FreeBSD Handbuch

The FreeBSD German Documentation Project

Version: 49680

Redistribution and use in source (SGML DocBook) and 'compiled' forms (SGML, HTML, PDF, PostScript, RTF and so forth) with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of source code (SGML DocBook) must retain the above copyright notice, this list of conditions and the following disclaimer as the first lines of this file unmodified.

  2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and other formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

Wichtig:

THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

FreeBSD ist ein eingetragenes Warenzeichen der FreeBSD Foundation.

3Com und HomeConnect sind eingetragene Warenzeichen der 3Com Corporation.

3ware und Escalade sind eingetragene Warenzeichen von 3ware Inc.

ARM ist ein eingetragenes Warenzeichen von ARM Limited.

Adaptec ist ein eingetragenes Warenzeichen von Adaptec, Inc.

Adobe, Acrobat, Acrobat Reader und PostScript sind entweder eingetragene Warenzeichen oder Warenzeichen von Adobe Systems Incorporated in den Vereinigten Staaten und/oder in anderen Ländern.

Apple, FireWire, Mac, Macintosh, Mac OS, Quicktime und TrueType sind eingetragene Warenzeichen von Apple Computer, Inc., in den Vereinigten Staaten und anderen Ländern.

Corel und WordPerfect sind Warenzeichen oder eingetragene Warenzeichen der Corel Corporation und/oder ihren Gesellschaften in den Vereinigten Staaten und/oder anderen Ländern.

Android is a trademark of Google Inc.

Heidelberg, Helvetica, Palatino und Times Roman sind Marken der Heidelberger Druckmaschinen AG in Deutschland und anderen Ländern.

IBM, AIX, OS/2, PowerPC, PS/2, S/390 und ThinkPad sind Warenzeichen der International Business Machines Corporation in den Vereinigten Staaten, anderen Ländern oder beiden.

IEEE, POSIX und 802 sind eingetragene Warenzeichen vom Institute of Electrical and Electronics Engineers, Inc. in den Vereinigten Staaten.

Intel, Celeron, EtherExpress, i386, i486, Itanium, Pentium und Xeon sind Warenzeichen oder eingetragene Warenzeichen der Intel Corporation oder ihrer Gesellschaften in den Vereinigten Staaten und in anderen Ländern.

Intuit und Quicken sind eingetragene Warenzeichen und/oder Dienstleistungsmarken von Intuit Inc. oder einer ihrer Geselllschaften in den Vereinigten Staaten und in anderen Ländern.

Linux ist ein eingetragenes Warenzeichen von Linus Torvalds.

LSI Logic, AcceleRAID, eXtremeRAID, MegaRAID und Mylex sind Warenzeichen oder eingetragene Warenzeichen der LSI Logic Corp.

Microsoft, MS-DOS, Outlook, Windows, Windows Media und Windows NT sind entweder eingetragene Warenzeichen oder Warenzeichen der Microsoft Corporation in den Vereinigten Staaten und/oder in anderen Ländern.

Motif, OSF/1 und UNIX sind eingetragene Warenzeichen und IT DialTone und The Open Group sind Warenzeichen der The Open Group in den Vereinigten Staaten und in anderen Ländern.

Oracle ist ein eingetragenes Warenzeichen der Oracle Corporation.

PowerQuest und PartitionMagic sind eingetragene Warenzeichender PowerQuest Corporation in den Vereinigten Staaten und/oder anderen Ländern.

RealNetworks, RealPlayer und RealAudio sind eingetragene Warenzeichen von RealNetworks, Inc.

Red Hat, RPM, sind Warenzeichen oder eingetragene Warenzeichen von Red Hat, Inc. in den Vereinigten Staaten und in anderen Ländern.

Sun, Sun Microsystems, Java, Java Virtual Machine, JDK, JSP, JVM, Netra, Solaris, StarOffice und SunOS sind Warenzeichen oder eingetragene Warenzeichen von Sun Microsystems, Inc. in den Vereinigten Staaten und in anderen Ländern.

Symantec und Ghost sind eingetragene Warenzeichen der Symantec Corporation in den Vereinigten Staaten und in anderen Ländern.

MATLAB ist ein eingetragenes Warenzeichen von The MathWorks, Inc.

SpeedTouch ist ein Warenzeichen von Thomson

VMware ist ein Warenzeichen von VMware, Inc

Mathematica ist ein eingetragenes Warenzeichen von Wolfram Research, Inc.

XFree86 ist ein Warenzeichen von The XFree86 Project, Inc.

Ogg Vorbis und Xiph.Org sind Warenzeichen von Xiph.Org.

Viele Produktbezeichnungen von Herstellern und Verkäufern sind Warenzeichen. Soweit dem FreeBSD Project das Warenzeichen bekannt ist, werden die in diesem Dokument vorkommenden Bezeichnungen mit dem Symbol oder dem Symbol ® gekennzeichnet.

Zuletzt bearbeitet am 2016-11-15 18:47:56Z von bhd.
Zusammenfassung

Willkommen bei FreeBSD! Dieses Handbuch beschreibt die Installation und den täglichen Umgang mit FreeBSD 11.0-RELEASE und FreeBSD 10.3-RELEASE und FreeBSD 9.3-RELEASE. Das Handbuch ist das Ergebnis einer fortlaufenden Arbeit vieler Einzelpersonen. Dies kann dazu führen, dass einige Abschnitte nicht aktuell sind. Bei Unklarheiten empfiehlt es sich daher stets, die englische Originalversion des Handbuchs zu lesen.

Wenn Sie bei der Übersetzung des Handbuchs mithelfen möchten, senden Sie bitte eine E-Mail an die Mailingliste 'FreeBSD German Documentation Project' .

Die aktuelle Version des Handbuchs ist immer auf dem FreeBSD-Webserver verfügbar und kann in verschiedenen Formaten und in komprimierter Form vom FreeBSD FTP-Server oder einem der vielen Spiegel herunter geladen werden (ältere Versionen finden Sie hingegen unter https://docs.FreeBSD.org/doc/). Vielleicht möchten Sie das Handbuch aber auch durchsuchen.

[ einzelne Abschnitte / komplettes Dokument ]

Inhaltsverzeichnis
Vorwort
I. Erste Schritte
1. Einleitung
1.1. Überblick
1.2. Willkommen zu FreeBSD
1.3. Über das FreeBSD Projekt
2. FreeBSD installieren
2.1. Übersicht
2.2. Minimale Hardwareanforderungen
2.3. Vor der Installation
2.4. Die Installation starten
2.5. Verwendung von bsdinstall
2.6. Plattenplatz bereitstellen
2.7. Die Installation festschreiben
2.8. Arbeiten nach der Installation
2.9. Fehlerbehebung
2.10. Verwendung der Live-CD
3. Grundlagen des UNIX Betriebssystems
3.1. Übersicht
3.2. Virtuelle Konsolen und Terminals
3.3. Benutzer und grundlegende Account-Verwaltung
3.4. Zugriffsrechte
3.5. Verzeichnis-Strukturen
3.6. Festplatten, Slices und Partitionen
3.7. Anhängen und Abhängen von Dateisystemen
3.8. Prozesse und Dämonen
3.9. Shells
3.10. Text-Editoren
3.11. Geräte und Gerätedateien
3.12. Manualpages
4. Installieren von Anwendungen: Pakete und Ports
4.1. Übersicht
4.2. Installation von Software
4.3. Suchen einer Anwendung
4.4. Benutzen von pkg zur Verwaltung von Binärpaketen
4.5. Benutzen der Ports-Sammlung
4.6. Pakete mit Poudriere bauen
4.7. Nach der Installation
4.8. Kaputte Ports
5. Das X-Window-System
5.1. Übersicht
5.2. Terminologie
5.3. Xorg installieren
5.4. Xorg konfigurieren
5.5. Schriftarten in Xorg benutzen
5.6. Der X-Display-Manager
5.7. Grafische Oberflächen
5.8. Compiz Fusion installieren
5.9. Fehlersuche
II. Oft benutzte Funktionen
6. Desktop-Anwendungen
6.1. Übersicht
6.2. Browser
6.3. Büroanwendungen
6.4. Anzeigen von Dokumenten
6.5. Finanzsoftware
7. Multimedia
7.1. Übersicht
7.2. Soundkarten einrichten
7.3. MP3-Audio
7.4. Videos wiedergeben
7.5. TV-Karten
7.6. MythTV
7.7. Scanner
8. Konfiguration des FreeBSD-Kernels
8.1. Übersicht
8.2. Wieso einen eigenen Kernel bauen?
8.3. Informationen über die vorhandene Hardware beschaffen
8.4. Die Kernelkonfigurationsdatei
8.5. Einen angepassten Kernel bauen und installieren
8.6. Wenn etwas schiefgeht
9. Drucken
9.1. Schnellstart
9.2. Druckerverbindungen
9.3. Gebräuchliche Seitenbeschreibungssprachen
9.4. Direktes Drucken
9.5. LPD (Line Printer Daemon)
9.6. Andere Drucksysteme
10. Linux®-Binärkompatibilität
10.1. Übersicht
10.2. Konfiguration der Linux®-Binärkompatibilität
10.3. Weiterführende Themen
III. Systemadministration
11. Konfiguration und Tuning
11.1. Übersicht
11.2. Start von Diensten
11.3. cron(8) konfigurieren
11.4. Dienste unter FreeBSD verwalten
11.5. Einrichten von Netzwerkkarten
11.6. Virtual Hosts
11.7. Konfiguration der Systemprotokollierung
11.8. Konfigurationsdateien
11.9. Einstellungen mit sysctl(8)
11.10. Tuning von Laufwerken
11.11. Einstellungen von Kernel Limits
11.12. Hinzufügen von Swap-Bereichen
11.13. Energie- und Ressourcenverwaltung
12. FreeBSDs Bootvorgang
12.1. Übersicht
12.2. FreeBSDs Bootvorgang
12.3. Willkommensbildschirme während des Bootvorgangs konfigurieren
12.4. Konfiguration von Geräten
12.5. Der Shutdown-Vorgang
13. Sicherheit
13.1. Übersicht
13.2. Einführung
13.3. Einmalpasswörter
13.4. TCP Wrapper
13.5. Kerberos
13.6. OpenSSL
13.7. VPN mit IPsec
13.8. OpenSSH
13.9. Zugriffskontrolllisten für Dateisysteme (ACL)
13.10. Sicherheitsprobleme in Software von Drittanbietern überwachen
13.11. FreeBSD Sicherheitshinweise
13.12. Prozess-Überwachung
13.13. Einschränkung von Ressourcen
13.14. Gemeinsame Administration mit Sudo
14. Jails
14.1. Übersicht
14.2. Jails - Definitionen
14.3. Einrichtung und Verwaltung von Jails
14.4. Feinabstimmung und Administration
14.5. Mehrere Jails aktualisieren
14.6. Verwaltung von Jails mit ezjail
15. Verbindliche Zugriffskontrolle
15.1. Übersicht
15.2. Schlüsselbegriffe
15.3. Erläuterung
15.4. MAC Labels verstehen
15.5. Planung eines Sicherheitsmodells
15.6. Modulkonfiguration
15.7. Das MAC Modul seeotheruids
15.8. Das MAC Modul bsdextended
15.9. Das MAC Modul ifoff
15.10. Das MAC Modul portacl
15.11. Das MAC Modul partition
15.12. Das MAC Modul Multi-Level Security
15.13. Das MAC Modul Biba
15.14. Das MAC Modul LOMAC
15.15. Beispiel 1: Nagios in einer MAC Jail
15.16. Beispiel 2: User Lock Down
15.17. Fehler im MAC beheben
16. Security Event Auditing
16.1. Einleitung
16.2. Schlüsselbegriffe
16.3. Audit Konfiguration
16.4. Audit-Trails
17. Speichermedien
17.1. Übersicht
17.2. Hinzufügen von Laufwerken
17.3. Partitionen vergrößern
17.4. USB Speichermedien
17.5. Erstellen und Verwenden von CDs
17.6. DVDs benutzen
17.7. Disketten benutzen
17.8. Datensicherung
17.9. Speicherbasierte Laufwerke
17.10. Schnappschüsse von Dateisystemen
17.11. Disk Quotas
17.12. Partitionen verschlüsseln
17.13. Den Auslagerungsspeicher verschlüsseln
17.14. Highly Available Storage (HAST)
18. GEOM: Modulares Framework zur Plattentransformation
18.1. Übersicht
18.2. RAID0 - Striping
18.3. RAID1 - Spiegelung
18.4. RAID3 - Byte-Level Striping mit dedizierter Parität
18.5. Software RAID
18.6. GEOM Gate Netzwerk
18.7. Das Labeln von Laufwerken
18.8. UFS Journaling in GEOM
19. Das Z-Dateisystem (ZFS)
19.1. Was ZFS anders macht
19.2. Schnellstartanleitung
19.3. zpool Administration
19.4. zfs Administration
19.5. Delegierbare Administration
19.6. Themen für Fortgeschrittene
19.7. Zusätzliche Informationen
19.8. ZFS-Eigenschaften und Terminologie
20. Dateisystemunterstützung
20.1. Übersicht
20.2. Linux® Dateisysteme
21. Virtualisierung
21.1. Übersicht
21.2. FreeBSD als Gast-Betriebssystem unter Parallels für Mac OS® X
21.3. FreeBSD als Gast-Betriebssystem unter Virtual PC für Windows®
21.4. FreeBSD als Gast-Betriebssystem unter VMware Fusion für Mac OS®
21.5. VirtualBox™ Gasterweiterungen auf einem FreeBSD Gast
21.6. FreeBSD als Host mit Virtualbox
21.7. FreeBSD als Host mit bhyve
22. Lokalisierung – I18N/L10N einrichten und benutzen
22.1. Übersicht
22.2. Lokale Anpassungen benutzen
22.3. I18N-Programme
22.4. Lokalisierung für einzelne Sprachen
23. FreeBSD aktualisieren
23.1. Übersicht
23.2. FreeBSD-Update
23.3. Aktualisieren der Dokumentationssammlung
23.4. Einem Entwicklungszweig folgen
23.5. Synchronisation der Quellen
23.6. Das Basissystem neu bauen
23.7. Installation mehrerer Maschinen
24. DTrace
24.1. Überblick
24.2. Unterschiede in der Implementierung
24.3. Die DTrace Unterstützung aktivieren
24.4. DTrace verwenden
IV. Netzwerke
25. Serielle Datenübertragung
25.1. Übersicht
25.2. Begriffe und Hardware
25.3. Terminals
25.4. Einwählverbindungen
25.5. Verbindungen nach Außen
25.6. Einrichten der seriellen Konsole
26. PPP
26.1. Übersicht
26.2. PPP konfigurieren
26.3. Probleme bei PPP-Verbindungen
26.4. PPP over Ethernet (PPPoE)
26.5. PPP over ATM (PPPoA)
27. Elektronische Post (E-Mail)
27.1. Terminologie
27.2. Übersicht
27.3. E-Mail Komponenten
27.4. Sendmail-Konfigurationsdateien
27.5. Wechseln des Mailübertragungs-Agenten
27.6. Fehlerbehebung
27.7. Weiterführende Themen
27.8. Ausgehende E-Mail über einen Relay versenden
27.9. E-Mail über Einwahl-Verbindungen
27.10. SMTP-Authentifizierung
27.11. E-Mail-Programme
27.12. E-Mails mit fetchmail abholen
27.13. E-Mails mit procmail filtern
28. Netzwerkserver
28.1. Übersicht
28.2. Der inetd Super-Server
28.3. Network File System (NFS)
28.4. Network Information System (NIS)
28.5. Lightweight Access Directory Protocol (LDAP)
28.6. Dynamic Host Configuration Protocol (DHCP)
28.7. Domain Name System (DNS)
28.8. Apache HTTP-Server
28.9. File Transfer Protocol (FTP)
28.10. Datei- und Druckserver für Microsoft® Windows®-Clients (Samba)
28.11. Die Uhrzeit mit NTP synchronisieren
28.12. iSCSI Initiator und Target Konfiguration
29. Firewalls
29.1. Einführung
29.2. Firewallkonzepte
29.3. PF
29.4. IPFW
29.5. IPFILTER (IPF)
30. Weiterführende Netzwerkthemen
30.1. Übersicht
30.2. Gateways und Routen
30.3. Drahtlose Netzwerke
30.4. USB Tethering
30.5. Bluetooth
30.6. LAN-Kopplung mit einer Bridge
30.7. Link-Aggregation und Failover
30.8. Plattenloser Betrieb mit PXE
30.9. IPv6
30.10. Common Address Redundancy Protocol (CARP)
30.11. VLANs
V. Anhang
A. Bezugsquellen für FreeBSD
A.1. CD und DVD Sets
A.2. FTP-Server
A.3. Benutzen von Subversion
A.4. Subversion Mirror Sites
A.5. Benutzen von rsync
B. Bibliografie
B.1. Bücher speziell für FreeBSD
B.2. Handbücher
B.3. Administrations-Anleitungen
B.4. Programmierhandbücher
B.5. Betriebssystem-Interna
B.6. Sicherheits-Anleitung
B.7. Hardware-Anleitung
B.8. UNIX® Geschichte
B.9. Zeitschriften, Magazine und Journale
C. Ressourcen im Internet
C.1. Webseiten
C.2. Mailinglisten
C.3. Usenet-News
C.4. Offizielle Spiegel
D. OpenPGP-Schlüssel
D.1. Ansprechpartner
FreeBSD Glossar
Stichwortverzeichnis
Abbildungsverzeichnis
2.1. FreeBSD Boot Loader Menü
2.2. FreeBSD Boot-Optionen Menü
2.3. Willkommen-Menü
2.4. Tastaturbelegung festlegen
2.5. Tastaturauswahlbildschirm
2.6. Erweiterte Tastaturbelegung
2.7. Festlegen des Rechnernamens
2.8. Komponenten für die Installation auswählen
2.9. Installation über das Netzwerk
2.10. Einen Spiegelserver wählen
2.11. Partitionierung unter FreeBSD 9.x
2.12. Partitionierung unter FreeBSD 10.x und neueren Versionen
2.13. Aus mehreren Platten eine auswählen
2.14. Auswahl der gesamten Platte oder einer Partition
2.15. Überprüfen der erstellen Partitionen
2.16. Partitionen manuell erstellen
2.17. Partitionen manuell anlegen
2.18. Partitionen manuell erzeugen
2.19. ZFS Konfigurationsmenü
2.20. ZFS Pool Typen
2.21. Auswahl der Laufwerke
2.22. Ungültige Auswahl
2.23. Eigenschaften einer Festplatte
2.24. Passwort für die Verschlüsselung der Platte
2.25. Letzte Chance
2.26. Letzte Bestätigung
2.27. Herunterladen der Distributionsdateien
2.28. Überprüfen der Distributionsdateien
2.29. Entpacken der Distributionsdateien
2.30. Das root-Passwort setzen
2.31. Eine zu konfigurierende Netzwerkschnittstelle auswählen
2.32. Nach drahtlosen Access Points scannen
2.33. Ein drahtloses Netzwerk auswählen
2.34. Verbindungsaufbau mit WPA2
2.35. Auswahl von IPv4
2.36. Auswählen der IPv4-Konfiguration über DHCP
2.37. Statische IPv4-Konfiguration
2.38. Auswahl von IPv6
2.39. Auswahl der IPv6 SLAAC-Konfiguration
2.40. Statische IPv6-Konfiguration
2.41. DNS-Konfiguration
2.42. Lokale oder UTC-Zeit
2.43. Auswahl der geographischen Region
2.44. Das Land auswählen
2.45. Wählen einer Zeitzone
2.46. Bestätigen der Zeitzone
2.47. Auswahl zusätzlicher Dienste
2.48. Aktivierung der Absturzaufzeichnung
2.49. Benutzerkonten hinzufügen
2.50. Benutzerinformationen eingeben
2.51. Verlassen der Benutzer- und Gruppenverwaltung
2.52. Letzte Schritte der Konfiguration
2.53. Manuelle Konfiguration
2.54. Die Installation vervollständigen
30.1. PXE-Bootvorgang mit NFS Root Mount
Tabellenverzeichnis
2.1. Partitionierungsschemas
3.1. Programme zur Verwaltung von Benutzer-Accounts
3.2. UNIX® Zugriffsrechte
3.3. Laufwerk-Codes
3.4. Gebräuchliche Umgebungsvariablen
5.1. Die Konfigurationsdateien von XDM
7.1. Typische Fehlermeldungen
9.1. Ausgabe PDLs
12.1. Die eingebauten Befehle des Loaders
12.2. Interaktion mit dem Kernel während des Bootens
13.1. Ressourcenbeschränkungen für Login-Klassen
16.1. Audit-Ereignisklassen
16.2. Präfixe für Audit-Ereignisklassen
22.1. Gebräuchliche Sprach- und Ländercodes
22.2. Terminaltypen für Zeichensätze
22.3. Konsolen aus der Ports-Sammlung
22.4. Verfügbare Eingabemethoden
25.1. Nullmodemkabel vom Typ DB-25-zu-DB-25
25.2. Nullmodemkabel vom Typ DB-9-zu-DB-9
25.3. Nullmodemkabel vom Typ DB-9-zu-DB-25
25.4. Signalnamen
25.5. Fall 1: Option 0x10 für sio0
25.6. Fall 2: Option 0x30 für sio0
28.1. NIS Begriffe
28.2. Zusätzliche Benutzer
28.3. Zusätzliche Rechner
28.4. DNS-Begriffe
29.1. Nützliche pfctl Optionen
30.1. Allgemeine Attribute in Routingtabellen
30.2. Station Capability Codes
30.3. Reservierte IPv6-Adressen
Liste der Beispiele
2.1. Ein traditionelles, partitioniertes Dateisystem erstellen
3.1. Ein Programm als Superuser installieren
3.2. Einen Benutzer unter FreeBSD anlegen
3.3. Interaktives Löschen von Accounts mit rmuser
3.4. chpass als Superuser verwenden
3.5. chpass als normaler Benutzer verwenden
3.6. Das eigene Passwort wechseln
3.7. Als Superuser das Passwort eines anderen Accounts verändern
3.8. Setzen der Mitgliederliste einer Gruppe mit pw(8)
3.9. Ein Gruppenmitglied mit pw(8) hinzufügen
3.10. Hinzufügen eines neuen Gruppenmitglieds mittels pw(8)
3.11. Mit id die Gruppenzugehörigkeit bestimmen
3.12. Namen von Platten, Slices und Partitionen
3.13. Aufteilung einer Festplatte
5.1. Den Intel® Treiber über eine Datei auswählen
5.2. Den Radeon Treiber über eine Datei auswählen
5.3. Den VESA Treiber über eine Datei auswählen
5.4. Den scfb Treiber über eine Datei auswählen
5.5. Die Bildschirmauflösung in eine Datei schreiben
5.6. Manuelles Einstellen der Monitorfrequenzen
5.7. Konfiguration eines Tastaturlayouts
5.8. Konfiguration mehrerer Tastaturlayouts
5.9. X über die Tastatur beenden
5.10. Die Anzahl der Maustasten festlegen
11.1. Einfache Server Konfiguration
11.2. Erstellen einer Swap-Datei unter FreeBSD 10.X und neuer
11.3. Erstellen einer Swap-Datei unter FreeBSD 9.X und älter
12.1. boot0-Screenshot
12.2. boot2-Screenshot
12.3. Auf insecure gesetzte Konsole in /etc/ttys
13.1. Einen sicheren Tunnel für SMTP erstellen
13.2. Sicherer Zugriff auf einen POP3-Server
13.3. Umgehen einer Firewall
14.1. mergemaster(8) in einer nicht vertrauenswürdigen Jail ausführen
14.2. mergemaster(8) in einer vertrauenswürdigen Jail ausführen
14.3. BIND in einer Jail laufen lassen
17.1. dump mit ssh benutzen
17.2. dump über ssh mit gesetzter RSH benutzen
17.3. Das aktuelle Verzeichnis mit tar sichern
17.4. Wiederherstellung mit tar in das aktuelle Verzeichnis
17.5. Rekursive Sicherung des aktuellen Verzeichnisses mit ls und cpio
17.6. Das aktuelle Verzeichnis mit pax sichern
18.1. Die Partitionen einer Bootplatte labeln
25.1. Einträge in /etc/ttys hinzufügen
28.1. Die Konfigurationsdatei von inetd neu einlesen
28.2. Ein exportiertes Dateisystem mit amd in den Verzeichnisbaum einhängen
28.3. Ein exportiertes Dateisystem mit autofs(5) in den Verzeichnisbaum einhängen
28.4. Beispiel einer /etc/ntp.conf
30.1. LACP Aggregation mit einem Cisco® Switch
30.2. Ausfallsicherer Modus
30.3. Failover Modus zwischen Ethernet- und Wireless-Schnittstellen

Vorwort

Über dieses Buch

Der erste Teil dieses Buchs führt FreeBSD-Einsteiger durch den Installationsprozess und stellt leicht verständlich Konzepte und Konventionen vor, die UNIX® zu Grunde liegen. Sie müssen nur neugierig sein und bereitwillig neue Konzepte aufnehmen, wenn diese vorgestellt werden, um diesen Teil durchzuarbeiten.

Wenn Sie den ersten Teil bewältigt haben, bietet der umfangreichere zweite Teil eine verständliche Darstellung vieler Themen, die für FreeBSD-Administratoren relevant sind. Wenn Kapitel auf anderen Kapiteln aufbauen, wird das in der Übersicht am Anfang eines Kapitels erläutert.

Weitere Informationsquellen entnehmen Sie bitte Anhang B, Bibliografie.

Änderungen gegenüber der dritten Auflage

Die aktuelle Auflage des Handbuchs ist das Ergebnis der engagierten Arbeit Hunderter Mitarbeiter des FreeBSD Documentation Projects in den vergangenen 10 Jahren. Die wichtigsten Änderungen dieser Auflage gegenüber der dritten Auflage von 2004 sind:

Änderungen gegenüber der zweiten Auflage (2004)

Die dritte Auflage des Handbuchs war das Ergebnis der über zwei Jahre dauernden engagierten Arbeit des FreeBSD Documentation Projects. Die gedruckte Ausgabe war derart umfangreich, dass es notwendig wurde, sie in zwei Bände aufzuteilen. Die wichtigsten Änderungen dieser Auflage waren:

  • Kapitel 11, Konfiguration und Tuning enthält neue Abschnitte über ACPI, Energie- und Ressourcenverwaltung und das Werkzeug cron.

  • Kapitel 13, Sicherheit erläutert nun Virtual Private Networks (VPNs), Zugriffskontrolllisten (ACLs) und Sicherheitshinweise.

  • Kapitel 15, Verbindliche Zugriffskontrolle ist ein neues Kapitel, das vorgeschriebene Zugriffskontrollen vorstellt und erklärt, wie FreeBSD-Systeme mit MACs abgesichert werden können.

  • Kapitel 17, Speichermedien enthält neue Informationen über USB-Speichergeräte, Dateisystem-Snapshots, Quotas, Datei- und Netzwerk-basierte Dateisysteme sowie verschlüsselte Partitionen.

  • Zum Kapitel 26, PPP wurde ein Abschnitt über Fehlersuche hinzugefügt.

  • Kapitel 27, Elektronische Post (E-Mail) wurde um Abschnitte über alternative Transport-Agenten (MTAs), SMTP-Authentifizierung, UUCP, fetchmail, procmail und weitere Themen erweitert.

  • Kapitel 28, Netzwerkserver ist ein weiteres neues Kapitel dieser Auflage. Das Kapitel beschreibt, wie der Apache HTTP-Server, ftpd und ein Samba-Server für Microsoft® Windows®-Clients eingerichtet werden. Einige Abschnitte aus dem Kapitel 30, Weiterführende Netzwerkthemen befinden sich nun, wegen des thematischen Zusammenhangs, in diesem Kapitel.

  • Das Kapitel 30, Weiterführende Netzwerkthemen beschreibt nun den Einsatz von Bluetooth®-Geräten unter FreeBSD und das Einrichten von drahtlosen Netzwerken sowie ATM-Netzwerken.

  • Neu hinzugefügt wurde ein Glossar, das die im Buch verwendeten technischen Ausdrücke definiert.

  • Das Erscheinungsbild der Tabellen und Abbildungen im Buch wurde verbessert.

Änderungen gegenüber der ersten Auflage (2001)

Die zweite Auflage ist das Ergebnis der engagierten Arbeit der Mitglieder des FreeBSD Documentation Projects über zwei Jahre. Die wichtigsten Änderungen gegenüber der ersten Auflage sind:

Gliederung

Dieses Buch ist in fünf Abschnitte unterteilt. Der erste Abschnitt, Erste Schritte, behandelt die Installation und die Grundlagen von FreeBSD. Dieser Abschnitt sollte in der vorgegebenen Reihenfolge durchgearbeitet werden, schon Bekanntes darf aber übersprungen werden. Der zweite Abschnitt, Oft benutzte Funktionen, behandelt häufig benutzte Funktionen von FreeBSD. Dieser Abschnitt sowie alle nachfolgenden Abschnitte können in beliebiger Reihenfolge gelesen werden. Jeder Abschnitt beginnt mit einer kurzen Übersicht, die das Thema des Abschnitts und das nötige Vorwissen erläutert. Die Übersichten helfen dem Leser, interessante Kapitel zu finden und erleichtern das Stöbern im Handbuch. Der dritte Abschnitt, Systemadministration, behandelt die Administration eines FreeBSD-Systems. Der vierte Abschnitt, Netzwerke, bespricht Netzwerke und Netzwerkdienste. Der fünfte Abschnitt enthält Anhänge und Verweise auf weitere Informationen.

Kapitel 1, Einleitung

Dieses Kapitel macht Einsteiger mit FreeBSD vertraut. Es behandelt die Geschichte, die Ziele und das Entwicklungsmodell des FreeBSD-Projekts.

Kapitel 2, FreeBSD installieren

Beschreibt den Ablauf der Installation von FreeBSD 9.x und neuere mittels bsdinstall.

Kapitel 3, Grundlagen des UNIX Betriebssystems

Erläutert die elementaren Kommandos und Funktionen von FreeBSD. Wenn Sie schon mit Linux® oder einem anderen UNIX® System vertraut sind, können Sie dieses Kapitel überspringen.

Kapitel 4, Installieren von Anwendungen: Pakete und Ports

Zeigt wie mit der innovativen Ports-Sammlung oder mit Paketen Software von Fremdherstellern installiert wird.

Kapitel 5, Das X-Window-System

Beschreibt allgemein das X Window System und geht speziell auf X11 unter FreeBSD ein. Weiterhin werden graphische Benutzeroberflächen wie KDE und GNOME behandelt.

Kapitel 6, Desktop-Anwendungen

Enthält eine Aufstellung verbreiteter Anwendungen wie Browser, Büroanwendungen und Office-Pakete und beschreibt wie diese Anwendungen installiert werden.

Kapitel 7, Multimedia

Erklärt, wie Sie auf Ihrem System Musik und Videos abspielen können. Beispielhaft werden auch Anwendungen aus dem Multimedia-Bereich beleuchtet.

Kapitel 8, Konfiguration des FreeBSD-Kernels

Erklärt, warum Sie einen angepassten Kernel erzeugen sollten und gibt ausführliche Anweisungen wie Sie einen angepassten Kernel konfigurieren, bauen und installieren.

Kapitel 9, Drucken

Beschreibt, wie Sie Drucker unter FreeBSD verwalten. Diskutiert werden Deckblätter, das Einrichten eines Druckers und ein Abrechnungssystem für ausgedruckte Seiten.

Kapitel 10, Linux®-Binärkompatibilität

Beschreibt die binäre Kompatibilität zu Linux®. Weiterhin werden ausführliche Installationsanleitungen für Oracle® und Mathematica® gegeben.

Kapitel 11, Konfiguration und Tuning

Beschreibt die Einstellungen, die ein Systemadministrator vornehmen kann, um die Leistungsfähigkeit eines FreeBSD Systems zu verbessern. In diesem Kapitel werden auch verschiedene Konfigurationsdateien besprochen.

Kapitel 12, FreeBSDs Bootvorgang

Erklärt den Bootprozess von FreeBSD und beschreibt die Optionen, mit denen sich der Bootprozess beeinflussen lässt.

Kapitel 13, Sicherheit

Beschreibt die Werkzeuge mit denen Sie Ihr FreeBSD-System absichern. Unter Anderem werden Kerberos, IPsec und OpenSSH besprochen.

Kapitel 14, Jails

Dieses Kapitel beschreibt das Jails-Framework sowie die Vorteile von Jails gegenüber der traditionellen chroot-Unterstützung von FreeBSD.

Kapitel 15, Verbindliche Zugriffskontrolle

Erklärt vorgeschriebene Zugriffskontrollen (MACs) und wie mit ihrer Hilfe FreeBSD-Systeme gesichert werden.

Kapitel 16, Security Event Auditing

Beschreibt, was FreeBSD Event Auditing ist, wie Sie diese Funktion installieren und konfigurieren und die damit erzeugten Audit-Trails überwachen und auswerten können.

Kapitel 17, Speichermedien

Erläutert den Umgang mit Speichermedien und Dateisystemen. Behandelt werden Plattenlaufwerke, RAID-Systeme, optische Medien, Bandlaufwerke, speicherbasierte Laufwerke und verteilte Dateisysteme.

Kapitel 18, GEOM: Modulares Framework zur Plattentransformation

Beschreibt das GEOM-Framework von FreeBSD sowie die Konfiguration der verschiedenen unterstützten RAID-Level.

Kapitel 20, Dateisystemunterstützung

Beschreibt die Unterstützung nicht-nativer Dateisysteme (beispielsweise des Z-Dateisystems (zfs) von Sun™) durch FreeBSD.

Kapitel 21, Virtualisierung

Dieses Kapitel beschreibt verschiedene Virtualisierungslösungen und wie diese mit FreeBSD zusammenarbeiten.

Kapitel 22, Lokalisierung – I18N/L10N einrichten und benutzen

Zeigt wie Sie FreeBSD mit anderen Sprachen als Englisch einsetzen. Es wird sowohl die Lokalisierung auf der System-Ebene wie auch auf der Anwendungs-Ebene betrachtet.

Kapitel 23, FreeBSD aktualisieren

Erklärt die Unterschiede zwischen FreeBSD-STABLE, FreeBSD-CURRENT und FreeBSD-Releases. Das Kapitel enthält Kriterien anhand derer Sie entscheiden können, ob es sich lohnt, ein Entwickler-System zu installieren und aktuell zu halten. Außerdem wird beschrieben, wie Sie ein System durch das Einspielen neuer Sicherheits-Patches absichern.

Kapitel 24, DTrace

Beschreibt, wie das von Sun™ entwickelte DTrace-Werkzeug unter FreeBSD konfiguriert und eingesetzt werden kann. Dynamisches Tracing kann Ihnen beim Aufspüren von Leistungsproblemen helfen, indem Sie Echtzeit-Systemanalysen durchführen.

Kapitel 25, Serielle Datenübertragung

Erläutert, wie Sie Terminals und Modems an Ihr FreeBSD-System anschließen und sich so ein- und auswählen können.

Kapitel 26, PPP

Erklärt wie Sie mit PPP, SLIP oder PPP über Ethernet ein FreeBSD-System mit einem entfernten System verbinden.

Kapitel 27, Elektronische Post (E-Mail)

Erläutert die verschiedenen Bestandteile eines E-Mail Servers und zeigt einfache Konfigurationen für sendmail, dem meist genutzten E-Mail-Server.

Kapitel 28, Netzwerkserver

Bietet ausführliche Informationen und Beispielkonfigurationen, die es Ihnen ermöglichen, Ihren FreeBSD-Rechner als Network File System Server, Domain Name Server, Network Information Server, oder als Zeitsynchronisationsserver einzurichten.

Kapitel 29, Firewalls

Erklärt die Philosophie hinter softwarebasierten Firewalls und bietet ausführliche Informationen zur Konfiguration der verschiedenen, für FreeBSD verfügbaren Firewalls.

Kapitel 30, Weiterführende Netzwerkthemen

Behandelt viele Netzwerkthemen, beispielsweise das Verfügbarmachen einer Internetverbindung für andere Rechner eines LANs, Routing, drahtlose Netzwerke, Bluetooth®, IPv6, ATM und andere mehr.

Anhang A, Bezugsquellen für FreeBSD

Enthält eine Aufstellung der Quellen von denen Sie FreeBSD beziehen können: CD-ROM, DVD sowie Internet-Sites.

Anhang B, Bibliografie

Dieses Buch behandelt viele Themen und kann nicht alle Fragen erschöpfend beantworten. Die Bibliografie enthält weiterführende Bücher, die im Text zitiert werden.

Anhang C, Ressourcen im Internet

Enthält eine Aufstellung der Foren, die FreeBSD Benutzern für Fragen und Diskussionen zur Verfügung stehen.

Anhang D, OpenPGP-Schlüssel

Enthält PGP-Fingerabdrücke von etlichen FreeBSD Entwicklern.

Konventionen in diesem Buch

Damit der Text einheitlich erscheint und leicht zu lesen ist, werden im ganzen Buch die nachstehenden Konventionen beachtet:

Typographie

Kursiv

Für Dateinamen, URLs, betonte Teile eines Satzes und das erste Vorkommen eines Fachbegriffs wird ein kursiver Zeichensatz benutzt.

Fixschrift

Fehlermeldungen, Kommandos, Umgebungsvariablen, Namen von Ports, Hostnamen, Benutzernamen, Gruppennamen, Gerätenamen, Variablen und Code-Ausschnitte werden in einer Fixschrift dargestellt.

Fett

Fett kennzeichnet Anwendungen, Kommandozeilen und Tastensymbole.

Benutzereingaben

Tasten werden fett dargestellt, um sie von dem umgebenden Text abzuheben. Tasten, die gleichzeitig gedrückt werden müssen, werden durch ein + zwischen den einzelnen Tasten dargestellt:

Ctrl+Alt+Del

Im gezeigten Beispiel soll der Benutzer die Tasten Ctrl, Alt und Del gleichzeitig drücken.

Tasten, die nacheinander gedrückt werden müssen, sind durch Kommas getrennt:

Ctrl+X, Ctrl+S

Das letzte Beispiel bedeutet, dass die Tasten Ctrl und X gleichzeitig betätigt werden und danach die Tasten Ctrl und S gleichzeitig gedrückt werden müssen.

Beispiele

Beispiele, die durch C:\> eingeleitet werden, zeigen ein MS-DOS® Kommando. Wenn nichts Anderes angezeigt wird, können diese Kommandos unter neuen Versionen von Microsoft® Windows® auch in einem DOS-Fenster ausgeführt werden.

E:\> tools\fdimage floppies\kern.flp A:

Beispiele, die mit # beginnen, müssen unter FreeBSD mit Superuser-Rechten ausgeführt werden. Dazu melden Sie sich entweder als root an oder Sie wechseln von Ihrem normalen Account mit su(1) zu dem Benutzer root.

# dd if=kern.flp of=/dev/fd0

Beispiele, die mit % anfangen, werden unter einem normalen Benutzer-Account ausgeführt. Sofern nichts Anderes angezeigt wird, verwenden die Beispiele die Syntax der C-Shell.

% top

Danksagung

Dieses Buch ist aus Beiträgen von vielen Leuten aus allen Teilen der Welt entstanden. Alle eingegangen Beiträge, zum Beispiel Korrekturen oder vollständige Kapitel, waren wertvoll.

Einige Firmen haben dieses Buch dadurch unterstützt, dass Sie Autoren in Vollzeit beschäftigt und die Veröffentlichung des Buchs finanziert haben. Besonders BSDi (das später von Wind River Systems übernommen wurde) beschäftigte Mitglieder des FreeBSD Documentation Projects, um dieses Buch zu erstellen. Dadurch wurde die erste (englische) gedruckte Auflage im März 2000 möglich (ISBN 1-57176-241-8). Wind River Systems bezahlte dann weitere Autoren, die die zum Drucken nötige Infrastruktur verbesserten und zusätzliche Kapitel beisteuerten. Das Ergebnis dieser Arbeit ist die zweite (englische) Auflage vom November 2001 (ISBN 1-57176-303-1). Zwischen 2003 und 2004 bezahlte FreeBSD Mall, Inc mehrere Mitarbeiter für die Vorbereitung der gedruckten dritten Auflage.

Teil I. Erste Schritte

Dieser Teil des Handbuchs richtet sich an Benutzer und Administratoren für die FreeBSD neu ist. Diese Kapitel

  • enthalten eine Einführung in FreeBSD,

  • geleitet den Leser durch den Installationsprozess,

  • erklärt die Grundlagen von UNIX® Systemen,

  • demonstriert, wie die Fülle der erhältlichen Anwendungen Dritter installiert werden und

  • führt den Leser in X, der Benutzeroberfläche von UNIX® Systemen ein. Es wird gezeigt, wie ein Desktop konfiguriert wird, um effektiver arbeiten zu können.

Referenzen auf weiter vorne liegende Textteile wurden auf ein Minimum beschränkt, so dass dieser Abschnitt ohne viel Blättern durchgearbeitet werden kann.

Kapitel 1. Einleitung

Restrukturiert, umorganisiert und Abschnitte neu geschrieben von Jim Mock.

1.1. Überblick

Herzlichen Dank für Ihr Interesse an FreeBSD! Das folgende Kapitel behandelt verschiedene Aspekte des FreeBSD Projekts wie dessen geschichtliche Entwicklung, seine Ziele oder das Entwicklungsmodell.

Nach dem Durcharbeiten des Kapitels wissen Sie über folgende Punkte Bescheid:

  • Wo FreeBSD im Vergleich zu anderen Betriebssystemen steht

  • Die Geschichte des FreeBSD Projekts

  • Die Ziele des FreeBSD Projekts

  • Die Grundlagen des FreeBSD-Open-Source-Entwicklungsmodells

  • Und natürlich woher der Name FreeBSD kommt.

1.2. Willkommen zu FreeBSD

FreeBSD ist ein auf 4.4BSD-Lite basierendes Betriebssystem für Intel (x86 und Itanium®), AMD64 und Sun UltraSPARC® Rechner. An Portierungen zu anderen Architekturen wird derzeit gearbeitet. Mehr zur Geschichte von FreeBSD erfahren Sie in die Geschichte von FreeBSD oder aus den aktuellen Release-Informationen. Falls Sie das FreeBSD Projekt unterstützen wollen (z.B. mit Quellcode, Hardware- oder Geldspenden), lesen Sie den FreeBSD unterstützen Artikel.

1.2.1. Was kann FreeBSD?

FreeBSD hat zahlreiche bemerkenswerte Eigenschaften. Um nur einige zu nennen:

  • Präemptives Multitasking mit dynamischer Prioritätsanpassung zum reibungslosen und ausgeglichenen Teilen der Systemressourcen zwischen Anwendungen und Anwendern, selbst unter schwerster Last.

  • Mehrbenutzerbetrieb erlaubt es, viele FreeBSD-Anwender gleichzeitig am System mit verschiedenen Aufgaben arbeiten zu lassen. Beispielsweise können Geräte wie Drucker oder Bandlaufwerke, die sich nur schwerlich unter allen Anwendern des Systems oder im Netzwerk teilen lassen, durch setzen von Beschränkungen auf Benutzer oder Gruppen wichtige Systemressourcen vor Überbeanspruchung geschützt werden.

  • StarkeTCP/IP-Netzwerkfähigkeit mit Unterstützung von Industriestandards wie SCTP, DHCP, NFS, NIS, PPP, SLIP, IPsec und IPv6. Das bedeutet, Ihr FreeBSD-System kann in einfachster Weise mit anderen Systemen interagieren. Zudem kann es als Server-System im Unternehmen wichtige Aufgaben übernehmen, beispielsweise als NFS- oder E-Mail-Server oder es kann Ihren Betrieb durch HTTP- und FTP-Server beziehungsweise durch Routing und Firewalling Internetfähig machen.

  • Speicherschutz stellt sicher, dass Anwendungen (oder Anwender) sich nicht gegenseitig stören. Stürzt eine Anwendung ab, hat das keine Auswirkung auf andere Prozesse.

  • Der Industriestandard X-Window-System (X11R7) bietet eine grafische Benutzeroberfläche (GUI).

  • Binärkompatibilität mit vielen auf anderen Betriebssystemen erstellten Programmen wie Linux, SCO, SVR4, BSDI und NetBSD.

  • Tausende zusätzliche leicht zu portierende Anwendungen sind über die FreeBSD Ports und Paket-Sammlung verfügbar. Warum mühselig im Netz nach Software suchen, wenn diese bereits vorhanden ist?

  • Tausende zusätzliche leicht zu portierende Anwendungen sind über das Internet zu beziehen. FreeBSD ist Quellcode-kompatibel mit den meisten kommerziellen UNIX® Systemen. Daher bedürfen Anwendungen häufig nur geringer oder gar keiner Anpassung, um auf einem FreeBSD-System zu kompilieren.

  • Seitenweise anforderbarer virtueller Speicher und merged VM/buffer cache -Entwurf bedient effektiv den großen Speicherhunger mancher Anwendungen bei gleichzeitigem Aufrechterhalten der Bedienbarkeit des Systems für weitere Benutzer.

  • SMP-Unterstützung für Systeme mit mehreren CPUs.

  • Ein voller Satz von C und C++ Entwicklungswerkzeugen. Viele zusätzliche Programmiersprachen für höhere Wissenschaft und Entwicklung sind in der Ports- und Packages-Sammlung verfügbar.

  • Quellcode für das gesamte System bedeutet größtmögliche Kontrolle über Ihre Umgebung. Warum sollte man sich durch proprietäre Lösungen knebeln und sich auf Gedeih und Verderb der Gnade eines Herstellers ausliefern, wenn man doch ein wahrhaft offenes System haben kann?

  • Umfangreiche Online-Dokumentation.

  • und viele weitere!

FreeBSD basiert auf dem 4.4BSD-Lite-Release der Computer Systems Research Group (CSRG) der Universität von Kalifornien in Berkeley und führt die namenhafte Tradition der Entwicklung von BSD-Systemen fort. Zusätzlich zu der herausragenden Arbeit der CSRG hat das FreeBSD Projekt tausende weitere Arbeitsstunden investiert, um das System zu verfeinern und maximale Leistung und Zuverlässigkeit bei Alltagslast zu bieten. FreeBSD bietet Leistung und Zuverlässigkeit auf dem Niveau kommerzieller Angebote, und kombiniert viele innovative Funtionen, die in anderen Angeboten nicht verfübar sind.

Die Anwendungsmöglichkeiten von FreeBSD werden nur durch Ihre Vorstellungskraft begrenzt. Von Software-Entwicklung bis zu Produktionsautomatisierung, von Lagerverwaltung über Abweichungskorrektur bei Satelliten; Falls etwas mit kommerziellen UNIX® Produkten machbar ist, dann ist es höchstwahrscheinlich auch mit FreeBSD möglich. FreeBSD profitiert stark von tausenden hochwertigen Anwendungen aus wissenschaftlichen Instituten und Universitäten in aller Welt. Häufig sind diese für wenig Geld oder sogar kostenlos zu bekommen. Kommerzielle Anwendungen sind ebenso verfügbar und es werden täglich mehr.

Durch den freien Zugang zum Quellcode von FreeBSD ist es in unvergleichbarer Weise möglich, das System für spezielle Anwendungen oder Projekte anzupassen. Dies ist mit den meisten kommerziellen Betriebssystemen einfach nicht möglich. Beispiele für Anwendungen, die unter FreeBSD laufen, sind:

  • Internet-Dienste: Die robuste TCP/IP-Implementierung in FreeBSD macht es zu einer idealen Plattform für verschiedenste Internet-Dienste, wie zum Beispiel:

    • HTTP-Server (Standard oder mit SSL-Verschlüsselung)

    • IPv4- und IPv6-Routing

    • Firewall NAT (IP-Masquerading)-Gateways

    • FTP-Server

    • E-Mail-Server

    • Und mehr...

  • Bildung: Sind Sie Informatikstudent oder Student eines verwandten Studiengangs? Die praktischen Einblicke in FreeBSD sind die beste Möglichkeit etwas über Betriebssysteme, Rechnerarchitektur und Netzwerke zu lernen. Einige frei erhältliche CAD-, mathematische und grafische Anwendungen sind sehr nützlich, gerade für diejenigen, deren Hauptinteresse in einem Computer darin besteht, andere Arbeit zu erledigen!

  • Forschung: Mit dem frei verfügbaren Quellcode für das gesamte System bildet FreeBSD ein exzellentes Studienobjekt in der Disziplin der Betriebssysteme, wie auch in anderen Zweigen der Informatik. Es ist beispielsweise denkbar, das räumlich getrennte Gruppen gemeinsam an einer Idee oder Entwicklung arbeiten. Das Konzept der freien Verfügbarkeit und -nutzung von FreeBSD ermöglicht so die freie Verwendung, ohne sich gross Gedanken über Lizenzbedingungen zu machen oder aufgrund von Beschränkungen evtl. in einem offenen Forum bestimmte Dinge nicht diskutieren zu dürfen.

  • Netzwerkfähigkeit: Brauchen Sie einen neuen Router? Oder einen Name-Server (DNS)? Eine Firewall zum Schutze Ihres Intranets vor Fremdzugriff? FreeBSD macht aus dem in der Ecke verstaubenden 386- oder 486-PC im Handumdrehen einen leistungsfähigen Router mit anspruchsvollen Paketfilter-Funktionen.

  • Embedded: FreeBSD ist eine exzellente Plattform, um auf embedded Systemen aufzubauen. Mit der Unterstützung für die ARM®-, MIPS®- und PowerPC®-Plattformen, verbunden mit dem robusten Netzwerkstack, aktuellen Neuerungen und der freizügigen BSD-Lizenz stellt FreeBSD eine ausgezeichnete Basis für embedded Router, Firewalls und andere Geräte dar.

  • Desktop: FreeBSD ist eine gute Wahl für kostengünstige X-Terminals mit dem frei verfügbaren X11-Server. FreeBSD bietet die Auswahl aus vielen Open Source Desktop Umgebungen, dazu gehören auch die GNOME und KDE GUIs. FreeBSD kann sogar plattenlos booten, was einzelne Workstations sogar noch günstiger macht und die Verwaltung erleichtert.

  • Software-Entwicklung: Das Standard-FreeBSD-System wird mit einem kompletten Satz an Entwicklungswerkzeugen bereitgestellt, unter anderem einem vollständigen C/C++-Compiler und -Debugger. Entwicklungswerkzeugen. Viele zusätzliche Programmiersprachen für Wissenschaft und Entwicklung sind aus der Ports- und Packages-Sammlung zu haben.

FreeBSD ist sowohl in Form von Quellcode als auch in Binärform auf CD-ROM, DVD und über Anonymus FTP erhältlich. Lesen Sie dazu Anhang A, Bezugsquellen für FreeBSD, um weitere Informationen zum Bezug von FreeBSD zu erhalten.

1.2.2. Wer verwendet FreeBSD?

FreeBSDs fortgeschrittene Eigenschaften, bewährte Sicherheit und vorhersehbare Release-Zyklen, genauso wie seine tolerante Lizenz haben dazu geführt, dass es als Plattform zum Aufbau vieler kommerzieller und quelloffener Geräte und Produkte verwendet wird. Viele der weltgrössten IT-Unternehmen benutzen FreeBSD:

  • Apache - Die Apache Software Foundation lässt den Grossteil seiner der Öffentlichkeit zugänglichen Infrastruktur, inklusive des möglicherweise grössten SVN-Repositories der Welt mit über 1,4 Millionen Commits, auf FreeBSD laufen.

  • Apple - OS X verwendet viel von FreeBSDs eigenem Netzwerkstack, virtuellem Dateisystem und den Benutzerumgebungskomponenten für sein eigenes System. Apple iOS nutzt ebenso Elemente, die es von FreeBSD übernommen hat

  • Cisco - IronPort Network Sicherheits- und Anti-Spam-Appliance verwendet einen modifizierten FreeBSD-Kernel.

  • Citrix - Die NetScaler Reihe von Sicherheits-Appliances bietet auf den Schichten 4-7 Load-Balancing, Content Caching, Anwendungsfirewall, gesichertes VPN und mobilen Cloud-Netzwerkzugriff, gepaart mit der Mächtigkeit der FreeBSD-Shell.

  • Dell KACE - Die KACE Systemmanagement-Appliances nutzen FreeBSD wegen seiner Zuverlässigkeit, Skalierbarkeit und Gemeinschaft, welche deren zukünftige Weiterentwicklung fördert.

  • Experts Exchange - Alle öffentlich zugänglichen Webserver werden von FreeBSD betrieben und machen starken Gebrauch von Jails, ohne den Überhang von Virtualisierung, um Entwicklungs- und Testumgebung voneinander zu isolieren.

  • Isilon - Isilons Unternehmens-Speicherappliances basieren auf FreeBSD. Die extrem liberale FreeBSD-Lizenz erlaubt Isilon ihr intellektuelles Eigentum durch den gesamten Kernel zu integrieren und kann sich so auf das Erstellen ihres Produktes und nicht des Betriebssystems fokussieren.

  • iXsystems - Die TrueNAS-Linie von vereinheitlichten Speicherappliances beruht auf FreeBSD. Zusätzlich zu deren kommerziellen Produkten, managed iXsystems auch noch die beiden Open Source Projekte PC-BSD und FreeNAS.

  • Juniper - Das JunOS Betriebssystem, welches alle Juniper Netzwerkgeräte (inklusive Router, Switche, Sicherheits- und Netzwerkappliances) antreibt, verwendet FreeBSD Juniper ist einer der vielen Hersteller, welcher das symbolische Verhältnis zwischen dem Projekt und dem Hersteller von kommerziellen Produkten darstellt. Verbesserungen, die Juniper entwickelt hat, werden ebenso in FreeBSD aufgenommen, um die Komplexität der Integration neuer Eigenschaften von FreeBSD zurück in zukünftige JunOS Versionen zu vereinfachen.

  • McAfee - SecurOS, die Basis von McAfee Enterprise-Firewallprodukten inkl. Sidewinder basiert auf FreeBSD.

  • NetApp - Die Data ONTAP GX Reihe von Speicherappliances basieren auf FreeBSD. Zusätzlich hat NetApp viele Neuheiten beigesteuert, inklusive des neuen BSD-lizensierten Hypervisors bhyve.

  • Netflix - Die OpenConnect-Appliance, die Netflix verwendet, um Filme zu seinen Kunden zu streamen basiert auf FreeBSD. Netflix hat weitreichende Beiträge zum Quellcode von FreeBSD beigetragen und arbeitet daran, ein möglichst geringes Delta zur normalen Version beizubehalten. Netflix OpenConnect-Appliances sind für mehr als 32% vom gesamten Internetverkehr in Nordamerika verantwortlich.

  • Sandvine - Sandvine nutzt FreeBSD as die Basis für deren Echtzeit Hochgeschwindigkeits-Netzwerkplattform, welche den Kern deren intelligenter Netzwerkpolicy-Kontrollprodukte darstellt.

  • Sony - Die PlayStation 4 Spielekonsole verwendet eine modifizierte Version von FreeBSD.

  • Sophos - Das Sophos Email-Appliance Produkt basiert auf einem abgesicherten FreeBSD und scannt eingehende E-Mail auf Spam und Viren, während es gleichzeitig ausgehende Mail auf Schadsoftware und versehentlichen Versand von vertraulichen Informationen überwacht.

  • Spectra Logic - Die nTier Reihe von archivspeicherfähigen Appliances nutzt FreeBSD und OpenZFS.

  • Stormshield - Stormshield Network Security Appliances basieren auf einer abgesicherten Version von FreeBSD. Die BSD-Lizenz erlaubt es uns, unser geistiges Eigentum in das System zu integrieren und gleichzeitig interessante Entwicklungen an die Gemeinschaft zurückzugeben.

  • The Weather Channel - Die IntelliStar Appliance, welche am Kopfende eines jeden Kabelversorgers installiert ist und für das Einspeisen von lokalen Wettervorhersagen in das Kabelfernsehprogramm verantwortlich ist, läuft auf FreeBSD.

  • Verisign - Verisign ist für den Betrieb der .com und .net Root-Domainregistries genauso verantwortlich wie für die dazugehörige DNS-Infrastruktur. Sie verlassen sich auf einen Reihe von verschiedenen Netzwerkbetriebssystemen inklusive FreeBSD, um zu gewährleisten, dass es keine gemeinsame Fehlerstelle in deren Infrastruktur gibt.

  • Voxer - Voxer verwendet ZFS auf FreeBSD für ihre mobile Voice-Messaging-Platform. Voxer wechselte von einem Solaris-Derivat zu FreeBSD, wegen der ausgezeichneten Dokumentation und wegen der größeren, aktiveren und sehr Entwickler freundlichen Gemeinschaft. Neben entscheidenen Merkmalen wie ZFS und DTrace bietet FreeBSD auch TRIM-Unterstützung für ZFS.

  • WhatsApp - Als WhatsApp eine Plattform benötigte, die in der Lage ist, mehr als 1 Million gleichzeitiger TCP-Verbindungen pro Server abzuarbeiten, entschied man sich für FreeBSD. Anschließend fuhren Sie damit fort, auf 2,5 Millionen Verbindungen pro Server hochzuskalieren.

  • Wheel Systems - Die FUDO Sicherheitsappliance erlaubt es Unternehmen, Vertragspartner und Administratoren, die an ihren Systemen arbeiten durchführen, zu überwachen, zu kontrollieren, aufzuzeichnen und zu begutachten. Dies basiert auf all den besten Sicherheitseigenschaften von FreeBSD, inklusive ZFS, GELI, Capsicum, HAST und auditdistd.

FreeBSD hat ebenfalls eine Reihe von verwandten Open Source Projekten hervorgebracht:

  • BSD Router - Einen FreeBSD-basierten Ersatz für grosse Unternehmensrouter, der entwickelt wurde, um auf Standard PC-Hardware zu laufen.

  • FreeNAS - Ein eigens dafür entworfenes FreeBSD für den Zweck als Netzwerk-Dateiserver Appliance zu fungieren. Es enthält eine Python-basierte Webschnittstelle, um das Management von sowohl UFS- als auch ZFS-Systemen zu vereinfachen. Enthalten sind NFS, SMB/CIFS, AFP, FTP und iSCSI. Ebenfalls enthalten ist ein erweiterteres Plugin-System basierend auf FreeBSD-Jails.

  • GhostBSD - Eine auf den Desktop-Einsatz orientierte Distribution von FreeBSD, welche mit einer Gnome-Desktop-Umgebung ausgeliefert wird.

  • mfsBSD - Eine Sammlung von Werkzeugen zum Erstellen von FreeBSD-Systemimages, welches ausschliesslich im Hauptspeicher läuft.

  • NAS4Free - Eine Dateiserverdistribution basierend auf FreeBSD mit einer von PHP-getriebenen Webschnittstelle.

  • OPNSense - OPNSense ist eine quelloffene, einfach zu benutzende und auf FreeBSD basierende Firewall- und Router-Plattform. OPNSense enthält viele Funktionen die sonst nur in kommerziellen Firewalls enthalten sind und manchmal sogar mehr. Es kombiniert die vielfältigen Funktionen kommerzieller Angebote mit den Vorteilen von offenen und nachprüfbaren Quellen.

  • PC-BSD - Eine massgeschneiderte Version von FreeBSD, die sich an Desktop-Benutzern mit graphischen Oberflächenwerkzeugen orientiert, um die Mächtigkeit von FreeBSD allen Benutzern zur Verfügung zu stellen. Entwickelt wurde sie mit dem Ziel, den Übergang von Windows- und OS X-Benutzern zu erleichtern.

  • pfSense - Eine Firewalldistribution basierend auf FreeBSD mit eine grossen Menge von Fähigkeiten und ausgedehnter IPv6-Unterstützung.

  • ZRouter - Eine Open Source Firmware-Alternative für eingebettete Geräte, die auf FreeBSD basiert. Entwickelt wurde sie, um die proprietäre Firmware von Standard-Routern zu ersetzen.

FreeBSD wird auch dazu eingesetzt, um einige der grössten Webseiten des Internets zu betreiben. Dazu gehören:

und viele weitere. Wikipedia pflegt eine Liste von Produkten, die auf FreeBSD basieren.

1.3. Über das FreeBSD Projekt

Der folgende Abschnitt bietet einige Hintergrundinformationen zum FreeBSD Projekt, einschließlich einem kurzen geschichtlichen Abriss, den Projektzielen und dem Entwicklungsmodell.

1.3.1. Kurzer geschichtlicher Abriss zu FreeBSD

Das FreeBSD Projekt erblickte das Licht der Welt Anfang 1993 teils als Auswuchs des Unofficial 386BSD Patchkit unter der Regie der letzten drei Koordinatoren des Patchkits: Nate Williams, Rod Grimes und Jordan Hubbard.

Das ursprüngliche Ziel war es, einen zwischenzeitlichen Abzug von 386BSD zu erstellen, um ein paar Probleme zu beseitigen, die das Patchkit-Verfahren nicht lösen konnte. Der frühe Arbeitstitel für das Projekt war 386BSD 0.5 oder 386BSD Interim als Referenz darauf.

386BSD war das Betriebssystem von Bill Jolitz, welches bis zu diesem Zeitpunkt heftig unter fast einjähriger Vernachlässigung litt. Als das Patchkit mit jedem Tag anschwoll und unhandlicher wurde, entschied man sich, Bill Jolitz zu helfen, indem ein übergangsweise bereinigter Abzug zur Verfügung gestellt wurde. Diese Pläne wurden durchkreuzt, als Bill Jolitz plötzlich seine Zustimmung zu diesem Projekt zurückzog, ohne einen Hinweis darauf, was stattdessen geschehen sollte.

Das Trio entschied, dass das Ziel sich weiterhin lohnen würde, selbst ohne die Unterstützung von Bill und so wurde entschieden, den Namen FreeBSD zu verwenden, der von David Greenman geprägt wurde. Die anfänglichen Ziele wurden festgelegt, nachdem man sich mit den momentanen Benutzern des Systems besprach und abzusehen war, dass das Projekt die Chance hatte, Realität zu werden, kontaktierte Jordan Walnut Creek CDROM mit dem Vorhaben, FreeBSDs Verteilung auch auf diejenigen auszuweiten, die noch keinen Internetzugang besaßen. Walnut Creek CDROM unterstützte nicht nur die Idee durch die Verbreitung von FreeBSD auf CD, sondern ging auch so weit dass es dem Projekt eine Maschine mit schneller Internetverbindung zur Verfügung stellte, um damit zu arbeiten. Ohne den von Walnut Creek bisher nie dagewesenen Grad von Vertrauen in ein, zur damaligen Zeit, komplett unbekanntes Projekt, wäre es unwahrscheinlich, dass FreeBSD so weit gekommen wäre, wie es heute ist.

Die erste auf CD-ROM (und netzweit) verfügbare Veröffentlichung war FreeBSD 1.0 im Dezember 1993. Diese basierte auf dem Band der 4.3BSD-Lite (Net/2) der Universität von Kalifornien in Berkeley. Viele Teile stammten aus 386BSD und von der Free Software Foundation. Gemessen am ersten Angebot, war das ein ziemlicher Erfolg und Sie ließen dem das extrem erfolgreiche FreeBSD 1.1 im Mai 1994 folgen.

Zu dieser Zeit formierten sich unerwartete Gewitterwolken am Horizont, als Novell und die Universität von Kalifornien in Berkeley (UCB) ihren langen Rechtsstreit über den rechtlichen Status des Berkeley Net/2-Bandes mit einem Vergleich beilegten. Eine Bedingung dieser Einigung war es, dass die UCB große Teile des Net/2-Quellcodes als belastet zugestehen musste, und dass diese Besitz von Novell sind, welches den Code selbst einige Zeit vorher von AT&T bezogen hatte. Im Gegenzug bekam die UCB den Segen von Novell, dass sich das 4.4BSD-Lite-Release bei seiner endgültigen Veröffentlichung als unbelastet bezeichnen darf. Alle Net/2-Benutzer sollten auf das neue Release wechseln. Das betraf auch FreeBSD. Dem Projekt wurde eine Frist bis Ende Juli 1994 eingeräumt, das auf Net/2-basierende Produkt nicht mehr zu vertreiben. Unter den Bedingungen dieser Übereinkunft war es dem Projekt noch erlaubt ein letztes Release vor diesem festgesetzten Zeitpunkt herauszugeben. Das war FreeBSD 1.1.5.1.

FreeBSD machte sich dann an die beschwerliche Aufgabe, sich Stück für Stück aus einem neuen und ziemlich unvollständigen Satz von 4.4BSD-Lite-Teilen, wieder aufzubauen. Die Lite -Veröffentlichungen waren deswegen leicht, weil Berkeleys CSRG große Code-Teile, die für ein start- und lauffähiges System gebraucht wurden, aufgrund diverser rechtlicher Anforderungen entfernen musste und weil die 4.4-Portierung für Intel-Rechner extrem unvollständig war. Das Projekt hat bis November 1994 gebraucht diesen Übergang zu vollziehen. Im Dezember wurde dann FreeBSD 2.0 veröffentlicht. Obwohl FreeBSD gerade die ersten Hürden genommen hatte, war dieses Release ein maßgeblicher Erfolg. Diesem folgte im Juni 1995 das robustere und einfacher zu installierende FreeBSD 2.0.5.

Seit dieser Zeit hat FreeBSD eine Reihe von Releases veröffentlicht, die jedes mal die Stabilität, Geschwindigkeit und Menge an verfügbaren Eigenschaften der vorherigen Version verbessert.

Momentan werden langfristige Entwicklungsprojekte im 10.X-CURRENT (Trunk)-Zweig durchgeführt, und Abzüge (Snapshots) der Releases von 10.X werden regelmässig auf den Snapshot-Servern zur Verfügung gestellt.

1.3.2. Ziele des FreeBSD-Projekts

Beigetragen von Jordan Hubbard.

Das FreeBSD Projekt stellt Software her, die ohne Einschränkungen für beliebige Zwecke eingesetzt werden kann. Viele von uns haben beträchtlich in Quellcode und das Projekt investiert und hätten sicher nichts dagegen, hin und wieder ein wenig finanziellen Ausgleich dafür zu bekommen. Aber in keinem Fall bestehen wir darauf. Wir glauben unsere erste und wichtigste Mission ist es, Software für jeden Interessierten und zu jedem Zweck zur Verfügung zu stellen, damit die Software größtmögliche Verbreitung erlangt und größtmöglichen Nutzen stiftet. Das ist, glaube ich, eines der grundlegenden Ziele freier Software, welche wir mit größter Begeisterung unterstützen.

Der Code in unserem Quellbaum, der unter die General Public License (GPL) oder die Library General Public License (LGPL) fällt, stellt geringfügig mehr Bedingungen. Das aber vielmehr im Sinne von eingefordertem Zugriff, als das übliche Gegenteil der Beschränkungen. Aufgrund zusätzlicher Abhängigkeiten, die sich durch die Verwendung von GPL-Software bei kommerziellem Gebrauch ergeben, bevorzugen wir daher Software unter dem transparenteren BSD-Copyright, wo immer es angebracht ist.

1.3.3. Das FreeBSD-Entwicklungsmodell

Beigetragen von Satoshi Asami.

Die Entwicklung von FreeBSD ist ein offener und flexibler Prozess, der durch den Beitrag von buchstäblich tausenden Leuten rund um die Welt ermöglicht wird, wie an der Liste der Beitragenden ersehen können. Die vielen Entwickler können aufgrund der Entwicklungs-Infrastruktur von FreeBSD über das Internet zusammenarbeiten. Wir suchen ständig nach neuen Entwicklern, Ideen und jenen, die sich in das Projekt tiefer einbringen wollen. Nehmen Sie einfach auf der Mailingliste FreeBSD technical discussions Kontakt mit uns auf. Die Mailingliste FreeBSD announcements steht für wichtige Ankündigungen, die alle FreeBSD-Benutzer betreffen, zur Verfügung.

