registers in the DMA chip, or receive an interrupt from the peripheral to know for
certain when a DMA transfer has completed.

10.1.2. DMA Page Registers and 16Meg address space limitations
You may have noticed earlier that instead of the DMA setting the address lines to 0x00123456 as we said earlier, the
DMA only set 0x3456. The reason for this takes a bit of explaining.

When the original IBM PC was designed, IBM elected to use both DMA and interrupt controller chips that were
designed for use with the 8085, an 8-bit processor with an address space of 16 bits (64K). Since the IBM PC
supported more than 64K of memory, something had to be done to allow the DMA to read or write memory locations
above the 64K mark. What IBM did to solve this problem was to add an external data latch for each DMA channel
that holds the upper bits of the address to be read to or written from. Whenever a DMA channel is active, the contents
of that latch are written to the address bus and kept there until the DMA operation for the channel ends. IBM called
these latches “Page Registers”.

So for our example above, the DMA would put the 0x3456 part of the address on the bus, and the Page Register for
DMA channel 2 would put 0x0012xxxx on the bus. Together, these two values form the complete address in memory
that is to be accessed.

Because the Page Register latch is independent of the DMA chip, the area of memory to be read or written must not
span a 64K physical boundary. For example, if the DMA accesses memory location 0xffff, after that transfer the
DMA will then increment the address register and the DMA will access the next byte at location 0x0000, not
0x10000. The results of letting this happen are probably not intended.

57

Chapter 10. DMA

Note: “Physical” 64K boundaries should not be confused with 8086-mode 64K “Segments”, which are created by
mathematically adding a segment register with an offset register. Page Registers have no address overlap and
are mathematically OR-ed together.

To further complicate matters, the external DMA address latches on the PC/AT hold only eight bits, so that gives us
8+16=24 bits, which means that the DMA can only point at memory locations between 0 and 16Meg. For newer
computers that allow more than 16Meg of memory, the standard PC-compatible DMA cannot access memory
locations above 16Meg.

To get around this restriction, operating systems will reserve a RAM buffer in an area below 16Meg that also does
not span a physical 64K boundary. Then the DMA will be programmed to transfer data from the peripheral and into
that buffer. Once the DMA has moved the data into this buffer, the operating system will then copy the data from the
buffer to the address where the data is really supposed to be stored.

When writing data from an address above 16Meg to a DMA-based peripheral, the data must be first copied from
where it resides into a buffer located below 16Meg, and then the DMA can copy the data from the buffer to the
hardware. In FreeBSD, these reserved buffers are called “Bounce Buffers”. In the MS-DOS world, they are
sometimes called “Smart Buffers”.

Note: A new implementation of the 8237, called the 82374, allows 16 bits of page register to be specified, allows
access to the entire 32 bit address space, without the use of bounce buffers.

10.1.3. DMA Operational Modes and Settings
The 8237 DMA can be operated in several modes. The main ones are:

Single

A single byte (or word) is transferred. The DMA must release and re-acquire the bus for each additional byte.
This is commonly-used by devices that cannot transfer the entire block of data immediately. The peripheral will
request the DMA each time it is ready for another transfer.

The standard PC-compatible floppy disk controller (NEC 765) only has a one-byte buffer, so it uses this mode.

Block/Demand

Once the DMA acquires the system bus, an entire block of data is transferred, up to a maximum of 64K. If the
peripheral needs additional time, it can assert the READY signal to suspend the transfer briefly. READY should

58

Chapter 10. DMA

not be used excessively, and for slow peripheral transfers, the Single Transfer Mode should be used instead.

The difference between Block and Demand is that once a Block transfer is started, it runs until the transfer
count reaches zero. DRQ only needs to be asserted until -DACK is asserted. Demand Mode will transfer one
more bytes until DRQ is de-asserted, at which point the DMA suspends the transfer and releases the bus back to
the CPU. When DRQ is asserted later, the transfer resumes where it was suspended.

Older hard disk controllers used Demand Mode until CPU speeds increased to the point that it was more
efficient to transfer the data using the CPU, particularly if the memory locations used in the transfer were above
the 16Meg mark.

Cascade

This mechanism allows a DMA channel to request the bus, but then the attached peripheral device is responsible
for placing the addressing information on the bus instead of the DMA. This is also used to implement a
technique known as “Bus Mastering”.

When a DMA channel in Cascade Mode receives control of the bus, the DMA does not place addresses and I/O
control signals on the bus like the DMA normally does when it is active. Instead, the DMA only asserts the
-DACK signal for the active DMA channel.

At this point it is up to the peripheral connected to that DMA channel to provide address and bus control
signals. The peripheral has complete control over the system bus, and can do reads and/or writes to any address
below 16Meg. When the peripheral is finished with the bus, it de-asserts the DRQ line, and the DMA controller
can then return control to the CPU or to some other DMA channel.

Cascade Mode can be used to chain multiple DMA controllers together, and this is exactly what DMA Channel
4 is used for in the PC architecture. When a peripheral requests the bus on DMA channels 0, 1, 2 or 3, the slave
DMA controller asserts HLDREQ, but this wire is actually connected to DRQ4 on the primary DMA controller
instead of to the CPU. The primary DMA controller, thinking it has work to do on Channel 4, requests the bus
from the CPU using HLDREQ signal. Once the CPU grants the bus to the primary DMA controller, -DACK4 is
asserted, and that wire is actually connected to the HLDA signal on the slave DMA controller. The slave DMA
controller then transfers data for the DMA channel that requested it (0, 1, 2 or 3), or the slave DMA may grant
the bus to a peripheral that wants to perform its own bus-mastering, such as a SCSI controller.

Because of this wiring arrangement, only DMA channels 0, 1, 2, 3, 5, 6 and 7 are usable with peripherals on
PC/AT systems.

Note: DMA channel 0 was reserved for refresh operations in early IBM PC computers, but is generally
available for use by peripherals in modern systems.

59

Chapter 10. DMA

When a peripheral is performing Bus Mastering, it is important that the peripheral transmit data to or from
memory constantly while it holds the system bus. If the peripheral cannot do this, it must release the bus
frequently so that the system can perform refresh operations on main memory.

The Dynamic RAM used in all PCs for main memory must be accessed frequently to keep the bits stored in the
components “charged”. Dynamic RAM essentially consists of millions of capacitors with each one holding one
bit of data. These capacitors are charged with power to represent a1 or drained to represent a0. Because all
capacitors leak, power must be added at regular intervals to keep the1 values intact. The RAM chips actually
handle the task of pumping power back into all of the appropriate locations in RAM, but they must be told when
to do it by the rest of the computer so that the refresh activity won’t interfere with the computer wanting to
access RAM normally. If the computer is unable to refresh memory, the contents of memory will become
corrupted in just a few milliseconds.

Since memory read and write cycles “count” as refresh cycles (a dynamic RAM refresh cycle is actually an
incomplete memory read cycle), as long as the peripheral controller continues reading or writing data to
sequential memory locations, that action will refresh all of memory.

Bus-mastering is found in some SCSI host interfaces and other high-performance peripheral controllers.

Autoinitialize

This mode causes the DMA to perform Byte, Block or Demand transfers, but when the DMA transfer counter
reaches zero, the counter and address are set back to where they were when the DMA channel was originally
programmed. This means that as long as the peripheral requests transfers, they will be granted. It is up to the
CPU to move new data into the fixed buffer ahead of where the DMA is about to transfer it when doing output
operations, and read new data out of the buffer behind where the DMA is writing when doing input operations.

This technique is frequently used on audio devices that have small or no hardware “sample” buffers. There is
additional CPU overhead to manage this “circular” buffer, but in some cases this may be the only way to
eliminate the latency that occurs when the DMA counter reaches zero and the DMA stops transfers until it is
reprogrammed.

10.1.4. Programming the DMA
The DMA channel that is to be programmed should always be “masked” before loading any settings. This is because
the hardware might unexpectedly assert the DRQ for that channel, and the DMA might respond, even though not all
of the parameters have been loaded or updated.

Once masked, the host must specify the direction of the transfer (memory-to-I/O or I/O-to-memory), what mode of
DMA operation is to be used for the transfer (Single, Block, Demand, Cascade, etc), and finally the address and
length of the transfer are loaded. The length that is loaded is one less than the amount you expect the DMA to

60

Chapter 10. DMA

transfer. The LSB and MSB of the address and length are written to the same 8-bit I/O port, so another port must be
written to first to guarantee that the DMA accepts the first byte as the LSB and the second byte as the MSB of the
length and address.

Then, be sure to update the Page Register, which is external to the DMA and is accessed through a different set of
I/O ports.

Once all the settings are ready, the DMA channel can be un-masked. That DMA channel is now considered to be
“armed”, and will respond when the DRQ line for that channel is asserted.

Refer to a hardware data book for precise programming details for the 8237. You will also need to refer to the I/O
port map for the PC system, which describes where the DMA and Page Register ports are located. A complete port
map table is located below.

10.1.5. DMA Port Map
All systems based on the IBM-PC and PC/AT have the DMA hardware located at the same I/O ports. The complete
list is provided below. Ports assigned to DMA Controller #2 are undefined on non-AT designs.

10.1.5.1. 0x00–0x1f DMA Controller #1 (Channels 0, 1, 2 and 3)

DMA Address and Count Registers

0x00 write Channel 0 starting address

0x00 read Channel 0 current address

0x01 write Channel 0 starting word count

0x01 read Channel 0 remaining word count

0x02 write Channel 1 starting address

0x02 read Channel 1 current address

0x03 write Channel 1 starting word count

0x03 read Channel 1 remaining word count

0x04 write Channel 2 starting address

0x04 read Channel 2 current address

0x05 write Channel 2 starting word count

0x05 read Channel 2 remaining word count

0x06 write Channel 3 starting address

0x06 read Channel 3 current address

0x07 write Channel 3 starting word count

0x07 read Channel 3 remaining word count

61

Chapter 10. DMA

DMA Command Registers

0x08 write Command Register

0x08 read Status Register

0x09 write Request Register

0x09 read -

0x0a write Single Mask Register Bit

0x0a read -

0x0b write Mode Register

0x0b read -

0x0c write Clear LSB/MSB Flip-Flop

0x0c read -

0x0d write Master Clear/Reset

0x0d read Temporary Register (not available on
newer versions)

0x0e write Clear Mask Register

0x0e read -

0x0f write Write All Mask Register Bits

0x0f read Read All Mask Register Bits (only in
Intel 82374)

10.1.5.2. 0xc0–0xdf DMA Controller #2 (Channels 4, 5, 6 and 7)

DMA Address and Count Registers

0xc0 write Channel 4 starting address

0xc0 read Channel 4 current address

0xc2 write Channel 4 starting word count

0xc2 read Channel 4 remaining word count

0xc4 write Channel 5 starting address

0xc4 read Channel 5 current address

0xc6 write Channel 5 starting word count

0xc6 read Channel 5 remaining word count

0xc8 write Channel 6 starting address

0xc8 read Channel 6 current address

62

Chapter 10. DMA

0xca write Channel 6 starting word count

0xca read Channel 6 remaining word count

0xcc write Channel 7 starting address

0xcc read Channel 7 current address

0xce write Channel 7 starting word count

0xce read Channel 7 remaining word count

DMA Command Registers

0xd0 write Command Register

0xd0 read Status Register

0xd2 write Request Register

0xd2 read -

0xd4 write Single Mask Register Bit

0xd4 read -

0xd6 write Mode Register

0xd6 read -

0xd8 write Clear LSB/MSB Flip-Flop

0xd8 read -

0xda write Master Clear/Reset

0xda read Temporary Register (not present in
Intel 82374)

0xdc write Clear Mask Register

0xdc read -

0xde write Write All Mask Register Bits

0xdf read Read All Mask Register Bits (only in
Intel 82374)

10.1.5.3. 0x80–0x9f DMA Page Registers

0x87 r/w Channel 0 Low byte (23-16) page
Register

0x83 r/w Channel 1 Low byte (23-16) page
Register

63

Chapter 10. DMA

0x81 r/w Channel 2 Low byte (23-16) page
Register

0x82 r/w Channel 3 Low byte (23-16) page
Register

0x8b r/w Channel 5 Low byte (23-16) page
Register

0x89 r/w Channel 6 Low byte (23-16) page
Register

0x8a r/w Channel 7 Low byte (23-16) page
Register

0x8f r/w Low byte page Refresh

10.1.5.4. 0x400–0x4ff 82374 Enhanced DMA Registers

The Intel 82374 EISA System Component (ESC) was introduced in early 1996 and includes a DMA controller that
provides a superset of 8237 functionality as well as other PC-compatible core peripheral components in a single
package. This chip is targeted at both EISA and PCI platforms, and provides modern DMA features like
scatter-gather, ring buffers as well as direct access by the system DMA to all 32 bits of address space.

If these features are used, code should also be included to provide similar functionality in the previous 16 years
worth of PC-compatible computers. For compatibility reasons, some of the 82374 registers must be programmed
after programming the traditional 8237 registers for each transfer. Writing to a traditional 8237 register forces the
contents of some of the 82374 enhanced registers to zero to provide backward software compatibility.

0x401 r/w Channel 0 High byte (bits 23-16) word
count

0x403 r/w Channel 1 High byte (bits 23-16) word
count

0x405 r/w Channel 2 High byte (bits 23-16) word
count

0x407 r/w Channel 3 High byte (bits 23-16) word
count

0x4c6 r/w Channel 5 High byte (bits 23-16) word
count

0x4ca r/w Channel 6 High byte (bits 23-16) word
count

64

Chapter 10. DMA

0x4ce r/w Channel 7 High byte (bits 23-16) word
count

0x487 r/w Channel 0 High byte (bits 31-24) page
Register

0x483 r/w Channel 1 High byte (bits 31-24) page
Register

0x481 r/w Channel 2 High byte (bits 31-24) page
Register

0x482 r/w Channel 3 High byte (bits 31-24) page
Register

0x48b r/w Channel 5 High byte (bits 31-24) page
Register

0x489 r/w Channel 6 High byte (bits 31-24) page
Register

0x48a r/w Channel 6 High byte (bits 31-24) page
Register

0x48f r/w High byte page Refresh

0x4e0 r/w Channel 0 Stop Register (bits 7-2)

0x4e1 r/w Channel 0 Stop Register (bits 15-8)

0x4e2 r/w Channel 0 Stop Register (bits 23-16)

0x4e4 r/w Channel 1 Stop Register (bits 7-2)

0x4e5 r/w Channel 1 Stop Register (bits 15-8)

0x4e6 r/w Channel 1 Stop Register (bits 23-16)

0x4e8 r/w Channel 2 Stop Register (bits 7-2)

0x4e9 r/w Channel 2 Stop Register (bits 15-8)

0x4ea r/w Channel 2 Stop Register (bits 23-16)

0x4ec r/w Channel 3 Stop Register (bits 7-2)

0x4ed r/w Channel 3 Stop Register (bits 15-8)

0x4ee r/w Channel 3 Stop Register (bits 23-16)

0x4f4 r/w Channel 5 Stop Register (bits 7-2)

0x4f5 r/w Channel 5 Stop Register (bits 15-8)

0x4f6 r/w Channel 5 Stop Register (bits 23-16)

0x4f8 r/w Channel 6 Stop Register (bits 7-2)

0x4f9 r/w Channel 6 Stop Register (bits 15-8)

0x4fa r/w Channel 6 Stop Register (bits 23-16)

65

Chapter 10. DMA

0x4fc r/w Channel 7 Stop Register (bits 7-2)

0x4fd r/w Channel 7 Stop Register (bits 15-8)

0x4fe r/w Channel 7 Stop Register (bits 23-16)

0x40a write Channels 0-3 Chaining Mode Register

0x40a read Channel Interrupt Status Register

0x4d4 write Channels 4-7 Chaining Mode Register

0x4d4 read Chaining Mode Status

0x40c read Chain Buffer Expiration Control
Register

0x410 write Channel 0 Scatter-Gather Command
Register

0x411 write Channel 1 Scatter-Gather Command
Register

0x412 write Channel 2 Scatter-Gather Command
Register

0x413 write Channel 3 Scatter-Gather Command
Register

0x415 write Channel 5 Scatter-Gather Command
Register

0x416 write Channel 6 Scatter-Gather Command
Register

0x417 write Channel 7 Scatter-Gather Command
Register

0x418 read Channel 0 Scatter-Gather Status
Register

0x419 read Channel 1 Scatter-Gather Status
Register

0x41a read Channel 2 Scatter-Gather Status
Register

0x41b read Channel 3 Scatter-Gather Status
Register

0x41d read Channel 5 Scatter-Gather Status
Register

0x41e read Channel 5 Scatter-Gather Status
Register

66

Chapter 10. DMA

0x41f read Channel 7 Scatter-Gather Status
Register

0x420-0x423 r/w Channel 0 Scatter-Gather Descriptor
Table Pointer Register

0x424-0x427 r/w Channel 1 Scatter-Gather Descriptor
Table Pointer Register

0x428-0x42b r/w Channel 2 Scatter-Gather Descriptor
Table Pointer Register

0x42c-0x42f r/w Channel 3 Scatter-Gather Descriptor
Table Pointer Register

0x434-0x437 r/w Channel 5 Scatter-Gather Descriptor
Table Pointer Register

0x438-0x43b r/w Channel 6 Scatter-Gather Descriptor
Table Pointer Register

0x43c-0x43f r/w Channel 7 Scatter-Gather Descriptor
Table Pointer Register

67

V. I/O System

Chapter 11. UFS
UFS, FFS, Ext2FS, JFS, inodes, buffer cache, labeling, locking, metadata, soft-updates, LFS, portalfs, procfs,
vnodes, memory sharing, memory objects, TLBs, caching

69

VI. Interprocess Communication

Chapter 12. Signals
Signals, pipes, semaphores, message queues, shared memory, ports, sockets, doors

71

VII. Networking

Chapter 13. Sockets
Sockets, bpf, IP, TCP, UDP, ICMP, OSI, bridging, firewalling, NAT, switching, etc

73

Chapter 14. IPv6 Internals

14.1. IPv6/IPsec Implementation
Contributed by Yoshinobu Inoue <shin@FreeBSD.org >, 5 March 2000.

This section should explain IPv6 and IPsec related implementation internals. These functionalities are derived from
KAME project (http://www.kame.net)

14.1.1. IPv6

14.1.1.1. Conformance

The IPv6 related functions conforms, or tries to conform to the latest set of IPv6 specifications. For future reference
we list some of the relevant documents below (NOTE: this is not a complete list - this is too hard to maintain...).

For details please refer to specific chapter in the document, RFCs, manpages, or comments in the source code.

Conformance tests have been performed on the KAME STABLE kit at TAHI project. Results can be viewed at
http://www.tahi.org/report/KAME/ (http://www.tahi.org/report/KAME/). We also attended Univ. of New Hampshire
IOL tests (http://www.iol.unh.edu/) in the past, with our past snapshots.

• RFC1639: FTP Operation Over Big Address Records (FOOBAR)

• RFC2428 is preferred over RFC1639. FTP clients will first try RFC2428, then RFC1639 if failed.

• RFC1886: DNS Extensions to support IPv6

• RFC1933: Transition Mechanisms for IPv6 Hosts and Routers

• IPv4 compatible address is not supported.

• automatic tunneling (described in 4.3 of this RFC) is not supported.

• gif(4) interface implements IPv[46]-over-IPv[46] tunnel in a generic way, and it covers "configured tunnel"
described in the spec. See23.5.1.5in this document for details.

• RFC1981: Path MTU Discovery for IPv6

• RFC2080: RIPng for IPv6

• usr.sbin/route6d support this.

74

Chapter 14. IPv6 Internals

• RFC2292: Advanced Sockets API for IPv6

• For supported library functions/kernel APIs, seesys/netinet6/ADVAPI .

• RFC2362: Protocol Independent Multicast-Sparse Mode (PIM-SM)

• RFC2362 defines packet formats for PIM-SM.draft-ietf-pim-ipv6-01.txt is written based on this.

• RFC2373: IPv6 Addressing Architecture

• supports node required addresses, and conforms to the scope requirement.

• RFC2374: An IPv6 Aggregatable Global Unicast Address Format

• supports 64-bit length of Interface ID.

• RFC2375: IPv6 Multicast Address Assignments

• Userland applications use the well-known addresses assigned in the RFC.

• RFC2428: FTP Extensions for IPv6 and NATs

• RFC2428 is preferred over RFC1639. FTP clients will first try RFC2428, then RFC1639 if failed.

• RFC2460: IPv6 specification

• RFC2461: Neighbor discovery for IPv6

• See23.5.1.2in this document for details.

• RFC2462: IPv6 Stateless Address Autoconfiguration

• See23.5.1.4in this document for details.

• RFC2463: ICMPv6 for IPv6 specification

• See23.5.1.9in this document for details.

75

Chapter 14. IPv6 Internals

• RFC2464: Transmission of IPv6 Packets over Ethernet Networks

• RFC2465: MIB for IPv6: Textual Conventions and General Group

• Necessary statistics are gathered by the kernel. Actual IPv6 MIB support is provided as a patchkit for ucd-snmp.

• RFC2466: MIB for IPv6: ICMPv6 group

• Necessary statistics are gathered by the kernel. Actual IPv6 MIB support is provided as patchkit for ucd-snmp.

• RFC2467: Transmission of IPv6 Packets over FDDI Networks

• RFC2497: Transmission of IPv6 packet over ARCnet Networks

• RFC2553: Basic Socket Interface Extensions for IPv6

• IPv4 mapped address (3.7) and special behavior of IPv6 wildcard bind socket (3.8) are supported. See23.5.1.12
in this document for details.

• RFC2675: IPv6 Jumbograms

• See23.5.1.7in this document for details.

• RFC2710: Multicast Listener Discovery for IPv6

• RFC2711: IPv6 router alert option

• draft-ietf-ipngwg-router-renum-08 : Router renumbering for IPv6

• draft-ietf-ipngwg-icmp-namelookups-02 : IPv6 Name Lookups Through ICMP

• draft-ietf-ipngwg-icmp-name-lookups-03 : IPv6 Name Lookups Through ICMP

• draft-ietf-pim-ipv6-01.txt : PIM for IPv6

• pim6dd(8) implements dense mode. pim6sd(8) implements sparse mode.

• draft-itojun-ipv6-tcp-to-anycast-00 : Disconnecting TCP connection toward IPv6 anycast address

• draft-yamamoto-wideipv6-comm-model-00

• See23.5.1.6in this document for details.

• draft-ietf-ipngwg-scopedaddr-format-00.txt : An Extension of Format for IPv6 Scoped Addresses

76

Chapter 14. IPv6 Internals

14.1.1.2. Neighbor Discovery

Neighbor Discovery is fairly stable. Currently Address Resolution, Duplicated Address Detection, and Neighbor
Unreachability Detection are supported. In the near future we will be adding Proxy Neighbor Advertisement support
in the kernel and Unsolicited Neighbor Advertisement transmission command as admin tool.

If DAD fails, the address will be marked "duplicated" and message will be generated to syslog (and usually to
console). The "duplicated" mark can be checked with ifconfig(8). It is administrators’ responsibility to check for and
recover from DAD failures. The behavior should be improved in the near future.

Some of the network driver loops multicast packets back to itself, even if instructed not to do so (especially in
promiscuous mode). In such cases DAD may fail, because DAD engine sees inbound NS packet (actually from the
node itself) and considers it as a sign of duplicate. You may want to look at #if condition marked "heuristics" in
sys/netinet6/nd6_nbr.c:nd6_dad_timer() as workaround (note that the code fragment in "heuristics" section is not
spec conformant).

Neighbor Discovery specification (RFC2461) does not talk about neighbor cache handling in the following cases:

1. when there was no neighbor cache entry, node received unsolicited RS/NS/NA/redirect packet without link-layer
address

2. neighbor cache handling on medium without link-layer address (we need a neighbor cache entry for IsRouter bit)

For first case, we implemented workaround based on discussions on IETF ipngwg mailing list. For more details, see
the comments in the source code and email thread started from (IPng 7155), dated Feb 6 1999.

IPv6 on-link determination rule (RFC2461) is quite different from assumptions in BSD network code. At this
moment, no on-link determination rule is supported where default router list is empty (RFC2461, section 5.2, last
sentence in 2nd paragraph - note that the spec misuse the word "host" and "node" in several places in the section).

To avoid possible DoS attacks and infinite loops, only 10 options on ND packet is accepted now. Therefore, if you
have 20 prefix options attached to RA, only the first 10 prefixes will be recognized. If this troubles you, please ask it
on FREEBSD-CURRENT mailing list and/or modify nd6_maxndopt insys/netinet6/nd6.c . If there are high
demands we may provide sysctl knob for the variable.

14.1.1.3. Scope Index

IPv6 uses scoped addresses. Therefore, it is very important to specify scope index (interface index for link-local
address, or site index for site-local address) with an IPv6 address. Without scope index, scoped IPv6 address is
ambiguous to the kernel, and kernel will not be able to determine the outbound interface for a packet.

Ordinary userland applications should use advanced API (RFC2292) to specify scope index, or interface index. For
similar purpose, sin6_scope_id member in sockaddr_in6 structure is defined in RFC2553. However, the semantics
for sin6_scope_id is rather vague. If you care about portability of your application, we suggest you to use advanced
API rather than sin6_scope_id.

77

Chapter 14. IPv6 Internals

In the kernel, an interface index for link-local scoped address is embedded into 2nd 16bit-word (3rd and 4th byte) in
IPv6 address. For example, you may see something like:

fe80:1::200:f8ff:fe01:6317

in the routing table and interface address structure (struct in6_ifaddr). The address above is a link-local unicast
address which belongs to a network interface whose interface identifier is 1. The embedded index enables us to
identify IPv6 link local addresses over multiple interfaces effectively and with only a little code change.

Routing daemons and configuration programs, like route6d(8) and ifconfig(8), will need to manipulate the
"embedded" scope index. These programs use routing sockets and ioctls (like SIOCGIFADDR_IN6) and the kernel
API will return IPv6 addresses with 2nd 16bit-word filled in. The APIs are for manipulating kernel internal structure.
Programs that use these APIs have to be prepared about differences in kernels anyway.

When you specify scoped address to the command line, NEVER write the embedded form (such as ff02:1::1 or
fe80:2::fedc). This is not supposed to work. Always use standard form, like ff02::1 or fe80::fedc, with command line
option for specifying interface (likeping6 -I ne0 ff02::1). In general, if a command does not have command
line option to specify outgoing interface, that command is not ready to accept scoped address. This may seem to be
opposite from IPv6’s premise to support "dentist office" situation. We believe that specifications need some
improvements for this.

Some of the userland tools support extended numeric IPv6 syntax, as documented in
draft-ietf-ipngwg-scopedaddr-format-00.txt . You can specify outgoing link, by using name of the
outgoing interface like "fe80::1%ne0". This way you will be able to specify link-local scoped address without much
trouble.

To use this extension in your program, you’ll need to use getaddrinfo(3), and getnameinfo(3) with
NI_WITHSCOPEID. The implementation currently assumes 1-to-1 relationship between a link and an interface,
which is stronger than what specs say.

14.1.1.4. Plug and Play

Most of the IPv6 stateless address autoconfiguration is implemented in the kernel. Neighbor Discovery functions are
implemented in the kernel as a whole. Router Advertisement (RA) input for hosts is implemented in the kernel.
Router Solicitation (RS) output for endhosts, RS input for routers, and RA output for routers are implemented in the
userland.

14.1.1.4.1. Assignment of link-local, and special addresses

IPv6 link-local address is generated from IEEE802 address (ethernet MAC address). Each of interface is assigned an
IPv6 link-local address automatically, when the interface becomes up (IFF_UP). Also, direct route for the link-local
address is added to routing table.

78

Chapter 14. IPv6 Internals

Here is an output of netstat command:

Internet6:
Destination Gateway Flags Netif Expire
fe80:1::%ed0/64 link#1 UC ed0
fe80:2::%ep0/64 link#2 UC ep0

Interfaces that has no IEEE802 address (pseudo interfaces like tunnel interfaces, or ppp interfaces) will borrow
IEEE802 address from other interfaces, such as ethernet interfaces, whenever possible. If there is no IEEE802
hardware attached, last-resort pseudorandom value, which is from MD5(hostname), will be used as source of
link-local address. If it is not suitable for your usage, you will need to configure the link-local address manually.

If an interface is not capable of handling IPv6 (such as lack of multicast support), link-local address will not be
assigned to that interface. See section 2 for details.

Each interface joins the solicited multicast address and the link-local all-nodes multicast addresses (e.g.
fe80::1:ff01:6317 and ff02::1, respectively, on the link the interface is attached). In addition to a link-local address,
the loopback address (::1) will be assigned to the loopback interface. Also, ::1/128 and ff01::/32 are automatically
added to routing table, and loopback interface joins node-local multicast group ff01::1.

14.1.1.4.2. Stateless address autoconfiguration on hosts

In IPv6 specification, nodes are separated into two categories:routersandhosts. Routers forward packets addressed
to others, hosts does not forward the packets. net.inet6.ip6.forwarding defines whether this node is router or host
(router if it is 1, host if it is 0).

When a host hears Router Advertisement from the router, a host may autoconfigure itself by stateless address
autoconfiguration. This behavior can be controlled by net.inet6.ip6.accept_rtadv (host autoconfigures itself if it is set
to 1). By autoconfiguration, network address prefix for the receiving interface (usually global address prefix) is
added. Default route is also configured. Routers periodically generate Router Advertisement packets. To request an
adjacent router to generate RA packet, a host can transmit Router Solicitation. To generate a RS packet at any time,
use thertsol command. rtsold(8) daemon is also available. rtsold(8) generates Router Solicitation whenever
necessary, and it works great for nomadic usage (notebooks/laptops). If one wishes to ignore Router Advertisements,
use sysctl to set net.inet6.ip6.accept_rtadv to 0.

To generate Router Advertisement from a router, use the rtadvd(8) daemon.

Note that, IPv6 specification assumes the following items, and nonconforming cases are left unspecified:

• Only hosts will listen to router advertisements

• Hosts have single network interface (except loopback)

Therefore, this is unwise to enable net.inet6.ip6.accept_rtadv on routers, or multi-interface host. A misconfigured
node can behave strange (nonconforming configuration allowed for those who would like to do some experiments).

79

Chapter 14. IPv6 Internals

To summarize the sysctl knob:

accept_rtadv forwarding role of the node
--- --- ---
0 0 host (to be manually configured)
0 1 router
1 0 autoconfigured host
(spec assumes that host has single
interface only, autoconfigured host
with multiple interface is
out-of-scope)
1 1 invalid, or experimental
(out-of-scope of spec)

RFC2462 has validation rule against incoming RA prefix information option, in 5.5.3 (e). This is to protect hosts
from malicious (or misconfigured) routers that advertise very short prefix lifetime. There was an update from Jim
Bound to ipngwg mailing list (look for "(ipng 6712)" in the archive) and it is implemented Jim’s update.

See23.5.1.2in the document for relationship between DAD and autoconfiguration.

14.1.1.5. Generic tunnel interface

GIF (Generic InterFace) is a pseudo interface for configured tunnel. Details are described in gif(4). Currently

• v6 in v6

• v6 in v4

• v4 in v6

• v4 in v4

are available. Use gifconfig(8) to assign physical (outer) source and destination address to gif interfaces.
Configuration that uses same address family for inner and outer IP header (v4 in v4, or v6 in v6) is dangerous. It is
very easy to configure interfaces and routing tables to perform infinite level of tunneling.Please be warned.

gif can be configured to be ECN-friendly. See23.5.4.5for ECN-friendliness of tunnels, and gif(4) for how to
configure.

If you would like to configure an IPv4-in-IPv6 tunnel with gif interface, read gif(4) carefully. You will need to
remove IPv6 link-local address automatically assigned to the gif interface.

80

Chapter 14. IPv6 Internals

14.1.1.6. Source Address Selection

Current source selection rule is scope oriented (there are some exceptions - see below). For a given destination, a
source IPv6 address is selected by the following rule:

1. If the source address is explicitly specified by the user (e.g. via the advanced API), the specified address is used.

2. If there is an address assigned to the outgoing interface (which is usually determined by looking up the routing
table) that has the same scope as the destination address, the address is used.

This is the most typical case.

3. If there is no address that satisfies the above condition, choose a global address assigned to one of the interfaces
on the sending node.

4. If there is no address that satisfies the above condition, and destination address is site local scope, choose a site
local address assigned to one of the interfaces on the sending node.

5. If there is no address that satisfies the above condition, choose the address associated with the routing table entry
for the destination. This is the last resort, which may cause scope violation.

For instance, ::1 is selected for ff01::1, fe80:1::200:f8ff:fe01:6317 for fe80:1::2a0:24ff:feab:839b (note that
embedded interface index - described in23.5.1.3- helps us choose the right source address. Those embedded indices
will not be on the wire). If the outgoing interface has multiple address for the scope, a source is selected longest
match basis (rule 3). Suppose 3ffe:501:808:1:200:f8ff:fe01:6317 and 3ffe:2001:9:124:200:f8ff:fe01:6317 are given to
the outgoing interface. 3ffe:501:808:1:200:f8ff:fe01:6317 is chosen as the source for the destination 3ffe:501:800::1.

Note that the above rule is not documented in the IPv6 spec. It is considered "up to implementation" item. There are
some cases where we do not use the above rule. One example is connected TCP session, and we use the address kept
in tcb as the source. Another example is source address for Neighbor Advertisement. Under the spec (RFC2461
7.2.2) NA’s source should be the target address of the corresponding NS’s target. In this case we follow the spec
rather than the above longest-match rule.

For new connections (when rule 1 does not apply), deprecated addresses (addresses with preferred lifetime = 0) will
not be chosen as source address if other choices are available. If no other choices are available, deprecated address
will be used as a last resort. If there are multiple choice of deprecated addresses, the above scope rule will be used to
choose from those deprecated addresses. If you would like to prohibit the use of deprecated address for some reason,
configure net.inet6.ip6.use_deprecated to 0. The issue related to deprecated address is described in RFC2462 5.5.4
(NOTE: there is some debate underway in IETF ipngwg on how to use "deprecated" address).

14.1.1.7. Jumbo Payload

The Jumbo Payload hop-by-hop option is implemented and can be used to send IPv6 packets with payloads longer
than 65,535 octets. But currently no physical interface whose MTU is more than 65,535 is supported, so such

81

Chapter 14. IPv6 Internals

payloads can be seen only on the loopback interface (i.e. lo0).