Unabhängig davon ob Sie alleine oder mit anderen eng zusammen arbeiten, enthält die folgende Aufstellung nützliche Informationen über das FreeBSD Projekt und dessen Entwicklungsabläufe.

Die SVN-Repositories

Der Hauptquellbaum von FreeBSD wurde über viele Jahre ausschließlich mit CVS (Concurrent-Versions-System) gepflegt, einem frei erhältlichen Versionskontrollsystem. Im Juni 2008 begann das FreeBSD Project mit dem Umstieg auf SVN (Subversion). Dieser Schritt wurde notwendig, weil durch technische Einschränkungen von CVS aufgrund des rapide wachsenden Quellcodebaumes und dem Umfang der bereits gespeichterten Revisisionsinformationen an dessen Grenzen zu stoßen begann. Die Repositories des Dokumentationsprojekts und die Ports-Sammlung wurden ebenfalls von CVS zu SVN im Mai und Juli 2012 umgezogen. Lesen Sie dazu Synchronisation der Quellen für weitere Informationen zum Beziehen der FreeBSD src/ Repository und Die Ports-Sammlung verwenden für Details zum Beziehen der FreeBSD Ports-Sammlung.

Die Committer-Liste

Die Committer sind diejenigen Leute, welche schreibenden Zugriff auf den Subversion-Baum besitzen und berechtigt sind, Änderungen an den FreeBSD-Quellen (der Begriff Committer stammt aus dem Versionskontrollbefehl commit , der dazu verwendet wird, Änderungen in das Repository zu bringen). Jeder hat die Möglichkeit über die die Datenbank für Problemberichte einen Fehlerreport einzureichen. Bevor Sie einen Fehlerreport einreichen, sollten Sie auf den FreeBSD Mailinglisten, den IRC-Kanälen oder in Foren überprüfen, ob das Problem tatsächlich ein Fehler ist.

The FreeBSD core team

Die FreeBSD core team ist mit dem Vorstand vergleichbar, wenn das FreeBSD Projekt ein Unternehmen wäre. Die Hauptaufgabe des Core Teams ist es sicherzustellen, dass sich das Projekt als Ganzes in einem guten Zustand befindet und sich in die richtige Richtung bewegt. Das Einladen von engagierten und verantwortungsvollen Entwicklern zu dem Zweck, sich der Gruppe von Committern anzuschliessen, ist eine der Funktionen des Core Teams, genauso wie neue Mitglieder des Core Teams zu rekrutieren, wenn andere ausscheiden. Das aktuelle Core Team wurde aus einer Menge von Kandidaten aus dem Kreis der Committer im Juli 2014 gewählt. Wahlen werden alle zwei Jahre abgehalten.

Anmerkung:

Wie die meisten Entwickler auch, sind die Mitglieder des Core Teams Freiwillige, wenn es um die Entwicklung von FreeBSD geht und erhalten keinerlei finanziellen Vorteil aus dem Projekt, deshalb sollte Verpflichtung nicht fehlverstanden werden mit garantierter Unterstützung. Die Vorstands-Analogie oben ist nicht sehr akkurat und kann vielleicht besser damit umschrieben werden, dass diese Leute ihr Leben für FreeBSD gegen jedwede Vernunft geopfert haben.

Aussenstehende Beitragende

Schliesslich stellt die grösste, aber nichtsdestotrotz wichtigste Gruppe von Entwicklern die der Benutzer selbst dar, die stetig Rückmeldungen und Fehlerbehebungen liefert. Der hauptsächliche Weg mit FreeBSDs nicht-zentralisierter Entwicklung Kontakt zu halten, ist, die FreeBSD technical discussions Mailingliste zu abonnieren, auf der solche Dinge diskutiert werden. Lesen Sie dazu Anhang C, Ressourcen im Internet für weitere Informationen über die verschiedenen FreeBSD-Mailinglisten.

Liste der Beitragenden ist eine, die lang ist und stetig wächst, also warum nicht FreeBSD beitreten und noch heute etwas zurückgeben?

Code ist nicht die einzige Art, zu dem Projekt etwas beizutragen. Für eine ausführlichere Liste von Dingen die getan werden müssen, lesen Sie auf der FreeBSD Projektwebseite.

Zusammenfassend ist unser Entwicklungsmodell als eine lose Menge von konzentrischen Kreisen organisiert. Das zentralisierte Modell ist mit der Praktikabilität der Anwender von FreeBSD entworfen worden, die mit der einfachen Art einhergeht, eine zentrale Basis für den Code zu haben und keine potentiellen Beiträge auszuschliessen! Unser Ansporn ist es, ein stabiles Betriebssystem mit einer grossen Menge von kohärenten Anwendungsprogrammen, welches die Benutzer einfach installieren und verwenden können - dieses Modell funktioniert darin sehr gut, dieses Ziel zu erreichen.

Alles was wir von denen verlangen, die uns als FreeBSD-Entwickler beitreten ist, etwas von der gleichen Hingabe an den Erfolg, die seine momentanen Gemeinschaft inne hat, zu besitzen.

1.3.4. Programme von Drittherstellern

Zusätzlich zur Basisdistribution bietet FreeBSD eine Sammlung von portierter Software mit tausenden der am meisten nachgefragten Programme an. Als diese Zeilen geschrieben wurden, gab es über 24,000 Ports! Die Liste der Ports reicht von HTTP-Servern, zu Spielen, Sprachen, Editoren und so ziemlich alles, was dazwischen liegt. Die gesamte Port-Sammlung ist geschätzt 500 MB gross. Um einen Port zu übersetzen, wechseln Sie einfach in das Verzeichnis des Programms, das sie installieren möchten und geben make install ein und das System erledigt den Rest. Die gesamte Originaldistribution für jeden Port, den Sie bauen wird dynamisch heruntergeladen, so dass sie nur genügend Plattenplatz zum bauen des Ports, den sie haben möchten, zur Verfügung stellen müssen. Fast jeder Port ist auch als vorkompiliertesPaket, das über das folgende einfache Kommando (pkg install) für diejenigen, die keine kompilierten Port aus den Quellen wünschen. Weitere Informationen zu Ports und Paketen finden Sie in Kapitel 4, Installieren von Anwendungen: Pakete und Ports.

1.3.5. Zusätzliche Dokumentation

Alle momentanen FreeBSD Versionen bieten eine Option im Installer (entweder sysinstall(8) oder bsdinstall(8)), um zusätzliche Dokumentation unter /usr/local/share/doc/freebsd während des initialen Systemsetups zu installieren. Dokumentation kann auch zu einem späteren Zeitpunkt über Pakete installiert werden, wie es Abschnitt 23.3.2, „Die Dokumentation aus den Ports aktualisieren“ beschreibt. Sie können ebenso die lokal installierten Anleitungen mit jedem HTML-fähigen Browser lesen, indem Sie die folgende URL verwenden:

Genauso erhalten Sie auch die Master (und am häufigsten aktualisierten) Kopien von http://www.FreeBSD.org/.

Kapitel 2. FreeBSD installieren

Restructured, reorganized, and parts rewritten by Jim Mock.
Updated for bsdinstall by Gavin Atkinson und Warren Block.
Erweitert um root-on-ZFS von Allan Jude.
Übersetzt von Benedict Reuschling.

2.1. Übersicht

Beginnend mit FreeBSD 9.0-RELEASE enthält FreeBSD ein text-basiertes, einfach zu verwendendes Installationsprogramm namens bsdinstall. Dieses Kapitel beschreibt die Installation von FreeBSD mit Hilfe von bsdinstall.

Die Installationsanweisungen in diesem Kapitel gelten für die i386™- und AMD64-Architekturen. Gegebenenfalls werden spezifische Anweisungen für andere Plattformen erwähnt. Möglicherweise gibt es auch geringfügige Unterschiede zwischen dem Installationsprogramm und dem, was hier gezeigt wird. Sie sollten dieses Kapitel daher als eine Art Wegweiser und nicht als exakte Anleitung betrachten.

Anmerkung:

Benutzer, die es vorziehen, FreeBSD mit einem graphischen Installationsprogramm zu installieren, sind vielleicht an pc-sysinstall, dem Installationsprogramm des PC-BSD Projekts interessiert. Dieses Installationsprogramm kann benutzt werden, um einen graphischen Desktop (PC-BSD) oder eine Kommandozeilen-Version von FreeBSD zu installieren. Weitere Details finden Sie im PC-BSD Handbuch ( http://wiki.pcbsd.org/index.php/Colophon).

Nachdem Sie dieses Kapitel gelesen haben, werden Sie wissen:

  • welche Mindestanforderungen an die Hardware gestellt werden und welche Architekturen FreeBSD unterstützt.

  • wie man FreeBSD Installationsmedien erstellt.

  • wie man bsdinstall startet.

  • welche Fragen bsdinstall stellt, was sie bedeuten und wie man diese beantwortet.

  • wie Sie Fehler bei der Installation beheben.

  • wie Sie eine Live-Version von FreeBSD ausprobieren können, bevor Sie die Installation starten.

Bevor Sie dieses Kapitel lesen, sollten Sie:

  • Die Liste von unterstützter Hardware lesen, die mit der zu installierenden Version von FreeBSD ausgeliefert wird, um sicherzustellen, dass die Hardware auch unterstützt wird.

2.2. Minimale Hardwareanforderungen

Die Hardwareanforderungen zur Installation von FreeBSD variieren mit der Architektur. Hardwarearchitekturen und von FreeBSD unterstützte Geräte sind auf der Seite FreeBSD Release Informationen aufgelistet. Die FreeBSD Download Seite enthält Informationen zur Auswahl des richtigen Abbilds für verschiedene Architekturen.

Für die Installation von FreeBSD sind mindestens 96 MB RAM und 1.5 GB freier Festplattenspeicher erforderlich. Allerdings ist eine solch geringe Menge an Arbeitsspeicher und Speicherplatz nur für spezifische Anwendungen ausreichend, beispielsweise für Embedded-Geräte. Desktop-Systeme benötigen weitaus mehr Ressourcen. 2-4 GB RAM und mindestens 8 GB Speicherplatz sind ein guter Anfang.

Dies sind die Anforderungen an den Prozessor für jede Architektur:

amd64

Dies ist die gängigste Art von Prozessor für Desktop- und Laptop-Systeme. Andere Anbieter nennen diese Architektur auch x86-64.

Beispiele für amd64-kompatible Prozessoren umfassen: AMD Athlon™64, AMD Opteron™, multi-core Intel® Xeon™ und Intel® Core™ 2 sowie neuere Prozessoren.

i386

Ältere Desktop- und Laptop-Systeme verwenden oft die 32-Bit x86-Architektur.

Fast alle i386-kompatiblen Prozessoren mit einer Floating-Point-Einheit werden unterstützt. Alle Intel®-Prozessoren 486 oder neuer werden unterstützt.

FreeBSD nutzt die Physical Adress Extensions (PAE), falls die CPU diese Funktion unterstützt. Wenn PAE im Kernel aktiviert ist, wird Speicher über 4 GB vom Kernel erkannt und kann von System verwendet werden. PAE schränkt allerdings auch die Gerätetreiber und anderen Komponenten von FreeBSD ein. Einzelheiten finden Sie in pae(4).

ia64

Die derzeit unterstützten Prozessoren sind Itanium® und Itanium® 2. Zu den unterstützten Chipsätzen zählen HP zx1, Intel® 460GX und Intel® E8870. Sowohl Einprozessorsysteme (UP) als auch Mehrprozessorsysteme (SMP werden unterstützt.

pc98

Die NEC PC-9801/9821-Serie mit fast allen i386-kompatiblen Prozessoren, einschließlich 80486, Pentium®, Pentium® Pro und Pentium® II werden unterstützt. Alle i386-kompatiblen Prozessoren von AMD, Cyrix, IBM und IDT werden ebenfalls unterstützt. Ebenso die EPSON PC-386/486/586-Serie, welche mit der NEC-Serie PC-9801 kompatibel ist. NEC FC-9801/9821 und die NEC SV-98-Serie sollte ebenfalls unterstützt werden.

Der hochauflösende Modus wird nicht unterstützt. NEC PC-98XA/XL/RL/XL^2 und die NEC PC-H98-Serie werden nur im normalen (PC-9801 kompatibel) Modus unterstützt. Die SMP bezogenen Funktionen von FreeBSD werden nicht unterstützt. Auch der New Extend Standard Architecture (NESA) Bus, verwendet in den Serien PC-H98, SV-H98 und FC-H98, wird nicht unterstützt.

powerpc

Alle New Word ROM Apple® Mac®-Systeme mit integriertem USB werden unterstützt. SMP wird auf Maschinen mit mehreren CPUs unterstützt.

Ein 32-Bit Kernel kann jedoch nur die ersten 2 GB RAM verwenden.

sparc64

Systeme, die von FreeBSD/sparc64 unterstützt werden, sind auf der FreeBSD/sparc64-Projektseite aufgelistet.

SMP wird auf allen Systemen mit mehr als einem Prozessor unterstützt. Eine dedizierte Platte wird benötigt, da es nicht möglich ist, eine Platte mit einem anderen Betriebssystem zur gleichen Zeit zu teilen.

2.3. Vor der Installation

Wenn das System die Mindestanforderungen für die Installation von FreeBSD erfüllt, sollte die Installationsdatei heruntergeladen und die Installationsmedien vorbereitet werden. Bevor Sie dies tun, prüfen Sie mit Hilfe dieser Checkliste, ob das System für die Installation bereit ist:

  1. Sichern Sie wichtige Daten

    Erstellen Sie immer eine Sicherung aller wichtigen Daten, bevor Sie ein Betriebssystem installieren. Speichern Sie die Daten jedoch nicht auf dem System, auf dem das Betriebssystem installiert wird, sondern nutzen Sie einen Wechseldatenträger, wie beispielsweise ein USB-Laufwerk, oder sichern Sie auf einem anderen System im Netzwerk, oder nutzen einen Online-Backup-Dienst. Überprüfen Sie die Sicherungen, bevor Sie mit der Installation beginnen. Sobald das Installationsprogramm die Festplatte des Systems formatiert, gehen alle gespeicherten Daten unwiderruflich verloren.

  2. Den Installationsort von FreeBSD festlegen

    Falls FreeBSD das einzige installierte Betriebssystem sein wird, kann dieser Schritt übersprungen werden. Sollte FreeBSD allerdings die Platte mit anderen Betriebssystemen teilen, müssen Sie entscheiden, welche Platte oder Partition für FreeBSD verwendet werden soll.

    Für die Architekturen i386 und amd64 können die Platten in mehrere Partitionen aufgeteilt werden. Dazu stehen Ihnen zwei Partitionsschemata zur Verfügung. Traditionell enthält ein Master Boot Record (MBR) eine Partitionstabelle, welche bis zu vier primäre Partitionen aufnehmen kann. Aus historischen Gründen werden diese primären Partitionen in FreeBSD slices genannt. Eine Begrenzung von nur vier Partitionen ist für große Platten sehr beschränkt, so dass eine dieser primären Partitionen als erweiterte Partition eingesetzt wird. Mehrere logische Partitionen können dann innerhalb der erweiterten Partition angelegt werden. Die GUID-Partitionstabelle (GPT) ist eine neuere und einfachere Methode zur Partition einer Festplatte. Geläufige GPT-Implementierungen erlauben bis zu 128 Partitionen pro Platte, was die Notwendigkeit von logischen Partitionen eliminiert.

    Warnung:

    Manche älteren Betriebssysteme wie Windows® XP sind mit dem GPT-Partitionsschema nicht kompatibel. Wenn sich FreeBSD die Platte mit einem solchen Betriebssystem teilen soll, werden MBR Partitionen benötigt.

    FreeBSDs Standard-Bootloader benötigt entweder eine primäre oder eine GPT-Partition. Wenn alle primären oder GPT-Partitionen bereits in Verwendung sind, muss eine davon für FreeBSD zur Verfügung gestellt werden. Benutzen Sie ein Werkzeug zur Veränderung der Partitionsgrößen, wenn Sie eine Partition erstellen möchten, ohne dabei vorhandene Daten zu löschen. Den freigegebenen Platz können Sie dann für die Installation verwenden.

    Eine Vielzahl freier und kommerzieller Werkzeuge zur Veränderung der Partitionsgrößen finden Sie unter http://en.wikipedia.org/wiki/List_of_disk_partitioning_software. GParted Live (http://gparted.sourceforge.net/livecd.php) ist eine freie Live-CD, die den GParted-Partitionseditor enthält. GParted ist auch in einer Vielzahl von anderen Linux Live-CD Distributionen enthalten.

    Warnung:

    Bei richtiger Anwendung können Werkzeuge zur Veränderung von Partitionsgrößen auf sichere Art und Weise Platz für eine neue Partition schaffen. Erstellen Sie trotzdem eine Vollsicherung und überprüfen Sie deren Integrität bevor Sie die Partitionen auf der Platte verändern.

    Festplattenpartitionen, die unterschiedliche Betriebssysteme enthalten, ermöglichen es, jeweils eines dieser Systeme zu verwenden. Eine alternative Möglichkeit, mehrere Betriebssysteme gleichzeitig einzusetzen, ohne dabei Partitionen ändern zu müssen, wird im Kapitel 21, Virtualisierung behandelt.

  3. Netzwerkparameter ermitteln

    Manche FreeBSD Installationsarten benötigen eine Netzwerkverbindung, um Installationsdateien herunter zu laden. Nach jeder Installation bietet das Installationsprogramm die Möglichkeit, die Netzwerkschnittstellen des Systems zu konfigurieren.

    Steht im Netzwerk ein DHCP-Server zur Verfügung, wird dieser im Allgemeinen verwendet, um automatisch Netzwerkeinstellungen vorzunehmen. Falls DHCP nicht verfügbar ist, müssen die folgenden Netzwerkeinstellungen beim lokalen Netzwerkadministrator oder Provider erfragt werden:

    Erforderliche Informationen zum Netzwerk
    1. IP-Adresse

    2. Subnetz-Maske

    3. IP-Adresse des Default-Gateway

    4. Domänenname des Netzwerks

    5. IP-Adressen der DNS-Server im Netzwerk

  4. Lesen Sie die FreeBSD-Errata

    Obwohl das FreeBSD Projekt sich bemüht, jede veröffentlichte Version von FreeBSD so stabil wie möglich zu machen, können sich doch gelegentlich Fehler in den Veröffentlichungsprozess einschleichen. In sehr seltenen Fällen betreffen diese Fehler den Installationsvorgang. Wenn diese Probleme entdeckt und behoben sind, werden dazu Hinweise in der FreeBSD Errata ( http://www.freebsd.org/releases/11.0R/errata.html) auf der FreeBSD Webseite veröffentlicht. Prüfen Sie die Errata vor der Installation, um sicherzustellen, dass es keine Probleme gibt, welche die Installation betreffen.

    Informationen und Errata für all diese Veröffentlichungen finden Sie unter den Release Informationen auf der FreeBSD Webseite ( http://www.freebsd.org/releases/index.html).

2.3.1. Die Installationsmedien vorbereiten

Das FreeBSD-Installationsprogramm ist keine Anwendung, das aus einem anderen Betriebssystem heraus gestartet werden kann. Laden Sie stattdessen eine Installationsdatei für FreeBSD herunter und brennen Sie den Dateityp auf einen entsprechenden Datenträger (CD, DVD, oder USB). Starten Sie dann das System mit diesem Datenträger.

Die FreeBSD-Installationsmedien sind unter www.freebsd.org/where.html#download verfügbar. Der Name der Installationsdatei enthält die Version von FreeBSD, die Architektur sowie den Dateityp. Wenn Sie beispielsweise FreeBSD 10.2 auf einem amd64-System von DVD installieren wollen, laden Sie FreeBSD-10.2-RELEASE-amd64-dvd1.iso und brennen Sie die Datei auf eine DVD. Starten Sie dann das System mit dieser DVD.

Die Installationsdateien stehen in verschiedenen Formaten zur Verfügung und variieren je nach Rechnerarchitektur und Medientyp.

Für Rechner, die mit UEFI (Unified Extensible Firmware Interface) booten, stehen zusätzliche Installationsdateien zur Verfügung. Die Namen dieser Dateien enthalten die Zeichenkette uefi.

Dateitypen:

  • -bootonly.iso: Dies ist die kleinste Installation, die lediglich das Installationsprogramm enthält. Hierzu ist während der Installation eine funktionierende Internetverbindung erforderlich, da das Installationsprogramm die benötigen Dateien für die FreeBSD-Installation herunter laden muss. Diese Datei sollte mit einem CD-Brennprogramm auf CD gebrannt werden.

  • -disc1.iso: Diese Datei enthält alle benötigten Dateien für eine FreeBSD-Installation, den Quellcode und die Ports-Sammlung. Die Datei sollte mit einem CD-Brennprogramm auf CD gebrannt werden.

  • -dvd1.iso: Diese Datei enthält alle benötigen Dateien für eine FreeBSD-Installation, den Quellcode und die Ports-Sammlung. Darüber hinaus enthält sie eine Reihe von beliebten Binärpaketen zur Installation eines Window-Managers, sodass Sie ein komplettes System installieren können, ohne dass Sie eine Verbindung zum Internet benötigen. Die Datei sollte mit einem DVD-Brennprogramm auf eine DVD gebrannt werden.

  • -memstick.img: Diese Datei enthält alle benötigten Dateien für eine FreeBSD-Installation, den Quellcode und die Ports-Sammlung. Die Datei sollte mit den nachstehenden Anweisungen auf einen USB-Stick geschrieben werden.

  • -mini-memstick.img: Diese Datei enthält, wie -bootonly.iso, keine Installationsdateien, sondern lädt diese bei Bedarf nach. Während der Installation wird eine funktionierende Internetverbindung benötigt. Schreiben Sie die Datei, wie in Abschnitt 2.3.1.1, „Eine Installationsdatei auf einen USB-Stick schreiben“ beschrieben, auf einen USB-Stick.

Nachdem Sie die Datei heruntergeladen haben, laden Sie CHECKSUM.SHA256 aus dem gleichen Verzeichnis herunter. Berechnen Sie dann die Prüfsumme für die Datei. FreeBSD bietet hierfür sha256(1), das Sie als sha256 Dateiname aufrufen können. Andere Betriebssysteme haben ähnliche Programme.

Vergleichen Sie die berechnete Prüfsumme mit der in CHECKSUM.SHA256. Die beiden Prüfsummen müssen übereinstimmen, ansonsten ist die Datei beschädigt und muss erneut heruntergeladen werden.

2.3.1.1. Eine Installationsdatei auf einen USB-Stick schreiben

Die *.img-Datei ist ein komplettes Abbild (engl. Image) des späteren USB-Sticks. Die Datei kann nicht auf das Zielgerät kopiert werden. Es existieren jedoch mehrere Programme, mit denen die *.img-Datei auf einen USB-Stick geschrieben werden kann. In diesem Abschnitt werden zwei dieser Programme vorgestellt.

Wichtig:

Bevor Sie fortfahren, machen Sie Sicherungskopien der Daten auf dem USB-Stick. Diese Prozedur wird alle Daten auf dem Stick löschen.

Prozedur 2.1. Das Image mit dd auf einen USB-Stick schreiben

Warnung:

Dieses Beispiel verwendet /dev/da0 als das Zielgerät, auf welches das Image geschrieben werden soll. Seien Sie sehr vorsichtig, dass das richtige Gerät benutzt wird, da das Kommando alle vorhandenen Daten auf dem Zielgerät zerstört.

  • Das Werkzeug dd(1) steht unter BSD, Linux® und Mac OS®-Systemen zur Verfügung. Um das Image zu brennen, verbinden Sie den USB-Stick mit dem System und bestimmen Sie dessen Gerätenamen. Geben Sie dann den Namen der Installationsdatei und den Gerätenamen des USB-Sticks an. Dieses Beispiel schreibt die Installation für amd64 auf das erste USB-Gerät im FreeBSD-System.

    # dd if=FreeBSD-10.2-RELEASE-amd64-memstick.img of=/dev/da0 bs=1M conv=sync

    Wenn dieser Befehl fehlschlägt, stellen Sie sicher, dass der USB-Stick nicht eingehangen ist und prüfen Sie den Gerätenamen. Auf einigen Systemen muss der Befehl vielleicht mit Hilfe von sudo(8) ausgeführt werden. Einige Systeme wie Linux® verwenden vielleicht einen Puffer. Verwenden Sie dann sync(8), um die Daten zu schreiben.

Prozedur 2.2. Das Image unter Windows® schreiben

Warnung:

Versichern Sie sich, dass Sie den korrekten Laufwerksbuchstaben angeben, da die bestehenden Daten des Laufwerks überschrieben und zerstört werden.

  1. Image Writer für Windows® herunterladen

    Image Writer für Windows® ist eine frei verfügbare Anwendung, welche eine Imagedatei korrekt auf einen USB-Stick schreiben kann. Laden Sie diese von https://launchpad.net/win32-image-writer/ herunter und entpacken Sie sie in ein Verzeichnis.

  2. Das Image mit Image Writer auf den USB-Stick schreiben

    Klicken Sie doppelt auf das Win32DiskImager-Icon, um das Programm zu starten. Prüfen Sie dabei, dass der Laufwerksbuchstabe unter Device dem Gerät entspricht, in dem sich der USB-Stick befindet. Klicken Sie auf das Ordnersymbol und wählen Sie das Image aus, welches auf den USB-Stick geschrieben werden soll. Um den Image-Dateinamen zu akzeptieren, klicken Sie auf [ Save ]. Überprüfen Sie erneut, ob alles stimmt und dass keine Ordner auf dem USB-Stick in anderen Fenstern geöffnet sind. Sobald alles bereit ist, klicken Sie auf [ Write ], um die Imagedatei auf den USB-Stick zu schreiben.

Sie sind jetzt dazu bereit, mit der Installation von FreeBSD zu beginnen.

2.4. Die Installation starten

Wichtig:

Es werden bei Installation so lange keine Änderungen an den Festplatten durchgeführt, bis die folgende Meldung erscheint:

Your changes will now be written to disk.  If you
have chosen to overwrite existing data, it will
be PERMANENTLY ERASED. Are you sure you want to
commit your changes?

Die Installation kann vor dieser Warnung zu jeder Zeit abgebrochen werden. Falls Zweifel bestehen, dass etwas falsch konfiguriert wurde, schalten Sie einfach den Computer vor diesem Punkt aus und es werden keine Änderungen an der Festplatte vorgenommen.

Dieser Abschnitt beschreibt, wie das System vom Installationsmedium, das nach den Anweisungen in Abschnitt 2.3.1, „Die Installationsmedien vorbereiten“ erstellt wurde, gebootet wird. Wenn Sie einen bootfähigen USB-Stick einsetzen, verbinden Sie diesen mit dem System, bevor Sie den Computer einschalten. Falls die Installation von einer CD startet, müssen Sie den Computer einschalten und die CD so bald wie möglich einlegen. Wie das System konfiguriert werden muss, um von dem verwendeten Installationsmedium zu booten, hängt von der Architektur ab.

2.4.1. Systemstart von i386™ und amd64

Diese Architekturen beinhalten ein BIOS-Menü zur Auswahl des Boot-Gerätes. Abhängig von dem verwendeten Installationsmedium können Sie CD/DVD oder USB als erstes Boot-Gerät auswählen. Die meisten Systeme erlauben es auch, das Boot-Gerät während des Startvorgangs zu wählen, typischerweise durch drücken von F10, F11, F12 oder Esc.

Falls der Computer wie normal startet und das bestehende Betriebssystem lädt, befolgen Sie einen der hier aufgeführten Schritte:

  1. Das Installationsmedium wurde während des Startvorgangs nicht früh genug eingelegt. Lassen Sie das Medium eingelegt und versuchen Sie, den Rechner neu zu starten.

  2. Die Änderungen am BIOS waren nicht richtig oder wurden nicht gespeichert. Überprüfen Sie, dass das richtige Boot-Gerät als erstes Boot-Gerät ausgewählt ist.

  3. Das verwendete System ist zu alt und unterstützt das starten vom gewählten Medium nicht. In diesem Fall kann der Plop Boot Manager (http://www.plop.at/de/bootmanagers.html) verwendet werden, um ältere Computer von CD oder USB-Medien zu starten.

2.4.2. Systemstart beim PowerPC®

Auf den meisten Maschinen können Sie C auf der Tastatur gedrückt halten, um von der CD zu starten. Andernfalls, halten Sie Command+Option+O+F, oder Windows+Alt+O+F auf nicht-Apple® Tastaturen gedrückt. Geben Sie an der 0 >-Eingabeaufforderung folgendes ein:

boot cd:,\ppc\loader cd:0

2.4.3. Systemstart für SPARC64®

Die meisten SPARC64®-Systeme sind so eingerichtet, dass diese automatisch von der Festplatte starten. Um FreeBSD von CD zu installieren ist es nötig, in die PROM einzubrechen.

Um dies zu tun, starten Sie das System neu und warten Sie bis die Startmeldungen erscheinen. Abhängig vom Modell sollte dies in etwa folgendermaßen aussehen:

Sun Blade 100 (UltraSPARC-IIe), Keyboard Present
Copyright 1998-2001 Sun Microsystems, Inc.  All rights reserved.
OpenBoot 4.2, 128 MB memory installed, Serial #51090132.
Ethernet address 0:3:ba:b:92:d4, Host ID: 830b92d4.

Falls das System jetzt damit fortfährt von Platte zu starten, müssen Sie L1+A oder Stop+A auf der Tastatur eingeben oder ein BREAK über die serielle Konsole senden. Wenn Sie tip oder cu benutzen, können Sie mit ~# einen BREAK erzeugen. Der Prompt von PROM zeigt dann ok an, wenn es sich um ein System mit einer CPU handelt, beziehungsweise ok {0} auf SMP-Systemen, wobei die Nummer die Anzahl der aktiven CPUs anzeigt.

Legen Sie nun die CD in das Laufwerk und geben Sie boot cdrom am PROM-Prompt ein.

2.4.4. FreeBSD Bootmenü

Wenn das System vom Installationsmedium gestartet wird, erscheint folgendes Menü auf dem Bildschirm:

Abbildung 2.1. FreeBSD Boot Loader Menü
FreeBSD Boot Loader Menü

In der Voreinstellung wird das Menü zehn Sekunden auf Benutzereingaben warten, bevor das Installationsprogramm gestartet wird. Drücken Sie die Leertaste, um den Timer anzuhalten. Um eine Option auszuwählen, drücken Sie die entsprechende Nummer bzw. Buchstaben. Die folgenden Optionen stehen zur Verfügung.

  • Boot Multi User: Dies wird den Boot-Prozess von FreeBSD fortsetzen. Wenn der Timer angehalten wurde, drücken Sie entweder die 1, B, oder Enter.

  • Boot Single User: Dieser Modus kann verwendet werden, um eine bestehende FreeBSD-Installation zu reparieren. Dies wird in Abschnitt 12.2.4.1, „Der Single-User Modus“ beschrieben. Drücken Sie die 2 oder S um in diesen Modus zu gelangen.

  • Escape to loader prompt: Dieser Modus startet einen Prompt, welcher nur eine begrenzte Anzahl an Low-Level-Befehlen enthält. Dies wird in Abschnitt 12.2.3, „Phase Drei“ beschrieben. Drücken Sie die 3 oder Esc um in diesen Modus zu gelangen.

  • Reboot: Startet das System neu.

  • Configure Boot Options: Öffnet das Menü, welches in Abbildung 2.2, „FreeBSD Boot-Optionen Menü“ beschrieben ist.

Abbildung 2.2. FreeBSD Boot-Optionen Menü
FreeBSD Boot-Optionen Menü

Das Boot-Optionen Menü ist in zwei Abschnitte unterteilt. Der erste Abschnitt wird verwendet, um zurück zum Hauptmenü zu gelangen, oder um Optionen zurück auf die Standardwerte zu setzen.

Im zweiten Abschnitt können verschiedene Optionen auf On oder Off gesetzt werden. Das System wird bei einem Neustart immer mit den Einstellungen für diese Optionen booten:

  • ACPI Support: Wenn das System während des Bootens hängt, setzen Sie diese Option auf Off.

  • Safe Mode: Wenn das System trotz deaktiviertem ACPI Support immer noch hängt, setzen Sie diese Option auf On.

  • Single User: Setzen Sie die Option auf On, um eine bestehende FreeBSD-Installation zu reparieren. Dieser Prozess wird in Abschnitt 12.2.4.1, „Der Single-User Modus“ beschrieben. Sobald das Problem behoben ist, setzen Sie die Option wieder auf Off.

  • Verbose: Wenn Sie während des Bootens ausführliche Meldungen sehen möchten, zum Beispiel für die Fehlersuche bei Hardwareproblemen, setzen Sie diese Option auf On.

Nachdem Sie die benötigten Auswahlen getroffen haben, drücken Sie die 1 oder die Rücktaste, um zum Hauptmenü zurückzukehren. Drücken Sie dann Enter um den FreeBSD Bootprozess fortzusetzen. Eine Reihe von Boot-Meldungen werden nun im Rahmen der Geräteerkennung von FreeBSD angezeigt. Sobald dieser Prozess abgeschlossen ist, erscheint das Menü aus Abbildung 2.3, „Willkommen-Menü“.

Abbildung 2.3. Willkommen-Menü
Willkommen-Menü

Wählen Sie hier [ Install ] und drücken Sie Enter, um in das Installationsprogramm zu gelangen. Der Rest dieses Kapitels beschreibt das Installationsprogramm. Andernfalls verwenden Sie die Pfeiltasten um einen anderen Menüpunkt auszuwählen. [ Shell ] kann verwendet werden, um eine Shell zu starten und Zugriff auf die Kommandozeilenprogramme zu erhalten, damit beispielsweise die Platten vor der Installation vorbereitet werden können. [ Live CD ] kann verwendet werden um FreeBSD vor der Installation auszuprobieren. Die Live-Version wird in Abschnitt 2.10, „Verwendung der Live-CD beschrieben.

Tipp:

Um sich die Boot-Meldungen und die Ergebnisse der Geräteerkennung erneut anzeigen zu lassen, drücken Sie S gefolgt von Enter. Dadurch wird eine Shell gestartet, in der Sie die Ereignisse seitenweise mit more /var/run/dmesg.boot lesen können. Geben Sie exit ein, um zum Willkommen-Menü zurückzukehren.

2.5. Verwendung von bsdinstall

Dieser Abschnitt zeigt die Reihenfolge der Menüs von bsdinstall sowie die Informationen, die während der Installation abgefragt werden. Benutzen Sie die Pfeiltasten zur Navigation und die Leertaste, um einen Menüpunkt zu aktivieren oder zu deaktivieren. Wenn Sie fertig sind, drücken Sie Enter, um die Auswahl zu speichern und zum nächsten Bildschirm zu gelangen.

2.5.1. Die Tastaturbelegung auswählen

Abhängig davon, welche Systemkonsole verwendet wird, zeigt bsdinstall am Anfang das Menü aus Abbildung 2.4, „Tastaturbelegung festlegen“.

Abbildung 2.4. Tastaturbelegung festlegen
Tastaturbelegung festlegen

Um die Tastaturbelegung zu konfigurieren, wählen Sie [ YES ] gefolgt von Enter. Dadurch wird das Menü aus Abbildung 2.5, „Tastaturauswahlbildschirm“ angezeigt. Wenn Sie stattdessen die Standardtastaturbelegung verwenden möchten, wählen Sie [ NO ] gefolgt von Enter, um dieses Menü zu überspringen.

Abbildung 2.5. Tastaturauswahlbildschirm
Tastaturauswahlbildschirm

Wählen Sie die Tastenbelegung, die der am System angeschlossenen Tastatur am nächsten kommt, indem Sie die Pfeiltasten Hoch/Runter verwenden und anschließend Enter drücken.

Anmerkung:

Durch drücken von Esc wird das Menü verlassen und die Standardbelegung eingestellt. United States of America ISO-8859-1 ist eine sichere Option, falls Sie sich unsicher sind, welche Auswahl Sie treffen sollen.

In FreeBSD 10.0-RELEASE und neueren Versionen wurde dieses Menü erweitert. Die vollständige Auswahl der Tastaturbelegungen wird nun angezeigt und die Voreinstellung ist ausgewählt. Wird die Tastenbelegung geändert, erscheint ein Dialog, in dem der Benutzer die Einstellung testen kann, bevor die Installation fortgesetzt wird.

Abbildung 2.6. Erweiterte Tastaturbelegung
Erweiterte Tastaturbelegung

2.5.2. Den Rechnernamen festlegen

Das nächste bsdinstall-Menü konfiguriert den Rechnernamen, der für das neu zu installierende System verwendet werden soll.

Abbildung 2.7. Festlegen des Rechnernamens
Festlegen des Rechnernamens

Geben Sie einen für das Netzwerk eindeutigen Rechnernamen an. Der eingegebene Rechnername sollte ein voll-qualifizierter Rechnername sein, so wie z.B. machine3.example.com.

2.5.3. Auswahl der zu installierenden Komponenten

Im nächsten Schritt fragt Sie bsdinstall, die optionalen Komponenten für die Installation auszuwählen.

Abbildung 2.8. Komponenten für die Installation auswählen
Komponenten für die Installation auswählen

Die Entscheidung, welche Komponenten auszuwählen sind, hängt größtenteils davon ab, für was das System künftig eingesetzt werden soll und der zur Verfügung stehende Plattenplatz. Der FreeBSD-Kernel und die Systemprogramme (zusammengenommen auch als Basissystem bezeichnet) werden immer installiert. Abhängig vom Typ der Installation, werden manche dieser Komponenten nicht erscheinen.

  • doc - Zusätzliche Dokumentation, meistens eher von historischem Interesse, wird nach /usr/share/doc installiert. Dokumentation, wie Sie vom FreeBSD Dokumentationsprojekt bereitgestellt wird, kann zu einem späteren Zeitpunkt installiert werden. Anweisungen dazu finden Sie in Abschnitt 23.3, „Aktualisieren der Dokumentationssammlung“.

  • games - Mehrere traditionelle BSD-Spiele, darunter fortune, rot13 und andere.

  • lib32 - Kompatibilitäts-Bibliotheken, um 32-bit Anwendungen auf der 64-bit Version von FreeBSD laufen zu lassen.

  • ports - Die FreeBSD Ports-Sammlung ist eine Sammlung von Dateien, die das herunterladen, erstellen und installieren von Drittanbietersoftware automatisiert. Kapitel 4, Installieren von Anwendungen: Pakete und Ports behandelt die Verwendung der Ports-Sammlung.

    Warnung:

    Das Installationsprogramm prüft nicht, ob genügend Plattenplatz zur Verfügung steht. Wählen Sie diese Option nur, wenn die Festplatte über ausreichend Speicher verfügt. Die Ports-Sammlung nimmt etwa 500 MB Plattenplatz ein.

  • src - Der vollständige FreeBSD Quellcode für den Kernel und die Systemprogramme. Obwohl dies für die meisten Anwendungen nicht benötigt wird, kann es doch für manche Gerätetreiber, Kernelmodule und einigen Anwendungen aus der Ports-Sammlung erforderlich sein. Der Quellcode wird auch benötigt um an FreeBSD selbst mitzuentwickeln. Der komplette Quellcodebaum benötigt 1 GB Plattenplatz und um das gesamte Betriebssystem neu zu erstellen, werden zusätzliche 5 GB Platz benötigt.

2.5.4. Installation aus dem Netzwerk

Das Menü in Abbildung 2.9, „Installation über das Netzwerk“ wird nur angezeigt, wenn Sie von einer -bootonly.iso-CD installieren, da dieses Installationsmedium keine Kopie der Installationsdateien enthält. Da die Installationsdateien über eine Netzwerkverbindung abgerufen werden müssen, weist dieses Menü darauf hin, dass zunächst die Netzwerkschnittstelle konfiguriert werden muss.

Abbildung 2.9. Installation über das Netzwerk
Installation über das Netzwerk

Um die Netzwerkverbindung zu konfigurieren, drücken Sie Enter und folgen Sie den Anweisungen in Abschnitt 2.8.2, „Die Netzwerkschnittstelle konfigurieren“. Sobald die Schnittstelle konfiguriert ist, bestimmen Sie einen Spiegelserver, welcher in der gleichen Region auf der Welt beheimatet ist, wie der Computer, auf dem FreeBSD installiert werden soll. Dateien können so viel schneller übertragen werden, wenn der Spiegelserver sich näher am Zielcomputer befindet und die Installationszeit wird somit reduziert.

Abbildung 2.10. Einen Spiegelserver wählen
Einen Spiegelserver wählen

Die Installation wird auf die gleiche Weise fortfahren, als würden die Installationsdateien auf einem lokalen Installationsmedium vorliegen.

2.6. Plattenplatz bereitstellen

Im nächsten Menü wird die Methode bestimmt, um den Plattenplatz zuzuweisen. Die verfügbaren Optionen hängen von der verwendeten FreeBSD-Version ab.

Abbildung 2.11. Partitionierung unter FreeBSD 9.x
Partitionierung unter FreeBSD 9.x

Abbildung 2.12. Partitionierung unter FreeBSD 10.x und neueren Versionen
Partitionierung unter FreeBSD 10.x und neueren Versionen

Die geführte Partitionierung (Guided) richtet Partitionen automatisch ein, während die manuelle Partitionierung (Manual) es fortgeschrittenen Anwendern erlaubt, selbstgewählte Partitionen über weitere Menüs zu erzeugen. Schließlich gibt es noch die Option Shell, in der Kommandozeilenprogramme wie gpart(8) fdisk(8) und bsdlabel(8) direkt ausgeführt werden können. ZFS Partitionierung, die ab FreeBSD 10 verfügbar ist, erstellt ein root-on-ZFS System mit Unterstützung für Boot Environments, welches optional verschlüsselt werden kann.

Dieser Abschnitt beschreibt, was bei der Partitionierung der Platten zu beachten ist und wie die einzelnen Methoden zur Partitionierung angewendet werden.

2.6.1. Ein Partitionslayout entwerfen

Wenn Sie Dateisysteme anlegen, sollten Sie beachten, dass Festplatten auf Daten in den äußeren Spuren schneller zugreifen können als auf Daten in den inneren Spuren. Daher sollten die kleineren und oft benutzten Dateisysteme an den äußeren Rand der Platte gelegt werden. Die größeren Partitionen wie /usr sollten in die inneren Bereiche gelegt werden. Es empfiehlt sich, die Partitionen in folgender Reihenfolge anzulegen: /, swap, /var und /usr.

Die Größe der /var-Partition ist abhängig vom Zweck der Maschine. Diese Partition enthält hauptsächlich Postfächer, Logdateien und Druckwarteschlangen. Abhängig von der Anzahl an Systembenutzern und der Aufbewahrungszeit für Logdateien, können Postfächer und Logdateien unerwartete Größen annehmen. Die meisten Benutzer benötigen nur selten mehr als ein Gigabyte für /var.

Anmerkung:

Ein paar Mal wird es vorkommen, dass viel Festplattenspeicher in /var/tmp benötigt wird. Wenn neue Software mit pkg_add(1) installiert wird, extrahieren die Paketwerkzeuge eine vorübergehende Kopie der Pakete unter /var/tmp. Die Installation großer Softwarepakete wie Firefox, Apache OpenOffice oder LibreOffice kann sich wegen zu wenig Speicherplatz in /var/tmp als trickreich herausstellen.

Die /usr Partition enthält viele der Hauptbestandteile des Systems, einschließlich der FreeBSD Ports-Sammlung und den Quellcode des Systems. Für diese Partition werden mindestens zwei Gigabyte empfohlen.

Behalten Sie bei der Auswahl der Partitionsgrößen den Platzbedarf im Auge. Wenn Sie den Platz auf einer Partition vollständig aufgebraucht haben, eine andere Partition aber kaum benutzen, kann die Handhabung des Systems schwierig werden.

Als Daumenregel sollten Sie doppelt soviel Speicher für die Swap-Partition vorsehen, als Sie Hauptspeicher haben, da die VM-Paging-Algorithmen im Kernel so eingestellt sind, dass sie am besten laufen, wenn die Swap-Partition mindestens doppelt so groß wie der Hauptspeicher ist. Zu wenig Swap kann zu einer Leistungsverminderung im VM page scanning Code führen, sowie Probleme verursachen, wenn später mehr Speicher in die Maschine eingebaut wird.

Auf größeren Systemen mit mehreren SCSI-, oder IDE-Laufwerken an unterschiedlichen Controllern, wird empfohlen, Swap-Bereiche auf bis zu vier Laufwerken einzurichten. Diese Swap-Partitionen sollten ungefähr dieselbe Größe haben. Der Kernel kann zwar mit beliebigen Größen umgehen, aber die internen Datenstrukturen skalieren bis zur vierfachen Größe der größten Partition. Ungefähr gleich große Swap-Partitionen erlauben es dem Kernel, den Swap-Bereich optimal über die Laufwerke zu verteilen. Große Swap-Bereiche, auch wenn sie nicht oft gebraucht werden, sind nützlich, da sich ein speicherfressendes Programm unter Umständen auch ohne einen Neustart des Systems beenden lässt.

Indem Sie ein System richtig partitionieren, verhindern Sie, dass eine Fragmentierung in den häufig beschriebenen Partitionen auf die meist nur gelesenen Partitionen übergreift. Wenn Sie die häufig beschriebenen Partitionen an den Rand der Platte legen, dann wird die I/O-Leistung dieser Partitionen steigen. Die I/O-Leistung ist natürlich auch für große Partitionen wichtig, doch erzielen Sie eine größere Leistungssteigerung, wenn Sie /var an den Rand der Platte legen.

2.6.2. Geführte Partitionierung

Bei dieser Methode wird ein Menü die verfügbaren Platten anzeigen. Sollten mehrere Platten angeschlossen sein, wählen Sie diejenige aus, auf der FreeBSD installiert werden soll.

Abbildung 2.13. Aus mehreren Platten eine auswählen
Aus mehreren Platten eine auswählen

Nachdem Sie die Platte ausgewählt haben, fordert das nächste Menü dazu auf, entweder die gesamte Festplatte für die Installation zu nutzen oder eine Partition aus unbenutzten Speicherplatz zu erstellen. Ein allgemeines Partitionslayout, das die gesamte Platte einnimmt wird erstellt, wenn [ Entire Disk ] ausgewählt wird. Durch die Wahl von [ Partition ] wird ein Partitionslayout aus dem unbenutzten Speicherplatz der Platte erstellt.

Abbildung 2.14. Auswahl der gesamten Platte oder einer Partition
Auswahl der gesamten Platte oder einer Partition

Nachdem das Partitionslayout nun erstellt wurde, sollten Sie es überprüfen, um sicherzustellen, dass es die Bedürfnisse der Installation erfüllt. Durch die Auswahl von [ Revert ] können die Partitionen wieder auf den ursprünglichen Wert zurückgesetzt werden und durch [ Auto ] werden die automatischen FreeBSD Partitionen wiederhergestellt. Partitionen können auch manuell erstellt, geändert oder gelöscht werden. Sollte die Partitionierung richtig sein, wählen Sie [ Finish ] aus, um mit der Installation fortzufahren.

Abbildung 2.15. Überprüfen der erstellen Partitionen
Überprüfen der erstellen Partitionen

2.6.3. Manuelle Partitionierung

Diese Methode öffnet den Partitionseditor:

Abbildung 2.16. Partitionen manuell erstellen
Partitionen manuell erstellen

Durch hervorheben einer Platte (in diesem Fall ada0) und die Auswahl von [ Create ], wird ein Menü mit den verfügbaren Partitionierungsschemas angezeigt.

Abbildung 2.17. Partitionen manuell anlegen
Partitionen manuell anlegen

GPT ist normalerweise die beste Wahl für amd64-Computer. Ältere Computer, die nicht mit GPT kompatibel sind, sollten MBR verwenden. Die anderen Partitionsschemas werden für gewöhnlich für ältere Computersysteme benutzt.

Tabelle 2.1. Partitionierungsschemas
AbkürzungBeschreibung
APMApple Partition Map, verwendet von PowerPC®.
BSDBSD-Labels ohne einen MBR, manchmal auch dangerously dedicated mode genannt, da nicht-BSD Festplatten-Werkzeuge dies vielleicht nicht erkennen können.
GPTGUID Partition Table ( http://en.wikipedia.org/wiki/GUID_Partition_Table).
MBRMaster Boot Record ( http://en.wikipedia.org/wiki/Master_boot_record).
PC98MBR-Variante, verwendet von NEC PC-98 Computern ( http://en.wikipedia.org/wiki/Pc9801).
VTOC8Volume Table Of Contents, von Sun SPARC64 und UltraSPARC Computern verwendet.

Nachdem das Partitionierungsschema ausgewählt und erstellt wurde, werden durch erneute Auswahl von [ Create ] die Partitionen erzeugt.

Abbildung 2.18. Partitionen manuell erzeugen
Partitionen manuell erzeugen

Eine FreeBSD-Standardinstallation mit GPT legt mindestens die folgenden drei Partitionen an:

  • freebsd-boot - Enthält den FreeBSD-Bootcode.

  • freebsd-ufs - Ein FreeBSD UFS-Dateisystem.

  • freebsd-swap - FreeBSD Auslagerungsbereich (swap space).

Ein weiter Partitionstyp ist freebsd-zfs. Dieser Typ ist für Partitionen bestimmt, die ein FreeBSD ZFS-Dateisystem verwenden sollen (Kapitel 19, Das Z-Dateisystem (ZFS)). gpart(8) enthält Beschreibungen der verfügbaren GPT-Partitionstypen.

Es können mehrere Dateisystempartitionen erzeugt werden und manche Leute ziehen es vor, ein traditionelles Layout mit getrennten Partitionen für die Dateisysteme /, /var, /tmp und /usr zu erstellen. Lesen Sie dazu Beispiel 2.1, „Ein traditionelles, partitioniertes Dateisystem erstellen“, um ein Beispiel zu erhalten.

Größenangaben (Size) können mit gängigen Abkürzungen eingegeben werden: K für Kilobytes, M für Megabytes oder G für Gigabytes.

Tipp:

Korrekte Sektorausrichtung ermöglicht größtmögliche Geschwindigkeit und das Anlegen von Partitionsgrößen als vielfaches von 4K-Bytes hilft, die passende Ausrichtung auf Platten mit entweder 512-Bytes oder 4K-Bytes Sektorgrößen, festzulegen. Generell sollte die Verwendung von Partitionsgrößen, die sogar vielfache von 1M oder 1G sind, den einfachsten Weg darstellen, um sicher zu stellen, dass jede Partition an einem vielfachen von 4K beginnt. Eine Ausnahme gibt es: momentan sollte die freebsd-boot-Partition aufgrund von Beschränkungen im Bootcode nicht größer sein als 512K.

Ein Einhägepunkt (Mountpoint) wird benötigt, falls diese Partition ein Dateisystem enthält. Falls nur eine einzelne UFS-Partition erstellt wird, sollte der Einhängepunkt / lauten.

Ein label ist ein Name, durch den diese Partition angesprochen wird. Festplattennamen oder -nummern können sich ändern, falls die Platte einmal an einem anderen Controller oder Port angeschlossen sein sollte, doch das Partitionslabel ändert sich dadurch nicht. Anstatt auf Plattennamen und Partitionsnummern in Dateien wie /etc/fstab zu verweisen, sorgen Labels dafür, dass das System Hardwareänderungen eher toleriert. GPT-Labels erscheinen in /dev/gpt/, wenn eine Platte angeschlossen wird. Andere Partitionierungsschemas besitzen unterschiedliche Fähigkeiten, Labels zu verwenden und diese erscheinen in anderen /dev/-Verzeichnissen.

Tipp:

Vergeben Sie ein einzigartiges Label für jede Partition, um Konflikte mit identischen Labels zu verhindern. Ein paar Buchstaben des Computernamens, dessen Verwendungszweck oder Ortes kann dem Label hinzugefügt werden. Beispielsweise labroot oder rootfslab für die UFS Root-Partition auf einem Laborrechner namens lab.

Beispiel 2.1. Ein traditionelles, partitioniertes Dateisystem erstellen

Für ein traditionelles Partitionslayout, in dem sich /, /var, /tmp und /usr in getrennten Partitionen befinden sollen, erstellen Sie ein GPT-Partitionsschema und anschließend die Partitionen selbst. Die gezeigten Partitionsgrößen sind typisch für eine Festplatte von 20 G. Falls mehr Platz verfügbar ist, sind größere Swap oder /var-Partitionen nützlich. Den hier gezeigten Beschreibungen sind bsp für Beispiel vorangestellt, jedoch sollten Sie andere, einzigartige Beschreibungen verwenden, wie oben beschrieben.

Standardmäßig erwartet FreeBSDs gptboot, dass die erste UFS-Partition die /-Partition ist.

PartitionstypGrösseEingehängt alsBeschreibung
freebsd-boot512K  
freebsd-ufs2G/bsprootfs
freebsd-swap4Gbspswap 
freebsd-ufs2G/varbspvarfs
freebsd-ufs1G/tmpbsptmpfs
freebsd-ufsAkzeptieren Sie die Standardeinstellungen (Rest der Platte)/usrbspusrfs

Nachdem die selbstgewählten Partitionen erzeugt wurden, wählen Sie [ Finish ], um mit der Installation fortzusetzen.

2.6.4. Root-on-ZFS automatische Partitionierung

Die Unterstützung für die automatische Erstellung von Root-on-ZFS Installationen wurde in FreeBSD 10.0-RELEASE hinzugefügt. Dieser Modus funktioniert nur mit ganzen Laufwerken und wird alle vorhandenen Daten auf der Platte löschen. Das Installationsprogramm wird die Partitionen für ZFS automatisch an 4k Sektoren ausrichten. Dies funktioniert auch zuverlässig bei einer Sektorgröße von 512 Byte und hat den Vorteil, dass nachträglich Laufwerke mit einer Sektorgröße von 4k hinzugefügt werden können, entweder als zusätzlicher Speicherplatz oder als Ersatz für eine ausgefallene Platte. Das Installationsprogramm kann auch optional die Platte mit GELI verschlüsseln, wie in Abschnitt 17.12.2, „Plattenverschlüsselung mit geli beschrieben. Wird die Verschlüsselung aktiviert, wird eine 2 GB große unverschlüsselte Partition für /boot erstellt. Diese enthält den Kernel und weitere Dateien, die nötig sind um den Kernel zu booten. Zudem wird eine Swap-Partition erstellt. Der verbleibende Platz wird für den ZFS-Pool verwendet.

Das Konfigurationsmenü für ZFS bietet einige Optionen, um die Erstellung des Pools zu beeinflussen.

Abbildung 2.19. ZFS Konfigurationsmenü
ZFS Konfigurationsmenü

Wählen Sie T um den Pool Typ und die Festplatte(n) zu konfigurieren, die den Pool bilden werden. Mit Ausnahme des Stripe Modus, unterstützt das automatische ZFS Installationsprogramm derzeit nur die Erstellung eines einzigen Top-Level-vdevs. Wenn Sie komplexere Pools erstellen möchten, folgen Sie den Anweisungen in Abschnitt 2.6.5, „Shell Partitionierung“. Das Installationsprogramm unterstützt verschiedene Pool Typen, einschließlich Stripe (nicht empfohlen, keine Redundanz), Spiegel (beste Leistung, weniger nutzbarer Speicherplatz), und RAID-Z 1, 2 und 3 (übersteht den Ausfall von jeweils einer, zwei und drei Platten). Am unteren Rand des Bildschirms werden Hinweise zur Anzahl der benötigten Platten angezeigt. Im Fall von RAID-Z wird die optimale Anzahl von Platten für die jeweilige Konfiguration angezeigt.

Abbildung 2.20. ZFS Pool Typen
ZFS Pool Typen

Sobald ein Pool Typ (Pool Type) ausgewählt wurde, wird eine Liste der verfügbaren Laufwerke angezeigt und der Benutzer wird aufgefordert, eine oder mehrere Festplatten auszuwählen um den Pool zu bilden. Anschließend wie die Konfiguration geprüft um zu gewährleisten, dass genug Platten ausgewählt wurden. Wählen Sie <Change Selection> um zur Auswahl der Laufwerke zurückzukehren, oder <Cancel> um den Pool Typ zu ändern.

Abbildung 2.21. Auswahl der Laufwerke
Auswahl der Laufwerke

Abbildung 2.22. Ungültige Auswahl
Ungültige Auswahl

Wenn eine oder mehrere Platten in der Liste fehlen, oder wenn Festplaten angebunden wurden, nachdem das Installationsprogramm gestartet wurde, wählen Sie - Rescan Devices um die Laufwerke nochmals zu suchen und anzuzeigen. Um zu vermeiden, dass versehentlich die falsche Platte gelöscht wird, können Sie das - Disk-Info Menü verwenden. Dieses Menü zeigt verschiedene Informationen, einschließlich der Partitionstabelle, der Modelnummer und der Seriennummer, falls verfügbar.

Abbildung 2.23. Eigenschaften einer Festplatte
Eigenschaften einer Festplatte

Das Konfigurationsmenü von ZFS ermöglicht es dem Benutzer auch, einen Namen für den Pool zu vergeben, 4k Sektoren zu deaktivieren, Tabellentypen zu aktivieren oder deaktivieren, zwischen GPT (empfohlen) und MBR zu wechseln und die Größe des Swap-Bereichs zu wählen. Wenn alle Optionen auf die gewünschten Werte eingestellt sind, wählen Sie >>> Install am oberen Rand des Menüs.

Wenn die GELI Plattenverschlüsselung aktiviert wurde, fordert Sie das Installationsprogramm zweimal zur Eingabe der Passphrase auf.

Abbildung 2.24. Passwort für die Verschlüsselung der Platte
Passwort für die Verschlüsselung der Platte

Das Installationsprogramm bietet dann eine letzte Chance, abzubrechen, bevor der Inhalt der ausgewählten Laufwerke zerstört wird, um den neuen ZFS-Pool zu erstellen.

Abbildung 2.25. Letzte Chance
Letzte Chance

Danach wird die Installation normal weitergeführt.

2.6.5. Shell Partitionierung

bsdinstall bietet bei fortgeschrittenen Installationen womöglich nicht die benötigte Flexibilität. Erfahrene Benutzer können die Option Shell im Menü auswählen, um die Laufwerke manuell zu partitionieren, Dateisysteme zu erstellen, /tmp/bsdinstall_etc/fstab zu befüllen und Dateisysteme unter /mnt einzuhängen. Geben Sie anschließend exit ein, um zu bsdinstall zurückzukehren und die Installation fortzusetzen.

2.7. Die Installation festschreiben

Sobald die Platten konfiguriert sind, stellt das nächste Menü die letzte Chance dar, Änderungen vorzunehmen, bevor die ausgewählten Festplatten formatiert werden. Wenn Änderungen vorgenommen werden müssen, wählen Sie [ Back ] um zur Partitionierung zurückzukehren. [ Revert & Exit ] wird das Installationsprogramm verlassen, ohne Änderungen an den Festplatten vorzunehmen.

Abbildung 2.26. Letzte Bestätigung
Letzte Bestätigung

Wählen Sie [ Commit ] und drücken Sie Enter, um die eigentliche Installation zu starten.

Die Installationsdauer hängt von den gewählten Distributionen, dem Installationsmedium und der Geschwindigkeit des Computers ab. Eine Reihe von Nachrichten werden angezeigt, um den Fortschritt darzustellen.

Zunächst formatiert das Installationsprogramm die ausgewählten Platten und initialisiert die Partitionen. Bei einer bootonly-Installation werden als nächstes die benötigten Komponenten heruntergeladen:

Abbildung 2.27. Herunterladen der Distributionsdateien
Herunterladen der Distributionsdateien

Als nächstes wird die Integrität der Distributionsdateien überprüft, um sicherzustellen, dass diese während des Ladevorgangs nicht beschädigt oder unsauber vom Installationsmedium gelesen wurden:

Abbildung 2.28. Überprüfen der Distributionsdateien
Überprüfen der Distributionsdateien

Zum Schluss werden die überprüften Distributionsdateien auf die Festplatte entpackt:

Abbildung 2.29. Entpacken der Distributionsdateien
Entpacken der Distributionsdateien

Sobald alle benötigten Distributionsdateien entpackt wurden, wird bsdinstall das erste Menü für die Arbeiten nach der Installation anzeigen. Die zur Verfügung stehenden Konfigurationsoptionen werden im nächsten Abschnitt beschrieben.

2.8. Arbeiten nach der Installation

Sobald FreeBSD installiert ist, fordert Sie bsdinstall dazu auf, mehrere Optionen zu konfigurieren, bevor das neu installierte System gebootet wird. Die Konfigurationsoptionen werden in diesem Abschnitt beschrieben.

Tipp:

Nach einem Neustart des Systems bietet bsdconfig eine menügestützte Konfiguration dieser und weiterer Optionen.

2.8.1. Setzen des root-Passworts

Zuerst muss das root-Passwort gesetzt werden. Die eingegebenen Zeichen werden dabei nicht auf dem Bildschirm angezeigt. Nachdem das Passwort eingegeben wurde, muss es zur Bestätigung erneut eingetippt werden. Damit werden auch Tippfehler verhindert.

Abbildung 2.30. Das root-Passwort setzen
Das root-Passwort setzen

2.8.2. Die Netzwerkschnittstelle konfigurieren

Als nächstes wird eine Liste der gefundenen Netzwerkschnittstellen gezeigt. Wählen Sie die Schnittstelle aus, die Sie konfigurieren möchten.

Anmerkung:

Die Menüs für die Netzwerkkonfiguration werden übersprungen, falls dies bereits als Teil der bootonly-Installation durchgeführt worden ist.

Abbildung 2.31. Eine zu konfigurierende Netzwerkschnittstelle auswählen
Eine zu konfigurierende Netzwerkschnittstelle auswählen

Wenn Sie eine Ethernet-Schnittstelle ausgewählt haben, fährt das Installationsprogramm mit dem Menü aus Abbildung 2.35, „Auswahl von IPv4 fort. Wenn Sie eine drahtlose Netzwerkschnittstelle ausgewählt haben, wird das System nach drahtlosen Zugriffspunkten (Access Points) suchen:

Abbildung 2.32. Nach drahtlosen Access Points scannen
Nach drahtlosen Access Points scannen

Drahtlose Netzwerke werden durch einen Service Set Identifier (SSID) identifiziert. Der SSID ist ein kurzer, eindeutiger Name, der für jedes Netzwerk vergeben wird. SSIDs, die während des Scans gefunden wurden, werden aufgelistet, gefolgt von einer Beschreibung der Verschlüsselungsarten, die für dieses Netzwerk verfügbar sind. Falls die gewünschte SSID nicht in der Liste auftaucht, wählen Sie [ Rescan ], um erneut einen Scanvorgang durchzuführen. Falls dann das gewünschte Netzwerk immer noch nicht erscheint, überprüfen Sie die Antenne auf Verbindungsprobleme oder versuchen Sie, näher an den Access point zu gelangen. Scannen Sie erneut nach jeder vorgenommenen Änderung.

Abbildung 2.33. Ein drahtloses Netzwerk auswählen
Ein drahtloses Netzwerk auswählen

Geben Sie nun die Verschlüsselungsinformationen ein, um sich mit dem drahtlosen Netzwerk zu verbinden. WPA2 wird als Verschlüsselung dringend empfohlen, da ältere Verschlüsselungsmethoden, wie WEP, nur wenig Sicherheit bieten. Wenn das Netzwerk WPA2 verwendet, geben Sie das Passwort (auch bekannt als Pre-Shared Key PSK) ein. Aus Sicherheitsgründen werden die in das Eingabefeld eingegeben Zeichen nur als Sternchen angezeigt.

Abbildung 2.34. Verbindungsaufbau mit WPA2
Verbindungsaufbau mit WPA2

Wählen Sie, ob eine IPv4-Adresse auf der Ethernet-Schnittstelle oder der drahtlosen Schnittstelle konfiguriert werden soll.

Abbildung 2.35. Auswahl von IPv4
Auswahl von IPv4

Es gibt zwei Arten, ein IPv4-Netzwerk zu konfigurieren. DHCP wird automatisch die Netzwerkschnittstelle richtig konfigurieren und sollte verwendet werden, wenn das Netzwerk über einen DHCP-Server verfügt. Eine statische IP-Konfiguration erfordert die manuelle Eingabe von Netzwerkinformationen.

Anmerkung:

Geben Sie keine zufällig gewählten Netzwerkinformationen ein, da dies nicht funktionieren wird. Holen Sie sich die in Erforderliche Informationen zum Netzwerk gezeigten Informationen vom Netzwerkadministrator oder Serviceprovider, falls kein DHCP-Server verfügbar ist.

Falls ein DHCP-Server zur Verfügung steht, wählen Sie im nächsten Menü [ Yes ], um die Netzwerkschnittstelle automatisch einrichten zu lassen. Dieser Vorgang kann einige Sekunden dauern.

Abbildung 2.36. Auswählen der IPv4-Konfiguration über DHCP
Auswählen der IPv4-Konfiguration über DHCP

Wenn kein DHCP-Server zur Verfügung steht, wählen Sie [ No ] und tragen Sie die folgenden Informationen in das Menü ein:

Abbildung 2.37. Statische IPv4-Konfiguration
Statische IPv4-Konfiguration

  • IP Address - Die IPv4-Adresse, welche diesem Computer zugewiesen werden soll. Diese Adresse muss eindeutig sein und darf nicht bereits von einem anderen Gerät im lokalen Netzwerk verwendet werden.

  • Subnet Mask - Die Subnetzmaske des Netzwerks.

  • Default Router - Die IP-Adresse des Defaultrouters im Netzwerk.

Das nächste Menü fragt, ob die Schnittstelle für IPv6 konfiguriert werden soll. Falls IPv6 verfügbar ist und verwendet werden soll, wählen Sie [ Yes ] aus.

Abbildung 2.38. Auswahl von IPv6
Auswahl von IPv6

IPv6 besitzt ebenfalls zwei Arten der Konfiguration. StateLess Address AutoConfiguration, (SLAAC) wird automatisch die richtigen Informationen von einem lokalen Router abfragen. Lesen Sie http://tools.ietf.org/html/rfc4862 für weitere Informationen. Eine statische Konfiguration verlangt die manuelle Eingabe von Netzwerkinformationen.

Wenn ein IPv6-Router verfügbar ist, wählen Sie im nächsten Menü [ Yes ], um die Netzwerkschnittstelle automatisch konfigurieren zu lassen.

Abbildung 2.39. Auswahl der IPv6 SLAAC-Konfiguration
Auswahl der IPv6 SLAAC-Konfiguration

Wenn kein IPv6-Router zur Verfügung steht, wählen Sie [ No ] und tragen Sie die folgenden Adressinformationen in dieses Menü ein:

Abbildung 2.40. Statische IPv6-Konfiguration
Statische IPv6-Konfiguration

  • IPv6 Address - Die zugewiesene IPv6-Adresse, welche dem Computer zugeteilt werden soll. Diese Adresse muss eindeutig sein und nicht bereits von einer anderen Netzwerkkomponente im lokalen Netzwerk verwendet werden.

  • Default Router - Die IPv6-Adresse des Defaultrouters im Netzwerk.

Das letzte Menü der Netzwerkkonfiguration konfiguriert den Domain Name System (DNS) Resolver, welcher Hostnamen von und zu Netzwerkadressen umwandelt. Falls DHCP oder SLAAC verwendet wurde, um die Netzwerkschnittstelle zu konfigurieren, ist die Konfiguration für den Resolver möglicherweise bereits eingetragen. Andernfalls geben Sie den lokalen Netzwerkdomänennamen in das Feld Search ein. DNS #1 und DNS #2 sind die IPv4- und/oder IPv6-Adressen der lokalen DNS-Server. Zumindest ein DNS-Server wird benötigt.

Abbildung 2.41. DNS-Konfiguration
DNS-Konfiguration

2.8.3. Setzen der Zeitzone

Das nächste Menü fragt, ob die Systemuhr UTC oder die lokale Zeit verwendet. Wenn Sie sich nicht sicher sind, wählen Sie [ No ], um somit die häufiger verwendete lokale Zeit zu setzen.

Abbildung 2.42. Lokale oder UTC-Zeit
Lokale oder UTC-Zeit

Die nächsten Menüs werden verwendet, um die korrekte Ortszeit zu ermitteln. Dazu muss die gewünschte geographische Region, das Land und die Zeitzone ausgewählt werden. Das Setzen der Zeitzone erlaubt es dem System automatische Korrekturen vorzunehmen, beispielsweise beim Wechsel von Sommer- auf Winterzeit.

Das hier gezeigte Beispiel bezieht sich auf einen Rechner in der östlichen Zeitzone der Vereinigten Staaten. Die Auswahl wird von der geographischen Lage abhängig sein.

Abbildung 2.43. Auswahl der geographischen Region
Auswahl der geographischen Region

Das passende Gebiet wird durch die Pfeiltasten und das anschließende drücken von Enter gewählt.

Abbildung 2.44. Das Land auswählen
Das Land auswählen

Wählen Sie das zutreffende Land mit den Pfeiltasten und durch anschließendes drücken von Enter aus.

Abbildung 2.45. Wählen einer Zeitzone
Wählen einer Zeitzone

Die passende Zeitzone wird durch die Pfeiltasten und anschließendes drücken von Enter ausgewählt.

Abbildung 2.46. Bestätigen der Zeitzone
Bestätigen der Zeitzone

Bestätigen Sie, dass die Abkürzung für die Zeitzone richtig ist. Wenn Ihnen diese richtig erscheint, drücken Sie Enter, um mit dem Rest der Konfiguration fortzufahren.

2.8.4. Dienste aktivieren

Zusätzliche Systemdienste, die zur Startzeit aktiviert werden sollen, können im folgenden Menü eingeschaltet werden. All diese Dienste sind optional. Starten Sie nur die Dienste, die zur korrekten Funktion des Systems benötigt werden.

Abbildung 2.47. Auswahl zusätzlicher Dienste
Auswahl zusätzlicher Dienste

Die folgenden Dienste können über dieses Menü aktiviert werden:

  • sshd - Der Secure Shell (SSH)-Daemon für Fernzugriff über eine verschlüsselte Verbindung. Aktivieren Sie diesen Dienst nur dann, wenn das System für Fernzugriff zur Verfügung stehen soll.

  • moused - Aktivieren Sie diesen Dienst, wenn Sie Mausunterstützung auf der Systemkonsole benötigen.

  • ntpd - Der Network Time Protocol (NTP)-Daemon zur automatischen Uhrzeitsynchronisation. Aktivieren Sie diesen Dienst, wenn es im Netzwerk einen Windows®-, Kerberos- oder LDAP-Server gibt.

  • powerd - Systemwerkzeug zur Leistungsregelung und für Stromsparfunktionen.

2.8.5. Absturzaufzeichnung aktivieren

Das nächste Menü wird Sie fragen, ob die Absturzaufzeichnung auf dem Zielsystem aktiviert werden soll. Die Aktivierung von Absturzaufzeichnungen kann sehr nützlich sein um Systemfehler aufzuspüren, deswegen wird Anwendern empfohlen, diese zu aktivieren.

Abbildung 2.48. Aktivierung der Absturzaufzeichnung
Aktivierung der Absturzaufzeichnung

2.8.6. Benutzer hinzufügen

Das nächste Menü fordert Sie dazu auf, mindestens ein Benutzerkonto zu erstellen. Es wird empfohlen, sich als normaler Benutzer am System anzumelden und nicht als root-Benutzer. Wenn man als root angemeldet ist, gibt es so gut wie keine Beschränkungen oder Schutz vor dem, was man tun kann. Die Anmeldung als normaler Benutzer ist daher sicherer und bietet mehr Schutz.

Wählen Sie [ Yes ], um neue Benutzer hinzuzufügen.

Abbildung 2.49. Benutzerkonten hinzufügen
Benutzerkonten hinzufügen

Folgen Sie den Anweisungen und geben Sie die angeforderten Informationen für das Benutzerkonto ein. Das Beispiel in Abbildung 2.50, „Benutzerinformationen eingeben“ erstellt ein Konto für den Benutzer asample.

Abbildung 2.50. Benutzerinformationen eingeben
Benutzerinformationen eingeben

Die folgenden Informationen müssen eingegeben werden:

  • Username - Der Name des Benutzers, den man zur Anmeldung eingeben muss. Es ist üblich, den ersten Buchstaben des Vornamens zusammen mit dem Nachnamen zu kombinieren. Jeder Benutzername ist möglich, solange er für das System einzigartig ist. Es wird zwischen Groß- und Kleinschreibung unterschieden und der Benutzername sollte keine Leerzeichen enthalten.

  • Full name - Der volle Name des Benutzers. Dieser darf auch Leerzeichen enthalten und dient als Beschreibung für das Benutzerkonto.

  • Uid - User ID. Normalerweise wird dieses Feld leer gelassen, so dass das System einen Wert vergibt.

  • Login group - Die Benutzergruppe. Normalerweise bleibt dieses Feld leer, um die Standardgruppe zu akzeptieren.

  • Invite user into other groups? - Zusätzliche Gruppen zu denen der Benutzer als Mitglied hinzugefügt werden soll. Falls der Benutzer administrativen Zugriff benötigt, tragen Sie hier wheel ein.

  • Login class - In der Regel bleibt dieses Feld leer.

  • Shell - Die interaktive Shell für diesen Benutzer. Tragen Sie hier eine der aufgeführten Shells ein. Weitere Informationen über Shells finden Sie im Abschnitt 3.9, „Shells“.

  • Home directory - Das Heimatverzeichnis des Benutzers. Die Vorgabe ist für gewöhnlich richtig.

  • Home directory permissions - Zugriffsrechte auf das Heimatverzeichnis des Benutzers. Die Vorgabe ist normalerweise die passende.

  • Use password-based authentication? - Normalerweise yes, damit der Benutzer bei der Anmeldung sein Passwort eingeben muss.

  • Use an empty password? - Normalerweise no, da ein leeres Passwort unsicher ist.

  • Use a random password? - Normalerweise no, damit der Benutzer sein Passwort am nächsten Prompt selber vergeben kann.

  • Enter password - Das Passwort für diesen Benutzer. Eingegebene Zeichen werden nicht am Bildschirm angezeigt.

  • Enter password again - Das Passwort muss zur Überprüfung erneut eingegeben werden.

  • Lock out the account after creation? - Normalerweise no, damit sich der Benutzer anmelden kann.

Nachdem alles eingegeben wurde, wird eine Zusammenfassung angezeigt und das System fragt Sie, dies so korrekt ist. Falls ein Eingabefehler gemacht wurde, geben Sie no ein und versuchen es erneut. Falls alles in Ordnung ist, geben Sie yes ein, um den neuen Benutzer anzulegen.

Abbildung 2.51. Verlassen der Benutzer- und Gruppenverwaltung
Verlassen der Benutzer- und Gruppenverwaltung

Falls es mehr Benutzer hinzuzufügen gibt, beantworten Sie die Frage Add another user? mit yes. Geben Sie no ein, wird das hinzufügen von Benutzern beendet und die Installation fortgesetzt.

Für weitere Informationen zum hinzufügen von Benutzern und deren Verwaltung, lesen Sie Abschnitt 3.3, „Benutzer und grundlegende Account-Verwaltung“.

2.8.7. Letzte Konfigurationsschritte

Nachdem alles installiert und konfiguriert wurde, bekommen Sie noch eine letzte Chance, um Einstellungen zu verändern.

Abbildung 2.52. Letzte Schritte der Konfiguration
Letzte Schritte der Konfiguration

Verwenden Sie dieses Menü, um noch letzte Änderungen oder zusätzliche Konfigurationen vor dem Abschließen der Installation zu tätigen.

Nachdem die letzten Konfigurationsschritte beendet sind, wählen Sie Exit.

Abbildung 2.53. Manuelle Konfiguration
Manuelle Konfiguration

bsdinstall wird nach zusätzlichen Konfigurationen, die noch zu tätigen sind, fragen, bevor in das neue System gebootet wird. Wählen Sie [ Yes ], um in eine Shell innerhalb des neuen Systems zu wechseln oder [ No ], um mit dem letzten Schritt der Installation zu beginnen.

Abbildung 2.54. Die Installation vervollständigen
Die Installation vervollständigen

Wenn weitere Konfigurationen oder besondere Einstellungen benötigt werden, wählen Sie [ Live CD ], um das Installationsmedium im Live-CD Modus zu starten.

Wenn die Installation vollständig ist, wählen Sie [ Reboot ], um den Computer neu zu starten und das neu installierte FreeBSD-System zu booten. Vergessen Sie nicht, das FreeBSD Installationsmedium zu entfernen, oder der Computer wird erneut davon starten.

Wenn FreeBSD startet, werden viele Informationsmeldungen ausgegeben. Nachdem das System den Startvorgang abgeschlossen hat, wird eine Anmeldeaufforderung angezeigt. Geben Sie am login: den Benutzernamen ein, den Sie während der Installation hinzugefügt haben. Vermeiden Sie es, sich als root anzumelden. Lesen Sie Abschnitt 3.3.1.3, „Der Superuser-Account“, wenn Sie administrativen Zugriff benötigen.

Um Nachrichten, die während des Bootens angezeigt wurden, zu sehen, aktivieren Sie durch drücken von Scroll-Lock den scroll-back buffer. Die Tasten PgUp, PgDn und die Pfeiltasten dienen zur Navigation durch die Nachrichten. Durch erneutes drücken von Scroll-Lock wird der Bildschirm wieder entsperrt und kehrt zur normalen Anzeige zurück. Mit less /var/run/dmesg.boot können Sie sich diese Nachrichten im laufenden Betrieb ansehen. Durch drücken von q kehren Sie wieder zur Kommandozeile zurück.

Wenn sshd in Abbildung 2.47, „Auswahl zusätzlicher Dienste“ aktiviert wurde, ist der erste Start ein bisschen langsamer, weil das System die RSA- und DSA-Schlüssel erzeugen muss. Die nachfolgenden Startvorgänge werden dann wieder schneller sein. Wie in diesem Beispiel zu sehen ist, werden die Fingerabdrücke der Schlüssel am Bildschirm ausgegeben:

Generating public/private rsa1 key pair.
Your identification has been saved in /etc/ssh/ssh_host_key.
Your public key has been saved in /etc/ssh/ssh_host_key.pub.
The key fingerprint is:
10:a0:f5:af:93:ae:a3:1a:b2:bb:3c:35:d9:5a:b3:f3 root@machine3.example.com
The key's randomart image is:
+--[RSA1 1024]----+
|    o..          |
|   o . .         |
|  .   o          |
|       o         |
|    o   S        |
|   + + o         |
|o . + *          |
|o+ ..+ .         |
|==o..o+E         |
+-----------------+
Generating public/private dsa key pair.
Your identification has been saved in /etc/ssh/ssh_host_dsa_key.
Your public key has been saved in /etc/ssh/ssh_host_dsa_key.pub.
The key fingerprint is:
7e:1c:ce:dc:8a:3a:18:13:5b:34:b5:cf:d9:d1:47:b2 root@machine3.example.com
The key's randomart image is:
+--[ DSA 1024]----+
|       ..     . .|
|      o  .   . + |
|     . ..   . E .|
|    . .  o o . . |
|     +  S = .    |
|    +  . = o     |
|     +  . * .    |
|    . .  o .     |
|      .o. .      |
+-----------------+
Starting sshd.

Lesen Sie Abschnitt 13.8, „OpenSSH“ für weitere Informationen zu Fingerabdrücken und SSH.

FreeBSD installiert standardmäßig keine graphische Umgebung. Kapitel 5, Das X-Window-System enthält Informationen zur Installation und Konfiguration eines graphischen Window Managers.

Das korrekte herunterfahren eines FreeBSD-Computers hilft, beugt dem Datenverlust vor und schützt sogar die Hardware vor Schäden. Schalten Sie nicht den Strom ab, bevor das System ordnungsgemäß heruntergefahren wurde! Wenn der Benutzer ein Mitglied der wheel-Gruppe ist, können Sie zum Superuser durch die Eingabe von su und der anschließenden Eingabe des Passworts von root werden. Geben Sie dann shutdown -p now ein. Das System wird jetzt sauber heruntergefahren und, falls die Hardware es unterstützt, den Rechner ausschalten.

2.9. Fehlerbehebung

Dieser Abschnitt behandelt einfache Fehlerbehebungen für die Installation, wie beispielsweise häufig auftretende Fehler, die von Anwendern berichtet wurden.

Überprüfen Sie die Hardware Notes ( http://www.FreeBSD.org/releases/index.html) nach der Version von FreeBSD, um sicher zu stellen, dass die Hardware auch unterstützt wird. Wenn die Hardware unterstützt wird und Sie immer noch Abstürze oder andere Probleme erleben, müssen Sie einen eigenen Kernel bauen. Diese Prozedur wird in Kapitel 8, Konfiguration des FreeBSD-Kernels beschrieben. Das erlaubt es, Unterstützung für Geräte, die im GENERIC-Kernel nicht vorhanden sind, hinzuzufügen. Der Kernel ist mit der Annahme konfiguriert, dass die Hardwaregeräte sich in ihren Fabrikeinstellungen in Bezug auf IRQs, I/O-Adressen und DMA-Kanälen befinden. Wenn die Hardware neu konfiguriert wurde, werden Sie möglicherweise die Konfiguration des Kernels bearbeiten und diesen neu erstellen müssen, um FreeBSD mitzuteilen, wo es gewisse Dinge finden kann.

Anmerkung:

Manche Installationsprobleme können Aktualisierung der Firmware auf verschiedenen Hardwarekomponenten verhindert oder verringert werden, meistens am Mainboard. Mit Mainboard-Firmware ist für gewöhnlich das BIOS gemeint. Die meisten Mainboard- und Computerhersteller haben eine Webseite mit Aktualisierungen und Informationen zur Durchführung.

Hersteller raten meist von einer Aktualisierung des Mainboard-BIOS ab, außer es gibt einen guten Grund dafür, wie beispielsweise eine kritische Aktualisierung. Der Aktualisierungsvorgang kann schiefgehen, was das BIOS unvollständig macht und den Computer nicht mehr starten lässt.

Wenn das System während der Geräteerkennung beim Starten hängt oder sich während der Installation merkwürdig verhält, ist ACPI vielleicht der Übeltäter. FreeBSD macht starken Gebrauch vom ACPI-Dienst des Systems auf den i386-, amd64- und ia64-Platformen, um den System bei der Konfiguration während des Startvorgangs zu helfen. Leider existieren immer noch Fehler im ACPI-Treiber, in den Mainboards und der BIOS-Firmware. ACPI kann durch setzen der Einstellung hint.acpi.0.disabled im dritten Teil des Bootloaders deaktiviert werden:

set hint.acpi.0.disabled="1"

Dies wird nach jedem Neustart des Systems wieder zurückgesetzt, also ist es notwendig, die Zeile hint.acpi.0.disabled="1" zu der Datei /boot/loader.conf hinzuzufügen. Weitere Informationen über den Bootloader lassen sich in Abschnitt 12.1, „Übersicht“ nachlesen.

2.10. Verwendung der Live-CD

Das Willkommensmenü von bsdinstall, welches in Abbildung 2.3, „Willkommen-Menü“ gezeigt wird, enthält eine [ Live CD ] Option. Die Live-CD ist für Benutzer, die sich fragen, ob FreeBSD das richtige Betriebssystem für sie ist und die vor der Installation noch einige Merkmale und Eigenschaften testen wollen.

Die folgenden Punkte sollten beachtet werden, bevor die [ Live CD ] benutzt wird:

  • Um Zugriff auf das System zu bekommen, wird eine Authentifizierung benötigt. Der Benutzername ist root und das Kennwort bleibt leer.

  • Da das System direkt von dem Installationsmedium ausgeführt wird, ist die Geschwindigkeit deutlich langsamer als bei einem System, das auf einer Festplatte installiert ist.

  • Diese Option enthält nur eine Eingabeaufforderung und keine graphische Oberfläche.

Kapitel 3. Grundlagen des UNIX Betriebssystems

3.1. Übersicht

Dieses Kapitel umfasst die grundlegenden Kommandos und Funktionsweisen des FreeBSD-Betriebssystems. Viel von diesem Material gilt auch für jedes andere UNIX®-artige System. Neue Benutzer von FreeBSD sollten dieses Kapitel aufmerksam lesen.

Dieser Abschnitt behandelt die folgenden Themen:

  • virtuelle Konsolen,

  • Erstellung und Verwaltung von Benutzern und Gruppen in FreeBSD,

  • Zugriffsrechte unter UNIX® sowie Datei-Flags unter FreeBSD,

  • Zugriffskontrolllisten für Dateisysteme,

  • die Verzeichnisstruktur von FreeBSD,

  • Organisation von Dateisystemen unter FreeBSD,

  • Ein- und Abhängen von Dateisystemen,

  • Prozesse, Dämonen und Signale,

  • Shells und die Login-Umgebung,

  • Texteditoren,

  • Geräte und Gerätedateien,

  • wie Sie in den Manualpages nach weiteren Informationen suchen können.

3.2. Virtuelle Konsolen und Terminals

Wenn das FreeBSD-System so konfiguriert wurde, dass es ohne eine grafische Benutzeroberfläche startet, wird das System nach dem Start einen Anmeldeprompt ausgeben, wie in diesem Beispiel zu sehen:

FreeBSD/amd64 (pc3.example.org) (ttyv0)

login:

Die erste Zeile enthält einige Informationen über das System. amd64 zeigt an, dass auf dem System in diesem Beispiel eine 64-Bit Version von FreeBSD läuft. Der Hostname ist pc3.example.org und ttyv0 gibt an, dass dies die Systemkonsole ist. Die zweite Zeile zeigt den Anmeldeprompt.

Da FreeBSD ein Mehrbenutzersystem ist, muss es die verschiedenen Benutzer voneinander unterscheiden können. Dies wird dadurch erreicht, dass sich jeder Benutzer zuerst am System anmelden muss, um Zugriff auf die Programme zu bekommen. Jeder Benutzer hat einen eindeutigen Benutzernamen und ein persönliches Kennwort.

Um sich auf der Systemkonsole anzumelden, geben Sie den Benutzernamen ein, der während der Systeminstallation, wie in Abschnitt 2.8.6, „Benutzer hinzufügen“ beschrieben, konfiguriert wurde und drücken Sie Enter. Geben Sie dann das zum Benutzernamen zugeordnete Passwort ein und drücken Enter. Das Passwort wird aus Sicherheitsgründen nicht angezeigt.

Sobald das richtige Passwort eingegeben wird, wird die Nachricht des Tages (MOTD) gefolgt von einer Eingabeaufforderung ausgegeben. In Abhängigkeit der verwendeten Shell des Benutzers wird der Prompt mit dem Zeichen #, $ oder % dargestellt. Der Prompt zeigt an, dass der Benutzer jetzt an der FreeBSD Systemkonsole angemeldet ist und nun alle verfügbaren Befehle probieren kann.

3.2.1. Virtuelle Konsolen

Obwohl die Systemkonsole dazu verwendet werden kann, um mit dem System zu interagieren, wird sich ein Benutzer in der Regel an einer virtuellen Konsole im FreeBSD-System anmelden. Das liegt daran, dass die Systemmeldungen standardmäßig auf der Systemkonsole angezeigt werden und somit die Meldungen des Befehls oder einer Datei, die der Benutzer gerade bearbeitet, überschrieben werden.

In der Voreinstellung ist FreeBSD so konfiguriert, dass viele virtuelle Konsolen zur Eingabe von Befehlen zur Verfügung stehen. Jede virtuelle Konsole verfügt über einen eigenen Anmeldeprompt und eine Shell. Sie können ganz einfach zwischen den virtuellen Konsolen umschalten. Dies ist vergleichbar mit mehreren geöffneten Fenstern in einer graphischen Umgebung.

Die Tastenkombinationen Alt+F1 bis Alt+F8 sind in FreeBSD zum Umschalten zwischen virtuellen Konsolen reserviert. Verwenden Sie Alt+F1 um auf die Systemkonsole (ttyv0) zu wechseln, Alt+F2 für die erste virtuelle Konsole (ttyv1, Alt+F3 für die zweite virtuelle Konsole (ttyv2, und so weiter.

Beim Wechsel von einer Konsole zur nächsten wird die Bildschirmausgabe von FreeBSD verwaltet. Dies erzeugt die Illusion mehrerer Bildschirme und Tastaturen, an denen Kommandos abgesetzt werden können. Die Programme, die in einer virtuellen Konsole gestartet werden, laufen auch dann weiter, wenn der Benutzer auf eine andere virtuelle Konsole wechselt.

Lesen Sie kbdcontrol(1), vidcontrol(1), atkbd(4), syscons(4) sowie vt(4) für eine recht technische Beschreibung der FreeBSD-Konsole und der Tastatur-Treiber.

In FreeBSD wird die Anzahl der verfügbaren virtuellen Konsolen in diesem Abschnitt von /etc/ttys konfiguriert:

# name    getty                         type  status comments
#
ttyv0   "/usr/libexec/getty Pc"         xterm   on  secure
# Virtual terminals
ttyv1   "/usr/libexec/getty Pc"         xterm   on  secure
ttyv2   "/usr/libexec/getty Pc"         xterm   on  secure
ttyv3   "/usr/libexec/getty Pc"         xterm   on  secure
ttyv4   "/usr/libexec/getty Pc"         xterm   on  secure
ttyv5   "/usr/libexec/getty Pc"         xterm   on  secure
ttyv6   "/usr/libexec/getty Pc"         xterm   on  secure
ttyv7   "/usr/libexec/getty Pc"         xterm   on  secure
ttyv8   "/usr/X11R6/bin/xdm -nodaemon"  xterm   off secure

Um eine virtuelle Konsole zu deaktivieren, setzen Sie ein Kommentarzeichen (# an den Anfang der Zeile für die entsprechende Konsole. Um bspw. die Anzahl der verfügbaren virtuellen Konsolen von acht auf vier zu reduzieren, setzen Sie ein # an den Anfang der letzten vier Zeilen, den virtuellen Konsolen ttyv5 bis ttyv8. Kommentieren Sie nicht die Zeile für die Systemkonsole ttyv0 aus! Beachten Sie, dass die letzte virtuelle Konsole (ttyv8) zum Wechsel auf die graphische Oberfläche gedacht ist, wenn Xorg wie im Kapitel 5, Das X-Window-System installiert und konfiguriert ist.

ttys(5) enthält eine ausführliche Beschreibung der Spalten dieser Datei und der verfügbaren Optionen für virtuelle Konsolen.

3.2.2. Single-User-Modus

Das FreeBSD Boot-Menü verfügt über eine Option Boot Single User. Wird diese Option gewählt, bootet das System in einen speziellen Modus, der als Single-User-Modus bekannt ist. Dieser Modus wird normalerweise zur Reparatur des Systems verwendet, bspw. wenn das System nicht mehr startet, oder das root-Passwort zurückgesetzt werden muss. Im Single-User-Modus haben Sie keinen Zugriff auf das Netzwerk und es stehen Ihnen keine weiteren virtuellen Konsolen zur Verfügung. Allerdings haben Sie vollen Zugriff auf das System und in der Voreinstellung wird das root-Passwort nicht benötigt. Aus diesem Grund wird ein physischer Zugriff auf die Tastatur benötigt, um in diesem Modus zu booten. Zur Absicherung eines FreeBSD-Systems sollte ermittelt werden, welche Personen physischen Zugriff auf die Tastatur bekommen sollen.

Die Einstellungen für den Single-User-Modus befinden sich diesem Abschnitt von /etc/ttys:

# name  getty                           type  status  comments
#
# If console is marked "insecure", then init will ask for the root password
# when going to single-user mode.
console none                            unknown  off  secure

In der Voreinstellung ist der Status auf secure eingestellt. Das setzt voraus, dass der physische Zugriff auf die Tastatur entweder unwichtig ist, oder über eine Sicherheitsrichtlinie geregelt wird. Wenn der Status auf insecure eingestellt wird, wird davon ausgegangen, dass die Umgebung selbst unsicher ist, da jeder Zugriff auf die Tastatur hat. FreeBSD wird dann nach dem root-Passwort fragen, wenn ein Benutzer versucht in den Single-User-Modus zu booten.

Anmerkung:

Setzen Sie insecure nicht leichtfertig ein! Wenn das root-Passwort vergessen wird, wird es schwierig in den Single-User-Modus zu gelangen, wenn man den Bootprozess von FreeBSD nicht genau versteht.

3.2.3. Den Videomodus der Konsole anpassen

Der Standard-Videomodus der FreeBSD-Konsole kann auf jeden Modus eingestellt werden, der von der Grafikkarte und dem Monitor unterstützt wird (beispielsweise 1024x768 oder 1280x1024). Um eine andere Einstellung zu verwenden, muss das VESA-Modul geladen werden:

# kldload vesa

Um festzustellen, welche Video-Modi von der Hardware unterstützt werden, nutzen Sie vidcontrol(1). Um eine Liste aller unterstützten Modi zu sehen, verwenden Sie diesen Befehl:

# vidcontrol -i mode

Die Ausgabe dieses Befehls listet alle Videomodi, die von der Hardware unterstützt werden. Um einen neuen Video-Modi zu wählen, wird der entsprechende Modus als root-Benutzer an vidcontrol(1) übergeben:

# vidcontrol MODE_279

Um diese Einstellung dauerhaft zu speichern, muss folgende Zeile in /etc/rc.conf hinzugefügt werden:

allscreens_flags="MODE_279"

3.3. Benutzer und grundlegende Account-Verwaltung

FreeBSD ermöglicht es mehreren Benutzern, den Computer zur selben Zeit zu benutzen. Es kann immer nur ein Benutzer vor der Konsole sitzen, aber es können sich beliebig viele Benutzer über das Netzwerk am System anmelden. Jeder Benutzer muss einen Account haben, um das System benutzen zu können.

Nachdem Sie dieses Kapitel gelesen haben, werden Sie

  • die verschiedenen Account-Typen von FreeBSD kennen,

  • wissen, wie Sie Accounts angelegen, verändern oder löschen,

  • wissen, wie Sie Limits für einen Benutzer oder eine Gruppe setzen, um beispielsweise Ressourcen, wie Speicher oder CPU-Zeit einzuschränken,

  • wissen, wie Sie Gruppen erstellen und Benutzer zu diesen Gruppen hinzufügen.

3.3.1. Account-Typen

Jeder Zugriff auf das FreeBSD-System geschieht über Accounts und alle Prozesse werden von Benutzern gestartet, also sind Benutzer- und Account-Verwaltung von wesentlicher Bedeutung.

Es gibt drei Haupttypen von Accounts: Systembenutzer, Benutzer-Accounts und der Superuser-Account.

3.3.1.1. Systembenutzer

Systembenutzer starten Dienste wie DNS, Mail-Server und Web-Server. Der Grund dafür ist die Sicherheit; wenn die Programme von dem Superuser gestartet werden, können Sie ohne Einschränkungen handeln.

Beispiele von Systembenutzern sind daemon, operator, bind, news und www.

nobody ist der generische unprivilegierte Systembenutzer. Bedenken Sie aber, dass je mehr Dienste nobody benutzen, desto mehr Dateien und Prozesse diesem Benutzer gehören und dieser Benutzer damit umso privilegierter wird.

3.3.1.2. Benutzer-Accounts

Benutzer-Accounts sind realen Personen zugeordnet und sind das primäre Mittel des Zugriffs das System. Jede Person, die Zugriff auf das System bekommt, sollte einen eindeutigen Benutzer-Account besitzen. Dies erlaubt es dem Administrator herauszufinden, wer was macht. Gleichzeitig werden die Benutzer daran gehindert, die Einstellungen anderer Benutzer zu zerstören.

Jeder Benutzer kann die eigene Umgebung anpassen, bspw. seine voreingestellte Shell, Editor, Tastenbelegungen und Spracheinstellungen.

Mit jedem Account eines FreeBSD-Systems sind bestimmte Informationen verknüpft:

Loginnamen

Der Loginname wird am login: Prompt eingegeben. Jeder Benutzer muss einen eindeutigen Benutzernamen haben. Es gibt eine Reihe von Regeln für die Erstellung von gültigen Loginnamen, die in passwd(5) dokumentiert sind. Es wird aus Kompatibilitätsgründen empfohlen, Benutzernamen zu verwenden, die aus Kleinbuchstaben bestehen und bis zu acht Zeichen lang sind.

Passwort

Jeder Account ist mit einem Passwort verknüpft.

User ID (UID)

Die User ID (UID) ist eine Zahl, die verwendet wird, um die Benutzer auf dem FreeBSD-System eindeutig zu identifizieren. Programme, die einen Loginnamen akzeptieren, wandeln diesen zuerst in eine UID um. Es wird empfohlen, nur UIDs kleiner 65535 zu verwenden, da höhere Werte Kompatibilitätsprobleme mit einigen Anwendungen verursachen können.

Group ID (GID)

Die Group ID (GID) ist eine Zahl, die verwendet wird, um die primäre Gruppe eines Benutzers eindeutig zu identifizieren. Gruppen sind ein Mechanismus zur Steuerung des Zugriffs auf Ressourcen über die GID eines Benutzers anstelle der UID. Dies kann die Größe einiger Konfigurationsdateien signifikant reduzieren und ermöglicht es Benutzern, Mitglied mehreren Gruppen zu sein. Es wird empfohlen, GIDs kleiner 65535 zu verwenden, da höhere Werte bei einigen Anwendungen große Probleme verursachen können.

Login-Klasse

Login-Klassen erweitern das Gruppenkonzept. Sie erhöhen die Flexibilität des Systems in der Handhabung der verschiedenen Accounts. Login-Klassen werden auch im Abschnitt 13.13.1, „Login-Klassen konfigurieren“ diskutiert.

Gültigkeit von Passwörtern

In der Voreinstellung verfallen Passwörter nicht. Allerdings können Passwortwechsel nach einer gewissen Zeit auf Basis einzelner Accounts erzwungen werden.

Verfallszeit eines Accounts

In der Voreinstellung verfallen unter FreeBSD keine Accounts. Wenn Sie Accounts einrichten, die nur für eine bestimmte Zeit gültig sein sollen, beispielsweise Accounts für Teilnehmer eines Praktikums, können Sie mit pw(8) die Gültigkeitsdauer des Accounts angeben. Nachdem die angegebene Zeitspanne verstrichen ist, kann dieser Account nicht mehr zum Anmelden verwendet werden, obwohl alle Verzeichnisse und Dateien, die diesem Account gehören, noch vorhanden sind.

vollständiger Benutzername

FreeBSD identifiziert einen Account eindeutig über den Loginnamen, der aber keine Ähnlichkeit mit dem richtigen Namen des Benutzers haben muss. Ähnlich wie bei einem Kommentar, kann diese Information Leerzeichen, Großbuchstaben und mehr als 8 Zeichen enthalten.

Heimatverzeichnis

Das Heimatverzeichnis gibt den vollständigen Pfad zu dem Verzeichnis an, in dem sich der Benutzer nach erfolgreicher Anmeldung befindet. Es ist üblich, alle Heimatverzeichnisse unter /home/Loginname oder /usr/home/Loginname anzulegen. Im Heimatverzeichnis oder in dort angelegten Verzeichnissen werden die Dateien eines Benutzers gespeichert.

Login-Shell

Grundsätzlich ist die Shell, von denen es viele unterschiedliche gibt, eine Schnittstelle zum System. Die bevorzugte Shell eines Benutzers kann seinem Account zugeordnet werden.

3.3.1.3. Der Superuser-Account

Der Superuser-Account, normalerweise root genannt, ist vorkonfiguriert und erleichtert die Systemverwaltung, sollte aber nicht für alltägliche Aufgaben wie das Verschicken und Empfangen von Mails, Erforschen des Systems oder Programmierung benutzt werden.

Der Superuser kann, im Gegensatz zu normalen Benutzer-Accounts, ohne Beschränkungen operieren und die falsche Anwendung des Superuser-Accounts kann in spektakulären Katastrophen resultieren. Benutzer-Accounts sind nicht in der Lage, das System versehentlich zu zerstören, deswegen wird empfohlen, normale Benutzer-Accounts zu verwenden, solange nicht zusätzliche Privilegien benötigt werden.

Kommandos, die Sie als Superuser eingeben, sollten Sie immer doppelt und dreifach überprüfen, da ein zusätzliches Leerzeichen oder ein fehlender Buchstabe irreparablen Datenverlust bedeuten kann.

Es gibt mehrere Möglichkeiten Superuser-Rechte zu bekommen. Obwohl man sich direkt als root anmelden kann, wird von dieser Methode dringend abgeraten.

Verwenden Sie stattdessen su(1) um zum Superuser zu werden. Wenn Sie noch ein - eingeben, wird der Benutzer auch die Umgebung des Root-Benutzers erben. Der Benutzer, der diesen Befehl ausführt muss Mitglied der Gruppe wheel sein, oder der Befehl schlägt fehl. Zudem muss der Benutzer das Kennwort für den Benutzer-Account root kennen.

In diesem Beispiel wird der Benutzer nur zum Superuser, um make install auszuführen, da dieser Befehl Superuser-Rechte erfordert. Nachdem der Befehl ausgeführt wurde, kann der Benutzer exit eingeben, um den Superuser-Account zu verlassen und zu den Privilegien des Benutzer-Accounts zurückkehren.

Beispiel 3.1. Ein Programm als Superuser installieren
% configure
% make
% su -
Password:
# make install
# exit
%

Das in FreeBSD enthaltene su(1) funktioniert gut für einzelne Systeme oder in kleineren Netzwerken, mit nur einem Administrator. Eine Alternative ist es, das Paket oder den Port security/sudo zu installieren. Diese Software bietet eine Protokollierung von Aktivitäten und ermöglicht es dem Administrator zu bestimmen, welche Benutzer welche Befehle als Superuser ausführen dürfen.

3.3.2. Accounts verändern

FreeBSD stellt eine Vielzahl an Programmen bereit, um Accounts zu verändern. Die gebräuchlichsten Kommandos sind in Tabelle 3.1, „Programme zur Verwaltung von Benutzer-Accounts“ gefolgt von einer detaillierten Beschreibung, zusammengefasst. Weitere Informationen und Anwendungsbeispiele finden Sie in der Manualpage des jeweiligen Programms.

Tabelle 3.1. Programme zur Verwaltung von Benutzer-Accounts
ProgrammZusammenfassung
adduser(8)Das empfohlene Werkzeug, um neue Accounts zu erstellen.
rmuser(8)Das empfohlene Werkzeug, um Accounts zu löschen.
chpass(1)Ein flexibles Werkzeug, um Informationen in der Account-Datenbank zu verändern.
passwd(1)Ein Werkzeug, um Passwörter von Accounts zu ändern.
pw(8)Ein mächtiges und flexibles Werkzeug um alle Informationen über Accounts zu ändern.

3.3.2.1. adduser

Das empfohlene Programm zum Hinzufügen neuer Benutzer ist adduser(8). Wenn ein neuer Benutzer hinzugefügt wird, aktualisiert das Programm automatisch /etc/passwd und /etc/group. Es erstellt auch das Heimatverzeichnis für den Benutzer, kopiert die Standardkonfigurationsdateien aus /usr/share/skel und kann optional eine ,,Willkommen``-Nachricht an den neuen Benutzer versenden. Das Programm muss als Superuser ausgeführt werden.

Das Werkzeug adduser(8) arbeitet interaktiv und führt durch die einzelnen Schritte, wenn ein neues Benutzerkonto erstellt wird. Wie in Beispiel 3.2, „Einen Benutzer unter FreeBSD anlegen“ zu sehen ist, müssen Sie entweder die benötigte Information eingeben oder Return drücken, um den Vorgabewert in eckigen Klammern zu akzeptieren. In diesem Beispiel wird der Benutzer in die Gruppe wheel aufgenommen, was es ihm erlaubt mit su(1) zum Superuser zu werden. Wenn Sie fertig sind, können Sie entweder einen weiteren Benutzer erstellen oder das Programm beenden.

Beispiel 3.2. Einen Benutzer unter FreeBSD anlegen
# adduser
Username: jru
Full name: J. Random User
Uid (Leave empty for default):
Login group [jru]:
Login group is jru. Invite jru into other groups? []: wheel
Login class [default]:
Shell (sh csh tcsh zsh nologin) [sh]: zsh
Home directory [/home/jru]:
Home directory permissions (Leave empty for default):
Use password-based authentication? [yes]:
Use an empty password? (yes/no) [no]:
Use a random password? (yes/no) [no]:
Enter password:
Enter password again:
Lock out the account after creation? [no]:
Username   : jru
Password   : ****
Full Name  : J. Random User
Uid        : 1001
Class      :
Groups     : jru wheel
Home       : /home/jru
Shell      : /usr/local/bin/zsh
Locked     : no
OK? (yes/no): yes
adduser: INFO: Successfully added (jru) to the user database.
Add another user? (yes/no): no
Goodbye!
#

Anmerkung:

Wenn Sie das Passwort eingeben, werden weder Passwort noch Sternchen angezeigt. Passen Sie auf, dass Sie das Passwort korrekt eingeben.

3.3.2.2. rmuser

Benutzen Sie rmuser(8) als Superuser, um einen Account vollständig aus dem System zu entfernen. Dieses Programm führt die folgenden Schritte durch:

  1. Entfernt den crontab(1) Eintrag des Benutzers, wenn dieser existiert.

  2. Entfernt alle at(1) jobs, die dem Benutzer gehören.

  3. Schließt alle Prozesse des Benutzers.

  4. Entfernt den Benutzer aus der lokalen Passwort-Datei des Systems.

  5. Entfernt optional das Heimatverzeichnis des Benutzers, falls es dem Benutzer gehört.

  6. Entfernt eingegangene E-Mails des Benutzers aus /var/mail.

  7. Entfernt alle Dateien des Benutzers aus temporären Dateispeicherbereichen wie /tmp.

  8. Entfernt den Loginnamen von allen Gruppen, zu denen er gehört, aus /etc/group. Wenn eine Gruppe leer wird und der Gruppenname mit dem Loginnamen identisch ist, wird die Gruppe entfernt. Das ergänzt sich mit den einzelnen Benutzer-Gruppen, die von adduser(8) für jeden neuen Benutzer erstellt werden.

Der Superuser-Account kann nicht mit rmuser(8) entfernt werden, da dies in den meisten Fällen das System unbrauchbar macht.

Als Vorgabe wird ein interaktiver Modus benutzt.

Beispiel 3.3. Interaktives Löschen von Accounts mit rmuser
# rmuser jru
Matching password entry:
jru:*:1001:1001::0:0:J. Random User:/home/jru:/usr/local/bin/zsh
Is this the entry you wish to remove? y
Remove user's home directory (/home/jru)? y
Removing user (jru): mailspool home passwd.
#

3.3.2.3. chpass

Jeder Benutzer kann chpass(1) verwenden, um die Shell und persönliche Informationen des Benutzerkontos zu verändern. Der Superuser kann dieses Werkzeug benutzen, um zusätzliche Kontoinformationen für alle Benutzer zu ändern.

Werden neben dem optionalen Loginnamen keine weiteren Optionen angegeben, zeigt chpass(1) einen Editor mit Account-Informationen an. Wenn der Benutzer den Editor verlässt, wird die Account-Datenbank mit den neuen Informationen aktualisiert.

Anmerkung:

Dieses Programm fragt nach dem Verlassen des Editors nach dem Passwort, es sei denn, man ist als Superuser angemeldet.

In Beispiel 3.4, „chpass als Superuser verwenden“ hat der Superuser chpass jru eingegeben. Es werden die Felder ausgegeben, die für diesen Benutzer geändert werden können. Wenn stattdessen jru diesen Befehl aufruft, werden nur die letzten sechs Felder ausgegeben. Dies ist in Beispiel 3.5, „chpass als normaler Benutzer verwenden“ zu sehen.

Beispiel 3.4. chpass als Superuser verwenden
#Changing user database information for jru.
Login: jru
Password: *
Uid [#]: 1001
Gid [# or name]: 1001
Change [month day year]:
Expire [month day year]:
Class:
Home directory: /home/jru
Shell: /usr/local/bin/zsh
Full Name: J. Random User
Office Location:
Office Phone:
Home Phone:
Other information:

Beispiel 3.5. chpass als normaler Benutzer verwenden
#Changing user database information for jru.
Shell: /usr/local/bin/tcsh
Full Name: J. Random User
Office Location:
Office Phone:
Home Phone:
Other information:

Anmerkung:

Die Kommandos chfn(1) und chsh(1) sind nur Verweise auf chpass(1), genauso wie ypchpass(1), ypchfn(1) und ypchsh(1). Da NIS automatisch unterstützt wird, ist es nicht notwendig das yp vor dem Kommando einzugeben. NIS wird später im Kapitel 28, Netzwerkserver besprochen.

3.3.2.4. passwd

Jeder Benutzer kann mit passwd(1) einfach sein Passwort ändern. Um eine versehentliche oder unbefugte Änderung zu verhindern, muss bei einem Passwortwechsel zunächst das ursprüngliche Passwort eingegeben werden, bevor das neue Passwort festgelegt werden kann.

Beispiel 3.6. Das eigene Passwort wechseln
% passwd
Changing local password for jru.
Old password:
New password:
Retype new password:
passwd: updating the database...
passwd: done

Der Superuser kann jedes beliebige Passwort ändern, indem er den Benutzernamen an passwd(1) übergibt. Das Programm fordert den Superuser nicht dazu auf, das aktuelle Passwort des Benutzers einzugeben. Dadurch kann das Passwort geändert werden, falls der Benutzer sein ursprüngliches Passwort vergessen hat.

Beispiel 3.7. Als Superuser das Passwort eines anderen Accounts verändern
# passwd jru
Changing local password for jru.
New password:
Retype new password:
passwd: updating the database...
passwd: done

Anmerkung:

Wie bei chpass(1) ist yppasswd(1) nur ein Verweis auf passwd(1). NIS wird von jedem dieser Kommandos unterstützt.

3.3.2.5. pw

Mit dem Werkzeug pw(8) können Accounts und Gruppen erstellt, entfernt, verändert und angezeigt werden. Dieses Kommando dient als Schnittstelle zu den Benutzer- und Gruppendateien des Systems. pw(8) besitzt eine Reihe mächtiger Kommandozeilenschalter, die es für die Benutzung in Shell-Skripten geeignet machen, doch finden neue Benutzer die Bedienung des Kommandos komplizierter, als die der anderen hier vorgestellten Kommandos.

3.3.3. Gruppen

Eine Gruppe ist einfach eine Zusammenfassung von Accounts. Gruppen werden durch den Gruppennamen und die GID identifiziert. Der Kernel von FreeBSD entscheidet anhand der UID und der Gruppenmitgliedschaft eines Prozesses, ob er dem Prozess etwas erlaubt oder nicht. Wenn jemand von der GID eines Benutzers oder Prozesses spricht, meint er damit meistens die erste Gruppe der Gruppenliste.

Die Zuordnung von Gruppennamen zur GID steht in /etc/group, einer Textdatei mit vier durch Doppelpunkte getrennten Feldern. Im ersten Feld steht der Gruppenname, das zweite enthält ein verschlüsseltes Passwort, das dritte gibt die GID an und das vierte besteht aus einer Komma separierten Liste der Mitglieder der Gruppe. Eine ausführliche Beschreibung der Syntax dieser Datei finden Sie in group(5).

Wenn Sie /etc/group nicht von Hand editieren möchten, können Sie pw(8) zum Editieren benutzen. Das folgende Beispiel zeigt das Hinzufügen einer Gruppe mit dem Namen teamtwo:

Beispiel 3.8. Setzen der Mitgliederliste einer Gruppe mit pw(8)
# pw groupadd teamtwo
# pw groupshow teamtwo
teamtwo:*:1100:

1100 ist die GID der Gruppe teamtwo. Momentan hat teamtwo noch keine Mitglieder. Mit dem folgenden Kommando wird der Benutzer jru in die Gruppe teamtwo aufgenommen.

Beispiel 3.9. Ein Gruppenmitglied mit pw(8) hinzufügen
# pw groupmod teamtwo -M jru
# pw groupshow teamtwo
teamtwo:*:1100:jru

Als Argument von -M geben Sie eine Komma separierte Liste von Mitgliedern an, die in die Gruppe aufgenommen werden sollen. Aus den vorherigen Abschnitten ist bekannt, dass die Passwort-Datei ebenfalls eine Gruppe für jeden Benutzer enthält. Das System teilt dem Benutzer automatisch eine Gruppe zu, die aber vom groupshow Kommando von pw(8) nicht angezeigt wird. Diese Information wird allerdings von id(1) und ähnlichen Werkzeugen angezeigt. Das heißt, dass pw(8) nur /etc/group manipuliert, es wird nicht versuchen, zusätzliche Informationen aus /etc/passwd zu lesen.

Beispiel 3.10. Hinzufügen eines neuen Gruppenmitglieds mittels pw(8)
# pw groupmod teamtwo -m db
# pw groupshow teamtwo
teamtwo:*:1100:jru,db

Die Argumente zur Option -m ist eine durch Komma getrennte Liste von Benutzern, die der Gruppe hinzugefügt werden sollen. Anders als im vorherigen Beispiel werden diese Benutzer in die Gruppe aufgenommen und ersetzen nicht die bestehenden Benutzer in der Gruppe.

Beispiel 3.11. Mit id die Gruppenzugehörigkeit bestimmen
% id jru
uid=1001(jru) gid=1001(jru) groups=1001(jru), 1100(teamtwo)

In diesem Beispiel ist jru Mitglied von jru und teamtwo.

Weitere Informationen zu diesem Befehl und dem Format von /etc/group finden Sie in pw(8) und group(5).

3.4. Zugriffsrechte

In FreeBSD besitzt jede Datei und jedes Verzeichnis einen Satz von Zugriffsrechten. Es stehen mehrere Programme zum Anzeigen und Bearbeiten dieser Rechte zur Verfügung. Ein Verständnis für die Funktionsweise von Zugriffsrechten ist notwendig, um sicherzustellen, dass Benutzer nur auf die von ihnen benötigten Dateien zugreifen können und nicht auf die Dateien des Betriebssystems oder von anderen Benutzern.

In diesem Abschnitt werden die traditionellen Zugriffsrechte von UNIX® beschrieben. Informationen zu feingranularen Zugriffsrechten für Dateisysteme finden Sie im Abschnitt 13.9, „Zugriffskontrolllisten für Dateisysteme (ACL)“.

In UNIX® werden die grundlegenden Zugriffsrechte in drei Typen unterteilt: Lesen, Schreiben und Ausführen. Diese Zugriffstypen werden verwendet, um den Dateizugriff für den Besitzer der Datei, die Gruppe und alle anderen zu bestimmen. Die Lese-, Schreib- und Ausführungsberechtigungen werden mit den Buchstaben r, w und x dargestellt. Alternativ können die Berechtigungen als binäre Zahlen dargestellt werden, da jede Berechtigung entweder aktiviert oder deaktiviert (0) ist. Wenn die Berechtigung als Zahl dargestellt wird, ist die Reihenfolge immer als rwx zu lesen, wobei r den Wert 4 hat, w den Wert 2 und x den Wert 1.

In Tabelle 4.1 sind die einzelnen nummerischen und alphabetischen Möglichkeiten zusammengefasst. Das Zeichen - in der Spalte Auflistung im Verzeichnis besagt, dass eine Berechtigung deaktiviert ist.

Tabelle 3.2. UNIX® Zugriffsrechte
WertZugriffsrechteAuflistung im Verzeichnis
0Kein Lesen, Kein Schreiben, Kein Ausführen---
1Kein Lesen, Kein Schreiben, Ausführen--x
2Kein Lesen, Schreiben, Kein Ausführen-w-
3Kein Lesen, Schreiben, Ausführen-wx
4Lesen, Kein Schreiben, Kein Ausführenr--
5Lesen, Kein Schreiben, Ausführenr-x
6Lesen, Schreiben, Kein Ausführenrw-
7Lesen, Schreiben, Ausführenrwx

Benutzen Sie das Argument -l mit ls(1), um eine ausführliche Verzeichnisauflistung zu sehen, die in einer Spalte die Zugriffsrechte für den Besitzer, die Gruppe und alle anderen enthält. Die Ausgabe von ls -l könnte wie folgt aussehen:

% ls -l
total 530
-rw-r--r--  1 root  wheel     512 Sep  5 12:31 myfile
-rw-r--r--  1 root  wheel     512 Sep  5 12:31 otherfile
-rw-r--r--  1 root  wheel    7680 Sep  5 12:31 email.txt

Das erste Zeichen (ganz links) der ersten Spalte zeigt an, ob es sich um eine normale Datei, ein Verzeichnis, ein zeichenorientiertes Gerät, ein Socket oder irgendeine andere Pseudo-Datei handelt. In diesem Beispiel zeigt - eine normale Datei an. Die nächsten drei Zeichen, dargestellt als rw-, ergeben die Rechte für den Datei-Besitzer. Die drei Zeichen danach r-- die Rechte der Gruppe, zu der die Datei gehört. Die letzten drei Zeichen, r--, geben die Rechte für den Rest der Welt an. Ein Minus bedeutet, dass das Recht nicht gegeben ist. In diesem Beispiel sind die Zugriffsrechte also: der Eigentümer kann die Datei lesen und schreiben, die Gruppe kann lesen und alle anderen können auch nur lesen. Entsprechend obiger Tabelle wären die Zugriffsrechte für diese Datei 644, worin jede Ziffer die drei Teile der Zugriffsrechte dieser Datei verkörpert.

Wie kontrolliert das System die Rechte von Hardware-Geräten? FreeBSD behandelt die meisten Hardware-Geräte als Dateien, welche Programme öffnen, lesen und mit Daten beschreiben können. Diese speziellen Gerätedateien sind in /dev gespeichert.

Verzeichnisse werden ebenfalls wie Dateien behandelt. Sie haben Lese-, Schreib- und Ausführ-Rechte. Das Ausführungs-Bit hat eine etwas andere Bedeutung für ein Verzeichnis als für eine Datei. Die Ausführbarkeit eines Verzeichnisses bedeutet, dass in das Verzeichnis, zum Beispiel mit cd(1), gewechselt werden kann. Das bedeutet auch, dass in dem Verzeichnis auf Dateien, deren Namen bekannt sind, zugegriffen werden kann, vorausgesetzt die Zugriffsrechte der Dateien lassen dies zu.

Das Leserecht auf einem Verzeichnis erlaubt es, sich den Inhalt des Verzeichnisses anzeigen zu lassen. Um eine Datei mit bekanntem Namen in einem Verzeichnis zu löschen, müssen auf dem Verzeichnis Schreib- und Ausführ-Rechte gesetzt sein.

Es gibt noch mehr Rechte, aber die werden vor allem in speziellen Umständen benutzt, wie zum Beispiel bei SetUID-Binaries und Verzeichnissen mit gesetztem Sticky-Bit. Mehr über Zugriffsrechte von Dateien und wie sie gesetzt werden, finden Sie in chmod(1).

3.4.1. Symbolische Zugriffsrechte

Beigesteuert von Tom Rhodes.

Symbolische Zugriffsrechte verwenden Zeichen anstelle von oktalen Werten, um die Berechtigungen für Dateien oder Verzeichnisse festzulegen. Zugriffsrechte verwenden die Syntax Wer, Aktion und Berechtigung. Die folgenden Werte stehen zur Auswahl:

OptionSymbolBedeutung
WeruBenutzer (user)
WergGruppe (group)
WeroAndere (other)
WeraAlle
Aktion+Berechtigungen hinzufügen
Aktion-Berechtigungen entziehen
Aktion=Berechtigungen explizit setzen
Berechtigungrlesen (read)
Berechtigungwschreiben (write)
Berechtigungxausführen (execute)
BerechtigungtSticky-Bit
BerechtigungsSet-UID oder Set-GID

Diese symbolischen Werte werden zusammen mit chmod(1) verwendet. Beispielsweise würde der folgende Befehl den Zugriff auf FILE für alle anderen Benutzer verbieten:

% chmod go= FILE

Wenn Sie mehr als eine Änderung der Rechte einer Datei vornehmen wollen, können Sie eine durch Kommata getrennte Liste der Rechte angeben. Das folgende Beispiel entzieht der Gruppe und der Welt die Schreibberechtigung auf FILE und fügt für jeden Ausführungsrechte hinzu:

% chmod go-w,a+x FILE

3.4.2. FreeBSD Datei-Flags

Beigetragen von Tom Rhodes.

Zusätzlich zu den Zugriffsrechten unterstützt FreeBSD auch die Nutzung von Datei-Flags. Diese erhöhen die Sicherheit des Systems, indem sie eine verbesserte Kontrolle von Dateien erlauben. Verzeichnisse werden allerdings nicht unterstützt. Mit dem Einsatz von Datei-Flags kann sogar root daran gehindert werden, Dateien zu löschen oder zu verändern.

Datei-Flags werden mit chflags(1) verändert. Um beispielsweise auf der Datei file1 das unlöschbar-Flag zu aktivieren, geben Sie folgenden Befehl ein:

# chflags sunlink file1

Um dieses Flag zu deaktivieren, setzen Sie ein no vor sunlink:

# chflags nosunlink file1

Um die Flags einer Datei anzuzeigen, verwenden Sie ls(1) zusammen mit -lo:

# ls -lo file1
-rw-r--r--  1 trhodes  trhodes  sunlnk 0 Mar  1 05:54 file1

Einige Datei-Flags können nur vom root-Benutzer gesetzt oder gelöscht werden. Andere wiederum können auch vom Eigentümer der Datei gesetzt werden. Weitere Informationen hierzu finden sich in chflags(1) und chflags(2).

3.4.3. Die Berechtigungen setuid, setgid, und sticky

Beigetragen von Tom Rhodes.

Anders als die Berechtigungen, die bereits angesprochen wurden, existieren drei weitere Einstellungen, über die alle Administratoren Bescheid wissen sollten. Dies sind die Berechtigungen setuid, setgid und sticky.

Diese Einstellungen sind wichtig für manche UNIX®-Operationen, da sie Funktionalitäten zur Verfügung stellen, die normalerweise nicht an gewöhnliche Anwender vergeben wird. Um diese zu verstehen, muss der Unterschied zwischen der realen und der effektiven Benutzer-ID erwähnt werden.

Die reale Benutzer-ID ist die UID, welche den Prozess besitzt oder gestartet hat. Die effektive UID ist diejenige, als die der Prozess läuft. Beispielsweise wird passwd(1) mit der realen ID des Benutzers ausgeführt, der sein Passwort ändert. Um jedoch die Passwortdatenbank zu bearbeiten, wird es effektiv als root-Benutzer ausgeführt. Das ermöglicht es normalen Benutzern, ihr Passwort zu ändern, ohne einen Permission Denied-Fehler angezeigt zu bekommen.

Die setuid-Berechtigung kann durch das Voranstellen bei einer Berechtigungsgruppe mit der Nummer Vier (4) gesetzt werden, wie im folgenden Beispiel gezeigt wird:

# chmod 4755 suidexample.sh

Die Berechtigungen auf suidexample.sh sehen jetzt wie folgt aus:

-rwsr-xr-x   1 trhodes  trhodes    63 Aug 29 06:36 suidexample.sh

Beachten Sie, dass ein s jetzt Teil der Berechtigungen des Dateibesitzers geworden ist, welches das Ausführen-Bit ersetzt. Dies ermöglicht es Werkzeugen mit erhöhten Berechtigungen zu laufen, wie beispielsweise passwd.

Anmerkung:

Die nosuid mount(8)-Option bewirkt, dass solche Anwendungen stillschweigend scheitern, ohne den Anwender darüber zu informieren. Diese Option ist nicht völlig zuverlässig, da ein nosuid-Wrapper in der Lage wäre, dies zu umgehen.

Um dies in Echtzeit zu beobachten, öffnen Sie zwei Terminals. Starten Sie auf einem passwd als normaler Benutzer. Während es auf die Passworteingabe wartet, überprüfen Sie die Prozesstabelle und sehen Sie sich die Informationen für passwd(1) an:

Im Terminal A:

Changing local password for trhodes
Old Password:

Im Terminal B:

# ps aux | grep passwd
trhodes  5232  0.0  0.2  3420  1608   0  R+    2:10AM   0:00.00 grep passwd
root     5211  0.0  0.2  3620  1724   2  I+    2:09AM   0:00.01 passwd

Obwohl passwd(1) als normaler Benutzer ausgeführt wird, benutzt es die effektive UID von root.

Die setgid-Berechtigung führt die gleiche Aktion wie die setuid-Berechtigung durch, allerdings verändert sie die Gruppenberechtigungen. Wenn eine Anwendung oder ein Werkzeug mit dieser Berechtigung ausgeführt wird, erhält es die Berechtigungen basierend auf der Gruppe, welche die Datei besitzt und nicht die des Benutzers, der den Prozess gestartet hat.

Um die setgid-Berechtigung auf einer Datei zu setzen, geben Sie chmod(1) eine führende Zwei (2) mit:

# chmod 2755 sgidexample.sh

Beachten Sie in der folgenden Auflistung, dass das s sich jetzt in dem Feld befindet, das für die Berechtigungen der Gruppe bestimmt ist:

-rwxr-sr-x   1 trhodes  trhodes    44 Aug 31 01:49 sgidexample.sh

Anmerkung:

Obwohl es sich bei dem in diesen Beispielen gezeigten Shellskript um eine ausführbare Datei handelt, wird es nicht mit einer anderen EUID oder effektiven Benutzer-ID ausgeführt. Das ist so, weil Shellskripte keinen Zugriff auf setuid(2)-Systemaufrufe erhalten.

Die setuid und setgid Berechtigungs-Bits können die Systemsicherheit verringern, da sie erhöhte Rechte ermöglichen. Das dritte Berechtigungs-Bit, das sticky bit kann die Sicherheit eines Systems erhöhen.

Wenn das sticky bit auf einem Verzeichnis angewendet wird, erlaubt es das Löschen von Dateien nur durch den Besitzer der Datei. Dies ist nützlich, um die Löschung von Dateien in öffentlichen Verzeichnissen wie /tmp, durch Benutzer denen diese Dateien nicht gehören, zu verhindern. Um diese Berechtigung anzuwenden, stellen Sie der Berechtigung eine Eins (1) voran:

# chmod 1777 /tmp

Das sticky bit kann anhand des t ganz am Ende der Berechtigungen abgelesen werden.

# ls -al / | grep tmp
drwxrwxrwt  10 root  wheel         512 Aug 31 01:49 tmp

3.5. Verzeichnis-Strukturen

Die FreeBSD-Verzeichnishierarchie ist die Grundlage, um ein umfassendes Verständnis des Systems zu erlangen. Das wichtigste Verzeichnis ist das Root-Verzeichnis /. Dieses Verzeichnis ist das erste, das während des Bootens eingehangen wird. Es enthält das notwendige Basissystem, um das Betriebssystem in den Mehrbenutzerbetrieb zu bringen. Das Root-Verzeichnis enthält auch die Mountpunkte für Dateisysteme, die beim Wechsel in den Multiuser-Modus eingehängt werden.

Ein Mountpunkt ist ein Verzeichnis, in das zusätzliche Dateisysteme (in der Regel unterhalb des Wurzelverzeichnisses) eingehängt werden können. Dieser Vorgang wird in Abschnitt 3.6, „Festplatten, Slices und Partitionen“ ausführlich beschrieben. Standard-Mountpunkte sind /usr, /var, /tmp, /mnt sowie /cdrom. Auf diese Verzeichnisse verweisen üblicherweise Einträge in /etc/fstab. Diese Datei ist eine Tabelle mit verschiedenen Dateisystemen und Mountpunkten, vom System gelesen werden. Die meisten der Dateisysteme in /etc/fstab werden beim Booten automatisch durch das Skript rc(8) gemountet, wenn die zugehörigen Einträge nicht mit noauto versehen sind. Weitere Informationen zu diesem Thema finden Sie im Abschnitt 3.7.1, „Die fstab Datei“.

Eine vollständige Beschreibung der Dateisystem-Hierarchie finden Sie in hier(7). Die folgende Aufstellung gibt einen kurzen Überblick über die am häufigsten verwendeten Verzeichnisse:

VerzeichnisBeschreibung
/Wurzelverzeichnis des Dateisystems.
/bin/Grundlegende Werkzeuge für den Single-User-Modus sowie den Mehrbenutzerbetrieb.
/boot/Programme und Konfigurationsdateien, die während des Bootens benutzt werden.
/boot/defaults/Vorgaben für die Boot-Konfiguration. Weitere Details finden Sie in loader.conf(5).
/dev/Gerätedateien. Weitere Details finden Sie in intro(4).
/etc/Konfigurationsdateien und Skripten des Systems.
/etc/defaults/Vorgaben für die System Konfigurationsdateien. Weitere Details finden Sie in rc(8).
/etc/mail/Konfigurationsdateien von MTAs wie sendmail(8).
/etc/namedb/Konfigurationsdateien von named(8).
/etc/periodic/Täglich, wöchentlich oder monatlich laufende Skripte, die von cron(8) gestartet werden. Weitere Details finden Sie in periodic(8).
/etc/ppp/Konfigurationsdateien von ppp(8).
/mnt/Ein leeres Verzeichnis, das von Systemadministratoren häufig als temporärer Mountpunkt genutzt wird.
/proc/Prozess Dateisystem. Weitere Details finden Sie in procfs(5) und mount_procfs(8).
/rescue/Statisch gelinkte Programme zur Wiederherstellung des Systems, wie in rescue(8) beschrieben.
/root/Home Verzeichnis von root.
/sbin/Systemprogramme und administrative Werkzeuge, die grundlegend für den Single-User-Modus und den Mehrbenutzerbetrieb sind.
/tmp/Temporäre Dateien, die für gewöhnlich bei einem Neustart des Systems verloren gehen. Häufig wird ein speicherbasiertes Dateisystem unter /tmp eingehängt. Dieser Vorgang kann automatisiert werden, wenn tmpmfs-bezogene Variablen von rc.conf(5) verwendet werden, oder ein entsprechender Eintrag in /etc/fstab existiert. Weitere Informationen finden Sie in mdmfs(8).
/usr/Der Großteil der Benutzerprogramme und Anwendungen.
/usr/bin/Gebräuchliche Werkzeuge, Programmierhilfen und Anwendungen.
/usr/include/Standard C include-Dateien.
/usr/lib/Bibliotheken.
/usr/libdata/Daten verschiedener Werkzeuge.
/usr/libexec/System-Dämonen und System-Werkzeuge, die von anderen Programmen ausgeführt werden.
/usr/local/Lokale Programme und Bibliotheken. Die Ports-Sammlung von FreeBSD benutzt dieses Verzeichnis als Zielverzeichnis für Anwendungen. Innerhalb von /usr/local sollte das von hier(7) beschriebene Layout für /usr benutzt werden. Das man Verzeichnis wird direkt unter /usr/local anstelle unter /usr/local/share angelegt. Die Dokumentation der Ports findet sich in share/doc/port.
/usr/obj/Von der Architektur abhängiger Verzeichnisbaum, der durch das Bauen von /usr/src entsteht.
/usr/ports/Die FreeBSD-Ports-Sammlung (optional).
/usr/sbin/System-Dämonen und System-Werkzeuge, die von Benutzern ausgeführt werden.
/usr/share/Von der Architektur unabhängige Dateien.
/usr/src/Quelldateien von BSD und/oder lokalen Ergänzungen.
/var/Wird für mehrere Zwecke genutzt und enthält Logdateien, temporäre Daten und Spooldateien. Manchmal wird ein speicherbasiertes Dateisystem unter /var eingehängt. Dieser Vorgang kann automatisiert werden, wenn die varmfs-bezogenen Variablen von rc.conf(5) verwendet werden, oder ein entsprechender Eintrag in /etc/fstab existiert. Weitere Informationen finden Sie in mdmfs(8).
/var/log/Verschiedene Logdateien des Systems.
/var/mail/Postfächer der Benutzer.
/var/spool/Verschiedene Spool-Verzeichnisse der Drucker- und Mailsysteme.
/var/tmp/Temporäre Dateien, die in der Regel auch bei einem Neustart des Systems erhalten bleiben, es sei denn, bei /var handelt es sich um ein speicherbasiertes Dateisystem.
/var/yp/NIS maps.

3.6. Festplatten, Slices und Partitionen

FreeBSD identifiziert Dateien anhand eines Dateinamens. In Dateinamen wird zwischen Groß- und Kleinschreibung unterschieden: readme.txt und README.TXT bezeichnen daher zwei verschiedene Dateien. FreeBSD benutzt keine Dateiendungen, um den Typ der Datei zu bestimmen, egal ob es sich um ein Programm, ein Dokument oder um andere Daten handelt.

Dateien werden in Verzeichnissen gespeichert. In einem Verzeichnis können sich keine oder hunderte Dateien befinden. Ein Verzeichnis kann auch andere Verzeichnisse enthalten und so eine Hierarchie von Verzeichnissen aufbauen, die die Ablage von Daten erleichtert.

In Dateinamen werden Verzeichnisse durch einen Schrägstrich (/, Slash) getrennt. Wenn z.B. das Verzeichnis foo ein Verzeichnis bar enthält, in dem sich die Datei readme.txt befindet, lautet der vollständige Name der Datei (oder der Pfad zur Datei) foo/bar/readme.txt. Beachten Sie, dass sich dies von Windows® unterscheidet, wo der \ (Backslash für die Trennung von Datei- und Verzeichnisnamen verwendet wird. FreeBSD benutzt keine Laufwerkbuchstaben oder Laufwerknamen im Pfad. Beispielsweise würde man unter FreeBSD nicht c:\foo\bar\readme.txt eingeben.

Verzeichnisse und Dateien werden in einem Dateisystem gespeichert. Jedes Dateisystem besitzt genau ein Wurzelverzeichnis, das so genannte Root-Directory. Dieses Wurzelverzeichnis kann weitere Verzeichnisse enthalten. Ein Dateisystem wird als Wurzeldateisystem festgelegt, und jedes weitere Dateisystem wird unter dem Wurzeldateisystem eingehangen. Daher scheint jedes Verzeichnis, unabhängig von der Anzahl der Platten, auf derselben Platte zu liegen.

Betrachten wir die drei Dateisysteme A, B und C. Jedes Dateisystem besitzt ein eigenes Wurzelverzeichnis, das zwei andere Verzeichnisse enthält: A1, A2, B1, B2, C1 und C2.

Das Wurzeldateisystem soll A sein. ls(1) zeigt darin die beiden Verzeichnisse A1 und A2 an. Der Verzeichnisbaum sieht wie folgt aus:

Ein Dateisystem wird in einem Verzeichnis eines anderen Dateisystems eingehangen. Wir hängen nun das Dateisystem B in das Verzeichnis A1 ein. Das Wurzelverzeichnis von B ersetzt nun das Verzeichnis A1 und die Verzeichnisse des Dateisystems B werden sichtbar:

Jede Datei in den Verzeichnissen B1 oder B2 kann über den Pfad /A1/B1 oder /A1/B2 erreicht werden. Dateien aus dem Verzeichnis /A1 sind jetzt verborgen. Wenn das Dateisystem B wieder abgehangen wird (umount), erscheinen die verborgenen Dateien wieder.

Wenn das Dateisystem B unter dem Verzeichnis A2 eingehangen würde, sähe der Verzeichnisbaum so aus:

Die Dateien des Dateisystems B wären unter den Pfaden /A2/B1 und /A2/B2 erreichbar.