If you want to try jumbo payloads, you first have to reconfigure the kernel so that the MTU of the loopback interface
is more than 65,535 bytes; add the following to the kernel configuration file:

options "LARGE_LOMTU" #To test jumbo payload

and recompile the new kernel.

Then you can test jumbo payloads by the ping6(8) command with -b and -s options. The -b option must be specified
to enlarge the size of the socket buffer and the -s option specifies the length of the packet, which should be more than
65,535. For example, type as follows:

% ping6 -b 70000 -s 68000 ::1

The IPv6 specification requires that the Jumbo Payload option must not be used in a packet that carries a fragment
header. If this condition is broken, an ICMPv6 Parameter Problem message must be sent to the sender. specification
is followed, but you cannot usually see an ICMPv6 error caused by this requirement.

When an IPv6 packet is received, the frame length is checked and compared to the length specified in the payload
length field of the IPv6 header or in the value of the Jumbo Payload option, if any. If the former is shorter than the
latter, the packet is discarded and statistics are incremented. You can see the statistics as output of netstat(8)
command with ‘-s -p ip6’ option:

% netstat -s -p ip6

ip6:
(snip)
1 with data size < data length

So, kernel does not send an ICMPv6 error unless the erroneous packet is an actual Jumbo Payload, that is, its packet
size is more than 65,535 bytes. As described above, currently no physical interface with such a huge MTU is
supported, so it rarely returns an ICMPv6 error.

TCP/UDP over jumbogram is not supported at this moment. This is because we have no medium (other than
loopback) to test this. Contact us if you need this.

IPsec does not work on jumbograms. This is due to some specification twists in supporting AH with jumbograms
(AH header size influences payload length, and this makes it real hard to authenticate inbound packet with jumbo
payload option as well as AH).

There are fundamental issues in *BSD support for jumbograms. We would like to address those, but we need more
time to finalize these. To name a few:

• mbuf pkthdr.len field is typed as "int" in 4.4BSD, so it will not hold jumbogram with len> 2G on 32bit
architecture CPUs. If we would like to support jumbogram properly, the field must be expanded to hold 4G + IPv6
header + link-layer header. Therefore, it must be expanded to at least int64_t (u_int32_t is NOT enough).

82

Chapter 14. IPv6 Internals

• We mistakingly use "int" to hold packet length in many places. We need to convert them into larger integral type.
It needs a great care, as we may experience overflow during packet length computation.

• We mistakingly check for ip6_plen field of IPv6 header for packet payload length in various places. We should be
checking mbuf pkthdr.len instead. ip6_input() will perform sanity check on jumbo payload option on input, and
we can safely use mbuf pkthdr.len afterwards.

• TCP code needs a careful update in bunch of places, of course.

14.1.1.8. Loop prevention in header processing

IPv6 specification allows arbitrary number of extension headers to be placed onto packets. If we implement IPv6
packet processing code in the way BSD IPv4 code is implemented, kernel stack may overflow due to long function
call chain. sys/netinet6 code is carefully designed to avoid kernel stack overflow. Because of this, sys/netinet6 code
defines its own protocol switch structure, as "struct ip6protosw" (seenetinet6/ip6protosw.h). There is no such
update to IPv4 part (sys/netinet) for compatibility, but small change is added to its pr_input() prototype. So "struct
ipprotosw" is also defined. Because of this, if you receive IPsec-over-IPv4 packet with massive number of IPsec
headers, kernel stack may blow up. IPsec-over-IPv6 is okay. (Off-course, for those all IPsec headers to be processed,
each such IPsec header must pass each IPsec check. So an anonymous attacker won’t be able to do such an attack.)

14.1.1.9. ICMPv6

After RFC2463 was published, IETF ipngwg has decided to disallow ICMPv6 error packet against ICMPv6 redirect,
to prevent ICMPv6 storm on a network medium. This is already implemented into the kernel.

14.1.1.10. Applications

For userland programming, we support IPv6 socket API as specified in RFC2553, RFC2292 and upcoming internet
drafts.

TCP/UDP over IPv6 is available and quite stable. You can enjoy telnet(1), ftp(1), rlogin(1), rsh(1), ssh(1), etc. These
applications are protocol independent. That is, they automatically chooses IPv4 or IPv6 according to DNS.

14.1.1.11. Kernel Internals

While ip_forward() calls ip_output(), ip6_forward() directly calls if_output() since routers must not divide IPv6
packets into fragments.

83

Chapter 14. IPv6 Internals

ICMPv6 should contain the original packet as long as possible up to 1280. UDP6/IP6 port unreach, for instance,
should contain all extension headers and the *unchanged* UDP6 and IP6 headers. So, all IP6 functions except TCP
never convert network byte order into host byte order, to save the original packet.

tcp_input(), udp6_input() and icmp6_input() can’t assume that IP6 header is preceding the transport headers due to
extension headers. So, in6_cksum() was implemented to handle packets whose IP6 header and transport header is not
continuous. TCP/IP6 nor UDP6/IP6 header structure don’t exist for checksum calculation.

To process IP6 header, extension headers and transport headers easily, network drivers are now required to store
packets in one internal mbuf or one or more external mbufs. A typical old driver prepares two internal mbufs for 96 -
204 bytes data, however, now such packet data is stored in one external mbuf.

netstat -s -p ip6 tells you whether or not your driver conforms such requirement. In the following example,
"cce0" violates the requirement. (For more information, refer to Section 2.)

Mbuf statistics:
317 one mbuf
two or more mbuf::

lo0 = 8
cce0 = 10

3282 one ext mbuf
0 two or more ext mbuf

Each input function calls IP6_EXTHDR_CHECK in the beginning to check if the region between IP6 and its header
is continuous. IP6_EXTHDR_CHECK calls m_pullup() only if the mbuf has M_LOOP flag, that is, the packet
comes from the loopback interface. m_pullup() is never called for packets coming from physical network interfaces.

Both IP and IP6 reassemble functions never call m_pullup().

14.1.1.12. IPv4 mapped address and IPv6 wildcard socket

RFC2553 describes IPv4 mapped address (3.7) and special behavior of IPv6 wildcard bind socket (3.8). The spec
allows you to:

• Accept IPv4 connections by AF_INET6 wildcard bind socket.

• Transmit IPv4 packet over AF_INET6 socket by using special form of the address like ::ffff:10.1.1.1.

but the spec itself is very complicated and does not specify how the socket layer should behave. Here we call the
former one "listening side" and the latter one "initiating side", for reference purposes.

You can perform wildcard bind on both of the address families, on the same port.

The following table show the behavior of FreeBSD 4.x.

84

Chapter 14. IPv6 Internals

listening side initiating side
(AF_INET6 wildcard (connection to ::ffff:10.1.1.1)
socket gets IPv4 conn.)
--- ---

FreeBSD 4.x configurable supported
default: enabled

The following sections will give you more details, and how you can configure the behavior.

Comments on listening side:

It looks that RFC2553 talks too little on wildcard bind issue, especially on the port space issue, failure mode and
relationship between AF_INET/INET6 wildcard bind. There can be several separate interpretation for this RFC
which conform to it but behaves differently. So, to implement portable application you should assume nothing about
the behavior in the kernel. Using getaddrinfo(3) is the safest way. Port number space and wildcard bind issues were
discussed in detail on ipv6imp mailing list, in mid March 1999 and it looks that there’s no concrete consensus
(means, up to implementers). You may want to check the mailing list archives.

If a server application would like to accept IPv4 and IPv6 connections, there will be two alternatives.

One is using AF_INET and AF_INET6 socket (you’ll need two sockets). Use getaddrinfo(3) with AI_PASSIVE into
ai_flags, and socket(2) and bind(2) to all the addresses returned. By opening multiple sockets, you can accept
connections onto the socket with proper address family. IPv4 connections will be accepted by AF_INET socket, and
IPv6 connections will be accepted by AF_INET6 socket.

Another way is using one AF_INET6 wildcard bind socket. Use getaddrinfo(3) with AI_PASSIVE into ai_flags and
with AF_INET6 into ai_family, and set the 1st argument hostname to NULL. And socket(2) and bind(2) to the
address returned. (should be IPv6 unspecified addr). You can accept either of IPv4 and IPv6 packet via this one
socket.

To support only IPv6 traffic on AF_INET6 wildcard binded socket portably, always check the peer address when a
connection is made toward AF_INET6 listening socket. If the address is IPv4 mapped address, you may want to
reject the connection. You can check the condition by using IN6_IS_ADDR_V4MAPPED() macro.

To resolve this issue more easily, there is system dependent setsockopt(2) option, IPV6_BINDV6ONLY, used like
below.

int on;

setsockopt(s, IPPROTO_IPV6, IPV6_BINDV6ONLY,
(char *)&on, sizeof (on)) < 0));

When this call succeed, then this socket only receive IPv6 packets.

Comments on initiating side:

85

Chapter 14. IPv6 Internals

Advise to application implementers: to implement a portable IPv6 application (which works on multiple IPv6
kernels), we believe that the following is the key to the success:

• NEVER hardcode AF_INET nor AF_INET6.

• Use getaddrinfo(3) and getnameinfo(3) throughout the system. Never use gethostby*(), getaddrby*(), inet_*() or
getipnodeby*(). (To update existing applications to be IPv6 aware easily, sometime getipnodeby*() will be useful.
But if possible, try to rewrite the code to use getaddrinfo(3) and getnameinfo(3).)

• If you would like to connect to destination, use getaddrinfo(3) and try all the destination returned, like telnet(1)
does.

• Some of the IPv6 stack is shipped with buggy getaddrinfo(3). Ship a minimal working version with your
application and use that as last resort.

If you would like to use AF_INET6 socket for both IPv4 and IPv6 outgoing connection, you will need to use
getipnodebyname(3). When you would like to update your existing application to be IPv6 aware with minimal effort,
this approach might be chosen. But please note that it is a temporal solution, because getipnodebyname(3) itself is
not recommended as it does not handle scoped IPv6 addresses at all. For IPv6 name resolution, getaddrinfo(3) is the
preferred API. So you should rewrite your application to use getaddrinfo(3), when you get the time to do it.

When writing applications that make outgoing connections, story goes much simpler if you treat AF_INET and
AF_INET6 as totally separate address family. {set,get}sockopt issue goes simpler, DNS issue will be made simpler.
We do not recommend you to rely upon IPv4 mapped address.

14.1.1.12.1. unified tcp and inpcb code

FreeBSD 4.x uses shared tcp code between IPv4 and IPv6 (from sys/netinet/tcp*) and separate udp4/6 code. It uses
unified inpcb structure.

The platform can be configured to support IPv4 mapped address. Kernel configuration is summarized as follows:

• By default, AF_INET6 socket will grab IPv4 connections in certain condition, and can initiate connection to IPv4
destination embedded in IPv4 mapped IPv6 address.

• You can disable it on entire system with sysctl like below.

sysctl -w net.inet6.ip6.mapped_addr=0

14.1.1.12.1.1. listening side

Each socket can be configured to support special AF_INET6 wildcard bind (enabled by default). You can disable it
on each socket basis with setsockopt(2) like below.

86

Chapter 14. IPv6 Internals

int on;

setsockopt(s, IPPROTO_IPV6, IPV6_BINDV6ONLY,
(char *)&on, sizeof (on)) < 0));

Wildcard AF_INET6 socket grabs IPv4 connection if and only if the following conditions are satisfied:

• there’s no AF_INET socket that matches the IPv4 connection

• the AF_INET6 socket is configured to accept IPv4 traffic, i.e. getsockopt(IPV6_BINDV6ONLY) returns 0.

There’s no problem with open/close ordering.

14.1.1.12.1.2. initiating side

FreeBSD 4.x supports outgoing connection to IPv4 mapped address (::ffff:10.1.1.1), if the node is configured to
support IPv4 mapped address.

14.1.1.13. sockaddr_storage

When RFC2553 was about to be finalized, there was discussion on how struct sockaddr_storage members are named.
One proposal is to prepend "__" to the members (like "__ss_len") as they should not be touched. The other proposal
was that don’t prepend it (like "ss_len") as we need to touch those members directly. There was no clear consensus
on it.

As a result, RFC2553 defines struct sockaddr_storage as follows:

struct sockaddr_storage {
u_char __ss_len; /* address length */
u_char __ss_family; /* address family */
/* and bunch of padding */
};

On the contrary, XNET draft defines as follows:

struct sockaddr_storage {
u_char ss_len; /* address length */
u_char ss_family; /* address family */
/* and bunch of padding */
};

87

Chapter 14. IPv6 Internals

In December 1999, it was agreed that RFC2553bis should pick the latter (XNET) definition.

Current implementation conforms to XNET definition, based on RFC2553bis discussion.

If you look at multiple IPv6 implementations, you will be able to see both definitions. As an userland programmer,
the most portable way of dealing with it is to:

1. ensure ss_family and/or ss_len are available on the platform, by using GNU autoconf,

2. have -Dss_family=__ss_family to unify all occurrences (including header file) into __ss_family, or

3. never touch __ss_family. cast to sockaddr * and use sa_family like:

struct sockaddr_storage ss;
family = ((struct sockaddr *)&ss)->sa_family

14.1.2. Network Drivers
Now following two items are required to be supported by standard drivers:

1. mbuf clustering requirement. In this stable release, we changed MINCLSIZE into MHLEN+1 for all the
operating systems in order to make all the drivers behave as we expect.

2. multicast. If ifmcstat(8) yields no multicast group for a interface, that interface has to be patched.

If any of the driver don’t support the requirements, then the driver can’t be used for IPv6 and/or IPsec
communication. If you find any problem with your card using IPv6/IPsec, then, please report it to
<freebsd-bugs@FreeBSD.org >.

(NOTE: In the past we required all PCMCIA drivers to have a call to in6_ifattach(). We have no such requirement
any more)

14.1.3. Translator
We categorize IPv4/IPv6 translator into 4 types:

• Translator A--- It is used in the early stage of transition to make it possible to establish a connection from an IPv6
host in an IPv6 island to an IPv4 host in the IPv4 ocean.

88

Chapter 14. IPv6 Internals

• Translator B--- It is used in the early stage of transition to make it possible to establish a connection from an IPv4
host in the IPv4 ocean to an IPv6 host in an IPv6 island.

• Translator C--- It is used in the late stage of transition to make it possible to establish a connection from an IPv4
host in an IPv4 island to an IPv6 host in the IPv6 ocean.

• Translator D--- It is used in the late stage of transition to make it possible to establish a connection from an IPv6
host in the IPv6 ocean to an IPv4 host in an IPv4 island.

TCP relay translator for category A is supported. This is called "FAITH". We also provide IP header translator for
category A. (The latter is not yet put into FreeBSD 4.x yet.)

14.1.3.1. FAITH TCP relay translator

FAITH system uses TCP relay daemon called faithd(8) helped by the kernel. FAITH will reserve an IPv6 address
prefix, and relay TCP connection toward that prefix to IPv4 destination.

For example, if the reserved IPv6 prefix is 3ffe:0501:0200:ffff::, and the IPv6 destination for TCP connection is
3ffe:0501:0200:ffff::163.221.202.12, the connection will be relayed toward IPv4 destination 163.221.202.12.

destination IPv4 node (163.221.202.12)
^
| IPv4 tcp toward 163.221.202.12

FAITH-relay dual stack node
^
| IPv6 TCP toward 3ffe:0501:0200:ffff::163.221.202.12

source IPv6 node

faithd(8) must be invoked on FAITH-relay dual stack node.

For more details, consultsrc/usr.sbin/faithd/README

14.1.4. IPsec
IPsec is mainly organized by three components.

1. Policy Management

2. Key Management

3. AH and ESP handling

89

Chapter 14. IPv6 Internals

14.1.4.1. Policy Management

The kernel implements experimental policy management code. There are two way to manage security policy. One is
to configure per-socket policy using setsockopt(2). In this cases, policy configuration is described in
ipsec_set_policy(3). The other is to configure kernel packet filter-based policy using PF_KEY interface, via
setkey(8).

The policy entry is not re-ordered with its indexes, so the order of entry when you add is very significant.

14.1.4.2. Key Management

The key management code implemented in this kit (sys/netkey) is a home-brew PFKEY v2 implementation. This
conforms to RFC2367.

The home-brew IKE daemon, "racoon" is included in the kit (kame/kame/racoon). Basically you’ll need to run
racoon as daemon, then setup a policy to require keys (likeping -P ’out ipsec esp/transport//use’). The
kernel will contact racoon daemon as necessary to exchange keys.

14.1.4.3. AH and ESP handling

IPsec module is implemented as "hooks" to the standard IPv4/IPv6 processing. When sending a packet,
ip{,6}_output() checks if ESP/AH processing is required by checking if a matching SPD (Security Policy Database)
is found. If ESP/AH is needed, {esp,ah}{4,6}_output() will be called and mbuf will be updated accordingly. When a
packet is received, {esp,ah}4_input() will be called based on protocol number, i.e. (*inetsw[proto])().
{esp,ah}4_input() will decrypt/check authenticity of the packet, and strips off daisy-chained header and padding for
ESP/AH. It is safe to strip off the ESP/AH header on packet reception, since we will never use the received packet in
"as is" form.

By using ESP/AH, TCP4/6 effective data segment size will be affected by extra daisy-chained headers inserted by
ESP/AH. Our code takes care of the case.

Basic crypto functions can be found in directory "sys/crypto". ESP/AH transform are listed in {esp,ah}_core.c with
wrapper functions. If you wish to add some algorithm, add wrapper function in {esp,ah}_core.c, and add your crypto
algorithm code into sys/crypto.

Tunnel mode is partially supported in this release, with the following restrictions:

• IPsec tunnel is not combined with GIF generic tunneling interface. It needs a great care because we may create an
infinite loop between ip_output() and tunnelifp->if_output(). Opinion varies if it is better to unify them, or not.

• MTU and Don’t Fragment bit (IPv4) considerations need more checking, but basically works fine.

• Authentication model for AH tunnel must be revisited. We’ll need to improve the policy management engine,
eventually.

90

Chapter 14. IPv6 Internals

14.1.4.4. Conformance to RFCs and IDs

The IPsec code in the kernel conforms (or, tries to conform) to the following standards:

"old IPsec" specification documented inrfc182[5-9].txt

"new IPsec" specification documented inrfc240[1-6].txt , rfc241[01].txt , rfc2451.txt and
draft-mcdonald-simple-ipsec-api-01.txt (draft expired, but you can take from
ftp://ftp.kame.net/pub/internet-drafts/ (ftp://ftp.kame.net/pub/internet-drafts/)). (NOTE: IKE specifications,
rfc241[7-9].txt are implemented in userland, as "racoon" IKE daemon)

Currently supported algorithms are:

• old IPsec AH

• null crypto checksum (no document, just for debugging)

• keyed MD5 with 128bit crypto checksum (rfc1828.txt)

• keyed SHA1 with 128bit crypto checksum (no document)

• HMAC MD5 with 128bit crypto checksum (rfc2085.txt)

• HMAC SHA1 with 128bit crypto checksum (no document)

• old IPsec ESP

• null encryption (no document, similar torfc2410.txt)

• DES-CBC mode (rfc1829.txt)

• new IPsec AH

• null crypto checksum (no document, just for debugging)

• keyed MD5 with 96bit crypto checksum (no document)

• keyed SHA1 with 96bit crypto checksum (no document)

• HMAC MD5 with 96bit crypto checksum (rfc2403.txt)

• HMAC SHA1 with 96bit crypto checksum (rfc2404.txt)

• new IPsec ESP

• null encryption (rfc2410.txt)

• DES-CBC with derived IV (draft-ietf-ipsec-ciph-des-derived-01.txt , draft expired)

• DES-CBC with explicit IV (rfc2405.txt)

91

Chapter 14. IPv6 Internals

• 3DES-CBC with explicit IV (rfc2451.txt)

• BLOWFISH CBC (rfc2451.txt)

• CAST128 CBC (rfc2451.txt)

• RC5 CBC (rfc2451.txt)

• each of the above can be combined with:

• ESP authentication with HMAC-MD5(96bit)

• ESP authentication with HMAC-SHA1(96bit)

The following algorithms are NOT supported:

• old IPsec AH

• HMAC MD5 with 128bit crypto checksum + 64bit replay prevention (rfc2085.txt)

• keyed SHA1 with 160bit crypto checksum + 32bit padding (rfc1852.txt)

IPsec (in kernel) and IKE (in userland as "racoon") has been tested at several interoperability test events, and it is
known to interoperate with many other implementations well. Also, current IPsec implementation as quite wide
coverage for IPsec crypto algorithms documented in RFC (we cover algorithms without intellectual property issues
only).

14.1.4.5. ECN consideration on IPsec tunnels

ECN-friendly IPsec tunnel is supported as described indraft-ipsec-ecn-00.txt .

Normal IPsec tunnel is described in RFC2401. On encapsulation, IPv4 TOS field (or, IPv6 traffic class field) will be
copied from inner IP header to outer IP header. On decapsulation outer IP header will be simply dropped. The
decapsulation rule is not compatible with ECN, since ECN bit on the outer IP TOS/traffic class field will be lost.

To make IPsec tunnel ECN-friendly, we should modify encapsulation and decapsulation procedure. This is described
in http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt
(http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt), chapter 3.

IPsec tunnel implementation can give you three behaviors, by setting net.inet.ipsec.ecn (or net.inet6.ipsec6.ecn) to
some value:

• RFC2401: no consideration for ECN (sysctl value -1)

92

Chapter 14. IPv6 Internals

• ECN forbidden (sysctl value 0)

• ECN allowed (sysctl value 1)

Note that the behavior is configurable in per-node manner, not per-SA manner (draft-ipsec-ecn-00 wants per-SA
configuration, but it looks too much for me).

The behavior is summarized as follows (see source code for more detail):

encapsulate decapsulate
--- ---

RFC2401 copy all TOS bits drop TOS bits on outer
from inner to outer. (use inner TOS bits as is)

ECN forbidden copy TOS bits except for ECN drop TOS bits on outer
(masked with 0xfc) from inner (use inner TOS bits as is)
to outer. set ECN bits to 0.

ECN allowed copy TOS bits except for ECN use inner TOS bits with some
CE (masked with 0xfe) from change. if outer ECN CE bit
inner to outer. is 1, enable ECN CE bit on
set ECN CE bit to 0. the inner.

General strategy for configuration is as follows:

• if both IPsec tunnel endpoint are capable of ECN-friendly behavior, you’d better configure both end to "ECN
allowed" (sysctl value 1).

• if the other end is very strict about TOS bit, use "RFC2401" (sysctl value -1).

• in other cases, use "ECN forbidden" (sysctl value 0).

The default behavior is "ECN forbidden" (sysctl value 0).

For more information, please refer to:

http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt (http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt),
RFC2481 (Explicit Congestion Notification), src/sys/netinet6/{ah,esp}_input.c

(Thanks goes to Kenjiro Cho <kjc@csl.sony.co.jp > for detailed analysis)

93

Chapter 14. IPv6 Internals

14.1.4.6. Interoperability

Here are (some of) platforms that KAME code have tested IPsec/IKE interoperability in the past. Note that both ends
may have modified their implementation, so use the following list just for reference purposes.

Altiga, Ashley-laurent (vpcom.com), Data Fellows (F-Secure), Ericsson ACC, FreeS/WAN, HITACHI, IBM AIX,
IIJ, Intel, Microsoft WinNT, NIST (linux IPsec + plutoplus), Netscreen, OpenBSD, RedCreek, Routerware, SSH,
Secure Computing, Soliton, Toshiba, VPNet, Yamaha RT100i

94

VIII. Network Filesystems

Chapter 15. AFS
AFS, NFS, SANs etc]

96

IX. Terminal Handling

Chapter 16. Syscons
Syscons, tty, PCVT, serial console, screen savers, etc

98

X. Sound

Chapter 17. OSS
OSS, waveforms, etc

100

XI. Device Drivers

Chapter 18. Writing FreeBSD Device Drivers
This chapter was written by Murray Stokely <murray@FreeBSD.org > with selections from a variety of sources
including the intro(4) man page by Jörg Wunsch <joerg@FreeBSD.org >.

18.1. Introduction
This chapter provides a brief introduction to writing device drivers for FreeBSD. A device in this context is a term
used mostly for hardware-related stuff that belongs to the system, like disks, printers, or a graphics display with its
keyboard. A device driver is the software component of the operating system that controls a specific device. There
are also so-called pseudo-devices where a device driver emulates the behaviour of a device in software without any
particular underlying hardware. Device drivers can be compiled into the system statically or loaded on demand
through the dynamic kernel linker facility ‘kld’.

Most devices in a Unix-like operating system are accessed through device-nodes, sometimes also called special files.
These files are usually located under the directory/dev in the file system hierarchy. Until devfs is fully integrated
into FreeBSD, each device node must be created statically and independent of the existence of the associated device
driver. Most device nodes on the system are created by runningMAKEDEV.

Device drivers can roughly be broken down into two categories; character and network device drivers.

18.2. Dynamic Kernel Linker Facility - KLD
The kld interface allows system administrators to dynamically add and remove functionality from a running system.
This allows device driver writers to load their new changes into a running kernel without constantly rebooting to test
changes.

The kld interface is used through the following administrator commands :

• kldload - loads a new kernel module

• kldunload - unloads a kernel module

• kldstat - lists the currently loadded modules

Skeleton Layout of a kernel module

/*
* KLD Skeleton
* Inspired by Andrew Reiter’s Daemonnews article

102

Chapter 18. Writing FreeBSD Device Drivers

*/

#include <sys/types.h >

#include <sys/module.h >

#include <sys/systm.h > /* uprintf */
#include <sys/errno.h >

#include <sys/param.h > /* defines used in kernel.h */
#include <sys/kernel.h > /* types used in module initialization */

/*
* Load handler that deals with the loading and unloading of a KLD.
*/

static int
skel_loader(struct module *m, int what, void *arg)
{

int err = 0;

switch (what) {
case MOD_LOAD: /* kldload */

uprintf("Skeleton KLD loaded.\n");
break;

case MOD_UNLOAD:
uprintf("Skeleton KLD unloaded.\n");
break;

default:
err = EINVAL;
break;

}
return(err);

}

/* Declare this module to the rest of the kernel */

DECLARE_MODULE(skeleton, skel_loader, SI_SUB_KLD, SI_ORDER_ANY);

18.2.1. Makefile
FreeBSD provides a makefile include that you can use to quickly compile your kernel addition.

SRCS=skeleton.c
KMOD=skeleton

.include <bsd.kmod.mk >

103

Chapter 18. Writing FreeBSD Device Drivers

Simply runningmake with this makefile will create a fileskeleton.ko that can be loaded into your system by
typing :

kldload -v ./skeleton.ko

18.3. Accessing a device driver
Unix provides a common set of system calls for user applications to use. The upper layers of the kernel dispatch
these calls to the corresponding device driver when a user accesses a device node. The/dev/MAKEDEV script makes
most of the device nodes for your system but if you are doing your own driver development it may be necessary to
create your own device nodes withmknod

18.3.1. Creating static device nodes
Themknod command requires four arguments to create a device node. You must specify the name of this device
node, the type of device, the major number of the device, and the minor number of the device.

18.3.2. Dynamic device nodes
The device filesystem, or devfs, provides access to the kernel’s device namespace in the global filesystem
namespace. This eliminates the problems of potentially having a device driver without a static device node, or a
device node without an installed device driver. Devfs is still a work in progress, but it is already working quite nice.

18.4. Character Devices
A character device driver is one that transfers data directly to and from a user process. This is the most common type
of device driver and there are plenty of simple examples in the source tree.

This simple example pseudo-device remembers whatever values you write to it and can then supply them back to you
when you read from it.

/*
* Simple ‘echo’ pseudo-device KLD
*

104

Chapter 18. Writing FreeBSD Device Drivers

* Murray Stokely
*/

#define MIN(a,b) (((a) < (b)) ? (a) : (b))

#include <sys/types.h >

#include <sys/module.h >

#include <sys/systm.h > /* uprintf */
#include <sys/errno.h >

#include <sys/param.h > /* defines used in kernel.h */
#include <sys/kernel.h > /* types used in module initialization */
#include <sys/conf.h > /* cdevsw struct */
#include <sys/uio.h > /* uio struct */
#include <sys/malloc.h >

#define BUFFERSIZE 256

/* Function prototypes */
d_open_t echo_open;
d_close_t echo_close;
d_read_t echo_read;
d_write_t echo_write;

/* Character device entry points */
static struct cdevsw echo_cdevsw = {

echo_open,
echo_close,
echo_read,
echo_write,
noioctl,
nopoll,
nommap,
nostrategy,
"echo",
33, /* reserved for lkms - /usr/src/sys/conf/majors */
nodump,
nopsize,
D_TTY,
-1

};

typedef struct s_echo {
char msg[BUFFERSIZE];
int len;

} t_echo;

105

Chapter 18. Writing FreeBSD Device Drivers

/* vars */
static dev_t sdev;
static int len;
static int count;
static t_echo *echomsg;

MALLOC_DECLARE(M_ECHOBUF);
MALLOC_DEFINE(M_ECHOBUF, "echobuffer", "buffer for echo module");

/*
* This function acts is called by the kld[un]load(2) system calls to
* determine what actions to take when a module is loaded or unloaded.
*/

static int
echo_loader(struct module *m, int what, void *arg)
{

int err = 0;

switch (what) {
case MOD_LOAD: /* kldload */

sdev = make_dev(&echo_cdevsw,
0,
UID_ROOT,
GID_WHEEL,
0600,
"echo");

/* kmalloc memory for use by this driver */
/* malloc(256,M_ECHOBUF,M_WAITOK); */
MALLOC(echomsg, t_echo *, sizeof(t_echo), M_ECHOBUF, M_WAITOK);
printf("Echo device loaded.\n");
break;

case MOD_UNLOAD:
destroy_dev(sdev);
FREE(echomsg,M_ECHOBUF);
printf("Echo device unloaded.\n");
break;

default:
err = EINVAL;
break;

}
return(err);

}

106

Chapter 18. Writing FreeBSD Device Drivers

int
echo_open(dev_t dev, int oflags, int devtype, struct proc *p)
{

int err = 0;

uprintf("Opened device \"echo\" successfully.\n");
return(err);

}

int
echo_close(dev_t dev, int fflag, int devtype, struct proc *p)
{

uprintf("Closing device \"echo.\"\n");
return(0);

}

/*
* The read function just takes the buf that was saved via
* echo_write() and returns it to userland for accessing.
* uio(9)
*/

int
echo_read(dev_t dev, struct uio *uio, int ioflag)
{

int err = 0;
int amt;

/* How big is this read operation? Either as big as the user wants,
or as big as the remaining data */

amt = MIN(uio->uio_resid, (echomsg->len - uio->uio_offset > 0) ? echomsg->len - uio-
>uio_offset : 0);

if ((err = uiomove(echomsg->msg + uio->uio_offset,amt,uio)) != 0) {
uprintf("uiomove failed!\n");

}

return err;
}

/*
* echo_write takes in a character string and saves it
* to buf for later accessing.
*/

int

107

Chapter 18. Writing FreeBSD Device Drivers

echo_write(dev_t dev, struct uio *uio, int ioflag)
{

int err = 0;

/* Copy the string in from user memory to kernel memory */
err = copyin(uio->uio_iov->iov_base, echomsg->msg, MIN(uio->uio_iov->iov_len,BUFFERSIZE));

/* Now we need to null terminate */
*(echomsg->msg + MIN(uio->uio_iov->iov_len,BUFFERSIZE)) = 0;
/* Record the length */
echomsg->len = MIN(uio->uio_iov->iov_len,BUFFERSIZE);

if (err != 0) {
uprintf("Write failed: bad address!\n");

}

count++;
return(err);

}

DEV_MODULE(echo,echo_loader,NULL);

To install this driver you will first need to make a node on your filesystem with a command such as :

mknod /dev/echo c 33 0

With this driver loaded you should now be able to type something like :

echo -n "Test Data" > /dev/echo
cat /dev/echo

Test Data

Real hardware devices in the next chapter..

Additional Resources

• Dynamic Kernel Linker (KLD) Facility Programming Tutorial
(http://www.daemonnews.org/200010/blueprints.html) - Daemonnews (http://www.daemonnews.org) October
2000

• How to Write Kernel Drivers with NEWBUS (http://www.daemonnews.org/200007/newbus-intro.html) -
Daemonnews (http://www.daemonnews.org) July 2000

108

Chapter 18. Writing FreeBSD Device Drivers

18.5. Network Drivers
Drivers for network devices do not use device nodes in order to be accessed. Their selection is based on other
decisions made inside the kernel and instead of calling open(), use of a network device is generally introduced by
using the system call socket(2).

man ifnet(), loopback device, Bill Paul’s drivers, etc..

109

Chapter 19. ISA device drivers
This chapter was written by Sergey Babkin <babkin@FreeBSD.org > Modifications for the handbook made by
Murray Stokely <murray@FreeBSD.org >, Wylie Stilwell <wylie@osd.bsdi.com >, and Valentino Vaschetto
< logo@blackened.com >.

19.1. Synopsis
This chapter introduces the issues relevant to writing a driver for an ISA device. The pseudo-code presented here is
rather detailed and reminiscent of the real code but is still only pseudo-code. It avoids the details irrelevant to the
subject of the discussion. The real-life examples can be found in the source code of real drivers. In particular the
drivers "ep" and "aha" are good sources of information.

19.2. Basic information
A typical ISA driver would need the following include files:

#include <sys/module.h >

#include <sys/bus.h >

#include <machine/bus.h >

#include <machine/resource.h >

#include <sys/rman.h >

#include <isa/isavar.h >

#include <isa/pnpvar.h >

They describe the things specific to the ISA and generic bus subsystem.

The bus subsystem is implemented in an object-oriented fashion, its main structures are accessed by associated
method functions.

The list of bus methods implemented by an ISA driver is like one for any other bus. For a hypothetical driver named
"xxx" they would be:

• static void xxx_isa_identify (driver_t *, device_t); Normally used for bus drivers, not device
drivers. But for ISA devices this method may have special use: if the device provides some device-specific
(non-PnP) way to auto-detect devices this routine may implement it.

• static int xxx_isa_probe (device_t dev); Probe for a device at a known (or PnP) location. This
routine can also accommodate device-specific auto-detection of parameters for partially configured devices.