Dateisysteme können übereinander eingehangen werden. Der folgende Baum entsteht, wenn im letzten Beispiel das Dateisystem C in das Verzeichnis B1 des Dateisystems B eingehangen wird:

C könnte auch im Verzeichnis A1 eingehangen werden:

Sie können sogar mit nur einem großen Dateisystem auskommen. Dies hat mehrere Nachteile und einen Vorteil.

Vorteile mehrerer Dateisysteme
  • Die Dateisysteme können mit unterschiedlichen Optionen (mount options) eingehangen werden. Beispielsweise kann das Wurzeldateisystem schreibgeschützt eingehangen werden, sodass es für Benutzer nicht möglich ist, versehentlich kritische Dateien zu editieren oder zu löschen. Von Benutzern beschreibbare Dateisysteme wie /home können mit der Option nosuid eingehangen werden, wenn sie von anderen Dateisystemen getrennt sind. Die SUID- und GUID-Bits verlieren auf solchen Dateisystemen ihre Wirkung und die Sicherheit des Systems kann dadurch erhöht werden.

  • Die Lage von Dateien im Dateisystem wird, abhängig vom Gebrauch des Dateisystems, automatisch von FreeBSD optimiert. Ein Dateisystem mit vielen kleinen Dateien, die häufig geschrieben werden, wird anders behandelt als ein Dateisystem mit wenigen großen Dateien. Mit nur einem Dateisystem ist diese Optimierung unmöglich.

  • In der Regel übersteht ein FreeBSD-Dateisystem auch einen Stromausfall. Allerdings kann ein Stromausfall zu einem kritischen Zeitpunkt das Dateisystem beschädigen. Wenn die Daten über mehrere Dateisysteme verteilt sind, lässt sich das System mit hoher Wahrscheinlichkeit noch starten. Dies erleichtert das Zurückspielen von Datensicherungen.

Vorteil eines einzelnen Dateisystems
  • Dateisysteme haben eine festgelegte Größe. Es kann passieren, dass Sie eine Partition vergrößern müssen. Dies ist nicht leicht: Sie müssen die Daten sichern, das Dateisystem vergrößert anlegen und die gesicherten Daten zurückspielen.

    Wichtig:

    FreeBSD kennt den Befehl growfs(8), mit dem man Dateisysteme im laufenden Betrieb vergrößern kann.

Dateisysteme befinden sich in Partitionen (damit sind nicht die normalen MS-DOS®-Partitionen gemeint). Jede Partition wird mit einem Buchstaben von a bis h bezeichnet und kann nur ein Dateisystem enthalten. Dateisysteme können daher über ihren Mount-Point, den Punkt an dem sie eingehangen sind, oder den Buchstaben der Partition, in der sie liegen, identifiziert werden.

FreeBSD benutzt einen Teil der Platte für den Swap-Bereich, um virtuellen Speicher zur Verfügung zu stellen. Dadurch kann der Rechner Anwendungen mehr Speicher zur Verfügung stellen als tatsächlich eingebaut ist. Wenn der Speicher knapp wird, kann FreeBSD nicht benutzte Daten in den Swap-Bereich auslagern. Die ausgelagerten Daten können später wieder in den Speicher geholt werden (dafür werden dann andere Daten ausgelagert).

Für einige Partitionen gelten besondere Konventionen:

PartitionKonvention
aEnthält normalerweise das Wurzeldateisystem.
bEnthält normalerweise den Swap-Bereich.
cIst normalerweise genauso groß wie die Slice in der die Partition liegt. Werkzeuge, die auf der kompletten Slice arbeiten, wie ein Bad-Block-Scanner, können so die c-Partition benutzen. Für gewöhnlich wird in dieser Partition kein Dateisystem angelegt.
dFrüher hatte die d-Partition eine besondere Bedeutung. Heute ist dies nicht mehr der Fall und die Partition d kann wie jede andere Partition auch verwendet werden.

In FreeBSD werden Festplatten in Slices, welche in Windows® als Partitionen bekannt sind, aufgeteilt und von 1 bis 4 durchnummeriert. Diese werden dann in Partitionen unterteilt, welche wiederum Dateisysteme enthalten und mit Buchstaben benannt werden.

Die Slice-Nummern werden mit vorgestelltem s hinter den Gerätenamen gestellt: da0s1 ist die erste Slice auf dem ersten SCSI-Laufwerk. Auf einer Festplatte gibt es höchstens vier Slices. In einer Slice des passenden Typs kann es weitere logische Slices geben. Diese erweiterten Slices werden ab fünf durchnummeriert: ada0s5 ist die erste erweiterte Slice auf einer SATA-Platte. Diese Geräte werden von Dateisystemen benutzt, die sich in einer kompletten Slice befinden müssen.

Slices, dangerously dedicated-Festplatten und andere Platten enthalten Partitionen, die mit Buchstaben von a bis h bezeichnet werden. Der Buchstabe wird an den Gerätenamen gehangen: da0a ist die a-Partition des ersten da-Laufwerks. Dieses Laufwerk ist dangerously dedicated. ada1s3e ist die fünfte Partition in der dritten Slice der zweiten SATA-Platte.

Schließlich wird noch jede Festplatte des Systems eindeutig bezeichnet. Der Name einer Festplatte beginnt mit einem Code, der den Typ der Platte bezeichnet. Es folgt eine Nummer, die angibt, um welche Festplatte es sich handelt. Anders als bei Slices werden Festplatten von Null beginnend durchnummeriert. Gängige Festplatten-Namen sind in Tabelle 3.3, „Laufwerk-Codes“ aufgeführt.

Wenn Sie eine Partition angeben, beinhaltet das den Plattennamen, s, die Slice-Nummer und den Buchstaben der Partition. Einige Beispiele finden Sie in Beispiel 3.12, „Namen von Platten, Slices und Partitionen“.

Der Aufbau einer Festplatte wird in Beispiel 3.13, „Aufteilung einer Festplatte“ dargestellt.

Bei der Installation von FreeBSD legen Sie Slices auf der Festplatte an, erstellen Partitionen für FreeBSD innerhalb der Slice, erstellen ein Dateisystem oder Auslagerungsbereiche und entscheiden, welche Dateisysteme wo eingehangen werden.

Tabelle 3.3. Laufwerk-Codes
LaufwerkstypGerätename
SATA- und IDE-Festplattenada oder ad
SCSI-Festplatten und USB-Speichermedienda
SATA- und IDE-CD-ROM-Laufwerkecd oder acd
SCSI-CD-ROM-Laufwerkecd
Diskettenlaufwerkefd
Verschiedene proprietäre CD-ROM-Laufwerkemcd für Mitsumi CD-ROM und scd für Sony CD-ROM
SCSI-Bandlaufwerkesa
IDE-Bandlaufwerkeast
RAID-LaufwerkeBeispiele sind aacd für Adaptec® AdvancedRAID, mlxd für Mylex®, amrd für AMI MegaRAID®, idad für Compaq Smart RAID, twed für 3ware® RAID.

Beispiel 3.12. Namen von Platten, Slices und Partitionen
NameBedeutung
ada0s1aDie erste Partition (a) in der ersten Slice (s1) der ersten SATA-Festplatte (ada0).
da1s2eDie fünfte Partition (e) der zweiten Slice (s2) auf der zweiten SCSI-Festplatte (da1).

Beispiel 3.13. Aufteilung einer Festplatte

Das folgende Diagramm zeigt die Sicht von FreeBSD auf die erste SATA-Festplatte des Systems. Die Platte soll 250 GB groß sein und eine 80 GB große Slice (MS-DOS®-Partitionen) sowie eine 170 GB große Slice enthalten. Die erste Slice enthält ein Windows® NTFS-Dateisystem (C:), die zweite Slice enthält eine FreeBSD-Installation. Die FreeBSD-Installation in diesem Beispiel verwendet vier Datenpartitionen und einen Auslagerungsbereich.

Jede der vier Partitionen enthält ein Dateisystem. Das Wurzeldateisystem ist die a-Partition. In der d-Partition befindet sich /var und in der f-Partition befindet sich /usr. Die c-Partition bezieht sich auf die gesamte Slice und wird nicht für gewöhnliche Partitionen verwendet.


3.7. Anhängen und Abhängen von Dateisystemen

Ein Dateisystem wird am besten als ein Baum mit der Wurzel / veranschaulicht. /dev, /usr, und die anderen Verzeichnisse im Rootverzeichnis sind Zweige, die wiederum eigene Zweige wie /usr/local haben können.

Es gibt verschiedene Gründe, bestimmte dieser Verzeichnisse auf eigenen Dateisystemen anzulegen. /var enthält log/, spool/ sowie verschiedene andere temporäre Dateien und kann sich daher schnell füllen. Es empfiehlt sich, /var von / zu trennen, da es schlecht ist, wenn das Root-Dateisystem voll läuft.

Ein weiterer Grund bestimmte Verzeichnisbäume auf andere Dateisysteme zu legen, ist gegeben, wenn sich die Verzeichnisbäume auf gesonderten physikalischen oder virtuellen Platten, wie Network File System oder CD-ROM-Laufwerken, befinden.

3.7.1. Die fstab Datei

Während des Boot-Prozesses (Kapitel 12, FreeBSDs Bootvorgang) werden in /etc/fstab aufgeführte Verzeichnisse, sofern sie nicht mit der Option noauto versehen sind, automatisch angehangen. Diese Datei enthält Einträge in folgendem Format:

device	/mount-point	fstype	options	dumpfreq	passno
device

Ein existierender Gerätename wie in Tabelle 3.3, „Laufwerk-Codes“ beschrieben.

mount-point

Ein existierendes Verzeichnis, auf dem das Dateisystem gemountet wird.

fstype

Der Typ des Dateisystems, der an mount(8) weitergegeben wird. FreeBSDs Standarddateisystem ist ufs.

options

Entweder rw für beschreibbare Dateisysteme oder ro für schreibgeschützte Dateisysteme, gefolgt von weiteren benötigten Optionen. Eine häufig verwendete Option ist noauto für Dateisysteme, die während der normalen Bootsequenz nicht angehangen werden sollen. Weitere Optionen finden sich in mount(8).

dumpfreq

Wird von dump(8) benutzt, um bestimmen zu können, welche Dateisysteme gesichert werden müssen. Fehlt der Wert, wird 0 angenommen.

passno

Bestimmt die Reihenfolge, in der die Dateisysteme überprüft werden sollen. Für Dateisysteme, die übersprungen werden sollen, ist passno auf 0 zu setzen. Für das Root-Dateisystem, das vor allen anderen überprüft werden muss, sollte der Wert von passno 1 betragen. Allen anderen Dateisystemen sollten Werte größer 1 zugewiesen werden. Wenn mehrere Dateisysteme den gleichen Wert besitzen, wird fsck(8) versuchen, diese parallel zu überprüfen.

Lesen Sie fstab(5) für weitere Informationen über das Format von /etc/fstab und dessen Optionen.

3.7.2. Verwendung von mount(8)

Dateisysteme werden mit mount(8) eingehängt. In der grundlegenden Form wird es wie folgt benutzt:

# mount device mountpoint

Dieser Befehl bietet viele Optionen, die in mount(8) beschrieben werden. Die am häufigsten verwendeten Optionen sind:

Optionen von mount
-a

Hängt alle Dateisysteme aus /etc/fstab an. Davon ausgenommen sind Dateisysteme, die mit noauto markiert sind, die mit der Option -t ausgeschlossen wurden und Dateisysteme, die schon angehangen sind.

-d

Führt alles bis auf den mount-Systemaufruf aus. Nützlich ist diese Option in Verbindung mit -v. Damit wird angezeigt, was mount(8) tatsächlich versuchen würde, um das Dateisystem anzuhängen.

-f

Erzwingt das Anhängen eines unsauberen Dateisystems (riskant) oder die Rücknahme des Schreibzugriffs, wenn der Status des Dateisystems von beschreibbar auf schreibgeschützt geändert wird.

-r

Hängt das Dateisystem schreibgeschützt ein. Dies kann auch durch Angabe von -o ro erreicht werden.

-t fstype

Hängt das Dateisystem mit dem angegebenen Typ an, oder hängt nur Dateisysteme mit dem angegebenen Typ an, wenn -a angegeben wurde. ufs ist das Standarddateisystem.

-u

Aktualisiert die Mountoptionen des Dateisystems.

-v

Geschwätzig sein.

-w

Hängt das Dateisystem beschreibbar an.

Die folgenden Optionen können durch eine Kommata separierte Liste an -o übergeben werden:

nosuid

SetUID und SetGID Bits werden auf dem Dateisystem nicht beachtet. Dies ist eine nützliche Sicherheitsfunktion.

3.7.3. Verwendung von umount(8)

umount(8) hängt ein Dateisystem ab. Dieser Befehl akzeptiert als Parameter entweder einen Mountpoint, einen Gerätenamen, -a oder -A.

Jede Form akzeptiert -f, um das Abhängen zu erzwingen, und -v, um etwas geschwätziger zu sein. Seien Sie bitte vorsichtig mit -f, da der Computer abstürzen kann oder es können Daten auf dem Dateisystem beschädigt werden.

Um alle Dateisysteme abzuhängen, oder nur diejenigen, die mit -t gelistet werden, wird -a oder -A benutzt. Beachten Sie, dass -a das Root-Dateisystem nicht aushängt.

3.8. Prozesse und Dämonen

FreeBSD ist ein Multitasking-Betriebssystem. Jedes Programm, das zu irgendeiner Zeit läuft wird als Prozess bezeichnet. Jedes laufende Kommando startet mindestens einen neuen Prozess. Dazu gibt es eine Reihe von Systemprozessen, die von FreeBSD ausgeführt werden.

Jeder Prozess wird durch eine eindeutige Nummer identifiziert, die Prozess-ID (PID) genannt wird. Prozesse haben ebenso wie Dateien einen Besitzer und eine Gruppe, die festlegen, welche Dateien und Geräte der Prozess benutzen kann. Die meisten Prozesse haben auch einen Elternprozess, der sie gestartet hat. Beispielsweise ist die Shell ein Prozess. Jedes in Shell gestartete Kommando ist dann ein neuer Prozess, der die Shell als Elternprozess besitzt. Die Ausnahme hiervon ist ein spezieller Prozess namens init(8), der beim booten immer als erstes gestartet wird und der immer die PID 1 hat.

Manche Programme erwarten keine Eingaben vom Benutzer und lösen sich bei erster Gelegenheit von ihrem Terminal. Ein Webserver zum Beispiel antwortet auf Web-Anfragen und nicht auf Benutzereingaben. Mail-Server sind ein weiteres Beispiel für diesen Typ von Anwendungen. Diese Programme sind als Dämonen bekannt. Der Begriff Dämon stammt aus der griechischen Mythologie und bezeichnet ein Wesen, das weder gut noch böse ist und welches unsichtbar nützliche Aufgaben verrichtet. Deshalb ist das BSD Maskottchen dieser fröhlich aussehende Dämon mit Turnschuhen und Dreizack.

Programme, die als Dämon laufen, werden entsprechend einer Konvention mit einem d am Ende benannt. BIND steht beispielsweise für Berkeley Internet Name Domain, das tatsächlich laufende Programm heißt aber named. Der Apache Webserver wird httpd genannt und der Druckerspool-Dämon heißt lpd(8). Dies ist allerdings nur eine Konvention. Der Dämon der Anwendung Sendmail heißt beispielsweise sendmail und nicht maild.

3.8.1. Prozesse beobachten

Um die Prozesse auf dem System zu sehen, benutzen Sie ps(1) und top(1). Eine statische Liste der laufenden Prozesse, deren PIDs, Speicherverbrauch und die Kommandozeile, mit der sie gestartet wurden, erhalten Sie mit ps(1). Um alle laufenden Prozesse in einer Anzeige zu sehen, die alle paar Sekunden aktualisiert wird, so dass Sie interaktiv sehen können was der Computer macht, benutzen Sie top(1).

In der Voreinstellung zeigt ps(1) nur die laufenden Prozesse, die dem Benutzer gehören. Zum Beispiel:

% ps
 PID TT  STAT    TIME COMMAND
8203  0  Ss   0:00.59 /bin/csh
8895  0  R+   0:00.00 ps

Die Ausgabe von ps(1) ist in einer Anzahl von Spalten organisiert. Die PID Spalte zeigt die Prozess-ID. PIDs werden von 1 beginnend bis 99999 zugewiesen und fangen wieder von vorne an. Ist eine PID bereits vergeben, wird diese allerdings nicht erneut vergeben. Die Spalte TT zeigt den Terminal, auf dem das Programm läuft. STAT zeigt den Status des Programms und TIME gibt die Zeit an, die das Programm auf der CPU gelaufen ist. Dies ist nicht unbedingt die Zeit, die seit dem Start des Programms vergangen ist, da die meisten Programme hauptsächlich auf bestimmte Dinge warten, bevor sie wirklich CPU-Zeit verbrauchen. Unter der Spalte COMMAND findet sich schließlich die Kommandozeile, mit der das Programm gestartet wurde.

ps(1) besitzt viele Optionen, um die angezeigten Informationen zu beeinflussen. Eine nützliche Kombination ist auxww. a zeigt Information über alle laufenden Prozesse aller Benutzer. Der Name des Besitzers des Prozesses, sowie Informationen über den Speicherverbrauch werden mit u angezeigt. x zeigt auch Dämonen-Prozesse an, und ww veranlasst ps(1) die komplette Kommandozeile für jeden Befehl anzuzeigen, anstatt sie abzuschneiden, wenn sie zu lang für die Bildschirmausgabe wird.

Die Ausgabe von top(1) sieht in etwa so aus:

% top
last pid:  9609;  load averages:  0.56,  0.45,  0.36              up 0+00:20:03  10:21:46
107 processes: 2 running, 104 sleeping, 1 zombie
CPU:  6.2% user,  0.1% nice,  8.2% system,  0.4% interrupt, 85.1% idle
Mem: 541M Active, 450M Inact, 1333M Wired, 4064K Cache, 1498M Free
ARC: 992M Total, 377M MFU, 589M MRU, 250K Anon, 5280K Header, 21M Other
Swap: 2048M Total, 2048M Free

  PID USERNAME    THR PRI NICE   SIZE    RES STATE   C   TIME   WCPU COMMAND
  557 root          1 -21  r31   136M 42296K select  0   2:20  9.96% Xorg
 8198 dru           2  52    0   449M 82736K select  3   0:08  5.96% kdeinit4
 8311 dru          27  30    0  1150M   187M uwait   1   1:37  0.98% firefox
  431 root          1  20    0 14268K  1728K select  0   0:06  0.98% moused
 9551 dru           1  21    0 16600K  2660K CPU3    3   0:01  0.98% top
 2357 dru           4  37    0   718M   141M select  0   0:21  0.00% kdeinit4
 8705 dru           4  35    0   480M    98M select  2   0:20  0.00% kdeinit4
 8076 dru           6  20    0   552M   113M uwait   0   0:12  0.00% soffice.bin
 2623 root          1  30   10 12088K  1636K select  3   0:09  0.00% powerd
 2338 dru           1  20    0   440M 84532K select  1   0:06  0.00% kwin
 1427 dru           5  22    0   605M 86412K select  1   0:05  0.00% kdeinit4

Die Ausgabe ist in zwei Abschnitte geteilt. In den ersten fünf Kopfzeilen finden sich die zuletzt zugeteilte PID, die Systemauslastung (engl. load average), die Systemlaufzeit (die Zeit seit dem letzten Reboot) und die momentane Zeit. Die weiteren Zahlen im Kopf beschreiben wie viele Prozesse momentan laufen, wie viel Speicher und Swap verbraucht wurde und wie viel Zeit das System in den verschiedenen CPU-Modi verbringt. Wenn das ZFS-Kernelmodul geladen ist, dann zeigt die Zeile ARC, wie viele Daten aus dem Cache gelesen wurden.

Darunter befinden sich einige Spalten mit ähnlichen Informationen wie in der Ausgabe von ps(1), beispielsweise die PID, den Besitzer, die verbrauchte CPU-Zeit und das Kommando, das den Prozess gestartet hat. top(1) zeigt in zwei Spalten den Speicherverbrauch des Prozesses an. Die erste Spalte gibt den gesamten Speicherverbrauch des Prozesses an, in der zweiten Spalte wird der aktuelle Verbrauch angegeben.

Die Anzeige wird von top(1) automatisch alle zwei Sekunden aktualisiert. Ein anderer Intervall kann mit -s spezifiziert werden.

3.8.2. Stoppen von Prozessen

Eine Möglichkeit mit einem laufenden Prozess zu kommunizieren, ist über das Versenden von Signalen mittels kill(1). Es gibt eine Reihe von verschiedenen Signalen. Manche haben eine feste Bedeutung, während andere in der Dokumentation der Anwendung beschrieben sind. Ein Benutzer kann ein Signal nur an einen Prozess senden, welcher ihm gehört. Wird versucht ein Signal an einen Prozess eines anderen Benutzers zu senden, resultiert dies in einem Zugriffsfehler mangels fehlender Berechtigungen. Die Ausnahme ist der root-Benutzer, welcher jedem Prozess Signale senden kann.

FreeBSD kann auch ein Signal an einen Prozess senden. Wenn eine Anwendung schlecht geschrieben ist und auf Speicher zugreift, auf den sie nicht zugreifen soll, so sendet FreeBSD dem Prozess das Segmentation Violation Signal (SIGSEGV). Wenn eine Anwendung programmiert wurde, den alarm(3) Systemaufruf zu benutzen, um nach einiger Zeit benachrichtigt zu werden, bekommt sie das Alarm-Signal (SIGALRM) gesendet.

Zwei Signale können benutzt werden, um einen Prozess zu stoppen: SIGTERM und SIGKILL. SIGTERM fordert den Prozess höflich zum Beenden auf. Der Prozess kann das Signal abfangen und hat dann Gelegenheit Logdateien zu schließen und die Aktion, die er durchführte, abzuschließen. In manchen Situationen kann der Prozess SIGTERM ignorieren, wenn er eine Aktion durchführt, die nicht unterbrochen werden darf.

SIGKILL kann von keinem Prozess ignoriert werden. Wird einem Prozess SIGKILL geschickt, dann wird FreeBSD diesen sofort beenden[1].

Andere häufig verwendete Signale sind SIGHUP, SIGUSR1 und SIGUSR2. Da diese Signale für allgemeine Zwecke vorgesehen sind, werden verschiedene Anwendungen unterschiedlich auf diese Signale reagieren.

Ändern Sie beispielsweise die Konfiguration eines Webservers, so muss dieser angewiesen werden, seine Konfiguration neu zu lesen. Ein Neustart von httpd würde dazu führen, dass der Server für kurze Zeit nicht erreichbar ist. Senden Sie dem Dämon stattdessen das SIGHUP-Signal. Es sei erwähnt, dass verschiedene Dämonen sich anders verhalten. Lesen Sie die Dokumentation des entsprechenden Dämonen um zu überprüfen, ob der Dämon bei einem SIGHUP die gewünschten Ergebnisse erzielt.

Prozedur 3.1. Verschicken von Signalen

Das folgende Beispiel zeigt, wie Sie inetd(8) ein Signal schicken. Die Konfigurationsdatei von inetd(8) ist /etc/inetd.conf. Diese Konfigurationsdatei liest inetd(8) ein, wenn er SIGHUP empfängt.

  1. Suchen Sie mit pgrep(1) die PID des Prozesses, dem Sie ein Signal schicken wollen. In diesem Beispiel ist die PID von inetd(8) 198:

    % pgrep -l inetd
    198 inetd -wW
  2. Benutzen Sie kill(1), um ein Signal zu senden. Da inetd(8) dem Benutzer root gehört, müssen Sie zuerst mit su(1) root werden:

    % su
    Password:
    # /bin/kill -s HUP 198

    kill(1) wird, wie andere UNIX® Kommandos auch, keine Ausgabe erzeugen, wenn das Kommando erfolgreich war. Wird versucht, einem Prozess der nicht dem Benutzer gehört, ein Signal zu senden, dann wird die Meldung kill: PID: Operation not permitted ausgegeben. Ein Tippfehler bei der Eingabe der PID führt dazu, dass das Signal an einen falschen Prozess gesendet wird, was zu negativen Ergebnissen führen kann, oder das Signal wird an eine PID gesendet die derzeit nicht in Gebrauch ist, was zu dem Fehler kill: PID: No such process führt.

    Warum sollte man /bin/kill benutzen?:

    Viele Shells stellen kill als internes Kommando zur Verfügung, das heißt die Shell sendet das Signal direkt, anstatt /bin/kill zu starten. Beachten Sie, dass die unterschiedlichen Shells eine andere Syntax benutzen, um die Namen der Signale anzugeben. Anstatt jede Syntax zu lernen, kann es einfacher sein, /bin/kill direkt aufzurufen.

Beim Versenden von anderen Signalen, ersetzen Sie TERM oder KILL in der Kommandozeile mit dem Namen des Signals.

Wichtig:

Das zufällige Beenden eines Prozesses kann gravierende Auswirkungen haben. Insbesondere init(8), mit der PID 1, ist ein Spezialfall. /bin/kill -s KILL 1 ist ein schneller, jedoch nicht empfohlener Weg, das System herunterzufahren. Überprüfen Sie die Argumente von kill(1) immer zweimal bevor Sie Return drücken.

3.9. Shells

Eine Shell stellt eine Kommandozeilen-Schnittstelle zur Interaktion mit dem Betriebssystem zur Verfügung. Sie empfängt Befehle von einem Eingabekanal und führt diese aus. Viele Shells bieten eingebaute Funktionen, die die tägliche Arbeit erleichtern, beispielsweise eine Dateiverwaltung, die Vervollständigung von Dateinamen (Globbing), Kommandozeilen-Editor, sowie Makros und Umgebungsvariablen. FreeBSD enthält einige Shells, darunter die Bourne Shell (sh(1)) und die verbesserte C-Shell (tcsh(1)). Weitere Shells, wie zsh oder bash, befinden sich in der Ports-Sammlung.

Die verwendete Shell ist letztlich eine Frage des Geschmacks. Ein C-Programmierer, findet vielleicht eine C-artige Shell wie tcsh(1) angenehmer. Ein Linux®-Benutzer bevorzugt vielleicht bash. Jede Shell hat ihre speziellen Eigenschaften, die mit der bevorzugten Arbeitsumgebung des Benutzers harmonieren kann oder nicht. Deshalb stehen mehrere Shells zur Auswahl.

Ein verbreitetes Merkmal in Shells ist die Dateinamen-Vervollständigung. Nachdem der Benutzer einige Buchstaben eines Kommandos oder eines Dateinamen eingeben hat, vervollständigt die Shell den Rest durch drücken der Tab-Taste. Angenommen, Sie haben zwei Dateien foobar und football. Um foobar zu löschen, kann der Benutzer rm foo eingeben und Tab drücken um den Dateinamen zu vervollständigen.

Die Shell wird lediglich rm foo anzeigen. Sie konnte den Dateinamen nicht vervollständigen, da sowohl foobar als auch football mit foo anfangen. Einige Shells geben einen Signalton aus, oder zeigen alle Möglichkeiten an, wenn mehr als ein Name mit dem gegebenen Muster übereinstimmt. Der Benutzer muss dann weitere Zeichen eingeben, damit die Shell den gewünschten Dateinamen bestimmen kann. Durch Eingabe von t und erneutes Drücken von Tab ist die Shell in der Lage, den gewünschten Dateinamen zu vervollständigen.

Ein weiteres Merkmal der Shell ist der Gebrauch von Umgebungsvariablen. Dies sind veränderbare Schlüsselpaare im Umgebungsraum der Shell, die jedes von der Shell aufgerufene Programm lesen kann. Daher enthält der Umgebungsraum viele Konfigurationsdaten für Programme. Tabelle 3.4, „Gebräuchliche Umgebungsvariablen“ zeigt verbreitete Umgebungsvariablen und deren Bedeutung. Beachten Sie, dass die Namen der Umgebungsvariablen immer in Großbuchstaben geschrieben sind:

Tabelle 3.4. Gebräuchliche Umgebungsvariablen
VariableBeschreibung
USERName des angemeldeten Benutzers.
PATHListe mit Verzeichnissen (getrennt durch Doppelpunkt) zum Suchen nach Programmen.
DISPLAYDer Name des Xorg-Bildschirms, auf dem Ausgaben erfolgen sollen.
SHELLDie aktuelle Shell.
TERMName des Terminaltyps des Benutzers. Benutzt, um die Fähigkeiten des Terminals zu bestimmen.
TERMCAPDatenbankeintrag der Terminal Escape Codes, benötigt um verschieden Terminalfunktionen auszuführen.
OSTYPETyp des Betriebssystems.
MACHTYPEDie CPU-Architektur des Systems.
EDITORVom Benutzer bevorzugter Text-Editor.
PAGERVom Benutzer bevorzugter Text-Betrachter.
MANPATHListe mit Verzeichnissen (getrennt durch Doppelpunkt) zum Suchen nach Manualpages.

Das Setzen von Umgebungsvariablen unterscheidet sich von Shell zu Shell. In tcsh(1) und csh(1) wird dazu setenv benutzt. sh(1) und bash benutzen export um Umgebungsvariablen zu setzen. Dieses Beispiel für die tcsh(1)-Shell setzt die Variable EDITOR auf /usr/local/bin/emacs:

% setenv EDITOR /usr/local/bin/emacs

Der entsprechende Befehl für bash wäre:

% export EDITOR="/usr/local/bin/emacs"

Um eine Umgebungsvariable zu expandieren, geben Sie in der Kommandozeile das Zeichen $ vor dessen Namen ein. Zum Beispiel gibt echo $TERM den aktuellen Wert von$TERM aus.

Shells behandeln Spezialzeichen, so genannte Metazeichen, als besondere Darstellungen für Daten. Das häufigste Zeichen ist *, das eine beliebige Anzahl Zeichen in einem Dateinamen repräsentiert. Metazeichen können zur Vervollständigung von Dateinamen (Globbing) benutzt werden. Beispielsweise liefert echo * nahezu das gleiche wie ls, da die Shell alle Dateinamen die mit * übereinstimmen, an echo weitergibt.

Um zu verhindern, dass die Shell ein Sonderzeichen interpretiert, schützt man es, indem man einen Backslash (\) voranstellt. Zum Beispiel zeigt echo $TERM die Einstellung des Terminals an, wohingegen echo \$TERM einfach die Zeichenfolge $TERM ausgibt.

3.9.1. Ändern der Shell

Der einfachste Weg die Standard Shell zu ändern, ist chsh zu benutzen. chsh startet den Editor, welcher durch die Umgebungsvariable EDITOR gesetzt ist. Standardmäßig ist dies vi(1). Tragen Sie in die Zeile die mit Shell: beginnt, den absoluten Pfad der neuen Shell ein.

Alternativ setzt chsh -s die Shell, ohne dabei einen Editor aufzurufen. Um die Shell zum Beispiel auf bash zu ändern, geben Sie folgenden Befehl ein:

% chsh -s /usr/local/bin/bash

Anmerkung:

Die neue Shell muss in /etc/shells aufgeführt sein. Wurde die Shell aus der FreeBSD Ports-Sammlung installiert, so wie in Kapitel 4, Installieren von Anwendungen: Pakete und Ports beschrieben, sollte sie automatisch zu dieser Datei hinzugefügt worden sein. Wenn der Eintrag fehlt, nutzen Sie folgenden Befehl, und ersetzen Sie den Pfad mit dem Pfad zur gewünschten Shell:

# echo /usr/local/bin/bash >> /etc/shells

Danach kann chsh(1) erneut aufgerufen werden.

3.9.2. Fortgeschrittene Shell Techniken

Geschrieben von Tom Rhodes.

Die UNIX®-Shell ist nicht nur ein Kommandozeileninterpreter, sie ist ein leistungsfähiges Werkzeug, das Benutzern die Ausführung von Befehlen ermöglicht. Es kann die Ein- und Ausgabe umleiten und Befehle miteinander verketten, um die finale Ausgabe zu verbessern. Diese Funktionalität, gepaart mit den eingebauten Befehlen, bietet dem Benutzer eine Umgebung, welche die Effizienz erheblich steigern kann.

Als Redirection bezeichnet man die Umleitung der Ein- oder Ausgabe in einen anderen Befehl oder Datei. Um beispielsweise die Ausgabe des Befehls ls(1) in eine Datei zu schreiben, muss die Ausgabe umgeleitet werden:

% ls > Verzeichnis_Ausgabe.txt

Die Datei Verzeichnis_Ausgabe.txt enthält nun den Verzeichnisinhalt. Einige Befehle, wie beispielsweise sort(1), können verwendet werden um von der Eingabe zu lesen. Wenn Sie die Ausgabe sortieren möchten, müssen Sie die Eingabe umleiten:

% sort < Verzeichnis_Ausgabe.txt

Die Eingabe wird sortiert und auf dem Bildschirm ausgegeben. Um diese Ausgabe wiederum in eine Datei umzuleiten, kann die Ausgabe von sort(1) umgeleitet werden:

% sort < Verzeichnis_Ausgabe.txt > Sortierte_Ausgabe.txt

In den bisherigen Beispielen wurden für die Umleitung Dateideskriptoren verwendet. Jedes UNIX®-System verfügt über drei Dateideskriptoren: Standardeingabe (stdin), Standardausgabe (stdout) und Stardardfehlerausgabe (stderr). Jeder Deskriptor hat einen bestimmten Zweck. Die Eingabe könnte von einer Tastatur, einer Maus oder einem anderen Eingabegerät stammen. Die Ausgabe könnte der Bildschirm oder ein Drucker sein. Die Standardfehlerausgabe wird zur Diagnose und für Fehlermeldungen verwendet. Alle drei Deskriptoren arbeiten I/O basiert und werden häufig als Streams bezeichnet.

Die Verwendung von Deskriptoren erlaubt es der Shell, die Ein- und Ausgabe von verschiedenen Kommandos umzuleiten und zu teilen. Eine weitere Möglichkeit zur Umleitung bietet der Pipe-Operator.

Der UNIX® Pipe-Operator | wird verwendet, um die Ausgabe eines Kommandos an ein anderes Programm zu übergeben. Grundsätzlich bedeutet dies, dass die Standardausgabe eines Programms als Standardeingabe für ein weiteres Programm verwendet wird. Ein Beispiel:

% cat Verzeichnis_Auflistung.txt | sort | less

In diesem Beispiel wird der Inhalt von Verzeichnis_Auflistung.txt sortiert und die Ausgabe an less(1) übergeben. Dies erlaubt es dem Benutzer, die Ausgabe Schritt für Schritt und im eigenen Tempo zu betrachten.

3.10. Text-Editoren

Die meiste Konfiguration unter FreeBSD wird durch das Editieren von Textdateien erledigt. Deshalb ist es eine gute Idee, mit einem Texteditor vertraut zu werden. FreeBSD hat ein paar davon im Basissystem und sehr viel mehr in der Ports-Sammlung.

Ein einfach zu erlernender Editor ist ee(1), was für easy editor steht. Um diesen Editor zu starten, gibt man in der Kommandozeile ee filename ein, wobei filename den Namen der zu editierenden Datei darstellt. Einmal im Editor, finden sich alle Editor-Funktionen oben im Display aufgelistet. Das Einschaltungszeichen (^) steht für die Ctrl (oder Strg) Taste, mit ^e ist also die Tastenkombination Ctrl+e gemeint. Um ee(1) zu verlassen, drücken Sie Esc und wählen dann im Hauptmenü leave editor aus. Der Editor fragt nach, ob Sie speichern möchten, wenn die Datei verändert wurde.

FreeBSD verfügt über leistungsfähigere Editoren wie vi(1) als Teil des Basissystems. Andere Editoren wie editors/emacs und editors/vim sind Teil der Ports-Sammlung. Diese Editoren bieten höhere Funktionalität, jedoch auf Kosten einer etwas schwierigeren Erlernbarkeit. Das Erlernen eines leistungsfähigeren Editors, wie vim oder Emacs, kann auf lange Sicht Zeit einsparen.

Viele Anwendungen, die Dateien verändern oder Texteingabe erwarten, werden automatisch einen Texteditor öffnen. Um den Standardeditor zu ändern, wird die Umgebungsvariable EDITOR gesetzt, wie im Abschnitt Abschnitt 3.9, „Shells“ beschrieben.

3.11. Geräte und Gerätedateien

Der Begriff Gerät wird meist in Verbindung mit Hardware wie Laufwerken, Druckern, Grafikkarten oder Tastaturen gebraucht. Der Großteil der Meldungen, die beim Booten von FreeBSD angezeigt werden, beziehen sich auf gefundene Geräte. Eine Kopie dieser Bootmeldungen wird in /var/run/dmesg.boot gespeichert.

Jedes Gerät verfügt über einen Gerätenamen und Gerätenummer. Zum Beispiel steht ada0 für die erste SATA Festplatte, während kbd0 die Tastatur repräsentiert.

Auf die meisten Geräte wird unter FreeBSD über spezielle Gerätedateien im /dev Verzeichnis zugegriffen.

3.12. Manualpages

3.12.1. Manualpages

Die umfassendste Dokumentation rund um FreeBSD gibt es in Form von Manualpages. Annähernd jedes Programm im System bringt eine kurze Referenzdokumentation mit, die die grundsätzliche Funktion und verschiedene Parameter erklärt. Diese Manuals können mit man eingesehen werden:

% man Kommando

Kommando ist der Name des Kommandos, über das man etwas erfahren will. Um beispielsweise mehr über das Kommando ls(1) zu erfahren, geben Sie ein:

% man ls

Die Manualpages sind in nummerierte Sektionen unterteilt, die jeweils ein Thema darstellen. In FreeBSD sind die folgenden Sektionen verfügbar:

  1. Benutzerkommandos.

  2. Systemaufrufe und Fehlernummern.

  3. Funktionen der C Bibliothek.

  4. Gerätetreiber.

  5. Dateiformate.

  6. Spiele und andere Unterhaltung.

  7. Verschiedene Informationen.

  8. Systemverwaltung und -Kommandos.

  9. Kernel Schnittstellen.

In einigen Fällen kann dasselbe Thema in mehreren Sektionen auftauchen. Es gibt zum Beispiel ein chmod Benutzerkommando und einen chmod() Systemaufruf. Um man(1) mitzuteilen, aus welcher Sektion die Information angezeigt werden soll, kann die Sektionsnummer mit angeben werden:

% man 1 chmod

Dies wird Ihnen die Manualpage für das Benutzerkommando chmod(1) zeigen. Verweise auf eine Sektion der Manualpages werden traditionell in Klammern gesetzt. So bezieht sich chmod(1) auf das Benutzerkommando und chmod(2) auf den Systemaufruf.

Wenn das Kommando nicht bekannt ist, kann man -k benutzt werden, um nach Schlüsselbegriffen in den Kommandobeschreibungen zu suchen:

% man -k mail

Dieser Befehl zeigt eine Liste von Kommandos, deren Beschreibung das Schlüsselwort mail enthält. Die gleiche Funktionalität erhalten Sie auch, wenn Sie apropos(1) benutzen.

Um die Beschreibungen der Kommandos in /usr/bin zu lesen, geben Sie ein:

% cd /usr/bin
% man -f * | more

Dasselbe erreichen Sie durch Eingabe von:

% cd /usr/bin
% whatis * | more

3.12.2. GNU Info Dateien

FreeBSD enthält verschiedene Anwendungen und Utilities der Free Software Foundation (FSF). Zusätzlich zu den Manualpages können diese Programme Hypertext-Dokumente enthalten, die info-Seiten genannt werden. Diese Dokumente können mit info(1) ansehen kann. Wenn editors/emacs installiert ist, kann auch der info-Modus von emacs benutzt werden.

Um info(1) zu benutzen, geben Sie ein:

% info

Eine kurze Einführung gibt es mit h; eine Befehlsreferenz erhalten Sie durch Eingabe von: ?.



[1] Es gibt Fälle, in denen ein Prozess nicht unterbrochen werden kann. Wenn ein Prozess zum Beispiel eine Datei von einem anderen Rechner auf dem Netzwerk liest und dieser Rechner nicht erreichbar ist, dann ist der Prozess nicht zu unterbrechen. Wenn der Prozess den Lesezugriff nach einem Timeout von typischerweise zwei Minuten aufgibt, dann wird er beendet.

Kapitel 4. Installieren von Anwendungen: Pakete und Ports

Übersetzt von Uwe Pierau.
Überarbeitet von Björn Heidotting.

4.1. Übersicht

FreeBSD enthält eine umfassende Sammlung von Systemwerkzeugen, die Teil des Basissystems sind. Darüber hinaus stellt FreeBSD zwei sich ergänzende Methoden zur Installation von Drittanbieter-Software zur Verfügung: Die Ports-Sammlung zur Installation aus dem Quellcode sowie Pakete zur Installation von vorkompilierten binären Softwarepaketen. Beide Methoden können benutzt werden, um Anwendungen von lokalen Medien oder über das Netzwerk zu installieren.

Dieses Kapitel behandelt die folgenden Themen:

  • Den Unterschied zwischen binären Softwarepaketen und Ports.

  • Wie man Drittanbieter-Software findet, die nach FreeBSD portiert wurde.

  • Wie Binärpakete mit pkg verwaltet werden.

  • Den Bau von Drittanbieter-Software aus dem Quellcode mithilfe der Ports-Sammlung.

  • Wie man die Dateien findet, die zusammen mit der Anwendung installiert wurden.

  • Was zu tun ist, wenn die Installation einer Software fehlschlägt.

4.2. Installation von Software

Die typischen Schritte zur Installation von Drittanbieter-Software auf einem UNIX® System sind:

  1. Download der Software, die als Quelltext oder im Binärformat vorliegen kann.

  2. Auspacken der Software. Dies ist typischerweise ein mit compress(1), gzip(1) oder bzip2(1) komprimiertes Tar-Archiv.

  3. Durchsuchen der Dokumentation, die sich in INSTALL, README oder mehreren Dateien im Verzeichnis doc/ befindet, nach Anweisungen, wie die Software zu installieren ist.

  4. Kompilieren der Software, wenn sie als Quelltext vorliegt. Dazu muss vielleicht das Makefile angepasst, oder configure ausgeführt werden.

  5. Testen und installieren der Software.

Wenn die Software nicht speziell für FreeBSD geschrieben wurde, muss vielleicht sogar der Quelltext angepasst werden, damit die Software funktioniert. Zurzeit werden über 24,000 Anwendungen Dritter zur Verfügung gestellt.

Ein FreeBSD-Paket enthält vorkompilierte Kopien aller Befehle für eine Anwendung, sowie zusätzliche Konfigurationsdateien und Dokumentation. Pakete können mit den pkg-Befehlen, wie pkg install, manipuliert werden.

Ein FreeBSD-Port ist eine Sammlung von Dateien, die das Kompilieren der Quelltexte einer Anwendung automatisieren. Die Dateien, die ein Port umfasst enthalten alle notwendigen Informationen um die Anwendung herunterzuladen, zu extrahieren, anzupassen und zu installieren.

Das Portsystem kann auch dazu benutzt werden, Pakete zu generieren, die mit den Paketverwaltungswerkzeugen von FreeBSD manipuliert werden können.

Pakete und Ports beachten Abhängigkeiten zwischen Anwendungen. Wenn ein Paket oder die Ports-Sammlung benutzt wird, um eine Anwendung zu installieren, dann werden fehlende Bibliotheken zuerst installiert, sofern sie nicht schon vorher installiert waren.

Obwohl beide Technologien gleichartig sind, so haben Pakete und Ports jeweils ihre eigenen Stärken. Welche Technologie eingesetzt wird, hängt letzten Endes von den Anforderungen ab, die an eine bestimmte Anwendung gestellt werden.

Vorteile von Paketen
  • Das komprimierte Paket einer Anwendung ist normalerweise kleiner als das komprimierte Archiv der Quelltexte.

  • Pakete müssen nicht mehr kompiliert werden. Dies ist ein Vorteil, wenn große Pakete wie Mozilla, KDE oder GNOME auf langsamen Maschinen installiert werden.

  • Wenn Sie Pakete verwenden, brauchen Sie nicht zu verstehen, wie Software unter FreeBSD kompiliert wird.

Vorteile von Ports
  • Da die Pakete auf möglichst vielen System laufen sollen, werden Optionen beim Übersetzen zurückhaltend gesetzt. Wird eine Anwendung über die Ports übersetzt, können die Optionen nach eigenen Bedürfnissen angepasst werden.

  • Die Eigenschaften einiger Anwendungen werden über Optionen zum Zeitpunkt des Übersetzens festgelegt. Apache kann zum Beispiel über eine große Auswahl an eingebauten Optionen konfiguriert werden.

    Für einige Fälle existieren verschiedene Pakete einer Anwendung, die beim Übersetzen unterschiedlich konfiguriert wurden. Für Ghostscript gibt es ein ghostscript-Paket und ein ghostscript-nox11-Paket, die sich durch die Xorg Unterstützung unterscheiden. Das Erstellen von verschiedenen Paketen wird aber schnell unhandlich, wenn eine Anwendung mehr als ein oder zwei Optionen zum Zeitpunkt des Übersetzens besitzt.

  • Die Lizenzbestimmungen mancher Software verbietet ein Verbreiten in binärer Form. Diese Software muss als Quelltext, der durch den Benutzer kompiliert werden muss, ausgeliefert werden.

  • Einige Leute trauen binären Distributionen nicht, oder sie ziehen es vor den Quelltext zu lesen, um diesen nach möglichen Problemen zu durchsuchen.

  • Der Quellcode wird benötigt, um individuelle Anpassungen anzuwenden.

Wenn Sie über aktualisierte Ports informiert sein wollen, lesen Sie die Mailinglisten FreeBSD ports und FreeBSD ports bugs.

Warnung:

Bevor Sie eine Anwendung installieren, informieren Sie sich auf der Seite http://vuxml.FreeBSD.org/ über mögliche Sicherheitsprobleme mit der Anwendung, oder führen Sie pkg audit -F aus, um alle installierten Pakete auf bekannte Sicherheitslücken zu überprüfen.

Der Rest dieses Kapitels beschreibt, wie man Software Dritter mit Paketen und Ports unter FreeBSD installiert und verwaltet.

4.3. Suchen einer Anwendung

Die Anzahl der nach FreeBSD portierten Anwendungen steigt ständig. Es gibt einige Wege, um nach Anwendungen zu suchen:

  • Die FreeBSD-Webseite stellt unter http://www.FreeBSD.org/ports/ eine aktuelle und durchsuchbare Liste aller Anwendungen zur Verfügung. Die Ports können nach dem Namen den Anwendung, oder über die Software-Kategorie durchsucht werden.

  • Dan Langille verwaltet FreshPorts.org, das eine umfassende Suchfunktion bietet und Änderungen an den Anwendungen in der Ports-Sammlung verfolgt. Registrierte Benutzer können eine Merkliste erstellen, um automatisch eine E-Mail zu erhalten, sobald ein Port von dieser Liste aktualisiert wurde.

  • Wenn Sie bei der Suche nach einer bestimmten Anwendung nicht weiter kommen, versuchen Sie eine Webseite wie SourceForge.net oder GitHub.com. Schauen Sie dann auf der FreeBSD-Webseite nach, ob die Anwendung portiert wurde.

  • Das Paket Repository nach einer Anwendung durchsuchen:

    # pkg search subversion
    git-subversion-1.9.2
    java-subversion-1.8.8_2
    p5-subversion-1.8.8_2
    py27-hgsubversion-1.6
    py27-subversion-1.8.8_2
    ruby-subversion-1.8.8_2
    subversion-1.8.8_2
    subversion-book-4515
    subversion-static-1.8.8_2
    subversion16-1.6.23_4
    subversion17-1.7.16_2

    Die Paketnamen enthalten jeweils die Versionsnummer. Wenn ein Port von python abhängt, wird auch die Versionsnummer von python ausgegeben, mit der die Anwendung gebaut wurde. Für einige Ports stehen sogar mehrere Versionen zur Verfügung. Im Fall von subversion gibt es drei verschiedene Versionen, mit unterschiedlichen Optionen. In diesem Fall wird die Version von subversion statisch gelinkt. Wenn Sie ein Paket installieren, ist es am besten den Ursprung des Ports anzugeben, also den Pfad in der Ports-Sammlung. Wiederholen Sie pkg search mit -o um den Ursprung der Pakete anzuzeigen:

    # pkg search -o subversion
    devel/git-subversion
    java/java-subversion
    devel/p5-subversion
    devel/py-hgsubversion
    devel/py-subversion
    devel/ruby-subversion
    devel/subversion16
    devel/subversion17
    devel/subversion
    devel/subversion-book
    devel/subversion-static

    Zudem unterstützt pkg search die Suche mit regulären Ausdrücken, nach exakten Treffern, nach der Beschreibung oder nach anderen Feldern in der Repository-Datenbank. Nach der Installation von ports-mgmt/pkg oder ports-mgmt/pkg-devel, finden Sie in pkg-search(8) weitere Details.

  • Wenn die Ports-Sammlung bereits installiert ist, gibt es mehrere Methoden, um die lokale Version dieser Port-Sammlung abzufragen. Verwenden Sie whereis Datei um herauszufinden, in welcher Kategorie ein Port ist, wobei Datei der Name des Programms ist, das installiert werden soll:

    # whereis lsof
    lsof: /usr/ports/sysutils/lsof

    Alternativ kann der echo(1)-Befehl verwendet werden:

    # echo /usr/ports/*/*lsof*
    /usr/ports/sysutils/lsof

    Beachten Sie aber, dass dieser Befehl auch alle Dateien im Verzeichnis /usr/ports/distfiles findet, auf die der angegebene Suchbegriff passt.

  • Ein weiterer Weg nach Software zu suchen besteht darin, die eingebaute Suchfunktion der Ports-Sammlung zu benutzen. Wechseln Sie dazu in das Verzeichnis /usr/ports, und rufen Sie make search name=Anwendungsname auf, wobei Anwendungsname der Name der Software ist. Um zum Beispiel nach lsof zu suchen:

    # cd /usr/ports
    # make search name=lsof
    Port:   lsof-4.88.d,8
    Path:   /usr/ports/sysutils/lsof
    Info:   Lists information about open files (similar to fstat(1))
    Maint:  ler@lerctr.org
    Index:  sysutils
    B-deps:
    R-deps: 

    Tipp:

    Der integrierte Suchmechanismus verwendet eine Datei mit Index-Informationen. Erscheint eine Meldung, dass der INDEX benötigt wird, führen Sie make fetchindex aus, um die aktuelle Index-Datei herunterzuladen. Mit einem vorhandenen INDEX ist make search in der Lage, die gewünschte Suche durchzuführen.

    Die Path:-Zeile zeigt an, wo der Port zu finden ist.

    Um weniger Informationen zu erhalten, benutzen Sie die Funktion quicksearch:

    # cd /usr/ports
    # make quicksearch name=lsof
    Port:	lsof-4.88.d,8
    Path:	/usr/ports/sysutils/lsof
    Info:	Lists information about open files (similar to fstat(1))

    Erweiterte Suchen führen Sie mit make search key=Text oder make quicksearch key=Text aus. Damit werden Portnamen, Kommentare, Beschreibungen und Abhängigkeiten nach Text durchsucht. Dies kann sehr nützlich sein, wenn der Name des Programms nicht bekannt ist.

    Bei der Verwendung von search und quicksearch wird Groß- und Kleinschreibung bei der Suche ignoriert. Die Suche nach LSOF wird dieselben Ergebnisse wie die Suche nach lsof liefern.

4.4. Benutzen von pkg zur Verwaltung von Binärpaketen

pkg ist der Nachfolger für die traditionellen Paketverwaltungswerkzeuge von FreeBSD. Es bietet viele Funktionen, die den Umgang mit Binärpaketen schneller und einfacher machen.

pkg ist kein Ersatz für die Portverwaltungswerkzeuge wie ports-mgmt/portmaster oder ports-mgmt/portupgrade. Während diese Werkzeuge Drittanbieter-Software sowohl aus Binärpaketen als auch aus der Ports-Sammlung installieren können, so installiert pkg ausschließlich Binärpakete.

4.4.1. Erste Schritte mit pkg

FreeBSD enthält ein Bootstrap-Programm, welches pkg zusammen mit den Manualpages installiert.

Um das Bootstrap Programm zu starten, geben Sie folgendes ein:

# /usr/sbin/pkg

Für ältere Versionen von FreeBSD muss pkg zunächst aus der Ports-Sammlung oder als Paket installiert werden.

Um den Port zu installieren, geben Sie folgendes ein:

# cd /usr/ports/ports-mgmt/pkg
# make
# make install clean

Bei der Aktualisierung eines bestehenden Systems, welches ursprünglich die alten Paketverwaltungswerkzeuge verwendet hat, muss die Datenbank in das neue Format konvertiert werden, damit die neuen Werkzeuge wissen, welche Pakete bereits installiert sind. Sobald pkg installiert ist, muss die Paketdatenbank mit dem folgenden Befehl vom traditionellen Format in das neue Format konvertiert werden:

# pkg2ng

Anmerkung:

Auf neu installieren Systemen, auf denen noch keine Software von Drittanbietern installiert wurde, kann dieser Schritt entfallen.

Wichtig:

Die Konvertierung ist unwiderruflich. Sobald die Paketdatenbank in das Format von pkg umgewandelt wurde, sollten die traditionellen pkg_* Werkzeuge nicht mehr benutzt werden.

Anmerkung:

Bei der Konvertierung der Paketdatenbank können Fehler ausgegeben werden, wenn die Inhalte auf die neue Version umgewandelt werden. Im Allgemeinen können diese Fehler ignoriert werden. Wenn pkg2ng fertig ist, wird eine Liste von Drittanbieter-Software ausgegeben, die nicht erfolgreich konvertiert werden konnte. Diese Anwendungen müssen manuell neu installiert werden.

Um sicherzustellen, dass die FreeBSD Ports-Sammlung neue Pakete mit pkg und nicht mit den traditionellen Formaten registriert, muss in FreeBSD 10.X und früheren Versionen folgende Zeile in /etc/make.conf hinzugefügt werden:

WITH_PKGNG=     yes

Das pkg Paketverwaltungssystem benutzt die Pakete der FreeBSD-Spiegel. Wenn Sie ein eigenes Paket-Repository erstellen möchten, lesen Sie Abschnitt 4.6, „Pakete mit Poudriere bauen“

Weitere Konfigurationsoptionen für pkg sind in pkg.conf(5) beschrieben.

Informationen zur Bedienung von pkg ist in pkg(8) verfügbar. Alternativ kann pkg ohne zusätzliche Argumente aufgerufen werden.

Jedes Argument von pkg ist in seiner spezifischen Manualpage dokumentiert. Um beispielsweise die Manualpage von pkg install zu lesen, geben Sie einen der folgenden Befehle ein:

# pkg help install
# man pkg-install

Der Rest dieses Abschnitts beschreibt die typischen Verwaltungsaufgaben für Binärpakete, die mit pkg erledigt werden können. Jedes gezeigte Kommando verfügt über Optionen, um das Verhalten anzupassen. Details und weitere Beispiele finden Sie in den Manualpages der einzelnen Kommandos.

4.4.2. Informationen über installierte Pakete anzeigen

Informationen über bereits installierte Pakete können mit pkg info angezeigt werden. Dabei wird, wenn keine weiteren Optionen angegeben werden, die Version und die Beschreibung aller Pakete oder eines einzelnen Pakets ausgegeben.

Um zu ermitteln welche Version von pkg installiert ist, geben Sie folgendes ein:

# pkg info pkg
pkg-1.1.4_1

4.4.3. Installation und Deinstallation von Paketen

Ein Binärpaket installieren Sie mit dem folgenden Befehl, wobei paketname der Name des zu installierenden Pakets ist:

# pkg install paketname

Dieser Befehl verwendet Daten aus dem Repository um zu bestimmen, welche Version der Software und welche Abhängigkeiten installiert werden müssen. Um beispielsweise curl zu installieren:

# pkg install curl
Updating repository catalogue
/usr/local/tmp/All/curl-7.31.0_1.txz          100% of 1181 kB 1380 kBps 00m01s

/usr/local/tmp/All/ca_root_nss-3.15.1_1.txz   100% of  288 kB 1700 kBps 00m00s

Updating repository catalogue
The following 2 packages will be installed:

        Installing ca_root_nss: 3.15.1_1
        Installing curl: 7.31.0_1

The installation will require 3 MB more space

0 MB to be downloaded

Proceed with installing packages [y/N]: y
Checking integrity... done
[1/2] Installing ca_root_nss-3.15.1_1... done
[2/2] Installing curl-7.31.0_1... done
Cleaning up cache files...Done

Das neue Paket und jedes weitere Paket, das als Abhängigkeit installiert wurde, ist in der Liste der installierten Pakete zu sehen:

# pkg info
ca_root_nss-3.15.1_1     The root certificate bundle from the Mozilla Project
curl-7.31.0_1     Non-interactive tool to get files from FTP, GOPHER, HTTP(S) servers
pkg-1.1.4_6       New generation package manager

Wird ein Paket nicht mehr benötigt, kann es mit pkg delete entfernt werden. Zum Beispiel:

# pkg delete curl
The following packages will be deleted:

      curl-7.31.0_1

The deletion will free 3 MB

Proceed with deleting packages [y/N]: y
[1/1] Deleting curl-7.31.0_1... done

4.4.4. Installierte Pakete aktualisieren

Installierte Pakete können mit diesem Kommando auf die neuesten Versionen aktualisiert werden:

# pkg upgrade

Dieses Kommando vergleicht und aktualisiert die installierten Versionen der Pakete mit denen im Repository.

4.4.5. Installierte Pakete auditieren

Gelegentlich werden Sicherheitslücken in einer Drittanbieter-Software entdeckt. pkg besitzt einen eingebauten Auditing-Mechanismus. Um die auf dem System installierte Software auf Sicherheitslücken zu prüfen, geben Sie folgenden Befehl ein:

# pkg audit -F

4.4.6. Automatisches Entfernen von nicht mehr benötigten Abhängigkeiten

Das Entfernen eines Pakets kann möglicherweise Abhängigkeiten hinterlassen, die nicht mehr benötigt werden. Unnötige Pakete, die als Abhängigkeit von anderen Paketen installiert wurden, können automatisch erfasst und entfernt werden:

# pkg autoremove
Packages to be removed:
    ca_root_nss-3.15.1_1

The autoremoval will free 723 kB

Proceed with autoremoval of packages [y/N]: y
Deinstalling ca_root_nss-3.15.1_1... done

4.4.7. Wiederherstellung der Paketdatenbank

Im Gegensatz zum alten Paketverwaltungssystem beinhaltet pkg einen eigenen Mechanismus zur Sicherung der Paketdatenbank. Diese Funktionalität ist standardmäßig aktiviert.

Tipp:

Um das Skript daran zu hindern, eine Sicherung der Paketdatenbank zu erstellen, muss in periodic.conf(5) daily_backup_pkgdb_enable="NO" gesetzt werden.

Um den Inhalt einer früheren Paketdatenbank wiederherzustellen, geben Sie folgendes Kommando ein und ersetzen Sie /path/to/pkg.sql durch den Speicherort der gesicherten Datenbank:

# pkg backup -r /path/to/pkg.sql

Anmerkung:

Wenn Sie eine Sicherung wiederherstellen, die von einem periodic Skript erstellt wurde, müssen Sie diese zuerst dekomprimieren.

Um eine manuelle Sicherung der pkg Paketdatenbank zu erstellen, führen Sie den folgenden Befehl aus, und ersetzen Sie /path/to/pkg.sql durch einen geeigneten Dateinamen:

# pkg backup -d /path/to/pkg.sql

4.4.8. Alte Pakete entfernen

Standardmäßig speichert pkg Pakete in einem Cache-Verzeichnis, welches in pkg.conf(5) in der Variablen PKG_CACHEDIR definiert wird. Nur Kopien der neusten installierten Pakete werden beibehalten. Ältere Versionen von pkg haben alle Pakete aufbewahrt. Um diese veralteten Pakete zu entfernen, geben Sie folgendes ein:

# pkg clean

Um alle Pakte aus dem Cache-Verzeichnis zu löschen, geben Sie ein:

# pkg clean -a

4.4.9. Manipulation der Paket-Metadaten

Bei Software aus der FreeBSD Ports-Sammlung kann es vorkommen, dass die Hauptversionsnummer geändert wird. Dafür hat pkg ein eingebautes Kommando, um die Quelle eines Pakets zu aktualisieren. Dies ist nützlich, wenn zum Beispiel lang/php5 zu lang/php53 umbenannt wurde, damit lang/php5 jetzt die Version 5.4 integrieren kann.

Um die Quelle des Pakets für das obige Beispiel zu ändern, geben Sie folgendes ein:

# pkg set -o lang/php5:lang/php53

Ein weiteres Beispiel: Um lang/ruby18 auf lang/ruby19 zu aktualisieren, geben Sie folgendes ein:

# pkg set -o lang/ruby18:lang/ruby19

In diesem letzten Beispiel wird die Quelle der Bibliotheken von libglut von graphics/libglut auf graphics/freeglut geändert:

# pkg set -o graphics/libglut:graphics/freeglut

Anmerkung:

Bei einem Wechsel der Paketquelle ist es notwendig, die Pakete neu zu installieren, welche von dem Paket abhängig sind, das seine Paketquelle geändert hat. Um eine Neuinstallation von abhängigen Paketen zu erzwingen, führen Sie folgenden Befehl aus:

# pkg install -Rf graphics/freeglut

4.5. Benutzen der Ports-Sammlung

Die Ports-Sammlung ist eine Reihe von Makefiles, Patches und Beschreibungen, die unter /usr/ports gespeichert sind. Diese Dateien werden für den Bau und die Installation von Anwendungen unter FreeBSD verwendet. Bevor eine Anwendung aus den Ports erstellt werden kann, muss zuerst die Ports-Sammlung installiert werden. Wenn Sie dies nicht bereits bei der Installation von FreeBSD getan haben, benutzen Sie eine der beiden Methoden um sie zu installieren:

Prozedur 4.1. Installation mit Portsnap

FreeBSDs Basissystem enthält mit Portsnap ein schnelles und benutzerfreundliches Werkzeug zur Installation der Ports-Sammlung und die bevorzugte Wahl für die meisten Benutzer. Dieses Programm stellt eine Verbindung zu einem FreeBSD-Server her, überprüft den gesicherten Schlüssel und lädt eine aktuelle Kopie der Ports-Sammlung herunter. Der Schlüssel wird benötigt, um die Integrität der heruntergeladenen Dateien zu untersuchen.

  1. Laden Sie einen komprimierten Snapshot der Ports-Sammlung in /var/db/portsnap:

    # portsnap fetch
  2. Wenn Sie Portsnap das erste Mal verwenden, müssen Sie den Snapshot nach /usr/ports extrahieren:

    # portsnap extract
  3. Nach dem ersten Einsatz von Portsnap, kann /usr/ports wie folgt aktualisiert werden:

    # portsnap fetch
    # portsnap update

    Bei der Verwendung von fetch können die extract oder update Operationen nacheinander ausgeführt werden, etwa so:

    # portsnap fetch update
Prozedur 4.2. Installation mit Subversion

Wird mehr Kontrolle über die Ports-Sammlung benötigt, oder wenn die lokalen Änderungen beibehalten werden sollen, kann Subversion benutzt werden, um die Ports-Sammlung zu laden. Lesen Sie den Subversion Primer für eine detaillierte Beschreibung von Subversion.

  1. Subversion muss installiert sein, bevor die Ports-Sammlung geladen werden kann. Ist eine lokale Kopie der Ports-Sammlung bereits vorhanden, installieren Sie Subversion wie folgt:

    # cd /usr/ports/devel/subversion
    # make install clean

    Wenn keine lokale Kopie der Ports-Sammlung vorhanden ist, oder pkg zur Verwaltung von Paketen benutzt wird, kann Subversion als Paket installiert werden:

    # pkg install subversion
  2. Laden Sie eine Kopie der Ports-Sammlung:

    # svn checkout https://svn.FreeBSD.org/ports/head /usr/ports
  3. Nach dem erstmaligen checkout mit Subversion kann /usr/ports wie folgt aktualisiert werden:

    # svn update /usr/ports

Die Ports-Sammlung installiert eine Reihe von Verzeichnissen, die jeweils eine Softwarekategorie repräsentieren. Jede Kategorie hat für jede einzelne Anwendung ein weiteres Unterverzeichnis. Jedes Unterverzeichnis enthält Dateien, die FreeBSD sagen, wie ein Programm kompiliert und installiert werden muss. Diese Dateien werden auch Port-Gerüst genannt. Jedes Port-Gerüst beinhaltet die folgenden Dateien und Verzeichnisse:

  • Makefile: enthält Anweisungen, die spezifizieren, wie die Anwendung kompiliert wird und wohin die Komponenten installiert werden sollten.

  • distinfo: enthält die Namen und die Prüfsummen der Dateien, die heruntergeladen werden müssen, um den Port zu bauen.

  • files: dieses Verzeichnis enthält Patches, welche das Übersetzen und Installieren der Anwendung unter FreeBSD ermöglichen. Zudem können noch weitere Dateien, die für die Übersetzung des Ports verwendet werden, enthalten sein.

  • pkg-descr: enthält eine ausführlichere Beschreibung der Anwendung.

  • pkg-plist: eine Liste aller Dateien, die durch diesen Port installiert werden. Außerdem sind hier Informationen enthalten, die zum Entfernen des Ports benötigt werden.

Einige Ports beinhalten noch pkg-message oder weitere Dateien, die vom Port-System benutzt werden, um spezielle Situationen zu handhaben. Wenn Sie mehr über diese Dateien oder das Port-System erfahren wollen, lesen Sie das FreeBSD Porter's Handbook.

Ein Port enthält nicht den eigentlichen Quellcode, der auch als Distfile bekannt ist. Der heruntergeladene Quellcode wird automatisch nach /usr/ports/distfiles extrahiert.

4.5.1. Ports installieren

Dieser Abschnitt beschreibt die grundlegende Benutzung der Ports-Sammlung, um Software zu installieren oder zu deinstallieren. Eine ausführliche Beschreibung der einzelnen make-Targets finden Sie in ports(7).

Warnung:

Stellen Sie sicher, dass die Ports-Sammlung aktuell ist, bevor Sie einen Port kompilieren. Informieren Sie sich vorher zusätzlich unter http://vuxml.FreeBSD.org/ über mögliche Sicherheitsprobleme des zu installierenden Ports. Alternativ können Sie pkg audit -F ausführen, bevor Sie einen neuen Port installieren. Die täglich laufende Sicherheitsprüfung des Systems aktualisiert ebenfalls die Datenbank und prüft installierte Anwendungen auf vorhandene Sicherheitsprobleme. Weitere Informationen finden Sie in pkg-audit(8) und periodic(8).

Die Benutzung der Ports-Sammlung setzt eine funktionierende Internetverbindung und Superuser-Rechte voraus.

Um einen Port zu installieren, wechseln Sie in das Verzeichnis des Ports, den Sie installieren möchten. Geben Sie dann make install am Prompt ein:

# cd /usr/ports/sysutils/lsof
# make install
>> lsof_4.88D.freebsd.tar.gz doesn't seem to exist in /usr/ports/distfiles/.
>> Attempting to fetch from ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof/.
===>  Extracting for lsof-4.88
...
[Ausgabe des Auspackens weggelassen]
...
>> Checksum OK for lsof_4.88D.freebsd.tar.gz.
===>  Patching for lsof-4.88.d,8
===>  Applying FreeBSD patches for lsof-4.88.d,8
===>  Configuring for lsof-4.88.d,8
...
[configure-Ausgabe weggelassen]
...
===>  Building for lsof-4.88.d,8
...
[Ausgabe der Übersetzung weggelassen]
...
===>  Installing for lsof-4.88.d,8
...
[Ausgabe der Installation weggelassen]
...
===>   Generating temporary packing list
===>   Compressing manual pages for lsof-4.57
===>   Registering installation for lsof-4.57
===>  SECURITY NOTE:
      This port has installed the following binaries which execute with
      increased privileges.
/usr/local/bin/lsof
#

Da lsof eine Anwendung ist, die mit erhöhten Rechten läuft, wird nach der Installation eine Sicherheitswarnung angezeigt. Sobald die Installation abgeschlossen ist, erscheint wieder der Prompt.