110

Chapter 19. ISA device drivers

• static int xxx_isa_attach (device_t dev); Attach and initialize device.

• static int xxx_isa_detach (device_t dev); Detach device before unloading the driver module.

• static int xxx_isa_shutdown (device_t dev); Execute shutdown of the device before system
shutdown.

• static int xxx_isa_suspend (device_t dev); Suspend the device before the system goes to the
power-save state. May also abort transition to the power-save state.

• static int xxx_isa_resume (device_t dev); Resume the device activity after return from power-save
state.

xxx_isa_probe() andxxx_isa_attach() are mandatory, the rest of the routines are optional, depending on the
device’s needs.

The driver is linked to the system with the following set of descriptions.

/* table of supported bus methods */
static device_method_t xxx_isa_methods[] = {

/* list all the bus method functions supported by the driver */
/* omit the unsupported methods */
DEVMETHOD(device_identify, xxx_isa_identify),
DEVMETHOD(device_probe, xxx_isa_probe),
DEVMETHOD(device_attach, xxx_isa_attach),
DEVMETHOD(device_detach, xxx_isa_detach),
DEVMETHOD(device_shutdown, xxx_isa_shutdown),
DEVMETHOD(device_suspend, xxx_isa_suspend),
DEVMETHOD(device_resume, xxx_isa_resume),

{ 0, 0 }
};

static driver_t xxx_isa_driver = {
"xxx",
xxx_isa_methods,
sizeof(struct xxx_softc),

};

static devclass_t xxx_devclass;

DRIVER_MODULE(xxx, isa, xxx_isa_driver, xxx_devclass,
load_function, load_argument);

Here struct xxx_softc is a device-specific structure that contains private driver data and descriptors for the driver’s
resources. The bus code automatically allocates one softc descriptor per device as needed.

111

Chapter 19. ISA device drivers

If the driver is implemented as a loadable module thenload_function() is called to do driver-specific
initialization or clean-up when the driver is loaded or unloaded and load_argument is passed as one of its arguments.
If the driver does not support dynamic loading (in other words it must always be linked into kernel) then these values
should be set to 0 and the last definition would look like:

DRIVER_MODULE(xxx, isa, xxx_isa_driver,
xxx_devclass, 0, 0);

If the driver is for a device which supports PnP then a table of supported PnP IDs must be defined. The table consists
of a list of PnP IDs supported by this driver and human-readable descriptions of the hardware types and models
having these IDs. It looks like:

static struct isa_pnp_id xxx_pnp_ids[] = {
/* a line for each supported PnP ID */
{ 0x12345678, "Our device model 1234A" },
{ 0x12345679, "Our device model 1234B" },
{ 0, NULL }, /* end of table */

};

If the driver does not support PnP devices it still needs an empty PnP ID table, like:

static struct isa_pnp_id xxx_pnp_ids[] = {
{ 0, NULL }, /* end of table */

};

19.3. Device_t pointer
Device_t is the pointer type for the device structure. Here we consider only the methods interesting from the device
driver writer’s standpoint. The methods to manipulate values in the device structure are:

• device_t device_get_parent(dev) Get the parent bus of a device.

• driver_t device_get_driver(dev) Get pointer to its driver structure.

• char *device_get_name(dev) Get the driver name, such as "xxx" for our example.

• int device_get_unit(dev) Get the unit number (units are numbered from 0 for the devices associated with
each driver).

• char *device_get_nameunit(dev) Get the device name including the unit number, such as "xxx0" , "xxx1"
and so on.

• char *device_get_desc(dev) Get the device description. Normally it describes the exact model of device in
human-readable form.

112

Chapter 19. ISA device drivers

• device_set_desc(dev, desc) Set the description. This makes the device description point to the string desc
which may not be deallocated or changed after that.

• device_set_desc_copy(dev, desc) Set the description. The description is copied into an internal
dynamically allocated buffer, so the string desc may be changed afterwards without adverse effects.

• void *device_get_softc(dev) Get pointer to the device descriptor (struct xxx_softc) associated with this
device.

• u_int32_t device_get_flags(dev) Get the flags specified for the device in the configuration file.

A convenience functiondevice_printf(dev, fmt, ...) may be used to print the messages from the device
driver. It automatically prepends the unitname and colon to the message.

The device_t methods are implemented in the file kern/bus_subr.c.

19.4. Config file and the order of identifying and probing
during auto-configuration
The ISA devices are described in the kernel config file like:

device xxx0 at isa? port 0x300 irq 10 drq 5
iomem 0xd0000 flags 0x1 sensitive

The values of port, IRQ and so on are converted to the resource values associated with the device. They are optional,
depending on the device needs and abilities for auto-configuration. For example, some devices don’t need DRQ at all
and some allow the driver to read the IRQ setting from the device configuration ports. If a machine has multiple ISA
buses the exact bus may be specified in the configuration line, like "isa0" or "isa1", otherwise the device would be
searched for on all the ISA buses.

"sensitive" is a resource requesting that this device must be probed before all non-sensitive devices. It is supported
but does not seem to be used in any current driver.

For legacy ISA devices in many cases the drivers are still able to detect the configuration parameters. But each device
to be configured in the system must have a config line. If two devices of some type are installed in the system but
there is only one configuration line for the corresponding driver, ie:

device xxx0 at isa?

then only one device will be configured.

But for the devices supporting automatic identification by the means of Plug-n-Play or some proprietary protocol one
configuration line is enough to configure all the devices in the system, like the one above or just simply:

device xxx at isa?

113

Chapter 19. ISA device drivers

If a driver supports both auto-identified and legacy devices and both kinds are installed at once in one machine then
it’s enough to describe in the config file the legacy devices only. The auto-identified devices will be added
automatically.

When an ISA bus is auto-configured the events happen as follows:

All the drivers’ identify routines (including the PnP identify routine which identifies all the PnP devices) are called in
random order. As they identify the devices they add them to the list on the ISA bus. Normally the drivers’ identify
routines associate their drivers with the new devices. The PnP identify routine does not know about the other drivers
yet so it does not associate any with the new devices it adds.

The PnP devices are put to sleep using the PnP protocol to prevent them from being probed as legacy devices.

The probe routines of non-PnP devices marked as "sensitive" are called. If probe for a device went successfully, the
attach routine is called for it.

The probe and attach routines of all non-PNP devices are called likewise.

The PnP devices are brought back from the sleep state and assigned the resources they request: I/O and memory
address ranges, IRQs and DRQs, all of them not conflicting with the attached legacy devices.

Then for each PnP device the probe routines of all the present ISA drivers are called. The first one that claims the
device gets attached. It is possible that multiple drivers would claim the device with different priority, the
highest-priority driver wins. The probe routines must callISA_PNP_PROBE() to compare the actual PnP ID with the
list of the IDs supported by the driver and if the ID is not in the table return failure. That means that absolutely every
driver, even the ones not supporting any PnP devices must callISA_PNP_PROBE(), at least with an empty PnP ID
table to return failure on unknown PnP devices.

The probe routine returns a positive value (the error code) on error, zero or negative value on success.

The negative return values are used when a PnP device supports multiple interfaces. For example, an older
compatibility interface and a newer advanced interface which are supported by different drivers. Then both drivers
would detect the device. The driver which returns a higher value in the probe routine takes precedence (in other
words, the driver returning 0 has highest precedence, returning -1 is next, returning -2 is after it and so on). In result
the devices which support only the old interface will be handled by the old driver (which should return -1 from the
probe routine) while the devices supporting the new interface as well will be handled by the new driver (which
should return 0 from the probe routine). If multiple drivers return the same value then the one called first wins. So if
a driver returns value 0 it may be sure that it won the priority arbitration.

The device-specific identify routines can also assign not a driver but a class of drivers to the device. Then all the
drivers in the class are probed for this device, like the case with PnP. This feature is not implemented in any existing
driver and is not considered further in this document.

Because the PnP devices are disabled when probing the legacy devices they will not be attached twice (once as
legacy and once as PnP). But in case of device-dependent identify routines it’s the responsibility of the driver to
make sure that the same device won’t be attached by the driver twice: once as legacy user-configured and once as
auto-identified.

114

Chapter 19. ISA device drivers

Another practical consequence for the auto-identified devices (both PnP and device-specific) is that the flags can not
be passed to them from the kernel configuration file. So they must either not use the flags at all or use the flags from
the device unit 0 for all the auto-identified devices or use the sysctl interface instead of flags.

Other unusual configurations may be accommodated by accessing the configuration resources directly with functions
of familiesresource_query_*() andresource_*_value() . Their implementations are located in
kern/subr_bus.h. The old IDE disk driver i386/isa/wd.c contains examples of such use. But the standard means of
configuration must always be preferred. Leave parsing the configuration resources to the bus configuration code.

19.5. Resources
The information that a user enters into the kernel configuration file is processed and passed to the kernel as
configuration resources. This information is parsed by the bus configuration code and transformed into a value of
structure device_t and the bus resources associated with it. The drivers may access the configuration resources
directly using functions resource_* for more complex cases of configuration. But generally it’s not needed nor
recommended, so this issue is not discussed further.

The bus resources are associated with each device. They are identified by type and number within the type. For the
ISA bus the following types are defined:

• SYS_RES_IRQ- interrupt number

• SYS_RES_DRQ- ISA DMA channel number

• SYS_RES_MEMORY- range of device memory mapped into the system memory space

• SYS_RES_IOPORT- range of device I/O registers

The enumeration within types starts from 0, so if a device has two memory regions if would have resources of type
SYS_RES_MEMORY numbered 0 and 1. The resource type has nothing to do with the C language type, all the
resource values have the C language type "unsigned long" and must be cast as necessary. The resource numbers don’t
have to be contiguous although for ISA they normally would be. The permitted resource numbers for ISA devices
are:

IRQ: 0-1
DRQ: 0-1
MEMORY: 0-3
IOPORT: 0-7

All the resources are represented as ranges, with a start value and count. For IRQ and DRQ resources the count
would be normally equal to 1. The values for memory refer to the physical addresses.

Three types of activities can be performed on resources:

115

Chapter 19. ISA device drivers

• set/get

• allocate/release

• activate/deactivate

Setting sets the range used by the resource. Allocation reserves the requested range that no other driver would be able
to reserve it (and checking that no other driver reserved this range already). Activation makes the resource accessible
to the driver doing whatever is necessary for that (for example, for memory it would be mapping into the kernel
virtual address space).

The functions to manipulate resources are:

• int bus_set_resource(device_t dev, int type, int rid, u_long start, u_long count)

Set a range for a resource. Returns 0 if successful, error code otherwise. Normally the only reason this function
would return an error is value of type, rid, start or count out of permitted range.

• dev - driver’s device

• type - type of resource, SYS_RES_*

• rid - resource number (ID) within type

• start, count - resource range

• int bus_get_resource(device_t dev, int type, int rid, u_long *startp, u_long

*countp)

Get the range of resource. Returns 0 if successful, error code if the resource is not defined yet.

• u_long bus_get_resource_start(device_t dev, int type, int rid) u_long

bus_get_resource_count (device_t dev, int type, int rid)

Convenience functions to get only the start or count. Return 0 in case of error, so if the resource start has 0 among
the legitimate values it would be impossible to tell if the value is 0 or an error occurred. Luckily, no ISA resources
for add-on drivers may have a start value equal 0.

• void bus_delete_resource(device_t dev, int type, int rid)

Delete a resource, make it undefined.

• struct resource * bus_alloc_resource(device_t dev, int type, int *rid, u_long start,

u_long end, u_long count, u_int flags)

116

Chapter 19. ISA device drivers

Allocate a resource as a range of count values not allocated by anyone else, somewhere between start and end.
Alas, alignment is not supported. If the resource was not set yet it’s automatically created. The special values of
start 0 and end ~0 (all ones) means that the fixed values previously set bybus_set_resource() must be used
instead: start and count as themselves and end=(start+count), in this case if the resource was not defined before
then an error is returned. Although rid is passed by reference it’s not set anywhere by the resource allocation code
of the ISA bus. (The other buses may use a different approach and modify it).

Flags are a bitmap, the flags interesting for the caller are:

• RF_ACTIVE- causes the resource to be automatically activated after allocation.

• RF_SHAREABLE- resource may be shared at the same time by multiple drivers.

• RF_TIMESHARE- resource may be time-shared by multiple drivers, i.e. allocated at the same time by many but
activated only by one at any given moment of time.

• Returns 0 on error. The allocated values may be obtained from the returned handle using methodsrhand_*() .

• int bus_release_resource(device_t dev, int type, int rid, struct resource *r)

• Release the resource, r is the handle returned bybus_alloc_resource() . Returns 0 on success, error code
otherwise.

• int bus_activate_resource(device_t dev, int type, int rid, struct resource *r) int

bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)

• Activate or deactivate resource. Return 0 on success, error code otherwise. If the resource is time-shared and
currently activated by another driver then EBUSY is returned.

• int bus_setup_intr(device_t dev, struct resource *r, int flags, driver_intr_t

*handler, void *arg, void **cookiep) int bus_teardown_intr(device_t dev, struct

resource *r, void *cookie)

• Associate or de-associate the interrupt handler with a device. Return 0 on success, error code otherwise.

• r - the activated resource handler describing the IRQ

flags - the interrupt priority level, one of:

• INTR_TYPE_TTY - terminals and other likewise character-type devices. To mask them usespltty() .

• (INTR_TYPE_TTY | INTR_TYPE_FAST) - terminal type devices with small input buffer, critical to the data
loss on input (such as the old-fashioned serial ports). To mask them usespltty() .

• INTR_TYPE_BIO - block-type devices, except those on the CAM controllers. To mask them usesplbio() .

• INTR_TYPE_CAM- CAM (Common Access Method) bus controllers. To mask them usesplcam() .

• INTR_TYPE_NET- network interface controllers. To mask them usesplimp() .

117

Chapter 19. ISA device drivers

• INTR_TYPE_MISC - miscellaneous devices. There is no other way to mask them than bysplhigh() which
masks all interrupts.

When an interrupt handler executes all the other interrupts matching its priority level will be masked. The only
exception is the MISC level for which no other interrupts are masked and which is not masked by any other interrupt.

• handler- pointer to the handler function, the type driver_intr_t is defined as "void driver_intr_t(void *)"

• arg - the argument passed to the handler to identify this particular device. It is cast from void* to any real type by
the handler. The old convention for the ISA interrupt handlers was to use the unit number as argument, the new
(recommended) convention is using a pointer to the device softc structure.

• cookie[p] - the value received fromsetup() is used to identify the handler when passed toteardown()

A number of methods is defined to operate on the resource handlers (struct resource *). Those of interest to the
device driver writers are:

• u_long rman_get_start(r) u_long rman_get_end(r) Get the start and end of allocated resource range.

• void *rman_get_virtual(r) Get the virtual address of activated memory resource.

19.6. Bus memory mapping
In many cases data is exchanged between the driver and the device through the memory. Two variants are possible:

(a) memory is located on the device card

(b) memory is the main memory of computer

In the case (a) the driver always copies the data back and forth between the on-card memory and the main memory as
necessary. To map the on-card memory into the kernel virtual address space the physical address and length of the
on-card memory must be defined as a SYS_RES_MEMORY resource. That resource can then be allocated and
activated, and its virtual address obtained usingrman_get_virtual() . The older drivers used the function
pmap_mapdev() for this purpose, which should not be used directly any more. Now it’s one of the internal steps of
resource activation.

Most of the ISA cards will have their memory configured for physical location somewhere in range 640KB-1MB.
Some of the ISA cards require larger memory ranges which should be placed somewhere under 16MB (because of
the 24-bit address limitation on the ISA bus). In that case if the machine has more memory than the start address of
the device memory (in other words, they overlap) a memory hole must be configured at the address range used by
devices. Many BIOSes allow to configure a memory hole of 1MB starting at 14MB or 15MB. FreeBSD can handle
the memory holes properly if the BIOS reports them properly (old BIOSes may have this feature broken).

118

Chapter 19. ISA device drivers

In the case (b) just the address of the data is sent to the device, and the device uses DMA to actually access the data
in the main memory. Two limitations are present: First, ISA cards can only access memory below 16MB. Second, the
contiguous pages in virtual address space may not be contiguous in physical address space, so the device may have to
do scatter/gather operations. The bus subsystem provides ready solutions for some of these problems, the rest has to
be done by the drivers themselves.

Two structures are used for DMA memory allocation, bus_dma_tag_t and bus_dmamap_t. Tag describes the
properties required for the DMA memory. Map represents a memory block allocated according to these properties.
Multiple maps may be associated with the same tag.

Tags are organized into a tree-like hierarchy with inheritance of the properties. A child tag inherits all the
requirements of its parent tag or may make them more strict but never more loose.

Normally one top-level tag (with no parent) is created for each device unit. If multiple memory areas with different
requirements are needed for each device then a tag for each of them may be created as a child of the parent tag.

The tags can be used to create a map in two ways.

First, a chunk of contiguous memory conformant with the tag requirements may be allocated (and later may be
freed). This is normally used to allocate relatively long-living areas of memory for communication with the device.
Loading of such memory into a map is trivial: it’s always considered as one chunk in the appropriate physical
memory range.

Second, an arbitrary area of virtual memory may be loaded into a map. Each page of this memory will be checked for
conformance to the map requirement. If it conforms then it’s left at it’s original location. If it is not then a fresh
conformant "bounce page" is allocated and used as intermediate storage. When writing the data from the
non-conformant original pages they will be copied to their bounce pages first and then transferred from the bounce
pages to the device. When reading the data would go from the device to the bounce pages and then copied to their
non-conformant original pages. The process of copying between the original and bounce pages is called
synchronization. This is normally used on per-transfer basis: buffer for each transfer would be loaded, transfer done
and buffer unloaded.

The functions working on the DMA memory are:

• int bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment, bus_size_t

boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void

*filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags,

bus_dma_tag_t *dmat)

Create a new tag. Returns 0 on success, the error code otherwise.

• parent- parent tag, or NULL to create a top-level tagalignment- required physical alignment of the memory
area to be allocated for this tag. Use value 1 for "no specific alignment". Applies only to the future
bus_dmamem_alloc() but notbus_dmamap_create() calls.boundary- physical address boundary that
must not be crossed when allocating the memory. Use value 0 for "no boundary". Applies only to the future

119

Chapter 19. ISA device drivers

bus_dmamem_alloc() but notbus_dmamap_create() calls. Must be power of 2. If the memory is planned
to be used in non-cascaded DMA mode (i.e. the DMA addresses will be supplied not by the device itself but by
the ISA DMA controller) then the boundary must be no larger than 64KB (64*1024) due to the limitations of
the DMA hardware.

• lowaddr, highaddr- the names are slighlty misleading; these values are used to limit the permitted range of
physical addresses used to allocate the memory. The exact meaning varies depending on the planned future use:

• For bus_dmamem_alloc() all the addresses from 0 to lowaddr-1 are considered permitted, the higher ones
are forbidden.

• Forbus_dmamap_create() all the addresses outside the inclusive range [lowaddr; highaddr] are considered
accessible. The addresses of pages inside the range are passed to the filter function which decides if they are
accessible. If no filter function is supplied then all the range is considered unaccessible.

• For the ISA devices the normal values (with no filter function) are:

lowaddr = BUS_SPACE_MAXADDR_24BIT

highaddr = BUS_SPACE_MAXADDR

• filter, filterarg - the filter function and its argument. If NULL is passed for filter then the whole range [lowaddr,
highaddr] is considered unaccessible when doingbus_dmamap_create() . Otherwise the physical address of
each attempted page in range [lowaddr; highaddr] is passed to the filter function which decides if it is
accessible. The prototype of the filter function is:int filterfunc(void *arg, bus_addr_t paddr) It
must return 0 if the page is accessible, non-zero otherwise.

• maxsize- the maximal size of memory (in bytes) that may be allocated through this tag. In case it’s difficult to
estimate or could be arbitrarily big, the value for ISA devices would be BUS_SPACE_MAXSIZE_24BIT.

• nsegments- maximal number of scatter-gather segments supported by the device. If unrestricted then the value
BUS_SPACE_UNRESTRICTED should be used. This value is recommended for the parent tags, the actual
restrictions would then be specified for the descendant tags. Tags with nsegments equal to
BUS_SPACE_UNRESTRICTED may not be used to actually load maps, they may be used only as parent tags.
The practical limit for nsegments seems to be about 250-300, higher values will cause kernel stack overflow.
But anyway the hardware normally can’t support that many scatter-gather buffers.

• maxsegsz- maximal size of a scatter-gather segment supported by the device. The maximal value for ISA device
would be BUS_SPACE_MAXSIZE_24BIT.

• flags- a bitmap of flags. The only interesting flags are:

• BUS_DMA_ALLOCNOW- requests to allocate all the potentially needed bounce pages when creating the tag

120

Chapter 19. ISA device drivers

• BUS_DMA_ISA- mysterious flag used only on Alpha machines. It is not defined for the i386 machines.
Probably it should be used by all the ISA drivers for Alpha machines but it looks like there are no such
drivers yet.

• dmat- pointer to the storage for the new tag to be returned

• int bus_dma_tag_destroy(bus_dma_tag_t dmat)

Destroy a tag. Returns 0 on success, the error code otherwise.

dmat - the tag to be destroyed

• int bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags, bus_dmamap_t

*mapp)

Allocate an area of contiguous memory described by the tag. The size of memory to be allocated is tag’s maxsize.
Returns 0 on success, the error code otherwise. The result still has to be loaded bybus_dmamap_load() before
used to get the physical address of the memory.

• dmat- the tag

• vaddr - pointer to the storage for the kernel virtual address of the allocated area to be returned.

• flags - a bitmap of flags. The only interesting flag is:

• BUS_DMA_NOWAIT- if the memory is not immediately available return the error. If this flag is not set then
the routine is allowed to sleep waiting until the memory will become available.

• mapp- pointer to the storage for the new map to be returned

• void bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)

Free the memory allocated bybus_dmamem_alloc() . As of now freeing of the memory allocated with ISA
restrictions is not implemented. Because of this the recommended model of use is to keep and re-use the allocated
areas for as long as possible. Do not lightly free some area and then shortly allocate it again. That does not mean
thatbus_dmamem_free() should not be used at all: hopefully it will be properly implemented soon.

• dmat- the tag

• vaddr - the kernel virtual address of the memory

• map- the map of the memory (as returned frombus_dmamem_alloc())

121

Chapter 19. ISA device drivers

• int bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)

Create a map for the tag, to be used inbus_dmamap_load() later. Returns 0 on success, the error code otherwise.

• dmat- the tag

• flags- theoretically, a bit map of flags. But no flags are defined yet, so as of now it will be always 0.

• mapp- pointer to the storage for the new map to be returned

• int bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)

Destroy a map. Returns 0 on success, the error code otherwise.

• dmat - the tag to which the map is associated

• map - the map to be destroyed

• int bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t

buflen, bus_dmamap_callback_t *callback, void *callback_arg, int flags)

Load a buffer into the map (the map must be previously created bybus_dmamap_create() or
bus_dmamem_alloc()). All the pages of the buffer are checked for conformance to the tag requirements and for
those not conformant the bounce pages are allocated. An array of physical segment descriptors is built and passed
to the callback routine. This callback routine is then expected to handle it in some way. The number of bounce
buffers in the system is limited, so if the bounce buffers are needed but not immediately available the request will
be queued and the callback will be called when the bounce buffers will become available. Returns 0 if the callback
was executed immediately or EINPROGRESS if the request was queued for future execution. In the latter case the
synchronization with queued callback routine is the responsibility of the driver.

• dmat- the tag

• map- the map

• buf - kernel virtual address of the buffer

• buflen- length of the buffer

• callback, callback_arg - the callback function and its argument

The prototype of callback function is:

void callback(void *arg, bus_dma_segment_t *seg, int nseg, int error)

122

Chapter 19. ISA device drivers

• arg - the same as callback_arg passed tobus_dmamap_load()

• seg- array of the segment descriptors

• nseg- number of descriptors in array

• error - indication of the segment number overflow: if it’s set to EFBIG then the buffer did not fit into the
maximal number of segments permitted by the tag. In this case only the permitted number of descriptors will be
in the array. Handling of this situation is up to the driver: depending on the desired semantics it can either
consider this an error or split the buffer in two and handle the second part separately

Each entry in the segments array contains the fields:

• ds_addr- physical bus address of the segment

• ds_len- length of the segment

• void bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)

unload the map.

• dmat- tag

• map- loaded map

• void bus_dmamap_sync (bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op)

Synchronise a loaded buffer with its bounce pages before and after physical transfer to or from device. This is the
function that does all the necessary copying of data between the original buffer and its mapped version. The
buffers must be synchronized both before and after doing the transfer.

• dmat- tag

• map- loaded map

• op - type of synchronization operation to perform:

• BUS_DMASYNC_PREREAD- before reading from device into buffer

• BUS_DMASYNC_POSTREAD- after reading from device into buffer

• BUS_DMASYNC_PREWRITE- before writing the buffer to device

• BUS_DMASYNC_POSTWRITE- after writing the buffer to device

123

Chapter 19. ISA device drivers

As of now PREREAD and POSTWRITE are null operations but that may change in the future, so they must not be
ignored in the driver. Synchronization is not needed for the memory obtained frombus_dmamem_alloc() .

Before calling the callback function frombus_dmamap_load() the segment array is stored in the stack. And it gets
pre-allocated for the maximal number of segments allowed by the tag. Because of this the practical limit for the
number of segments on i386 architecture is about 250-300 (the kernel stack is 4KB minus the size of the user
structure, size of a segment array entry is 8 bytes, and some space must be left). Because the array is allocated based
on the maximal number this value must not be set higher than really needed. Fortunately, for most of hardware the
maximal supported number of segments is much lower. But if the driver wants to handle buffers with a very large
number of scatter-gather segments it should do that in portions: load part of the buffer, transfer it to the device, load
next part of the buffer, and so on.

Another practical consequence is that the number of segments may limit the size of the buffer. If all the pages in the
buffer happen to be physically non-contiguous then the maximal supported buffer size for that fragmented case
would be (nsegments * page_size). For example, if a maximal number of 10 segments is supported then on i386
maximal guaranteed supported buffer size would be 40K. If a higher size is desired then special tricks should be used
in the driver.

If the hardware does not support scatter-gather at all or the driver wants to support some buffer size even if it’s
heavily fragmented then the solution is to allocate a contiguous buffer in the driver and use it as intermediate storage
if the original buffer does not fit.

Below are the typical call sequences when using a map depend on the use of the map. The characters -> are used to
show the flow of time.

For a buffer which stays practically fixed during all the time between attachment and detachment of a device:

bus_dmamem_alloc -> bus_dmamap_load -> ...use buffer... -> -> bus_dmamap_unload -> bus_dmamem_free

For a buffer that changes frequently and is passed from outside the driver:

bus_dmamap_create ->
-> bus_dmamap_load -> bus_dmamap_sync(PRE...) -> do transfer ->
-> bus_dmamap_sync(POST...) -> bus_dmamap_unload ->
...
-> bus_dmamap_load -> bus_dmamap_sync(PRE...) -> do transfer ->
-> bus_dmamap_sync(POST...) -> bus_dmamap_unload ->
-> bus_dmamap_destroy

When loading a map created bybus_dmamem_alloc() the passed address and size of the buffer must be the same
as used inbus_dmamem_alloc() . In this case it is guaranteed that the whole buffer will be mapped as one segment
(so the callback may be based on this assumption) and the request will be executed immediately (EINPROGRESS
will never be returned). All the callback needs to do in this case is to save the physical address.

A typical example would be:

124

Chapter 19. ISA device drivers

static void
alloc_callback(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{

*(bus_addr_t *)arg = seg[0].ds_addr;
}

...
int error;
struct somedata {

....
};
struct somedata *vsomedata; /* virtual address */
bus_addr_t psomedata; /* physical bus-relative address */
bus_dma_tag_t tag_somedata;
bus_dmamap_t map_somedata;
...

error=bus_dma_tag_create(parent_tag, alignment,
boundary, lowaddr, highaddr, /*filter*/ NULL, /*filterarg*/ NULL,
/*maxsize*/ sizeof(struct somedata), /*nsegments*/ 1,
/*maxsegsz*/ sizeof(struct somedata), /*flags*/ 0,
&tag_somedata);

if(error)
return error;

error = bus_dmamem_alloc(tag_somedata, &vsomedata, /* flags*/ 0,
&map_somedata);

if(error)
return error;

bus_dmamap_load(tag_somedata, map_somedata, (void *)vsomedata,
sizeof (struct somedata), alloc_callback,
(void *) &psomedata, /*flags*/0);

Looks a bit long and complicated but that’s the way to do it. The practical consequence is: if multiple memory areas
are allocated always together it would be a really good idea to combine them all into one structure and allocate as
one (if the alignment and boundary limitations permit).

When loading an arbitrary buffer into the map created bybus_dmamap_create() special measures must be taken
to synchronize with the callback in case it would be delayed. The code would look like:

{
int s;
int error;

125

Chapter 19. ISA device drivers

s = splsoftvm();
error = bus_dmamap_load(

dmat,
dmamap,
buffer_ptr,
buffer_len,
callback,
/*callback_arg*/ buffer_descriptor,
/*flags*/0);

if (error == EINPROGRESS) {
/*

* Do whatever is needed to ensure synchronization
* with callback. Callback is guaranteed not to be started
* until we do splx() or tsleep().
*/

}
splx(s);

}

Two possible approaches for the processing of requests are:

1. If requests are completed by marking them explicitly as done (such as the CAM requests) then it would be simpler
to put all the further processing into the callback driver which would mark the request when it’s done. Then not much
extra synchronization is needed. For the flow control reasons it may be a good idea to freeze the request queue until
this request gets completed.

2. If requests are completed when the function returns (such as classic read or write requests on character devices)
then a synchronization flag should be set in the buffer descriptor andtsleep() called. Later when the callback gets
called it will do it’s processing and check this synchronization flag. If it’s set then the callback should issue a
wakeup. In this approach the callback function could either do all the needed processing (just like the previous case)
or simply save the segments array in the buffer descriptor. Then after callback completes the calling function could
use this saved segments array and do all the processing.

19.7. DMA
The Direct Memory Access (DMA) is implemented in the ISA bus through the DMA controller (actually, two of
them but that’s an irrelevant detail). To make the early ISA devices simple and cheap the logic of the bus control and
address generation was concentrated in the DMA controller. Fortunately, FreeBSD provides a set of functions that
mostly hide the annoying details of the DMA controller from the device drivers.

The simplest case is for the fairly intelligent devices. Like the bus master devices on PCI they can generate the bus
cycles and memory addresses all by themselves. The only thing they really need from the DMA controller is bus
arbitration. So for this purpose they pretend to be cascaded slave DMA controllers. And the only thing needed from

126

Chapter 19. ISA device drivers

the system DMA controller is to enable the cascaded mode on a DMA channel by calling the following function
when attaching the driver:

void isa_dmacascade(int channel_number)

All the further activity is done by programming the device. When detaching the driver no DMA-related functions
need to be called.

For the simpler devices things get more complicated. The functions used are:

• int isa_dma_acquire(int chanel_number)

Reserve a DMA channel. Returns 0 on success or EBUSY if the channel was already reserved by this or a different
driver. Most of the ISA devices are not able to share DMA channels anyway, so normally this function is called
when attaching a device. This reservation was made redundant by the modern interface of bus resources but still
must be used in addition to the latter. If not used then later, other DMA routines will panic.

• int isa_dma_release(int chanel_number)

Release a previously reserved DMA channel. No transfers must be in progress when the channel is released (as
well as the device must not try to initiate transfer after the channel is released).

• void isa_dmainit(int chan, u_int bouncebufsize)

Allocate a bounce buffer for use with the specified channel. The requested size of the buffer can’t exceed 64KB.
This bounce buffer will be automatically used later if a transfer buffer happens to be not physically contiguous or
outside of the memory accessible by the ISA bus or crossing the 64KB boundary. If the transfers will be always
done from buffers which conform to these conditions (such as those allocated bybus_dmamem_alloc() with
proper limitations) thenisa_dmainit() does not have to be called. But it’s quite convenient to transfer arbitrary
data using the DMA controller. The bounce buffer will automatically care of the scatter-gather issues.

• chan- channel number

• bouncebufsize- size of the bounce buffer in bytes

• void isa_dmastart(int flags, caddr_t addr, u_int nbytes, int chan)

Prepare to start a DMA transfer. This function must be called to set up the DMA controller before actually starting
transfer on the device. It checks that the buffer is contiguous and falls into the ISA memory range, if not then the
bounce buffer is automatically used. If bounce buffer is required but not set up byisa_dmainit() or too small
for the requested transfer size then the system will panic. In case of a write request with bounce buffer the data
will be automatically copied to the bounce buffer.

127

Chapter 19. ISA device drivers

• flags - a bitmask determining the type of operation to be done. The direction bits B_READ and B_WRITE are
mutually exclusive.

• B_READ - read from the ISA bus into memory

• B_WRITE - write from the memory to the ISA bus

• B_RAW - if set then the DMA controller will remember the buffer and after the end of transfer will
automatically re-initialize itself to repeat transfer of the same buffer again (of course, the driver may change the
data in the buffer before initiating another transfer in the device). If not set then the parameters will work only
for one transfer, andisa_dmastart() will have to be called again before initiating the next transfer. Using
B_RAW makes sense only if the bounce buffer is not used.

• addr - virtual address of the buffer

• nbytes - length of the buffer. Must be less or equal to 64KB. Length of 0 is not allowed: the DMA controller will
understand it as 64KB while the kernel code will understand it as 0 and that would cause unpredictable effects. For
channels number 4 and higher the length must be even because these channels transfer 2 bytes at a time. In case of
an odd length the last byte will not be transferred.

• chan - channel number

• void isa_dmadone(int flags, caddr_t addr, int nbytes, int chan)

Synchronize the memory after device reports that transfer is done. If that was a read operation with a bounce
buffer then the data will be copied from the bounce buffer to the original buffer. Arguments are the same as for
isa_dmastart() . Flag B_RAW is permitted but it does not affectisa_dmadone() in any way.

• int isa_dmastatus(int channel_number)

Returns the number of bytes left in the current transfer to be transferred. In case the flag B_READ was set in
isa_dmastart() the number returned will never be equal to zero. At the end of transfer it will be automatically
reset back to the length of buffer. The normal use is to check the number of bytes left after the device signals that
the transfer is completed. If the number of bytes is not 0 then probably something went wrong with that transfer.

• int isa_dmastop(int channel_number)

Aborts the current transfer and returns the number of bytes left untransferred.

128

Chapter 19. ISA device drivers

19.8. xxx_isa_probe
This function probes if a device is present. If the driver supports auto-detection of some part of device configuration
(such as interrupt vector or memory address) this auto-detection must be done in this routine.

As for any other bus, if the device can not be detected or is detected but failed the self-test or some other problem
happened then it returns a positive value of error. The value ENXIO must be returned if the device is not present.
Other error values may mean other conditions. Zero or negative values mean success. Most of the drivers return zero
as success.

The negative return values are used when a PnP device supports multiple interfaces. For example, an older
compatibility interface and a newer advanced interface which are supported by different drivers. Then both drivers
would detect the device. The driver which returns a higher value in the probe routine takes precedence (in other
words, the driver returning 0 has highest precedence, one returning -1 is next, one returning -2 is after it and so on).
In result the devices which support only the old interface will be handled by the old driver (which should return -1
from the probe routine) while the devices supporting the new interface as well will be handled by the new driver
(which should return 0 from the probe routine).

The device descriptor struct xxx_softc is allocated by the system before calling the probe routine. If the probe routine
returns an error the descriptor will be automatically deallocated by the system. So if a probing error occurs the driver
must make sure that all the resources it used during probe are deallocated and that nothing keeps the descriptor from
being safely deallocated. If the probe completes successfully the descriptor will be preserved by the system and later
passed to the routinexxx_isa_attach() . If a driver returns a negative value it can’t be sure that it will have the
highest priority and its attach routine will be called. So in this case it also must release all the resources before
returning and if necessary allocate them again in the attach routine. Whenxxx_isa_probe() returns 0 releasing the
resources before returning is also a good idea, a well-behaved driver should do so. But in case if there is some
problem with releasing the resources the driver is allowed to keep resources between returning 0 from the probe
routine and execution of the attach routine.

A typical probe routine starts with getting the device descriptor and unit:

struct xxx_softc *sc = device_get_softc(dev);
int unit = device_get_unit(dev);
int pnperror;
int error = 0;

sc->dev = dev; /* link it back */
sc->unit = unit;

Then check for the PnP devices. The check is carried out by a table containing the list of PnP IDs supported by this
driver and human-readable descriptions of the device models corresponding to these IDs.

pnperror=ISA_PNP_PROBE(device_get_parent(dev), dev,
xxx_pnp_ids); if(pnperror == ENXIO) return ENXIO;

129

Chapter 19. ISA device drivers

The logic of ISA_PNP_PROBE is the following: If this card (device unit) was not detected as PnP then ENOENT
will be returned. If it was detected as PnP but its detected ID does not match any of the IDs in the table then ENXIO
is returned. Finally, if it has PnP support and it matches on of the IDs in the table, 0 is returned and the appropriate
description from the table is set bydevice_set_desc() .

If a driver supports only PnP devices then the condition would look like:

if(pnperror != 0)
return pnperror;

No special treatment is required for the drivers which don’t support PnP because they pass an empty PnP ID table
and will always get ENXIO if called on a PnP card.

The probe routine normally needs at least some minimal set of resources, such as I/O port number to find the card
and probe it. Depending on the hardware the driver may be able to discover the other necessary resources
automatically. The PnP devices have all the resources pre-set by the PnP subsystem, so the driver does not need to
discover them by itself.

Typically the minimal information required to get access to the device is the I/O port number. Then some devices
allow to get the rest of information from the device configuration registers (though not all devices do that). So first
we try to get the port start value:

sc->port0 = bus_get_resource_start(dev,
SYS_RES_IOPORT, 0 /*rid*/); if(sc->port0 == 0) return ENXIO;

The base port address is saved in the structure softc for future use. If it will be used very often then calling the
resource function each time would be prohibitively slow. If we don’t get a port we just return an error. Some device
drivers can instead be clever and try to probe all the possible ports, like this:

/* table of all possible base I/O port addresses for this device */
static struct xxx_allports {

u_short port; /* port address */
short used; /* flag: if this port is already used by some unit */

} xxx_allports = {
{ 0x300, 0 },
{ 0x320, 0 },
{ 0x340, 0 },
{ 0, 0 } /* end of table */

};

...
int port, i;
...

130

Chapter 19. ISA device drivers

port = bus_get_resource_start(dev, SYS_RES_IOPORT, 0 /*rid*/);
if(port !=0) {

for(i=0; xxx_allports[i].port!=0; i++) {
if(xxx_allports[i].used || xxx_allports[i].port != port)

continue;

/* found it */
xxx_allports[i].used = 1;
/* do probe on a known port */
return xxx_really_probe(dev, port);

}
return ENXIO; /* port is unknown or already used */

}

/* we get here only if we need to guess the port */
for(i=0; xxx_allports[i].port!=0; i++) {

if(xxx_allports[i].used)
continue;

/* mark as used - even if we find nothing at this port
* at least we won’t probe it in future
*/
xxx_allports[i].used = 1;

error = xxx_really_probe(dev, xxx_allports[i].port);
if(error == 0) /* found a device at that port */

return 0;
}
/* probed all possible addresses, none worked */
return ENXIO;

Of course, normally the driver’sidentify() routine should be used for such things. But there may be one valid
reason why it may be better to be done inprobe() : if this probe would drive some other sensitive device crazy. The
probe routines are ordered with consideration of the "sensitive" flag: the sensitive devices get probed first and the rest
of devices later. But theidentify() routines are called before any probes, so they show no respect to the sensitive
devices and may upset them.

Now, after we got the starting port we need to set the port count (except for PnP devices) because the kernel does not
have this information in the configuration file.

if(pnperror /* only for non-PnP devices */
&& bus_set_resource(dev, SYS_RES_IOPORT, 0, sc->port0,
XXX_PORT_COUNT)<0)

131

Chapter 19. ISA device drivers

return ENXIO;

Finally allocate and activate a piece of port address space (special values of start and end mean "use those we set by
bus_set_resource() "):

sc->port0_rid = 0;
sc->port0_r = bus_alloc_resource(dev, SYS_RES_IOPORT,
&sc->port0_rid,

/*start*/ 0, /*end*/ ~0, /*count*/ 0, RF_ACTIVE);

if(sc->port0_r == NULL)
return ENXIO;

Now having access to the port-mapped registers we can poke the device in some way and check if it reacts like it is
expected to. If it does not then there is probably some other device or no device at all at this address.

Normally drivers don’t set up the interrupt handlers until the attach routine. Instead they do probes in the polling
mode using theDELAY() function for timeout. The probe routine must never hang forever, all the waits for the
device must be done with timeouts. If the device does not respond within the time it’s probably broken or
misconfigured and the driver must return error. When determining the timeout interval give the device some extra
time to be on the safe side: althoughDELAY() is supposed to delay for the same amount of time on any machine it
has some margin of error, depending on the exact CPU.

If the probe routine really wants to check that the interrupts really work it may configure and probe the interrupts too.
But that’s not recommended.

/* implemented in some very device-specific way */
if(error = xxx_probe_ports(sc))

goto bad; /* will deallocate the resources before returning */

The fucntionxxx_probe_ports() may also set the device description depending on the exact model of device it
discovers. But if there is only one supported device model this can be as well done in a hardcoded way. Of course,
for the PnP devices the PnP support sets the description from the table automatically.

if(pnperror)
device_set_desc(dev, "Our device model 1234");

Then the probe routine should either discover the ranges of all the resources by reading the device configuration
registers or make sure that they were set explicitly by the user. We will consider it with an example of on-board
memory. The probe routine should be as non-intrusive as possible, so allocation and check of functionality of the rest
of resources (besides the ports) would be better left to the attach routine.

132

Chapter 19. ISA device drivers

The memory address may be specified in the kernel configuration file or on some devices it may be pre-configured in
non-volatile configuration registers. If both sources are available and different, which one should be used? Probably
if the user bothered to set the address explicitly in the kernel configuration file they know what they’re doing and this
one should take precedence. An example of implementation could be:

/* try to find out the config address first */
sc->mem0_p = bus_get_resource_start(dev, SYS_RES_MEMORY, 0 /*rid*/);
if(sc->mem0_p == 0) { /* nope, not specified by user */

sc->mem0_p = xxx_read_mem0_from_device_config(sc);

if(sc->mem0_p == 0)
/* can’t get it from device config registers either */
goto bad;

} else {
if(xxx_set_mem0_address_on_device(sc) < 0)

goto bad; /* device does not support that address */
}

/* just like the port, set the memory size,
* for some devices the memory size would not be constant
* but should be read from the device configuration registers instead
* to accommodate different models of devices. Another option would
* be to let the user set the memory size as "msize" configuration
* resource which will be automatically handled by the ISA bus.
*/
if(pnperror) { /* only for non-PnP devices */

sc->mem0_size = bus_get_resource_count(dev, SYS_RES_MEMORY, 0 /*rid*/);
if(sc->mem0_size == 0) /* not specified by user */

sc->mem0_size = xxx_read_mem0_size_from_device_config(sc);

if(sc->mem0_size == 0) {
/* suppose this is a very old model of device without

* auto-configuration features and the user gave no preference,
* so assume the minimalistic case
* (of course, the real value will vary with the driver)
*/

sc->mem0_size = 8*1024;
}

if(xxx_set_mem0_size_on_device(sc) < 0)
goto bad; /* device does not support that size */

if(bus_set_resource(dev, SYS_RES_MEMORY, /*rid*/0,

133

Chapter 19. ISA device drivers

sc->mem0_p, sc->mem0_size) <0)
goto bad;

} else {
sc->mem0_size = bus_get_resource_count(dev, SYS_RES_MEMORY, 0 /*rid*/);

}

Resources for IRQ and DRQ are easy to check by analogy.

If all went well then release all the resources and return success.

xxx_free_resources(sc);
return 0;

Finally, handle the troublesome situations. All the resources should be deallocated before returning. We make use of
the fact that before the structure softc is passed to us it gets zeroed out, so we can find out if some resource was
allocated: then its descriptor is non-zero.

bad:

xxx_free_resources(sc);
if(error)

return error;
else /* exact error is unknown */

return ENXIO;

That would be all for the probe routine. Freeing of resources is done from multiple places, so it’s moved to a function
which may look like:

static void
xxx_free_resources(sc)

struct xxx_softc *sc;
{

/* check every resource and free if not zero */

/* interrupt handler */
if(sc->intr_r) {

bus_teardown_intr(sc->dev, sc->intr_r, sc->intr_cookie);
bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,

sc->intr_r);
sc->intr_r = 0;

}

/* all kinds of memory maps we could have allocated */
if(sc->data_p) {

bus_dmamap_unload(sc->data_tag, sc->data_map);

134

Chapter 19. ISA device drivers

sc->data_p = 0;
}

if(sc->data) { /* sc->data_map may be legitimately equal to 0 */
/* the map will also be freed */
bus_dmamem_free(sc->data_tag, sc->data, sc->data_map);
sc->data = 0;

}
if(sc->data_tag) {

bus_dma_tag_destroy(sc->data_tag);
sc->data_tag = 0;

}

... free other maps and tags if we have them ...

if(sc->parent_tag) {
bus_dma_tag_destroy(sc->parent_tag);
sc->parent_tag = 0;

}

/* release all the bus resources */
if(sc->mem0_r) {

bus_release_resource(sc->dev, SYS_RES_MEMORY, sc->mem0_rid,
sc->mem0_r);

sc->mem0_r = 0;
}
...
if(sc->port0_r) {

bus_release_resource(sc->dev, SYS_RES_IOPORT, sc->port0_rid,
sc->port0_r);

sc->port0_r = 0;
}

}

19.9. xxx_isa_attach
The attach routine actually connects the driver to the system if the probe routine returned success and the system had
chosen to attach that driver. If the probe routine returned 0 then the attach routine may expect to receive the device
structure softc intact, as it was set by the probe routine. Also if the probe routine returns 0 it may expect that the
attach routine for this device shall be called at some point in the future. If the probe routine returns a negative value
then the driver may make none of these assumptions.

The attach routine returns 0 if it completed successfully or error code otherwise.

135

Chapter 19. ISA device drivers

The attach routine starts just like the probe routine, with getting some frequently used data into more accessible
variables.

struct xxx_softc *sc = device_get_softc(dev);
int unit = device_get_unit(dev);
int error = 0;

Then allocate and activate all the necessary resources. Because normally the port range will be released before
returning from probe, it has to be allocated again. We expect that the probe routine had properly set all the resource
ranges, as well as saved them in the structure softc. If the probe routine had left some resource allocated then it does
not need to be allocated again (which would be considered an error).

sc->port0_rid = 0;
sc->port0_r = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port0_rid,

/*start*/ 0, /*end*/ ~0, /*count*/ 0, RF_ACTIVE);

if(sc->port0_r == NULL)
return ENXIO;

/* on-board memory */
sc->mem0_rid = 0;
sc->mem0_r = bus_alloc_resource(dev, SYS_RES_MEMORY, &sc->mem0_rid,

/*start*/ 0, /*end*/ ~0, /*count*/ 0, RF_ACTIVE);

if(sc->mem0_r == NULL)
goto bad;

/* get its virtual address */
sc->mem0_v = rman_get_virtual(sc->mem0_r);

The DMA request channel (DRQ) is allocated likewise. To initialize it use functions of theisa_dma*() family. For
example:

isa_dmacascade(sc->drq0);

The interrupt request line (IRQ) is a bit special. Besides allocation the driver’s interrupt handler should be associated
with it. Historically in the old ISA drivers the argument passed by the system to the interrupt handler was the device
unit number. But in modern drivers the convention suggests passing the pointer to structure softc. The important
reason is that when the structures softc are allocated dynamically then getting the unit number from softc is easy
while getting softc from unit number is difficult. Also this convention makes the drivers for different buses look more
uniform and allows them to share the code: each bus gets its own probe, attach, detach and other bus-specific routines
while the bulk of the driver code may be shared among them.

sc->intr_rid = 0;
sc->intr_r = bus_alloc_resource(dev, SYS_RES_MEMORY, &sc->intr_rid,

136

Chapter 19. ISA device drivers

/*start*/ 0, /*end*/ ~0, /*count*/ 0, RF_ACTIVE);

if(sc->intr_r == NULL)
goto bad;

/*
* XXX_INTR_TYPE is supposed to be defined depending on the type of
* the driver, for example as INTR_TYPE_CAM for a CAM driver
*/

error = bus_setup_intr(dev, sc->intr_r, XXX_INTR_TYPE,
(driver_intr_t *) xxx_intr, (void *) sc, &sc->intr_cookie);

if(error)
goto bad;

If the device needs to make DMA to the main memory then this memory should be allocated like described before:

error=bus_dma_tag_create(NULL, /*alignment*/ 4,
/*boundary*/ 0, /*lowaddr*/ BUS_SPACE_MAXADDR_24BIT,
/*highaddr*/ BUS_SPACE_MAXADDR, /*filter*/ NULL, /*filterarg*/ NULL,
/*maxsize*/ BUS_SPACE_MAXSIZE_24BIT,
/*nsegments*/ BUS_SPACE_UNRESTRICTED,
/*maxsegsz*/ BUS_SPACE_MAXSIZE_24BIT, /*flags*/ 0,
&sc->parent_tag);

if(error)
goto bad;

/* many things get inherited from the parent tag
* sc->data is supposed to point to the structure with the shared data,
* for example for a ring buffer it could be:
* struct {
* u_short rd_pos;
* u_short wr_pos;
* char bf[XXX_RING_BUFFER_SIZE]
* } *data;
*/

error=bus_dma_tag_create(sc->parent_tag, 1,
0, BUS_SPACE_MAXADDR, 0, /*filter*/ NULL, /*filterarg*/ NULL,
/*maxsize*/ sizeof(* sc->data), /*nsegments*/ 1,
/*maxsegsz*/ sizeof(* sc->data), /*flags*/ 0,
&sc->data_tag);

if(error)
goto bad;

137

Chapter 19. ISA device drivers

error = bus_dmamem_alloc(sc->data_tag, &sc->data, /* flags*/ 0,
&sc->data_map);

if(error)
goto bad;

/* xxx_alloc_callback() just saves the physical address at
* the pointer passed as its argument, in this case &sc->data_p.
* See details in the section on bus memory mapping.
* It can be implemented like:
*
* static void
* xxx_alloc_callback(void *arg, bus_dma_segment_t *seg,
* int nseg, int error)
* {
* *(bus_addr_t *)arg = seg[0].ds_addr;
* }
*/

bus_dmamap_load(sc->data_tag, sc->data_map, (void *)sc->data,
sizeof (* sc->data), xxx_alloc_callback, (void *) &sc->data_p,
/*flags*/0);

After all the necessary resources are allocated the device should be initialized. The initialization may include testing
that all the expected features are functional.

if(xxx_initialize(sc) < 0)
goto bad;

The bus subsystem will automatically print on the console the device description set by probe. But if the driver wants
to print some extra information about the device it may do so, for example:

device_printf(dev, "has on-card FIFO buffer of %d bytes\n", sc->fifosize);

If the initialization routine experiences any problems then printing messages about them before returning error is also
recommended.

The final step of the attach routine is attaching the device to its functional subsystem in the kernel. The exact way to
do it depends on the type of the driver: a character device, a block device, a network device, a CAM SCSI bus device
and so on.

If all went well then return success.

error = xxx_attach_subsystem(sc);
if(error)

goto bad;

138

Chapter 19. ISA device drivers

return 0;

Finally, handle the troublesome situations. All the resources should be deallocated before returning an error. We
make use of the fact that before the structure softc is passed to us it gets zeroed out, so we can find out if some
resource was allocated: then its descriptor is non-zero.

bad:

xxx_free_resources(sc);
if(error)

return error;
else /* exact error is unknown */

return ENXIO;

That would be all for the attach routine.

19.10. xxx_isa_detach
If this function is present in the driver and the driver is compiled as a loadable module then the driver gets the ability
to be unloaded. This is an important feature if the hardware supports hot plug. But the ISA bus does not support hot
plug, so this feature is not particularly important for the ISA devices. The ability to unload a driver may be useful
when debugging it, but in many cases installation of the new version of the driver would be required only after the
old version somehow wedges the system and reboot will be needed anyway, so the efforts spent on writing the detach
routine may not be worth it. Another argument is that unloading would allow upgrading the drivers on a production
machine seems to be mostly theoretical. Installing a new version of a driver is a dangerous operation which should
never be performed on a production machine (and which is not permitted when the system is running in secure
mode). Still the detach routine may be provided for the sake of completeness.

The detach routine returns 0 if the driver was successfully detached or the error code otherwise.

The logic of detach is a mirror of the attach. The first thing to do is to detach the driver from its kernel subsystem. If
the device is currently open then the driver has two choices: refuse to be detached or forcibly close and proceed with
detach. The choice used depends on the ability of the particular kernel subsystem to do a forced close and on the
preferences of the driver’s author. Generally the forced close seems to be the preferred alternative.

struct xxx_softc *sc = device_get_softc(dev);
int error;

error = xxx_detach_subsystem(sc);
if(error)

return error;

139

Chapter 19. ISA device drivers

Next the driver may want to reset the hardware to some consistent state. That includes stopping any ongoing
transfers, disabling the DMA channels and interrupts to avoid memory corruption by the device. For most of the
drivers this is exactly what the shutdown routine does, so if it is included in the driver we can as well just call it.

xxx_isa_shutdown(dev);

And finally release all the resources and return success.

xxx_free_resources(sc);
return 0;

19.11. xxx_isa_shutdown
This routine is called when the system is about to be shut down. It is expected to bring the hardware to some
consistent state. For most of the ISA devices no special action is required, so the function is not really necessary
because the device will be re-initialized on reboot anyway. But some devices have to be shut down with a special
procedure, to make sure that they will be properly detected after soft reboot (this is especially true for many devices
with proprietary identification protocols). In any case disabling DMA and interrupts in the device registers and
stopping any ongoing transfers is a good idea. The exact action depends on the hardware, so we don’t consider it here
in any details.

xxx_intr

The interrupt handler is called when an interrupt is received which may be from this particular device. The ISA bus
does not support interrupt sharing (except some special cases) so in practice if the interrupt handler is called then the
interrupt almost for sure came from its device. Still the interrupt handler must poll the device registers and make sure
that the interrupt was generated by its device. If not it should just return.

The old convention for the ISA drivers was getting the device unit number as an argument. It is obsolete, and the new
drivers receive whatever argument was specified for them in the attach routine when callingbus_setup_intr() .
By the new convention it should be the pointer to the structure softc. So the interrupt handler commonly starts as:

static void
xxx_intr(struct xxx_softc *sc)
{

It runs at the interrupt priority level specified by the interrupt type parameter ofbus_setup_intr() . That means
that all the other interrupts of the same type as well as all the software interrupts are disabled.

140

Chapter 19. ISA device drivers

To avoid races it is commonly written as a loop:

while(xxx_interrupt_pending(sc)) {
xxx_process_interrupt(sc);
xxx_acknowledge_interrupt(sc);

}

The interrupt handler has to acknowledge interrupt to the device only but not to the interrupt controller, the system
takes care of the latter.

141

Chapter 20. PCI Devices
This chapter will talk about the FreeBSD mechanisms for writing a device driver for a device on a PCI bus.

20.1. Probe and Attach
Information here about how the PCI bus code iterates through the unattached devices and see if a newly loaded kld
will attach to any of them.

/*
* Simple KLD to play with the PCI functions.
*
* Murray Stokely
*/

#define MIN(a,b) (((a) < (b)) ? (a) : (b))

#include <sys/types.h >

#include <sys/module.h >

#include <sys/systm.h > /* uprintf */
#include <sys/errno.h >

#include <sys/param.h > /* defines used in kernel.h */
#include <sys/kernel.h > /* types used in module initialization */
#include <sys/conf.h > /* cdevsw struct */
#include <sys/uio.h > /* uio struct */
#include <sys/malloc.h >

#include <sys/bus.h > /* structs, prototypes for pci bus stuff */

#include <pci/pcivar.h > /* For get_pci macros! */

/* Function prototypes */
d_open_t mypci_open;
d_close_t mypci_close;
d_read_t mypci_read;
d_write_t mypci_write;

/* Character device entry points */

static struct cdevsw mypci_cdevsw = {
mypci_open,
mypci_close,
mypci_read,

142

Chapter 20. PCI Devices

mypci_write,
noioctl,
nopoll,
nommap,
nostrategy,
"mypci",
36, /* reserved for lkms - /usr/src/sys/conf/majors */
nodump,
nopsize,
D_TTY,
-1

};

/* vars */
static dev_t sdev;

/* We’re more interested in probe/attach than with
open/close/read/write at this point */

int
mypci_open(dev_t dev, int oflags, int devtype, struct proc *p)
{

int err = 0;

uprintf("Opened device \"mypci\" successfully.\n");
return(err);

}

int
mypci_close(dev_t dev, int fflag, int devtype, struct proc *p)
{

int err=0;

uprintf("Closing device \"mypci.\"\n");
return(err);

}

int
mypci_read(dev_t dev, struct uio *uio, int ioflag)
{

int err = 0;

uprintf("mypci read!\n");
return err;

}

143

Chapter 20. PCI Devices

int
mypci_write(dev_t dev, struct uio *uio, int ioflag)
{

int err = 0;

uprintf("mypci write!\n");
return(err);

}

/* PCI Support Functions */

/*
* Return identification string if this is device is ours.
*/

static int
mypci_probe(device_t dev)
{

uprintf("MyPCI Probe\n"
"Vendor ID : 0x%x\n"
"Device ID : 0x%x\n",pci_get_vendor(dev),pci_get_device(dev));

if (pci_get_vendor(dev) == 0x11c1) {
uprintf("We’ve got the Winmodem, probe successful!\n");
return 0;

}

return ENXIO;
}

/* Attach function is only called if the probe is successful */

static int
mypci_attach(device_t dev)
{

uprintf("MyPCI Attach for : deviceID : 0x%x\n",pci_get_vendor(dev));
sdev = make_dev(&mypci_cdevsw,

0,
UID_ROOT,
GID_WHEEL,
0600,
"mypci");

uprintf("Mypci device loaded.\n");
return ENXIO;

}

144

Chapter 20. PCI Devices

/* Detach device. */

static int
mypci_detach(device_t dev)
{

uprintf("Mypci detach!\n");
return 0;

}

/* Called during system shutdown after sync. */

static int
mypci_shutdown(device_t dev)
{

uprintf("Mypci shutdown!\n");
return 0;

}

/*
* Device suspend routine.
*/

static int
mypci_suspend(device_t dev)
{

uprintf("Mypci suspend!\n");
return 0;

}

/*
* Device resume routine.
*/

static int
mypci_resume(device_t dev)
{

uprintf("Mypci resume!\n");
return 0;

}

static device_method_t mypci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mypci_probe),
DEVMETHOD(device_attach, mypci_attach),
DEVMETHOD(device_detach, mypci_detach),

145

Chapter 20. PCI Devices

DEVMETHOD(device_shutdown, mypci_shutdown),
DEVMETHOD(device_suspend, mypci_suspend),
DEVMETHOD(device_resume, mypci_resume),

{ 0, 0 }
};

static driver_t mypci_driver = {
"mypci",
mypci_methods,
0,
/* sizeof(struct mypci_softc), */

};

static devclass_t mypci_devclass;

DRIVER_MODULE(mypci, pci, mypci_driver, mypci_devclass, 0, 0);

Additional Resources

• PCI Special Interest Group (http://www.pcisig.org)

• PCI System Architecture, Fourth Edition by Tom Shanley, et al.

20.2. Bus Resources
FreeBSD provides an object-oriented mechanism for requesting resources from a parent bus. Almost all devices will
be a child member of some sort of bus (PCI, ISA, USB, SCSI, etc) and these devices need to acquire resources from
their parent bus (such as memory segments, interrupt lines, or DMA channels).

20.2.1. Base Address Registers
To do anything particularly useful with a PCI device you will need to obtain theBase Address Registers(BARs) from
the PCI Configuration space. The PCI-specific details of obtaining the BAR is abstracted in the
bus_alloc_resource() function.

For example, a typical driver might have something similar to this in theattach() function. :

sc->bar0id = 0x10;

146

Chapter 20. PCI Devices

sc->bar0res = bus_alloc_resource(dev, SYS_RES_MEMORY, &(sc->bar0id),
0, ~0, 1, RF_ACTIVE);

if (sc->bar0res == NULL) {
uprintf("Memory allocation of PCI base register 0 failed!\n");
error = ENXIO;
goto fail1;

}

sc->bar1id = 0x14;
sc->bar1res = bus_alloc_resource(dev, SYS_RES_MEMORY, &(sc->bar1id),

0, ~0, 1, RF_ACTIVE);
if (sc->bar1res == NULL) {

uprintf("Memory allocation of PCI base register 1 failed!\n");
error = ENXIO;
goto fail2;

}
sc->bar0_bt = rman_get_bustag(sc->bar0res);
sc->bar0_bh = rman_get_bushandle(sc->bar0res);
sc->bar1_bt = rman_get_bustag(sc->bar1res);
sc->bar1_bh = rman_get_bushandle(sc->bar1res);

Handles for each base address register are kept in the softc structure so that they can be used to write to the device
later.

These handles can then be used to read or write from the device registers with thebus_space_* functions. For
example, a driver might contain a shorthand function to read from a board specific register like this :

uint16_t
board_read(struct ni_softc *sc, uint16_t address) {

return bus_space_read_2(sc->bar1_bt, sc->bar1_bh, address);
}

Similarly, one could write to the registers with :

void
board_write(struct ni_softc *sc, uint16_t address, uint16_t value) {

bus_space_write_2(sc->bar1_bt, sc->bar1_bh, address, value);
}

These functions exist in 8bit, 16bit, and 32bit versions and you should usebus_space_{read|write}_{1|2|4}

accordingly.

147

Chapter 20. PCI Devices

20.2.2. Interrupts
Interrupts are allocated from the object-oriented bus code in a way similar to the memory resources. First an IRQ
resource must be allocated from the parent bus, and then the interrupt handler must be setup to deal with this IRQ.

Again, a sample from a deviceattach() function says more than words.

/* Get the IRQ resource */

sc->irqid = 0x0;
sc->irqres = bus_alloc_resource(dev, SYS_RES_IRQ, &(sc->irqid),

0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
if (sc->irqres == NULL) {

uprintf("IRQ allocation failed!\n");
error = ENXIO;
goto fail3;

}

/* Now we should setup the interrupt handler */

error = bus_setup_intr(dev, sc->irqres, INTR_TYPE_MISC,
my_handler, sc, &(sc->handler));
if (error) {

printf("Couldn’t set up irq\n");
goto fail4;

}

sc->irq_bt = rman_get_bustag(sc->irqres);
sc->irq_bh = rman_get_bushandle(sc->irqres);

20.2.3. DMA
On the PC, peripherals that want to do bus-mastering DMA must deal with physical addresses. This is a problem
since FreeBSD uses virtual memory and deals almost exclusively with virtual addresses. Fortunately, there is a
function,vtophys() to help.

#include <vm/vm.h >

#include <vm/pmap.h >

#define vtophys(virtual_address) (...)

The solution is a bit different on the alpha however, and what we really want is a function calledvtobus() .

#if defined(__alpha__)

148

Chapter 20. PCI Devices

#define vtobus(va) alpha_XXX_dmamap((vm_offset_t)va)
#else
#define vtobus(va) vtophys(va)
#endif

20.2.4. Deallocating Resources
It’s very important to deallocate all of the resources that were allocated duringattach() . Care must be taken to
deallocate the correct stuff even on a failure condition so that the system will remain useable while your driver dies.

149

Chapter 21. Common Access Method SCSI
Controllers
This chapter was written by Sergey Babkin <babkin@FreeBSD.org > Modifications for the handbook made by
Murray Stokely <murray@FreeBSD.org >.

21.1. Synopsis
This document assumes that the reader has a general understanding of device drivers in FreeBSD and of the SCSI
protocol. Much of the information in this document was extracted from the drivers :

• ncr (/sys/pci/ncr.c) by Wolfgang Stanglmeier and Stefan Esser

• sym (/sys/pci/sym.c) by Gerard Roudier

• aic7xxx (/sys/dev/aic7xxx/aic7xxx.c) by Justin T. Gibbs

and from the CAM code itself (by Justing T. Gibbs, see/sys/cam/*). When some solution looked the most logical
and was essentially verbatim extracted from the code by Justin Gibbs, I marked it as "recommended".

The document is illustrated with examples in pseudo-code. Although sometimes the examples have many details and
look like real code, it’s still pseudo-code. It was written to demonstrate the concepts in an understandable way. For a
real driver other approaches may be more modular and efficient. It also abstracts from the hardware details, as well as
issues that would cloud the demonstrated concepts or that are supposed to be described in the other chapters of the
developers handbook. Such details are commonly shown as calls to functions with descriptive names, comments or
pseudo-statements. Fortunately real life full-size examples with all the details can be found in the real drivers.

21.2. General architecture
CAM stands for Common Access Method. It’s a generic way to address the I/O buses in a SCSI-like way. This
allows a separation of the generic device drivers from the drivers controlling the I/O bus: for example the disk driver
becomes able to control disks on both SCSI, IDE, and/or any other bus so the disk driver portion does not have to be
rewritten (or copied and modified) for every new I/O bus. Thus the two most important active entities are:

• Peripheral Modules- a driver for peripheral devices (disk, tape, CDROM, etc.)

• SCSI Interface Modules(SIM) - a Host Bus Adapter drivers for connecting to an I/O bus such as SCSI or IDE.

150

Chapter 21. Common Access Method SCSI Controllers

A peripheral driver receives requests from the OS, converts them to a sequence of SCSI commands and passes these
SCSI commands to a SCSI Interface Module. The SCSI Interface Module is responsible for passing these commands
to the actual hardware (or if the actual hardware is not SCSI but, for example, IDE then also converting the SCSI
commands to the native commands of the hardware).

Because we are interested in writing a SCSI adapter driver here, from this point on we will consider everything from
the SIM standpoint.

A typical SIM driver needs to include the following CAM-related header files:

#include <cam/cam.h >

#include <cam/cam_ccb.h >

#include <cam/cam_sim.h >

#include <cam/cam_xpt_sim.h >

#include <cam/cam_debug.h >

#include <cam/scsi/scsi_all.h >

The first thing each SIM driver must do is register itself with the CAM subsystem. This is done during the driver’s
xxx_attach() function (here and further xxx_ is used to denote the unique driver name prefix). The
xxx_attach() function itself is called by the system bus auto-configuration code which we don’t describe here.

This is achieved in multiple steps: first it’s necessary to allocate the queue of requests associated with this SIM:

struct cam_devq *devq;

if((devq = cam_simq_alloc(SIZE))==NULL) {
error; /* some code to handle the error */

}

Here SIZE is the size of the queue to be allocated, maximal number of requests it could contain. It’s the number of
requests that the SIM driver can handle in parallel on one SCSI card. Commonly it can be calculated as:

SIZE = NUMBER_OF_SUPPORTED_TARGETS * MAX_SIMULTANEOUS_COMMANDS_PER_TARGET

Next we create a descriptor of our SIM:

struct cam_sim *sim;

if((sim = cam_sim_alloc(action_func, poll_func, driver_name,
softc, unit, max_dev_transactions,
max_tagged_dev_transactions, devq))==NULL) {

cam_simq_free(devq);
error; /* some code to handle the error */

}

151

Chapter 21. Common Access Method SCSI Controllers

Note that if we are not able to create a SIM descriptor we free the devq also because we can do nothing else with it
and we want to conserve memory.

If a SCSI card has multiple SCSI buses on it then each bus requires its own cam_sim structure.

An interesting question is what to do if a SCSI card has more than one SCSI bus, do we need one devq structure per
card or per SCSI bus? The answer given in the comments to the CAM code is: either way, as the driver’s author
prefers.

The arguments are :

• action_func - pointer to the driver’sxxx_action function.

static void xxx_action (struct cam_sim *sim , union ccb *ccb);

• poll_func - pointer to the driver’sxxx_poll()

static void xxx_poll (struct cam_sim *sim);

• driver_name - the name of the actual driver, such as "ncr" or "wds"

• softc - pointer to the driver’s internal descriptor for this SCSI card. This pointer will be used by the driver in future
to get private data.