Um die Suche nach Kommandos zu beschleunigen, speichern einige Shells eine Liste der verfügbaren Kommandos in den durch die Umgebungsvariable PATH gegebenen Verzeichnissen. Benutzer der tcsh müssen eventuell rehash eintippen, um die neu installierten Kommandos benutzen zu können, ohne den vollständigen Pfad anzugeben. Benutzer der Shell sh müssen stattdessen hash -r eintippen. Weitere Informationen finden Sie in der Dokumentation der jeweiligen Shell.

Bei der Installation wird ein Arbeitsverzeichnis erstellt, das alle temporären Dateien enthält, die während des Bauvorgangs benötigt werden. Wenn dieses Verzeichnis nach der Installation entfernt wird, spart dies Plattenplatz und minimiert mögliche Probleme bei der Aktualisierung des Ports auf eine neuere Version:

# make clean
===>  Cleaning for lsof-4.88.d,8
#

Anmerkung:

Sie können zwei Schritte sparen, wenn Sie bei der Kompilierung des Ports gleich make install clean eingeben.

4.5.1.1. Port Installation anpassen

Einige Ports bieten Optionen, mit denen zusätzliche Funktionen oder Sicherheitsoptionen eingestellt werden können. Beispiele dafür sind www/firefox, security/gpgme und mail/sylpheed-claws. Wenn ein Port von anderen Ports abhängig ist und diese über zusätzliche Abhängigkeiten und Optionen verfügen, wird mehrmals ein Menü ausgegeben, wo der Benutzer verschiedene Optionen wählen kann. Um dies zu vermeiden, wechseln Sie in das Verzeichnis des Ports und geben Sie make config-recursive ein, um die Konfiguration an einem Stück zu erledigen. Führen Sie danach make install [clean] aus, um den Port zu kompilieren und zu installieren.

Tipp:

Bei der Verwendung von config-recursive wird eine Liste von Ports, die konfiguriert werden, vom Target all-depends-list erstellt. Es wird empfohlen, make config-recursive so lange auszuführen, bis alle Optionen der abhängigen Ports definiert sind und keine Optionen und Menüs mehr erscheinen. Damit soll sichergestellt werden, dass alle Optionen konfiguriert wurden.

Es gibt diverse Möglichkeiten, dieses Menü nach dem Bau eines Ports erneut aufzurufen, um Optionen zu entfernen, hinzuzufügen oder anzupassen. Sie können beispielsweise mit cd in das Verzeichnis des Ports wechseln und dort make config eingeben. Eine andere Möglichkeit ist make showconfig. Eine weitere Alternative bietet make rmconfig, das alle ursprünglich gewählten Optionen zurücksetzt und es Ihnen dadurch ermöglicht, die Konfiguration erneut zu beginnen. Die eben erwähnten Optionen werden ausführlich in ports(7) beschrieben.

Die Ports-Sammlung benutzt zum Herunterladen von Dateien fetch(3), das diverse Umgebungsvariablen unterstützt. Die Variablen FTP_PASSIVE_MODE, FTP_PROXY und FTP_PASSWORD müssen unter Umständen gesetzt werden, wenn das FreeBSD-System hinter einer Firewall oder einem FTP/HTTP-Proxy arbeitet. Eine vollständige Liste der unterstützten Variablen finden Sie in fetch(1).

Benutzer ohne eine ständige Internet-Verbindung können make fetch im Verzeichnis /usr/ports ausführen, um die benötigten Dateien herunterzuladen. Es ist auch möglich, make fetch nur in einem Teil des Baums, wie /usr/ports/net, aufzurufen. Die Dateien von allen abhängigen Ports werden mit diesem Kommando allerdings nicht heruntergeladen. Wenn Sie diese Dateien ebenfalls herunterladen wollen, benutzen Sie stattdessen make fetch-recursive.

In einigen seltenen Fällen ist es erforderlich, die benötigten Dateien von einem anderen Ort als den im Port definierten MASTER_SITES herunterzuladen. Sie können MASTER_SITES mit dem folgenden Kommando überschreiben:

# cd /usr/ports/directory
# make MASTER_SITE_OVERRIDE= \
ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/distfiles/ fetch

Die Variablen WRKDIRPREFIX und PREFIX überschreiben das voreingestellte Bau- und Zielverzeichnis. Zum Beispiel:

# make WRKDIRPREFIX=/usr/home/example/ports install

Dieses Kommando baut den Port unter /usr/home/example/ports und installiert ihn unter /usr/local.

Die Variable PREFIX legt das Installations-Verzeichnis fest:

# make PREFIX=/usr/home/example/local install

In diesem Beispiel wird der Port unter /usr/ports gebaut und nach /usr/home/example/local installiert.

Sie können beide Variablen auch zusammen benutzen:

# make WRKDIRPREFIX=../ports PREFIX=../local install

Alternativ können diese Variablen auch als Umgebungsvariablen gesetzt werden. In der Manualpage Ihrer Shell finden Sie Anweisungen, wie Umgebungsvariablen gesetzt werden.

4.5.2. Entfernen installierter Ports

Installierte Ports können mit pkg delete wieder deinstalliert werden. Beispiele für dieses Kommando finden Sie in pkg-delete(8).

Alternativ kann make deinstall im Verzeichnis des Ports aufgerufen werden:

# cd /usr/ports/sysutils/lsof
make deinstall
===>  Deinstalling for sysutils/lsof
===>   Deinstalling
Deinstallation has been requested for the following 1 packages:

        lsof-4.88.d,8

Thee deinstallation will free 229 kB
[1/1] Deleting lsof-4.88.d,8... done

Es wird empfohlen die Nachrichten zu lesen, die ausgegeben werden, wenn ein Port deinstalliert wird. Wenn der Port noch Anwendungen hat, die von ihm abhängig sind, werdenn diese am Bildschirm angezeigt, aber die Deinstallation wird forgesetzt. In solchen Fällen ist es besser, die Anwendung neu zu installieren, um fehlende Abhängigkeiten zu vermeiden.

4.5.3. Ports aktualisieren

Im Laufe der Zeit stehen neuere Versionen der Software in der Ports-Sammlung zur Verfügung. In diesem Abschnitt wird beschrieben, wie Sie bestimmen, welche Software aktualisiert werden kann und wie das Upgrade durchzuführen ist.

Um festzustellen, ob neuere Versionen der installierten Ports verfügbar sind, stellen Sie sicher, dass die neueste Version der Ports-Sammlung installiert ist. Dies wird in Prozedur 4.1, „Installation mit Portsnap“ und Prozedur 4.2, „Installation mit Subversion“ beschrieben. Führen Sie unter FreeBSD 10 und neueren Versionen, bzw. auf Systemen die bereits mit pkg arbeiten, den folgenden Befehl aus, um eine Liste der installierten Ports zu erhalten für die eine aktuelle Version existiert:

# pkg version -l "<"

Mit FreeBSD 9.X und älteren Versionen kann stattdessen dieser Befehl verwendet werden:

# pkg_version -l "<"

Wichtig:

Lesen Sie zuerst /usr/ports/UPDATING, bevor Sie einen Port aktualisieren. In dieser Datei werden Probleme und zusätzlich durchzuführende Schritte bei der Aktualisierung einzelner Ports beschrieben. Dazu gehören solche Dinge wie geänderte Dateiformate, verschobene Konfigurationsdateien, aber auch Inkompatibilitäten zu einer Vorgängerversion. Notieren Sie sich alle Anweisungen der Ports, die aktualisiert werden müssen. Folgen Sie den Anweisungen, wenn Sie das Upgrade durchführen.

4.5.3.1. Ports mit Portmaster aktualisieren

ports-mgmt/portmaster ist ein sehr kleines Werkzeug zum Aktualisieren von Ports. Es wurde entwickelt, um mit den in FreeBSD integrierten Werkzeugen zu arbeiten, ohne dabei von anderen Ports oder Datenbanken abhängig zu sein. Sie können das Programm aus der Ports-Sammlung installieren:

# cd /usr/ports/ports-mgmt/portmaster
# make install clean

Portmaster teilt Ports in vier Kategorien ein:

  • Root Port: hat keine Abhängigkeiten und andere Ports sind nicht von diesem Port abhängig.

  • Trunk Port: hat keine Abhängigkeiten, aber andere Ports sind von diesem Port abhängig.

  • Branch Port: hat Abhängigkeiten und andere Ports sind von diesem Port abhängig.

  • Leaf Port: hat Abhängigkeiten, aber andere Ports sind nicht von diesem Port abhängig.

Um eine Liste der installierten Ports anzuzeigen und nach neueren Versionen zu suchen, verwenden Sie:

# portmaster -L
===>>> Root ports (No dependencies, not depended on)
===>>> ispell-3.2.06_18
===>>> screen-4.0.3
        ===>>> New version available: screen-4.0.3_1
===>>> tcpflow-0.21_1
===>>> 7 root ports
...
===>>> Branch ports (Have dependencies, are depended on)
===>>> apache22-2.2.3
        ===>>> New version available: apache22-2.2.8
...
===>>> Leaf ports (Have dependencies, not depended on)
===>>> automake-1.9.6_2
===>>> bash-3.1.17
        ===>>> New version available: bash-3.2.33
...
===>>> 32 leaf ports

===>>> 137 total installed ports
        ===>>> 83 have new versions available

Um alle installierten Ports zu aktualisieren, verwenden Sie folgenden Befehl:

# portmaster -a

Anmerkung:

In der Voreinstellung erzeugt Portmaster eine Sicherheitskopie, bevor ein installierter Port gelöscht wird. Ist die Installation der neuen Version erfolgreich, wird dieses Backup wieder gelöscht. Wollen Sie das Backup lieber manuell löschen, verwenden Sie die Option -b beim Aufruf von Portmaster. Durch die Verwendung von -i wird Portmaster im interaktiven Modus gestartet und fragt bei jedem zu aktualisierenden Port nach, wie weiter vorgegangen werden soll. Viele weitere Optionen stehen zur Verfügung. Lesen Sie die Manualpage von portmaster(8) für weitere Einzelheiten in Bezug auf ihre Nutzung.

Treten während der Aktualisierung Fehler auf, verwenden Sie die Option -f, um alle Ports zu aktualisieren beziehungsweise neu zu bauen:

# portmaster -af

Portmaster ist auch in der Lage, neue Ports zu installieren, wobei zuvor alle abhängigen Ports aktualisiert werden. Um diese Funktion zu nutzen, geben Sie den Pfad des Ports in der Ports-Sammlung an:

# portmaster shells/bash

4.5.3.2. Ports mit Portupgrade aktualisieren

Ein weiteres Werkzeug zur Aktualisierung von Ports ist Portupgrade, welches als Paket oder Port ports-mgmt/portupgrade zur Verfügung steht. Dieses Programm installiert eine Reihe von Anwendungen, die für die Verwaltung von Ports verwendet werden können. Das Programm ist jedoch von Ruby abhängig. Um den Port zu installieren, geben Sie ein:

# cd /usr/ports/ports-mgmt/portupgrade
# make install clean

Durchsuchen Sie vor jedem Update die Liste der installierten Ports mit pkgdb -F und beheben Sie alle gefundenen Probleme.

Benutzen Sie portupgrade -a, um automatisch alle veralteten Ports auf dem System zu aktualisieren. Verwenden Sie zusätzlich den Schalter -i, wenn Sie individuell entscheiden wollen, ob ein Port aktualisiert werden soll:

# portupgrade -ai

Um nur eine spezifische Anwendung zu aktualisieren, verwenden Sie portupgrade Paketname. Es ist wichtig den Schalter -R zu benutzen, um zuvor alle Ports zu aktualisieren, die von dem gegebenen Anwendung abhängen.

# portupgrade -R firefox

Um Pakete anstelle von Ports zu installieren, verwenden Sie den Schalter -P. Mit dieser Option durchsucht Portupgrade die in der Umgebungsvariablen PKG_PATH aufgeführten Verzeichnisse nach Paketen. Sind lokal keine Pakete vorhanden, versucht Portupgrade die Pakete über das Netz herunterzuladen. Gibt es die Pakete weder lokal noch auf entfernten Rechnern, werden die Ports verwendet. Um die Nutzung von Ports gänzlich zu verhindern, benutzen Sie die Option -PP. Portupgrade würde dann abbrechen, falls keine Pakete zur Verfügung stehen.

# portupgrade -PP gnome3

Wenn Sie nur die Quelldateien des Ports, oder die Pakete mit -P herunterladen möchten, ohne die Anwendung zu bauen oder zu installieren, geben Sie den Schalter -F an. Weitere Informationen zu den verfügbaren Schaltern finden Sie in der Manualpage von portupgrade(1).

4.5.4. Platzbedarf von Ports

Die Nutzung der Ports-Sammlung wird im Laufe der Zeit viel Plattenplatz verschlingen. Nach dem Bau und der Installation eines Ports, wird make clean die temporären Arbeitsverzeichnisse work aufräumen. Portmaster wird dieses Verzeichnis automatisch entfernen, wenn die Option -K verwendet wird. Wenn Portupgrade installiert ist, wird dieser Befehl alle Arbeitsverzeichnisse der lokalen Ports-Sammlung entfernen:

# portsclean -C

Zusätzlich werden sich im Laufe der Zeit zahlreiche veraltete Distfiles in /usr/ports/distfiles ansammeln. Wenn Portupgrade installiert ist, können mit dem folgenden Befehl alle Distfiles gelöscht werden, die vom keinem Port mehr benötigt werden:

# portsclean -D

Mit Portupgrade können Sie alle Distfiles löschen, die von keinem derzeit installierten Port benötigt werden:

# portsclean -DD

Wenn Portmaster installiert ist, benutzen Sie diesen Befehl:

# portmaster --clean-distfiles

In der Voreinstellung arbeitet dieses Programm interaktiv und fragt den Benutzer um Bestätigung, bevor ein Distfile gelöscht wird.

Zusätzlich zu diesen Kommandos gibt es noch port-mgmt/pkg_cutleaves. Dieses Werkzeug automatisiert die Deinstallation von installierten Ports, die nicht weiter benötigt werden.

4.6. Pakete mit Poudriere bauen

Poudriere ist ein unter der BSD-Lizenz stehendes Werkzeug zum Erstellen und Testen von FreeBSD-Paketen. Dieses Programm nutzt FreeBSD Jails, um die Pakete in einer isolierten Umgebung zu bauen. Diese Jails können verwendet werden, um Pakete für andere Versionen von FreeBSD zu bauen, oder um auf einem amd64-System Pakete für i386 zu bauen. Sobald die Pakete gebaut sind, haben sie das gleiche Format wie auf den offiziellen Spiegeln. Die Pakete können dann mit pkg(8) oder anderen Paketverwaltungswerkzeugen benutzt werden.

Poudriere wird über das Paket oder den Port ports-mgmt/poudriere installiert. Die Installation beinhaltet eine Beispielkonfiguration in /usr/local/etc/poudriere.conf.sample. Kopieren Sie diese Datei nach /usr/local/etc/poudriere.conf. Bearbeiten Sie dann die kopierte Datei, um die Konfiguration anzupassen.

Obwohl ZFS für poudriere nicht zwingend erforderlich ist, so hat die Nutzung doch einige Vorteile. Wird ZFS eingesetzt, muss in /usr/local/etc/poudriere.conf die Variable ZPOOL definiert, und die Variable FREEBSD_HOST auf einen nahe gelegenen Spiegel gesetzt werden. Die Definition von CCACHE_DIR erlaubt die Verwendung von devel/ccache, um die Bauzeit für häufig kompilierten Code verkürzen. Es kann vorteilhaft sein, die poudriere-Datasets in einem separaten Verzeichnis auf /poudriere einzuhängen. Die Werte der anderen Konfigurationsvariablen sind in der Regel angemessen und brauchen nicht geändert werden.

Die Anzahl der Kerne im Prozessor wird verwendet um zu bestimmen, wie viele Bauprozesse parallel ausgeführt werden sollen. Stellen Sie ausreichend virtuellen Speicher bereit, entweder in Form von RAM oder als Swap-Speicher. Ist der virtuelle Speicher aufgebraucht, bricht der Bauprozess ab und die Jails stürzen ab, was zu seltsamen Fehlermeldungen führt.

4.6.1. Jails und Ports-Sammlung initialisieren

Nach der Konfiguration muss poudriere initialisiert werden, damit es eine Jail mit der benötigten Ports-Sammlung startet. Geben Sie mit -j den Namen der Jail und mit -v die gewünschte FreeBSD-Version an. Auf FreeBSD/amd64-Systemen kann die Architektur mit dem Schalter -a und i386 oder amd64 gesetzt werden. Der voreingestellte Wert für die Architektur können Sie sich mit uname anzeigen lassen.

# poudriere jail -c -j 10amd64 -v 10.0-RELEASE
====>> Creating 10amd64 fs... done
====>> Fetching base.txz for FreeBSD 10.0-RELEASE amd64
/poudriere/jails/10amd64/fromftp/base.txz      100% of   59 MB 1470 kBps 00m42s
====>> Extracting base.txz... done
====>> Fetching src.txz for FreeBSD 10.0-RELEASE amd64
/poudriere/jails/10amd64/fromftp/src.txz       100% of  107 MB 1476 kBps 01m14s
====>> Extracting src.txz... done
====>> Fetching games.txz for FreeBSD 10.0-RELEASE amd64
/poudriere/jails/10amd64/fromftp/games.txz     100% of  865 kB  734 kBps 00m01s
====>> Extracting games.txz... done
====>> Fetching lib32.txz for FreeBSD 10.0-RELEASE amd64
/poudriere/jails/10amd64/fromftp/lib32.txz     100% of   14 MB 1316 kBps 00m12s
====>> Extracting lib32.txz... done
====>> Cleaning up... done
====>> Jail 10amd64 10.0-RELEASE amd64 is ready to be used
# poudriere ports -c -p local
====>> Creating local fs... done
====>> Extracting portstree "local"...
Looking up portsnap.FreeBSD.org mirrors... 7 mirrors found.
Fetching public key from ec2-eu-west-1.portsnap.freebsd.org... done.
Fetching snapshot tag from ec2-eu-west-1.portsnap.freebsd.org... done.
Fetching snapshot metadata... done.
Fetching snapshot generated at Tue Feb 11 01:07:15 CET 2014:
94a3431f0ce567f6452ffde4fd3d7d3c6e1da143efec76100% of   69 MB 1246 kBps 00m57s
Extracting snapshot... done.
Verifying snapshot integrity... done.
Fetching snapshot tag from ec2-eu-west-1.portsnap.freebsd.org... done.
Fetching snapshot metadata... done.
Updating from Tue Feb 11 01:07:15 CET 2014 to Tue Feb 11 16:05:20 CET 2014.
Fetching 4 metadata patches... done.
Applying metadata patches... done.
Fetching 0 metadata files... done.
Fetching 48 patches.
(48/48) 100.00%  done.
done.
Applying patches...
done.
Fetching 1 new ports or files... done.
/poudriere/ports/tester/CHANGES
/poudriere/ports/tester/COPYRIGHT

[...]

Building new INDEX files... done.

poudriere kann auf einem einzelnen Rechner Ports mit mehreren Konfigurationen bauen, in mehreren Jails und aus unterschiedlichen Ports-Sammlungen. Spezifische Konfigurationen für diese Kombinationen werden Sets genannt. Lesen Sie den Abschnitt CUSTOMIZATION in poudriere(8) für weitere Einzelheiten nach der Installation von port-mgmt/poudriere oder ports-mgmt/poudriere-devel.

Die hier gezeigte Konfiguration verwendet eine einzelne Jail-, Port- und Set-spezifische make.conf in /usr/local/etc/poudriere.d. Der verwendete Dateiname in diesem Beispiel wird aus einer Kombination von Jailnamen, Portnamen und Setnamen zusammen gesetzt: 10amd64-local-workstation-make.conf. Die make.conf des Systems und diese neue Datei werden verwendet, um die make.conf für die Jail zu erzeugen.

Die zu bauenden Pakete werden in 10amd64-local-workstation-pkglist eingetragen:

editors/emacs
devel/git
ports-mgmt/pkg
...

Die Optionen und Abhängigkeiten für die Ports werden wie folgt konfiguriert:

# poudriere options -j 10amd64 -p local -z workstation -f 10amd64-local-workstation-pkglist

Schließlich werden die Pakete gebaut und ein Paket-Repository erstellt:

# poudriere bulk -j 10amd64 -p local -z workstation -f 10amd64-local-workstation-pkglist

Ctrl+t zeigt den aktuellen Status des Baus an. Poudriere speichert zudem Dateien in /poudriere/logs/bulk/jailname. Diese Dateien kann ein Webserver nutzen, um Informationen über den Bau anzuzeigen.

Die Pakete stehen jetzt im poudriere Repository für die Installation zur Verfügung.

Weitere Informationen zu poudriere finden Sie in poudriere(8) und unter https://github.com/freebsd/poudriere/wiki.

4.6.2. Konfiguration des pkg-Clients für das Poudriere Repository

Obwohl es möglich ist ein eigenes Repository zusammen mit dem offiziellen Repository zu nutzen, ist es manchmal sinnvoll das offizielle Repository zu deaktivieren. Dazu wird eine Konfigurationsdatei erstellt, welche die offizielle Konfigurationsdatei überschreibt. Erzeugen Sie dazu /usr/local/etc/pkg/repos/FreeBSD.conf mit dem folgenden Inhalt:

FreeBSD: {
        enabled: no
}

Am einfachsten ist es, das poudriere Repository über HTTP zur Verfügung zu stellen. Setzen Sie einen Webserver auf, der die Dateien des Paketverzeichnisses ausliefert, zum Beispiel /usr/local/poudriere/data/packages/10amd64. 10amd64 bezeichnet dabei den Namen des Baus.

Wenn die URL des Paket Repositories http://pkg.example.com/10amd64 ist, dann sollte die Konfiguration des Repositories in /usr/local/etc/pkg/repos/custom.conf wie folgt aussehen:

custom: {
	url: "http://pkg.example.com/10amd64",
	enabled: yes,
}

4.7. Nach der Installation

Unabhängig davon, ob die Software aus einem binären Paket oder aus einem Port installiert wird, benötigen die meisten Anwendungen von Drittanbietern ein gewisses Maß an Konfiguration, nachdem sie installiert wurden. Die folgenden Kommandos und Speicherorte helfen Ihnen dabei festzustellen, was mit der Anwendung zusammen installiert wurde.

  • Die meisten Anwendungen installieren mindestens eine Konfigurationsdatei nach /usr/local/etc. Falls die Anwendung viele Konfigurationsdateien enthält, wird ein Unterverzeichnis erstellt um die Dateien zu speichern. Oft werden die Konfigurationsdateien mit einem Suffix wie beispielsweise .sample installiert. Die Konfigurationsdateien sollten überprüft und ggf. bearbeitet werden, um die Anforderungen des Systems zu erfüllen. Um eine Konfigurationsdatei zu bearbeiten, kopieren Sie diese zunächst ohne die Erweiterung .sample.

  • Wenn die Anwendung Dokumentation zur Verfügung stellt, wird diese nach /usr/local/share/doc installiert. Viele Anwendungen installieren auch Manualpages. Diese Dokumentation sollten Sie lesen, bevor Sie fortfahren.

  • Einige Anwendungen laufen als Dienst und müssen vor dem ersten Start in /etc/rc.conf eingetragen werden. Diese Anwendungen installieren meist ein Skript in /usr/local/etc/rc.d. Weitere Informationen finden Sie im Abschnitt 11.2, „Start von Diensten“.

  • Benutzer der csh(1) sollten rehash ausführen, um die neu installierten Programme nutzen zu können.

  • Benutzen Sie pkg info, um die Dateien, Manualpages und Binaries zu ermitteln, die mit der Anwendung installiert wurden.

4.8. Kaputte Ports

Wenn sich ein Port nicht bauen oder installieren lässt, versuchen Sie folgendes:

  1. Stellen Sie fest, ob die Datenbank mit den Problemberichten bereits einen Lösungsvorschlag enthält. Ist dies der Fall, kann die vorgeschlagene Lösung getestet werden.

  2. Bitten Sie den Betreuer des Ports um Hilfe. Geben Sie dazu make maintainer ein oder lesen Sie das Makefile im Verzeichnis des Ports, um an die E-Mail-Adresse zu kommen. Vergessen Sie nicht die Zeile mit $FreeBSD: aus dem Makefile und die Ausgabe bis zur Fehlermeldung mitzuschicken.

    Anmerkung:

    Einige Ports werden nicht von einer Einzelperson, sondern von einer Mailingliste betreut. Viele (aber nicht alle) dieser Adressen haben die Form . Denken Sie daran, wenn Sie Ihre Fragen formulieren.

    Dies gilt insbesondere für Ports, die als Betreuer den Eintrag aufweisen. Derartige Ports haben überhaupt keinen Betreuer. Korrekturen und Unterstützung kommen daher nur von Personen, die diese Mailingliste abonniert haben. Gerade in diesem Bereich werden jederzeit zusätzliche freiwillige Helfer benötigt!

    Erhalten Sie auf Ihre Anfrage keine Antwort, benutzen Sie Bugzilla, um einen Problembericht zu erstellen. Bevor Sie einen solchen Bericht erstellen, lesen Sie den Artikel Writing FreeBSD Problem Reports.

  3. Reparieren Sie ihn! Das FreeBSD Porter's Handbook enthält eine detaillierte Beschreibung des Portsystems. Damit sind Sie in der Lage, einen zeitweilig kaputten Port zu reparieren oder einen eigenen Port zu erstellen.

  4. Installieren Sie das Paket anstelle des Ports. Anweisungen hierzu finden Sie in Abschnitt 4.4, „Benutzen von pkg zur Verwaltung von Binärpaketen“.

Kapitel 5. Das X-Window-System

Übersetzt von Martin Heinen.

5.1. Übersicht

Bei einer Installation von FreeBSD mit bsdinstall wird nicht automatisch eine grafische Benutzeroberfläche installiert. Dieses Kapitel beschreibt die Installation und Konfiguration von Xorg, das eine grafische Umgebung über das quelloffene X-Window-System zur Verfügung stellt. Weiterhin wird beschrieben, wie Sie eine Desktop-Umgebung oder einen Window Manager finden und installieren können.

Anmerkung:

Benutzer die eine Installationsmethode bevorzugen, welche automatisch Xorg konfiguriert und zudem die Auswahl eines Window Managers während der Installation anbietet, sollten sich die pcbsd.org Webseite ansehen.

Weitere Informationen über Video-Hardware, die von Xorg unterstützt wird, finden Sie auf der x.org Webseite.

Nachdem Sie dieses Kapitel gelesen haben, werden Sie

  • Die Komponenten des X-Window-Systems und ihr Zusammenspiel kennen.

  • Wissen, wie Xorg installiert und konfiguriert wird.

  • Wissen, wie verschiedene Window-Manager und Desktop-Umgebungen installiert und konfiguriert werden.

  • Wissen, wie TrueType®-Schriftarten mit Xorg benutzt werden.

  • Wissen, wie Sie die grafische Anmeldung (XDM) einrichten.

Bevor Sie dieses Kapitel lesen, sollten Sie

5.2. Terminologie

Obwohl es nicht nötig ist, alle Details der verschiedenen Komponenten des X Window Systems und deren Zusammenspiel zu kennen, kann es trotzdem nützlich sein die Grundlagen dieser Komponenten zu verstehen:

X-Server

X wurde von Anfang an netzwerktransparent entworfen und verwendet ein Client-Server-Modell. In diesem Modell läuft der X-Server auf dem Rechner, an dem die Tastatur, der Bildschirm und die Maus angeschlossen ist. Der Server ist für Dinge wie die Verwaltung des Bildschirms und die Verarbeitung von Tastatur- und Maus-Eingaben sowie anderer Ein- und Ausgabegeräte, wie beispielsweise ein Tablet oder ein Videoprojektor, verantwortlich. Dieses Modell verwirrt viele Leute, die erwarten, dass der X-Server der leistungsstarke Rechner im Maschinenraum und der X-Client ihr Arbeitsplatzrechner ist.

X-Client

Jede X-Anwendung, wie beispielsweise XTerm oder Firefox ist ein X-Client. Der Client sendet dem Server Nachrichten wie Zeichne an diesen Koordinaten ein Fenster und der Server sendet dem Client Nachrichten der Art Der Benutzer hat gerade den Ok-Knopf gedrückt.

In kleinen Umgebungen laufen der X-Server und die X-Clients auf demselben Rechner. Es ist auch möglich, den X-Server auf einem weniger leistungsfähigen Rechner laufen zu lassen und die X-Anwendungen auf einem leistungsfähigeren Rechner zu betreiben. In diesem Fall kommunizieren der X-Server und die X-Clients über das Netzwerk.

Window-Manager

X schreibt nicht vor, wie Fenster auf dem Bildschirm auszusehen haben, wie sie mit der Maus zu verschieben sind, welche Tastenkombinationen benutzt werden sollen um zwischen den Fenstern zu wechseln, wie die Fensterrahmen aussehen, oder ob diese Schaltflächen zum schließen haben. Stattdessen gibt X die Verantwortung für all diese Sachen an eine separate Window-Manager Anwendung ab. Es stehen zahlreiche Window-Manager zur Verfügung. Jeder Window-Manager bietet ein anderes Erscheinungsbild: einige unterstützen virtuelle Bildschirme, andere erlauben Tastenkombinationen zur Verwaltung des Bildschirms. Einige besitzen eine Start Schaltfläche und in manchen lässt sich das Aussehen und Verhalten der Anwendung über Themes beliebig einstellen. Window-Manager stehen in der Kategorie x11-wm der Ports-Sammlung zur Verfügung.

Jeder Window-Manager wird unterschiedlich konfiguriert. Einige erwarten eine manuell erstellte Konfigurationsdatei, während andere ein grafisches Werkzeug für die meisten Konfigurationsarbeiten anbieten.

Desktop-Umgebungen

KDE und GNOME werden als Desktop-Umgebungen bezeichnet, da sie eine ganze Reihe von Anwendungen für typische Desktop-Aufgaben enthalten. Dazu zählen beispielsweise Office-Pakete, Webbrowser und Spiele.

Fokus

Der Window-Manager ist für die Methode verantwortlich, mit der ein Fenster den Fokus bekommt. Jedes System, das Fenster verwendet muss entscheiden, wie ein Fenster aktiviert wird, damit es Eingaben empfangen kann. Das aktive Fenster sollte zudem sichtbar gekennzeichnet werden.

Eine Methode wird click-to-focus genannt. Ein Fenster wird aktiv, wenn es mit der Maus angeklickt wird. Eine weitere Methode ist focus-follows-mouse. Hier hat liegt der Fokus auf dem Fenster, auf dem sich der Mauszeiger befindet. Wird der Mauszeiger in ein anderes Fenster bewegt, so erhält dieses Fenster den Fokus. Eine dritte Methode ist sloppy-focus. Hier wechselt der Fokus nur dann, wenn sich der Mauszeiger in ein neues Fenster bewegt und nicht, wenn er das aktive Fenster verlässt. Ist der Mauszeiger auf der Desktop Oberfläche, so bleibt der Fokus auf dem zuletzt verwendeten Fenster. Bei der Methode click-to-focus wird das aktive Fenster durch einen Mausklick festgelegt. Dabei kann das Fenster vor alle anderen Fenster gesetzt werden. Alle Eingaben werden dann, unabhängig von der Position des Mauszeigers, dem aktiven Fenster zugeordnet.

Die verschiedenen Window-Manager unterstützen noch andere Methoden. Alle unterstützen jedoch click-to-focus und die meisten von ihnen auch die anderen Methoden. Lesen Sie die Dokumentation des Window-Managers um festzustellen, welche Methoden zur Verfügung stehen.

Widgets

Widget bezeichnet Objekte, die in irgendeiner Weise geklickt oder manipuliert werden können. Dazu gehören buttons (Schaltflächen), check buttons (Schaltfläche für Mehrfachauswahlen), radio buttions (Schaltfläche für Einfachauswahlen), Icons und Auswahllisten. Eine Widget-Sammlung ist eine Reihe von Widgets, die verwendet werden um grafische Anwendungen zu erstellen. Es gibt mehrere populäre Widget-Sammlungen, einschließlich Qt, das von KDE benutzt wird, und GTK+, das von GNOME benutzt wird. Als Folge dessen, haben Anwendungen einen bestimmten look and feel, je nachdem welche Widget-Sammlung benutzt wurde, um die Anwendung zu erstellen.

5.3. Xorg installieren

In FreeBSD kann Xorg als Paket oder Port installiert werden.

Die nachstehenden Kommandos bauen und installieren Xorg aus der Ports-Sammlung:

# cd /usr/ports/x11/xorg
# make install clean

Die Installation des Pakets ist zwar schneller, dafür können weniger Optionen angepasst werden:

# pkg install xorg

Bei beiden Vorgehensweisen wird ein vollständiges Xorg-System installiert. Dies ist die beste Option für die meisten Anwender.

Eine kleinere Version des Xorg-Systems für erfahrene Anwender ist mit x11/xorg-minimal verfügbar. Die meisten Dokumente, Bibliotheken und Anwendungen werden hierbei nicht installiert. Einige Anwendungen erfordern jedoch diese zusätzlichen Komponenten, um ordnungsgemäß zu funktionieren.

5.4. Xorg konfigurieren

Warren Block
Björn Heidotting

5.4.1. Schnellstartanleitung

Xorg unterstützt die meisten gängigen Grafikkarten, Tastaturen und Zeigegeräte. Diese Geräte werden automatisch erkannt und müssen nicht manuell konfiguriert werden.

  1. Wenn Xorg bereits zuvor auf diesem Computer verwendet wurde, verschieben oder entfernen Sie alle vorhandenen Konfigurationsdateien:

    # mv /etc/X11/xorg.conf ~/xorg.conf.etc
    # mv /usr/local/etc/X11/xorg.conf ~/xorg.conf.localetc
  2. Fügen Sie die Benutzer, die Xorg verwenden, zur Gruppe video oder wheel hinzu, um die 3D-Beschleunigung zu aktivieren. Um den Benutzer jru in eine der verfügbaren Gruppen hinzuzufügen:

    # pw groupmod video -m jru || pw groupmod wheel -m jru
  3. Der Window-Manager TWM ist standardmäßig enthalten und wird auch gestartet, wenn Xorg startet:

    % startx
  4. Auf einigen älteren Versionen von FreeBSD muss die Systemkonsole auf vt(4) eingestellt sein, damit der Wechsel auf die Konsole ordnungsgemäß funktioniert. Informationen dazu finden Sie im Abschnitt 5.4.3, „Kernel Mode Setting (KMS)“.

5.4.2. Benutzergruppen für Grafikbeschleunigung

Um die 3D-Beschleunigung für Grafikkarten zu ermöglichen, ist der Zugriff auf /dev/dri notwendig. In der Regel ist es am einfachsten, die Benutzer zur Gruppe video oder wheel hinzuzufügen. In diesem Beispiel wird pw(8) verwendet, um den Benutzer slurms zu der Gruppe video hinzuzufügen, bzw. zur Gruppe wheel, falls die Gruppe video nicht existiert:

# pw groupmod video -m slurms || pw groupmod wheel -m slurms

5.4.3. Kernel Mode Setting (KMS)

Wenn der Computer die Anzeige von der Konsole auf eine höhere Bildschirmauflösung für X umstellt, muss der Videoausgabe-Modus eingestellt werden. Neuere Versionen von Xorg verwenden dazu ein System innerhalb des Kernels, um diesen Modus effizienter zu ändern. Ältere Versionen von FreeBSD verwenden dafür sc(4), welches jedoch nicht mit dem KMS-System umgehen kann. Das führt dazu, dass nach dem Schließen von X die Konsole leer bleibt, obwohl sie weiterhin funktioniert. Die neuere vt(4) Konsole vermeidet dieses Problem.

Fügen Sie diese Zeile in /boot/loader.conf ein um vt(4) zu aktivieren:

kern.vty=vt

5.4.4. Konfigurationsdateien

5.4.4.1. Verzeichnis

Xorg sucht in verschiedenen Verzeichnissen nach Konfigurationsdateien. Unter FreeBSD ist /usr/local/etc/X11/ das bevorzugte Verzeichnis für diese Dateien. Die Verwendung dieses Verzeichnisses hilft dabei, Anwendungsdateien vom Betriebssystem getrennt zu halten.

Das Speichern von Konfigurationsdateien unter /etc/X11/ funktioniert immer noch, allerdings vermischt diese Methode Anwendungsdateien mit Dateien des Basissystems und wird daher nicht empfohlen.

5.4.4.2. Einzelne oder mehrere Dateien

Anstatt die traditionelle xorg.conf zu verwenden, ist es einfacher, mehrere Dateien, die jeweils eine bestimmte Einstellung konfigurieren, zu verwenden. Diese Dateien werden im Unterverzeichnis xorg.conf.d/ des Hauptverzeichnisses gespeichert. Der vollständige Pfad ist normalerweise /usr/local/etc/X11/xorg.conf.d/.

Beispiele für diese Dateien werden später in diesem Abschnitt vorgestellt.

Die traditionelle, einzelne xorg.conf funktioniert weiterhin, ist jedoch nicht so übersichtlich und flexibel wie die Verwendung von mehreren Dateien im Unterverzeichnis xorg.conf.d/.

5.4.5. Grafikkarten

Intel®

3D-Beschleunigung wird von den meisten Intel®-Grafikkarten unterstützt, einschließlich Ivy Bridge (HD Graphics 2500, 4000 und P4000), Iron Lake (HD Graphics) und Sandy Bridge (HD Graphics 2000).

Treibername: intel

Weitere Informationen finden Sie unter https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units.

AMD® Radeon

2D- und 3D-Beschleunigung wird von den meisten Radeon-Karten bis zur HD6000-Serie unterstützt.

Treibername: radeon

Weitere Informationen finden Sie unter https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units.

NVIDIA

Verschiedene NVIDIA Treiber sind in der Kategorie x11 der Ports-Sammlung enthalten. Installieren Sie den Treiber, der für die Grafikkarte benötigt wird.

Weitere Informationen finden Sie unter https://en.wikipedia.org/wiki/List_of_Nvidia_graphics/processing_units.

Hybride Kombinationen

Einige Notebooks besitzen zusätzlich zum Chipsatz oder Prozessor einen Grafikprozessor. Optimus kombiniert Intel® und NVIDIA Hardware. Umschaltbare Grafik bzw. Hybride Grafik ist eine Kombination aus Intel®, oder AMD® Prozessor mit AMD® Radeon GPU.

Die Implementierungen dieser Hybrid-Grafik-Systeme variieren und Xorg in FreeBSD ist nicht in der Lage, alle Versionen der Hardware zu betreiben.

Einige Computer bieten jedoch eine BIOS-Option, um eine der beiden Grafikkarten zu deaktivieren oder den diskreten Modus einzuschalten. Zum Beispiel ist es manchmal möglich, die NVIDIA GPU in einem Optimus-System zu deaktivieren. Intel® Video kann dann mit einem Intel® Treiber verwendet werden.

Die BIOS-Einstellungen sind abhängig vom Modell des Computers. In manchen Situationen können beide GPUs aktiviert bleiben. Um solch ein System lauffähig zu machen genügt es bereits, nur die Haupt-GPU im Abschnitt Device der Konfigurationsdatei zu setzen.

Andere Grafikkarten

Treiber für weniger gebräuchliche Grafikkarten finden Sie in der Kategorie x11-drivers der Ports-Sammlung.

Karten, die nicht durch einen speziellen Treiber unterstützt werden, sind vielleicht noch mit dem Treiber x11-drivers/xf86-video-vesa nutzbar. Dieser Treiber wird von x11/xorg installiert. Der Treiber kann auch manuell als x11-drivers/xf86-video-vesa installiert werden. Xorg versucht immer diesen Treiber zu verwenden, wenn für die Grafikkarte kein passender Treiber gefunden wird.

x11-drivers/xf86-video-scfb ist ein ähnlicher Treiber, der mit vielen UEFI und ARM® Computern funktioniert.

Video-Treiber über eine Datei einstellen

Den Intel® Treiber in einer Konfigurationsdatei einstellen:

Beispiel 5.1. Den Intel® Treiber über eine Datei auswählen

/usr/local/etc/X11/xorg.conf.d/driver-intel.conf

Section "Device"
	Identifier  "Card0"
	Driver	    "intel"
	# BusID	    "PCI:1:0:0"
EndSection

Wenn mehr als eine Grafikkarte vorhanden ist, kann der Eintrag BusID verwendet werden, um die gewünschte Karte auszuwählen. Eine Liste der BusIDs der Grafikkarten kann mit pciconf -lv | grep -B3 display ausgegeben werden.


Den Radeon Treiber in einer Konfigurationsdatei einstellen:

Beispiel 5.2. Den Radeon Treiber über eine Datei auswählen

/usr/local/etc/X11/xorg.conf.d/driver-radeon.conf

Section "Device"
	Identifier  "Card0"
	Driver	    "radeon"
EndSection

Den VESA Treiber in einer Konfigurationsdatei einstellen:

Beispiel 5.3. Den VESA Treiber über eine Datei auswählen

/usr/local/etc/X11/xorg.conf.d/driver-vesa.conf

Section "Device"
	Identifier  "Card0"
	Driver	    "vesa"
EndSection

Den Treiber scfb für UEFI- oder ARM®-Computer auswählen:

Beispiel 5.4. Den scfb Treiber über eine Datei auswählen

/usr/local/etc/X11/xorg.conf.d/driver-scfb.conf

Section "Device"
	Identifier  "Card0"
	Driver	    "scfb"
EndSection

5.4.6. Monitore

Fast alle Monitore unterstützen den Extended Display Identification Data Standard (EDID). Xorg verwendet EDID um mit dem Monitor zu kommunizieren und die unterstützten Auflösungen und Bildwiederholfrequenzen zu erkennen. Xorg wählt dann die für den Monitor am besten geeignete Kombination von Einstellungen.

Weitere vom Monitor unterstützte Auflösungen, können in der Konfigurationsdatei, oder nach dem Start des X-Servers mit xrandr(1) gesetzt werden.

xrandr(1) benutzen

Führen Sie xrandr(1) ohne Parameter aus, um eine Liste von Video-Ausgängen und erkannten Monitor-Modi zu sehen:

% xrandr
Screen 0: minimum 320 x 200, current 3000 x 1920, maximum 8192 x 8192
DVI-0 connected primary 1920x1200+1080+0 (normal left inverted right x axis y axis) 495mm x 310mm
   1920x1200     59.95*+
   1600x1200     60.00
   1280x1024     85.02    75.02    60.02
   1280x960      60.00
   1152x864      75.00
   1024x768      85.00    75.08    70.07    60.00
   832x624       74.55
   800x600       75.00    60.32
   640x480       75.00    60.00
   720x400       70.08
DisplayPort-0 disconnected (normal left inverted right x axis y axis)
HDMI-0 disconnected (normal left inverted right x axis y axis)

Die Auflistung zeigt, dass der DVI-0 Ausgang benutzt wird, um eine Bildschirmauflösung von 1920x1200 bei einer Bildwiederholrate von 60 Hz anzuzeigen. An den Anschlüssen DisplayPort-0 und HDMI-0 sind keine Monitore angeschlossen.

Die anderen Anzeigemodi können mit xrandr(1) ausgewählt werden. Um beispielsweise auf 1280x1024 bei 60 Hz umzuschalten:

% xrandr --mode 1280x1024 --rate 60

Häufig wird für einen Videoprojektor der externe Videoausgang eines Notebooks verwendet.

Die Typen und Anzahl der Videoanschlüsse variiert zwischen den Geräten und auch die Ausgabe variiert von Treiber zu Treiber. Was für den einen Treiber HDMI-1 ist, nennt ein anderer Treiber vielleicht HDMI1. Führen Sie daher zunächst xrandr(1) aus, um alle verfügbaren Anschlüsse aufzulisten.

% xrandr
Screen 0: minimum 320 x 200, current 1366 x 768, maximum 8192 x 8192
LVDS1 connected 1366x768+0+0 (normal left inverted right x axis y axis) 344mm x 193mm
   1366x768      60.04*+
   1024x768      60.00
   800x600       60.32    56.25
   640x480       59.94
VGA1 connected (normal left inverted right x axis y axis)
   1280x1024     60.02 +  75.02
   1280x960      60.00
   1152x864      75.00
   1024x768      75.08    70.07    60.00
   832x624       74.55
   800x600       72.19    75.00    60.32    56.25
   640x480       75.00    72.81    66.67    60.00
   720x400       70.08
HDMI1 disconnected (normal left inverted right x axis y axis)
DP1 disconnected (normal left inverted right x axis y axis)

Vier Ausgänge wurden gefunden: das integrierte Panel LVDS1, sowie die externen Anschlüsse VGA1, HDMI1 und DP1.

Der Videoprojektor wurde am Ausgang VGA1 angeschlossen. xrandr(1) wird nun verwendet, um diese Ausgabe auf die native Auflösung des Projektors einzustellen und den zusätzlichen Platz auf der rechten Seite des Desktops hinzuzufügen:

% xrandr --output VGA1 --auto --right-of LVDS1

--auto wählt die Auflösung und Aktualisierungsrate die von EDID ermittelt wurden. Wenn die Auflösung nicht richtig ermittelt wurde, kann ein fester Wert mit --mode anstelle von --auto angegeben werden. Beispielsweise können die meisten Projektoren mit einer Auflösung von 1024x768 betrieben werden, die mit --mode 1024x768 gesetzt wird.

xrandr(1) wird häufig aus .xinitrc ausgeführt, um den entsprechenden Modus zu setzen wenn X startet.

Bildschirmauflösung über eine Datei einstellen

Eine Bildschirmauflösung von 1024x768 in einer Konfigurationsdatei einstellen:

Beispiel 5.5. Die Bildschirmauflösung in eine Datei schreiben

/usr/local/etc/X11/xorg.conf.d/screen-resolution.conf

Section "Screen"
	Identifier "Screen0"
	Device     "Card0"
	SubSection "Display"
	Modes      "1024x768"
	EndSubSection
EndSection

Die wenigen Monitore, die EDID nicht beherrschen, können durch setzen von HorizSync und VertRefresh auf den Bereich der vom Monitor unterstützten Frequenzen konfiguriert werden.

Beispiel 5.6. Manuelles Einstellen der Monitorfrequenzen

/usr/local/etc/X11/xorg.conf.d/monitor0-freq.conf

Section "Monitor"
	Identifier   "Monitor0"
	HorizSync    30-83  # kHz
	VertRefresh  50-76  # Hz
EndSection

5.4.7. Eingabegeräte

5.4.7.1. Tastaturen

Tastaturlayout

Die standardisierte Position von Tasten auf einer Tastatur wird als Layout bezeichnet. Layouts und andere einstellbare Parameter werden in xkeyboard-config(7) beschrieben.

In der Voreinstellung ist ein US-amerikanisches Layout aktiv. Um ein alternatives Layout zu wählen, setzen Sie die Optionen XkbLayout und XkbVariant in der Klasse InputClass. Dies wird für alle Eingabegeräte der entsprechenden Klasse angewendet werden.

Beispiel 5.7. Konfiguration eines Tastaturlayouts

/usr/local/etc/X11/xorg.conf.d/keyboard-fr-oss.conf

Section "InputClass"
	Identifier	"KeyboardDefaults"
	Driver		"keyboard"
	MatchIsKeyboard	"on"
	Option		"XkbLayout" "fr"
	Option		"XkbVariant" "oss"
EndSection

Beispiel 5.8. Konfiguration mehrerer Tastaturlayouts

Hier werden die Tastaturlayouts für Vereinigte Staaten, Spanien und Ukraine gesetzt. Mit Alt+Shift können Sie zwischen den einzelnen Layouts wechseln. Für eine verbesserte Steuerung des Layouts kann x11/xxkb oder x11/sbxkb benutzt werden.

/usr/local/etc/X11/xorg.conf.d/kbd-layout-multi.conf

Section "InputClass"
	Identifier	"All Keyboards"
	MatchIsKeyboard	"yes"
	Option		"XkbLayout" "us,es,ua"
EndSection

Xorg über die Tastatur beenden

X kann über eine Tastenkombination geschlossen werden. Standardmäßig ist die Tastenkombination jedoch nicht gesetzt, da sie mit Tastaturbefehlen für einige Anwendungen in Konflikt steht. Die Aktivierung dieser Option erfordert Änderungen in der Sektion InputDevice für die Tastatur:

Beispiel 5.9. X über die Tastatur beenden

/usr/local/etc/X11/xorg.conf.d/keyboard-zap.conf

Section "InputClass"
	Identifier	"KeyboardDefaults"
	Driver		"keyboard"
	MatchIsKeyboard	"on"
	Option		"XkbOptions" "terminate:ctrl_alt_bksp"
EndSection

5.4.7.2. Mäuse und Zeigegeräte

Viele Parameter für die Maus können über Konfigurationseinstellungen eingestellt werden. mousedrv(4) enthält eine vollständige Liste.

Mauszeiger

Die Anzahl der Maustasten wird in xorg.conf im Abschnitt InputDevice für die Maus festgelegt. Um die Anzahl der Tasten auf 7 zu setzen:

Beispiel 5.10. Die Anzahl der Maustasten festlegen

/usr/local/X11/xorg.conf.d/mouse0-buttons.conf

Section "InputDevice"
	Identifier  "Mouse0"
	Option	    "Buttons" "7"
EndSection

5.4.8. Manuelle Konfiguration

In einigen Fällen funktioniert die Autokonfiguration nicht mit bestimmter Hardware, oder es wird eine andere Konfiguration benötigt. Für diese Fälle kann eine benutzerdefinierte Konfigurationsdatei erstellt werden.

Eine Konfigurationsdatei kann, basierend auf der von Xorg erfassten Hardware erzeugt werden. Diese Konfigurationsdatei ist ein guter Ausgangspunkt für angepasste Konfigurationen.

Erzeugung einer xorg.conf:

# Xorg -configure

Die Konfigurationsdatei wird in /root/xorg.conf.new gespeichert. Machen Sie alle gewünschten Änderungen an dieser Datei. Danach testen Sie die Datei mit:

# Xorg -config /root/xorg.conf.new

Nachdem die neue Konfiguration angepasst und getestet wurde, kann die Konfiguration in kleinere Dateien unter /usr/local/etc/X11/xorg.conf.d/ aufgeteilt werden.

5.5. Schriftarten in Xorg benutzen

5.5.1. Type 1 Schriftarten

Die Schriftarten, die mit Xorg ausgeliefert werden, eignen sich ganz und gar nicht für Desktop-Publishing-Anwendungen. Große Schriftarten zeigen bei Präsentationen deutliche Treppenstufen und kleine Schriftarten sind fast unleserlich. Es gibt allerdings mehrere hochwertige Type 1 Schriftarten (PostScript®), die mit Xorg benutzt werden können. Beispielsweise enthalten die URW-Schriftarten (x11-fonts/urwfonts) hochwertige Versionen gängiger Type 1 Schriftarten (unter anderem Times Roman®, Helvetica®, Palatino®). Die Sammlung Freefonts (x11-fonts/freefonts) enthält viele weitere Schriftarten, doch sind diese für den Einsatz in Grafikprogrammen wie Gimp gedacht und nicht für den alltäglichen Gebrauch. Weiterhin kann Xorg mit einem Minimum an Aufwand konfiguriert werden, damit TrueType®-Schriftarten benutzt werden können. Mehr dazu erfahren Sie in der Manualpage X(7) und im Abschnitt 5.5.2, „TrueType®-Schriftarten“.

Die Type 1 Schriftarten lassen sich aus der Ports-Sammlung wie folgt installieren:

# cd /usr/ports/x11-fonts/urwfonts
# make install clean

Analog lassen sich Freefont und andere Sammlungen installieren. Damit der X-Server diese Schriftarten erkennt, fügen Sie eine entsprechende Zeile in die Konfigurationsdatei des X-Servers (/etc/X11/xorg.conf) hinzu:

FontPath "/usr/local/share/fonts/urwfonts/"

Alternativ kann in der X-Sitzung das folgende Kommando abgesetzt werden:

% xset fp+ /usr/local/share/fonts/urwfonts
% xset fp rehash

Jetzt kennt der X-Server die neuen Schriftarten, jedoch nur bis zu Ende der Sitzung. Soll die Änderung dauerhaft sein, müssen die Befehle in ~/.xinitrc eingetragen werden, wenn X mittels startx gestartet wird, beziehungsweise in ~/.xsession, wenn ein grafischer Login-Manager, wie XDM verwendet wird. Eine dritte Möglichkeit besteht darin, /usr/local/etc/fonts/local.conf zu verwenden, was im Abschnitt 5.5.3, „Anti-aliasing“ demonstriert wird.

5.5.2. TrueType®-Schriftarten

Xorg besitzt eine eingebaute Unterstützung zur Darstellung von TrueType®-Schriftarten. Hierzu existieren zwei verschiedene Module, die diese Funktionalität aktivieren können. In diesem Beispiel wird das Freetype-Modul benutzt, da es besser mit anderen Werkzeugen, die TrueType®-Schriftarten darstellen, übereinstimmt. Um das Freetype-Modul zu aktivieren, muss die folgende Zeile zum Abschnitt "Module" in /etc/X11/xorg.conf hinzugefügt werden.

Load "freetype"

Erstellen Sie ein Verzeichnis für die TrueType®-Schriftarten (beispielsweise /usr/local/share/fonts/TrueType) und kopieren Sie alle Schriftarten dorthin. Beachten Sie, dass die Schriftarten für Xorg im UNIX®/MS-DOS®/Windows®-Format vorliegen müssen und nicht direkt von einem Apple® Mac® übernommen werden können. Sobald die Dateien in das Verzeichnis kopiert wurden, verwenden Sie mkfontdir um fonts.dir zu erstellen, damit X weiß, dass diese neuen Dateien installiert wurden. mkfontdir kann als Paket installiert werden:

# pkg install mkfontdir

Erstellen Sie dann einen Index der Schriftarten für X:

# cd /usr/local/share/fonts/TrueType
# mkfontdir

Geben Sie dem System das TrueType®-Verzeichnis, wie im Abschnitt 5.5.1, „Type 1 Schriftarten“ beschrieben, bekannt:

# xset fp+ /usr/local/share/fonts/TrueType
# xset fp rehash

Oder fügen Sie eine FontPath-Zeile in xorg.conf ein.

Jetzt sollten Gimp, Apache OpenOffice und alle anderen X-Anwendungen die TrueType®-Schritarten erkennen. Extrem kleine Schriftarten (Webseiten, die mit hoher Auflösung betrachtet werden) und sehr große Schriftarten (in StarOffice™) werden jetzt viel besser aussehen.

5.5.3. Anti-aliasing

Alle Schriftarten in Xorg, die in den Verzeichnissen /usr/local/share/fonts/ und ~/.fonts/ gefunden werden, werden automatisch für Anti-aliasing an Anwendungen zur Verfügung gestellt, die Xft beherrschen. Die meisten aktuellen Anwendungen beherrschen Xft, dazu gehören auch KDE, GNOME und Firefox.

In /usr/local/etc/fonts/local.conf werden die Schriftarten, die mit dem Anti-aliasing-Verfahren benutzt werden sollen und die Eigenschaften des Verfahrens festgelegt. In diesem Abschnitt wird nur die grundlegende Konfiguration von Xft beschrieben. Weitere Details entnehmen Sie bitte der Hilfeseite fonts-conf(5).

Die Datei local.conf ist ein XML-Dokument. Achten Sie beim Editieren der Datei daher auf die richtige Groß- und Kleinschreibung und darauf, dass alle Tags geschlossen sind. Die Datei beginnt mit der üblichen XML-Deklaration gefolgt von einer DOCTYPE-Definition und dem <fontconfig>-Tag:

<?xml version="1.0"?>
        <!DOCTYPE fontconfig SYSTEM "fonts.dtd">
        <fontconfig>

Wie vorher erwähnt, stehen schon alle Schriftarten in /usr/local/share/fonts/ und ~/.fonts/ für Anwendungen, die Xft unterstützen, zur Verfügung. Um ein Verzeichnis außerhalb dieser beiden Bäume zu benutzen, fügen Sie eine Zeile wie die nachstehende in /usr/local/etc/fonts/local.conf hinzu:

<dir>/path/to/my/fonts</dir>

Wenn Sie neue Schriftarten hinzugefügt haben, müssen Sie den Schriftarten-Cache neu aufbauen:

# fc-cache -f

Das Anti-aliasing-Verfahren zeichnet Ränder leicht unscharf, dadurch werden kleine Schriften besser lesbar und der Treppenstufen-Effekt bei wird großen Schriften vermieden. Auf normale Schriftgrößen sollte das Verfahren aber nicht angewendet werden, da dies die Augen zu sehr anstrengt. Um kleinere Schriftgrößen als 14 Punkt von dem Verfahren auszuschließen, fügen Sie in local.conf die nachstehenden Zeilen ein:

        <match target="font">
	   <test name="size" compare="less">
	       <double>14</double>
	   </test>
	   <edit name="antialias" mode="assign">
	       <bool>false</bool>
	   </edit>
	 </match>
	 <match target="font">
	   <test name="pixelsize" compare="less" qual="any">
	       <double>14</double>
	   </test>
	   <edit mode="assign" name="antialias">
	       <bool>false</bool>
	   </edit>
	 </match>

Das Anti-aliasing-Verfahren kann die Abstände einiger Fixschriften falsch darstellen, dies fällt besonders unter KDE auf. Sie können das Problem umgehen, indem Sie die Abstände dieser Schriften auf den Wert 100 festsetzen. Fügen Sie die nachstehenden Zeilen hinzu:

        <match target="pattern" name="family">
           <test qual="any" name="family">
               <string>fixed</string>
           </test>
           <edit name="family" mode="assign">
               <string>mono</string>
           </edit>
        </match>
        <match target="pattern" name="family">
            <test qual="any" name="family">
                <string>console</string>
            </test>
            <edit name="family" mode="assign">
                <string>mono</string>
            </edit>
        </match>

Damit werden die Namen der gebräuchlichen Fixschriften auf "mono" abgebildet. Für diese Schriften setzen Sie dann den Abstand fest:

         <match target="pattern" name="family">
             <test qual="any" name="family">
                 <string>mono</string>
             </test>
             <edit name="spacing" mode="assign">
                 <int>100</int>
             </edit>
         </match>      

Bestimmte Schriftarten, wie Helvetica, können Probleme mit dem Anti-Aliasing-Verfahren verursachen. In der Regel erscheinen diese Schriftarten dann vertikal halbiert. Im schlimmsten Fall stürzen Anwendungen als Folge davon ab. Sie vermeiden dies, indem Sie betroffene Schriftarten in local.conf von dem Verfahren ausnehmen:

         <match target="pattern" name="family">
             <test qual="any" name="family">
                 <string>Helvetica</string>
             </test>
             <edit name="family" mode="assign">
                 <string>sans-serif</string>
             </edit>
         </match>        

Nachdem Sie local.conf editiert haben, müssen Sie sicherstellen, dass die Datei mit dem Tag </fontconfig> endet. Ist das nicht der Fall, werden die Änderungen nicht berücksichtigt.

Benutzer können personalisierte Einstellungen in ~/.fonts.conf vornehmen. Diese Datei verwendet die gleiche XML-Syntax wie im obigen Beispiel.

Mit einem LCD können Sie sub-pixel sampling anstelle von Anti-aliasing einsetzen. Dieses Verfahren behandelt die horizontal getrennten Rot-, Grün- und Blau-Komponenten eines Pixels gesondert und verbessert damit (teilweise sehr wirksam) die horizontale Auflösung. Die nachstehende Zeile in local.conf aktiviert diese Funktion:

         <match target="font">
             <test qual="all" name="rgba">
                 <const>unknown</const>
             </test>
             <edit name="rgba" mode="assign">
                 <const>rgb</const>
             </edit>
         </match>

Anmerkung:

Abhängig von der Art Ihres Bildschirms müssen Sie anstelle von rgb eines der folgenden verwenden: bgr, vrgb oder vbgr. Experimentieren Sie und vergleichen, was besser aussieht.

5.6. Der X-Display-Manager

Beigetragen von Seth Kingsley.

Xorg enthält den X-Display-Manager XDM, um Sitzungen zu verwalten. XDM stellt eine graphische Anmeldemaske zur Verfügung, in der Sie den Server, auf dem eine Sitzung laufen soll, auswählen können und in der Sie die Autorisierungs-Informationen, wie Benutzername und Passwort, eingeben können.

Dieser Abschnitt zeigt, wie der X-Displaymanager konfiguriert wird. Einige grafische Oberflächen enthalten ihre eigenen graphischen Login-Manager. Eine Anleitung zur Konfiguration des GNOME Display-Managers finden Sie im Abschnitt 5.7.1, „GNOME“. Eine Anleitung zur Konfiguration des KDE Display Managers finden Sie im Abschnitt 5.7.2, „KDE“.

5.6.1. XDM einrichten

XDM kann über das Paket oder den Port x11/xdm installiert werden. Nach der Installation lässt sich XDM durch einen Eintrag in /etc/ttys bei jedem Start des Rechners aktivieren:

ttyv8   "/usr/local/bin/xdm -nodaemon"  xterm   off secure

Ändern Sie den Wert off zu on und speichern Sie die Datei. ttyv8 zeigt an, dass XDM auf dem neunten virtuellen Terminal ausgeführt wird.

Die Konfigurationsdateien von XDM befinden sich in /usr/local/lib/X11/xdm. Dieses Verzeichnis enthält einige Dateien, mit denen das Verhalten und Aussehen von XDM beeinflusst werden kann, sowie ein paar Skripte und Programme zur Einrichtung des Desktops. Eine Zusammenfassung der Aufgaben dieser Dateien beschreibt die Tabelle 5.1, „Die Konfigurationsdateien von XDM“. Die genaue Syntax und Verwendung wird in xdm(1) beschrieben.

Tabelle 5.1. Die Konfigurationsdateien von XDM
DateiBeschreibung
XaccessVerbindungen zu XDM werden über das X Display Manager Connection Protocol (XDMCP) hergestellt. Xaccess enthält die Client-Berechtigungen zur Steuerung der XDMCP-Verbindungen entfernter Maschinen. In der Voreinstellung erlaubt diese Datei keine Verbindungen von entfernten Maschinen.
XresourcesDiese Datei steuert das Erscheinungsbild der Bildschirmauswahl und Anmeldemasken von XDM. In der Voreinstellung erscheint ein rechteckiges Anmeldefenster, dass den Hostnamen und einen Anmeldeprompt mit Login: und Password anzeigt. Das Format dieser Datei entspricht den Dateien im Verzeichnis app-defaults, die in der Dokumentation von Xorg beschrieben sind.
XserversDiese Datei enthält eine Liste entfernter Rechner, die in der Bildschirmauswahl angeboten werden.
XsessionDieses Skript wird von XDM aufgerufen, nachdem sich ein Benutzer erfolgreich angemeldet hat. Üblicherweise besitzt jeder Benutzer eine angepasste Version dieses Skripts in ~/.xsession, das dann anstelle von Xsession ausgeführt wird.
Xsetup_*Diese Skripten werden automatisch ausgeführt, bevor die Bildschirmauswahl oder die Anmeldemasken angezeigt werden. Für jeden lokalen Bildschirm gibt es ein Skript namens Xsetup_*, wobei * die lokale Bildschirmnummer ist. Normalerweise werden damit ein oder zwei Programme, wie xconsole, im Hindergrund gestartet.
xdm-configKonfiguration für alle auf der Maschine verwalteten Bildschirme.
xdm-errorsEnthält Fehler, die vom Server generiert werden. Wenn ein von XDM verwalteter Bildschirm hängen bleibt, suchen Sie in dieser Datei nach Fehlermeldungen. Für jede Sitzung werden die Meldungen auch in die Datei ~/.xsession-errors des Benutzers geschrieben.
xdm-pidDie Prozess-ID des gerade laufenden XDM-Prozesses.

5.6.2. Fernzugriff einrichten

In der Voreinstellung können sich nur Benutzer auf dem selben System über XDM anmelden. Um es Benutzern anderer Systeme zu ermöglichen, sich mit dem Bildschirm-Server zu verbinden, muss der Zugriffsregelsatz bearbeitet und der Listener aktiviert werden.

Um XDM so zu konfigurieren, dass jede Verbindung angenommen wird, kommentieren Sie die Zeile DisplayManager.requestPort in /usr/local/lib/X11/xdm/xdm-config aus, indem Sie der Zeile ein ! voranstellen.

! SECURITY: do not listen for XDMCP or Chooser requests
! Comment out this line if you want to manage X terminals with xdm
DisplayManager.requestPort:     0

Speichern Sie die Änderungen und starten Sie XDM neu. Um den Fernzugriff zu beschränken, sehen Sie sich die Beispiele in /usr/local/lib/X11/xdm/Xaccess an. Zusätzliche Informationen finden Sie in xdm(1)

5.7. Grafische Oberflächen

Beigetragen von Valentino Vaschetto.

Dieser Abschnitt beschreibt die Installation der drei beliebtesten grafischen Oberflächen unter FreeBSD. Eine Oberfläche kann alles von einem einfachen Window-Manager bis hin zu kompletten Anwendungen sein. Mehr als einhundert grafische Oberflächen stehen in der Kategorie x11-wm der Ports-Sammlung zur Verfügung.

5.7.1. GNOME

GNOME ist eine benutzerfreundliche Oberfläche. Es besitzt eine Leiste, mit der Anwendungen gestartet werden und die Statusinformationen anzeigen kann. Programme und Daten können auf der Oberfläche abgelegt werden und Standardwerkzeuge stehen zur Verfügung. Es gibt Konventionen, die es Anwendungen leicht machen, zusammenzuarbeiten und ein konsistentes Erscheinungsbild garantieren. Weitere Informationen zu GNOME unter FreeBSD finden Sie unter http://www.FreeBSD.org/gnome. Die Webseite enthält zusätzliche Informationen über die Installation, Konfiguration und Verwaltung von GNOME unter FreeBSD.

Diese grafische Oberfläche kann als Paket installiert werden:

# pkg install gnome3

Um GNOME stattdessen aus der Ports-Sammlung zu übersetzen, nutzen Sie das folgende Kommando. GNOME ist eine große Anwendung, die sogar auf einem schnellen Computer einige Zeit zum Übersetzten benötigt.

# cd /usr/ports/x11/gnome3
# make install clean

GNOME benötigt ein eingehängtes /proc Dateisystem. Fügen Sie daher die folgende Zeile in /etc/fstab ein, damit procfs(5) beim Systemstart automatisch eingehängt wird:

proc           /proc       procfs  rw  0   0

GNOME benötigt D-Bus und HAL für einen Nachrichtenbus und Hardware Abstraktion. Diese Anwendungen werden automatisch als Abhängigkeiten von GNOME installiert. Aktivieren Sie die Dienste in /etc/rc.conf, sodass sie automatisch gestartet werden wenn das System bootet:

dbus_enable="YES"
hald_enable="YES"

Nach der Installation weisen Sie Xorg an, GNOME zu starten. Der einfachste Weg, dies zu tun, ist über den GNOME Display Manager GDM, der als Teil des GNOME-Desktops installiert wird. Um GDM zu aktivieren, fügen Sie folgende Zeile in /etc/rc.conf ein:

gdm_enable="YES"

In der Regel ist es ratsam, alle GNOME-Dienste zu starten. Um dies zu erreichen, fügen Sie die folgende Zeile in /etc/rc.conf ein:

gnome_enable="YES"

GDM wird nun automatisch gestartet, wenn das System hochfährt.