• unit - the controller unit number, for example for controller "wds0" this number will be 0

• max_dev_transactions - maximal number of simultaneous transactions per SCSI target in the non-tagged mode.
This value will be almost universally equal to 1, with possible exceptions only for the non-SCSI cards. Also the
drivers that hope to take advantage by preparing one transaction while another one is executed may set it to 2 but
this does not seem to be worth the complexity.

• max_tagged_dev_transactions - the same thing, but in the tagged mode. Tags are the SCSI way to initiate multiple
transactions on a device: each transaction is assigned a unique tag and the transaction is sent to the device. When
the device completes some transaction it sends back the result together with the tag so that the SCSI adapter (and
the driver) can tell which transaction was completed. This argument is also known as the maximal tag depth. It
depends on the abilities of the SCSI adapter.

Finally we register the SCSI buses associated with our SCSI adapter:

if(xpt_bus_register(sim, bus_number) != CAM_SUCCESS) {
cam_sim_free(sim, /*free_devq*/ TRUE);
error; /* some code to handle the error */

152

Chapter 21. Common Access Method SCSI Controllers

}

If there is one devq structure per SCSI bus (i.e. we consider a card with multiple buses as multiple cards with one bus
each) then the bus number will always be 0, otherwise each bus on the SCSI card should be get a distinct number.
Each bus needs its own separate structure cam_sim.

After that our controller is completely hooked to the CAM system. The value of devq can be discarded now: sim will
be passed as an argument in all further calls from CAM and devq can be derived from it.

CAM provides the framework for such asynchronous events. Some events originate from the lower levels (the SIM
drivers), some events originate from the peripheral drivers, some events originate from the CAM subsystem itself.
Any driver can register callbacks for some types of the asynchronous events, so that it would be notified if these
events occur.

A typical example of such an event is a device reset. Each transaction and event identifies the devices to which it
applies by the means of "path". The target-specific events normally occur during a transaction with this device. So
the path from that transaction may be re-used to report this event (this is safe because the event path is copied in the
event reporting routine but not deallocated nor passed anywhere further). Also it’s safe to allocate paths dynamically
at any time including the interrupt routines, although that incurs certain overhead, and a possible problem with this
approach is that there may be no free memory at that time. For a bus reset event we need to define a wildcard path
including all devices on the bus. So we can create the path for the future bus reset events in advance and avoid
problems with the future memory shortage:

struct cam_path *path;

if(xpt_create_path(&path, /*periph*/NULL,
cam_sim_path(sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {

xpt_bus_deregister(cam_sim_path(sim));
cam_sim_free(sim, /*free_devq*/TRUE);
error; /* some code to handle the error */

}

softc->wpath = path;
softc->sim = sim;

As you can see the path includes:

• ID of the peripheral driver (NULL here because we have none)

• ID of the SIM driver (cam_sim_path(sim))

• SCSI target number of the device (CAM_TARGET_WILDCARD means "all devices")

• SCSI LUN number of the subdevice (CAM_LUN_WILDCARD means "all LUNs")

153

Chapter 21. Common Access Method SCSI Controllers

If the driver can’t allocate this path it won’t be able to work normally, so in that case we dismantle that SCSI bus.

And we save the path pointer in the softc structure for future use. After that we save the value of sim (or we can also
discard it on the exit fromxxx_probe() if we wish).

That’s all for a minimalistic initialization. To do things right there is one more issue left.

For a SIM driver there is one particularly interesting event: when a target device is considered lost. In this case
resetting the SCSI negotiations with this device may be a good idea. So we register a callback for this event with
CAM. The request is passed to CAM by requesting CAM action on a CAM control block for this type of request:

struct ccb_setasync csa;

xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = xxx_async;
csa.callback_arg = sim;
xpt_action((union ccb *)&csa);

Now we take a look at thexxx_action() andxxx_poll() driver entry points.

static void xxx_action (struct cam_sim *sim , union ccb *ccb);

Do some action on request of the CAM subsystem. Sim describes the SIM for the request, CCB is the request itself.
CCB stands for "CAM Control Block". It is a union of many specific instances, each describing arguments for some
type of transactions. All of these instances share the CCB header where the common part of arguments is stored.

CAM supports the SCSI controllers working in both initiator ("normal") mode and target (simulating a SCSI device)
mode. Here we only consider the part relevant to the initiator mode.

There are a few function and macros (in other words, methods) defined to access the public data in the struct sim:

• cam_sim_path(sim) - the path ID (see above)

• cam_sim_name(sim) - the name of the sim

• cam_sim_softc(sim) - the pointer to the softc (driver private data) structure

• cam_sim_unit(sim) - the unit number

• cam_sim_bus(sim) - the bus ID

To identify the device,xxx_action() can get the unit number and pointer to its structure softc using these
functions.

154

Chapter 21. Common Access Method SCSI Controllers

The type of request is stored inccb- >ccb_h.func_code . So generallyxxx_action() consists of a big switch:

struct xxx_softc *softc = (struct xxx_softc *) cam_sim_softc(sim);
struct ccb_hdr *ccb_h = &ccb->ccb_h;
int unit = cam_sim_unit(sim);
int bus = cam_sim_bus(sim);

switch(ccb_h->func_code) {
case ...:

...
default:

ccb_h->status = CAM_REQ_INVALID;
xpt_done(ccb);
break;

}

As can be seen from the default case (if an unknown command was received) the return code of the command is set
into ccb- >ccb_h.status and the completed CCB is returned back to CAM by callingxpt_done(ccb) .

xpt_done() does not have to be called fromxxx_action() : For example an I/O request may be enqueued inside
the SIM driver and/or its SCSI controller. Then when the device would post an interrupt signaling that the processing
of this request is completexpt_done() may be called from the interrupt handling routine.

Actually, the CCB status is not only assigned as a return code but a CCB has some status all the time. Before CCB is
passed to thexxx_action() routine it gets the status CCB_REQ_INPROG meaning that it’s in progress. There are
a surprising number of status values defined in/sys/cam/cam.h which should be able to represent the status of a
request in great detail. More interesting yet, the status is in fact a "bitwise or" of an enumerated status value (the
lower 6 bits) and possible additional flag-like bits (the upper bits). The enumerated values will be discussed later in
more detail. The summary of them can be found in the Errors Summary section. The possible status flags are:

• CAM_DEV_QFRZN- if the SIM driver gets a serious error (for example, the device does not respond to the
selection or breaks the SCSI protocol) when processing a CCB it should freeze the request queue by calling
xpt_freeze_simq() , return the other enqueued but not processed yet CCBs for this device back to the CAM
queue, then set this flag for the troublesome CCB and callxpt_done() . This flag causes the CAM subsystem to
unfreeze the queue after it handles the error.

• CAM_AUTOSNS_VALID- if the device returned an error condition and the flag CAM_DIS_AUTOSENSE is not
set in CCB the SIM driver must execute the REQUEST SENSE command automatically to extract the sense
(extended error information) data from the device. If this attempt was successful the sense data should be saved in
the CCB and this flag set.

• CAM_RELEASE_SIMQ- like CAM_DEV_QFRZN but used in case there is some problem (or resource shortage)
with the SCSI controller itself. Then all the future requests to the controller should be stopped by

155

Chapter 21. Common Access Method SCSI Controllers

xpt_freeze_simq() . The controller queue will be restarted after the SIM driver overcomes the shortage and
informs CAM by returning some CCB with this flag set.

• CAM_SIM_QUEUED- when SIM puts a CCB into its request queue this flag should be set (and removed when
this CCB gets dequeued before being returned back to CAM). This flag is not used anywhere in the CAM code
now, so its purpose is purely diagnostic.

The functionxxx_action() is not allowed to sleep, so all the synchronization for resource access must be done
using SIM or device queue freezing. Besides the aforementioned flags the CAM subsystem provides functions
xpt_selease_simq() andxpt_release_devq() to unfreeze the queues directly, without passing a CCB to
CAM.

The CCB header contains the following fields:

• path- path ID for the request

• target_id- target device ID for the request

• target_lun- LUN ID of the target device

• timeout- timeout interval for this command, in milliseconds

• timeout_ch- a convenience place for the SIM driver to store the timeout handle (the CAM subsystem itself does
not make any assumptions about it)

• flags- various bits of information about the request spriv_ptr0, spriv_ptr1 - fields reserved for private use by the
SIM driver (such as linking to the SIM queues or SIM private control blocks); actually, they exist as unions:
spriv_ptr0 and spriv_ptr1 have the type (void *), spriv_field0 and spriv_field1 have the type unsigned long,
sim_priv.entries[0].bytes and sim_priv.entries[1].bytes are byte arrays of the size consistent with the other
incarnations of the union and sim_priv.bytes is one array, twice bigger.

The recommended way of using the SIM private fields of CCB is to define some meaningful names for them and use
these meaningful names in the driver, like:

#define ccb_some_meaningful_name sim_priv.entries[0].bytes
#define ccb_hcb spriv_ptr1 /* for hardware control block */

The most common initiator mode requests are:

• XPT_SCSI_IO- execute an I/O transaction

The instance "struct ccb_scsiio csio" of the union ccb is used to transfer the arguments. They are:

• cdb_io- pointer to the SCSI command buffer or the buffer itself

• cdb_len- SCSI command length

• data_ptr- pointer to the data buffer (gets a bit complicated if scatter/gather is used)

156

Chapter 21. Common Access Method SCSI Controllers

• dxfer_len- length of the data to transfer

• sglist_cnt- counter of the scatter/gather segments

• scsi_status- place to return the SCSI status

• sense_data- buffer for the SCSI sense information if the command returns an error (the SIM driver is supposed
to run the REQUEST SENSE command automatically in this case if the CCB flag CAM_DIS_AUTOSENSE is
not set)

• sense_len- the length of that buffer (if it happens to be higher than size of sense_data the SIM driver must
silently assume the smaller value) resid, sense_resid - if the transfer of data or SCSI sense returned an error
these are the returned counters of the residual (not transferred) data. They do not seem to be especially
meaningful, so in a case when they are difficult to compute (say, counting bytes in the SCSI controller’s FIFO
buffer) an approximate value will do as well. For a successfully completed transfer they must be set to zero.

• tag_action- the kind of tag to use:

• CAM_TAG_ACTION_NONE - don’t use tags for this transaction

• MSG_SIMPLE_Q_TAG, MSG_HEAD_OF_Q_TAG, MSG_ORDERED_Q_TAG - value equal to the
appropriate tag message (see /sys/cam/scsi/scsi_message.h); this gives only the tag type, the SIM driver must
assign the tag value itself

The general logic of handling this request is the following:

The first thing to do is to check for possible races, to make sure that the command did not get aborted when it was
sitting in the queue:

struct ccb_scsiio *csio = &ccb->csio;

if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
xpt_done(ccb);
return;

}

Also we check that the device is supported at all by our controller:

if(ccb_h->target_id > OUR_MAX_SUPPORTED_TARGET_ID
|| cch_h->target_id == OUR_SCSI_CONTROLLERS_OWN_ID) {

ccb_h->status = CAM_TID_INVALID;
xpt_done(ccb);
return;

}
if(ccb_h->target_lun > OUR_MAX_SUPPORTED_LUN) {

ccb_h->status = CAM_LUN_INVALID;
xpt_done(ccb);
return;

}

157

Chapter 21. Common Access Method SCSI Controllers

Then allocate whatever data structures (such as card-dependent hardware control block) we need to process this
request. If we can’t then freeze the SIM queue and remember that we have a pending operation, return the CCB
back and ask CAM to re-queue it. Later when the resources become available the SIM queue must be unfrozen by
returning a ccb with the CAM_SIMQ_RELEASE bit set in its status. Otherwise, if all went well, link the CCB
with the hardware control block (HCB) and mark it as queued.

struct xxx_hcb *hcb = allocate_hcb(softc, unit, bus);

if(hcb == NULL) {
softc->flags |= RESOURCE_SHORTAGE;
xpt_freeze_simq(sim, /*count*/1);
ccb_h->status = CAM_REQUEUE_REQ;
xpt_done(ccb);
return;

}

hcb->ccb = ccb; ccb_h->ccb_hcb = (void *)hcb;
ccb_h->status |= CAM_SIM_QUEUED;

Extract the target data from CCB into the hardware control block. Check if we are asked to assign a tag and if yes
then generate an unique tag and build the SCSI tag messages. The SIM driver is also responsible for negotiations
with the devices to set the maximal mutually supported bus width, synchronous rate and offset.

hcb->target = ccb_h->target_id; hcb->lun = ccb_h->target_lun;
generate_identify_message(hcb);
if(ccb_h->tag_action != CAM_TAG_ACTION_NONE)

generate_unique_tag_message(hcb, ccb_h->tag_action);
if(!target_negotiated(hcb))

generate_negotiation_messages(hcb);

Then set up the SCSI command. The command storage may be specified in the CCB in many interesting ways,
specified by the CCB flags. The command buffer can be contained in CCB or pointed to, in the latter case the
pointer may be physical or virtual. Since the hardware commonly needs physical address we always convert the
address to the physical one.

A NOT-QUITE RELATED NOTE: Normally this is done by a call to vtophys(), but for the PCI device (which
account for most of the SCSI controllers now) drivers’ portability to the Alpha architecture the conversion must be
done by vtobus() instead due to special Alpha quirks. [IMHO it would be much better to have two separate
functions, vtop() and ptobus() then vtobus() would be a simple superposition of them.] In case if a physical
address is requested it’s OK to return the CCB with the status CAM_REQ_INVALID, the current drivers do that.
But it’s also possible to compile the Alpha-specific piece of code, as in this example (there should be a more direct
way to do that, without conditional compilation in the drivers). If necessary a physical address can be also
converted or mapped back to a virtual address but with big pain, so we don’t do that.

if(ccb_h->flags & CAM_CDB_POINTER) {
/* CDB is a pointer */

158

Chapter 21. Common Access Method SCSI Controllers

if(!(ccb_h->flags & CAM_CDB_PHYS)) {
/* CDB pointer is virtual */
hcb->cmd = vtobus(csio->cdb_io.cdb_ptr);

} else {
/* CDB pointer is physical */

#if defined(__alpha__)
hcb->cmd = csio->cdb_io.cdb_ptr | alpha_XXX_dmamap_or ;

#else
hcb->cmd = csio->cdb_io.cdb_ptr ;

#endif
}

} else {
/* CDB is in the ccb (buffer) */
hcb->cmd = vtobus(csio->cdb_io.cdb_bytes);

}
hcb->cmdlen = csio->cdb_len;

Now it’s time to set up the data. Again, the data storage may be specified in the CCB in many interesting ways,
specified by the CCB flags. First we get the direction of the data transfer. The simplest case is if there is no data to
transfer:

int dir = (ccb_h->flags & CAM_DIR_MASK);

if (dir == CAM_DIR_NONE)
goto end_data;

Then we check if the data is in one chunk or in a scatter-gather list, and the addresses are physical or virtual. The
SCSI controller may be able to handle only a limited number of chunks of limited length. If the request hits this
limitation we return an error. We use a special function to return the CCB to handle in one place the HCB resource
shortages. The functions to add chunks are driver-dependent, and here we leave them without detailed
implementation. See description of the SCSI command (CDB) handling for the details on the address-translation
issues. If some variation is too difficult or impossible to implement with a particular card it’s OK to return the
status CAM_REQ_INVALID. Actually, it seems like the scatter-gather ability is not used anywhere in the CAM
code now. But at least the case for a single non-scattered virtual buffer must be implemented, it’s actively used by
CAM.

int rv;

initialize_hcb_for_data(hcb);

if((!(ccb_h->flags & CAM_SCATTER_VALID)) {
/* single buffer */
if(!(ccb_h->flags & CAM_DATA_PHYS)) {

rv = add_virtual_chunk(hcb, csio->data_ptr, csio->dxfer_len, dir);
}

} else {

159

Chapter 21. Common Access Method SCSI Controllers

rv = add_physical_chunk(hcb, csio->data_ptr, csio->dxfer_len, dir);
}

} else {
int i;
struct bus_dma_segment *segs;
segs = (struct bus_dma_segment *)csio->data_ptr;

if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
/* The SG list pointer is physical */
rv = setup_hcb_for_physical_sg_list(hcb, segs, csio->sglist_cnt);

} else if (!(ccb_h->flags & CAM_DATA_PHYS)) {
/* SG buffer pointers are virtual */
for (i = 0; i < csio->sglist_cnt; i++) {

rv = add_virtual_chunk(hcb, segs[i].ds_addr,
segs[i].ds_len, dir);

if (rv != CAM_REQ_CMP)
break;

}
} else {

/* SG buffer pointers are physical */
for (i = 0; i < csio->sglist_cnt; i++) {

rv = add_physical_chunk(hcb, segs[i].ds_addr,
segs[i].ds_len, dir);

if (rv != CAM_REQ_CMP)
break;

}
}

}
if(rv != CAM_REQ_CMP) {

/* we expect that add_*_chunk() functions return CAM_REQ_CMP
* if they added a chunk successfully, CAM_REQ_TOO_BIG if
* the request is too big (too many bytes or too many chunks),
* CAM_REQ_INVALID in case of other troubles
*/

free_hcb_and_ccb_done(hcb, ccb, rv);
return;

}
end_data:

If disconnection is disabled for this CCB we pass this information to the hcb:

if(ccb_h->flags & CAM_DIS_DISCONNECT)
hcb_disable_disconnect(hcb);

160

Chapter 21. Common Access Method SCSI Controllers

If the controller is able to run REQUEST SENSE command all by itself then the value of the flag
CAM_DIS_AUTOSENSE should also be passed to it, to prevent automatic REQUEST SENSE if the CAM
subsystem does not want it.

The only thing left is to set up the timeout, pass our hcb to the hardware and return, the rest will be done by the
interrupt handler (or timeout handler).

ccb_h->timeout_ch = timeout(xxx_timeout, (caddr_t) hcb,
(ccb_h->timeout * hz) / 1000); /* convert milliseconds to ticks */

put_hcb_into_hardware_queue(hcb);
return;

And here is a possible implementation of the function returning CCB:

static void
free_hcb_and_ccb_done(struct xxx_hcb *hcb, union ccb *ccb, u_int32_t status)
{

struct xxx_softc *softc = hcb->softc;

ccb->ccb_h.ccb_hcb = 0;
if(hcb != NULL) {

untimeout(xxx_timeout, (caddr_t) hcb, ccb->ccb_h.timeout_ch);
/* we’re about to free a hcb, so the shortage has ended */
if(softc->flags & RESOURCE_SHORTAGE) {

softc->flags &= ~RESOURCE_SHORTAGE;
status |= CAM_RELEASE_SIMQ;

}
free_hcb(hcb); /* also removes hcb from any internal lists */

}
ccb->ccb_h.status = status |

(ccb->ccb_h.status & ~(CAM_STATUS_MASK|CAM_SIM_QUEUED));
xpt_done(ccb);

}

• XPT_RESET_DEV- send the SCSI "BUS DEVICE RESET" message to a device

There is no data transferred in CCB except the header and the most interesting argument of it is target_id.
Depending on the controller hardware a hardware control block just like for the XPT_SCSI_IO request may be
constructed (see XPT_SCSI_IO request description) and sent to the controller or the SCSI controller may be
immediately programmed to send this RESET message to the device or this request may be just not supported (and
return the status CAM_REQ_INVALID). Also on completion of the request all the disconnected transactions for
this target must be aborted (probably in the interrupt routine).

Also all the current negotiations for the target are lost on reset, so they might be cleaned too. Or they clearing may
be deferred, because anyway the target would request re-negotiation on the next transaction.

161

Chapter 21. Common Access Method SCSI Controllers

• XPT_RESET_BUS- send the RESET signal to the SCSI bus

No arguments are passed in the CCB, the only interesting argument is the SCSI bus indicated by the struct sim
pointer.

A minimalistic implementation would forget the SCSI negotiations for all the devices on the bus and return the
status CAM_REQ_CMP.

The proper implementation would in addition actually reset the SCSI bus (possible also reset the SCSI controller)
and mark all the CCBs being processed, both those in the hardware queue and those being disconnected, as done
with the status CAM_SCSI_BUS_RESET. Like:

int targ, lun;
struct xxx_hcb *h, *hh;
struct ccb_trans_settings neg;
struct cam_path *path;

/* The SCSI bus reset may take a long time, in this case its completion
* should be checked by interrupt or timeout. But for simplicity
* we assume here that it’s really fast.
*/

reset_scsi_bus(softc);

/* drop all enqueued CCBs */
for(h = softc->first_queued_hcb; h != NULL; h = hh) {

hh = h->next;
free_hcb_and_ccb_done(h, h->ccb, CAM_SCSI_BUS_RESET);

}

/* the clean values of negotiations to report */
neg.bus_width = 8;
neg.sync_period = neg.sync_offset = 0;
neg.valid = (CCB_TRANS_BUS_WIDTH_VALID

| CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID);

/* drop all disconnected CCBs and clean negotiations */
for(targ=0; targ <= OUR_MAX_SUPPORTED_TARGET; targ++) {

clean_negotiations(softc, targ);

/* report the event if possible */
if(xpt_create_path(&path, /*periph*/NULL,

cam_sim_path(sim), targ,
CAM_LUN_WILDCARD) == CAM_REQ_CMP) {

xpt_async(AC_TRANSFER_NEG, path, &neg);
xpt_free_path(path);

162

Chapter 21. Common Access Method SCSI Controllers

}

for(lun=0; lun <= OUR_MAX_SUPPORTED_LUN; lun++)
for(h = softc->first_discon_hcb[targ][lun]; h != NULL; h = hh) {

hh=h->next;
free_hcb_and_ccb_done(h, h->ccb, CAM_SCSI_BUS_RESET);

}
}

ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);

/* report the event */
xpt_async(AC_BUS_RESET, softc->wpath, NULL);
return;

Implementing the SCSI bus reset as a function may be a good idea because it would be re-used by the timeout
function as a last resort if the things go wrong.

• XPT_ABORT- abort the specified CCB

The arguments are transferred in the instance "struct ccb_abort cab" of the union ccb. The only argument field in it
is:

abort_ccb- pointer to the CCB to be aborted

If the abort is not supported just return the status CAM_UA_ABORT. This is also the easy way to minimally
implement this call, return CAM_UA_ABORT in any case.

The hard way is to implement this request honestly. First check that abort applies to a SCSI transaction:

struct ccb *abort_ccb;
abort_ccb = ccb->cab.abort_ccb;

if(abort_ccb->ccb_h.func_code != XPT_SCSI_IO) {
ccb->ccb_h.status = CAM_UA_ABORT;
xpt_done(ccb);
return;

}

Then it’s necessary to find this CCB in our queue. This can be done by walking the list of all our hardware control
blocks in search for one associated with this CCB:

struct xxx_hcb *hcb, *h;

hcb = NULL;

163

Chapter 21. Common Access Method SCSI Controllers

/* We assume that softc->first_hcb is the head of the list of all
* HCBs associated with this bus, including those enqueued for
* processing, being processed by hardware and disconnected ones.
*/

for(h = softc->first_hcb; h != NULL; h = h->next) {
if(h->ccb == abort_ccb) {

hcb = h;
break;

}
}

if(hcb == NULL) {
/* no such CCB in our queue */
ccb->ccb_h.status = CAM_PATH_INVALID;
xpt_done(ccb);
return;

}

hcb=found_hcb;

Now we look at the current processing status of the HCB. It may be either sitting in the queue waiting to be sent to
the SCSI bus, being transferred right now, or disconnected and waiting for the result of the command, or actually
completed by hardware but not yet marked as done by software. To make sure that we don’t get in any races with
hardware we mark the HCB as being aborted, so that if this HCB is about to be sent to the SCSI bus the SCSI
controller will see this flag and skip it.

int hstatus;

/* shown as a function, in case special action is needed to make
* this flag visible to hardware
*/

set_hcb_flags(hcb, HCB_BEING_ABORTED);

abort_again:

hstatus = get_hcb_status(hcb);
switch(hstatus) {
case HCB_SITTING_IN_QUEUE:

remove_hcb_from_hardware_queue(hcb);
/* FALLTHROUGH */

case HCB_COMPLETED:
/* this is an easy case */
free_hcb_and_ccb_done(hcb, abort_ccb, CAM_REQ_ABORTED);
break;

164

Chapter 21. Common Access Method SCSI Controllers

If the CCB is being transferred right now we would like to signal to the SCSI controller in some
hardware-dependent way that we want to abort the current transfer. The SCSI controller would set the SCSI
ATTENTION signal and when the target responds to it send an ABORT message. We also reset the timeout to
make sure that the target is not sleeping forever. If the command would not get aborted in some reasonable time
like 10 seconds the timeout routine would go ahead and reset the whole SCSI bus. Because the command will be
aborted in some reasonable time we can just return the abort request now as successfully completed, and mark the
aborted CCB as aborted (but not mark it as done yet).

case HCB_BEING_TRANSFERRED:
untimeout(xxx_timeout, (caddr_t) hcb, abort_ccb->ccb_h.timeout_ch);
abort_ccb->ccb_h.timeout_ch =

timeout(xxx_timeout, (caddr_t) hcb, 10 * hz);
abort_ccb->ccb_h.status = CAM_REQ_ABORTED;
/* ask the controller to abort that HCB, then generate

* an interrupt and stop
*/

if(signal_hardware_to_abort_hcb_and_stop(hcb) < 0) {
/* oops, we missed the race with hardware, this transaction

* got off the bus before we aborted it, try again */
goto abort_again;

}

break;

If the CCB is in the list of disconnected then set it up as an abort request and re-queue it at the front of hardware
queue. Reset the timeout and report the abort request to be completed.

case HCB_DISCONNECTED:
untimeout(xxx_timeout, (caddr_t) hcb, abort_ccb->ccb_h.timeout_ch);
abort_ccb->ccb_h.timeout_ch =

timeout(xxx_timeout, (caddr_t) hcb, 10 * hz);
put_abort_message_into_hcb(hcb);
put_hcb_at_the_front_of_hardware_queue(hcb);
break;

}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;

That’s all for the ABORT request, although there is one more issue. Because the ABORT message cleans all the
ongoing transactions on a LUN we have to mark all the other active transactions on this LUN as aborted. That
should be done in the interrupt routine, after the transaction gets aborted.

Implementing the CCB abort as a function may be quite a good idea, this function can be re-used if an I/O
transaction times out. The only difference would be that the timed out transaction would return the status
CAM_CMD_TIMEOUT for the timed out request. Then the case XPT_ABORT would be small, like that:

165

Chapter 21. Common Access Method SCSI Controllers

case XPT_ABORT:
struct ccb *abort_ccb;
abort_ccb = ccb->cab.abort_ccb;

if(abort_ccb->ccb_h.func_code != XPT_SCSI_IO) {
ccb->ccb_h.status = CAM_UA_ABORT;
xpt_done(ccb);
return;

}
if(xxx_abort_ccb(abort_ccb, CAM_REQ_ABORTED) < 0)

/* no such CCB in our queue */
ccb->ccb_h.status = CAM_PATH_INVALID;

else
ccb->ccb_h.status = CAM_REQ_CMP;

xpt_done(ccb);
return;

• XPT_SET_TRAN_SETTINGS- explicitly set values of SCSI transfer settings

The arguments are transferred in the instance "struct ccb_trans_setting cts" of the union ccb:

• valid - a bitmask showing which settings should be updated:

• CCB_TRANS_SYNC_RATE_VALID- synchronous transfer rate

• CCB_TRANS_SYNC_OFFSET_VALID- synchronous offset

• CCB_TRANS_BUS_WIDTH_VALID- bus width

• CCB_TRANS_DISC_VALID- set enable/disable disconnection

• CCB_TRANS_TQ_VALID- set enable/disable tagged queuing

• flags- consists of two parts, binary arguments and identification of sub-operations. The binary arguments are :

• CCB_TRANS_DISC_ENB- enable disconnection

• CCB_TRANS_TAG_ENB- enable tagged queuing

• the sub-operations are:

• CCB_TRANS_CURRENT_SETTINGS- change the current negotiations

• CCB_TRANS_USER_SETTINGS- remember the desired user values sync_period, sync_offset -
self-explanatory, if sync_offset==0 then the asynchronous mode is requested bus_width - bus width, in bits
(not bytes)

166

Chapter 21. Common Access Method SCSI Controllers

Two sets of negotiated parameters are supported, the user settings and the current settings. The user settings are
not really used much in the SIM drivers, this is mostly just a piece of memory where the upper levels can store
(and later recall) its ideas about the parameters. Setting the user parameters does not cause re-negotiation of the
transfer rates. But when the SCSI controller does a negotiation it must never set the values higher than the user
parameters, so it’s essentially the top boundary.

The current settings are, as the name says, current. Changing them means that the parameters must be
re-negotiated on the next transfer. Again, these "new current settings" are not supposed to be forced on the device,
just they are used as the initial step of negotiations. Also they must be limited by actual capabilities of the SCSI
controller: for example, if the SCSI controller has 8-bit bus and the request asks to set 16-bit wide transfers this
parameter must be silently truncated to 8-bit transfers before sending it to the device.

One caveat is that the bus width and synchronous parameters are per target while the disconnection and tag
enabling parameters are per lun.

The recommended implementation is to keep 3 sets of negotiated (bus width and synchronous transfer) parameters:

• user- the user set, as above

• current- those actually in effect

• goal - those requested by setting of the "current" parameters

The code looks like:

struct ccb_trans_settings *cts;
int targ, lun;
int flags;

cts = &ccb->cts;
targ = ccb_h->target_id;
lun = ccb_h->target_lun;
flags = cts->flags;
if(flags & CCB_TRANS_USER_SETTINGS) {

if(flags & CCB_TRANS_SYNC_RATE_VALID)
softc->user_sync_period[targ] = cts->sync_period;

if(flags & CCB_TRANS_SYNC_OFFSET_VALID)
softc->user_sync_offset[targ] = cts->sync_offset;

if(flags & CCB_TRANS_BUS_WIDTH_VALID)
softc->user_bus_width[targ] = cts->bus_width;

if(flags & CCB_TRANS_DISC_VALID) {
softc->user_tflags[targ][lun] &= ~CCB_TRANS_DISC_ENB;
softc->user_tflags[targ][lun] |= flags & CCB_TRANS_DISC_ENB;

}
if(flags & CCB_TRANS_TQ_VALID) {

softc->user_tflags[targ][lun] &= ~CCB_TRANS_TQ_ENB;

167

Chapter 21. Common Access Method SCSI Controllers

softc->user_tflags[targ][lun] |= flags & CCB_TRANS_TQ_ENB;
}

}
if(flags & CCB_TRANS_CURRENT_SETTINGS) {

if(flags & CCB_TRANS_SYNC_RATE_VALID)
softc->goal_sync_period[targ] =

max(cts->sync_period, OUR_MIN_SUPPORTED_PERIOD);
if(flags & CCB_TRANS_SYNC_OFFSET_VALID)

softc->goal_sync_offset[targ] =
min(cts->sync_offset, OUR_MAX_SUPPORTED_OFFSET);

if(flags & CCB_TRANS_BUS_WIDTH_VALID)
softc->goal_bus_width[targ] = min(cts->bus_width, OUR_BUS_WIDTH);

if(flags & CCB_TRANS_DISC_VALID) {
softc->current_tflags[targ][lun] &= ~CCB_TRANS_DISC_ENB;
softc->current_tflags[targ][lun] |= flags & CCB_TRANS_DISC_ENB;

}
if(flags & CCB_TRANS_TQ_VALID) {

softc->current_tflags[targ][lun] &= ~CCB_TRANS_TQ_ENB;
softc->current_tflags[targ][lun] |= flags & CCB_TRANS_TQ_ENB;

}
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;

Then when the next I/O request will be processed it will check if it has to re-negotiate, for example by calling the
function target_negotiated(hcb). It can be implemented like this:

int
target_negotiated(struct xxx_hcb *hcb)
{

struct softc *softc = hcb->softc;
int targ = hcb->targ;

if(softc->current_sync_period[targ] != softc->goal_sync_period[targ]
|| softc->current_sync_offset[targ] != softc->goal_sync_offset[targ]
|| softc->current_bus_width[targ] != softc->goal_bus_width[targ])

return 0; /* FALSE */
else

return 1; /* TRUE */
}

After the values are re-negotiated the resulting values must be assigned to both current and goal parameters, so for
future I/O transactions the current and goal parameters would be the same andtarget_negotiated() would
return TRUE. When the card is initialized (inxxx_attach()) the current negotiation values must be initialized to

168

Chapter 21. Common Access Method SCSI Controllers

narrow asynchronous mode, the goal and current values must be initialized to the maximal values supported by
controller.

• XPT_GET_TRAN_SETTINGS- get values of SCSI transfer settings

This operations is the reverse of XPT_SET_TRAN_SETTINGS. Fill up the CCB instance "struct
ccb_trans_setting cts" with data as requested by the flags CCB_TRANS_CURRENT_SETTINGS or
CCB_TRANS_USER_SETTINGS (if both are set then the existing drivers return the current settings). Set all the
bits in the valid field.

• XPT_CALC_GEOMETRY- calculate logical (BIOS) geometry of the disk

The arguments are transferred in the instance "struct ccb_calc_geometry ccg" of the union ccb:

• block_size- input, block (A.K.A sector) size in bytes

• volume_size- input, volume size in bytes

• cylinders- output, logical cylinders

• heads- output, logical heads

• secs_per_track- output, logical sectors per track

If the returned geometry differs much enough from what the SCSI controller BIOS thinks and a disk on this SCSI
controller is used as bootable the system may not be able to boot. The typical calculation example taken from the
aic7xxx driver is:

struct ccb_calc_geometry *ccg;
u_int32_t size_mb;
u_int32_t secs_per_cylinder;
int extended;

ccg = &ccb->ccg;
size_mb = ccg->volume_size

/ ((1024L * 1024L) / ccg->block_size);
extended = check_cards_EEPROM_for_extended_geometry(softc);

if (size_mb > 1024 && extended) {
ccg->heads = 255;
ccg->secs_per_track = 63;

} else {
ccg->heads = 64;
ccg->secs_per_track = 32;

}

169

Chapter 21. Common Access Method SCSI Controllers

secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;

This gives the general idea, the exact calculation depends on the quirks of the particular BIOS. If BIOS provides
no way set the "extended translation" flag in EEPROM this flag should normally be assumed equal to 1. Other
popular geometries are:

128 heads, 63 sectors - Symbios controllers
16 heads, 63 sectors - old controllers

Some system BIOSes and SCSI BIOSes fight with each other with variable success, for example a combination of
Symbios 875/895 SCSI and Phoenix BIOS can give geometry 128/63 after power up and 255/63 after a hard reset
or soft reboot.

• XPT_PATH_INQ- path inquiry, in other words get the SIM driver and SCSI controller (also known as HBA - Host
Bus Adapter) properties

The properties are returned in the instance "struct ccb_pathinq cpi" of the union ccb:

• version_num - the SIM driver version number, now all drivers use 1

• hba_inquiry - bitmask of features supported by the controller:

• PI_MDP_ABLE - supports MDP message (something from SCSI3?)

• PI_WIDE_32 - supports 32 bit wide SCSI

• PI_WIDE_16 - supports 16 bit wide SCSI

• PI_SDTR_ABLE - can negotiate synchronous transfer rate

• PI_LINKED_CDB - supports linked commands

• PI_TAG_ABLE - supports tagged commands

• PI_SOFT_RST - supports soft reset alternative (hard reset and soft reset are mutually exclusive within a SCSI
bus)

• target_sprt - flags for target mode support, 0 if unsupported

• hba_misc - miscellaneous controller features:

• PIM_SCANHILO - bus scans from high ID to low ID

• PIM_NOREMOVE - removable devices not included in scan

• PIM_NOINITIATOR - initiator role not supported

170

Chapter 21. Common Access Method SCSI Controllers

• PIM_NOBUSRESET - user has disabled initial BUS RESET

• hba_eng_cnt - mysterious HBA engine count, something related to compression, now is always set to 0

• vuhba_flags - vendor-unique flags, unused now

• max_target - maximal supported target ID (7 for 8-bit bus, 15 for 16-bit bus, 127 for Fibre Channel)

• max_lun - maximal supported LUN ID (7 for older SCSI controllers, 63 for newer ones)

• async_flags - bitmask of installed Async handler, unused now

• hpath_id - highest Path ID in the subsystem, unused now

• unit_number - the controller unit number, cam_sim_unit(sim)

• bus_id - the bus number, cam_sim_bus(sim)

• initiator_id - the SCSI ID of the controller itself

• base_transfer_speed - nominal transfer speed in KB/s for asynchronous narrow transfers, equals to 3300 for
SCSI

• sim_vid - SIM driver’s vendor id, a zero-terminated string of maximal length SIM_IDLEN including the
terminating zero

• hba_vid - SCSI controller’s vendor id, a zero-terminated string of maximal length HBA_IDLEN including the
terminating zero

• dev_name - device driver name, a zero-terminated string of maximal length DEV_IDLEN including the
terminating zero, equal to cam_sim_name(sim)

The recommended way of setting the string fields is using strncpy, like:

strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);

After setting the values set the status to CAM_REQ_CMP and mark the CCB as done.

21.3. Polling

static void xxx_poll (struct cam_sim *sim);

The poll function is used to simulate the interrupts when the interrupt subsystem is not functioning (for example,
when the system has crashed and is creating the system dump). The CAM subsystem sets the proper interrupt level
before calling the poll routine. So all it needs to do is to call the interrupt routine (or the other way around, the poll

171

Chapter 21. Common Access Method SCSI Controllers

routine may be doing the real action and the interrupt routine would just call the poll routine). Why bother about a
separate function then ? Because of different calling conventions. Thexxx_poll routine gets the struct cam_sim
pointer as its argument when the PCI interrupt routine by common convention gets pointer to the struct xxx_softc
and the ISA interrupt routine gets just the the device unit number. So the poll routine would normally look as:

static void
xxx_poll(struct cam_sim *sim)
{

xxx_intr((struct xxx_softc *)cam_sim_softc(sim)); /* for PCI device */
}

or

static void
xxx_poll(struct cam_sim *sim)
{

xxx_intr(cam_sim_unit(sim)); /* for ISA device */
}

21.4. Asynchronous Events
If an asynchronous event callback has been set up then the callback function should be defined.

static void
ahc_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)

• callback_arg - the value supplied when registering the callback

• code - identifies the type of event

• path - identifies the devices to which the event applies

• arg - event-specific argument

Implementation for a single type of event, AC_LOST_DEVICE, looks like:

struct xxx_softc *softc;
struct cam_sim *sim;
int targ;
struct ccb_trans_settings neg;

sim = (struct cam_sim *)callback_arg;
softc = (struct xxx_softc *)cam_sim_softc(sim);

172

Chapter 21. Common Access Method SCSI Controllers

switch (code) {
case AC_LOST_DEVICE:

targ = xpt_path_target_id(path);
if(targ <= OUR_MAX_SUPPORTED_TARGET) {

clean_negotiations(softc, targ);
/* send indication to CAM */
neg.bus_width = 8;
neg.sync_period = neg.sync_offset = 0;
neg.valid = (CCB_TRANS_BUS_WIDTH_VALID

| CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID);
xpt_async(AC_TRANSFER_NEG, path, &neg);

}
break;

default:
break;

}

21.5. Interrupts
The exact type of the interrupt routine depends on the type of the peripheral bus (PCI, ISA and so on) to which the
SCSI controller is connected.

The interrupt routines of the SIM drivers run at the interrupt level splcam. Sosplcam() should be used in the driver
to synchronize activity between the interrupt routine and the rest of the driver (for a multiprocessor-aware driver
things get yet more interesting but we ignore this case here). The pseudo-code in this document happily ignores the
problems of synchronization. The real code must not ignore them. A simple-minded approach is to setsplcam() on
the entry to the other routines and reset it on return thus protecting them by one big critical section. To make sure that
the interrupt level will be always restored a wrapper function can be defined, like:

static void
xxx_action(struct cam_sim *sim, union ccb *ccb)
{

int s;
s = splcam();
xxx_action1(sim, ccb);
splx(s);

}

static void
xxx_action1(struct cam_sim *sim, union ccb *ccb)
{

... process the request ...

173

Chapter 21. Common Access Method SCSI Controllers

}

This approach is simple and robust but the problem with it is that interrupts may get blocked for a relatively long
time and this would negatively affect the system’s performance. On the other hand the functions of thespl() family
have rather high overhead, so vast amount of tiny critical sections may not be good either.

The conditions handled by the interrupt routine and the details depend very much on the hardware. We consider the
set of "typical" conditions.

First, we check if a SCSI reset was encountered on the bus (probably caused by another SCSI controller on the same
SCSI bus). If so we drop all the enqueued and disconnected requests, report the events and re-initialize our SCSI
controller. It is important that during this initialization the controller won’t issue another reset or else two controllers
on the same SCSI bus could ping-pong resets forever. The case of fatal controller error/hang could be handled in the
same place, but it will probably need also sending RESET signal to the SCSI bus to reset the status of the
connections with the SCSI devices.

int fatal=0;
struct ccb_trans_settings neg;
struct cam_path *path;

if(detected_scsi_reset(softc)
|| (fatal = detected_fatal_controller_error(softc))) {

int targ, lun;
struct xxx_hcb *h, *hh;

/* drop all enqueued CCBs */
for(h = softc->first_queued_hcb; h != NULL; h = hh) {

hh = h->next;
free_hcb_and_ccb_done(h, h->ccb, CAM_SCSI_BUS_RESET);

}

/* the clean values of negotiations to report */
neg.bus_width = 8;
neg.sync_period = neg.sync_offset = 0;
neg.valid = (CCB_TRANS_BUS_WIDTH_VALID

| CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID);

/* drop all disconnected CCBs and clean negotiations */
for(targ=0; targ <= OUR_MAX_SUPPORTED_TARGET; targ++) {

clean_negotiations(softc, targ);

/* report the event if possible */
if(xpt_create_path(&path, /*periph*/NULL,

cam_sim_path(sim), targ,
CAM_LUN_WILDCARD) == CAM_REQ_CMP) {

174

Chapter 21. Common Access Method SCSI Controllers

xpt_async(AC_TRANSFER_NEG, path, &neg);
xpt_free_path(path);

}

for(lun=0; lun <= OUR_MAX_SUPPORTED_LUN; lun++)
for(h = softc->first_discon_hcb[targ][lun]; h != NULL; h = hh) {

hh=h->next;
if(fatal)

free_hcb_and_ccb_done(h, h->ccb, CAM_UNREC_HBA_ERROR);
else

free_hcb_and_ccb_done(h, h->ccb, CAM_SCSI_BUS_RESET);
}

}

/* report the event */
xpt_async(AC_BUS_RESET, softc->wpath, NULL);

/* re-initialization may take a lot of time, in such case
* its completion should be signaled by another interrupt or
* checked on timeout - but for simplicity we assume here that
* it’s really fast
*/

if(!fatal) {
reinitialize_controller_without_scsi_reset(softc);

} else {
reinitialize_controller_with_scsi_reset(softc);

}
schedule_next_hcb(softc);
return;

}

If interrupt is not caused by a controller-wide condition then probably something has happened to the current
hardware control block. Depending on the hardware there may be other non-HCB-related events, we just do not
consider them here. Then we analyze what happened to this HCB:

struct xxx_hcb *hcb, *h, *hh;
int hcb_status, scsi_status;
int ccb_status;
int targ;
int lun_to_freeze;

hcb = get_current_hcb(softc);
if(hcb == NULL) {

/* either stray interrupt or something went very wrong
* or this is something hardware-dependent

175

Chapter 21. Common Access Method SCSI Controllers

*/
handle as necessary;
return;

}

targ = hcb->target;
hcb_status = get_status_of_current_hcb(softc);

First we check if the HCB has completed and if so we check the returned SCSI status.

if(hcb_status == COMPLETED) {
scsi_status = get_completion_status(hcb);

Then look if this status is related to the REQUEST SENSE command and if so handle it in a simple way.

if(hcb->flags & DOING_AUTOSENSE) {
if(scsi_status == GOOD) { /* autosense was successful */

hcb->ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
free_hcb_and_ccb_done(hcb, hcb->ccb, CAM_SCSI_STATUS_ERROR);

} else {
autosense_failed:

free_hcb_and_ccb_done(hcb, hcb->ccb, CAM_AUTOSENSE_FAIL);
}
schedule_next_hcb(softc);
return;

}

Else the command itself has completed, pay more attention to details. If auto-sense is not disabled for this CCB and
the command has failed with sense data then run REQUEST SENSE command to receive that data.

hcb->ccb->csio.scsi_status = scsi_status;
calculate_residue(hcb);

if((hcb->ccb->ccb_h.flags & CAM_DIS_AUTOSENSE)==0
&& (scsi_status == CHECK_CONDITION

|| scsi_status == COMMAND_TERMINATED)) {
/* start auto-SENSE */
hcb->flags |= DOING_AUTOSENSE;
setup_autosense_command_in_hcb(hcb);
restart_current_hcb(softc);
return;

}
if(scsi_status == GOOD)

free_hcb_and_ccb_done(hcb, hcb->ccb, CAM_REQ_CMP);
else

176

Chapter 21. Common Access Method SCSI Controllers

free_hcb_and_ccb_done(hcb, hcb->ccb, CAM_SCSI_STATUS_ERROR);
schedule_next_hcb(softc);
return;

}

One typical thing would be negotiation events: negotiation messages received from a SCSI target (in answer to our
negotiation attempt or by target’s initiative) or the target is unable to negotiate (rejects our negotiation messages or
does not answer them).

switch(hcb_status) {
case TARGET_REJECTED_WIDE_NEG:

/* revert to 8-bit bus */
softc->current_bus_width[targ] = softc->goal_bus_width[targ] = 8;
/* report the event */
neg.bus_width = 8;
neg.valid = CCB_TRANS_BUS_WIDTH_VALID;
xpt_async(AC_TRANSFER_NEG, hcb->ccb.ccb_h.path_id, &neg);
continue_current_hcb(softc);
return;

case TARGET_ANSWERED_WIDE_NEG:
{

int wd;

wd = get_target_bus_width_request(softc);
if(wd <= softc->goal_bus_width[targ]) {

/* answer is acceptable */
softc->current_bus_width[targ] =
softc->goal_bus_width[targ] = neg.bus_width = wd;

/* report the event */
neg.valid = CCB_TRANS_BUS_WIDTH_VALID;
xpt_async(AC_TRANSFER_NEG, hcb->ccb.ccb_h.path_id, &neg);

} else {
prepare_reject_message(hcb);

}
}
continue_current_hcb(softc);
return;

case TARGET_REQUESTED_WIDE_NEG:
{

int wd;

wd = get_target_bus_width_request(softc);
wd = min (wd, OUR_BUS_WIDTH);
wd = min (wd, softc->user_bus_width[targ]);

177

Chapter 21. Common Access Method SCSI Controllers

if(wd != softc->current_bus_width[targ]) {
/* the bus width has changed */
softc->current_bus_width[targ] =
softc->goal_bus_width[targ] = neg.bus_width = wd;

/* report the event */
neg.valid = CCB_TRANS_BUS_WIDTH_VALID;
xpt_async(AC_TRANSFER_NEG, hcb->ccb.ccb_h.path_id, &neg);

}
prepare_width_nego_rsponse(hcb, wd);

}
continue_current_hcb(softc);
return;

}

Then we handle any errors that could have happened during auto-sense in the same simple-minded way as before.
Otherwise we look closer at the details again.

if(hcb->flags & DOING_AUTOSENSE)
goto autosense_failed;

switch(hcb_status) {

The next event we consider is unexpected disconnect. Which is considered normal after an ABORT or BUS DEVICE
RESET message and abnormal in other cases.

case UNEXPECTED_DISCONNECT:
if(requested_abort(hcb)) {

/* abort affects all commands on that target+LUN, so
* mark all disconnected HCBs on that target+LUN as aborted too
*/

for(h = softc->first_discon_hcb[hcb->target][hcb->lun];
h != NULL; h = hh) {

hh=h->next;
free_hcb_and_ccb_done(h, h->ccb, CAM_REQ_ABORTED);

}
ccb_status = CAM_REQ_ABORTED;

} else if(requested_bus_device_reset(hcb)) {
int lun;

/* reset affects all commands on that target, so
* mark all disconnected HCBs on that target+LUN as reset
*/

178

Chapter 21. Common Access Method SCSI Controllers

for(lun=0; lun <= OUR_MAX_SUPPORTED_LUN; lun++)
for(h = softc->first_discon_hcb[hcb->target][lun];

h != NULL; h = hh) {
hh=h->next;
free_hcb_and_ccb_done(h, h->ccb, CAM_SCSI_BUS_RESET);

}

/* send event */
xpt_async(AC_SENT_BDR, hcb->ccb->ccb_h.path_id, NULL);

/* this was the CAM_RESET_DEV request itself, it’s completed */
ccb_status = CAM_REQ_CMP;

} else {
calculate_residue(hcb);
ccb_status = CAM_UNEXP_BUSFREE;
/* request the further code to freeze the queue */
hcb->ccb->ccb_h.status |= CAM_DEV_QFRZN;
lun_to_freeze = hcb->lun;

}
break;

If the target refuses to accept tags we notify CAM about that and return back all commands for this LUN:

case TAGS_REJECTED:
/* report the event */
neg.flags = 0 & ~CCB_TRANS_TAG_ENB;
neg.valid = CCB_TRANS_TQ_VALID;
xpt_async(AC_TRANSFER_NEG, hcb->ccb.ccb_h.path_id, &neg);

ccb_status = CAM_MSG_REJECT_REC;
/* request the further code to freeze the queue */
hcb->ccb->ccb_h.status |= CAM_DEV_QFRZN;
lun_to_freeze = hcb->lun;
break;

Then we check a number of other conditions, with processing basically limited to setting the CCB status:

case SELECTION_TIMEOUT:
ccb_status = CAM_SEL_TIMEOUT;
/* request the further code to freeze the queue */
hcb->ccb->ccb_h.status |= CAM_DEV_QFRZN;
lun_to_freeze = CAM_LUN_WILDCARD;
break;

case PARITY_ERROR:
ccb_status = CAM_UNCOR_PARITY;

179

Chapter 21. Common Access Method SCSI Controllers

break;
case DATA_OVERRUN:
case ODD_WIDE_TRANSFER:

ccb_status = CAM_DATA_RUN_ERR;
break;

default:
/* all other errors are handled in a generic way */
ccb_status = CAM_REQ_CMP_ERR;
/* request the further code to freeze the queue */
hcb->ccb->ccb_h.status |= CAM_DEV_QFRZN;
lun_to_freeze = CAM_LUN_WILDCARD;
break;

}

Then we check if the error was serious enough to freeze the input queue until it gets proceeded and do so if it is:

if(hcb->ccb->ccb_h.status & CAM_DEV_QFRZN) {
/* freeze the queue */
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);

/* re-queue all commands for this target/LUN back to CAM */

for(h = softc->first_queued_hcb; h != NULL; h = hh) {
hh = h->next;

if(targ == h->targ
&& (lun_to_freeze == CAM_LUN_WILDCARD || lun_to_freeze == h->lun))

free_hcb_and_ccb_done(h, h->ccb, CAM_REQUEUE_REQ);
}

}
free_hcb_and_ccb_done(hcb, hcb->ccb, ccb_status);
schedule_next_hcb(softc);
return;

This concludes the generic interrupt handling although specific controllers may require some additions.

21.6. Errors Summary
When executing an I/O request many things may go wrong. The reason of error can be reported in the CCB status
with great detail. Examples of use are spread throughout this document. For completeness here is the summary of
recommended responses for the typical error conditions:

180

Chapter 21. Common Access Method SCSI Controllers

• CAM_RESRC_UNAVAIL- some resource is temporarily unavailable and the SIM driver can not generate an event
when it will become available. An example of this resource would be some intra-controller hardware resource for
which the controller does not generate an interrupt when it becomes available.

• CAM_UNCOR_PARITY- unrecovered parity error occurred

• CAM_DATA_RUN_ERR- data overrun or unexpected data phase (going in other direction than specified in
CAM_DIR_MASK) or odd transfer length for wide transfer

• CAM_SEL_TIMEOUT- selection timeout occurred (target does not respond)

• CAM_CMD_TIMEOUT- command timeout occurred (the timeout function ran)

• CAM_SCSI_STATUS_ERROR- the device returned error

• CAM_AUTOSENSE_FAIL- the device returned error and the REQUEST SENSE COMMAND failed

• CAM_MSG_REJECT_REC- MESSAGE REJECT message was received

• CAM_SCSI_BUS_RESET- received SCSI bus reset

• CAM_REQ_CMP_ERR- "impossible" SCSI phase occurred or something else as weird or just a generic error if
further detail is not available

• CAM_UNEXP_BUSFREE- unexpected disconnect occurred

• CAM_BDR_SENT- BUS DEVICE RESET message was sent to the target

• CAM_UNREC_HBA_ERROR- unrecoverable Host Bus Adapter Error

• CAM_REQ_TOO_BIG- the request was too large for this controller

• CAM_REQUEUE_REQ- this request should be re-queued to preserve transaction ordering. This typically occurs
when the SIM recognizes an error that should freeze the queue and must place other queued requests for the target
at the sim level back into the XPT queue. Typical cases of such errors are selection timeouts, command timeouts
and other like conditions. In such cases the troublesome command returns the status indicating the error, the and
the other commands which have not be sent to the bus yet get re-queued.

• CAM_LUN_INVALID- the LUN ID in the request is not supported by the SCSI controller

• CAM_TID_INVALID- the target ID in the request is not supported by the SCSI controller

21.7. Timeout Handling
When the timeout for an HCB expires that request should be aborted, just like with an XPT_ABORT request. The
only difference is that the returned status of aborted request should be CAM_CMD_TIMEOUT instead of
CAM_REQ_ABORTED (that’s why implementation of the abort better be done as a function). But there is one more
possible problem: what if the abort request itself will get stuck? In this case the SCSI bus should be reset, just like
with an XPT_RESET_BUS request (and the idea about implementing it as a function called from both places applies

181

Chapter 21. Common Access Method SCSI Controllers

here too). Also we should reset the whole SCSI bus if a device reset request got stuck. So after all the timeout
function would look like:

static void
xxx_timeout(void *arg)
{

struct xxx_hcb *hcb = (struct xxx_hcb *)arg;
struct xxx_softc *softc;
struct ccb_hdr *ccb_h;

softc = hcb->softc;
ccb_h = &hcb->ccb->ccb_h;

if(hcb->flags & HCB_BEING_ABORTED
|| ccb_h->func_code == XPT_RESET_DEV) {

xxx_reset_bus(softc);
} else {

xxx_abort_ccb(hcb->ccb, CAM_CMD_TIMEOUT);
}

}

When we abort a request all the other disconnected requests to the same target/LUN get aborted too. So there appears
a question, should we return them with status CAM_REQ_ABORTED or CAM_CMD_TIMEOUT ? The current
drivers use CAM_CMD_TIMEOUT. This seems logical because if one request got timed out then probably
something really bad is happening to the device, so if they would not be disturbed they would time out by themselves.

182

Chapter 22. USB Devices
This chapter was written by Nick Hibma <n_hibma@FreeBSD.org >. Modifications made for the handbook by
Murray Stokely <murray@FreeBSD.org >.

22.1. Introduction
The Universal Serial Bus (USB) is a new way of attaching devices to personal computers. The bus architecture
features two-way communication and has been developed as a response to devices becoming smarter and requiring
more interaction with the host. USB support is included in all current PC chipsets and is therefore available in all
recently built PCs. Apple’s introduction of the USB-only iMac has been a major incentive for hardware
manufacturers to produce USB versions of their devices. The future PC specifications specify that all legacy
connectors on PCs should be replaced by one or more USB connectors, providing generic plug and play capabilities.
Support for USB hardware was available at a very early stage in NetBSD and was developed by Lennart Augustsson
for the NetBSD project. The code has been ported to FreeBSD and we are currently maintaining a shared code base.
For the implementation of the USB subsystem a number of features of USB are important.

Lennart Augustsson has done most of the implementation of the USB support for the NetBSD project. Many thanks
for this incredible amount of work. Many thanks also to Ardy and Dirk for their comments and proofreading of this
paper.

• Devices connect to ports on the computer directly or on devices called hubs, forming a treelike device structure.

• The devices can be connected and disconnected at run time.

• Devices can suspend themselves and trigger resumes of the host system

• As the devices can be powered from the bus, the host software has to keep track of power budgets for each hub.

• Different quality of service requirements by the different device types together with the maximum of 126 devices
that can be connected to the same bus, require proper scheduling of transfers on the shared bus to take full
advantage of the 12Mbps bandwidth available. (over 400Mbps with USB 2.0)

• Devices are intelligent and contain easily accessible information about themselves

The development of drivers for the USB subsystem and devices connected to it is supported by the specifications that
have been developed and will be developed. These specifications are publicly available from the USB home pages.
Apple has been very strong in pushing for standards based drivers, by making drivers for the generic classes
available in their operating system MacOS and discouraging the use of separate drivers for each new device. This
chapter tries to collate essential information for a basic understanding of the present implementation of the USB
stack in FreeBSD/NetBSD. It is recommended however to read it together with the relevant specifications mentioned
in the references below.

183

Chapter 22. USB Devices

22.1.1. Structure of the USB Stack
The USB support in FreeBSD can be split into three layers. The lowest layer contains the host controller driver,
providing a generic interface to the hardware and its scheduling facilities. It supports initialisation of the hardware,
scheduling of transfers and handling of completed and/or failed transfers. Each host controller driver implements a
virtual hub providing hardware independent access to the registers controlling the root ports on the back of the
machine.

The middle layer handles the device connection and disconnection, basic initialisation of the device, driver selection,
the communication channels (pipes) and does resource management. This services layer also controls the default
pipes and the device requests transferred over them.

The top layer contains the individual drivers supporting specific (classes of) devices. These drivers implement the
protocol that is used over the pipes other than the default pipe. They also implement additional functionality to make
the device available to other parts of the kernel oruserland. They use the USB driver interface (USBDI) exposed by
the services layer.

22.2. Host Controllers
The host controller (HC) controls the transmission of packets on the bus. Frames of 1 millisecond are used. At the
start of each frame the host controller generates a Start of Frame (SOF) packet.

The SOF packet is used to synchronise to the start of the frame and to keep track of the frame number. Within each
frame packets are transferred, either from host to device (out) or from device to host (in). Transfers are always
initiated by the host (polled transfers). Therefore there can only be one host per USB bus. Each transfer of a packet
has a status stage in which the recipient of the data can return either ACK (acknowledge reception), NAK (retry),
STALL (error condition) or nothing (garbled data stage, device not available or disconnected). Section 8.5 of the
USB specification (http://www.usb.org/developers/docs.html) explains the details of packets in more detail. Four
different types of transfers can occur on a USB bus: control, bulk, interrupt and isochronous. The types of transfers
and their characteristics are described below (‘Pipes’ subsection).

Large transfers between the device on the USB bus and the device driver are split up into multiple packets by the host
controller or the HC driver.

Device requests (control transfers) to the default endpoints are special. They consist of two or three phases: SETUP,
DATA (optional) and STATUS. The set-up packet is sent to the device. If there is a data phase, the direction of the
data packet(s) is given in the set-up packet. The direction in the status phase is the opposite of the direction during
the data phase, or IN if there was no data phase. The host controller hardware also provides registers with the current
status of the root ports and the changes that have occurred since the last reset of the status change register. Access to
these registers is provided through a virtualised hub as suggested in the USB specification [2]. Thevirtual hub must
comply with the hub device class given in chapter 11 of that specification. It must provide a default pipe through
which device requests can be sent to it. It returns the standard andhub class specific set of descriptors. It should also

184

Chapter 22. USB Devices

provide an interrupt pipe that reports changes happening at its ports. There are currently two specifications for host
controllers available: Universal Host Controller Interface (http://developer.intel.com/design/USB/UHCI11D.htm)
(UHCI; Intel) and Open Host Controller Interface (http://www.compaq.com/productinfo/development/openhci.html)
(OHCI; Compaq, Microsoft, National Semiconductor). The UHCI specification has been designed to reduce
hardware complexity byrequiring the host controller driver to supply a complete schedule of the transfers for each
frame. OHCI type controllers are much more independent by providing a more abstract interface doing alot of work
themselves.

22.2.1. UHCI
The UHCI host controller maintains a framelist with 1024 pointers to per frame data structures. It understands two
different data types: transfer descriptors (TD) and queue heads (QH). Each TD represents a packet to be
communicated to or from a device endpoint. QHs are a means to groupTDs (and QHs) together.

Each transfer consists of one or more packets. The UHCI driver splits large transfers into multiple packets. For every
transfer, apart from isochronous transfers, a QH is allocated. For every type of transfer these QHs are collected at a
QH for that type. Isochronous transfers have to be executed first because of the fixed latency requirement and are
directly referred to by the pointer in the framelist. The last isochronous TD refers to the QH for interrupt transfers for
that frame. All QHs for interrupt transfers point at the QH for control transfers, which in turn points at the QH for
bulk transfers. The following diagram gives a graphical overview of this:

This results in the following schedule being run in each frame. After fetching the pointer for the current frame from
the framelist the controller first executes the TDs for all the isochronous packets in that frame. The last of these TDs
refers to the QH for the interrupt transfers for thatframe. The host controller will then descend from that QH to the
QHs for the individual interrupt transfers. After finishing that queue, the QH for the interrupt transfers will refer the
controller to the QH for all control transfers. It will execute all the subqueues scheduled there, followed by all the
transfers queued at the bulk QH. To facilitate the handling of finished or failed transfers different types of interrupts
are generatedby the hardware at the end of each frame. In the last TD for a transfer the Interrupt-On Completion bit
is set by the HC driver to flag an interrupt when the transfer has completed. An error interrupt is flagged if a TD
reaches its maximum error count. If the short packet detect bit is set in a TD and less than the set packet length is
transferred this interrupt is flagged to notify the controller driver of the completed transfer. It is the host controller
driver’s task to find out which transfer has completed or produced an error. When called the interrupt service routine
will locate all the finished transfers and call their callbacks.

See for a more elaborate description the UHCI specification. (http://developer.intel.com/design/USB/UHCI11D.htm)

22.2.2. OHCI
Programming an OHCI host controller is much simpler. The controller assumes that a set of endpoints is available,
and is aware of scheduling priorities and the ordering of the types of transfers in a frame. The main data structure
used by the host controller is the endpoint descriptor (ED) to which aqueue of transfer descriptors (TDs) is attached.

185

Chapter 22. USB Devices

The ED contains the maximum packet size allowed for an endpoint and the controller hardware does the splitting
into packets. The pointers to the data buffers are updated after each transfer and when the start and end pointer are
equal, the TD is retired to the done-queue. The four types of endpoints have their own queues. Control and bulk
endpoints are queued each at their own queue. Interrupt EDs are queued in a tree, with the level in the tree defining
the frequency at which they run.

framelist interruptisochronous control bulk

The schedule being run by the host controller in each frame looks as follows. The controller will first run the
non-periodic control and bulk queues, up to a time limit set by the HC driver. Then the interrupt transfers for that
frame number are run, by using the lower five bits of the frame number as an index into level 0 of the tree of
interrupts EDs. At the end of this tree the isochronous EDs are connected and these are traversed subsequently. The
isochronous TDs contain the frame number of the first frame the transfer should be run in. After all the periodic
transfers have been run, the control and bulk queues are traversed again. Periodically the interrupt service routine is
called to process the done queue and call the callbacks for each transfer and reschedule interrupt and isochronous
endpoints.

See for a more elaborate description the OHCI specification
(http://www.compaq.com/productinfo/development/openhci.html). Services layer The middle layer provides access
to the device in a controlled way and maintains resources inuse by the different drivers and the services layer. The
layer takes care of the following aspects:

• The device configuration information

• The pipes to communicate with a device

• Probing and attaching and detaching form a device.

22.3. USB Device Information

22.3.1. Device configuration information
Each device provides different levels of configuration information. Each device has one or more configurations, of
which one is selected during probe/attach. A configuration provides power and bandwidth requirements. Within each
configuration there can be multiple interfaces. A device interface is a collection of endpoints. For example USB
speakers can have an interface for the audio data (Audio Class) and an interface for the knobs, dials and buttons (HID
Class). All interfaces in a configuration areactive at the same time and can be attached to by different drivers. Each
interface can have alternates, providing different quality of service parameters. In for example cameras this is used to
provide different frame sizes and numbers of frames per second.

186

Chapter 22. USB Devices

Within each interface 0 or more endpoints can be specified. Endpoints are the unidirectional access points for
communicating with a device. They provide buffers to temporarily store incoming or outgoing data from the device.
Each endpoint has a unique address within a configuration, the endpoint’s number plus its direction. The default
endpoint, endpoint 0, is not part of any interface and available in all configurations. It is managed by the services
layer and not directly available to device drivers.

Level 0 Level 1 Level 2 Slot 0

Slot 3 Slot 2 Slot 1

(Only 4 out of 32 slots shown)

This hierarchical configuration information is described in the device by a standard set of descriptors (see section 9.6
of the USB specification [2]). They can be requested through the Get Descriptor Request. The services layer caches
these descriptors to avoid unnecessary transferson the USB bus. Access to the descriptors is provided through
function calls.

• Device descriptors: General information about the device, like Vendor, Product and Revision Id, supported device
class, subclass and protocol if applicable, maximum packet size for the default endpoint, etc.

• Configuration descriptors: The number of interfaces in this configuration, suspend and resume functionality
supported and power requirements.

• Interface descriptors: interface class, subclass and protocol if applicable, number of alternate settings for the
interface and the number of endpoints.

• Endpoint descriptors: Endpoint address, direction and type, maximum packet size supported and polling frequency
if type is interrupt endpoint. There is no descriptor for thedefault endpoint (endpoint 0) and it is never counted in
an interface descriptor.

• String descriptors: In the other descriptors string indices are supplied for some fields.These can be used to retrieve
descriptive strings, possibly in multiple languages.

Class specifications can add their own descriptor types that are available through the GetDescriptor Request.

Pipes Communication to end points on a device flows through so-called pipes. Drivers submit transfers to endpoints
to a pipe and provide a callback to be called on completion or failure of the transfer (asynchronous transfers) or wait
for completion (synchronous transfer). Transfers to an endpoint are serialised in the pipe. A transfer can either
complete, fail or time-out (if a time-out has been set). There are two types of time-outs for transfers. Time-outs can
happen due to time-out on the USBbus (milliseconds). These time-outs are seen as failures and can be due to
disconnection of the device. A second form of time-out is implemented in software and is triggered when a transfer
does not complete within a specified amount of time (seconds). These are caused by a device acknowledging
negatively (NAK) the transferred packets. The cause for this is the device not being ready to receive data, buffer
under- or overrun or protocol errors.

If a transfer over a pipe is larger than the maximum packet size specified in the associated endpoint descriptor, the
host controller (OHCI) or the HC driver (UHCI) will split the transfer into packets of maximum packet size, with the

187

Chapter 22. USB Devices

last packet possibly smaller than the maximum packetsize.

Sometimes it is not a problem for a device to return less data than requested. For example abulk-in-transfer to a
modem might request 200 bytes of data, but the modem has only 5 bytes available at that time. The driver can set the
short packet (SPD) flag. It allows the host controller to accept a packet even if the amount of data transferred is less
than requested. This flag is only valid for in-transfers, as the amount of data to be sent to a device is always known
beforehand. If an unrecoverable error occurs in a device during a transfer the pipe is stalled. Before any more data is
accepted or sent the driver needs to resolve the cause of the stall and clear the endpoint stall condition through send
the clear endpoint halt device request over the default pipe. The default endpoint should never stall.

There are four different types of endpoints and corresponding pipes: - Control pipe / default pipe: There is one control
pipe per device, connected to the default endpoint (endpoint 0). The pipe carries the device requests and associated
data. The difference between transfers over the default pipe and other pipes is that the protocol for thetransfers is
described in the USB specification [2]. These requests are used to reset and configure the device. A basic set of
commands that must be supported by each device is provided in chapter 9 of the USB specification [2]. The
commands supported on this pipe canbe extended by a device class specification to support additional functionality.

• Bulk pipe: This is the USB equivalent to a raw transmission medium.

• Interrupt pipe: The host sends a request for data to the device and if the device has nothing to send, it will NAK the
data packet. Interrupt transfers are scheduled at a frequency specifiedwhen creating the pipe.