GNOME kann alternativ auch von der Kommandozeile gestartet werden, wenn eine entsprechend konfigurierte ~/.xinitrc vorliegt. Existiert diese Datei bereits, ersetzen Sie den Aufruf des Window-Managers durch /usr/local/bin/gnome-session. Wenn .xinitrc nicht existiert, erstellen Sie die Datei mit folgendem Befehl:

% echo "exec /usr/local/bin/gnome-session" > ~/.xinitrc

Eine dritte Methode ist, XDM als Display-Manager zu verwenden. In diesem Fall erstellen Sie eine ausführbare ~/.xsession:

% echo "#!/bin/sh" > ~/.xsession
% echo "exec /usr/local/bin/gnome-session" >> ~/.xsession
% chmod +x ~/.xsession

5.7.2. KDE

KDE ist eine weitere, leicht zu benutzende Desktop-Umgebung. Dieser Desktop bietet eine Sammlung von Anwendungen mit einheitlichem Erscheinungsbild (look and feel), einheitlichen Menüs, Werkzeugleisten, Tastenkombinationen, Farbschemata, Internationalisierung und einer zentralen, dialoggesteuerten Desktop-Konfiguration. Weitere Informationen zu KDE finden Sie unter http://www.kde.org/. Spezifische Informationen für FreeBSD finden Sie unter http://freebsd.kde.org.

Um das Paket KDE4 zu installieren, geben Sie ein:

# pkg install x11/kde4

Um KDE stattdessen aus dem Quellcode zu übersetzen, verwenden Sie das folgende Kommando. Bei der Installation wird ein Menü zur Auswahl der Komponenten angezeigt. KDE ist eine große Anwendung, die sogar auf einem schnellen Computer einige Zeit zum Übersetzen benötigt.

# cd /usr/ports/x11/kde4
# make install clean

KDE benötigt ein eingehängtes /proc. Fügen Sie diese Zeile in /etc/fstab ein, um das Dateisystem automatisch beim Systemstart einzuhängen:

proc           /proc       procfs  rw  0   0

KDE benötigt D-Bus und HAL für einen Nachrichtenbus und Hardware Abstraktion. Diese Anwendungen werden automatisch als Abhängigkeiten von KDE installiert. Aktivieren Sie die Dienste in /etc/rc.conf, sodass sie automatisch gestartet werden wenn das System bootet:

dbus_enable="YES"
hald_enable="YES"

Die Installation von KDE beinhaltet den KDE Display-Manager KDM. Um diesen Display-Manager zu aktivieren, fügen Sie folgende Zeile in /etc/rc.conf ein:

kdm4_enable="YES"

Eine zweite Möglichkeit KDE zu starten, ist startx in der Kommandozeile einzugeben. Damit dies funktioniert, wird folgende Zeile in ~/.xinitrc benötigt:

exec /usr/local/bin/startkde

Eine dritte Möglichkeit ist KDE über XDM zu starten. Um dies zu tun, erstellen Sie eine ausführbare ~/.xsession wie folgt:

% echo "#!/bin/sh" > ~/.xsession
% echo "exec /usr/local/bin/startkde" >> ~/.xsession
% chmod +x ~/.xsession

Sobald KDE gestartet wird, finden Sie im integrierten Hilfesystem weitere Informationen zur Benutzung der verschiedenen Menüs und Anwendungen.

5.7.3. Xfce

Xfce ist eine Desktop-Umgebung, basierend auf den von GNOME verwendeten GTK+-Bibliotheken. Es hat einen geringeren Speicherbedarf und stellt dabei einen schlichten, effizienten und einfach zu benutzenden Desktop zur Verfügung. Xfce ist vollständig konfigurierbar, verfügt über eine Programmleiste mit Menüs, Applets und einen Programmstarter. Zudem sind ein Datei-Manager und ein Sound-Manager enthalten und das Programm ist über Themes anpassbar. Da es schnell, leicht und effizient ist, eignet sich Xfce ideal für ältere oder langsamere Rechner mit wenig Speicher. Weitere Informationen zu Xfce finden Sie unter http://www.xfce.org.

Um das Paket Xfce zu installieren, geben Sie folgendes ein:

# pkg install xfce

Um stattdessen den Port zu übersetzen:

# cd /usr/ports/x11-wm/xfce4
# make install clean

Im Gegensatz zu GNOME oder KDE, besitzt Xfce keinen eigenen Login-Manager. Damit Xfce von der Kommandozeile mit startx gestartet werden kann, muss zunächst ein Eintrag in ~/.xinitrc hinzugefügt werden:

% echo "exec /usr/local/bin/startxfce4 --with-ck-launch" > ~/.xinitrc

Alternativ dazu kann XDM verwendet werden. Um diese Methode zu konfigurieren, erstellen Sie eine ausführbare ~/.xsession:

% echo "#!/bin/sh" > ~/.xsession
% echo "exec /usr/local/bin/startxfce4 --with-ck-launch" >> ~/.xsession
% chmod +x ~/.xsession

5.8. Compiz Fusion installieren

Der Einsatz von hübschen 3D-Effekten ist eine Möglichkeit, die Benutzerfreundlichkeit eines Desktop-Rechners zu erhöhen.

Die Installation des Compiz Fusion Pakets ist einfach, aber bei der Konfiguration sind ein paar Schritte notwendig, die nicht in der Dokumentation des Ports beschrieben werden.

5.8.1. Konfiguration des FreeBSD nVidia-Treibers

Desktop-Effekte erzeugen eine hohe Last auf der Grafikkarte. Für nVidia-basierte Grafikkarten sind die proprietären Treiber für eine gute Leistung erforderlich. Benutzer anderer Grafikkarten können diesen Abschnitt überspringen und mit der Konfiguration von Xorg fortfahren.

Lesen Sie die FAQ zu diesem Thema, um herauszufinden, wie der richtige nVidia-Treiber ermittelt werden kann.

Nachdem der richtige Treiber für die Karte ermittelt wurde, kann er wie jedes andere Paket installiert werden.

Um beispielsweise den aktuellsten Treiber zu installieren:

# pkg install x11/nvidia-driver

Der Treiber erstellt ein Kernelmodul, welches beim Systemstart geladen werden muss. Fügen folgende Zeile in /boot/loader.conf ein:

nvidia_load="YES"

Anmerkung:

Um das Kernelmodul direkt in den laufenden Kernel zu laden, kann der Befehl kldload nvidia eingeben werden. Allerdings wurde festgestellt, dass einige Versionen von Xorg nicht richtig funktionieren, wenn der Treiber nicht beim Systemstart geladen wurde. Nach der Änderung in /boot/loader.conf wird daher ein Neustart des Systems empfohlen.

Wenn das Kernelmodul geladen ist, muss in der Regel nur noch eine einzige Zeile in xorg.conf geändert werden, um den proprietären Treiber zu aktivieren:

Suchen Sie folgende Zeile in /etc/X11/xorg.conf:

Driver      "nv"

und ändern Sie die Zeile zu:

Driver      "nvidia"

Wenn Sie nun die grafische Oberfläche starten, sollten Sie vom nVidia Startbildschirm begrüßt werden. Alles sollte wie gewohnt funktionieren.

5.8.2. Konfiguration von Desktop-Effekten in xorg.conf

Um Compiz Fusion zu aktivieren, muss /etc/X11/xorg.conf angepasst werden:

Fügen Sie diesen Abschnitt hinzu, um Composite-Effekte zu aktivieren:

Section "Extensions"
    Option         "Composite" "Enable"
EndSection

Suchen Sie den Abschnitt Screen, der ähnlich wie hier gezeigt aussehen sollte:

Section "Screen"
    Identifier     "Screen0"
    Device         "Card0"
    Monitor        "Monitor0"
    ...

und fügen Sie die beiden folgenden Zeilen hinzu (z.B. nach Monitor):

DefaultDepth    24
Option         "AddARGBGLXVisuals" "True"

Suchen Sie den Abschnitt Subsection, der sich auf die gewünschte Bildschirmauflösung bezieht. Wenn Sie z.B. 1280x1024 verwenden möchten, suchen Sie den folgenden Abschnitt. Sollte die gewünschte Auflösung nicht in allen Unterabschnitten vorhanden sein, können Sie den entsprechenden Eintrag manuell hinzufügen:

SubSection     "Display"
    Viewport    0 0
    Modes      "1280x1024"
EndSubSection

Für Composite-Effekte wird eine Farbtiefe von 24 Bit benötigt. Ändern Sie dazu den obigen Abschnitt wie folgt:

SubSection     "Display"
    Viewport    0 0
    Depth       24
    Modes      "1280x1024"
EndSubSection

Zuletzt muss noch sichergestellt werden, dass die Module glx und extmod im Abschnitt Module geladen werden:

Section "Module"
    Load           "extmod"
    Load           "glx"
    ...

Die vorangegangenen Einstellungen können automatisch mit x11/nvidia-xconfig erledigt werden, indem Sie folgende Kommandos als root ausführen:

# nvidia-xconfig --add-argb-glx-visuals
# nvidia-xconfig --composite
# nvidia-xconfig --depth=24

5.8.3. Installation und Konfiguration von Compiz Fusion

Die Installation von Compiz Fusion ist so einfach wie die Installation jedes anderen Pakets:

# pkg install x11-wm/compiz-fusion

Wenn die Installation abgeschlossen ist, starten Sie (als normaler Benutzer) den grafischen Desktop mit folgendem Befehl:

% compiz --replace --sm-disable --ignore-desktop-hints ccp &
% emerald --replace &

Der Bildschirm wird für einige Sekunden flackern, da der Window Manager (z.B. Metacity, wenn Sie GNOME benutzen) von Compiz Fusion ersetzt wird. Emerald kümmert sich um die Fensterdekoration (z.B. die Schatzflächenn schließen, minimieren und maximieren, Titelleisten, usw.).

Sie können dieses einfache Skript anpassen und es dann beim Start automatisch ausführen lassen (z.B. durch Hinzufügen von Sessions beim GNOME-Desktop):

#! /bin/sh
compiz --replace --sm-disable --ignore-desktop-hints ccp &
emerald --replace &

Speichern Sie die Datei in Ihrem Heimatverzeichnis, beispielsweise als start-compiz und machen Sie die Datei ausführbar:

% chmod +x ~/start-compiz

Benutzen Sie dann die grafische Oberfläche, um das Skript zu Autostart-Programme hinzuzufügen (beim GNOME-Desktop unter Systemwerkzeuge, Einstellungen, Sessions).

Um die gewünschten Effekte und Einstellungen zu konfigurieren, starten Sie (wieder als normaler Benutzer) den Compiz Config Einstellungs—Manager:

% ccsm

Anmerkung:

In GNOME finden Sie diese Einstellungen wieder im Menü unter Systemwerkzeuge, Einstellungen.

Wenn Sie gconf support während der Installation ausgewählt haben, können Sie diese Einstellungen auch im gconf-editor unter apps/compiz finden.

5.9. Fehlersuche

Wenn die Maus nicht funktioniert, müssen Sie diese zuerst konfigurieren. In neueren Versionen von Xorg werden die InputDevice-Abschnitte in xorg.conf ignoriert, um stattdessen die automatisch erkannten Geräte zu verwenden. Um das alte Verhalten wiederherzustellen, fügen Sie folgende Zeile zum Abschnitt ServerLayout oder ServerFlags dieser Datei hinzu:

Option "AutoAddDevices" "false"

Anmerkung:

Wie zuvor erwähnt, wird standardmäßig der hald-Dienst automatisch die Tastatur erkennen. Es kann jedoch passieren, dass das Tastaturlayout oder das Modell nicht korrekt erkannt wird. Grafische Oberflächen wie GNOME, KDE oder Xfce stellen Werkzeuge für die Konfiguration der Tastatur bereit. Es ist allerdings auch möglich, die Tastatureigenschaften direkt zu setzen, entweder mit Hilfe von setxkbmap(1) oder mit einer Konfigurationsregel von hald.

Wenn Sie zum Beispiel eine PC 102-Tasten Tastatur mit französischem Layout verwenden möchten, müssen sie eine Tastaturkonfigurationsdatei x11-input.fdi für hald im Verzeichnis /usr/local/etc/hal/fdi/policy anlegen. Diese Datei sollte die folgenden Zeilen enthalten:

<?xml version="1.0" encoding="iso-8859-1"?>
<deviceinfo version="0.2">
  <device>
    <match key="info.capabilities" contains="input.keyboard">
      <merge key="input.x11_options.XkbModel" type="string">pc102</merge>
      <merge key="input.x11_options.XkbLayout" type="string">fr</merge>
    </match>
  </device>
</deviceinfo>

Wenn diese Datei bereits existiert, kopieren Sie nur die Zeilen in die Datei, welche die Tastaturkonfiguration betreffen.

Sie müssen Ihren Computer neu starten, um hald zu zwingen, diese Datei einzulesen.

Es ist auch möglich, die gleiche Konfiguration von einem X-Terminal oder einem Skript über den folgenden Befehl heraus zu tätigen:

% setxkbmap -model pc102 -layout fr

/usr/local/share/X11/xkb/rules/base.lst enthält die zur Verfügung stehenden Tastatur- und Layoutoptionen.

Die Konfigurationsdatei xorg.conf.new kann nun an bestimmte Bedürfnisse angepasst werden. Öffnen Sie die Datei in einem Editor, wie emacs(1) oder ee(1). Falls der Monitor ein älteres oder ungewöhnliches Modell ist und keine automatische Erkennung unterstützt, können die Synchronisationsfrequenzen im Abschnitt "Monitor" der xorg.conf.new eingetragen werden.

Section "Monitor"
      Identifier   "Monitor0"
      VendorName   "Monitor Vendor"
      ModelName    "Monitor Model"
      HorizSync    30-107
      VertRefresh  48-120
EndSection

Die meisten Monitore unterstützen die automatische Erkennung der Synchronisationsfrequenzen, so dass eine manuelle Eingabe der Werte nicht erforderlich ist. Für die wenigen Monitore, die keine automatische Erkennung unterstützen, sollten nur die vom Hersteller zur Verfügung gestellten Werte eingegeben werden, um einen möglichen Schaden zu vermeiden.

X unterstützt die Energiesparfunktionen (DPMS, Energy Star) für Monitore. Mit xset(1) können die Zeitlimits für die DPMS-Modi standby, suspend, off vorgeben, oder zwingend aktiviert werden. Die DPMS-Funktionen können mit der folgenden Zeile im Abschnitt "Monitor" aktiviert werden:

Option         "DPMS"

Die gewünschte Auflösung und Farbtiefe stellen sie im Abschnitt "Screen" ein:

Section "Screen"
      Identifier "Screen0"
      Device     "Card0"
      Monitor    "Monitor0"
      DefaultDepth 24
      SubSection "Display"
	      Viewport  0 0
	      Depth     24
	      Modes     "1024x768"
      EndSubSection
EndSection

Mit DefaultDepth wird die standardmäßige Farbtiefe angegeben. Mit der Option -depth von Xorg(1) lässt sich die vorgegebene Farbtiefe überschreiben. Modes gibt die Auflösung für die angegebene Farbtiefe an. Die Farbtiefe im Beispiel beträgt 24 Bits pro Pixel, die zugehörige Auflösung ist 1024x768 Pixel. Beachten Sie, dass in der Voreinstellung nur Standard-VESA-Modi der Grafikkarte angegeben werden können.

Sichern Sie die Konfigurationsdatei. Testen Sie anschließend die Konfiguration, wie oben beschrieben.

Anmerkung:

Bei der Fehlersuche stehen Ihnen die Protokolldateien von Xorg zur Verfügung. Die Protokolle enthalten Informationen über alle Geräte, die mit dem Xorg-Server verbunden ist. Die Namen der Xorg-Protkolldateien haben das Format /var/log/Xorg.0.log. Der exakte Name der Datei variiert dabei von Xorg.0.log bis Xorg.8.log, und so weiter.

Wenn alles funktioniert, installieren Sie die Datei an einen Ort, an dem Xorg(1) sie finden kann. Typischerweise ist dies /etc/X11/xorg.conf oder /usr/local/etc/X11/xorg.conf.

# cp xorg.conf.new /etc/X11/xorg.conf

Damit ist die Konfiguration von Xorg abgeschlossesn. Xorg kann nun mit dem Programm startx(1) gestartet werden. Alternativ kann der Xorg-Server auch mithilfe von xdm(1) gestartet werden.

5.9.1. Konfiguration des Intel® i810 Graphics Chipsets

Der Intel® i810-Chipset benötigt den Treiber agpgart, die AGP-Schnittstelle für Xorg. Die Manualpage für den Treiber agp(4) enthält weitere Informationen.

Ab jetzt kann die Hardware wie jede andere Grafikkarte auch konfiguriert werden. Beachten Sie, dass der Treiber agp(4) nicht nachträglich in einen laufenden Kernel geladen werden kann. Er muss entweder fest im Kernel eingebunden sein, oder beim Systemstart über /boot/loader.conf geladen werden.

5.9.2. Einen Widescreen-Monitor einsetzen

Dieser Abschnitt geht über die normalen Konfigurationsarbeiten hinaus und setzt ein wenig Vorwissen voraus. Selbst wenn die Standardwerkzeuge zur X-Konfiguration bei diesen Geräten nicht zum Erfolg führen, gibt es in den Protokolldateien genug Informationen, mit denen Sie letztlich doch einen funktionierenden X-Server konfigurieren können. Alles, was Sie dazu benötigen, ist ein Texteditor.

Aktuelle Widescreen-Formate (wie WSXGA, WSXGA+, WUXGA, WXGA, WXGA+, und andere mehr) unterstützen Seitenverhältnisse wie 16:10 oder 10:9, die unter X Probleme verursachen können. Bei einem Seitenverhältnis von 16:10 sind beispielsweise folgende Auflösungen möglich:

  • 2560x1600

  • 1920x1200

  • 1680x1050

  • 1440x900

  • 1280x800

Irgendwann wird die Konfiguration vereinfacht werden, dass nur noch die Auflösung als Mode in Section "Screen" eingtragen wird, so wie hier:

Section "Screen"
Identifier  "Screen 0"
Device	    "Card 0"
Monitor	    "Monitor0"
Default Depth 24
SubSection  "Display"
	ViewPort  0 0
	Depth	  24
	Modes	  "1680x1050"
EndSubSection
EndSection

Xorg ist intelligent genug, um die Informationen zu den Auflösungen über I2C/DDC zu beziehen, und weiß daher, welche Auflösungen und Frequenzen der Widescreen-Monitor unterstützt.

Wenn diese ModeLines in den Treiberdateien nicht vorhanden sind, kann es sein, dass Sie Xorg beim Finden der korrekten Werte unterstützen müssen. Dazu extrahieren Sie die benötigten Informationen aus /var/log/Xorg.0.log und erzeugen daraus eine funktionierende ModeLine. Suchen Sie nach Zeilen ähnlich den folgenden:

(II) MGA(0): Supported additional Video Mode:
(II) MGA(0): clock: 146.2 MHz   Image Size:  433 x 271 mm
(II) MGA(0): h_active: 1680  h_sync: 1784  h_sync_end 1960 h_blank_end 2240 h_border: 0
(II) MGA(0): v_active: 1050  v_sync: 1053  v_sync_end 1059 v_blanking: 1089 v_border: 0
(II) MGA(0): Ranges: V min: 48  V max: 85 Hz, H min: 30  H max: 94 kHz, PixClock max 170 MHz

Diese Informationen werden auch als EDID-Informationen bezeichnet. Um daraus eine funktionierende ModeLine zu erzeugen, müssen lediglich die Zahlen in die korrekte Reihenfolge gebracht werden:

ModeLine <name> <clock> <4 horiz. timings> <4 vert. timings>

Die korrekte ModeLine in Section "Monitor" würde für dieses Beispiel folgendermaßen aussehen:

Section "Monitor"
Identifier      "Monitor1"
VendorName      "Bigname"
ModelName       "BestModel"
ModeLine        "1680x1050" 146.2 1680 1784 1960 2240 1050 1053 1059 1089
Option          "DPMS"
EndSection

Nachdem diese Äderungen durchgeführt sind, sollte X auch auf Ihrem neuen Widescreen-Monitor starten.

5.9.3. Fehersuche in Compiz Fusion

5.9.3.1. Ich habe Compiz Fusion installiert und anschließend die hier erwähnten Kommandos eingegeben. Nun fehlen den Fenstern die Titelleisten und Schaltflächen. Was kann ich tun?
5.9.3.2. Wenn ich Compiz Fusion starte, bringt dass den X-Server zum Absturz. Was kann ich tun?

5.9.3.1.

Ich habe Compiz Fusion installiert und anschließend die hier erwähnten Kommandos eingegeben. Nun fehlen den Fenstern die Titelleisten und Schaltflächen. Was kann ich tun?

Wahrscheinlich fehlt eine Einstellung in /etc/X11/xorg.conf. Überprüfen Sie diese Datei gründlich, und überprüfen Sie insbesondere die Richtlinien DefaultDepth und AddARGBGLXVisuals.

5.9.3.2.

Wenn ich Compiz Fusion starte, bringt dass den X-Server zum Absturz. Was kann ich tun?

Wenn Sie /var/log/Xorg.0.log durchsuchen, finden Sie wahrscheinlich Fehlermeldungen, die während des Starts von X ausgegeben werden. Die häufigste Meldung ist:

(EE) NVIDIA(0):     Failed to initialize the GLX module; please check in your X
(EE) NVIDIA(0):     log file that the GLX module has been loaded in your X
(EE) NVIDIA(0):     server, and that the module is the NVIDIA GLX module.  If
(EE) NVIDIA(0):     you continue to encounter problems, Please try
(EE) NVIDIA(0):     reinstalling the NVIDIA driver.

Dies ist für gewöhnlich der Fall, wenn Sie Xorg aktualisieren. Sie müssen das Paket x11/nvidia-driver neu installieren, damit GLX neu gebaut wird.

Teil II. Oft benutzte Funktionen

Nach den Grundlagen beschäftigt sich das Handbuch mit oft benutzten Funktionen von FreeBSD. Die Kapitel behandeln die nachstehenden Themen:

  • Beliebte und nützliche Werkzeuge wie Browser, Büroanwendungen und Programme zum Anzeigen von Dokumenten.

  • Multimedia-Werkzeuge für FreeBSD.

  • Erstellung eines angepassten FreeBSD-Kernels, um zusätzliche Funktionen zu aktivieren.

  • Ausführliche Beschreibung des Drucksystems, sowohl für direkt angeschlossene Drucker als auch für Netzwerkdrucker.

  • Ausführung von Linux-Anwendungen auf einem FreeBSD-System.

Damit Sie einige Kapitel verstehen, sollten Sie vorher andere Kapitel gelesen haben. Die Übersicht zu jedem Kapitel zählt die Voraussetzungen für das erolgreiche Durcharbeiten des Kapitels auf.

Kapitel 6. Desktop-Anwendungen

6.1. Übersicht

Obwohl FreeBSD wegen seiner Leistung und Stabilität vor allem auf Serversystemen sehr beliebt ist, so ist es auch für den täglichen Einsatz als Desktop geeignet. Mit über 24,000 Anwendungen, die als Pakete oder Ports vorliegen, ist es leicht einen individuellen Desktop zu bauen, auf dem eine Vielzahl von Desktop-Anwendungen laufen. Dieses Kapitel zeigt, wie Sie die zahlreichen Desktop-Anwendungen, wie Web-Browser, Office-Pakete, Dokumentbetrachter und Finanzsoftware, installieren können.

Anmerkung:

Benutzer die es vorziehen eine vorkonfigurierte Desktop-Version von FreeBSD zu installieren, anstatt das System von Grund auf zu konfigurieren, sollten sich die pcbsd.org Website ansehen.

Bevor Sie dieses Kapitel lesen, sollten Sie wissen:

Informationen zur Konfiguration von Multimedia-Anwendungen finden Sie in Kapitel 7, Multimedia.

6.2. Browser

FreeBSD besitzt keinen vorinstallierten Browser, stattdessen enthält das www-Verzeichnis der Ports-Sammlung viele Browser, die als Paket oder aus der Ports-Sammlung installiert werden können.

Die Desktop-Umgebungen KDE und GNOME verfügen über eigene HTML-Browser. Weitere Informationen zur Einrichtung dieser Umgebungen finden Sie in Abschnitt 5.7, „Grafische Oberflächen“.

Besonders schlanke Browser sind www/dillo2, www/links und www/w3m.

Dieser Abschnitt demonstriert, wie die folgenden gängigen Webbrowser installiert werden, sowie den Ressourcenbedarf, den Installationsaufwand beim Übersetzen des Ports, oder ob die Anwendung wichtige Abhängigkeiten benötigt.

AnwendungRessourcenbedarfInstallationsaufwand aus den PortsAnmerkungen
FirefoxmittelhochFreeBSD, Linux® und lokalisierte Versionen sind verfügbar
OperaniedrigniedrigEs gibt eine FreeBSD- und eine Linux-Version. Die Linux-Version hängt von der Linux-Kompatibilität (Linux Binary Compatibility) und linux-openmotif ab.
KonquerormittelhochBenötigt KDE-Biliotheken
ChromiummittelhochBenötigt Gtk+

6.2.1. Firefox

Firefox ist ein Open-Source Browser, der vollständig auf FreeBSD portiert wurde. Er bietet eine dem HTML-Standard konforme Anzeige, Browserfenster als Tabs, Blockierung von Pop-up-Fenstern, Erweiterungen, verbesserte Sicherheit und mehr. Firefox basiert auf der Mozilla Codebasis.

Installieren Sie das Paket der aktuellen Release-Version von Firefox:

# pkg install firefox

Um stattdessen die Extended Support Release (ESR) Version zu installieren, benutzen Sie:

# pkg install firefox-esr

Lokalisierte Versionen finden Sie in www/firefox-i18n und www/firefox-esr-i18n.

Alternativ kann auch die Ports-Sammlung verwendet werden, um die gewünschte Version von Firefox aus dem Quellcode zu installieren. Dieses Beispiel baut www/firefox, wobei sich firefox durch die ESR oder die lokalisierte Version ersetzen lässt.

# cd /usr/ports/www/firefox
# make install clean

6.2.1.1. Firefox und das Java™-Plugin

Die Installation von Firefox enthält keine Unterstützung für Java™. java/icedtea-web stellt ein freies Webbrowser-Plugin für die Ausführung von Java-Applets zur Verfügung. Dieses Plugin kann als Paket, oder wie in diesem Beispiel, über die Ports-Sammlung installiert werden:

# cd /usr/ports/java/icedtea-web
# make install clean

Verwenden Sie die Standardoptionen beim Übersetzen des Ports.

Starten Sie nun Firefox. Geben Sie in der Adresszeile about:plugins ein und bestätigen Sie die Eingabe mit Enter. Dadurch wird eine Seite geöffnet, die alle installierten Plugins auflistet. In dieser Liste sollte sich auch das Java-Plugin befinden.

Wird das Plugin nicht gefunden, muss für jeden Benutzer der folgende Befehl ausgeführt werden:

% ln -s /usr/local/lib/IcedTeaPlugin.so \
  $HOME/.mozilla/plugins/

6.2.1.2. Firefox und das Adobe® Flash®-Plugin

Ein natives Adobe® Flash®-Plugin ist für FreeBSD nicht verfügbar. Es existiert jedoch ein Software-Layer (Wrapper), der es erlaubt die Linux®-Version des Plugins unter FreeBSD einzusetzen. Dieser Wrapper bietet auch Unterstützung für weitere Webbrowser-Plugins wie zum Beispiel RealPlayer®.

Führen Sie die folgenden Schritte aus, um das Plugin zu installieren und zu aktivieren:

  1. Installieren Sie den Port www/nspluginwrapper. Aus lizenzrechtlichen Gründen ist ein Paket nicht verfügbar. Dieser Port benötigt emulators/linux_base-c6.

  2. Installieren Sie den Port www/linux-c6-flashplugin11. Aus lizenzrechtlichen Gründen ist ein Paket nicht verfügbar.

  3. Bevor das Plugin verwendet werden kann, muss der Benutzer zunächst das folgende Kommando aufrufen:

    % nspluginwrapper -v -a -i

    Nach einem Update von Flash® muss der Benutzer folgendes eingeben:

    % nspluginwrapper -v -a -u

    Starten Sie den Browser und geben Sie in der Adresszeile about:plugins ein. Diese Eingabe muss mit Enter bestätigt werden. Dadurch wird eine Seite geladen, die alle installierten Plugins auflistet.

6.2.1.3. Firefox und das Swfdec Flash®-Plugin

Swfdec ist die Bibliothek zum Dekodieren und Rendern von Flash® Animationen. Swfdec-Mozilla ist ein Plugin für Firefox-Browser, welches die Swfdec-Bibliothek zum Abspielen von SWF-Dateien benutzt.

Um das Paket zu installieren:

# pkg install swfdec-plugin

Wenn das Paket nicht verfügbar ist, kann es auch über die Ports-Sammlung gebaut und installiert werden:

# cd /usr/ports/www/swfdec-plugin
# make install clean

Starten Sie den Browser neu, damit das Plugin aktiviert wird.

6.2.2. Opera

Opera ist ein vollwertiger und standardkonformer Browser, der zudem relativ klein und schnell ist. Es enthält einen eingebauten E-Mail- und Newsreader, einen IRC-Client, einen RSS/Atom-Feeds-Reader, sowie weitere Programme. Opera ist als native Version für FreeBSD, oder als Linux®-Version verfügbar.

Der folgende Befehl installiert die FreeBSD-Version von Opera. Ersetzen Sie opera durch linux-opera, wenn Sie stattdessen die Linux®-Version installieren wollen.

# pkg install opera

Alternativ können Sie beide Versionen über die Ports-Sammlung installieren. Dieses Beispiel übersetzt die native Version:

# cd /usr/ports/www/opera
# make install clean

Wenn Sie die Linux®-Version des Browsers verwenden wollen, ersetzen Sie opera durch linux-opera.

Um Adobe® Flash®-Plugin Unterstützung zu installieren, übersetzten Sie zunächst den Port www/linux-c6-flashplugin11. Ein Paket ist aus lizenzrechtlichen Gründen nicht verfügbar. Installieren Sie anschließend www/opera-linuxplugins. Dieses Beispiel übersetzt beides aus der Ports-Sammlung:

# cd /usr/ports/www/linux-c6-flashplugin11
# make install clean
# cd /usr/ports/www/opera-linuxplugins
# make install clean

Um die Existenz des Plugins zu überprüfen, starten Sie den Browser und geben Sie in der Adresszeile about:plugins ein. Diese Eingabe muss mit Enter bestätigt werden. Dadurch wird eine Seite geladen, die alle installierten Plugins auflistet.

Um das Java-Plugin zu installieren, folgen Sie den Anweisungen in Abschnitt 6.2.1.1, „Firefox und das Java™-Plugin“.

6.2.3. Konqueror

Konqueror ist mehr als nur ein Webbrowser, da es ebenfalls Dateimanager und Multimedia-Betrachter ist. Es ist als Paket oder Port x11/kde4-baseapps verfügbar.

Konqueror unterstützt sowohl WebKit als auch sein eigenes KHTML. WebKit wird von vielen modernen Browsern verwendet, einschließlich Chromium. Um WebKit mit Konqueror unter FreeBSD zu verwenden, installieren Sie das Paket oder den Port www/kwebkitpart. Dieses Beispiel übersetzt den Port:

# cd /usr/ports/www/kwebkitpart
# make install clean

Um WebKit in Konqueror zu aktivieren, klicken Sie auf Settings, Configure Konqueror. Klicken Sie auf der Seite General das Dropdown-Menü neben Default web browser engine und ändern Sie KHTML auf WebKit.

Konqueror kann auch Flash®-Seiten darstellen. Wie Sie die Flash®-Unterstützung aktivieren, können Sie unter http://freebsd.kde.org/howtos/konqueror-flash.php nachlesen.

6.2.4. Chromium

Chromium ist ein quelloffenes Browserprojekt mit dem Ziel ein sicheres, schnelleres und stabileres Surferlebnis im Web zu ermöglichen. Chromium ermöglicht surfen mit Tabs, Blockieren von Pop-Ups, Erweiterungen und vieles mehr. Chromium ist das Open Source Projekt, welches auf dem Google Chrome Webbrowser basiert.

Chromium kann als Paket durch die Eingabe des folgenden Befehls installiert werden:

# pkg install chromium

Als Alternative kann Chromium aus dem Quellcode durch die Ports Collection übersetzt werden:

# cd /usr/ports/www/chromium
# make install clean

Anmerkung:

Die ausführbare Datei für Chromium ist /usr/local/bin/chrome und nicht /usr/local/bin/chromium.

6.2.4.1. Chromium und das Java™-Plug-In

Die Installation von Chromium enthält keine Unterstützung für Java™. Um Unterstützung für das Java™-Plugin zu installieren, folgen Sie den Anweisungen in Abschnitt 6.2.1.1, „Firefox und das Java™-Plugin“.

Sobald Unterstützung für Java™ installiert ist, starten Sie Chromium und geben Sie about:plugins in die Adresszeile ein. IcedTea-Web sollte dort als eines der installierten Plugins aufgelistet sein.

Falls Chromium das IcedTea-Web Plugin nicht anzeigt, geben Sie das folgende Kommando ein und starten Sie den Webbrowser anschließend neu:

# mkdir -p /usr/local/share/chromium/plugins
# ln -s /usr/local/lib/IcedTeaPlugin.so \
   /usr/local/share/chromium/plugins/

6.2.4.2. Chromium und das Adobe® Flash®-Plugin

Die Konfiguration von Chromium und Adobe® Flash® ist ähnlich zur Anleitung in Abschnitt 6.2.1.2, „Firefox und das Adobe® Flash®-Plugin“. Es sollte keine weitere Konfiguration notwendig sein, da Chromium in der Lage ist, einige Plugins von anderen Browsern zu benutzen.

6.3. Büroanwendungen

Neue Benutzer suchen oft ein komplettes Office-Paket oder eine leicht zu bedienende Textverarbeitung. Einige graphische Oberflächen wie KDE enthalten zwar ein Office-Paket, diese werden unter FreeBSD jedoch nicht standardmäßig installiert. Unabhängig von der installierten graphischen Oberfläche können diverse Office-Pakete jederzeit installiert werden.

Dieser Abschnitt demonstriert, wie die folgenden gängigen Büroanwendungen installiert werden, sowie den Ressourcenbedarf, den Installationsaufwand beim Übersetzen des Ports, oder ob die Anwendung wichtige Abhängigkeiten benötigt.

AnwendungRessourcenbedarfInstallationsaufwand aus den Portswichtige Abhängigkeiten
CalligraniedrighochKDE
AbiWordniedrigniedrigGtk+ oder GNOME
The GimpniedrighochGtk+
Apache OpenOfficehochenormJDK und Mozilla
LibreOfficeetwas hochenormGtk+, KDE/ GNOME oder JDK

6.3.1. Calligra

Die KDE-Gemeinschaft stellt ein Office-Paket bereit, das auch separat von KDE eingesetzt werden kann. Calligra umfasst Standardkomponenten, die auch in anderen Office-Paketen enthalten sind. Words ist die Textverarbeitung, Sheets die Tabellenkalkulation, mit Stage werden Präsentationen erstellt und Karbon ist ein Zeichenprogramm.

In FreeBSD kann editors/calligra als Paket oder Port installiert werden. Um das Paket zu installieren, geben Sie folgendes ein:

# pkg install calligra

Wenn das Paket nicht verfügbar ist, benutzen Sie stattdessen die Ports-Sammlung:

# cd /usr/ports/editors/calligra
# make install clean

6.3.2. AbiWord

AbiWord ist eine freie Textverarbeitung, die dem Erscheinungsbild von Microsoft® Word ähnlich ist. Das Programm ist schnell, besitzt viele Funktionen und ist benutzerfreundlich.

AbiWord kann viele Dateiformate importieren oder exportieren, unter anderem auch propietäre wie Microsoft® .rtf.

Das AbiWord-Paket installieren Sie wie folgt:

# pkg install abiword

Sollte das Paket nicht zur Verfügung stehen, kann es über die Ports-Sammlung installiert werden:

# cd /usr/ports/editors/abiword
# make install clean

6.3.3. The GIMP

The GIMP ist ein ausgereiftes Bildverarbeitungsprogramm mit dem Bilder erstellt oder retuschiert werden können. Es kann sowohl als einfaches Zeichenprogramm oder zum retuschieren von Fotografien benutzt werden. Das Programm besitzt eine eingebaute Skriptsprache und es existieren sehr viele Plugins. The GIMP kann zahlreiche Formate lesen und speichern und stellt Schnittstellen zu Scannern und Tablets zur Verfügung.

Um das Paket zu installieren, geben Sie ein:

# pkg install gimp

Benutzen Sie alternativ die Ports-Sammlung:

# cd /usr/ports/graphics/gimp
# make install clean

Die Kategorie graphics (freebsd.org/ports/graphics.html) der Ports-Sammlung enthält für The Gimp verschiedene Plugins, Hilfedateien und Handbücher.

6.3.4. Apache OpenOffice

Apache OpenOffice ist eine Open Source Büroanwendung, die unter Leitung der Apache Software Foundation weiterentwickelt wird. Es enthält die typischen Anwendungen eines Office-Pakets: Textverarbeitung, Tabellenkalkulation, Präsentation und ein Zeichenprogramm. Die Bedienung gleicht anderen Office-Paketen und das Programm kann zahlreiche Dateiformate importieren und exportieren. Es gibt lokalisierte Versionen mit angepassten Menüs, Rechtschreibkontrollen und Wörterbüchern.

Die Textverarbeitung von Apache OpenOffice speichert Dateien im XML-Format. Dadurch wird die Verwendbarkeit der Dateien auf anderen Systemen erhöht und die Handhabung der Daten vereinfacht. Die Tabellenkalkulation besitzt eine Makrosprache und eine Schnittstelle zu Datenbanken. Apache OpenOffice läuft stabil auf Windows®, Solaris™, Linux®, FreeBSD und Mac OS® X. Weitere Informationen über Apache OpenOffice finden Sie auf openoffice.org. Spezifische Informationen für FreeBSD finden Sie auf porting.openoffice.org/freebsd/.

Apache OpenOffice installieren Sie wie folgt:

# pkg install apache-openoffice

Nachdem das Paket installiert ist, geben Sie folgenden ein, um Apache OpenOffice zu starten:

% openoffice-X.Y.Z

wobei X.Y.Z die Versionsnummer von Apache OpenOffice darstellt. Nach dem ersten Start werden einige Fragen gestellt. Außerdem wird im Heimatverzeichnis des Benutzers ein Verzeichnis .openoffice.org angelegt.

Falls das gewünschte Apache OpenOffice-Paket nicht verfügbar ist, kann immer noch der Port übersetzt werden. Es erfordert jedoch eine Menge Plattenplatz und ziemlich viel Zeit um die Quellen zu übersetzten.

# cd /usr/ports/editors/openoffice-4
# make install clean

Anmerkung:

Um eine lokalisierte Version zu bauen, ersetzen Sie den letzten Befehl durch:

# make LOCALIZED_LANG=Ihre_Sprache install clean

Ersetzen Sie Ihre_Sprache durch den korrekten ISO-Code. Eine Liste der unterstützten Codes steht in files/Makefile.localized, die sich im Portsverzeichnis befindet.

6.3.5. LibreOffice

LibreOffice ist ein frei verfügbares Office-Paket, welches von documentfoundation.org entwickelt wird. Es mit anderen großen Office-Paketen kompatibel und für eine Vielzahl von Plattformen erhältlich. Es ist ein Fork von Apache OpenOffice unter neuem Namen, das alle Anwendungen in einem kompletten Office-Paket enthält: Textverarbeitung, Tabellenkalkulation, Präsentationsmanager, Zeichenprogramm, Datenbankmanagementprogramm und ein Werkzeug zum Erstellen und Bearbeiten von mathematischen Formeln. Das Programm steht in verschiedenen Sprachen zur Verfügung, und die Internationalisierung wurde auf die Oberfläche, Rechtschreibkorrektur und die Wörterbücher ausgeweitet.

Das Textverarbeitungsprogramm von LibreOffice benutzt ein natives XML-Dateiformat für erhöhte Portabilität und Flexibilität. Die Tabellenkalkulation enthält eine Makrosprache und kann mit externen Datenbanken Verbindungen herstellen. LibreOffice ist stabil und läuft nativ auf Windows®, Linux®, FreeBSD und Mac OS® X. Weitere Informationen zu LibreOffice finden Sie unter libreoffice.org.

Um die englische Version von LibreOffice als Paket zu installieren, geben Sie folgenden Befehl ein:

# pkg install libreoffice

Die Kategorie editors ( freebsd.org/ports/editors.html) der Ports-Sammlung enthält viele Lokalisierungen für LibreOffice. Wenn Sie ein lokalisiertes Paket installieren, ersetzen Sie libreoffice durch den Namen des lokalisierten Pakets.

Wenn das Paket installiert ist, geben Sie folgendes Kommando ein, um LibreOffice zu starten:

% libreoffice

Während des ersten Starts werden einige Fragen gestellt. Außerdem wird im Heimatverzeichinis des Benutzers ein Verzeichnis .libreoffice angelegt.

Falls das gewünschte LibreOffice-Paket nicht verfügbar ist, kann immer noch der Port übersetzt werden. Es erfordert jedoch eine Menge Plattenplatz und ziemlich viel Zeit um die Quellen zu übersetzten. Dieses Beispiel übersetzt die englische Version:

# cd /usr/ports/editors/libreoffice
# make install clean

Anmerkung:

Um eine lokalisierte Version zu bauen, wechseln Sie mit cd in das Portverzeichnis der gewünschten Sprache. Unterstützte Sprachen finden Sie in der Kategorie editors ( freebsd.org/ports/editors.html) der Ports-Sammlung.

6.4. Anzeigen von Dokumenten

Einige neuere Dokumentformate, die sich aktuell großer Beliebtheit erfreuen, können Sie sich mit den im Basissystem enthaltenen Programmen möglicherweise nicht ansehen. Dieser Abschnitt zeigt, wie Sie die folgenden Dokumentbetrachter installieren können:

Die nachstehenden Anwendungen werden behandelt:

AnwendungRessourcenbedarfInstallationsaufwand aus den Portswichtige Abhängigkeiten
XpdfniedrigniedrigFreeType
gvniedrigniedrigXaw3d
GeeqieniedrigniedrigGtk+ oder GNOME
ePDFViewniedrigniedrigGtk+
OkularniedrighochKDE

6.4.1. Xpdf

Für Benutzer, die einen schnellen PDF-Betrachter bevorzugen, bietet Xpdf eine schlanke und effiziente Alternative, die wenig Ressourcen benötigt. Da das Programm die Standard X-Zeichensätze benutzt, ist es nicht auf andere Toolkits angewiesen.

Um das Xpdf-Paket zu installieren, geben Sie folgendes ein:

# pkg install xpdf

Wenn das Paket nicht verfügbar ist, benutzen Sie die Ports-Sammlung:

# cd /usr/ports/graphics/xpdf
# make install clean

Starten Sie nach der Installation xpdf und aktivieren Sie das Menü mit der rechten Maustaste.

6.4.2. gv

gv kann PostScript®- und PDF-Dokumente anzeigen. Es stammt von ghostview ab, hat aber wegen der Xaw3d-Bibliothek eine schönere Benutzeroberfläche. gv besitzt viele konfigurierbare Funktionen, wie z. B. Ausrichtung, Papiergröße, Skalierung und Kantenglättung (Anti-Aliasing). Fast jede Operation kann sowohl mit der Tastatur als auch mit der Maus durchgeführt werden.

Installieren Sie das gv-Paket wie folgt:

# pkg install gv

Benutzen Sie die Ports-Sammlung, wenn das Paket nicht zur Verfügung steht:

# cd /usr/ports/print/gv
# make install clean

6.4.3. Geeqie

Geeqie ist ein Fork des nicht mehr betreuten GQview Projekts, mit dem Ziel die Entwicklung weiter voranzutreiben und bestehende Fehlerkorrekturen zu integrieren. Mit Geeqie lassen sich Bilder verwalten. Es kann unter anderem Bilder anzeigen, einen externen Editor starten und eine Vorschau (thumbnail) erzeugen. Zudem beherrscht Geeqie einen Diashow-Modus und einige grundlegende Dateioperationen, was die Verwaltung von Bildern und das auffinden von doppelten Dateien erleichtert. Geeqie unterstützt Vollbild-Ansicht und Internationalisierung.

Um das Geeqie-Paket zu installieren, geben Sie folgendes ein:

# pkg install geeqie

Wenn das Paket nicht verfügbar ist, benutzen Sie die Ports-Sammlung:

# cd /usr/ports/graphics/geeqie
# make install clean

6.4.4. ePDFView

ePDFView ist ein leichtgewichtiger PDF-Betrachter, der nur die Gtk+- und Poppler-Bibliotheken benötigt. Es befindet sich derzeit noch in Entwicklung, kann aber bereits die meisten PDF-Dateien (auch verschlüsselte) öffnen, speichern und über CUPS drucken.

Um das Paket ePDFView zu installieren, geben Sie folgendes ein:

# pkg install epdfview

Benutzen Sie die Ports-Sammlung, falls das Paket nicht verfügbar ist:

# cd /usr/ports/graphics/epdfview
# make install clean

6.4.5. Okular

Okular ist ein universeller Dokumentbetrachter der auf KPDF für KDE basiert. Es kann die meisten Formate öffnen, einschließlich PDF, PostScript®, DjVu, CHM, XPS und ePub.

Um das Paket Okular zu installieren, geben Sie folgendes ein:

# pkg install okular

Benutzen Sie die Ports-Sammlung, falls das Paket nicht verfügbar ist:

# cd /usr/ports/graphics/okular
# make install clean

6.5. Finanzsoftware

Zur Verwaltung der persönlichen Finanzen können einige leistungsfähige und einfach zu bedienende Anwendungen installiert werden. Einige von ihnen unterstützen verbreitete Formate, darunter Dateiformate, die von Quicken und Excel verwendet werden.

Dieser Abschnitt behandelt die folgenden Anwendungen:

AnwendungRessourcenbedarfInstallationsaufwand aus den Portswichtige Abhängigkeiten
GnuCashniedrighochGNOME
GnumericniedrighochGNOME
KMyMoneyniedrighochKDE

6.5.1. GnuCash

GnuCash ist Teil des GNOME-Projekts, mit dem Ziel, leicht zu bedienende und leistungsfähige Anwendungen bereitzustellen. Mit GnuCash können Einnahmen und Ausgaben, Bankkonten und Wertpapiere verwaltet werden. Das Programm ist leicht zu bedienen und genügt dennoch hohen Ansprüchen.

GnuCash stellt ein Register, ähnlich dem in einem Scheckheft und ein hierarchisches System von Konten zur Verfügung. Eine Transaktion kann in einzelne Teile aufgespaltet werden. GnuCash kann Quicken-Dateien (QIF) importieren und einbinden. Weiterhin unterstützt das Programm die meisten internationalen Formate für Zeitangaben und Währungen. Die Bedienung des Programms kann durch zahlreiche Tastenkombinationen und dem automatischen Vervollständigen von Eingaben beschleunigt werden.

Das GnuCash-Paket installieren Sie wie folgt:

# pkg install gnucash

Wenn das Paket nicht zur Verfügung steht, benutzen Sie die Ports-Sammlung:

# cd /usr/ports/finance/gnucash
# make install clean

6.5.2. Gnumeric

Gnumeric ist eine Tabellenkalkulation, die von der GNOME-Gemeinschaft entwickelt wird. Das Programm kann Eingaben anhand des Zellenformats oder einer Folge von Eingaben vervollständigen. Dateien verbreiteter Formate, wie die von Excel, Lotus 1-2-3 oder Quattro Pro lassen sich importieren. Es besitzt viele eingebaute Funktionen und Zellenformate, darunter die üblichen wie Zahl, Währung, Datum, Zeit, und viele weitere.

Installieren Sie das Gnumeric-Paket mit folgendem Kommando:

# pkg install gnumeric

Wenn das Paket nicht zur Verfügung steht, benutzen Sie die Ports-Sammlung:

# cd /usr/ports/math/gnumeric
# make install clean

6.5.3. KMyMoney

KMyMoney ist ein Programm zur Verwaltung der persönlichen Finanzen, das von der KDE-Gemeinschaft entwickelt wird. KMyMoney hat das Ziel, wichtige Funktionen zu bieten, die auch von kommerziellen Programmen zur Verwaltung der persönlichen Finanzen unterstützt werden. Zudem zählen eine einfache Bedienung sowie korrekte doppelte Buchführung zu den herausragenden Fähigkeiten dieses Programms. KMyMoney unterstützt den Import von Datendateien im Format Quicken (QIF), kann Investionen verfolgen, unterstützt verschiedene Währungen und bietet umfangreiche Reportmöglichkeiten.

Um das Paket KMyMoney zu installieren, geben Sie folgendes ein:

# pkg install kmymoney-kde4

Sollte das Paket nicht verfügbar sein, benutzen Sie die Ports-Sammlung:

# cd /usr/ports/finance/kmymoney2-kde4
# make install clean

Kapitel 7. Multimedia

Überarbeitet von Ross Lippert.

7.1. Übersicht

FreeBSD unterstützt viele unterschiedliche Soundkarten, die Benutzern den Genuss von Highfidelity-Klängen auf dem Computer ermöglichen. Dazu gehört unter anderem die Möglichkeit, Tonquellen in den Formaten MPEG Audio Layer 3 (MP3), Waveform Audio File (WAV), Ogg Vorbis und vielen weiteren Formaten aufzunehmen und wiederzugeben. Darüber hinaus enthält die FreeBSD Ports-Sammlung Anwendungen, die das Bearbeiten von aufgenommenen Tonspuren, das Hinzufügen von Klangeffekten und die Kontrolle der angeschlossenen MIDI-Geräte erlauben.

FreeBSD unterstützt auch die Wiedergabe von Videos und DVDs. Die FreeBSD Ports-Sammlung enthält Anwendungen, um verschiedene Video-Medien wiederzugeben, zu kodieren und zu konvertieren.

Dieses Kapitel beschreibt die Einrichtung von Soundkarten, Video-Wiedergabe, TV-Tuner Karten und Scannern unter FreeBSD. Es werden auch einige Anwendungen beschrieben, die für die Verwendung dieser Geräte zur Verfügung stehen.

Dieses Kapitel behandelt die folgenden Punkte:

  • Konfiguration einer Soundkarte in FreeBSD.

  • Fehlersuche bei Sound Einstellungen.

  • Wiedergabe und Kodierung von MP3s und anderen Audio-Formaten.

  • Vorbereitung des Systems für die Wiedergabe von Videos.

  • Wiedergabe von DVDs, .mpg- und .avi-Dateien.

  • Rippen von CDs und DVDs.

  • Konfiguration von TV-Karten.

  • Installation und Konfiguration von MythTV.

Bevor Sie dieses Kapitel lesen, sollten Sie:

7.2. Soundkarten einrichten

Von Moses Moore.
Aktualisiert von Marc Fonvieille.
Übersetzt von Benedikt Köhler und Uwe Pierau.

Bevor Sie die Konfiguration beginnen, sollten Sie in Erfahrung bringen welches Soundkartenmodell und welcher Chip benutzt wird. FreeBSD unterstützt eine Reihe Soundkarten. Die Hardware-Notes zählen alle unterstützten Karten und deren Treiber für FreeBSD auf.

Um die Soundkarte benutzen zu können, muss der richtige Gerätetreiber geladen werden. Am einfachsten ist es, das Kernelmodul für die Soundkarte mit kldload(8) zu laden. Dieses Beispiel lädt den Treiber für einen integrierten Chipsatz, basierend auf der Intel Spezifikation:

# kldload snd_hda

Um den Treiber automatisch beim Systemstart zu laden, fügen Sie folgende Zeile in /boot/loader.conf ein:

snd_hda_load="YES"

Weitere ladbare Soundmodule sind in /boot/defaults/loader.conf aufgeführt. Wenn Sie nicht sicher sind, welchen Gerätetreiber Sie laden müssen, laden Sie das Modul snd_driver:

# kldload snd_driver

Der Treiber snd_driver ist ein Meta-Treiber, der alle gebräuchlichen Treiber lädt und die Suche nach dem richtigen Treiber vereinfacht. Durch Hinzufügen des Meta-Treibers in /boot/loader.conf können alternativ alle Audio-Treiber geladen werden.

Um zu ermitteln, welcher Treiber für die Soundkarte vom Meta-Treiber snd_driver geladen wurde, geben Sie cat /dev/sndstat ein.

7.2.1. Soundkarten in der Kernelkonfiguration einrichten

Die Unterstützung für die Soundkarte kann auch direkt in den Kernel kompiliert werden. Weitere Informationen über den Bau eines Kernels finden Sie im Kapitel 8, Konfiguration des FreeBSD-Kernels.

Bei der Verwendung eines eigenen Kernels müssen Sie sicherstellen, dass der Treiber für das Audio-Framework in der Kernelkonfigurationsdatei vorhanden ist:

device sound

Als Nächstes muss die Unterstützung für die Soundkarte hinzugefügt werden. Um das Beispiel mit dem integrierten Intel Audio-Chipsatz aus dem vorherigen Abschnitt fortzusetzen, verwenden Sie die folgende Zeile in der Kernelkonfigurationsdatei:

device snd_hda

Lesen Sie die Manualpage des Treibers, um den entsprechenden Gerätenamen herauszufinden.

Nicht PnP-fähige ISA-Soundkarten benötigen eventuell Einstellungen, wie IRQ und I/O-Port in /boot/device.hints. Während des Systemstarts liest der loader(8) diese Datei und reicht die Einstellungen an den Kernel weiter. Für eine alte Creative SoundBlaster® 16 ISA-Karte, die sowohl den snd_sbc(4)- als auch den snd_sb16-Treiber benötigt, müssen die folgenden Zeilen in die Kernelkonfigurationsdatei eingetragen werden:

device snd_sbc
device snd_sb16

Wenn die Karte den I/O-Port 0x220 und IRQ 5 benutzt, müssen folgende Zeilen zusätzlich in /boot/device.hints hinzugefügt werden:

hint.sbc.0.at="isa"
hint.sbc.0.port="0x220"
hint.sbc.0.irq="5"
hint.sbc.0.drq="1"
hint.sbc.0.flags="0x15"

Die Syntax für /boot/device.hints wird in sound(4), sowie in der Manualpage des jeweiligen Treibers beschrieben.

Das Beispiel verwendet die vorgegebenen Werte. Falls die Karteneinstellungen andere Werte vorgeben, müssen die Werte in der Kernelkonfiguration angepasst werden. Weitere Informationen zu dieser Soundkarte finden Sie in snd_sbc(4).

7.2.2. Die Soundkarte testen

Nachdem Sie den neuen Kernel gestartet oder das erforderliche Modul geladen haben, sollte die Soundkarte erkannt werden. Führen Sie dmesg | grep pcm aus, um dies zu überprüfen. Diese Ausgabe stammt von einem System mit einem integrierten Conexant CX20590 Chipsatz:

pcm0: <NVIDIA (0x001c) (HDMI/DP 8ch)> at nid 5 on hdaa0
pcm1: <NVIDIA (0x001c) (HDMI/DP 8ch)> at nid 6 on hdaa0
pcm2: <Conexant CX20590 (Analog 2.0+HP/2.0)> at nid 31,25 and 35,27 on hdaa1

Der Status der Karte kann auch mit diesem Kommando geprüft werden:

# cat /dev/sndstat
FreeBSD Audio Driver (newpcm: 64bit 2009061500/amd64)
Installed devices:
pcm0: <NVIDIA (0x001c) (HDMI/DP 8ch)> (play)
pcm1: <NVIDIA (0x001c) (HDMI/DP 8ch)> (play)
pcm2: <Conexant CX20590 (Analog 2.0+HP/2.0)> (play/rec) default

Die Ausgabe kann für jede Soundkarte anders aussehen. Wenn das Gerät pcm nicht erscheint, prüfen Sie die Kernelkonfigurationsdatei und stellen Sie sicher, dass der richtige Treiber geladen oder in den Kernel kompiliert wurde. Im nächsten Abschnitt werden häufig auftretende Probleme sowie deren Lösungen besprochen.

Jetzt sollte die Soundkarte unter FreeBSD funktionieren. Wenn ein CD- oder DVD-Laufwerk an die Soundkarte angeschlossen ist, können Sie jetzt mit cdcontrol(1) eine CD abspielen:

% cdcontrol -f /dev/acd0 play 1

Warnung:

Audio CDs besitzen eine spezielle Kodierung. Daher sollten sie nicht mit mount(8) in das Dateisystem eingehangen werden.

Es gibt viele Anwendungen, wie audio/workman, die eine bessere Benutzerschnittstelle besitzen. Zur Wiedergabe von MP3-Audiodateien kann audio/mpg123 installiert werden.

Eine weitere schnelle Möglichkeit die Karte zu prüfen, ist es, Daten an das Gerät /dev/dsp zu senden:

% cat Datei > /dev/dsp

Für Datei kann eine beliebige Datei verwendet werden. Wenn Sie einige Geräusche hören, funktioniert die Soundkarte.

Anmerkung:

Die Gerätedateien /dev/dsp* werden automatisch erzeugt, wenn sie das erste Mal benötigt werden. Werden sie nicht verwendet, sind sie hingegen nicht vorhanden und tauchen daher auch nicht in der Ausgabe von ls(1) auf.

7.2.3. Fehlerbehebung

Tabelle 7.1, „Typische Fehlermeldungen“ zeigt typische Fehlermeldungen sowie deren Lösungen:

Tabelle 7.1. Typische Fehlermeldungen
FehlerLösung
sb_dspwr(XX) timed out

Der I/O-Port ist nicht korrekt angegeben.

bad irq XX

Der IRQ ist falsch angegeben. Stellen Sie sicher, dass der angegebene IRQ mit dem Sound IRQ übereinstimmt.

xxx: gus pcm not attached, out of memory

Es ist nicht genug Speicher verfügbar, um das Gerät zu betreiben.

xxx: can't open /dev/dsp!

Überprüfen Sie mit fstat | grep dsp ob eine andere Anwendung das Gerät geöffnet hat. Häufige Störenfriede sind esound oder die Sound-Unterstützung von KDE.


Moderne Grafikkarten beinhalten oft auch ihre eigenen Soundtreiber, um HDMI zu verwenden. Diese Audiogeräte werden manchmal vor der eigentlichen, separaten Soundkarte aufgeführt und dadurch nicht als das Standardgerät zum Abspielen von Tönen benutzt. Um zu prüfen, ob das der Fall ist, führen Sie dmesg aus und suchen Sie nach der Zeichenfolge pcm. Die Ausgabe sieht in etwa so aus:

...
hdac0: HDA Driver Revision: 20100226_0142
hdac1: HDA Driver Revision: 20100226_0142
hdac0: HDA Codec #0: NVidia (Unknown)
hdac0: HDA Codec #1: NVidia (Unknown)
hdac0: HDA Codec #2: NVidia (Unknown)
hdac0: HDA Codec #3: NVidia (Unknown)
pcm0: <HDA NVidia (Unknown) PCM #0 DisplayPort> at cad 0 nid 1 on hdac0
pcm1: <HDA NVidia (Unknown) PCM #0 DisplayPort> at cad 1 nid 1 on hdac0
pcm2: <HDA NVidia (Unknown) PCM #0 DisplayPort> at cad 2 nid 1 on hdac0
pcm3: <HDA NVidia (Unknown) PCM #0 DisplayPort> at cad 3 nid 1 on hdac0
hdac1: HDA Codec #2: Realtek ALC889
pcm4: <HDA Realtek ALC889 PCM #0 Analog> at cad 2 nid 1 on hdac1
pcm5: <HDA Realtek ALC889 PCM #1 Analog> at cad 2 nid 1 on hdac1
pcm6: <HDA Realtek ALC889 PCM #2 Digital> at cad 2 nid 1 on hdac1
pcm7: <HDA Realtek ALC889 PCM #3 Digital> at cad 2 nid 1 on hdac1
...

In diesem Beispiel wurde die Grafikkarte (NVidia) vor der Soundkarte (Realtek ALC889) aufgeführt. Um die Soundkarte als Standardabspielgerät einzusetzen, ändern Sie hw.snd.default_unit auf die Einheit, welche für das Abspielen benutzt werden soll:

# sysctl hw.snd.default_unit=n

Hier repräsentiert n die Nummer der Soundkarte, die verwendet werden soll, in diesem Beispiel also 4. Sie können diese Änderung dauerhaft machen, indem Sie die folgende Zeile in /etc/sysctl.conf hinzufügen:

hw.snd.default_unit=4

7.2.4. Mehrere Tonquellen abspielen

Beigetragen von Munish Chopra.

Oft sollen mehrere Tonquellen gleichzeitig abgespielt werden. FreeBSD verwendet dazu virtuelle Tonkanäle. Virtuelle Kanäle mischen die Tonquellen im Kernel, sodass mehrere Kanäle benutzt werden können, als von der Hardware unterstützt werden.

Drei sysctl(8) Optionen stehen zur Konfiguration der virtuellen Kanäle zur Verfügung:

# sysctl dev.pcm.0.play.vchans=4
# sysctl dev.pcm.0.rec.vchans=4
# sysctl hw.snd.maxautovchans=4

Im Beispiel werden vier virtuelle Kanäle eingerichtet, eine im Normalfall ausreichende Anzahl. Sowohl dev.pcm.0.play.vchans=4 und dev.pcm.0.rec.vchans=4 sind die Anzahl der virtuellen Kanäle des Geräts pcm0, die fürs Abspielen und Aufnehmen verwendet werden und sie können konfiguriert werden, sobald das Gerät existiert. Da das Modul pcm unabhängig von den Hardware-Treibern geladen werden kann, gibt hw.snd.maxautovchans die Anzahl der virtuellen Kanäle an, die später eingerichtete Audiogeräte erhalten. Lesen Sie pcm(4) für weitere Informationen.

Anmerkung:

Die Anzahl der virtuellen Kanäle kann nicht geändert werden, solange das Gerät genutzt wird. Schließen Sie daher zuerst alle Programme wie Musikabspielprogramme oder Sound-Daemonen, die auf dieses Gerät zugreifen.

Die korrekte pcm-Gerätedatei wird automatisch zugeteilt, wenn ein Programm das Gerät /dev/dsp0 anfordert.

7.2.5. Den Mixer einstellen

Beigetragen von Josef El-Rayes.

Die Voreinstellungen des Mixers sind im Treiber pcm(4) fest kodiert. Es gibt zwar viele Anwendungen und Dienste, die den Mixer einstellen können und die eingestellten Werte bei jedem Start wieder setzen, am einfachsten ist es allerdings, die Standardwerte für den Mixer direkt im Treiber einzustellen. Der Mixer kann mit den entsprechenden Werten in /boot/device.hints eingestellt werden:

hint.pcm.0.vol="50"

Die Zeile setzt die Lautstärke des Mixers beim Laden des Moduls pcm(4) auf den Wert 50.

7.3. MP3-Audio

Ein Beitrag von Chern Lee.
Übersetzt von Benedikt Köhler.

Dieser Abschnitt beschreibt einige unter FreeBSD verfügbare MP3-Player. Zudem wird beschrieben, wie Audio-CDs gerippt und MP3s kodiert und dekodiert werden.

7.3.1. MP3-Player

Ein beliebter graphischer MP3-Player ist XMMS, welcher WinAmp-Skins und zusätzliche Plugins unterstützt. Die Benutzerschnittstelle ist leicht zu erlernen und enthält eine Playlist, einen graphischen Equalizer und vieles mehr. Diejenigen, die bereits mit WinAmp vertraut sind, werden XMMS sehr leicht zu benutzen finden. Unter FreeBSD kann XMMS als Port oder Paket multimedia/xmms installiert werden.

Das Paket audio/mpg123 ist ein alternativer, kommandozeilenorientierter MP3-Player. Nach der Installation kann die abzuspielende MP3-Datei auf der Kommandozeile angegeben werden. Geben Sie auch das entsprechende Soundkarte an, falls das System über mehrere Audiogeräte verfügt:

# mpg123 -a /dev/dsp1.0 Foobar-GreatestHits.mp3
High Performance MPEG 1.0/2.0/2.5 Audio Player for Layer 1, 2 and 3
        version 1.18.1; written and copyright by Michael Hipp and others
        free software (LGPL) without any warranty but with best wishes

Playing MPEG stream from Foobar-GreatestHits.mp3 ...
MPEG 1.0 layer III, 128 kbit/s, 44100 Hz joint-stereo

Weitere MP3-Player stehen in der FreeBSD Ports-Sammlung zur Verfügung.

7.3.2. CD-Audio Tracks rippen

Bevor eine ganze CD oder einen CD-Track in das MP3-Format umgewandelt werden kann, müssen die Audiodaten von der CD auf die Festplatte gerippt werden. Dabei werden die CDDA (CD Digital Audio) Rohdaten in WAV-Dateien kopiert.

Die Anwendung cdda2wav, die im sysutils/cdrtools Paket enthalten ist, kann zum Rippen der Audiodaten von CDs genutzt werden.

Wenn die Audio CD in dem Laufwerk liegt, kann der folgende Befehl als root ausgeführt werden, um eine ganze CD in einzelne WAV-Dateien zu rippen:

# cdda2wav -D 0,1,0 -B

In diesem Beispiel bezieht sich der Schalter -D 0,1,0 auf das SCSI-Gerät 0,1,0, das die zu rippende CD enthält. Benutzen Sie cdrecord -scanbus um die richtigen Geräteparameter für das System zu bestimmen.

Um einzelne Tracks zu rippen, benutzen Sie -t wie folgt:

# cdda2wav -D 0,1,0 -t 7

Um mehrere Tracks zu rippen, zum Beispiel die Tracks eins bis sieben, können Sie wie folgt einen Bereich angeben:

# cdda2wav -D 0,1,0 -t 1+7

Wenn Sie von einem ATAPI (IDE) CD-ROM-Laufwerk rippen, geben Sie den Gerätenamen anstelle der SCSI-Gerätenummer an. Dieses Beispiel rippt Track 7 von einem IDE-Laufwerk:

# cdda2wav -D /dev/acd0 -t 7

Alternativ können mit dd ebenfalls Audio-Stücke von ATAPI-Laufwerken kopiert werden. Dies wird in Abschnitt 17.5.5, „Kopieren von Audio-CDs“ erläutert.

7.3.3. MP3-Dateien kodieren und dekodieren

Lame ist ein weitverbreiteter MP3-Encoder, der als Port audio/lame installiert werden kann. Wegen Patentproblemen ist kein Paket verfügbar.

Der folgende Befehl konvertiert die gerippte WAV-Datei audio01.wav in audio01.mp3 um:

# lame -h -b 128 --tt "Foo Liedtietel" --ta "FooBar Künstler" --tl "FooBar Album" \
--ty "2014" --tc "Gerippt und kodiert von Foo" --tg "Musikrichtung" audio01.wav audio01.mp3

128 kbits ist die gewöhnliche MP3-Bitrate, wohingegen die Bitraten 160 und 192 kbits eine höhere Qualität bieten. Je höher die Bitrate ist, desto mehr Speicherplatz benötigt die resultierende MP3-Datei. Die Option -h verwendet den higher quality but a little slower (höhere Qualität, aber etwas langsamer) Modus. Die Schalter, die mit --t beginnen, sind ID3-Tags, die in der Regel Informationen über das Lied enthalten und in die MP3-Datei eingebettet sind. Weitere Optionen können in der Manualpage von lame nachgelesen werden.