• Isochronous pipe: These pipes are intended for isochronous data, for example video oraudio streams, with fixed
latency, but no guaranteed delivery. Some support for pipes of this type is available in the current implementation.
Packets in control, bulk and interrupt transfers are retried if an error occurs during transmission or the device
acknowledges the packet negatively (NAK) due to for example lack of buffer space to store the incoming data.
Isochronous packets are however not retried in case of failed delivery or NAK of a packet as this might violate the
timing constraints.

The availability of the necessary bandwidth is calculated during the creation of the pipe. Transfersare scheduled
within frames of 1 millisecond. The bandwidth allocation within a frame is prescribed by the USB specification,
section 5.6 [2]. Isochronous and interrupt transfers areallowed to consume up to 90% of the bandwidth within a
frame. Packets for control and bulk transfers are scheduled after all isochronous and interrupt packets and will
consume all the remaining bandwidth.

More information on scheduling of transfers and bandwidth reclamation can be found in chapter 5of the USB
specification [2], section 1.3 of the UHCI specification [3] and section 3.4.2 of the OHCI specification [4].

22.4. Device probe and attach
After the notification by the hub that a new device has been connected, the service layer switcheson the port,
providing the device with 100 mA of current. At this point the device is in its default state and listening to device

188

Chapter 22. USB Devices

address 0. The services layer will proceed to retrieve the various descriptors through the default pipe. After that it
will send a Set Address request to move the device away from the default device address (address 0). Multiple device
drivers might be able to support the device. For example a modem driver might beable to support an ISDN TA
through the AT compatibility interface. A driver for that specific model of the ISDN adapter might however be able
to provide much better support for this device. To support this flexibility, the probes return priorities indicating their
level of support. Support for a specific revision of a product ranks the highest and the generic driver the lowest
priority. It might also be that multiple drivers could attach to one device if there are multiple interfaceswithin one
configuration. Each driver only needs to support a subset of the interfaces.

The probing for a driver for a newly attached device checks first for device specific drivers. If notfound, the probe
code iterates over all supported configurations until a driver attaches in a configuration. To support devices with
multiple drivers on different interfaces, the probe iteratesover all interfaces in a configuration that have not yet been
claimed by a driver. Configurations that exceed the power budget for the hub are ignored. During attach the driver
should initialise the device to its proper state, but not reset it, as this will make the device disconnect itself from the
bus and restart the probing process for it. To avoid consuming unnecessary bandwidth should not claim the interrupt
pipe at attach time, but should postpone allocating the pipe until the file is opened and the data is actually used.
When the file is closed the pipe should be closed again, eventhough the device might still be attached.

22.4.1. Device disconnect and detach
A device driver should expect to receive errors during any transaction with the device. The designof USB supports
and encourages the disconnection of devices at any point in time. Drivers should make sure that they do the right
thing when the device disappears.

Furthermore a device that has been disconnected and reconnected will not be reattached at the same device instance.
This might change in the future when more devices support serial numbers (see the device descriptor) or other means
of defining an identity for a device have been developed.

The disconnection of a device is signalled by a hub in the interrupt packet delivered to the hub driver. The status
change information indicates which port has seen a connection change. The device detach method for all device
drivers for the device connected on that port are called and the structures cleaned up. If the port status indicates that
in the mean time a device has been connected to that port, the procedure for probing and attaching the device will be
started. A device reset will produce a disconnect-connect sequence on the hub and will be handled as described
above.

22.5. USB Drivers Protocol Information
The protocol used over pipes other than the default pipe is undefined by the USB specification. Information on this
can be found from various sources. The most accurate source is the developer’s section on the USB home pages [1].

189

Chapter 22. USB Devices

From these pages a growing number of deviceclass specifications are available. These specifications specify what a
compliant device should look like from a driver perspective, basic functionality it needs to provide and the protocol
that is to be used over the communication channels. The USB specification [2] includes the description of the Hub
Class. A class specification for Human Interface Devices (HID) has been created to cater for keyboards, tablets,
bar-code readers, buttons, knobs, switches, etc. A third example is the class specification for mass storage devices.
For a full list of device classes see the developers sectionon the USB home pages [1].

For many devices the protocol information has not yet been published however. Information on the protocol being
used might be available from the company making the device. Some companies will require you to sign a Non
-Disclosure Agreement (NDA) before giving you the specifications. This in most cases precludes making the driver
open source.

Another good source of information is the Linux driver sources, as a number of companies have started to provide
drivers for Linux for their devices. It is always a good idea to contact the authors of those drivers for their source of
information.

Example: Human Interface Devices The specification for the Human Interface Devices like keyboards, mice, tablets,
buttons, dials,etc. is referred to in other device class specifications and is used in many devices.

For example audio speakers provide endpoints to the digital to analogue converters and possibly an extra pipe for a
microphone. They also provide a HID endpoint in a separate interface for the buttons and dials on the front of the
device. The same is true for the monitor control class. It is straightforward to build support for these interfaces
through the available kernel and userland libraries together with the HID class driver or the generic driver. Another
device that serves as an example for interfaces within one configuration driven by different device drivers is a cheap
keyboard with built-in legacy mouse port. To avoid having the cost of including the hardware for a USB hub in the
device, manufacturers combined the mouse data received from the PS/2 port on the back of the keyboard and the
keypresses from the keyboard into two separate interfaces in the same configuration. The mouse and keyboard
drivers each attach to the appropriate interface and allocate the pipes to the two independent endpoints.

Example: Firmware download Many devices that have been developed are based on a general purpose processor with
anadditional USB core added to it. Because the development of drivers and firmware for USB devices is still very
new, many devices require the downloading of the firmware after they have been connected.

The procedure followed is straightforward. The device identifies itself through a vendor and product Id. The first
driver probes and attaches to it and downloads the firmware into it. After that the device soft resets itself and the
driver is detached. After a short pause the devicere announces its presence on the bus. The device will have changed
its vendor/product/revision Id to reflect the fact that it has been supplied with firmware and as a consequence a
second driver will probe it and attach to it.

An example of these types of devices is the ActiveWire I/O board, based on the EZ-USB chip. For this chip a generic
firmware downloader is available. The firmware downloaded into the ActiveWire board changes the revision Id. It
will then perform a soft reset of the USB part of the EZ-USB chip to disconnect from the USB bus and again
reconnect.

Example: Mass Storage Devices Support for mass storage devices is mainly built around existing protocols. The

190

Chapter 22. USB Devices

Iomega USB Zipdrive is based on the SCSI version of their drive. The SCSI commands and status messages are
wrapped in blocks and transferred over the bulk pipes to and from the device, emulating a SCSI controller over the
USB wire. ATAPI and UFI commands are supported in a similar fashion.

The Mass Storage Specification supports 2 different types of wrapping of the command block.The initial attempt was
based on sending the command and status through the default pipe and using bulk transfers for the data to be moved
between the host and the device. Based on experience a second approach was designed that was based on wrapping
the command and status blocks and sending them over the bulk out and in endpoint. The specification specifies
exactly what has to happen when and what has to be done in case an error condition is encountered. The biggest
challenge when writing drivers for these devices is to fit USB based protocol into theexisting support for mass
storage devices. CAM provides hooks to do this in a fairly straight forward way. ATAPI is less simple as historically
the IDE interface has never had many different appearances.

The support for the USB floppy from Y-E Data is again less straightforward as a new command set has been
designed.

191

Chapter 23. NewBus
This chapter will talk about the FreeBSD NewBus architecture.

192

XII. Architectures

Chapter 24. x86 Assembly Language
Programming
This chapter written by G. Adam Stanislav. Whiz Kid Technomagic (http://www.whizkidtech.net/) Modifications for
the Handbook made by Wylie Stilwell <wylie@osd.bsdi.com >, &.logo;, and Murray Stokely
<murray@FreeBSD.org >

24.1. Synopsis
Assembly language programing under Unix is highly undocumented. It is generally assumed that no one would ever
want to use it because various Unix systems run on different microprocessors, so everything should be written in C
for portability.

In reality, C portability is quite a myth. Even C programs need to be modified when ported from one Unix to another,
regardless of what processor each runs on. Typically, such a program is full of conditional statements depending on
the system it is compiled for.

Even if we believe that all of Unix software should be written in C, or some other high-level language, we still need
assembly language programmers: Who else would write the section of C library that accesses the kernel?

In this tutorial, which is quite brief at this time, I will attempt to show you how you can use assembly language
writing Unix programs, specifically under FreeBSD. I hope to turn it into a complete course of FreeBSD assembly
language eventually.

This tutorial does not explain the basics of assembly language. There are enough resources about that (for a complete
online course in assembly language, see Randall Hyde’s Art of Assembly Language (http://webster.cs.ucr.edu/); or if
you prefer a printed book, take a look at Jeff Duntemann’s Assembly Language Step-by-Step. However, once the
tutorial is finished, any assembly language programmer will be able to write programs for FreeBSD quickly and
efficiently.

Copyright © 2000 G. Adam Stanislav.All rights reserved.

24.2. The Tools

24.2.1. The Assembler
The most important tool for assembly language programming is the assembler, the software that converts assembly
language code into machine language.

194

Chapter 24. x86 Assembly Language Programming

Two very different assemblers are available for FreeBSD. One is as(1), which uses the traditional Unix assembly
language syntax. It comes with the system.

The other is/usr/ports/devel/nasm . It uses the Intel syntax. Its main advantage is that it can assemble code for
many operating systems. It needs to be installed separately, but is completely free.

This tutorial usesnasmsyntax because most assembly language programmers coming to FreeBSD from other
operating systems will find it easier to understand. And, because, quite frankly, that is what I am used to.

24.2.2. The Linker
The output of the assembler, like that of any compiler, needs to be linked to form an executable file.

The standard ld(1) linker comes with FreeBSD. It works with the code assembled with either assembler.

24.3. System Calls

24.3.1. Default Calling Convention
By default, the FreeBSD kernel uses the C calling convention. Further, although the kernel is accessed using int 80h,
it is assumed the program will call a function that issues int 80h, rather than issuing int 80h directly.

This convention is very convenient, and quite superior to the Microsoft convention used by MS DOS. Why? Because
the Unix convention allows any program written in any language to access the kernel.

An assembly language program can do that as well. For example, we could open a file:

kernel:
int 80h ; Call kernel
ret

open:
push dword mode
push dword flags
push dword path
mov eax, 5
call kernel
add esp, byte 12
ret

195

Chapter 24. x86 Assembly Language Programming

This is a very clean and portable way of coding. If you need to port the code to a Unix system which uses a different
interrupt, or a different way of passing parameters, all you need to change is the kernel procedure.

But assembly language programmers like to shave off cycles. The above example requires acall/ret combination.
We can eliminate it by pushing an extra dword:

open:
push dword mode
push dword flags
push dword path
mov eax, 5
push eax ; Or any other dword
int 80h
add esp, byte 16

The5 that we have placed inEAX identifies the kernel function, in this caseopen.

24.3.2. Alternate Calling Convention
FreeBSD is an extremely flexible system. It offers other ways of calling the kernel. For it to work, however, the
system must have Linux emulation installed.

Linux is a Unix-like system. However, its kernel uses the Microsoft system-call convention of passing parameters in
registers. As with the Unix convention, the function number is placed inEAX. The parameters, however, are not
passed on the stack butEBX, ECX, EDX, ESI, EDI, EBP:

open:
mov eax, 5
mov ebx, path
mov ecx, flags
mov edx, mode
int 80h

This convention has a great disadvantage over the Unix way, at least as far as assembly language programming is
concerned: Every time you make a kernel call you mustpushthe registers, thenpopthem later. This makes your code
bulkier and slower. Nevertheless, FreeBSD gives you a choice.

If you do choose the Microsoft/Linux convention, you must let the system know about it. After your program is
assembled and linked, you need to brand the executable:

% brandelf -f Linux filename

196

Chapter 24. x86 Assembly Language Programming

24.3.3. Which convention should you use?
If you are coding specifically for FreeBSD, you should always use the Unix convention: It is faster, you can store
global variables in registers, you do not have to brand the executable, and you do not impose the installation of the
Linux emulation package on the target system.

If you want to create portable code that can also run on Linux, you will probably still want to give the FreeBSD users
as efficient a code as possible. I will show you how you can accomplish that after I have explained the basics.

24.3.4. Call Numbers
To tell the kernel which system service you are calling, place its number inEAX. Of course, you need to know what
the number is.

24.3.4.1. The Syscalls File

The numbers are listed insyscalls . locate syscallsfinds this file in several different formats, all produced
automatically fromsyscalls.master .

You can find the master file for the default Unix calling convention in/usr/src/sys/kern/syscalls.master .
If you need to use the Microsoft convention implemented in the Linux emulation mode, read
/usr/src/sys/i386/linux/syscalls.master .

N.B.:Not only do FreeBSD and Linux use different calling conventions, they sometimes use different numbers for
the same functions.

syscalls.master describes how the call is to be made:

0 STD NOHIDE { int nosys(void); } syscall nosys_args int
1 STD NOHIDE { void exit(int rval); } exit rexit_args void
2 STD POSIX { int fork(void); }
3 STD POSIX { ssize_t read(int fd, void *buf, size_t nbyte); }
4 STD POSIX { ssize_t write(int fd, const void *buf, size_t nbyte); }
5 STD POSIX { int open(char *path, int flags, int mode); }
6 STD POSIX { int close(int fd); }
etc...

It is the leftmost column that tells us the number to place inEAX.

The rightmost column tells us what parameters topush. They arepushed from right to left.

EXAMPLE 3.1:For example, toopena file, we need topushthemodefirst, thenflags, then the address at which the
path is stored.

197

Chapter 24. x86 Assembly Language Programming

24.4. Return Values
A system call would not be useful most of the time if it did not return some kind of a value: The file descriptor of an
open file, the number of bytes read to a buffer, the system time, etc.

Additionally, the system needs to inform us if an error occurs: A file does not exist, system resources are exhausted,
we passed an invalid parameter, etc.

24.4.1. man-pages
The traditional place to look for information about various system calls under Unix systems are the man pages.
FreeBSD describes its system calls in section 2, sometimes in section 3.

For example,open(2) says:

If successful,open() returns a non-negative integer, termed a file descriptor. It returns-1 on failure, and setserrno
to indicate the error.

The assembly language programmer new to Unix and FreeBSD will immediately ask the puzzling question: Where
is errnoand how do I get to it?

N.B.:The information presented in the man pages applies to C programs. The assembly language programmer needs
additional information.

24.4.2. Where are the return values?
Unfortunately, it depends... For most system calls it is inEAX, but not for all. A good rule of thumb, when working
with a system call for the first time, look for the return value inEAX. If it is not there, you need further research.

N.B.: I am aware of one system call that returns the value inEDX: SYS_fork. All others I have worked with useEAX.
But I have not worked with them all yet.

TIP: If you cannot find the answer here or anywhere else, study libc source code and see how it interfaces with the
kernel.

24.4.3. Where is errno >?
Actually, nowhere...

errno is part of the C language, not the Unix kernel. When accessing kernel services directly, the error code is
returned inEAX, the same register the proper return value generally ends up in.

198

Chapter 24. x86 Assembly Language Programming

This makes perfect sense. If there is no error, there is no error code. If there is an error, there is no return value. One
register can contain either.

24.4.4. Determining an Error Occurred
When using the standard FreeBSD calling convention, thecarry flag is cleared upon success, set upon failure.

When using the Linux emulation mode, the signed value inEAX is non-negative upon success, and contains the
return value. In case of an error, the value is negative, i.e.,-errno.

24.5. Creating Portable Code
Portability is generally not one of the strengths of assembly language. Yet, writing assembly language programs for
different platforms is possible, especially withnasm. I have written assembly language libraries that can be
assembled for such different operating systems as Windows and FreeBSD.

It is all the more possible when you want your code to run on two platforms which, while different, are based on
similar architectures.

For example, FreeBSD is Unix, Linux is Unix-like. I only mentioned three differences between them (from an
assembly language programmerâs perspective): The calling convention, the function numbers, and the way of
returning values.

24.5.1. Dealing With Function Numbers
In many cases the function numbers are the same. However, even when they are not, the problem is easy to deal with:
Instead of using numbers in your code, use constants which you have declared differently depending on the target
architecture:

%ifdef LINUX
%define SYS_execve 11
%else
%define SYS_execve 59
%endif

199

Chapter 24. x86 Assembly Language Programming

24.5.2. Dealing With Conventions
Both, the calling convention, and the return value (theerrnoproblem) can be resolved with macros:

%ifdef LINUX

%macro system 0
call kernel

%endmacro

align 4
kernel:

push ebx
push ecx
push edx
push esi
push edi
push ebp

mov ebx, [esp+32]
mov ecx, [esp+36]
mov edx, [esp+40]
mov esi, [esp+44]
mov ebp, [esp+48]
int 80h

pop ebp
pop edi
pop esi
pop edx
pop ecx
pop ebx

or eax, eax
js .errno
clc
ret

.errno:
neg eax
stc
ret

%else

200

Chapter 24. x86 Assembly Language Programming

%macro system 0
int 80h

%endmacro

%endif

24.5.3. Dealing With Other Portability Issues
The above solutions can handle most cases of writing code portable between FreeBSD and Linux. Nevertheless, with
some kernel services the differences are deeper.

In that case, you need to write two different handlers for those particular system calls, and use conditional assembly.
Luckily, most of your code does something other than calling the kernel, so usually you will only need a few such
conditional sections in your code.

24.5.4. Using a Portable Library
You can avoid portability issues in your main code altogether by writing a library of system calls. Create a separate
library for FreeBSD, a different one for Linux, and yet other libraries for more operating systems.

In your library, write a separate function (or procedure, if you prefer the traditional assembly language terminology)
for each system call. Use the C calling convention of passing parameters. But still useEAX to pass the call number
in. In that case, your FreeBSD library can be very simple, as many seemingly different functions can be just labels to
the same code:

sys.open:
sys.close:
[etc...]

int 80h
ret

Your Linux library will require more different functions. But even here you can group system calls using the same
number of parameters:

sys.exit:
sys.close:
[etc... one-parameter functions]

push ebx
mov ebx, [esp+12]

201

Chapter 24. x86 Assembly Language Programming

int 80h
pop ebx
jmp sys.return

...

sys.return:
or eax, eax
js sys.err
clc
ret

sys.err:
neg eax
stc
ret

The library approach may seem inconvenient at first because it requires you to produce a separate file your code
depends on. But it has many advantages: For one, you only need to write it once and can use it for all your programs.
You can even let other assembly language programmers use it, or perhaps use one written by someone else. But
perhaps the greatest advantage of the library is that your code can be ported to other systems, even by other
programmers, by simply writing a new library without any changes to your code.

If you do not like the idea of having a library, you can at least place all your system calls in a separate assembly
language file and link it with your main program. Here, again, all porters have to do is create a new object file to link
with your main program.

24.5.5. Using a Portable Include File
If you are releasing your software as (or with) source code, you can use macros and place them in a separate file,
which you include in your code.

Porters of your software will simply write a new include file. No library or external object file is necessary, yet your
code is portable without any need to edit the code.

N.B.:This is the approach we will use throughout this tutorial. We will name our include filesystem.inc, and add to it
whenever we deal with a new system call.

We can start oursystem.inc by declaring the standard file descriptors:

%define stdin 0
%define stdout 1
%define stderr 2

202

Chapter 24. x86 Assembly Language Programming

Next, we create a symbolic name for each system call:

%define SYS_nosys 0
%define SYS_exit 1
%define SYS_fork 2
%define SYS_read 3
%define SYS_write 4
; [etc...]

We add a short, non-global procedure with a long name, so we do not accidentally reuse the name in our code:

section .code
align 4
access.the.bsd.kernel:

int 80h
ret

We create a macro which takes one argument, the syscall number:

%macro system 1
mov eax, %1
call access.the.bsd.kernel

%endmacro

Finally, we create macros for each syscall. These macros take no arguments.

%macro sys.exit 0
system SYS_exit

%endmacro

%macro sys.fork 0
system SYS_fork

%endmacro

%macro sys.read 0
system SYS_read

%endmacro

%macro sys.write 0
system SYS_write

203

Chapter 24. x86 Assembly Language Programming

%endmacro

; [etc...]

Go ahead, enter it into your editor and save it assystem.inc . We will add more to it as we discuss more syscalls.

24.6. Our First Program
We are now ready for our first program, the mandatoryHello, World!

1: %include ’system.inc’
2:
3: section .data
4: hello db ’Hello, World!’, 0Ah
5: hbytes equ $-hello
6:
7: section .code
8: global _start
9: _start:

10: push dword hbytes
11: push dword hello
12: push dword stdout
13: sys.write
14:
15: push dword 0
16: sys.exit

Here is what it does: Line 1 includes the defines, the macros, and the code fromsystem.inc .

Lines 3-5 are the data: Line 3 starts the data section/segment. Line 4 contains the string "Hello, World!" followed by
a new line (0Ah). Line 5 creates a constant that contains the length of the string from line 4 in bytes.

Lines 7-16 contain the code. Note that FreeBSD uses the elf file format for its executables, which requires every
program to start at the point labeled _start (or, more precisely, the linker expects that). This label has to be global.

Lines 10-13 ask the system to writehbytesbytes of thehellostring tostdout .

Lines 15-16 ask the system to end the program with the return value of0. TheSYS_exit syscall never returns, so the
code ends there.

N.B.: If you have come to Unix from MS DOS assembly language background, you may be used to writing directly
to the video hardware. You will never have to worry about this in FreeBSD, or any other flavor of Unix. As far as you

204

Chapter 24. x86 Assembly Language Programming

are concerned, you are writing to a file known asstdout . This can be the video screen, or a Telnet terminal, or an
actual file, or even the input of another program. Which it is, is for the system to figure out.

24.6.1. Assembling the Code
Type the code (except the line numbers) in an editor, and save it in a file namedhello.asm . You neednasmto
assemble it.

24.6.1.1. Installing NASM

If you do not havenasm, type:

% su
Password: your root password
cd /usr/ports/devel/nasm
make install
exit
%

% su
Password: your root password
cd /usr/ports/devel/nasm
make install
exit
%

You may typemake install cleaninstead of justmake installif you do not want to keepnasmsource code.

Either way, FreeBSD will automatically downloadnasmfrom the Internet, compile it, and install it on your system.

N.B.: If your system is not FreeBSD, you need to getnasmfrom its home page (http://www.web-sites.co.uk/nasm/).
You can still use it to assemble FreeBSD code.

24.6.2. Assemble, link and run
Now you can assemble, link, and run the code:

% nasm -f elf hello.asm
% ld -s -o hello hello.o
% ./hello
Hello, World!
%

205

Chapter 24. x86 Assembly Language Programming

24.7. Writing Unix Filters
A common type of Unix application is a filterâa program that reads data from thestdin, processes it somehow, then
writes the result tostdout.

In this chapter, we shall develop a simple filter, and learn how to read fromstdinand write tostdout. This filter will
convert each byte of its input into a hexadecimal number followed by a blank space.

%include ’system.inc’

section .data
hex db ’0123456789ABCDEF’
buffer db 0, 0, ’ ’

section .code
global _start
_start:
; read a byte from stdin
push dword 1
push dword buffer
push dword stdin
sys.read
add esp, byte 12
or eax, eax
je .done

; convert it to hex
movzx eax, byte [buffer]
mov edx, eax
shr dl, 4
mov dl, [hex+edx]
mov [buffer], dl
and al, 0Fh
mov al, [hex+eax]
mov [buffer+1], al

; print it
push dword 3
push dword buffer
push dword stdout
sys.write
add esp, byte 12
jmp short _start

.done :

206

Chapter 24. x86 Assembly Language Programming

push dword 0
sys.exit

In the data section we create an array calledhex. It contains the 16 hexadecimal digits in ascending order. The array
is followed by a buffer which we will use for both input and output. The first two bytes of the buffer are initially set
to 0. This is where we will write the two hexadecimal digits (the first byte also is where we will read the input). The
third byte is a space.

The code section consists of four parts: Reading the byte, converting it to a hexadecimal number, writing the result,
and eventually exiting the program.

To read the byte, we ask the system to read one byte fromstdin, and store it in the first byte of thebuffer. The system
returns the number of bytes read inEAX. This will be1 while data is coming, or0, when no more input data is
available. Therefore, we check the value ofEAX. If it is 0, we jump to.done, otherwise we continue.

N.B.:For simplicity sake, we are ignoring the possibility of an error condition at this time.

The hexadecimal conversion reads the byte from thebuffer into EAX, or actually justAL, while clearing the
remaining bits ofEAX to zeros. We also copy the byte toEDX because we need to convert the upper four bits
(nibble) separately from the lower four bits. We store the result in the first two bytes of the buffer.

Next, we ask the system to write the three bytes of the buffer, i.e., the two hexadecimal digits and the blank space, to
stdout. We then jump back to the beginning of the program and process the next byte.

Once there is no more input left, we ask the system to exit our program, returning a zero, which is the traditional
value meaning the program was successful.

Go ahead, and save the code in a file namedhex.asm , then type the following (thêD means press the control key
and typeD while holding the control key down):

% nasm -f elf hex.asm
% ld -s -o hex hex.o
% ./hex
Hello, World!
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A
Here I come!
48 65 72 65 20 49 20 63 6F 6D 65 21 0A
^D
%

N.B.: If you are migrating to Unix from MS DOS, you may be wondering why each line ends with0A instead of0D
0A. This is because Unix does not use the cr/lf convention, but a ânew lineâ convention, which is0A in hexadecimal.

Can we improve this? Well, for one, it is a bit confusing because once we have converted a line of text, our input no
longer starts at the begining of the line. We can modify it to print a new line instead of a space after each0A:

%include ’system.inc’

207

Chapter 24. x86 Assembly Language Programming

section .data
hex db ’0123456789ABCDEF’
buffer db 0, 0, ’ ’

section .code
global _start
_start:

mov cl, ’ ’

.loop:
; read a byte from stdin
push dword 1
push dword buffer
push dword stdin
sys.read
add esp, byte 12
or eax, eax
je .done

; convert it to hex
movzx eax, byte [buffer]
mov [buffer+2], cl
cmp al, 0Ah
jne .hex
mov [buffer+2], al

.hex:
mov edx, eax
shr dl, 4
mov dl, [hex+edx]
mov [buffer], dl
and al, 0Fh
mov al, [hex+eax]
mov [buffer+1], al

; print it
push dword 3
push dword buffer
push dword stdout
sys.write
add esp, byte 12
jmp short .loop

.done:

208

Chapter 24. x86 Assembly Language Programming

push dword 0
sys.exit

We have stored the space in theCL register. We can do this safely because, unlike Microsoft Windows, Unix system
calls do not modify the value of any register they do not use to return a value in.

That means we only need to setCL once. We have, therefore, added a new label.loopand jump to it for the next byte
instead of jumping at_start. We have also added the.hexlabel so we can either have a blank space or a new line as
the third byte of thebuffer.

Once you have changedhex.asmto reflect these changes, type:

% nasm -f elf hex.asm
% ld -s -o hex hex.o
% ./hex
Hello, World!
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A
Here I come!
48 65 72 65 20 49 20 63 6F 6D 65 21 0A
^D
%

That looks better. But this code is quite inefficient! We are making a system call for every single byte twice (once to
read it, another time to write the output).

24.8. Buffered Input and Output
We can improve the efficiency of our code by buffering our input and output. We create an input buffer and read a
whole sequence of bytes at one time. Then we fetch them one by one from the buffer.

We also create an output buffer. We store our output in it until it is full. At that time we ask the kernel to write the
contents of the buffer tostdout.

The program ends when there is no more input. But we still need to ask the kernel to write the contents of our output
buffer tostdoutone last time, otherwise some of our output would make it to the output buffer, but never be sent out.
Do not forget that, or you will be wondering why some of your output is missing.

%include ’system.inc’

%define BUFSIZE 2048

section .data
hex db ’0123456789ABCDEF’

209

Chapter 24. x86 Assembly Language Programming

section .bss
ibuffer resb BUFSIZE
obuffer resb BUFSIZE

section .code
global _start
_start:

sub eax, eax
sub ebx, ebx
sub ecx, ecx
mov edi, obuffer

.loop:
; read a byte from stdin
call getchar

; convert it to hex
mov dl, al
shr al, 4
mov al, [hex+eax]
call putchar

mov al, dl
and al, 0Fh
mov al, [hex+eax]
call putchar

mov al, ’ ’
cmp dl, 0Ah
jne .put
mov al, dl

.put:
call putchar
jmp short .loop

align 4
getchar:

or ebx, ebx
jne .fetch

call read

.fetch:
lodsb

210

Chapter 24. x86 Assembly Language Programming

dec ebx
ret

read:
push dword BUFSIZE
mov esi, ibuffer
push esi
push dword stdin
sys.read
add esp, byte 12
mov ebx, eax
or eax, eax
je .done
sub eax, eax
ret

align 4
.done:

call write ; flush output buffer
push dword 0
sys.exit

align 4
putchar:

stosb
inc ecx
cmp ecx, BUFSIZE
je write
ret

align 4
write:

sub edi, ecx ; start of buffer
push ecx
push edi
push dword stdout
sys.write
add esp, byte 12
sub eax, eax
sub ecx, ecx ; buffer is empty now
ret

We now have a third section in the source code, named.bss. This section is not included in our executable file, and,
therefore, cannot be initialized. We useresbinstead ofdb. It simply reserves the requested size of uninitialized
memory for our use.

211

Chapter 24. x86 Assembly Language Programming

We take advantage of the fact that the system does not modify the registers: We use registers for what, otherwise,
would have to be global variables stored in the.datasection. This is also why the Unix convention of passing
parameters to system calls on the stack is superior to the Microsoft convention of passing them in the registers: We
can keep the registers for our own use.

We useEDI andESIas pointers to the next byte to be read from or written to. We useEBXandECX to keep count of
the number of bytes in the two buffers, so we know when to dump the output to, or read more input from, the system.

Let us see how it works now:

% nasm -f elf hex.asm
% ld -s -o hex hex.o
% ./hex
Hello, World!
Here I come!
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A
48 65 72 65 20 49 20 63 6F 6D 65 21 0A
^D
%

Not what you expected? The program did not print the output until we pressed^D. That is easy to fix by inserting
three lines of code to write the output every time we have converted a new line to0A. I have marked the three lines
with > (do not copy the> in your hex.asm

%include ’system.inc’

%define BUFSIZE 2048

section .data
hex db ’0123456789ABCDEF’

section .bss
ibuffer resb BUFSIZE
obuffer resb BUFSIZE

section .code
global _start
_start:

sub eax, eax
sub ebx, ebx
sub ecx, ecx
mov edi, obuffer

.loop:
; read a byte from stdin

212

Chapter 24. x86 Assembly Language Programming

call getchar

; convert it to hex
mov dl, al
shr al, 4
mov al, [hex+eax]
call putchar

mov al, dl
and al, 0Fh
mov al, [hex+eax]
call putchar

mov al, ’ ’
cmp dl, 0Ah
jne .put
mov al, dl

.put:
call putchar

> cmp al, 0Ah
> jne .loop
> call write

jmp short .loop

align 4
getchar:

or ebx, ebx
jne .fetch

call read

.fetch:
lodsb
dec ebx
ret

read:
push dword BUFSIZE
mov esi, ibuffer
push esi
push dword stdin
sys.read
add esp, byte 12
mov ebx, eax

213

Chapter 24. x86 Assembly Language Programming

or eax, eax
je .done
sub eax, eax
ret

align 4
.done:

call write ; flush output buffer
push dword 0
sys.exit

align 4
putchar:

stosb
inc ecx
cmp ecx, BUFSIZE
je write
ret

align 4
write:

sub edi, ecx ; start of buffer
push ecx
push edi
push dword stdout
sys.write
add esp, byte 12
sub eax, eax
sub ecx, ecx ; buffer is empty now
ret

Now, let us see how it works:

% nasm -f elf hex.asm
% ld -s -o hex hex.o
% ./hex
Hello, World!
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A
Here I come!
48 65 72 65 20 49 20 63 6F 6D 65 21 0A
^D
%

Not bad for a 644-byte executable, is it!

214

Chapter 24. x86 Assembly Language Programming

24.8.1. How to Unread a Character
WARNING:This may be a somewhat advanced topic, mostly of interest to programmers familiar with the theory of
compilers. If you wish, you may skip to the next chapter (#command-line), and perhaps read this later.

While our sample program does not require it, more sophisticated filters often need to look ahead. In other words,
they may need to see what the next character is (or even several characters). If the next character is of a certain value,
it is part of the token currently being processed. Otherwise, it is not.

For example, you may be parsing the input stream for a textual string (e.g., when implementing a language
compiler): If a character is followed by another character, or perhaps a digit, it is part of the token you are
processing. If it is followed by white space, or some other value, then it is not part of the current token.

This presents an interesting problem: How to return the next character back to the input stream, so it can be read
again later?

One possible solution is to store it in a character variable, then set a flag. We can modifygetchar to check the flag,
and if it is set, fetch the byte from that variable instead of the input buffer, and reset the flag. But, of course, that
slows us down.

The C language has anungetc() function, just for that purpose. Is there a quick way to implement it in our code? I
would like you to scroll back up and take a look at thegetchar procedure and see if you can find a nice and fast
solution before reading the next paragraph. Then come back here and see my own solution.

The key to returning a character back to the stream is in how we are getting the characters to start with:

First we check if the buffer is empty by testing the value ofEBX. If it is zero, we call thereadprocedure.

If we do have a character available, we uselodsb, then decrease the value ofEBX. Thelodsbinstruction is effectively
identical to:

mov al, [esi]
inc esi

The byte we have fetched remains in the buffer until the next timeread is called. We do not know when that
happens, but we do know it will not happen until the next call togetchar . Hence, to âreturnâ the last-read byte back
to the stream, all we have to do is decrease the value ofESIand increase the value ofEBX:

ungetc:
dec esi
inc ebx
ret

But, be careful! We are perfectly safe doing this if our look-ahead is at most one character at a time. If we are
examining more than one upcoming character and callungetc several times in a row, it will work most of the time,
but not all the time (and will be tough to debug). Why?

215

Chapter 24. x86 Assembly Language Programming

Because as long asgetchar does not have to callread all of the pre-read bytes are still in the buffer, and our
ungetc works without a glitch. But the momentgetchar callsread , the contents of the buffer change.

We can always rely onungetc working properly on the last character we have read withgetchar , but not on
anything we have read before that.

If your program reads more than one byte ahead, you have at least two choices:

If possible, modify the program so it only reads one byte ahead. This is the simplest solution.