Um aus MP3-Dateien eine Audio CD zu erstellen, müssen diese zuerst in ein nicht komprimiertes Format umgewandelt werden. Verwenden Sie XMMS um die Datei im WAV-Format zu schreiben und mpg123, um die MP3-Datei in rohe PCM-Audiodaten umzuwandeln.

Um audio01.mp3 mit mpg123 umzuwandeln, geben Sie den Namen der PCM-Datei an:

# mpg123 -s audio01.mp3 > audio01.pcm

So verwenden Sie XMMS um eine MP3-Datei in das WAV-Format zu konvertieren:

Prozedur 7.1. Mit XMMS in das WAV-Format konvertieren
  1. Starten Sie XMMS.

  2. Klicken Sie mit der rechten Maustaste, um das XMMS-Menu zu öffnen.

  3. Wählen Sie Preferences im Untermenü Options.

  4. Ändern Sie das Output-Plugin in Disk Writer Plugin.

  5. Drücken Sie Configure.

  6. Geben Sie ein Verzeichnis ein, in das Sie die unkomprimierte Datei schreiben wollen.

  7. Laden Sie die MP3-Datei wie gewohnt in XMMS mit einer Lautstärke von 100% und einem abgeschalteten EQ.

  8. Drücken Sie Play und es wird so aussehen, als spiele XMMS die MP3-Datei ab, aber keine Musik ist zu hören. Der Player überspielt die MP3-Datei in eine Datei.

  9. Vergessen Sie nicht, das Output-Plugin wieder in den Ausgangszustand zurückzusetzen um wieder MP3-Dateien anhören zu können.

cdrecord kann mit beiden Formaten Audio-CDs erstellen. Der Dateikopf von WAV-Dateien erzeugt am Anfang des Stücks ein Knacken. Der Dateikopf mit dem Port oder Paket audio/sox entfernt werden:

% sox -t wav -r 44100 -s -w -c 2 track.wav track.raw

Lesen Sie Abschnitt 17.5, „Erstellen und Verwenden von CDs“, um mehr Informationen zur Benutzung von CD-Brennern mit FreeBSD zu erhalten.

7.4. Videos wiedergeben

Beigetragen von Ross Lippert.

Bevor Sie beginnen, sollten Sie das Modell und den benutzten Chip der Videokarte kennen. Obwohl Xorg viele Videokarten unterstützt, können nicht alle Karten Videos schnell genug wiedergeben. Eine Liste der Erweiterungen, die der Xorg-Server für eine Videokarte unterstützt, erhalten Sie unter laufendem Xorg mit xdpyinfo.

Halten Sie eine kurze MPEG-Datei bereit, mit der Sie Wiedergabeprogramme und deren Optionen testen können. Da einige DVD-Spieler in der Voreinstellung das DVD-Gerät mit /dev/dvd ansprechen oder diesen Namen fest einkodiert haben, ist es vielleicht hilfreich symbolische Links auf die richtigen Geräte anzulegen:

# ln -sf /dev/acd0 /dev/dvd

Aufgrund der Beschaffenheit devfs(5) gehen gesondert angelegte Links wie diese bei einem Neustart des Systems verloren. Damit die symbolischen Links automatisch beim Neustart des Systems angelegt werden, fügen Sie die folgende Zeile in /etc/devfs.conf ein:

link acd0 dvd

Das Entschlüsseln von DVDs erfordert den Aufruf bestimmter Funktionen, sowie Schreibzugriff auf das DVD-Gerät.

Xorg benutzt Shared-Memory und es wird empfohlen, die nachstehenden sysctl(8)-Variablen auf die gezeigten Werte zu erhöhen:

kern.ipc.shmmax=67108864
kern.ipc.shmall=32768

7.4.1. Video-Schnittstellen

Es gibt einige Möglichkeiten, Videos unter Xorg abzuspielen. Welche Möglichkeit funktioniert, hängt stark von der verwendeten Hardware ab.

Gebräuchliche Video-Schnittstellen sind:

  1. Xorg: normale Ausgabe über Shared-Memory.

  2. XVideo: Eine Erweiterung der Xorg-Schnittstelle, die Videos in jedem X11-Drawable anzeigen kann. Diese Erweiterung bietet auch auf leistungsschwachen Maschinen eine gute Qualität der Wiedergabe. Der nächste Abschnitt beschreibt, wie Sie feststellen, ob diese Erweiterung ausgeführt wird.

  3. SDL: Simple DirectMedia Layer ist eine portable Schnittstelle für verschiedene Betriebssysteme, mit denen Anwendungen plattformunabhängig und effizient Ton und Grafik benutzen können. SDL bietet eine hardwarenahe Schnittstelle, die manchmal schneller ist als die Xorg-Schnittstelle. Unter FreeBSD kann SDL über das Paket oder den Port devel/sdl20 installiert werden.

  4. DGA: Direct Graphics Access ist eine Xorg-Erweiterung die es Anwendungen erlaubt, am Xorg-Server vorbei direkt in den Framebuffer zu schreiben. Da die Anwendung und der Xorg-Server auf gemeinsame Speicherbereiche zugreifen, müssen die Anwendungen unter dem Benutzer root laufen. Die DGA-Erweiterung kann mit dga(1) getestet werden. Wenn DGA ausgeführt wird, ändert sich die Farbe des Bildschrims, wenn eine Taste gedrückt wird. Drücken Sie zum Beenden q.

  5. SVGAlib: Eine Schnittstelle zur Grafikausgabe auf der Konsole.

7.4.1.1. XVideo

Ob die Erweiterung läuft, entnehmen Sie der Ausgabe von xvinfo:

% xvinfo

XVideo wird untertsützt, wenn die Ausgabe in etwa wie folgt aussieht:

X-Video Extension version 2.2
screen #0
  Adaptor #0: "Savage Streams Engine"
    number of ports: 1
    port base: 43
    operations supported: PutImage
    supported visuals:
      depth 16, visualID 0x22
      depth 16, visualID 0x23
    number of attributes: 5
      "XV_COLORKEY" (range 0 to 16777215)
              client settable attribute
              client gettable attribute (current value is 2110)
      "XV_BRIGHTNESS" (range -128 to 127)
              client settable attribute
              client gettable attribute (current value is 0)
      "XV_CONTRAST" (range 0 to 255)
              client settable attribute
              client gettable attribute (current value is 128)
      "XV_SATURATION" (range 0 to 255)
              client settable attribute
              client gettable attribute (current value is 128)
      "XV_HUE" (range -180 to 180)
              client settable attribute
              client gettable attribute (current value is 0)
    maximum XvImage size: 1024 x 1024
    Number of image formats: 7
      id: 0x32595559 (YUY2)
        guid: 59555932-0000-0010-8000-00aa00389b71
        bits per pixel: 16
        number of planes: 1
        type: YUV (packed)
      id: 0x32315659 (YV12)
        guid: 59563132-0000-0010-8000-00aa00389b71
        bits per pixel: 12
        number of planes: 3
        type: YUV (planar)
      id: 0x30323449 (I420)
        guid: 49343230-0000-0010-8000-00aa00389b71
        bits per pixel: 12
        number of planes: 3
        type: YUV (planar)
      id: 0x36315652 (RV16)
        guid: 52563135-0000-0000-0000-000000000000
        bits per pixel: 16
        number of planes: 1
        type: RGB (packed)
        depth: 0
        red, green, blue masks: 0x1f, 0x3e0, 0x7c00
      id: 0x35315652 (RV15)
        guid: 52563136-0000-0000-0000-000000000000
        bits per pixel: 16
        number of planes: 1
        type: RGB (packed)
        depth: 0
        red, green, blue masks: 0x1f, 0x7e0, 0xf800
      id: 0x31313259 (Y211)
        guid: 59323131-0000-0010-8000-00aa00389b71
        bits per pixel: 6
        number of planes: 3
        type: YUV (packed)
      id: 0x0
        guid: 00000000-0000-0000-0000-000000000000
        bits per pixel: 0
        number of planes: 0
        type: RGB (packed)
        depth: 1
        red, green, blue masks: 0x0, 0x0, 0x0

Einige der aufgeführten Formate, wie YUV2 oder YUV12 existieren in machen XVideo-Implementierungen nicht. Dies kann zu Problemen mit einigen Spielern führen.

XVideo wird wahrscheinlich von der Karte nicht unterstützt, wenn die Ausgabe wie folgt aussieht:

X-Video Extension version 2.2
screen #0
no adaptors present

Wenn die XVideo-Erweiterung auf der Karte nicht läuft, wird es nur etwas schwieriger, die Anforderungen für die Wiedergabe von Videos zu erfüllen.

7.4.2. Video-Anwendungen

Dieser Abschnitt behandelt Anwendungen aus der FreeBSD-Ports-Sammlung, die für die Wiedergabe von Videos genutzt werden können.

7.4.2.1. MPlayer und MEncoder

MPlayer ist ein auf Geschwindigkeit und Flexibilität ausgelegter Video-Spieler für die Kommandozeile mit optionaler graphischer Oberfläche. Weitere graphische Oberflächen für MPlayer stehen in der FreeBSD Ports-Sammlung zur Verfügung.

MPlayer kann als Paket oder Port multimedia/mplayer installiert werden. Der Bau von MPlayer berücksichtigt die vorhandene Hardware und es können zahlreiche Optionen ausgewählt werden. Aus diesen Gründen ziehen es manche Benutzer vor, den Port zu übersetzen, anstatt das Paket zu installieren.

Die Optionen sollten beim Bau des Ports überprüft werden, um dem Umfang der Unterstützung, mit dem der Port gebaut wird, zu bestimmen. Wenn eine Option nicht ausgewählt wird, ist MPlayer nicht in der Lage, diese Art von Video-Format wiederzugeben. Mit den Pfeiltasten und der Leertaste können die erforderlichen Formate ausgewählt werden. Wenn Sie fertig sind, drücken Sie Enter, um den Bau und die Installation fortzusetzen.

In der Voreinstellung wird das Paket oder der Port das mplayer-Kommandozeilenprogramm und das graphische Programm gmplayer bauen. Um Videos zu dekodieren, installieren Sie den Port multimedia/mencoder. Aus lizenzrechtlichen Gründen steht ein Paket von MEncoder nicht zur Verfügung.

MPlayer erstellt beim ersten Start ~/.mplayer im Heimatverzeichnis des Benutzers. Dieses Verzeichnis enthält die voreingestellten Konfigurationseinstellungen für den Benutzer.

Dieser Abschnitt beschreibt nur ein paar wenige Anwendungsmöglichkeiten. Eine vollständige Beschreibung der zahlreichen Möglichkeiten finden Sie in der Manualpage von mplayer(1).

Um die Datei testfile.avi abzuspielen, geben Sie die Video-Schnittstelle mit -vo an:

% mplayer -vo xv testfile.avi
% mplayer -vo sdl testfile.avi
% mplayer -vo x11 testfile.avi
# mplayer -vo dga testfile.avi
# mplayer -vo 'sdl:dga' testfile.avi

Es lohnt sich, alle Option zu testen. Die erzielte Geschwindigkeit hängt von vielen Faktoren ab und variiert beträchtlich je nach eingesetzter Hardware.

Wenn Sie eine DVD abspielen wollen, ersetzen Sie testfile.avi durch -dvd://N Gerät. N ist die Nummer des Stücks, das Sie abspielen wollen und Gerät gibt den Gerätenamen der DVD an. Das nachstehende Kommando spielt das dritte Stück von /dev/dvd:

# mplayer -vo dga -dvd://3 /dev/dvd

Anmerkung:

Das standardmäßig verwendete DVD-Laufwerk kann beim Bau des MPlayer-Ports mit der Option WITH_DVD_DEVICE=/pfad/zum/gerät festgelegt werden. Die Voreinstellung verwendet das Gerät /dev/cd0. Weitere Details finden Sie in Makefile.options des Ports.

Die Tastenkombinationen zum Abbrechen, Anhalten und Weiterführen der Wiedergabe entnehmen Sie der Ausgabe von mplayer -h oder der mplayer(1) Manualpage.

Weitere nützliche Optionen für die Wiedergabe sind -fs -zoom zur Wiedergabe im Vollbild-Modus und -framedrop zur Steigerung der Geschwindigkeit.

Jeder Benutzer kann häufig verwendete Optionen in seine ~/.mplayer/config eintragen:

vo=xv
fs=yes
zoom=yes

mplayer kann verwendet werden, um DVD-Stücke in .vob-Dateien zu rippen. Das zweite Stück einer DVD wandeln Sie wie folgt in eine Datei um:

# mplayer -dumpstream -dumpfile out.vob -dvd://2 /dev/dvd

Die Ausgabedatei out.vob wird im MPEG-Format abgespeichert.

Jeder Benutzer, der mehr Informationen über Video unter UNIX® sammeln möchte, sollte mplayerhq.hu/DOCS konsultieren, da es technisch sehr informativ ist. Diese Dokumentation sollte ebenfalls studiert werden, bevor Fehlerberichte eingereicht werden.

Vor der Verwendung von mencoder ist es hilfreich, sich mit den auf mplayerhq.hu/DOCS/HTML/en/mencoder.html beschriebenen Optionen vertraut zu machen. Es gibt unzählige Möglichkeiten die Qualität zu verbessern, die Bitrate zu verringern und Formate zu konvertieren. Einige davon haben erhebliche Auswirkungen auf die Geschwindigkeit. Falsche Kombinationen von Kommandozeilenparametern ergeben eventuell Dateien, die selbst mplayer nicht mehr wiedergeben kann.

Hier ist ein Beispiel für eine einfache Kopie:

% mencoder input.avi -oac copy -ovc copy -o output.avi

Wenn Sie in eine Datei rippen, benutzen Sie die Option -dumpfile von mplayer.

Um input.avi nach MPEG4 mit MPEG3 für den Ton zu konvertieren, muss zunächst der Port audio/lame installiert werden. Aus lizenzrechtlichen Gründen ist ein Paket nicht verfügbar. Wenn der Port installiert ist, geben Sie ein:

% mencoder input.avi -oac mp3lame -lameopts br=192 \
	  -ovc lavc -lavcopts vcodec=mpeg4:vhq -o output.avi

Die Ausgabedatei lässt sich mit Anwendungen wie mplayer oder xine abspielen.

input.avi kann durch -dvd://1 /dev/dvd ersetzt und das Kommando als root ausgeführt werden, um ein DVD-Stück direkt zu konvertieren. Da vielleicht ein paar Versuche nötig sind, um das gewünschte Ergebnis zu erhalten, empfiehlt es sich das Stück zuerst in eine Datei zu schreiben und anschließend die Datei weiter zu bearbeiten.

7.4.2.2. Der Video-Spieler xine

xine ist ein Video-Spieler mit einer wiederverwendbaren Bibliothek und ein Programm, das durch Plugins erweitert werden kann. Es kann als Paket oder Port multimedia/xine installiert werden.

Für einen reibungslosen Betrieb benötigt xine entweder eine schnelle CPU mit einer schnellen Grafikkarte, oder die XVideo-Erweiterung. Am schnellsten läuft xine mit der XVideo-Erweiterung.

In der Voreinstellung startet xine eine grafische Benutzeroberfläche. Über die Menüs können dann bestimmte Dateien geöffnet werden.

Alternativ kann xine auch über die Kommandozeile aufgerufen werden, um Dateien direkt wiederzugeben:

% xine -g -p mymovie.avi

Weitere Informationen und Tipps zur Fehlerbehebung finden Sie unter xine-project.org/faq.

7.4.2.3. Die Transcode-Werkzeuge

Transcode ist eine Sammlung von Werkzeugen zur Umwandlung von Video- und Audio-Dateien. Transcode mischt Video-Dateien und kann kaputte Video-Dateien reparieren. Die Werkzeuge werden als Filter verwendet, das heißt die Ein- und Ausgaben verwenden stdin/stdout.

Unter FreeBSD kann Transcode als Paket oder Port multimedia/transcode installiert werden. Viele Benutzer bevorzugen es den Port zu bauen, da er ein Menü bereitstellt, wo die entsprechenden Formate für den Bau ausgewählt werden können. Mit den Pfeiltasten und der Leertaste können die erforderlichen Formate ausgewählt werden. Wenn Sie fertig sind, drücken Sie Enter, um den Bau und die Installation fortzusetzen.

Dieses Beispiel zeigt, wie eine DivX-Datei in eine PAL MPEG-1-Datei konvertiert wird:

% transcode -i input.avi -V --export_prof vcd-pal -o output_vcd
% mplex -f 1 -o output_vcd.mpg output_vcd.m1v output_vcd.mpa

Die daraus resultierende MPEG-Datei, output_vcd.mpg, kann beispielsweise mit MPlayer abgespielt werden. Die Datei kann auch mit einem Programm wie multimedia/vcdimager oder sysutils/cdrdao als Video-CD auf eine CD-R gebrannt werden.

Zusätzlich zu der Manualpage von transcode, sollten Sie auch die Informationen und Beispiele im transcoding.org/cgi-bin/transcode lesen.

7.5. TV-Karten

Beigetragen von Josef El-Rayes.
Überarbeitet von Marc Fonvieille.

Mit TV-Karten können Sie mit dem Rechner über Kabel oder Antenne fernsehen. Die meisten Karten besitzen einen RCA- oder S-Video-Eingang. Einige Karten haben auch einen FM-Radio-Empfänger.

Der bktr(4)-Treiber von FreeBSD unterstützt PCI-TV-Karten mit einem Brooktree Bt848/849/878/879 Chip. Dieser Teiber unterstützt die meisten Pinnacle PCTV Karten. Die Karte sollte einen der unterstützten Empfänger besitzen, die in bktr(4) aufgeführt sind.

7.5.1. Den Treiber laden

Um die Karte benutzen zu können, muss der bktr(4)-Treiber geladen werden. Damit dies beim Systemstart automatisch erfolgt, muss die folgende Zeile in /boot/loader.conf hinzugefügt werden:

bktr_load="YES"

Alternativ kann der Treiber für die TV-Karte auch fest in den Kernel kompiliert werden. In diesem Fall müssen folgende Zeilen in die Kernelkonfigurationsdatei aufgenommen werden:

device	 bktr
device	iicbus
device	iicbb
device	smbus

Die zusätzlichen Treiber werden benötigt, da die Komponenten der Karte über einen I2C-Bus verbunden sind. Bauen und installieren Sie dann den neuen Kernel.

Um den Treiber zu testen, muss das System neu gestartet werden. Während des Neustarts sollte die TV-Karte erkannt werden:

bktr0: <BrookTree 848A> mem 0xd7000000-0xd7000fff irq 10 at device 10.0 on pci0
iicbb0: <I2C bit-banging driver> on bti2c0
iicbus0: <Philips I2C bus> on iicbb0 master-only
iicbus1: <Philips I2C bus> on iicbb0 master-only
smbus0: <System Management Bus> on bti2c0
bktr0: Pinnacle/Miro TV, Philips SECAM tuner.

Abhängig von der verwendeten Hardware können die Meldungen natürlich anders aussehen. Die entdeckten Geräte lassen sich mit sysctl(8) oder in der Kernelkonfigurationsdatei überschreiben. Wenn Sie beispielsweise einen Philips-SECAM-Empfänger erzwingen wollen, fügen Sie die folgende Zeile zur Kernelkonfigurationsdatei hinzu:

options OVERRIDE_TUNER=6

Alternativ können Sie sysctl(8) benutzen:

# sysctl hw.bt848.tuner=6

Weitere Informationen zu den verschiedenen Kerneloptionen und sysctl(8)-Parametern finden Sie in bktr(4).

7.5.2. Nützliche Anwendungen

Um die TV-Karte zu benutzen, installieren Sie eine der nachstehenden Anwendungen:

  • multimedia/fxtv lässt das Fernsehprogramm in einem Fenster laufen und kann Bilder, Audio und Video aufzeichnen.

  • multimedia/xawtv eine weitere TV-Anwendung mit vergleichbaren Funktionen.

  • Mit audio/xmradio lässt sich der FM-Radio-Empfänger, der sich auf TV-Karten befindet, benutzen.

Weitere Anwendungen finden Sie in der FreeBSD Ports-Sammlung.

7.5.3. Fehlersuche

Wenn Sie Probleme mit der TV-Karte haben, prüfen Sie zuerst, ob der Video-Capture-Chip und der Empfänger vom bktr(4)-Treiber unterstützt werden und ob Sie die richtigen Optionen verwenden. Weitere Hilfe zu unterstützten TV-Karten finden Sie auf der Mailingliste freebsd-multimedia.

7.6. MythTV

MythTV ist eine beliebte Open Source PVR-Anwendung. Dieser Abschnitt beschreibt die Installation und Konfiguration von MythTV unter FreeBSD. Weitere Informationen zur Benutzung von MythTV finden Sie unter mythtv.org/wiki.

MythTV benötigt ein Frontend und ein Backend. Diese Komponenten können entweder auf dem gleichen System, oder auf unterschiedlichen Maschinen installiert werden.

Das Frontend kann unter FreeBSD über den Port oder das Paket multimedia/mythtv-frontend installiert werden. Zudem muss Xorg, wie in Kapitel 5, Das X-Window-System beschrieben, installiert und konfiguriert sein. Idealerweise besitzt das System auch eine Videokarte, die X-Video Motion Compensation (XvMC) unterstützt, sowie optional eine LIRC-kompatible Fernbedienung.

Benutzen Sie multimedia/mythtv, um sowohl das Frontend als auch das Backend zu installieren. Ein MySQL™ Datenbank-Server ist ebenfalls erforderlich und sollte automatisch als Abhängigkeit installiert werden. Optional sollte das System einen Empfänger und ausreichend Speicherplatz haben, um die aufgezeichneten Daten speichern zu können.

7.6.1. Hardware

MythTV verwendet V4L um auf Videoeingabegeräte, wie Kodierer und Empfänger zuzugreifen. Unter FreeBSD funktioniert MythTV am besten mit USB DVB-S/C/T Karten, die von multimedia/webcamd unterstützt werden, da dies eine V4L-Anwendung zur Verfügung stellt, die als Benutzerprogramm läuft. Jede DVB-Karte, die von webcamd unterstützt wird, sollte mit MythTV funktionieren, jedoch gibt es eine Liste von Karten, die unter wiki.freebsd.org/WebcamCompat abgerufen werden kann. Es existieren auch Treiber für Hauppauge-Karten in den folgenden Paketen: multimedia/pvr250 und multimedia/pvrxxx, allerdings liefern diese nur eine Treiberschnittstelle, die nicht dem Standard entspricht und die nicht mit MythTV-Versionen grösser als 0.23 funktionieren. Aus lizenzrechtlichen Gründen ist ein Paket nicht verfügbar, sodass die beiden Ports übersetzt werden müssen.

Die wiki.freebsd.org/HTPC enthält eine Liste von allen verfügbaren DVB-Treibern.

7.6.2. MythTV Backend einrichten

Geben Sie folgendes ein, um MythTV aus der Ports-Sammlung zu installieren:

# cd /usr/ports/multimedia/mythtv
# make install

Richten Sie anschließend die MythTV-Datenbank ein:

# mysql -uroot -p < /usr/local/share/mythtv/database/mc.sql

Konfigurieren Sie dann das Backend:

# mythtv-setup

Zum Schluss starten Sie das Backend:

# echo 'mythbackend_enable="YES"' >> /etc/rc.conf
# service mythbackend start

7.7. Scanner

Beigetragen von Marc Fonvieille.

Unter FreeBSD stellt SANE (Scanner Access Now Easy) aus der Ports-Sammlung eine einheitliche Schnittstelle (API) für den Zugriff auf Scanner bereit. SANE wiederum greift auf Scanner mithilfe einiger FreeBSD-Treiber zu.

FreeBSD unterstützt sowohl SCSI- als auch USB-Scanner. Abhängig von der Schnittstelle des Scanners, werden unterschiedliche Treiber benötigt. Prüfen Sie vor der Konfiguration mithilfe der Liste der unterstützten Geräte ob der Scanner von SANE unterstützt wird.

Dieses Kapitel beschreibt, wie Sie feststellen können, ob der Scanner von FreeBSD erkannt wurde. Zudem enthält es einen Überblick über die Konfiguration und Verwendung von SANE unter FreeBSD.

7.7.1. Den Scanner überprüfen

Im GENERIC-Kernel sind schon alle, für einen USB-Scanner notwendigen Treiber enthalten. Benutzer mit einem angepassten Kernel sollten sicherstellen, dass die Kernelkonfiguration die nachstehenden Zeilen enthält:

device usb
device uhci
device ohci
device ehci

Um zu überprüfen ob der Scanner erkannt wird, schließen Sie den USB-Scanner an. Prüfen Sie dann mit dmesg(8), ob der Scanner in den Systemmeldungen erscheint:

ugen0.2: <EPSON> at usbus0

In diesem Beispiel wurde ein EPSON Perfection® 1650 USB-Scanner an /dev/ugen0.2 erkannt.

Wenn der Scanner eine SCSI-Schnittstelle besitzt, ist die Kernelkonfiguration abhängig vom verwendeten SCSI-Controller. Der GENERIC-Kernel unterstützt die gebräuchlichen SCSI-Controller. Den richtigen Treiber finden Sie in /usr/src/sys/conf/NOTES. Neben dem SCSI-Treiber muss die Kernelkonfiguration noch die nachstehenden Zeilen enthalten:

device scbus
device pass

Nachdem Sie einen Kernel gebaut und installiert haben, sollte der Scanner beim Neustart in den Systemmeldungen erscheinen:

pass2 at aic0 bus 0 target 2 lun 0
pass2: <AGFA SNAPSCAN 600 1.10> Fixed Scanner SCSI-2 device
pass2: 3.300MB/s transfers

Wenn der Scanner während des Systemstarts ausgeschaltet war, können Sie die Geräteerkennung erzwingen, indem Sie den SCSI-Bus erneut absuchen. Verwenden Sie dazu camcontrol:

# camcontrol rescan all
Re-scan of bus 0 was successful
Re-scan of bus 1 was successful
Re-scan of bus 2 was successful
Re-scan of bus 3 was successful

Der Scanner sollte jetzt in der SCSI-Geräteliste erscheinen:

# camcontrol devlist
<IBM DDRS-34560 S97B>              at scbus0 target 5 lun 0 (pass0,da0)
<IBM DDRS-34560 S97B>              at scbus0 target 6 lun 0 (pass1,da1)
<AGFA SNAPSCAN 600 1.10>           at scbus1 target 2 lun 0 (pass3)
<PHILIPS CDD3610 CD-R/RW 1.00>     at scbus2 target 0 lun 0 (pass2,cd0)

Weitere Informationen über SCSI-Geräte unter FreeBSD finden Sie in scsi(4) und camcontrol(8).

7.7.2. SANE konfigurieren

SANE besteht aus zwei Teilen, den Backends (graphics/sane-backends) und den Frontends (graphics/sane-frontends oder graphics/xsane). Das Backend greift auf den Scanner zu. Lesen Sie http://www.sane-project.org/sane-supported-devices.html um herauszufinden, welches Backend welchen Scanner unterstützt. Die Frontends sind die Anwendungen, mit denen gescannt wird. graphics/sane-frontends installiert xscanimage, während graphics/xsane xsane installiert.

Installieren Sie zuerst den Port oder das Paket graphics/sane-backends. Anschließend können Sie mit dem Befehl sane-find-scanner prüfen, ob SANE den Scanner erkennt:

# sane-find-scanner -q
found SCSI scanner "AGFA SNAPSCAN 600 1.10" at /dev/pass3

Die Ausgabe zeigt die Schnittstelle und die verwendete Gerätedatei des Scanners. Der Hersteller und das Modell können in der Ausgabe fehlen.

Anmerkung:

Bei einigen USB-Scannern muss die Firmware geladen werden. Lesen Sie sane-find-scanner(1) und sane(7) für weitere Details.

Als nächstes müssen Sie prüfen, ob der Scanner vom Frontend erkannt wird. Die SANE-Backends werden mit dem Kommandozeilenwerkzeug scanimage geliefert. Mit diesem Werkzeug können Sie sich Scanner anzeigen lassen und den Scan-Prozess von der Kommandozeile starten. Die Option -L zeigt die Scanner an. Das erste Beispiel ist für einen SCSI-Scanner, das zweite ist für einen USB-Scanner:

# scanimage -L
device `snapscan:/dev/pass3' is a AGFA SNAPSCAN 600 flatbed scanner
# scanimage -L
device 'epson2:libusb:/dev/usb:/dev/ugen0.2' is a Epson GT-8200 flatbed scanner

Die Zeile 'epson2:libusb:/dev/usb:/dev/ugen0.2' im zweiten Beispiel nennt das Backend (epson2) und die Gerätedatei (/dev/ugen0.2), die der Scanner verwendet.

Wenn scanimage den Scanner nicht erkennen kann, erscheint folgende Meldung:

# scanimage -L

No scanners were identified. If you were expecting something different,
check that the scanner is plugged in, turned on and detected by the
sane-find-scanner tool (if appropriate). Please read the documentation
which came with this software (README, FAQ, manpages).

Wenn das passiert, müssen Sie in der Konfigurationsdatei des Backends unterhalb von /usr/local/etc/sane.d/ den verwendeten Scanner eintragen. Wenn der Scanner EPSON Perfection® 1650, der das Backend epson2 benutzt, nicht erkannt wurde, muss /usr/local/etc/sane.d/epson2.conf angepasst werden. Fügen Sie eine Zeile mit der Schnittstelle und dem Gerätenamen in die Datei ein. In diesem Beispiel wurde die nachstehende Zeile eingefügt:

usb /dev/ugen0.2

Speichern Sie die Änderungen und prüfen Sie, ob der Scanner mit dem richtigen Backend und Gerätenamen erkannt wird:

# scanimage -L
device 'epson2:libusb:/dev/usb:/dev/ugen0.2' is a Epson GT-8200 flatbed scanner

Wenn scanimage -L den Scanner erkannt hat, ist der Scanner eingerichtet und bereit, zu scannen.

Obwohl scanimage von der Kommandozeile scannen kann, ist eine graphische Anwendung zum Scannen besser geeignet. SANE bietet ein einfaches und effizientes Werkzeug: xscanimage.

Alternativ ist xsane, das über den Port oder das Paket graphics/xsane installiert wird, eine weitere beliebte graphische Anwendung. Dieses Frontend besitzt erweiterte Funktionen wie den Scan-Modus, eine Farbkorrektur und Batch-Scans. Beide Anwendungen lassen sich als GIMP-Plugin verwenden.

7.7.3. Berechtigungen für den Scanner

Wenn andere Benutzer den Scanner benutzen sollen, müssen sie Lese- und Schreibrechte auf die Gerätedatei des Scanners besitzen. Im vorherigen Beispiel wird die Datei /dev/ugen0.2 verwendet, die faktisch nur ein Symlink auf die echte Gerätedatei, /dev/usb/0.2.0 genannt, darstellt. Sowohl der Symlink als auch die Gerätedatei sind jeweils im Besitz der Gruppen wheel und operator. Damit ein Benutzer den Scanner benutzen kann, muss er Mitglied in einer der beiden Gruppen sein. Allerdings sollte aus Sicherheitsgründen genau überlegt werden, welche Benutzer zu welcher Gruppe hinzugefügt werden, besonders bei der Gruppe wheel. Eine bessere Lösung ist es, eine spezielle Gruppe für den Zugriff anzulegen und den Scanner für Mitglieder dieser Gruppe zugänglich zu machen.

Dieses Beispiel erstellt eine Gruppe namens usb:

# pw groupadd usb

Anschließend muss der /dev/ugen0.2-Symlink und der Gerätename /dev/usb/0.2.0 für die Gruppe usb mit den Schreibrechten 0660 oder 0664 ausgestattet werden. All dies kann durch das Hinzufügen der folgenden Zeilen in /etc/devfs.rules erreicht werden:

[system=5]
add path ugen0.2 mode 0660 group usb
add path usb/0.2.0 mode 0660 group usb

Jetzt müssen nur noch Benutzer zur Gruppe usb hinzugefügt werden, um ihnen den Zugriff auf den Scanner zu erlauben:

#pw groupmod usb -m joe

Weitere Details finden Sie in pw(8).

Kapitel 8. Konfiguration des FreeBSD-Kernels

8.1. Übersicht

Der Kernel ist das Herz des FreeBSD-Betriebssystems. Er ist verantwortlich für die Speicherverwaltung, das Durchsetzen von Sicherheitsdirektiven, Netzwerkfähigkeit, Festplattenzugriffen und vieles mehr. Obwohl FreeBSD es ermöglicht, dynamisch konfiguriert zu werden, ist es ab und an notwendig, einen angepassten Kernel zu konfigurieren und zu kompilieren.

Nachdem Sie dieses Kapitel gelesen haben, werden Sie Folgendes wissen:

  • Wann Sie einen angepassten Kernel kompilieren sollten.

  • Wie Sie eine Hardware-Inventur durchführen.

  • Wie Sie eine Kernelkonfigurationsdatei verändern.

  • Wie Sie mit der Konfigurationsdatei einen neuen Kernel kompilieren.

  • Wie Sie den neuen Kernel installieren.

  • Was zu tun ist, falls etwas schiefgeht.

Alle Kommandos, aus den Beispielen dieses Kapitels, müssen mit root-Rechten ausgeführt werden.

8.2. Wieso einen eigenen Kernel bauen?

Traditionell besaß FreeBSD einen monolithischen Kernel. Der Kernel war ein einziges großes Programm, das eine bestimmte Auswahl an Hardware unterstützte. Um das Kernelverhalten zu ändern, musste man einen neuen Kernel kompilieren und dann den neuen Kernel booten.

Heutzutage befinden sich die meisten Funktionen des FreeBSD-Kernels in Modulen, die je nach Bedarf dynamisch geladen und entladen werden können. Dies erlaubt es, einen laufenden Kernel anzupassen, um sofort neue Hardware und neue Funktionen zu unterstützen. Dies ist als modularer Kernel bekannt.

Gelegentlich ist es noch notwendig, eine statische Kernelkonfigurationen durchzuführen. In einigen Fällen ist die Funktion zu systemnah, um durch ein Modul realisiert zu werden. Andere Umgebungen verhindern vielleicht das Laden und Entladen von Kernelmodulen und erfordern, dass nur die benötigte Funktionalität statisch in den Kernel kompiliert wird.

Das Erstellen eines angepassten Kernels ist eines der Rituale für erfahrene BSD-Benutzer. Obwohl dieser Prozess recht viel Zeit in Anspruch nimmt, kann er doch viele Vorteile für das FreeBSD-System bringen. Im Gegensatz zum GENERIC-Kernel, der eine Vielzahl von Hardware unterstützen muss, kann ein angepasster Kernel so eingeschränkt werden, dass er nur noch die Hardware des Rechners unterstützt. Dies hat einige Vorteile:

  • Schnellerer Bootvorgang. Da der Kernel nur nach der Hardware des Systems sucht, kann sich die Zeit für einen Systemstart verkürzen.

  • Geringerer Speicherbedarf. Ein eigener Kernel benötigt in der Regel weniger Speicher als ein GENERIC-Kernel durch das Entfernen von Funktionen und Gerätetreibern. Das ist vorteilhaft, denn der Kernel verweilt immer im RAM und verhindert dadurch, dass dieser Speicher von Anwendungen genutzt wird. Deshalb ist ein angepasster Kernel auf einem System mit wenig RAM sinnvoll.

  • Zusätzliche Hardwareunterstützung. Ein angepasster Kernel kann Unterstützung für Geräte bieten, die im GENERIC-Kernel nicht enthalten sind.

Bevor Sie einen angepassten Kernel erstellen, überlegen Sie sich bitte, warum Sie dies tun wollen. Wenn Sie lediglich eine bestimmte Hardwareunterstützung benötigen, existiert diese vielleicht schon als Kernelmodul.

Kernelmodule existieren in /boot/kernel und können mit kldload(8) dynamisch in den laufenden Kernel geladen werden. Die meisten Kerneltreiber verfügen über ein ladbares Modul und eine Manualpage. Der drahtlose Ethernet-Treiber ath(4) hat die folgenden Informationen in seiner Manualpage:

Alternatively, to load the driver as a module at boot time, place the
following line in loader.conf(5):

    if_ath_load="YES"

Durch das Hinzufügen von if_ath_load="YES" in /boot/loader.conf wird das Modul dynamisch beim Systemstart geladen.

In manchen Fällen gibt es kein entsprechendes Modul in /boot/kernel. Dies gilt insbesondere für bestimmte Subsysteme.

8.3. Informationen über die vorhandene Hardware beschaffen

Bevor die Kernelkonfigurationsdatei bearbeitet wird, ist es empfehlenswert eine Bestandsaufnahme der Hardware des Systems durchzuführen. Auf einem Dual-Boot-System können diese Informationen aus dem anderen Betriebssystem ermittelt werden. Microsoft®s Gerätemanager enthält beispielsweise Informationen über die installierte Hardware.

Anmerkung:

Einige Versionen von Microsoft® Windows® verfügen über ein System-Icon auf dem Desktop, über das Sie den Gerätemanager direkt aufrufen können.

Wenn FreeBSD das einzige installierte Betriebssystem ist, dann listet dmesg(8) die Hardware auf, die während des Systemstarts gefunden wurde. Die meisten FreeBSD-Gerätetreiber haben eine eigene Manualpage, die Informationen über die unterstützte Hardware enthält. Die folgenden Zeilen zeigen beispielsweise an, dass der psm(4)-Treiber eine angeschlossene Maus gefunden hat:

psm0: <PS/2 Mouse> irq 12 on atkbdc0
psm0: [GIANT-LOCKED]
psm0: [ITHREAD]
psm0: model Generic PS/2 mouse, device ID 0

Da diese Hardware vorhanden ist, sollte dieser Treiber nicht aus einer angepassten Kernelkonfigurationsdatei entfernt werden.

Wenn dmesg keine Informationen zur gefundenen Hardware anzeigt, können diese Informationen auch aus /var/run/dmesg.boot entnommen werden.

Ein weiteres Werkzeug für die Suche nach Hardware ist pciconf(8), das ausführliche Informationen bereitstellt. Ein Beispiel:

% pciconf -lv
ath0@pci0:3:0:0:        class=0x020000 card=0x058a1014 chip=0x1014168c rev=0x01 hdr=0x00
    vendor     = 'Atheros Communications Inc.'
    device     = 'AR5212 Atheros AR5212 802.11abg wireless'
    class      = network
    subclass   = ethernet

Die Ausgabe zeigt, dass der Treiber ath eine drahtlose Ethernetkarte gefunden hat.

Die Option -k von man(1) kann verwendet werden, um nützliche Informationen zu erhalten. Um beispielsweise eine Liste von Manualpages zu erhalten, welche ein spezifisches Wort enthalten:

# man -k Atheros
ath(4)                   - Atheros IEEE 802.11 wireless network driver
ath_hal(4)               - Atheros Hardware Access Layer (HAL)

Mit einer Inventarliste der Hardware können Sie dann sicherstellen, dass Sie die Treiber der installierten Hardware nicht versehentlich entfernen, wenn Sie die Kernelkonfigurationsdatei bearbeiten.

8.4. Die Kernelkonfigurationsdatei

Bevor eine angepasste Kernelkonfigurationsdatei erstellt werden kann, muss zuerst der vollständige FreeBSD Quellcodebaum installiert werden.

Falls /usr/src/ nicht existiert oder leer ist, sind die Kernelquellen nicht installiert. Die Quellen können mit Subversion und der Anleitung im Abschnitt A.3, „Benutzen von Subversion installiert werden.

Sobald die Quellen installiert sind, können Sie sich einen Überblick über /usr/src/sys verschaffen. Dieses Verzeichnis enthält eine Reihe von Unterverzeichnissen, einschließlich Verzeichnisse für die unterstützten Architekturen amd64, i386, ia64, pc98, powerpc und sparc64. Alles in diesen Verzeichnissen ist nur für die jeweilige Architektur relevant. Der Rest des Codes ist maschinenunabhängig und für alle Architekturen gleich. Jede unterstützte Architektur hat ein Unterverzeichnis conf, das die GENERIC Kernelkonfigurationsdatei für diese Architektur enthält.

Bearbeiten Sie GENERIC nicht direkt. Kopieren Sie stattdessen die Datei unter einem anderen Namen und machen dann die Änderungen an dieser Kopie. Traditionell besteht der Name des Kernels immer aus Großbuchstaben. Wenn Sie mehrere FreeBSD-Maschinen mit unterschiedlicher Hardware betreuen, ist es eine gute Idee, die Konfigurationsdatei nach den Hostnamen der Maschinen zu benennen. In diesem Beispiel wird eine Kopie der GENERIC Kernelkonfigurationsdatei, namens MYKERNEL, für die amd64-Architektur erstellt:

# cd /usr/src/sys/amd64/conf
# cp GENERIC MYKERNEL

MYKERNEL kann jetzt mit einem Texteditor bearbeitet werden. Der Standard-Editor ist vi, jedoch steht mit ee ein weiterer, einfach zu bedienender Editor bereit.

Das Format der Konfigurationsdatei ist einfach. Jede Zeile enthält ein Schlüsselwort, das ein Gerät oder ein Subsystem repräsentiert, ein Argument und eine kurze Beschreibung. Jeder Text, der hinter einem # steht, gilt als Kommentar und wird ignoriert. Um die Kernel-Unterstützung für ein Gerät oder Subsystem zu entfernen, muss ein # an den Anfang der Zeile, die dieses Gerät oder Subsystem repräsentiert, gesetzt werden. Verändern Sie keine Zeilen, die Sie nicht genau verstehen.

Neben den Kurzbeschreibungen in dieser Datei, finden Sie zusätzliche Erklärungen in NOTES, die sich in demselben Verzeichnis wie GENERIC für die jeweilige Architektur befindet. Von der Architektur unabhängige Optionen sind in /usr/src/sys/conf/NOTES aufgeführt.

Tipp:

Wenn Sie die Kernelkonfigurationsdatei fertig bearbeitet haben, sollten Sie eine Sicherungskopie außerhalb von /usr/src speichern

Alternativ kann die Kernelkonfigurationsdatei an anderer Stelle gespeichert, und ein symbolischer Link auf die Datei erstellt werden:

# cd /usr/src/sys/amd64/conf
# mkdir /root/kernels
# cp GENERIC /root/kernels/MYKERNEL
# ln -s /root/kernels/MYKERNEL

Es ist möglich, eine include-Anweisung in die Kernelkonfigurationsdatei aufzunehmen. Diese erlaubt das lokale Einfügen von anderen Konfigurationsdateien in die aktuelle, was es einfacher macht, kleinere Änderungen an einer existierenden Datei zu vollziehen. Wenn Sie einen GENERIC-Kernel mit nur einer kleinen Anzahl von zusätzlichen Optionen und Treibern benötigen, brauchen Sie mit den folgenden Zeilen nur ein kleines Delta im Vergleich zu GENERIC anpassen, wie in diesem Beispiel zu sehen:

include GENERIC
ident MYKERNEL

options         IPFIREWALL
options         DUMMYNET
options         IPFIREWALL_DEFAULT_TO_ACCEPT
options         IPDIVERT

Diese Methode zeigt die Unterschiede der lokalen Konfigurationsdatei zu einem GENERIC-Kernel an. Sobald Aktualisierungen durchgeführt werden, können neue Eigenschaften, die zu GENERIC hinzugefügt werden, auch dem lokalen Kernel angehängt werden, es sei denn, es wird durch nooptions oder nodevice unterbunden. Eine umfassende Liste von Konfigurationseinstellungen und deren Beschreibungen finden Sie in config(5).

Anmerkung:

Um einen Kernel mit allen möglichen Optionen zu bauen, führen Sie als root die folgenden Befehle aus:

# cd /usr/src/sys/arch/conf && make LINT

8.5. Einen angepassten Kernel bauen und installieren

Nachdem die Änderungen an der angepassten Kernelkonfigurationsdatei gespeichert sind, kann der Quellcode für den Kernel mit den folgenden Schritten übersetzt werden:

Prozedur 8.1. Einen Kernel bauen
  1. Wechseln Sie das Verzeichnis:

    # cd /usr/src
  2. Bauen Sie den Kernel, indem Sie den Namen der Kernelkonfigurationsdatei angeben:

    # make buildkernel KERNCONF=MYKERNEL
  3. Installieren Sie den neuen Kernel. Dieser Befehl wird den neuen Kernel nach /boot/kernel/kernel kopieren, und den alten Kernel nach /boot/kernel.old/kernel speichern:

    # make installkernel KERNCONF=MYKERNEL
  4. Fahren Sie das System herunter und starten Sie den neuen Kernel. Wenn etwas nicht funktioniert, lesen Sie Der Kernel bootet nicht:.

In der Voreinstellung werden beim Bau eines angepassten Kernels stets alle Kernelmodule neu gebaut. Um einen Kernel schneller zu bauen, oder um nur bestimmte Module zu bauen, bearbeiten Sie /etc/make.conf, bevor Sie den Kernel neu bauen.

In diesem Beispiel werden über eine Variable nur die Kernelmodule definiert, die auch tatsächlich gebaut werden sollen. In der Voreinstellung werden alle Module gebaut:

MODULES_OVERRIDE = linux acpi

Alternativ kann auch eine Variable verwendet werden, die bestimmte Kernelmodule vom Bauprozess ausschließt:

WITHOUT_MODULES = linux acpi sound

Weitere Variablen und deren Beschreibung finden Sie in make.conf(5).

8.6. Wenn etwas schiefgeht

Es gibt vier Hauptfehlerquellen beim Erstellen eines angepassten Kernels:

config verursacht Fehler:

Wenn config fehlschlägt, zeigt es die Nummer der Zeile an, die das Problem verursacht. Bei der folgenden Fehlermeldung sollten Sie die angegebene Zeile mit GENERIC oder NOTES vergleichen und sicherstellen, dass das Schlüsselwort in Zeile 17 richtig geschrieben ist:

config: line 17: syntax error
make verursacht Fehler:

Wenn make fehlschlägt, liegen meistens Fehler in der Konfigurationsdatei vor, die aber nicht schwerwiegend genug für config waren. Überprüfen Sie die Konfiguration und wenn Sie keinen Fehler entdecken können, schicken Sie eine E-Mail mit der Kernelkonfigurationsdatei an die Mailingliste 'Fragen und Antworten zu FreeBSD' .

Der Kernel bootet nicht:

Wenn der neue Kernel nicht bootet oder die Geräte nicht erkannt werden, ist das noch kein Grund zur Panik. Glücklicherweise besitzt FreeBSD einen exzellenten Mechanismus zur Wiederherstellung nach dem Einsatz inkompatibler Kernel. Wählen Sie einfach den zu bootenden Kernel im FreeBSD Bootloader aus. Dazu wählen Sie im Bootmenü die Option Escape to a loader prompt. Danach geben Sie am Prompt boot kernel.old oder den Namen eines anderen Kernels ein, der sauber bootet.

Nun kann die Konfiguration noch einmal überprüft und der Kernel neu kompiliert werden. Dazu ist /var/log/messages sehr nützlich, da hier sämtliche Kernelmeldungen von jedem erfolgreichen Bootvorgang gespeichert werden. dmesg(8) gibt die Kernelmeldungen vom letzten Bootvorgang aus.

Anmerkung:

Wenn Sie Probleme beim Kernelbau bekommen, heben Sie sich immer eine Kopie von GENERIC oder einen anderen Kernel, der garantiert bootet, auf. Dies ist sehr wichtig, weil jedes Mal, wenn ein neuer Kernel installiert wird, kernel.old mit dem zuletzt installierten Kernel überschrieben wird und dieser möglicherweise nicht bootfähig ist. Verschieben Sie daher den funktionierenden Kernel so schnell wie möglich, indem Sie das Verzeichnis mit dem funktionierenden Kernel umbenennen:

# mv /boot/kernel /boot/kernel.bad
# mv /boot/kernel.good /boot/kernel
Der Kernel funktioniert, aber ps nicht

Wenn Sie eine andere Version des Kernels installiert haben als die, mit der Ihre Systemwerkzeuge gebaut wurden, beispielsweise einen Kernel aus den -CURRENT-Quellen auf einem -RELEASE-System, werden Programme wie ps(1) und vmstat(8) nicht mehr funktionieren. Um dies zu beheben, sollten Sie das komplette System neu bauen und installieren. Achten Sie darauf, dass die Quellen, aus denen das System gebaut wird, zum installierten Kernel passt. Man sollte niemals einen Kernel benutzen, der nicht zur Systemversion passt.

Kapitel 9. Drucken

Beigetragen von Warren Block.
Übersetzt von Björn Heidotting.

Trotz vieler Versuche es zu vermeiden, ist der Druck von Informationen auf Papier immer noch eine wichtige Funktion. Drucken hat zwei grundlegende Komponenten. Die Daten müssen an den Drucker gesendet werden, und zwar in einer Form, die der Drucker verstehen kann.

9.1. Schnellstart

Die grundlegende Druckfunktion kann schnell eingerichtet werden. Der Drucker muss lediglich fähig sein, normalen ASCII-Text zu drucken. Informationen zum Druck von anderen Dateien finden Sie in Abschnitt 9.5.3, „Filter“.

  1. Erstellen Sie ein Verzeichnis zur Speicherung der Druckaufträge:

    # mkdir -p /var/spool/lpd/lp
    # chown daemon:daemon /var/spool/lpd/lp
    # chmod 770 /var/spool/lpd/lp
  2. Erstellen Sie als root die Datei /etc/printcap mit folgendem Inhalt:

    lp:\
    	:lp=/dev/unlpt0:\  1
    	:sh:\
    	:mx#0:\
    	:sd=/var/spool/lpd/lp:\
    	:lf=/var/log/lpd-errs:

    1

    Diese Zeile ist für einen Drucker, der an einem USB-Port angeschlossen ist.

    Für einen Drucker, der am parallelen oder Drucker-Port angeschlossen ist, verwenden Sie:

    :lp=/dev/lpt0:\

    Für einen Netzwerkdrucker verwenden Sie:

    :lp=:rm=network-printer-name:rp=raw:\

    Ersetzen Sie network-printer-name durch den DNS-Namen des Netzwerkdruckers.

  3. Aktivieren Sie lpd beim Systemstart, indem Sie folgende Zeile in /etc/rc.conf hinzufügen:

    lpd_enable="YES"

    Starten Sie den Dienst:

    # service lpd start
    Starting lpd.

    Drucken Sie eine Testseite:

    # printf "1. Der Drucker kann drucken.\n2. Dies ist die zweite Zeile.\n" | lpr

    Tipp:

    Wenn die beiden Zeilen nicht am linken Rand starten und Sie einen Treppeneffekt beobachten, lesen Sie Abschnitt 9.5.3.1, „Den Treppeneffekt verhindern“.

    Mit lpr können nun Textdateien gedruckt werden. Geben Sie den Dateinamen auf der Kommandozeile an oder lassen Sie lpr von einer Pipe lesen.

    % lpr textfile.txt
    % ls -lh | lpr

9.2. Druckerverbindungen

Es gibt eine Vielzahl von Möglichkeiten, einen Drucker mit einem Rechner zu verbinden. Kleine Desktop-Drucker werden in der Regel mit dem USB-Anschluss verbunden, ältere Modelle nutzen oft die parallele Schnittstelle. Einige Drucker sind direkt mit einem Netzwerk verbunden, damit sie leichter von mehreren Rechnern benutzt werden können. Nur noch wenige Drucker verwenden einen seriellen Anschluss.

FreeBSD unterstützt die folgenden Arten von Druckern:

USB

USB-Drucker können mit einem freien USB-Anschluss des Rechners verbunden werden.

Wenn FreeBSD einen USB-Drucker erkennt, werden zwei Gerätenamen erstellt: /dev/ulpt0 und /dev/unlpt0. Beide Geräte leiten die Daten an den Drucker weiter. Nach jedem Druckauftrag wird der USB-Anschluss von ultp0 zurückgesetzt. Das Zurücksetzen kann bei einigen Druckern Probleme verursachen, daher wird in der Regel stattdessen unlpt0 verwendet, das den Anschluss nicht zurücksetzt.

Prallel (IEEE-1284)

Die parallele Schnittstelle ist /dev/lpt0. Der Gerätename erscheint unabhängig davon, ob ein Drucker angeschlossen ist oder nicht. Eine automatische Erkennung findet nicht statt.

Die Hersteller haben sich weitgehend von diesem älteren Anschluss verabschiedet und auch viele Rechner haben keine parallele Schnittstelle mehr. Es existieren jedoch Adapter, um einen parallelen Drucker an einem USB-Port anzuschließen. Der Drucker wird dann wie ein USB-Drucker behandelt. Es können auch Printserver verwendet werden, um parallele Drucker direkt mit einem Netzwerk zu verbinden.

Seriell (RS-232)

Serielle Anschlüsse sind veraltet und werden außer in Nischenanwendungen nur noch selten verwendet. Die Kabel, Stecker und die erforderliche Verkabelung sind oft sehr unterschiedlich.

Der Gerätename für einen seriellen Anschlüsse ist /dev/cuau0 oder /dev/cuau1. Es können auch USB-Adapter verwendet werden. Diese erscheinen als /dev/cuaU0.

Damit mit dem Drucker kommuniziert werden kann, müssen einige Kommunikationsparameter bekannt sein. Zu den wichtigsten zählen die Baudrate (BPS - Bits pro Sekunde) und die Parität. Diese Werte variieren, aber typische serielle Drucker verwenden eine Baudrate von 9600 und keine Parität.

Netzwerk

Netzwerkdrucker werden direkt mit dem lokalen Netzwerk verbunden.

Der DNS-Name des Druckers muss bekannt sein. Wenn dem Drucker eine dynamische Adresse per DHCP zugeteilt wird, sollte das DNS automatisch aktualisiert werden, so dass der Drucker immer die richtige IP-Adresse hat. Um dieses Problem zu vermeiden, werden Netzwerkdruckern häufig statische IP-Adressen zugeteilt.

Die meisten Netzwerkdrucker verstehen Druckaufträge, die über das LPD-Protokoll empfangen werden. Sie können auch den Namen der Druckwarteschlange angeben. Einige Drucker verarbeiten die Daten unterschiedlich, je nachdem welche Warteschlange verwendet wird. Zum Beispiel druckt eine Raw-Warteschlange die Daten unverändert, während eine Text-Warteschlange den Text um Wagenrückläufe ergänzt.

Viele Netzwerkdrucker können auch Daten drucken, die direkt an Port 9100 gesendet werden.

9.2.1. Zusammenfassung

Verkabelte Netzwerkdrucker drucken in der Regel am schnellsten und sind einfach einzurichten. Für den direkten Anschluss am Rechner wird USB wegen seiner Geschwindigkeit und Einfachheit bevorzugt. Parallele Verbindungen funktionieren, haben jedoch ihre Begrenzung in Bezug auf Kabellänge und Geschwindigkeit. Serielle Verbindungen sind schwieriger zu konfigurieren und die Verdrahtung unterscheidet sich zwischen den Modellen. Zudem müssen Baudrate und Parität bekannt sein. Glücklicherweise sind serielle Drucker selten geworden.

9.3. Gebräuchliche Seitenbeschreibungssprachen

Daten, die an einen Drucker gesendet werden, müssen in einer Sprache verfasst sein, die der Drucker verstehen kann. Diese Sprachen werden Seitenbeschreibungssprachen oder Page Description Languages (PDL) genannt.

ASCII

Schlichter ASCII-Text ist die einfachste Möglichkeit, um Daten an einen Drucker zu senden. Die Zeichen werden eins zu eins gedruckt: ein A in den Daten erscheint beim Druck als A auf dem Papier. Eine Formatierung ist nur bedingt verfügbar und es gibt keine Möglichkeit, eine Schriftart oder eine bestimmte Laufweite zu wählen. Die Einfachheit von schlichtem ASCII-Text bedeutet, dass Text ohne bzw. wenig Codierung oder Übersetzung gedruckt werden kann. Die gedruckte Ausgabe entspricht dem, was an den Drucker gesendet wurde.

Einige kostengünstige Drucker können keinen einfachen ASCII-Text drucken. Das macht sie in der Regel schwieriger einzurichten.

PostScript®

PostScript® ist fast das Gegenteil von ASCII. Anstelle von einfachem Text, besteht ein PostScript®-Programm aus einer Reihe von Anweisungen, die das endgültige Dokument generieren. Es können auch verschiedene Schriften und Grafiken benutzt werden. Diese Fähigkeiten haben jedoch ihren Preis. Das Programm, das die Seite generiert, muss zunächst erzeugt werden. Normalerweise wird dieses Programm durch die Anwendung erzeugt, so dass der Prozess für den Benutzer transparent bleibt.

Kostengünstige Drucker sind manchmal nicht kompatibel mit PostScript®.

PCL (Printer Command Language)

PCL ist eine Erweiterung von ASCII. Es enthält Escape-Sequenzen für die Formatierung, Schriftauswahl und das Drucken von Grafiken. Viele Drucker bieten Unterstützung für PCL5, einige unterstützen auch das neuere PCL6 oder PCLXL. Die neueren Versionen sind Kombinationen von PCL5 und bieten eine schnellere Druckgeschwindigkeit.

Host-basiert

Hersteller können die Kosten eines Druckers reduzieren, indem sie einen einfachen Prozessor und etwas Speicher verbauen. Diese Drucker sind nicht in der Lage normalen Text zu drucken. Stattdessen werden die Texte und Grafiken von einem Treiber auf dem Host-Rechner generiert und dann an den Drucker gesendet. Diese Drucker werden Host-basierte Drucker genannt.

Die Kommunikation zwischen dem Treiber und dem Drucker wird oft durch proprietäre oder nicht dokumentierte Protokolle realisiert, weshalb sie nur mit den gängigsten Betriebssystemen funktionieren.

9.3.1. PostScript® in eine andere Sprache konvertieren

Viele Anwendungen aus der Ports-Sammlung und FreeBSD Werkzeuge können PostScript® erzeugen. Die folgende Tabelle listet die verfügbaren Programme, um PostScript® in andere PDLs zu konvertieren:

Tabelle 9.1. Ausgabe PDLs
Ausgabe PDLGeneriert vonHinweis
PCL oder PCL5print/ghostscript9-sDEVICE=ljet4 für Schwarzweiß, -sDEVICE=cljet5 für Farbe
PCLXL oder PCL6print/ghostscript9-sDEVICE=pxlmono für Schwarzweiß, -sDEVICE=pxlcolor für Farbe
ESC/P2print/ghostscript9-sDEVICE=uniprint
XQXprint/foo2zjs 

9.3.2. Zusammenfassung

Um die Konfiguration einfach zu halten, wählen Sie einen Drucker, der PostScript® oder auch PCL unterstützt. Mit print/ghostscript können diese Drucker PostScript® nativ verstehen. Wenn der Drucker PostScript® oder PCL direkt unterstützt, können Sie auch sofort einfache ASCII-Textdateien drucken.

Zeilenbasierte Drucker wie Tintenstrahldrucker unterstützen in der Regel kein PostScript® oder PCL. Dennoch können Sie ASCII-Textdateien drucken. print/ghostscript unterstützt die Sprachen dieser Drucker. Jedoch ist der Druck von Grafiken auf diesen Druckern oft sehr langsam, da aufgrund der großen Menge an Daten übertragen und ausgedruckt werden müssen.

Host-basierte Drucker sind oft schwieriger einzurichten. Einige Drucker können überhaupt nicht benutzt werden, da sie proprieräte PDLs verwerden. Solche Drucker sollten Sie nach Möglichkeit vermeiden.

Die Beschreibungen vieler PDLs finden Sie auf http://www.undocprint.org/formats/page_description_languages. Spezielle PDLs, die von einigen Druckern verwendet werden finden Sie auf http://www.openprinting.org/printers.

9.4. Direktes Drucken

Für den gelegentlichen Druck können die Dateien auch direkt, ohne zusätzliche Einstellungen, an den Drucker gesendet werden. Zum Beispiel kann die Datei sample.txt direkt an einen USB-Drucker gesendet werden:

# cp sample.txt /dev/unlpt0

Ob Sie direkt auf einen Netzwerkdrucker drucken können, hängt von den Fähigkeiten des Druckers ab. Die meisten akzeptieren jedoch Druckaufträge auf Port 9100, die Sie mit nc(1) an den Drucker senden können. So drucken Sie die gleiche Datei auf einem Drucker mit dem DNS-Namen netlaser:

# nc netlaser 9100 < sample.txt

9.5. LPD (Line Printer Daemon)

Drucken im Hintergrund wird Spooling genannt. Ein Spooler (Warteschlange) ermöglicht es dem Benutzer die Programme auf dem Rechner fortzusetzen, ohne warten zu müssen bis der Druckauftrag abgeschlossen ist.

FreeBSD enthält den Spooler namens lpd(8). Druckaufträge werden mit lpr(1) übermittelt.

9.5.1. Konfiguration

Erstellen Sie ein Verzeichnis zur Speicherung der Druckaufträge und setzen Sie die Berechtigungen auf diesem Verzeichnis, damit der Inhalt der Druckaufträge nicht von anderen Benutzern eingesehen werden kann:

# mkdir -p /var/spool/lpd/lp
# chown daemon:daemon /var/spool/lpd/lp
# chmod 770 /var/spool/lpd/lp

Drucker werden in /etc/printcap angelegt. Ein Eintrag für einen Drucker enthält dessen Name, Anschluss sowie weitere Einstellungen. Erstellen Sie /etc/printcap mit folgendem Inhalt:

lp:\				1
	:lp=/dev/unlpt0:\	2
	:sh:\			3
	:mx#0:\			4
	:sd=/var/spool/lpd/lp:\	5
	:lf=/var/log/lpd-errs:	6

1

Der Name des Druckers. lpr(1) sendet Druckaufträge an den Drucker lp, es sei denn, ein anderer Drucker wird mit der Option -P angegeben. Der Standarddrucker sollte also lp genannt werden.

2

Der Anschluss, über den der Drucker verbunden ist. Ersetzen Sie diese Zeile mit dem entsprechenden, hier aufgeführten Verbindungstyp.

VerbindungstypGerätename in /etc/printcap
USB
:lp=/dev/unlpt0:\

Der USB-Drucker. Falls Probleme auftauchen, verwenden Sie stattdessen ulpt0, das den USB-Anschluss nach jedem Gebrauch zurücksetzt.

Parallel
:lp=/dev/lpt0:\
Netzwerk

Für einen Drucker, der das LPD-Protokoll unterstützt:

:lp=:rm=network-printer-name:rp=raw:\

Für Drucker, die den Druck über Port 9100 unterstützen:

:lp=9100@network-printer-name:\

Ersetzen Sie für beide Typen network-printer-name durch den DNS-Namen des Netzwerkdruckers.

Seriell
:lp=/dev/cuau0:br=9600:pa=none:\

Diese Werte sind für einen typischen seriellen Drucker geeignet. Die Baudrate beträgt 9600 und es wird keine Parität benutzt.

3

Unterdrückt das Drucken eines Deckblattes zu Beginn des Druckauftrags.

4

Die maximale Größe des Druckauftrags wird nicht begrenzt.

5

Das Verzeichnis zur Speicherung der Druckdaten. Jeder Drucker verwendet ein eigenes Verzeichnis.

6

Die Logdatei, in welche die Fehler des Druckers geschrieben werden.

Nachdem Sie /etc/printcap erstellt haben, verwenden Sie chkprintcap(8) um die Datei auf Fehler zu testen:

# chkprintcap

Beheben Sie alle gemeldeten Fehler, bevor Sie fortfahren.

Aktivieren Sie lpd(8) in /etc/rc.conf:

lpd_enable="YES"

Starten Sie den Dienst:

# service lpd start

9.5.2. Drucken mit lpr(1)

Mit lpr werden Dokumente an den Drucker geschickt. Die Datei können Sie auf der Kommandozeile angeben, oder über eine Pipe an lpr schicken. Die beiden folgenden Kommandos sind gleichwertig, sie schicken den Inhalt von doc.txt an den Standarddrucker:

% lpr doc.txt
% cat doc.txt | lpr

Drucker können auch mit -P ausgewählt werden. Um auf einen Drucker namens laser zu drucken:

% lpr -Plaser doc.txt

9.5.3. Filter

In den bisher gezeigten Beispielen wurde lediglich eine Textdatei an den Drucker gesendet. Solange der Drucker den Inhalt dieser Dateien versteht, wird die Ausgabe korrekt gedruckt werden.

Einige Drucker sind nicht in der Lage einfachen Text zu drucken. Es kann sogar sein, das die Eingabedatei gar keinen Text enthält.

Mit Hilfe von Filtern können Dateien übersetzt oder verarbeitet werden. Ein typischer Anwendungsfall ist die Umwandlung der Eingabedaten in ein Format, das der Drucker verstehen kann, wie bspw. PostScript® oder PCL. Filter können auch verwendet werden um zusätzliche Funktionen hinzuzufügen, wie bspw. Seitenzahlen oder das Hervorheben von Quellcode, um die Lesbarkeit zu verbessern.

Die hier beschriebenen Filter werden Eingabefilter oder auch Textfilter genannt. Diese Filter übersetzen die eingehende Datei in verschiedene Formen. Werden Sie mit su(1) zu root, bevor Sie die Dateien erstellen.

Filter werden in /etc/printcap mit der Kennung if= festgelegt. Um /usr/local/libexec/lf2crlf als Filter einzusetzen, bearbeiten Sie /etc/printcap wie folgt:

lp:\
	:lp=/dev/unlpt0:\
	:sh:\
	:mx#0:\
	:sd=/var/spool/lpd/lp:\
	:if=/usr/local/libexec/lf2crlf:\   1
	:lf=/var/log/lpd-errs:

1

if= identifiziert den Eingangsfilter, der auf den eingehenden Text angewendet werden soll.

Tipp:

Der Backslash am Ende der Zeilen zeigt an, das ein Eintrag für einen Drucker wirklich nur eine Zeile ist, in der die einzelnen Einträge durch einen Doppelpunkt getrennt sind. Das Beispiel hätte man auch wie folgt schreiben können:

lp:lp=/dev/unlpt0:sh:mx#0:sd=/var/spool/lpd/lp:if=/usr/local/libexec/lf2crlf:lf=/var/log/lpd-errs:

9.5.3.1. Den Treppeneffekt verhindern

Typische Textdateien enthalten einen Zeilenvorschub am Ende jeder Zeile. Diese Zeilen erzeugen auf dem Drucker einen Treppeneffekt:

A printed file looks
                    like the steps of a staircase
                                                 scattered by the wind

Ein Filter kann Zeilenumbrüche in Wagenrückläufe und Zeilenumbrüche konvertieren. Erstellen Sie /usr/local/libexec/lf2crlf mit folgendem Inhalt:

#!/bin/sh
CR=$'\r'
/usr/bin/sed -e "s/$/${CR}/g"

Setzen Sie die Berechtigungen und machen Sie die Datei ausführbar:

# chmod 555 /usr/local/libexec/lf2crlf

Passen Sie /etc/printcap an, so dass der neue Filter verwendet wird:

:if=/usr/local/libexec/lf2crlf:\

Drucken Sie nochmal die gleiche Datei, um den Filter zu testen.

9.5.3.2. Mit print/enscript normalen Text auf PostScript®-Druckern drucken

GNU Enscript wandelt Textdateien in formatiertes PostScript® um, die dann auf PostScript®-Druckern gedruckt werden können. Das Programm fügt auch Seitenzahlen und Zeilenumbrüche hinzu und stellt andere Funktionen bereit, um gedruckte Textdateien besser lesbar zu machen. Abhängig vom Papierformat können Sie entweder print/enscript-letter oder print/enscript-a4 aus der Ports-Sammlung installieren.

Erstellen Sie /usr/local/libexec/enscript mit diesem Inhalt:

#!/bin/sh
/usr/local/bin/enscript -o -

Setzen Sie die Berechtigungen und machen Sie die Datei ausführbar:

# chmod 555 /usr/local/libexec/enscript

Bearbeiten Sie /etc/printcap um den neuen Filter zu verwenden:

:if=/usr/local/libexec/enscript:\

Testen Sie den Filter, indem Sie eine einfache Textdatei drucken.