If that option is not available, first of all determine the maximum number of characters your program needs to return
to the input stream at one time. Increase that number slightly, just to be sure, preferably to a multiple of 16âso it
aligns nicely. Then modify the.bsssection of your code, and create a small âspareâ buffer right before your input
buffer, something like this:

section .bss
resb 16 ; or whatever the value you came up with

ibuffer resb BUFSIZE
obuffer resb BUFSIZE

You also need to modify yourungetc to pass the value of the byte to unget inAL:

ungetc:
dec esi
inc ebx
mov [esi], al
ret

With this modification, you can callungetc up to 17 times in a row safely (the first call will still be within the
buffer, the remaining 16 may be either within the buffer or within the âspareâ).

24.9. Command-line Arguments
Ourhexprogram will be more useful if it can read the names of an input and output file from its command line, i.e.,
if it can process the command line arguments. But... Where are they?

Before a Unix system starts a program, it pushes some data on the stack, then jumps at the_start label of the
program. Yes, I said jumps, not calls. That means the data can be accessed by reading[esp+offset], or by simply
popping it.

The value at the top of the stack contains the number of command line arguments. It is traditionally calledargc, for
âargument count.â

216

Chapter 24. x86 Assembly Language Programming

Command line arguments follow next, allargcof them. These are typically referred to asargv, for âargument
value(s).â That is, we getargv[0], argv[1], ..., argv[argc-1]. These are not the actual arguments, but pointers to
arguments, i.e., memory addresses of the actual arguments. The arguments themselves are NUL-terminated character
strings.

Theargv list is followed by aNULL pointer, which is simply a0. There is more, but this is enough for our purposes
right now.

N.B.: If you have come from the MS DOS programming environment, the main difference is that each argument is in
a separate string. The second difference is that there is no practical limit on how many arguments there can be.

Armed with this knowledge, we are almost ready for the next version ofhex.asm . First, however, we need to add a
few lines tosystem.inc :

First, we need to add two new entries to our list of system call numbers:

%define SYS_open 5
%define SYS_close 6

Then we add two new macros at the end of the file:

%macro sys.open 0
system SYS_open

%endmacro

%macro sys.close 0
system SYS_close

%endmacro

Here, then, is our modified source code:

%include ’system.inc’

%define BUFSIZE 2048

section .data
fd.in dd stdin
fd.out dd stdout
hex db ’0123456789ABCDEF’

section .bss
ibuffer resb BUFSIZE
obuffer resb BUFSIZE

section .code
align 4

217

Chapter 24. x86 Assembly Language Programming

err:
push dword 1 ; return failure
sys.exit

align 4
global _start
_start:

add esp, byte 8 ; discard argc and argv[0]

pop ecx
jecxz .init ; no more arguments

; ECX contains the path to input file
push dword 0 ; O_RDONLY
push ecx
sys.open
jc err ; open failed

add esp, byte 8
mov [fd.in], eax

pop ecx
jecxz .init ; no more arguments

; ECX contains the path to output file
push dword 420 ; file mode (644 octal)
push dword 0200h | 0400h | 01h
; O_CREAT | O_TRUNC | O_WRONLY
push ecx
sys.open
jc err

add esp, byte 12
mov [fd.out], eax

.init:
sub eax, eax
sub ebx, ebx
sub ecx, ecx
mov edi, obuffer

.loop:
; read a byte from input file or stdin
call getchar

218

Chapter 24. x86 Assembly Language Programming

; convert it to hex
mov dl, al
shr al, 4
mov al, [hex+eax]
call putchar

mov al, dl
and al, 0Fh
mov al, [hex+eax]
call putchar

mov al, ’ ’
cmp dl, 0Ah
jne .put
mov al, dl

.put:
call putchar
cmp al, dl
jne .loop
call write
jmp short .loop

align 4
getchar:

or ebx, ebx
jne .fetch

call read

.fetch:
lodsb
dec ebx
ret

read:
push dword BUFSIZE
mov esi, ibuffer
push esi
push dword [fd.in]
sys.read
add esp, byte 12
mov ebx, eax
or eax, eax
je .done

219

Chapter 24. x86 Assembly Language Programming

sub eax, eax
ret

align 4
.done:

call write ; flush output buffer

; close files
push dword [fd.in]
sys.close

push dword [fd.out]
sys.close

; return success
push dword 0
sys.exit

align 4
putchar:

stosb
inc ecx
cmp ecx, BUFSIZE
je write
ret

align 4
write:

sub edi, ecx ; start of buffer
push ecx
push edi
push dword [fd.out]
sys.write
add esp, byte 12
sub eax, eax
sub ecx, ecx ; buffer is empty now
ret

In our .datasection we now have two new variables,fd.in andfd.out. We store the input and output file descriptors
here.

In the.codesection we have replaced the references tostdinandstdoutwith [fd.in] and[fd.out].

The.codesection now starts with a simple error handler, which does nothing but exit the program with a return value
of 1. The error handler is before_startso we are within a short distance from where the errors occur.

220

Chapter 24. x86 Assembly Language Programming

Naturally, the program execution still begins at_start. First, we removeargcandargv[0] from the stack: They are of
no interest to us (in this program, that is).

We popargv[1] to ECX. This register is particularly suited for pointers, as we can handleNULL pointers withjecxz.
If argv[1] is notNULL, we try to open the file named in the first argument. Otherwise, we continue the program as
before: Reading fromstdin, writing to stdout. If we fail to open the input file (e.g., it does not exist), we jump to the
error handler and quit.

If all went well, we now check for the second argument. If it is there, we open the output file. Otherwise, we send the
output tostdout. If we fail to open the output file (e.g., it exists and we do not have the write permission), we, again,
jump to the error handler.

The rest of the code is the same as before, except we close the input and output files before exiting, and, as
mentioned, we use[fd.in] and[fd.out].

Our executable is now a whopping 768 bytes long.

Can we still improve it? Of course! Every program can be improved. Here are a few ideas of what we could do:

• Have our error handler print a message tostderr.

• Add error handlers to theread andwrite functions.

• Closestdinwhen we open an input file,stdoutwhen we open an output file.

• Add command line switches, such as-i and-o, so we can list the input and output files in any order, or perhaps
read fromstdinand write to a file.

• Print a usage message if command line arguments are incorrect.

I shall leave these enhancements as an exercise to the reader: You already know everything you need to know to
implement them.

24.10. Unix Environment
An important Unix concept is the environment, which is defined byenvironment variables. Some are set by the
system, others by you, yet others by theshell, or any program that loads another program.

24.10.1. How to Find Environment Variables
I said earlier that when a program starts executing, the stack containsargc followed by theNULL-terminatedargv
array, followed by something else. The âsomething elseâ is theenvironment, or, to be more precise, a
NULL-terminated array of pointers toenvironment variables. This is often referred to asenv.

221

Chapter 24. x86 Assembly Language Programming

The structure ofenvis the same as that ofargv, a list of memory addresses followed by aNULL (0). In this case,
there is noâenvcââwe figure out where the array ends by searching for the finalNULL.

The variables usually come in thename=valueformat, but sometimes the =value part may be missing. We need to
account for that possibility.

24.10.2. Webvar
I could just show you some code that prints the environment the same way the Unixenvcommand does. But I
thought it would be more interesting to write a simple assembly language CGI utility.

24.10.2.1. CGI: A Quick Overview

10.2.1. CGI: A Quick Overview

I have a detailed CGI tutorial (http://www.whizkidtech.net/cgi-bin/tutorial) on my web site, but here is a very quick
overview of CGI:

• The web server communicates with the CGI program by settingenvironment variables.

• The CGI program sends its output tostdout. The web server reads it from there.

• It must start with an HTTP header followed by two blank lines.

• It then prints the HTML code, or whatever other type of data it is producing.

N.B.:While certainenvironment variablesuse standard names, others vary, depending on the web server. That makes
webvarsquite a useful diagnostic tool.

24.10.3. Webvar continued...
Ourwebvarprogram, then, must send out the HTTP header followed by some HTML mark-up. It then must read the
environment variableone by one and send them out as part of the HTML page.

The code follows. I placed comments and explanations right inside the code:

;;;;;;; webvars.asm ;;;
;
; Copyright (c) 2000 G. Adam Stanislav
; All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions

222

Chapter 24. x86 Assembly Language Programming

; are met:
; 1. Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; 2. Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in the
; documentation and/or other materials provided with the distribution.
;
; THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS” AND
; ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
; ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
; OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
; HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
; LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
; OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
; SUCH DAMAGE.
;;;
;
; Version 1.0
;
; Started: 8-Dec-2000
; Updated: 8-Dec-2000
;
;;;
%include ’system.inc’

section .data
http db ’Content-type: text/html’, 0Ah, 0Ah

db ’ <?xml version="1.0" encoding="UTF-8"? >’, 0Ah
db ’ <!DOCTYPE html PUBLIC "-//W3C/DTD XHTML Strict//EN" ’
db ’"DTD/xhtml1-strict.dtd" >’, 0Ah
db ’ <html xmlns="http://www.w3.org/1999/xhtml" ’
db ’xml.lang="en" lang="en" >’, 0Ah
db ’ <head>’, 0Ah
db ’ <title >Web Environment </title >’, 0Ah
db ’ <meta name="author" content="G. Adam Stanislav" / >’, 0Ah
db ’ </head >’, 0Ah, 0Ah
db ’ <body bgcolor="#ffffff" text="#000000" link="#0000ff" ’
db ’vlink="#840084" alink="#0000ff" >’, 0Ah
db ’ <div class="webvars" >’, 0Ah
db ’ <h1>Web Environment </h1 >’, 0Ah
db ’ <p>The following environment variables are defined ’
db ’on this web server: </p >’, 0Ah, 0Ah

223

Chapter 24. x86 Assembly Language Programming

db ’ <table align="center" width="80" border="0" cellpadding="10" ’
db ’cellspacing="0" class="webvars" >’, 0Ah

httplen equ $-http
left db ’ <tr >’, 0Ah

db ’ <td class="name" ><tt >’
leftlen equ $-left
middle db ’ </tt ></td >’, 0Ah

db ’ <td class="value" ><tt >’
midlen equ $-middle
undef db ’ <i >(undefined) </i >’
undeflen equ $-undef
right db ’ </tt ></td >’, 0Ah

db ’ </tr >’, 0Ah
rightlen equ $-right
wrap db ’ </table >’, 0Ah

db ’ </div >’, 0Ah
db ’ </body >’, 0Ah
db ’ </html >’, 0Ah, 0Ah

wraplen equ $-wrap

section .code
global _start
_start:

; First, send out all the http and xhtml stuff that is
; needed before we start showing the environment
push dword httplen
push dword http
push dword stdout
sys.write

; Now find how far on the stack the environment pointers
; are. We have 12 bytes we have pushed before "argc"
mov eax, [esp+12]

; We need to remove the following from the stack:
;
; The 12 bytes we pushed for sys.write
; The 4 bytes of argc
; The EAX*4 bytes of argv
; The 4 bytes of the NULL after argv
;
; Total:
; 20 + eax * 4
;
; Because stack grows down, we need to ADD that many bytes

224

Chapter 24. x86 Assembly Language Programming

; to ESP.
lea esp, [esp+20+eax*4]
cld ; This should already be the case, but let’s be sure.

; Loop through the environment, printing it out
.loop:

pop edi
or edi, edi ; Done yet?
je near .wrap

; Print the left part of HTML
push dword leftlen
push dword left
push dword stdout
sys.write

; It may be tempting to search for the ’=’ in the env string next.
; But it is possible there is no ’=’, so we search for the
; terminating NUL first.
mov esi, edi ; Save start of string
sub ecx, ecx
not ecx ; ECX = FFFFFFFF
sub eax, eax

repne scasb
not ecx ; ECX = string length + 1
mov ebx, ecx ; Save it in EBX

; Now is the time to find ’=’
mov edi, esi ; Start of string
mov al, ’=’

repne scasb
not ecx
add ecx, ebx ; Length of name

push ecx
push esi
push dword stdout
sys.write

; Print the middle part of HTML table code
push dword midlen
push dword middle
push dword stdout
sys.write

225

Chapter 24. x86 Assembly Language Programming

; Find the length of the value
not ecx
lea ebx, [ebx+ecx-1]

; Print "undefined" if 0
or ebx, ebx
jne .value

mov ebx, undeflen
mov edi, undef

.value:
push ebx
push edi
push dword stdout
sys.write

; Print the right part of the table row
push dword rightlen
push dword right
push dword stdout
sys.write

; Get rid of the 60 bytes we have pushed
add esp, byte 60

; Get the next variable
jmp .loop

.wrap:
; Print the rest of HTML
push dword wraplen
push dword wrap
push dword stdout
sys.write

; Return success
push dword 0
sys.exit

This code produces a 1,396-byte executable. Most of it is data, i.e., the HTML mark-up we need to send out.

Assemble and link it as usual:

226

Chapter 24. x86 Assembly Language Programming

% nasm -f elf webvars.asm
% ld -s -o webvars webvars.o

To use it, you need to uploadwebvarsto your web server. Depending on how your web server is set up, you may
have to store in a specialcgi-bindirectory, or perhaps rename it with a.cgi extension.

Then you need to use your browser to view its output. To see its output on my web server, please instruct your
browser to go tohttp://www.int80h.org/webvars/. I am deliberately not placing a regular link here because I do not
want its output to appear on all the search engines...

24.11. Working with Files
We have already done some basic file work: We know how to open and close them, how to read and write them using
buffers. But Unix offers much more functionality when it comes to files. We will examine some of it in this section,
and end up with a nice file conversion utility.

Indeed, let us start at the end, that is, with the file conversion utility. It always makes programming easier when we
know from the start what the end product is supposed to do.

One of the first programs I wrote for Unix wastuc (ftp://ftp.int80h.org/unix/tuc/), a text-to-Unix file converter. It
converts a text file from other operating systems to a Unix text file. In other words, it changes from different kind of
line endings to the newline convention of Unix. It saves the output in a different file. Optionally, it converts a Unix
text file to a DOS text file.

I have usedtucextensively, but always only to convert from some other OS to Unix, never the other way. I have
always wished it would just overwrite the file instead of me having to send the output to a different file. Most of the
time, I end up using it like this:

% tuc myfile tempfile
% mv tempfile myfile

It would be nice to have aftuc , i.e., fast tuc , and use it like this:

% ftuc myfile

In this chapter, then, we will writeftuc in assembly language (the originaltuc is in C), and study various file-oriented
kernel services in the process.

At first sight, such a file conversion is very simple: All you have to do is strip the carriage returns, right?

If you answered yes, think again: That approach will work most of the time (at least with MS DOS text files), but
will fail occasionally.

227

Chapter 24. x86 Assembly Language Programming

The problem is that not all non-Unix text files end their line with the carriage return / line feed sequence. Some use
carriage returns without line feeds. Others combine several blank lines into a single carriage return followed by
several line feeds. And so on.

A text file converter, then, must be able to handle any possible line endings:

• carriage return / line feed

• carriage return

• line feed / carriage return

• line feed

It should also handle files that use some kind of a combination of the above (e.g., carriage return followed by several
line feeds).

24.11.1. Finite State Machine
The problem is easily solved by the use of a technique calledfinite state machine, originally developed by the
designers of digital electronic circuits. Afinite state machineis a digital circuit whose output is dependent not only
on its input but on its previous input, i.e., on its state. The microprocessor is an example of afinite state machine: Our
assembly language code is assembled to machine language in which some assembly language code produces a single
byte of machine language, while others produce several bytes. As the microprocessor fetches the bytes from the
memory one by one, some of them simply change its state rather than produce some output. When all the bytes of the
op code are fetched, the microrpocessor produces some output, or changes the value of a register, etc.

Because of that, all software is essentially a sequence of state instructions for the microprocessor. Nevertheless, the
concept offinite state machineis useful in software design as well.

Our text file converter can be designed as afinite state machinewith three possible states. We could call them states
0-2, but it will make our life easier if we give them symbolic names:

• ordinary

• cr

• lf

Our program will start in theordinarystate. During this state, the program action depends on its input as follows:

• If the input is anything other than a carriage return or line feed, the input is simply passed on to the output. The
state remains unchanged.

• If the input is a carriage return, the state is changed tocr. The input is then discarded, i.e., no output is made.

• If the input is a line feed, the state is changed tolf . The input is then discarded.

228

Chapter 24. x86 Assembly Language Programming

Whenever we are in thecr state, it is because the last input was a carriage return, which was unprocessed. What our
software does in this state again depends on the current input:

• If the input is anything other than a carriage return or line feed, output a line feed, then output the input, then
change the state toordinary.

• If the input is a carriage return, we have received two (or more) carriage returns in a row. We discard the input, we
output a line feed, and leave the state unchanged.

• If the input is a line feed, we output the line feed and change the state toordinary. Note that this is not the same as
the first case above â if we tried to combine them, we would be outputting two line feeds instead of one.

Finally, we are in thelf state after we have received a line feed that was not preceded by a carriage return. This will
happen when our file already is in Unix format, or whenever several lines in a row are expressed by a single carriage
return followed by several line feeds, or when line ends with a line feed / carriage return sequence. Here is how we
need to handle our input in this state:

• If the input is anything other than a carriage return or line feed, we output a line feed, then output the input, then
change the state toordinary. This is exactly the same action as in thecr state upon receiving the same kind of
input.

• If the input is a carriage return, we discard the input, we output a line feed, then change the state toordinary.

• If the input is a line feed, we output the line feed, and leave the state unchanged.

24.11.1.1. The Final State

The abovefinite state machineworks for the entire file, but leaves the possibility that the final line end will be
ignored. That will happen whenever the file ends with a single carriage return or a single line feed. I did not think of
it when I wrotetuc, just to discover that occasionally it strips the last line ending.

This problem is easily fixed by checking the state after the entire file was processed. If the state is notordinary, we
simply need to output one last line feed.

N.B.:Now that we have expressed our algorithm as afinite state machine, we could easily design a dedicated digital
electronic circuit (a âchipâ) to do the conversion for us. Of course, doing so would be considerably more expensive
than writing an assembly language program.

24.11.1.2. The Output Counter

Because our file conversion program may be combining two characters into one, we need to use an output counter.
We initialize it to 0, and increase it every time we send a character to the output. At the end of the program, the
counter will tell us what size we need to set the file to.

229

Chapter 24. x86 Assembly Language Programming

24.11.2. Implementing FSM in Software
The hardest part of working with afinite state machineis analyzing the problem and expressing it as afinite state
machine. That accomplished, the software almost writes itself.

In a high-level language, such as C, there are several main approaches. One is to use aswitchstatement which
chooses what function should be run. For example,

switch (state) {
default:
case REGULAR:
regular(inputchar);
break;
case CR:
cr(inputchar);
break;
case LF:
lf(inputchar);
break;
}

Another approach is by using an array of function pointers, something like this:

(output[state])(inputchar);

Yet another is to havestatebe a function pointer, set to point at the appropriate function:

(*state)(inputchar);

This is the approach we will use in our program because it is very easy to do in assembly language, and very fast,
too. We will simply keep the address of the right procedure inEBX, and then just issue:

call ebx

This is possibly faster than hardcoding the address in the code because the microprocessor does not have to fetch the
address from the memoryâit is already stored in one of its registers. I saidpossiblybecause with the caching modern
microprocessors do, either way may be equally fast.

230

Chapter 24. x86 Assembly Language Programming

24.11.3. Memory Mapped Files
Because our program works on a single file, we cannot use the approach that worked for us before, i.e., to read from
an input file and to write to an output file.

Unix allows us to map a file, or a section of a file, into memory. To do that, we first need to open the file with the
appropriate read/write flags. Then we use themmapsystem call to map it into the memory. One nice thing about
mmapis that it automatically works with virtual memory: We can map more of the file into the memory than we have
physical memory available, yet still access it through regular memory op codes, such asmov, lods, andstos.
Whatever changes we make to the memory image of the file will be written to the file by the system. We do not even
have to keep the file open: As long as it stays mapped, we can read from it and write to it.

The 32-bit Intel microprocessors can access up to four gigabytes of memory â physical or virtual. The FreeBSD
system allows us to use up to a half of it for file mapping.

For simplicity sake, in this tutorial we will only convert files that can be mapped into the memory in their entirety.
There are probably not too many text files that exceed two gigabytes in size. If our program encounters one, it will
simply display a message suggesting we use the originaltuc instead.

If you examine your copy ofsyscalls.master , you will find two separate syscalls namedmmap. This is because
of evolution of Unix: There was the traditional BSDmmap, syscall 71. That one was superceded by the POSIX
mmap, syscall 197. The FreeBSD system supports both because older programs were written by using the original
BSD version. But new software uses the POSIX version, which is what we will use.

Thesyscalls.master file lists the POSIX version like this:

197 STD BSD { caddr_t mmap(caddr_t addr, size_t len, int prot, \
int flags, int fd, long pad, off_t pos); }

This differs slightly from whatmmap(2) says. That is becausemmap(2) describes the C version.

The difference is in thelong padargument, which is not present in the C version. However, the FreeBSD syscalls add
a 32-bit pad after pushing a 64-bit argument. In this case,off_t is a 64-bit value.

When we are finished working with a memory-mapped file, we unmap it with themunmapsyscall:

TIP: For an in-depth treatment ofmmap, see W. Richard Stevensâ Unix Network Programming, Volume 2, Chapter
12 (http://www.int80h.org/cgi-bin/isbn?isbn=0130810819).

24.11.4. Determining File size
Because we need to tellmmaphow many bytes of the file to map into the memory, and because we want to map the
entire file, we need toq determine the size of the file.

231

Chapter 24. x86 Assembly Language Programming

We can use thefstat syscall to get all the information about an open file that the system can give us. That includes
the file size.

Again,syscalls.master lists two versions offstat , a traditional one (syscall 69), and a POSIX one (syscall
189)Naturally, we will use the POSIX version:

189 STD POSIX { int fstat(int fd, struct stat *sb); }

This is a very straightforward call: We pass to it the address of astatstructure and the descriptor of an open file. It
will fill out the contents of thestatstructure.

I do, however, have to say that I tried to declare thestat structure in the.bss section, andfstat did not like it: It
set the carry flag indicating an error. After I changed the code to allocate the structure on the stack, everything was
working fine.

24.11.5. Changing the File Size
11.5. Changing the File Size

Because our program may combine carriage return / line feed sequences into straight line feeds, our output may be
smaller than our input. However, since we are placing our output into the same file we read the input from, we may
have to change the size of the file.

The ftruncate system call allows us to do just that. Despite its somewhat misleading name, theftruncate

system call can be used to both truncate the file (make it smaller) and to grow it.

And yes, we will find two versions offtruncate in syscalls.master , an older one (130), and a newer one (201).
We will use the newer one:

201 STD BSD { int ftruncate(int fd, int pad, off_t length); }

Please note that this one contains aint pad again.

24.11.6. ftuc
We now know everything we need to writeftuc. We start by adding some new lines insystem.inc . First, we define
some constants and structures, somewhere at or near the beginning of the file:

;;;;;;; open flags
%define O_RDONLY 0
%define O_WRONLY 1

232

Chapter 24. x86 Assembly Language Programming

%define O_RDWR 2

;;;;;;; mmap flags
%define PROT_NONE 0
%define PROT_READ 1
%define PROT_WRITE 2
%define PROT_EXEC 4
;;
%define MAP_SHARED 0001h
%define MAP_PRIVATE 0002h

;;;;;;; stat structure
struc stat
st_dev resd 1 ; = 0
st_ino resd 1 ; = 4
st_mode resw 1 ; = 8, size is 16 bits
st_nlink resw 1 ; = 10, ditto
st_uid resd 1 ; = 12
st_gid resd 1 ; = 16
st_rdev resd 1 ; = 20
st_atime resd 1 ; = 24
st_atimensec resd 1 ; = 28
st_mtime resd 1 ; = 32
st_mtimensec resd 1 ; = 36
st_ctime resd 1 ; = 40
st_ctimensec resd 1 ; = 44
st_size resd 2 ; = 48, size is 64 bits
st_blocks resd 2 ; = 56, ditto
st_blksize resd 1 ; = 64
st_flags resd 1 ; = 68
st_gen resd 1 ; = 72
st_lspare resd 1 ; = 76
st_qspare resd 4 ; = 80
endstruc

We define the new syscalls:

%define SYS_mmap 197
%define SYS_munmap 73
%define SYS_fstat 189
%define SYS_ftruncate 201

We add the macros for their use:

%macro sys.mmap 0

233

Chapter 24. x86 Assembly Language Programming

system SYS_mmap
%endmacro

%macro sys.munmap 0
system SYS_munmap

%endmacro

%macro sys.ftruncate 0
system SYS_ftruncate

%endmacro

%macro sys.fstat 0
system SYS_fstat

%endmacro

And here is our code:

;;;;;;; Fast Text-to-Unix Conversion (ftuc.asm) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Started: 21-Dec-2000
;; Updated: 22-Dec-2000
;;
;; Copyright 2000 G. Adam Stanislav.
;; All rights reserved.
;;
;;;;;;; v.1 ;;;
%include ’system.inc’

section .data
db ’Copyright 2000 G. Adam Stanislav.’, 0Ah
db ’All rights reserved.’, 0Ah

usg db ’Usage: ftuc filename’, 0Ah
usglen equ $-usg
co db "ftuc: Can’t open file.", 0Ah
colen equ $-co
fae db ’ftuc: File access error.’, 0Ah
faelen equ $-fae
ftl db ’ftuc: File too long, use regular tuc instead.’, 0Ah
ftllen equ $-ftl
mae db ’ftuc: Memory allocation error.’, 0Ah
maelen equ $-mae

section .code

align 4

234

Chapter 24. x86 Assembly Language Programming

memerr:
push dword maelen
push dword mae
jmp short error

align 4
toolong:

push dword ftllen
push dword ftl
jmp short error

align 4
facerr:

push dword faelen
push dword fae
jmp short error

align 4
cantopen:

push dword colen
push dword co
jmp short error

align 4
usage:

push dword usglen
push dword usg

error:
push dword stderr
sys.write

push dword 1
sys.exit

align 4
global _start
_start:

pop eax ; argc
pop eax ; program name
pop ecx ; file to convert
jecxz usage

pop eax
or eax, eax ; Too many arguments?

235

Chapter 24. x86 Assembly Language Programming

jne usage

; Open the file
push dword O_RDWR
push ecx
sys.open
jc cantopen

mov ebp, eax ; Save fd

sub esp, byte stat_size
mov ebx, esp

; Find file size
push ebx
push ebp ; fd
sys.fstat
jc facerr

mov edx, [ebx + st_size + 4]

; File is too long if EDX != 0 ...
or edx, edx
jne near toolong
mov ecx, [ebx + st_size]
; ... or if it is above 2 GB
or ecx, ecx
js near toolong

; Do nothing if the file is 0 bytes in size
jecxz .quit

; Map the entire file in memory
push edx
push edx ; starting at offset 0
push edx ; pad
push ebp ; fd
push dword MAP_SHARED
push dword PROT_READ | PROT_WRITE
push ecx ; entire file size
push edx ; let system decide on the address
sys.mmap
jc near memerr

mov edi, eax

236

Chapter 24. x86 Assembly Language Programming

mov esi, eax
push ecx ; for SYS_munmap
push edi

; Use EBX for state machine
mov ebx, ordinary
mov ah, 0Ah
cld

.loop:
lodsb
call ebx
loop .loop

cmp ebx, ordinary
je .filesize

; Output final lf
mov al, ah
stosb
inc edx

.filesize:
; truncate file to new size
push dword 0 ; high dword
push edx ; low dword
push eax ; pad
push ebp
sys.ftruncate

; close it (ebp still pushed)
sys.close

add esp, byte 16
sys.munmap

.quit:
push dword 0
sys.exit

align 4
ordinary:

cmp al, 0Dh
je .cr

237

Chapter 24. x86 Assembly Language Programming

cmp al, ah
je .lf

stosb
inc edx
ret

align 4
.cr:

mov ebx, cr
ret

align 4
.lf:

mov ebx, lf
ret

align 4
cr:

cmp al, 0Dh
je .cr

cmp al, ah
je .lf

xchg al, ah
stosb
inc edx

xchg al, ah
; fall through

.lf:
stosb
inc edx
mov ebx, ordinary
ret

align 4
.cr:

mov al, ah
stosb
inc edx
ret

238

Chapter 24. x86 Assembly Language Programming

align 4
lf:

cmp al, ah
je .lf

cmp al, 0Dh
je .cr

xchg al, ah
stosb
inc edx

xchg al, ah
stosb
inc edx
mov ebx, ordinary
ret

align 4
.cr:

mov ebx, ordinary
mov al, ah
; fall through

.lf:
stosb
inc edx
ret

WARNING:Do not use this program on files stored on a disk formated by MS DOS or Windows. There seems to be a
subtle bug in the FreeBSD code when usingmmapon these drives mounted under FreeBSD: If the file is over a
certain size,mmapwill just fill the memory with zeros, and then copy them to the file overwriting its contents.

24.12. Caveats
Assembly language programmers who "grew up" under MS DOS and Windows often tend to take shortcuts. Reading
the keyboard scan codes and writing directly to video memory are two classical examples of practices which, under
MS DOS are not frowned upon but considered the right thing to do.

The reason? Both the PC BIOS and MS DOS are notoriously slow when performing these operations.

239

Chapter 24. x86 Assembly Language Programming

You may be tempted to continue similar practices in the Unix environment. For example, I have seen a web site
which explains how to access the keyboard scan codes on a popular Unix clone.

That is generally avery bad ideain Unix environment! Let me explain why.

24.12.1. Unix Is Protected
For one thing, it may simply not be possible. Unix runs in protected mode. Only the kernel and device drivers are
allowed to access hardware directly. Perhaps a particular Unix clone will let you read the keyboard scan codes, but
chances are a real Unix operating system will not. And even if one version may let you do it, the next one may not,
so your carefully crafted software may become a dinosaur overnight.

24.12.2. Unix is an Abstraction
But there is a much more important reason not to try accessing the hardware directly (unless, of course, you are
writing a device driver), even on the Unix-like systems that let you do it:

Unix is an abstraction!

There is a major difference in the philosophy of design between MS DOS and Unix. MS DOS was designed as a
single-user system. It is run on a computer with a keyboard and a video screen attached directly to that computer.
User input is almost guaranteed to come from that keyboard. Your programâs output virtually always ends up on that
screen.

This is NEVER guaranteed under Unix. It is quite common for a Unix user to pipe and redirect program input and
output:

% program1 | program2 | program3 > file1

If you have writtenprogram2, your input does not come from the keyboard but from the outputprogram1. Similarly,
your output does not go to the screen but becomes the input forprogram3whose output, in turn, goes tofile1 .

But there is more! Even if you made sure that your input comes from, and your output goes to, the terminal, there is
no guarantee the terminal is a PC: It may not have its video memory where you expect it, nor may its keyboard be
producing PC-style scan codes. It may be a Macintosh, or any other computer.

Now you may be shaking your head: My software is in assembly language, how can it run on a Macintosh? But I did
not say your software would be running on a Macintosh, only that its terminal may be a Macintosh.

Under Unix, the terminal does not have to be directly attached to the computer that runs your software, it can even be
on another continent, or, for that matter, on another planet. It is perfectly possible that a Macintosh user in Australia
connects to a Unix system in North America (or anywhere else) viatelnet. The software then runs on one computer,
while the terminal is on a different computer: If you try to read the scan codes, you will get the wrong input!

240

Chapter 24. x86 Assembly Language Programming

Same holds true about any other hardware: A file you are reading may be on a disk you have no direct access to. A
camera you are reading images from may be on a space shuttle, connected to you via satellites.

That is why under Unix you must never make any assumptions about where your data is coming from and going to.
Always let the system handle the physical access to the hardware.

N.B.:These are caveats, not absolute rules. Exceptions are possible. For example, if a text editor has determined it is
running on a local machine, it may want to read the scan codes directly for improved control. I am not mentioning
these caveats to tell you what to do or what not to do, just to make you aware of certain pitfalls that await you if you
have just arrived to Unix form MS DOS. Of course, creative people often break rules, and it is OK as long as they
know they are breaking them and why.

24.13. Acknowledgements
This tutorial would never have been possible without the help of many experienced FreeBSD programmers from the
FreeBSD hackers (mailto:freebsd-hackers@FreeBSD.org) mailing list, many of whom have patiently answered my
questions, and pointed me in the right direction in my attempts to explore the inner workings of Unix system
programming in general and FreeBSD in particular.

Thomas M. Sommers opened the door for me. His How do I write "Hello, world" in FreeBSD assembler?
(http://home.ptd.net/~tms2/hello.html) web page was my first encounter with an example of assembly language
programming under FreeBSD.

Jake Burkholder has kept the door open by willingly answering all of my questions and supplying me with example
assembly language source code.

Copyright © 2000 G. Adam Stanislav.All rights reserved.

241

Chapter 25. Alpha
Talk about the architectural specifics of FreeBSD/alpha.

Explanation of allignment errors, how to fix, how to ignore.

Example assembly language code for FreeBSD/alpha.

242

Chapter 26. IA-64
Talk about the architectural specifics of FreeBSD/ia64.

243

XIII. Debugging

Chapter 27. Truss
various descriptions on how to debug certain aspects of the system using truss, ktrace, gdb, kgdb, etc

245

XIV. Compatibility Layers

Chapter 28. Linux
Linux, SVR4, etc

247

XV. Appendices

Bibliography

[1] Dave A Patterson and John L Hennessy, 1998, 1-55860-428-6, Morgan Kaufmann Publishers, Inc.,Computer
Organization and Design: The Hardware / Software Interface, 1-2.

[2] W. Richard Stevens, 1993, 0-201-56317-7, Addison Wesley Longman, Inc.,Advanced Programming in the Unix
Environment, 1-2.

[3] Marshall Kirk McKusick, Keith Bostic, Michael J Karels, and John S Quarterman, 1996, 0-201-54979-4,
Addison-Wesley Publishing Company, Inc.,The Design and Implementation of the 4.4 BSD Operating System,
1-2.

[4] Aleph One,Phrack 49; "Smashing the Stack for Fun and Profit".

[5] Chrispin Cowan, Calton Pu, and Dave Maier,StackGuard; Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks.

[6] Todd Miller and Theo de Raadt,strlcpy and strlcat -- consistent, safe string copy and concatenation..