9.5.3.3. PostScript® auf PCL-Druckern drucken

Viele Programme erzeugen PostScript®-Dokumente. Allerdings können kostengünstige Drucker oft nur Textdateien oder PCL verstehen. Dieser Filter wandelt PostScript®-Dateien in PCL um, bevor die Datei an den Drucker geschickt wird. Installieren Sie den Ghostscript PostScript® Interpreter print/ghostscript9 aus der Ports-Sammlung.

Erstellen Sie /usr/local/libexec/ps2pcl mit diesem Inhalt:

#!/bin/sh
/usr/local/bin/gs -dSAFER -dNOPAUSE -dBATCH -q -sDEVICE=ljet4 -sOutputFile=- -

Setzen Sie die Berechtigungen und machen Sie die Datei ausführbar:

# chmod 555 /usr/local/libexec/ps2pcl

Die PostScript®-Eingabe wird von dem Skript erst in PCL umgewandelt, bevor es an den Drucker geschickt wird.

Bearbeiten Sie /etc/printcap um den neuen Filter zu verwenden:

:if=/usr/local/libexec/ps2pcl:\

Testen Sie den Filter mit einem kleinen PostScript®-Programm.

% printf "%%\!PS \n /Helvetica findfont 18 scalefont setfont \
72 432 moveto (PostScript printing successful.) show showpage \004" | lpr

9.5.3.4. Intelligente Filter

Ein Filter kann sehr nützlich sein, wenn er die Eingabe erkennt und sie automatisch in ein für den Drucker verständliches Format umwandelt. Die ersten beiden Zeichen in einer PostScript®-Datei sind in der Regel %!. Ein Filter ist in der Lage diese beiden Zeichen zu erkennen. PostScript®-Dateien können unverändert an einen PostScript®-Drucker geschickt werden. Textdateien können, wie eben gezeigt, mit Enscript in PostScript® umgewandelt werden. Erstellen Sie /usr/local/libexec/psif mit diesem Inhalt:

#!/bin/sh
#
#  psif - Print PostScript or plain text on a PostScript printer
#
IFS="" read -r first_line
first_two_chars=`expr "$first_line" : '\(..\)'`

case "$first_two_chars" in
%!)
    # %! : PostScript job, print it.
    echo "$first_line" && cat && exit 0
    exit 2
    ;;
*)
    # otherwise, format with enscript
    ( echo "$first_line"; cat ) | /usr/local/bin/enscript -o - && exit 0
    exit 2
    ;;
esac

Setzen Sie die Berechtigungen und machen Sie die Datei ausführbar:

# chmod 555 /usr/local/libexec/psif

Bearbeiten Sie /etc/printcap um den neuen Filter zu verwenden:

:if=/usr/local/libexec/psif:\

Um den Filter zu testen, drucken Sie PostScript®- und einfache Textdateien.

9.5.3.5. Weitere intelligente Filter

Einen Filter zu schreiben, der verschiedene Arten von Eingaben erkennen und formatieren kann, ist eine große Herausforderung. print/apsfilter aus der Ports-Sammlung ist auch ein intelligenter Filter, der Dutzende Dateitypen automatisch in eine für den Drucker verständliche PDL umwandeln kann. Weitere Details finden Sie auf http://www.apsfilter.org.

9.5.4. Mehrere Warteschlangen

Die Einträge in /etc/printcap sind nichts anderes als Definitionen von Warteschlangen. Für jeden Drucker können eine oder mehrere Warteschlangen definiert werden. Kombiniert mit Filtern bieten mehrere Warteschlangen eine bessere Kontrolle über die Druckaufträge.

Als Beispiel dient ein vernetzter PostScript®-Laserdrucker in einem Büro. Die meisten Benutzer möchten einfache Textdateien drucken, aber ein paar fortgeschrittene Anwender sollen in der Lage sein, PostScript®-Dateien direkt zu drucken. Hierfür werden zwei Einträge für den Drucker in /etc/printcap erstellt:

textprinter:\
	:lp=9100@officelaser:\
	:sh:\
	:mx#0:\
	:sd=/var/spool/lpd/textprinter:\
	:if=/usr/local/libexec/enscript:\
	:lf=/var/log/lpd-errs:

psprinter:\
	:lp=9100@officelaser:\
	:sh:\
	:mx#0:\
	:sd=/var/spool/lpd/psprinter:\
	:lf=/var/log/lpd-errs:

Dokumente, die zum textprinter geschickt werden, werden wie im vorherigen Beispiel durch den Filter /usr/local/libexec/enscript formatiert. Fortgeschrittene Anwender können PostScript®-Dateien direkt auf dem Drucker psprinter drucken, wo keine Filterung stattfindet.

Mit mehreren Warteschlangen können Sie einen direkten Zugriff auf alle Arten von Druckerfunktionen zur Verfügung stellen. Ein Duplex-Drucker könnte zwei Warteschlangen verwenden, eine für den gewöhnlichen Druck und eine für den Duplexdruck.

9.5.5. Druckaufträge steuern und überwachen

Es stehen verschiedene Programme zur Verfügung um Druckaufträge zu überwachen und den Druckbetrieb zu steuern.

9.5.5.1. lpq(1)

lpq(1) zeigt den Status der Druckaufträge des Benutzers an. Druckaufträge anderer Benutzer werden nicht angezeigt.

Dieser Befehl zeigt die anstehenden Druckaufträge eines Benutzers für einen Drucker an:

% lpq -Plp
Rank   Owner      Job  Files                                 Total Size
1st    jsmith     0    (standard input)                      12792 bytes

Der folgende Befehl zeigt die anstehenden Druckaufträge eines Benutzers für alle Drucker an:

% lpq -a
lp:
Rank   Owner      Job  Files                                 Total Size
1st    jsmith     1    (standard input)                      27320 bytes

laser:
Rank   Owner      Job  Files                                 Total Size
1st    jsmith     287  (standard input)                      22443 bytes

9.5.5.2. lprm(1)

Mit lprm(1) können Druckaufträge gelöscht werden. Normale Benutzer dürfen lediglich ihre eigenen Aufträge löschen. root kann hingegen jeden beliebigen Auftrag löschen.

Dieser Befehl löscht alle anstehenden Druckaufträge eines Druckers:

# lprm -Plp -
dfA002smithy dequeued
cfA002smithy dequeued
dfA003smithy dequeued
cfA003smithy dequeued
dfA004smithy dequeued
cfA004smithy dequeued

Mit dem folgenden Befehl löschen Sie einen bestimmten Druckauftrag. Benutzen Sie lpq(1), um die Nummer des Auftrags zu finden.

% lpq
Rank   Owner      Job  Files                                 Total Size
1st    jsmith     5    (standard input)                      12188 bytes
% lprm -Plp 5
dfA005smithy dequeued
cfA005smithy dequeued

9.5.5.3. lpc(8)

Mit lpc(8) kann der Druckerstatus überprüft und verändert werden. lpc wird zusammen mit einem Kommando und optional mit einem Druckernamen aufgerufen. Mit all können alle Drucker angesprochen werden, auf denen das Kommando ausgeführt werden soll. Normale Benutzer können sich den Status mit lpc(8) ansehen. Nur root darf Kommandos ausführen, die den Status des Druckers verändern.

Dieser Befehl zeigt den Status von allen Druckern an:

% lpc status all
lp:
	queuing is enabled
	printing is enabled
	1 entry in spool area
	printer idle
laser:
	queuing is enabled
	printing is enabled
	1 entry in spool area
	waiting for laser to come up

Der Drucker kann die Annahme neuer Druckaufträge verweigern. Anschließend sollen Aufträge wieder akzeptiert werden:

# lpc stop lp
lp:
	printing disabled
# lpc start lp
lp:
	printing enabled
	daemon started

Starten Sie den Drucker nach einem Fehler neu:

# lpc restart lp
lp:
	no daemon to abort
	printing enabled
	daemon restarted

Schalten Sie die Warteschlange aus und deaktivieren Sie den Druck. Sie können den Benutzern gleichzeitig eine Nachricht hinterlassen:

# lpc down lp Ersatzteile werden am Montag ankommen
lp:
	printer and queuing disabled
	status message is now: Ersatzteile werden am Montag ankommen

Reaktivieren Sie den Drucker:

# lpc up lp
lp:
	printing enabled
	daemon started

Weitere Kommandos und Optionen finden Sie in lpc(8).

9.5.6. Gemeinsam genutzte Drucker

In Unternehmen und Schulen werden Drucker häufig von mehreren Benutzern genutzt. Es werden zusätzliche Funktionen angeboten, um die gemeinsame Nutzung von Druckern zu erleichtern.

9.5.6.1. Aliase

Der Druckername wird in der ersten Zeile von /etc/printcap festgelegt. Weitere Namen oder Aliase können nach dem Druckernamen hinzugefügt werden. Aliase werden vom Namen durch das Pipe-Zeichen | getrennt:

lp|repairsprinter|salesprinter:\

Anstelle des Druckernamens können Aliase verwendet werden. Zum Beispiel können Mitarbeiter der Verkaufsabteilung wie folgt auf ihren Drucker drucken:

% lpr -Psalesprinter sales-report.txt

Mitarbeiter der Reparaturabteilung drucken auf dem Drucker mit:

% lpr -Prepairsprinter repairs-report.txt

Alle Dokumente werden auf diesem einen Drucker gedruckt. Wenn die Verkaufsabteilung größer wird und die Abteilung einen eigenen Drucker benötigt, kann der Alias entfernt und für einen neuen Drucker verwendet werden. Die Mitarbeiter in beiden Abteilungen benutzen zum Drucken weiterhin die gleichen Befehle, nur dass die Aufträge der Verkaufsabteilung jetzt zum neuen Drucker gesendet werden.

9.5.6.2. Deckblätter

Bei einem viel benutzten Drucker kann es für die Anwender schwierig sein, ihre Dokumente in einem großen Papierstapel wiederzufinden. Um dieses Problem zu lösen, können Deckblätter verwendet werden. Dabei wird vor jedem Druckauftrag ein Deckblatt mit dem Benutzernamen und dem Dokumentnamen gedruckt. Deckblätter werden manchmal auch als Banner oder Trennseite bezeichnet.

Das Aktivieren der Deckblätter hängt davon ab, ob der Drucker direkt über ein USB, paralleles oder serielles Kabel, oder über ein Netzwerk mit dem Rechner verbunden ist.

Wenn der Drucker direkt verbunden ist, aktivieren Sie die Deckblätter durch Entfernen der Zeile :sh:\ (Supress Header) in /etc/printcap. Diese Deckblätter verwenden lediglich einen Zeilenvorschub für neue Zeilen. Einige Drucker benötigen den Filter /usr/share/examples/printing/hpif um den Treppeneffekt zu vermeiden. Der Filter konfiguriert PCL-Drucker so, dass sowohl Zeilenumbrüche als auch Zeilenvorschübe verwendet werden, wenn ein Zeilenvorschub empfangen wird.

Für Netzwerkdrucker müssen Deckblätter auf dem Drucker selbst konfiguriert werden, da Einträge für Deckblätter in /etc/printcap ignoriert werden. Die Einstellungen sind über einen Webbrowser zugänglich und stehen in der Regel auf der Hauptseite der Konfigurations-Webseite zur Verfügung.

9.5.7. Referenzen

Beispieldateien: /usr/share/examples/printing/.

Das 4.3BSD Line Printer Spooler Manual, /usr/share/doc/smm/07.lpd/paper.ascii.gz.

Manualpages: printcap(5), lpd(8), lpr(1), lpc(8), lprm(1), lpq(1).

9.6. Andere Drucksysteme

Neben dem in FreeBSD enthaltenen lpd(8) existieren noch weitere Drucksysteme. Diese Systeme bieten zusätzliche Funktionen und Unterstützung für andere Protokolle.

9.6.1. CUPS (Common UNIX® Printing System)

CUPS ist ein beliebtes Drucksystem, das für viele Betriebssysteme erhältlich ist. CUPS unter FreeBSD wird in einem separaten Artikel beschrieben: CUPS on FreeBSD.

9.6.2. HPLIP

Hewlett Packard stellt ein Drucksystem zur Verfügung, das viele ihrer Drucker unterstützt. Der Port heißt print/hplip. Die Webseite befindet sich unter http://hplipopensource.com/hplip-web/index.html. Der FreeBSD-Port kümmert sich um alle Details während der Installation. Informationen zur Konfiguration finden Sie unter http://hplipopensource.com/hplip-web/install/manual/hp_setup.html.

9.6.3. LPRng

LPRng wurde als eine verbesserte Alternative zu lpd(8) entwickelt. Der Port heißt sysutils/LPRng. Weitere Informationen und Dokumentation finden Sie unter http://www.lprng.com/.

Kapitel 10. Linux®-Binärkompatibilität

Restrukturiert und teilweise aktualisiert von Jim Mock.
Beigetragen von Brian N. Handy und Rich Murphey.
Übersetzt von Johann Kois.

10.1. Übersicht

FreeBSD bietet Binärkompatibilität zu Linux®, so dass Benutzer Linux® Anwendungen auf einem FreeBSD-System installieren und ausführen können, ohne die Binärdatei ändern zu müssen. Es wurde sogar berichtet, dass in einigen Situationen Linux® Anwendungen auf FreeBSD besser laufen als unter Linux®.

Allerdings werden einige Linux®-spezifischen Merkmale nicht von FreeBSD unterstützt. Linux®-Anwendungen, die i386™-spezifische Aufrufe, wie bspw. die Aktivierung des virtuellen 8086-Modus verwenden, werden derzeit nicht unterstützt.

Die Unterstützung für 64-Bit-Binärkompatibilität für Linux® wurde in FreeBSD 10.3 hinzugefügt.

Nach dem Lesen dieses Kapitels werden Sie wissen:

  • Wie Sie die Linux®-Binärkompatibilität aktivieren.

  • Wie zusätzliche Linux®-Systembibliotheken installiert werden.

  • Wie Sie Linux®-Anwendungen unter FreeBSD installieren.

  • Wie die Linux®-Binärkompatibilität unter FreeBSD implementiert ist.

Bevor Sie dieses Kapitel lesen, sollten Sie wissen:

10.2. Konfiguration der Linux®-Binärkompatibilität

Die Linux®-Binärkompatibilität ist per Voreinstellung nicht aktiviert und auch Linux®-Bibliotheken werden nicht installiert. Linux®-Bibliotheken können entweder manuell, oder aus der FreeBSD Ports-Sammlung installiert werden.

Bevor Sie versuchen den Port zu bauen, laden Sie das Linux®-Kernelmodul, da ansonsten der Bau fehlschlägt:

# kldload linux

Für 64-Bit Kompatibilität:

# kldload linux64

Prüfen Sie, ob das Modul geladen wurde:

% kldstat
Id Refs Address    Size     Name
 1    2 0xc0100000 16bdb8   kernel
 7    1 0xc24db000 d000     linux.ko

Der einfachste Weg um einen Basissatz von Linux®-Bibliotheken und Binärdateien auf einem FreeBSD-System zu installieren, ist über den Port oder das Paket emulators/linux_base-c6. So installieren Sie das Paket:

# printf "compat.linux.osrelease=2.6.18\n" >> /etc/sysctl.conf
# sysctl compat.linux.osrelease=2.6.18
# pkg install emulators/linux_base-c6

Wollen Sie die Linux®-Binärkompatibilität beim Systemstart aktivieren, fügen Sie folgende Zeile in /etc/rc.conf hinzu:

linux_enable="YES"

Auf 64-Bit Maschinen wird das Modul für die 64-Bit Emulation automatisch von /etc/rc.d/abi geladen.

Benutzer, die es vorziehen, Linux®-Binärkompatibilität statisch in den Kernel zu linken, müssen options COMPAT_LINUX in die Kernelkonfigurationsdatei aufnehmen und anschließend einen neuen Kernel installieren. Dies ist in Kapitel 8, Konfiguration des FreeBSD-Kernels beschrieben.

10.2.1. Manuelle Installation zusätzlicher Bibliotheken

Wenn sich eine Linux®-Anwendung über fehlende Bibliotheken beschwert nachdem die Linux®-Binärkompatibilität installiert wurde, finden Sie heraus welche Bibliothken die Anwendung benötigt und installieren Sie diese manuell.

Mit ldd können Sie unter Linux® bestimmen, welche gemeinsam benutzten Bibliotheken eine Anwendung benötigt. Wenn Sie herausfinden wollen, welche Bibliotheken linuxdoom benötigt, können Sie folgenden Befehl auf einem Linux®-System ausführen, welches Doom installiert hat:

% ldd linuxdoom
libXt.so.3 (DLL Jump 3.1) => /usr/X11/lib/libXt.so.3.1.0
libX11.so.3 (DLL Jump 3.1) => /usr/X11/lib/libX11.so.3.1.0
libc.so.4 (DLL Jump 4.5pl26) => /lib/libc.so.4.6.29

Kopieren Sie alle Dateien aus der letzten Spalte der Ausgabe von einem Linux®-System auf das FreeBSD-System in das Verzeichnis /compat/linux. Nach dem Kopieren erstellen Sie symbolische Links auf die Namen in der ersten Spalte. In diesem Beispiel werden folgende Dateien auf dem FreeBSD-System installiert:

/compat/linux/usr/X11/lib/libXt.so.3.1.0
/compat/linux/usr/X11/lib/libXt.so.3 -> libXt.so.3.1.0
/compat/linux/usr/X11/lib/libX11.so.3.1.0
/compat/linux/usr/X11/lib/libX11.so.3 -> libX11.so.3.1.0
/compat/linux/lib/libc.so.4.6.29
/compat/linux/lib/libc.so.4 -> libc.so.4.6.29

Wenn Sie bereits eine Linux®-Bibliothek einer zur ersten Spalte passenden Hauptversionsnummer besitzen, muss sie nicht mehr kopiert werden, da die bereits vorhandene Version funktionieren sollte. Hat die Bibliothek jedoch eine neuere Versionsnummer, sollten Sie sie dennoch kopieren. Sie können die alte Version löschen, solange Sie einen symbolischen Link auf die neue Version anlegen.

Folgende Bibliotheken existieren bereits auf dem FreeBSD-System:

/compat/linux/lib/libc.so.4.6.27$
/compat/linux/lib/libc.so.4 -> libc.so.4.6.27

ldd zeigt an, dass eine Anwendung eine neuere Version benötigt:

libc.so.4 (DLL Jump 4.5pl26) -> libc.so.4.6.29

Wenn diese Bibliotheken sich nur um ein oder zwei Stellen in der Unterversionsnummer unterscheiden, sollte das Programm dennoch mit der älteren Version funktionieren. Wenn Sie wollen, können Sie die bestehende libc.so durch die neuere Version ersetzen:

/compat/linux/lib/libc.so.4.6.29
/compat/linux/lib/libc.so.4 -> libc.so.4.6.29

Der Mechanismus der symbolischen Links wird nur für Linux®-Binärdateien benötigt. Nach einer Weile wird es eine ausreichende Menge an Linux®-Bibliotheken auf dem System geben, sodass Sie neu installierte Linux®-Anwendungen ohne zusätzlichen Aufwand auf dem System laufen lassen können.

10.2.2. Linux® ELF-Binärdateien installieren

ELF-Binärdateien benötigen manchmal eine zusätzliche Kennzeichnung. Wenn Sie versuchen, eine nicht gekennzeichnete ELF-Binärdatei auszuführen, werden Sie eine Fehlermeldung ähnlich der folgenden erhalten:

% ./my-linux-elf-binary
ELF binary type not known
Abort

Damit der FreeBSD-Kernel eine Linux®-ELF-Datei von einer FreeBSD-ELF-Datei unterscheiden kann, gibt es das Werkzeug brandelf(1).

% brandelf -t Linux my-linux-elf-binary

Die GNU Werkzeuge schreiben nun automatisch die passende Kennzeichnungsinformation in die ELF-Binärdateien, so dass Sie diesen Schritt in Zukunft nur noch selten benötigen.

10.2.3. Installieren einer RPM-basierten Linux®-Anwendung

Wenn Sie eine Linux® RPM-basierte Anwendung installieren möchten, installieren Sie zunächst den Port oder das Paket archivers/rpm4. Anschließend kann der Superuser das folgende Kommando benutzen, um ein .rpm zu installieren:

# cd /compat/linux
# rpm2cpio < /pfad/zum/linux.archiv.rpm | cpio -id

Fall notwendig, benutzen Sie brandelf auf den installierten ELF-Binärdateien. Beachten Sie, dass dies eine saubere Deinstallation verhindert.

10.2.4. Namensauflösung konfigurieren

Wenn DNS nicht funktioniert, oder die folgende Fehlermeldung erscheint:

resolv+: "bind" is an invalid keyword resolv+:
"hosts" is an invalid keyword

müssen Sie /compat/linux/etc/host.conf wie folgt bearbeiten:

order hosts, bind
multi on

Diese Reihenfolge legt fest, dass zuerst /etc/hosts und anschließend DNS durchsucht werden. Wenn /compat/linux/etc/host.conf nicht vorhanden ist, nutzen Linux®-Anwendungen /etc/host.conf und beschweren sich über die inkompatible FreeBSD-Syntax. Wenn Sie in /etc/resolv.conf keinen Nameserver konfiguriert haben, sollten Sie den Eintrag bind entfernen.

10.3. Weiterführende Themen

Dieser Abschnitt beschreibt wie die Linux®-Binärkompatibilität funktioniert. Die folgenden Informationen stammen aus einer E-Mail, die von Terry Lambert () an FreeBSD chat geschrieben wurde (Message ID: <199906020108.SAA07001@usr09.primenet.com>).

FreeBSD verfügt über eine execution class loader genannte Abstraktion. Dabei handelt es sich um einen Eingriff in den execve(2) Systemaufruf.

Historisch gesehen untersuchte der einzige, auf UNIX®-Plattformen vorhandene Lader die magische Zahl (in der Regel die ersten 4 oder 8 Bytes der Datei), um festzustellen, ob der Binärtyp dem System bekannt war. War dies der Fall, wurde der Binärlader aufgerufen.

Wenn es sich nicht um den zum System gehörigen Binärtyp handelte, gab execve(2) einen Fehler zurück, und die Shell versuchte stattdessen, die Datei als Shell-Befehl auszuführen. Dabei wurde als Standardeinstellung was auch immer die aktuelle Shell ist festgelegt.

Später wurde ein Hack in sh(1) eingefügt, der die zwei ersten Zeichen untersuchte. Wenn diese :\n entsprachen, wurde stattdessen die csh(1)-Shell aufgerufen.

FreeBSD verfügt über eine Liste von Ladern, anstelle eines einzigen, auf #! zurückgreifenden Laders, um Shell-Interpreter oder Shell-Skripte auszuführen.

Für die Linux® ABI-Unterstützung erkennt FreeBSD die magische Zahl als ELF-Binärdatei. Der ELF-Lader sucht nach einer speziellen Kennzeichnung, die aus einem Kommentarabschnitt in der ELF-Datei besteht, und die in SVR4/Solaris™ ELF Binärdateien nicht vorhanden ist.

Damit Linux®-Binärdateien unter FreeBSD funktionieren, müssen sie mit brandelf(1) als Linux gekennzeichnet werden:

# brandelf -t Linux file

Wenn der ELF-Lader die Linux-Kennzeichnung sieht, wird ein Zeiger in der proc-Struktur ersetzt. Alle Systemaufrufe werden durch diesen Zeiger indiziert. Der Prozess wird weiterhin speziell gekennzeichnet, so dass der Trap-vector im Signal-trampoline-code eine spezielle Behandlung erfährt und das Linux®-Kernelmodul verschiedene kleinere Korrekturen vornehmen kann.

Der Linux®-Systemaufrufvektor enthält neben anderen Dingen eine Liste der sysent[]-Einträge, deren Adressen sich im Kernelmodul befinden.

Wenn ein Linux®-Programm einen Systemaufruf ausführt, dereferenziert die Trap-Behandlungsroutine den Zeiger für den Systemaufruf aus der proc-Struktur und erhält damit die Linux®-Eintrittspunkte für den Systemaufruf.

Zusätzlich verändert der Linux®-Modus die Systempfade dynamisch; genauso, wie dies die Option union beim Einbinden von Dateisystemen macht. Zuerst wird die Datei im Verzeichnis /compat/linux/Originalpfad gesucht, wenn sie dort nicht gefunden wurde, wird sie im Verzeichnis /Originalpfad gesucht. Dadurch wird sichergestellt, dass Binärdateien, die zur Ausführung andere Binärdateien benötigen, ausgeführt werden können (so dass alle Linux®-Werkzeuge unter der ABI laufen). Dies bedeutet auch, dass Linux®-Binärdateien FreeBSD-Binärdateien laden und ausführen können, wenn keine passenden Linux®-Binärdateien vorhanden sind. Ein in /compat/linux plaziertes uname(1) kann damit Linux®-Programmen vorgaukeln, dass sie auf einem Linux®-System laufen.

Im Endeffekt gibt es einen Linux®-Kernel innerhalb des FreeBSD-Kernels. Die Sprungtabellen für Linux®- beziehungsweise FreeBSD-Systemaufrufe verweisen allerdings auf dieselben Funktionen, die Kerneldienste wie Dateisystemoperationen, Operationen für den virtuellen Speicher, Signalübermittlung und System V IPC bereitstellen. Der einzige Unterschied ist, dass Binärdateien unter FreeBSD FreeBSD-glue-Funktionen verwendet werden. Linux®-Binärdateien hingegen verwenden die Linux®-glue-Funktionen. FreeBSD-glue-Funktionen sind statisch in den Kernel gelinkt, Linux®-glue-Funktionen sind statisch gelinkt oder können über ein ladbares Kernelmodul eingebunden werden.

Technisch gesehen ist dies nicht wirklich eine Emulation, sondern eine ABI-Implementation. Es wird manchmal Linux® Emulation genannt, da es zu einer Zeit implementiert wurde, in der es kein anderes Wort gab, das beschrieb, was vor sich ging. Es war falsch zu behaupten, FreeBSD würde Linux®-Binärprogramme ausführen, da der Code nicht unter FreeBSD übersetzt wurde.

Teil III. Systemadministration

Die restlichen Kapitel behandeln alle Aspekte der FreeBSD Systemadministration. Am Anfang jedes Kapitels finden Sie eine Zusammenfassung, die beschreibt, was Sie nach dem Durcharbeiten des Kapitels gelernt haben. Weiterhin werden die Voraussetzungen beschrieben, die für das Durcharbeiten des Kapitels erforderlich sind.

Diese Kapitel sollten Sie lesen, wenn Sie die Informationen darin benötigen. Sie brauchen Sie nicht in einer bestimmten Reihenfolge zu lesen, noch müssen Sie die Kapitel lesen, bevor Sie anfangen, FreeBSD zu benutzen.

Inhaltsverzeichnis
11. Konfiguration und Tuning
11.1. Übersicht
11.2. Start von Diensten
11.3. cron(8) konfigurieren
11.4. Dienste unter FreeBSD verwalten
11.5. Einrichten von Netzwerkkarten
11.6. Virtual Hosts
11.7. Konfiguration der Systemprotokollierung
11.8. Konfigurationsdateien
11.9. Einstellungen mit sysctl(8)
11.10. Tuning von Laufwerken
11.11. Einstellungen von Kernel Limits
11.12. Hinzufügen von Swap-Bereichen
11.13. Energie- und Ressourcenverwaltung
12. FreeBSDs Bootvorgang
12.1. Übersicht
12.2. FreeBSDs Bootvorgang
12.3. Willkommensbildschirme während des Bootvorgangs konfigurieren
12.4. Konfiguration von Geräten
12.5. Der Shutdown-Vorgang
13. Sicherheit
13.1. Übersicht
13.2. Einführung
13.3. Einmalpasswörter
13.4. TCP Wrapper
13.5. Kerberos
13.6. OpenSSL
13.7. VPN mit IPsec
13.8. OpenSSH
13.9. Zugriffskontrolllisten für Dateisysteme (ACL)
13.10. Sicherheitsprobleme in Software von Drittanbietern überwachen
13.11. FreeBSD Sicherheitshinweise
13.12. Prozess-Überwachung
13.13. Einschränkung von Ressourcen
13.14. Gemeinsame Administration mit Sudo
14. Jails
14.1. Übersicht
14.2. Jails - Definitionen
14.3. Einrichtung und Verwaltung von Jails
14.4. Feinabstimmung und Administration
14.5. Mehrere Jails aktualisieren
14.6. Verwaltung von Jails mit ezjail
15. Verbindliche Zugriffskontrolle
15.1. Übersicht
15.2. Schlüsselbegriffe
15.3. Erläuterung
15.4. MAC Labels verstehen
15.5. Planung eines Sicherheitsmodells
15.6. Modulkonfiguration
15.7. Das MAC Modul seeotheruids
15.8. Das MAC Modul bsdextended
15.9. Das MAC Modul ifoff
15.10. Das MAC Modul portacl
15.11. Das MAC Modul partition
15.12. Das MAC Modul Multi-Level Security
15.13. Das MAC Modul Biba
15.14. Das MAC Modul LOMAC
15.15. Beispiel 1: Nagios in einer MAC Jail
15.16. Beispiel 2: User Lock Down
15.17. Fehler im MAC beheben
16. Security Event Auditing
16.1. Einleitung
16.2. Schlüsselbegriffe
16.3. Audit Konfiguration
16.4. Audit-Trails
17. Speichermedien
17.1. Übersicht
17.2. Hinzufügen von Laufwerken
17.3. Partitionen vergrößern
17.4. USB Speichermedien
17.5. Erstellen und Verwenden von CDs
17.6. DVDs benutzen
17.7. Disketten benutzen
17.8. Datensicherung
17.9. Speicherbasierte Laufwerke
17.10. Schnappschüsse von Dateisystemen
17.11. Disk Quotas
17.12. Partitionen verschlüsseln
17.13. Den Auslagerungsspeicher verschlüsseln
17.14. Highly Available Storage (HAST)
18. GEOM: Modulares Framework zur Plattentransformation
18.1. Übersicht
18.2. RAID0 - Striping
18.3. RAID1 - Spiegelung
18.4. RAID3 - Byte-Level Striping mit dedizierter Parität
18.5. Software RAID
18.6. GEOM Gate Netzwerk
18.7. Das Labeln von Laufwerken
18.8. UFS Journaling in GEOM
19. Das Z-Dateisystem (ZFS)
19.1. Was ZFS anders macht
19.2. Schnellstartanleitung
19.3. zpool Administration
19.4. zfs Administration
19.5. Delegierbare Administration
19.6. Themen für Fortgeschrittene
19.7. Zusätzliche Informationen
19.8. ZFS-Eigenschaften und Terminologie
20. Dateisystemunterstützung
20.1. Übersicht
20.2. Linux® Dateisysteme
21. Virtualisierung
21.1. Übersicht
21.2. FreeBSD als Gast-Betriebssystem unter Parallels für Mac OS® X
21.3. FreeBSD als Gast-Betriebssystem unter Virtual PC für Windows®
21.4. FreeBSD als Gast-Betriebssystem unter VMware Fusion für Mac OS®
21.5. VirtualBox™ Gasterweiterungen auf einem FreeBSD Gast
21.6. FreeBSD als Host mit Virtualbox
21.7. FreeBSD als Host mit bhyve
22. Lokalisierung – I18N/L10N einrichten und benutzen
22.1. Übersicht
22.2. Lokale Anpassungen benutzen
22.3. I18N-Programme
22.4. Lokalisierung für einzelne Sprachen
23. FreeBSD aktualisieren
23.1. Übersicht
23.2. FreeBSD-Update
23.3. Aktualisieren der Dokumentationssammlung
23.4. Einem Entwicklungszweig folgen
23.5. Synchronisation der Quellen
23.6. Das Basissystem neu bauen
23.7. Installation mehrerer Maschinen
24. DTrace
24.1. Überblick
24.2. Unterschiede in der Implementierung
24.3. Die DTrace Unterstützung aktivieren
24.4. DTrace verwenden

Kapitel 11. Konfiguration und Tuning

Geschrieben von Chern Lee.
Nach einem Tutorium von Mike Smith.
Basiert ebenfalls auf tuning(7) von Matt Dillon.
Übersetzt von Martin Heinen.

11.1. Übersicht

Die richtige Systemkonfiguration ist einer der wichtigsten Aspekte unter FreeBSD. Dieses Kapitel beschreibt die Konfiguration von FreeBSD sowie Maßnahmen zur Leistungssteigerung von FreeBSD-Systemen.

Nachdem Sie dieses Kapitel durchgearbeitet haben, werden Sie Folgendes wissen:

  • Die Grundlagen der Konfiguration von rc.conf und die Skripte zum Starten von Anwendungen in /usr/local/etc/rc.d.

  • Wie Sie Netzwerkkarten konfigurieren und testen.

  • Wie Sie virtuelle Hosts und Netzwerkgeräte konfigurieren.

  • Wie Sie die verschiedenen Konfigurationsdateien in /etc benutzen.

  • Wie Sie mit FreeBSD mit sysctl(8)-Variablen einstellen können.

  • Wie Sie die Platten-Performance einstellen und Kernel-Parameter modifizieren können.

Bevor Sie dieses Kapitel lesen, sollten Sie

11.2. Start von Diensten

Beigetragen von Tom Rhodes.

Viele Benutzer installieren Software Dritter auf FreeBSD mithilfe der Ports-Sammlung. Häufig soll die Software bei einem Systemstart mitgestartet werden. Beispielsweise sollen die Dienste mail/postfix oder www/apache22 nach einem Systemstart laufen. Dieser Abschnitt stellt die Startprozeduren für Software Dritter vor.

Unter FreeBSD werden die meisten der im System enthaltenen Dienste wie cron(8) mithilfe von Systemskripten gestartet.

11.2.1. Dienste über das rc.d-System starten

Mit rc.d lässt sich der Start von Anwendungen besser steuern und es sind mehr Funktionen verfügbar. Mit den in Abschnitt 11.4, „Dienste unter FreeBSD verwalten“ besprochenen Schlüsselwörtern können Anwendungen in einer bestimmten Reihenfolge gestartet werden und Optionen können in rc.conf statt fest im Startskript der Anwendung festgelegt werden. Ein einfaches Startskript sieht wie folgt aus:

#!/bin/sh
#
# PROVIDE: utility
# REQUIRE: DAEMON
# KEYWORD: shutdown

. /etc/rc.subr

name=utility
rcvar=utility_enable

command="/usr/local/sbin/utility"

load_rc_config $name

#
# DO NOT CHANGE THESE DEFAULT VALUES HERE
# SET THEM IN THE /etc/rc.conf FILE
#
utility_enable=${utility_enable-"NO"}
pidfile=${utility_pidfile-"/var/run/utility.pid"}

run_rc_command "$1"

Dieses Skript stellt sicher, dass utility nach den DAEMON-Pseudodiensten gestartet wird. Es stellt auch eine Methode bereit, die Prozess-ID (PID) der Anwendung in einer Datei zu speichern.

In /etc/rc.conf könnte für diese Anwendung die folgende Zeile stehen:

utility_enable="YES"

Die Methode erleichtert den Umgang mit Kommandozeilenargumenten, bindet Funktionen aus /etc/rc.subr ein, ist kompatibel zu rcorder(8) und lässt sich über rc.conf leichter konfigurieren.

11.2.2. Andere Arten, um Dienste zu starten

Andere Dienste können über inetd(8) gestartet werden. Die Konfiguration von inetd(8) wird in Abschnitt 28.2, „Der inetd Super-Server ausführlich beschrieben.

Systemdienste können auch mit cron(8) gestartet werden. Dieser Ansatz hat einige Vorteile; nicht zuletzt, weil cron(8) die Prozesse unter dem Eigentümer der crontab startet, ist es möglich, dass Dienste von normalen Benutzern gestartet und gepflegt werden können.

Für die Zeitangabe in cron(8) kann @reboot eingesetzt werden. Damit wird das Kommando gestartet, wenn cron(8) kurz nach dem Systemboot gestartet wird.

11.3. cron(8) konfigurieren

Beigetragen von Tom Rhodes.

Ein sehr nützliches Werkzeug von FreeBSD ist cron. Dieses Programm läuft im Hintergrund und überprüft fortlaufend /etc/crontab und /var/cron/tabs. In diesen Dateien wird festgelegt, welche Programme zu welchem Zeitpunkt von cron ausgeführt werden sollen. Jede Zeile in diesen Dateien definiert eine auszuführende Aufgabe, die auch als Cronjob bezeichnet wird.

Das Werkzeug verwendet zwei verschiedene Konfigurationsdateien: die System-crontab, welche nicht verändert werden sollte und die Benutzer-crontabs, die nach Bedarf erstellt und geändert werden können. Das Format, dass von diesen beiden Dateien verwendet wird, ist in crontab(5) dokumentiert. Das Format der System-crontab in /etc/crontab enthält das Feld who, das in der Benutzer-crontab nicht existiert. Dieses Feld gibt den Benutzer an, mit dem die Aufgabe ausgeführt wird. Die Aufgaben in den Benutzer-crontabs laufen unter dem Benutzer, der die crontab erstellt hat.

Benutzer-crontabs erlauben es den Benutzern, ihre eigenen Aufgaben zu planen. Der Benutzer root kann auch seine eigene Benutzer-crontab haben, um Aufgaben zu planen, die nicht in der System-crontab existieren.

Hier ist ein Beispieleintrag aus der System-crontab, /etc/crontab:

# /etc/crontab - root's crontab for FreeBSD
#
#$FreeBSD$
# 1
SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin 2
#
#
#minute	hour	mday	month	wday	who	command 3
#
*/5	*	*	*	*	root	/usr/libexec/atrun 4

1

Das Zeichen # am Zeilenanfang leitet einen Kommentar ein. Benutzen Sie Kommentare, um die Funktion eines Eintrags zu erläutern. Kommentare müssen in einer extra Zeile stehen. Sie können nicht in derselben Zeile wie ein Kommando stehen, da sie sonst Teil des Kommandos wären. Leerzeilen in dieser Datei werden ignoriert.

2

Umgebungsvariablen werden mit dem Gleichheits-Zeichen (=) festgelegt. Im Beispiel werden die Variablen SHELL, PATH und HOME definiert. Wenn die Variable SHELL nicht definiert wird, benutzt cron die Bourne Shell. Wird die Variable PATH nicht gesetzt, müssen alle Pfadangaben absolut sein, da es keinen Vorgabewert für PATH gibt.

3

In dieser Zeile werden sieben Felder der System-crontab beschrieben: minute, hour, mday, month, wday, who und command. Das Feld minute legt die Minute fest in der die Aufgabe ausgeführt wird, das Feld hour die Stunde, das Feld mday den Tag des Monats. Im Feld month wird der Monat und im Feld wday der Wochentag festgelegt. Alle Felder müssen numerische Werte enthalten und die Zeitangaben sind im 24-Stunden-Format. Das Zeichen * repräsentiert dabei alle möglichen Werte für dieses Feld. Das Feld who gibt es nur in der System-crontab und gibt den Account an, unter dem das Kommando laufen soll. Im letzten Feld wird schließlich das auszuführende Kommando angegeben.

4

Diese Zeile definiert die Werte für den Cronjob. Die Zeichenfolge */5 gefolgt von mehreren *-Zeichen bedeutet, dass /usr/libexec/atrun von root alle fünf Minuten aufgerufen wird.

Bei den Kommandos können beliebig viele Optionen angegeben werden. Wenn das Kommando zu lang ist und auf der nächsten Zeile fortgesetzt werden soll, muss am Ende der Zeile das Fortsetzungszeichen (\) angegeben werden.

11.3.1. Eine Benutzer-crontab erstellen

Rufen Sie crontab im Editor-Modus auf, um eine Benutzer-crontab zu erstellen:

% crontab -e

Dies wird die crontab des Benutzers mit dem voreingestellten Editor öffnen. Wenn der Benutzer diesen Befehl zum ersten Mal ausführt, wird eine leere Datei geöffnet. Nachdem der Benutzer eine crontab erstellt hat, wird die Datei mit diesem Kommando zur Bearbeitung geöffnet.

Es empfiehlt sich, die folgenden Zeilen an den Anfang der crontab-Datei hinzuzufügen, um die Umgebungsvariablen zu setzen und die einzelnen Felder zu beschreiben:

SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin
# Order of crontab fields
# minute	hour	mday	month	wday	command

Fügen Sie dann für jedes Kommando oder Skript eine Zeile hinzu, mit der Angabe wann das Kommando ausgeführt werden soll. In diesem Beispiel wird ein Bourne Shell Skript täglich um 14:00 Uhr ausgeführt. Da der Pfad zum Skript nicht in PATH enthalten ist, wird der vollständige Pfad zum Skript angegeben:

0	14	*	*	*	/usr/home/dru/bin/mycustomscript.sh

Tipp:

Bevor Sie ein eigenes Skript verwenden, stellen Sie sicher, dass es ausführbar ist und dass es mit den wenigen Umgebungsvariablen von cron funktioniert. Um die Umgebung nachzubilden, die der obige cron-Eintrag bei der Ausführung verwenden würde, benutzen Sie dieses Kommando:

% env -i SHELL=/bin/sh PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin HOME=/home/dru LOGNAME=dru /usr/home/dru/bin/mycustomscript.sh

Die Umgebung von cron wird in crontab(5) beschrieben. Es ist wichtig, dass sichergestellt wird, dass die Skripte in der Umgebung von cron korrekt arbeiten, besonders wenn Befehle enthalten sind, welche Dateien mit Wildcards löschen.

Wenn Sie mit der Bearbeitung der crontab fertig sind, speichern Sie die Datei. Sie wird automatisch installiert und cron wird die darin enthalten Cronjobs zu den angegebenen Zeiten ausführen. Um die Cronjobs in einer crontab aufzulisten, verwenden Sie diesen Befehl:

% crontab -l
0	14	*	*	*	/usr/home/dru/bin/mycustomscript.sh

Um alle Cronjobs einer Benutzer-crontab zu löschen, verwenden Sie diesen Befehl:

% crontab -r
remove crontab for dru? y

11.4. Dienste unter FreeBSD verwalten

Beigetragen von Tom Rhodes.

FreeBSD verwendet die vom rc(8)-System bereit gestellten Startskripten beim Systemstart und für die Verwaltung von Diensten. Die Skripte sind in /etc/rc.d abgelegt und bieten grundlegende Dienste an, die über die Optionen start, stop und restart des service(8) Kommandos kontrolliert werden können. Beispielsweise kann sshd(8) mit dem nachstehenden Kommando neu gestartet werden:

# service sshd restart

Analog können Sie andere Dienste starten und stoppen. Normalerweise werden die Dienste beim Systemstart über Einträge in der Datei rc.conf(5) automatisch gestartet. natd(8) wird zum Beispiel mit dem folgenden Eintrag in /etc/rc.conf aktiviert:

natd_enable="YES"

Wenn dort bereits die Zeile natd_enable="NO" existiert, ändern Sie NO in YES. Die rc(8)-Skripten starten, wie unten beschrieben, auch abhängige Dienste.

Da das rc(8)-System primär zum automatischen Starten und Stoppen von Systemdiensten dient, funktionieren die Optionen start, stop und restart nur, wenn die entsprechenden Variablen in /etc/rc.conf gesetzt sind. Beispielsweise funktioniert sshd restart nur dann, wenn in /etc/rc.conf die Variable sshd_enable auf YES gesetzt wurde. Wenn Sie die Optionen start, stop oder restart unabhängig von den Einstellungen in /etc/rc.conf benutzen wollen, müssen Sie den Optionen mit dem Präfix one verwenden. Um beispielsweise sshd unabhängig von den Einstellungen in /etc/rc.conf neu zu starten, benutzen Sie das nachstehende Kommando:

# service sshd onerestart

Ob ein Dienst in /etc/rc.conf aktiviert ist, können Sie herausfinden, indem Sie das entsprechende rc(8)-Skript mit der Option rcvar aufrufen. Dieses Beispiel prüft, ob der sshd-Dienst in /etc/rc.conf aktiviert ist:

# service sshd rcvar
# sshd
#
sshd_enable="YES"
#   (default: "")

Anmerkung:

Die Zeile # sshd wird von dem Kommando ausgegeben; sie kennzeichnet nicht die Eingabeaufforderung von root.

Ob ein Dienst läuft, kann mit status abgefragt werden. Das folgende Kommando überprüft, ob sshd auch wirklich gestartet wurde:

# service sshd status
sshd is running as pid 433.

Einige Dienste können über die Option reload neu initialisiert werden. Dazu wird dem Dienst über ein Signal mitgeteilt, dass er seine Konfigurationsdateien neu einlesen soll. Oft wird dazu das Signal SIGHUP verwendet. Beachten Sie aber, dass nicht alle Dienste diese Option unterstützen.

Die meisten Systemdienste werden beim Systemstart vom rc(8)-System gestartet. Zum Beispiel aktiviert das Skript /etc/rc.d/bgfsck die Prüfung von Dateisystemen im Hintergrund. Das Skript gibt die folgende Meldung aus, wenn es gestartet wird:

Starting background file system checks in 60 seconds.

Dieses Skript wird während des Systemstarts ausgeführt und führt eine Überprüfung der Dateisysteme im Hintergrund durch.

Viele Systemdienste hängen von anderen Diensten ab. yp(8) und andere RPC-basierende Systeme hängen beispielsweise von dem rpcbind-Dienst ab. Im Kopf der Startskripten befinden sich die Informationen über Abhängigkeiten von anderen Diensten und weitere Metadaten. Mithilfe dieser Daten bestimmt das Programm rcorder(8) beim Systemstart die Startreihenfolge der Dienste.

Folgende Schlüsselwörter müssen im Kopf aller Startskripten verwendet werden, da sie von rc.subr(8) zum Aktivieren des Startskripts benötigt werden:

  • PROVIDE: Gibt die Namen der Dienste an, die mit dieser Datei zur Verfügung gestellt werden.

Die folgenden Schlüsselwörter können im Kopf des Startskripts angegeben werden. Sie sind zwar nicht unbedingt notwendig, sind aber hilfreich beim Umgang mit rcorder(8):

  • REQUIRE: Gibt die Namen der Dienste an, von denen dieser Dienst abhängt. Ein Skript, das dieses Schlüsselwort enthält wird nach den angegebenen Diensten ausgeführt.

  • BEFORE: Zählt Dienste auf, die auf diesen Dienst angewiesen sind. Ein Skript, dass dieses Schlüsselwort enthält wird vor den angegebenen Diensten ausgeführt.

Durch das Verwenden dieser Schlüsselwörter kann ein Administrator die Startreihenfolge von Systemdiensten feingranuliert steuern, ohne mit den Schwierigkeiten des runlevel-Systems anderer UNIX® Systeme kämpfen zu müssen.

Weitere Informationen über das rc(8)-System finden Sie in rc(8) und rc.subr(8). Wenn Sie eigene rc.d-Skripte schreiben wollen, sollten Sie diesen Artikel lesen.

11.4.1. Systemspezifische Konfiguration

Informationen zur Systemkonfiguration sind hauptsächlich in /etc/rc.conf, die meist beim Start des Systems verwendet wird, abgelegt. Sie enthält die Konfigurationen für die rc* Dateien.

In rc.conf werden die Vorgabewerte aus /etc/defaults/rc.conf überschrieben. Die Vorgabedatei sollte nicht editiert werden. Stattdessen sollten alle systemspezifischen Änderungen in rc.conf vorgenommen werden.

Um den administrativen Aufwand gering zu halten, existieren in geclusterten Anwendungen mehrere Strategien, globale Konfigurationen von systemspezifischen Konfigurationen zu trennen. Der empfohlene Weg hält die globale Konfiguration in einer separaten Datei z.B. /etc/rc.conf.local. Zum Beispiel so:

  • /etc/rc.conf:

    sshd_enable="YES"
    keyrate="fast"
    defaultrouter="10.1.1.254"
  • /etc/rc.conf.local:

    hostname="node1.example.org"
    ifconfig_fxp0="inet 10.1.1.1/8"

/etc/rc.conf kann dann auf jedes System mit rsync oder puppet verteilt werden, während /etc/rc.conf.local dabei systemspezifisch bleibt.

Bei einem Upgrade des Systems wird /etc/rc.conf nicht überschrieben, so dass die Systemkonfiguration erhalten bleibt.

Tipp:

/etc/rc.conf und /etc/rc.conf.local werden von sh(1) gelesen. Dies erlaubt es dem Systemadministrator, komplexe Konfigurationsszenarien zu erstellen. Lesen Sie rc.conf(5), um weitere Informationen zu diesem Thema zu erhalten.

11.5. Einrichten von Netzwerkkarten

Beigetragen von Marc Fonvieille.

Die Konfiguration einer Netzwerkkarte gehört zu den alltäglichen Aufgaben eines FreeBSD Administrators.

11.5.1. Bestimmen des richtigen Treibers

Ermitteln Sie zunächst das Modell der Netzwerkkarte und den darin verwendeten Chip. FreeBSD unterstützt eine Vielzahl von Netzwerkkarten. Prüfen Sie die Hardware-Kompatibilitätsliste für das FreeBSD Release, um zu sehen ob die Karte unterstützt wird.

Wenn die Karte unterstützt wird, müssen Sie den Treiber für die Karte bestimmen. /usr/src/sys/conf/NOTES und /usr/src/sys/arch/conf/NOTES enthalten eine Liste der verfügbaren Treiber mit Informationen zu den unterstützten Chipsätzen. Wenn Sie sich nicht sicher sind, ob Sie den richtigen Treiber ausgewählt haben, lesen Sie die Hilfeseite des Treibers. Sie enthält weitere Informationen über die unterstützten Geräte und bekannte Einschränkungen des Treibers.

Die Treiber für gebräuchliche Netzwerkkarten sind schon im GENERIC-Kernel enthalten, so dass die Karte während des Systemstarts erkannt werden sollte. Die Systemmeldungen können Sie sich mit more /var/run/dmesg.boot ansehen. Mit der Leertaste können Sie durch den Text blättern. In diesem Beispiel findet das System zwei Karten, die den dc(4)-Treiber benutzen:

dc0: <82c169 PNIC 10/100BaseTX> port 0xa000-0xa0ff mem 0xd3800000-0xd38
000ff irq 15 at device 11.0 on pci0
miibus0: <MII bus> on dc0
bmtphy0: <BCM5201 10/100baseTX PHY> PHY 1 on miibus0
bmtphy0:  10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto
dc0: Ethernet address: 00:a0:cc:da:da:da
dc0: [ITHREAD]
dc1: <82c169 PNIC 10/100BaseTX> port 0x9800-0x98ff mem 0xd3000000-0xd30
000ff irq 11 at device 12.0 on pci0
miibus1: <MII bus> on dc1
bmtphy1: <BCM5201 10/100baseTX PHY> PHY 1 on miibus1
bmtphy1:  10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto
dc1: Ethernet address: 00:a0:cc:da:da:db
dc1: [ITHREAD]

Ist der Treiber für die Netzwerkkarte nicht in GENERIC enthalten, muss zunächst ein Treiber geladen werden, um die Karte konfigurieren und benutzen zu können. Dafür gibt es zwei Methoden:

  • Am einfachsten ist es, das Kernelmodul für die Karte mit kldload(8) zu laden. Um den Treiber automatisch beim Systemstart zu laden, fügen Sie die entsprechende Zeile in /boot/loader.conf ein. Es gibt nicht für alle Karten Kernelmodule.

  • Alternativ kann der Treiber für die Karte fest in den Kernel eingebunden werden. Lesen Sie dazu /usr/src/sys/conf/NOTES, /usr/src/sys/arch/conf/NOTES und die Hilfeseite des Treibers, den Sie in den Kernel einbinden möchten, an. Die Übersetzung des Kernels wird in Kapitel 8, Konfiguration des FreeBSD-Kernels beschrieben. Wenn die Karte während des Systemstarts vom Kernel erkannt wurde, muss der Kernel nicht neu übersetzt werden.

11.5.1.1. Windows®-NDIS-Treiber einsetzen

Leider stellen nach wie vor viele Unternehmen die Spezifikationen ihrer Treiber der Open Source Gemeinde nicht zur Verfügung, weil sie diese Informationen als Geschäftsgeheimnisse betrachten. Daher haben die Entwickler von FreeBSD und anderen Betriebssystemen nur zwei Möglichkeiten. Entweder versuchen sie in einem aufwändigen Prozess den Treiber durch Reverse Engineering nachzubauen, oder sie versuchen, die vorhandenen Binärtreiber der Microsoft® Windows®-Plattform zu verwenden.

FreeBSD bietet native Unterstützung für die Network Driver Interface Specification (NDIS). ndisgen(8) wird benutzt, um einen Windows® XP-Treiber in ein Format zu konvertieren, das von FreeBSD verwendet werden kann. Da der ndis(4)-Treiber einen Windows® XP-Binärtreiber nutzt, kann er nur auf i386™- und amd64-Systemen verwendet werden. Unterstützt werden PCI, CardBus, PCMCIA und USB-Geräte.

Um den NDISulator zu verwenden, benötigen Sie drei Dinge:

  1. Die FreeBSD Kernelquellen

  2. Den Windows® XP-Binärtreiber mit der Erweiterung .SYS

  3. Die Konfigurationsdatei des Windows® XP-Treibers mit der Erweiterung .INF

Laden Sie die .SYS- und .INF-Dateien für die Karte. Diese befinden sich meistens auf einer beigelegten CD-ROM, oder können von der Internetseite des Herstellers heruntergeladen werden. In den folgenden Beispielen werden die Dateien W32DRIVER.SYS und W32DRIVER.INF verwendet.

Die Architektur des Treibers muss zur jeweiligen Version von FreeBSD passen. Benutzen Sie einen Windows® 32-bit Treiber für FreeBSD/i386. Für FreeBSD/amd64 wird ein Windows® 64-bit Treiber benötigt.

Als Nächstes kompilieren Sie den binären Treiber, um ein Kernelmodul zu erzeugen. Dazu rufen Sie als root ndisgen(8) auf:

# ndisgen /path/to/W32DRIVER.INF /path/to/W32DRIVER.SYS

Dieses Kommando arbeitet interaktiv, benötigt es weitere Informationen, so fragt es Sie danach. Das Ergebnis ist ein neu erzeugtes Kernelmodul im aktuellen Verzeichnis. Benutzen Sie kldload(8) um das neue Modul zu laden:

# kldload ./W32DRIVER.ko

Neben dem erzeugten Kernelmodul müssen auch die Kernelmodule ndis.ko und if_ndis.ko geladen werden. Dies passiert automatisch, wenn Sie ein von ndis(4) abhängiges Modul laden. Andernfalls können die Module mit den folgenden Kommandos manuell geladen werden:

# kldload ndis
# kldload if_ndis

Der erste Befehl lädt den ndis(4)-Miniport-Treiber, der zweite das tatsächliche Netzwerkgerät.

Überprüfen Sie die Ausgabe von dmesg(8) auf eventuelle Fehler während des Ladevorgangs. Gab es dabei keine Probleme, sollte die Ausgabe wie folgt aussehen:

ndis0: <Wireless-G PCI Adapter> mem 0xf4100000-0xf4101fff irq 3 at device 8.0 on pci1
ndis0: NDIS API version: 5.0
ndis0: Ethernet address: 0a:b1:2c:d3:4e:f5
ndis0: 11b rates: 1Mbps 2Mbps 5.5Mbps 11Mbps
ndis0: 11g rates: 6Mbps 9Mbps 12Mbps 18Mbps 36Mbps 48Mbps 54Mbps

Ab jetzt kann das Gerät ndis0 wie jede andere Netzwerkkarte konfiguriert werden.

Um die ndis(4)-Module automatisch beim Systemstart zu laden, kopieren Sie das erzeugte Modul W32DRIVER_SYS.ko nach /boot/modules. Danach fügen Sie die folgende Zeile in /boot/loader.conf ein:

W32DRIVER_SYS_load="YES"

11.5.2. Konfiguration von Netzwerkkarten

Nachdem der richtige Treiber für die Karte geladen ist, muss die Karte konfiguriert werden. Unter Umständen ist die Karte schon während der Installation mit bsdinstall(8) konfiguriert worden.

Das nachstehende Kommando zeigt die Konfiguration der Netzwerkkarten an:

% ifconfig
dc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
        options=80008<VLAN_MTU,LINKSTATE>
        ether 00:a0:cc:da:da:da
        inet 192.168.1.3 netmask 0xffffff00 broadcast 192.168.1.255
        media: Ethernet autoselect (100baseTX <full-duplex>)
        status: active
dc1: flags=8802<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
        options=80008<VLAN_MTU,LINKSTATE>
        ether 00:a0:cc:da:da:db
        inet 10.0.0.1 netmask 0xffffff00 broadcast 10.0.0.255
        media: Ethernet 10baseT/UTP
        status: no carrier
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384
        options=3<RXCSUM,TXCSUM>
        inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4
        inet6 ::1 prefixlen 128
        inet 127.0.0.1 netmask 0xff000000
        nd6 options=3<PERFORMNUD,ACCEPT_RTADV>

Im Beispiel werden Informationen zu den folgenden Geräten angezeigt:

  • dc0: Der erste Ethernet-Adapter.

  • dc1: Der zweite Ethernet-Adapter.

  • lo0: Das Loopback-Gerät.

Der Name der Netzwerkkarte wird aus dem Namen des Treibers und einer Zahl zusammengesetzt. Die Zahl gibt die Reihenfolge an, in der die Geräte beim Systemstart erkannt wurden. Die dritte Karte, die den sis(4) Treiber benutzt, würde beispielsweise sis2 heißen.

Der Adapter dc0 aus dem Beispiel ist aktiv. Sie erkennen das an den folgenden Hinweisen:

  1. UP bedeutet, dass die Karte konfiguriert und aktiv ist.

  2. Der Karte wurde die Internet-Adresse (inet) 192.168.1.3 zugewiesen.

  3. Die Subnetzmaske ist richtig (0xffffff00 entspricht 255.255.255.0).

  4. Die Broadcast-Adresse 192.168.1.255 ist richtig.

  5. Die MAC-Adresse der Karte (ether) lautet 00:a0:cc:da:da:da.

  6. Die automatische Medienerkennung ist aktiviert (media: Ethernet autoselect (100baseTX <full-duplex>)). Der Adapter dc1 benutzt das Medium 10baseT/UTP. Weitere Informationen über die einstellbaren Medien entnehmen Sie der Hilfeseite des Treibers.

  7. Der Verbindungsstatus (status) ist active, das heißt es wurde ein Trägersignal entdeckt. Für dc1 wird status: no carrier angezeigt. Das ist normal, wenn kein Kabel an der Karte angeschlossen ist.

Wäre die Karte nicht konfiguriert, würde die Ausgabe von ifconfig(8) so aussehen:

dc0: flags=8843<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500
        options=80008<VLAN_MTU,LINKSTATE>
        ether 00:a0:cc:da:da:da
        media: Ethernet autoselect (100baseTX <full-duplex>)
        status: active

Die Karte muss als Benutzer root konfiguriert werden. Die Konfiguration kann auf der Kommandozeile mit ifconfig(8) erfolgen. Allerdings gehen diese Informationen bei einem Neustart verloren. Tragen Sie stattdessen die Konfiguration in /etc/rc.conf ein. Wenn es im LAN einen DHCP-Server gibt, fügen Sie einfach folgende Zeile hinzu:

ifconfig_dc0="DHCP"

Ersetzen Sie >dc0 durch die richtigen Werte für das System.

Nachdem Sie die Zeile hinzugefügt haben, folgen Sie den Anweisungen in Abschnitt 11.5.3, „Test und Fehlersuche“.

Anmerkung:

Wenn das Netzwerk während der Installation konfiguriert wurde, existieren vielleicht schon Einträge für die Netzwerkkarte(n). Überprüfen Sie /etc/rc.conf bevor Sie weitere Zeilen hinzufügen.

Falls kein DHCP-Server zur Verfügung steht, müssen die Netzwerkkarten manuell konfiguriert werden. Fügen Sie für jede Karte im System eine Zeile hinzu, wie in diesem Beispiel zu sehen:

ifconfig_dc0="inet 192.168.1.3 netmask 255.255.255.0"
ifconfig_dc1="inet 10.0.0.1 netmask 255.255.255.0 media 10baseT/UTP"

Ersetzen Sie dc0 und dc1 und die IP-Adressen durch die richtigen Werte für das System. Die Manualpages des Treibers, ifconfig(8) und rc.conf(5) enthalten weitere Einzelheiten über verfügbare Optionen und die Syntax von /etc/rc.conf.

Wenn das Netzwerk kein DNS benutzt, können Sie in /etc/hosts die Namen und IP-Adressen der Rechner des LANs eintragen. Weitere Informationen entnehmen Sie hosts(5) und /usr/share/examples/etc/hosts.

Anmerkung:

Falls kein DHCP-Server zur Verfügung steht, Sie aber Zugang zum Internet benötigen, müssen Sie das Standard-Gateway und die Nameserver manuell konfigurieren:

# echo 'defaultrouter="Ihr_Default_Gateway"' >> /etc/rc.conf
# echo 'nameserver Ihr_DNS_Server' >> /etc/resolv.conf

11.5.3. Test und Fehlersuche

Nachdem die notwendigen Änderungen in /etc/rc.conf gespeichert wurden, kann das System neu gestartet werden, um die Konfiguration zu testen und zu überprüfen, ob das System ohne Fehler neu gestartet wurde. Alternativ können Sie mit folgenden Befehl die Netzwerkeinstellungen neu initialisieren:

# service netif restart

Anmerkung:

Falls in /etc/rc.conf ein Default-Gateway definiert wurde, müssen Sie auch den folgenden Befehl ausführen:

# service routing restart

Wenn das System gestartet ist, sollten Sie die Netzwerkkarten testen.

11.5.3.1. Test der Ethernet-Karte

Um zu prüfen, ob die Ethernet-Karte richtig konfiguriert ist, testen Sie zunächst mit ping(8) den Adapter selbst und sprechen Sie dann eine andere Maschine im LAN an.

Zuerst, der Test des Adapters:

% ping -c5 192.168.1.3
PING 192.168.1.3 (192.168.1.3): 56 data bytes
64 bytes from 192.168.1.3: icmp_seq=0 ttl=64 time=0.082 ms
64 bytes from 192.168.1.3: icmp_seq=1 ttl=64 time=0.074 ms
64 bytes from 192.168.1.3: icmp_seq=2 ttl=64 time=0.076 ms
64 bytes from 192.168.1.3: icmp_seq=3 ttl=64 time=0.108 ms
64 bytes from 192.168.1.3: icmp_seq=4 ttl=64 time=0.076 ms

--- 192.168.1.3 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.074/0.083/0.108/0.013 ms
% ping -c5 192.168.1.2
PING 192.168.1.2 (192.168.1.2): 56 data bytes
64 bytes from 192.168.1.2: icmp_seq=0 ttl=64 time=0.726 ms
64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.766 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=0.700 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=0.747 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=0.704 ms

--- 192.168.1.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.700/0.729/0.766/0.025 ms

Um die Namensauflösung zu testen, verwenden Sie den Namen der Maschine anstelle der IP-Adresse. Wenn kein DNS-Server im Netzwerk vorhanden ist, muss /etc/hosts entsprechend eingerichtet sein. Fügen Sie dazu die Namen und IP-Adressen der Rechner im LAN in /etc/hosts hinzu, falls sie nicht bereits vorhanden sind. Weitere Informationen finden Sie in hosts(5) und /usr/share/examples/etc/hosts.

11.5.3.2. Fehlersuche

Fehler zu beheben, ist immer sehr mühsam. Indem Sie die einfachen Sachen zuerst prüfen, erleichtern Sie sich die Aufgabe. Steckt das Netzwerkkabel? Sind die Netzwerkdienste richtig konfiguriert? Funktioniert die Firewall? Wird die Netzwerkkarte von FreeBSD unterstützt? Lesen Sie immer die Hardware-Informationen des Releases, bevor Sie einen Fehlerbericht einsenden. Aktualisieren Sie die FreeBSD-Version auf die neueste -STABLE Version. Suchen Sie in den Archiven der Mailinglisten und im Internet nach bekannten Lösungen.

Wenn die Karte funktioniert, die Verbindungen aber zu langsam sind, sollten Sie tuning(7) lesen. Prüfen Sie auch die Netzwerkkonfiguration, da falsche Einstellungen die Ursache für langsame Verbindungen sein können.

Wenn Sie viele device timeout Meldungen in den Systemprotokollen finden, prüfen Sie, dass es keinen Konflikt zwischen der Netzwerkkarte und anderen Geräten des Systems gibt. Überprüfen Sie nochmals die Verkabelung. Unter Umständen benötigen Sie eine andere Netzwerkkarte.

Bei watchdog timeout Fehlermeldungen, kontrollieren Sie zuerst die Verkabelung. Überprüfen Sie dann, ob der PCI-Steckplatz der Karte Bus Mastering unterstützt. Auf einigen älteren Motherboards ist das nur für einen Steckplatz (meistens Steckplatz 0) der Fall. Lesen Sie in der Dokumentation der Karte und des Motherboards nach, ob das vielleicht die Ursache des Problems sein könnte.

Die Meldung No route to host erscheint, wenn das System ein Paket nicht zustellen kann. Das kann vorkommen weil beispielsweise keine Default-Route gesetzt wurde oder das Netzwerkkabel nicht richtig steckt. Schauen Sie in der Ausgabe von netstat -rn nach, ob eine gültige Route zu dem Zielsystem existiert. Wenn nicht, lesen Sie Abschnitt 30.2, „Gateways und Routen“.

Die Meldung ping: sendto: Permission denied wird oft von einer falsch konfigurierten Firewall verursacht. Wenn keine Regeln definiert wurden, blockiert eine aktivierte Firewall alle Pakete, selbst einfache ping(8)-Pakete. Weitere Informationen erhalten Sie in Kapitel 29, Firewalls.

Falls die Leistung der Karte schlecht ist, setzen Sie die Medienerkennung von autoselect (automatisch) auf das richtige Medium. In vielen Fällen löst diese Maßnahme Leistungsprobleme. Wenn nicht, prüfen Sie nochmal die Netzwerkeinstellungen und lesen Sie tuning(7).

11.6. Virtual Hosts

Ein gebräuchlicher Zweck von FreeBSD ist das virtuelle Hosting, bei dem ein Server im Netzwerk wie mehrere Server aussieht. Dies wird dadurch erreicht, dass einem Netzwerkinterface mehrere Netzwerk-Adressen zugewiesen werden.

Ein Netzwerkinterface hat eine echte Adresse und kann beliebig viele alias Adressen haben. Die Aliase werden durch entsprechende alias Einträge in /etc/rc.conf festgelegt, wie in diesem Beispiel zu sehen ist:

ifconfig_fxp0_alias0="inet xxx.xxx.xxx.xxx netmask xxx.xxx.xxx.xxx"

Beachten Sie, dass die Alias-Einträge mit alias0 anfangen müssen und weiter hochgezählt werden, das heißt alias1, alias2, und so weiter. Die Konfiguration der Aliase hört bei der ersten fehlenden Zahl auf.

Die Berechnung der Alias-Netzwerkmasken ist wichtig. Für jedes Interface muss es eine Adresse geben, die die Netzwerkmaske des Netzwerkes richtig beschreibt. Alle anderen Adressen in diesem Netzwerk haben dann eine Netzwerkmaske, die mit 1 gefüllt ist, also 255.255.255.255 oder hexadezimal 0xffffffff.

Als Beispiel betrachten wir den Fall, in dem fxp0 mit zwei Netzwerken verbunden ist: dem Netzwerk 10.1.1.0 mit der Netzwerkmaske 255.255.255.0 und dem Netzwerk 202.0.75.16 mit der Netzwerkmaske 255.255.255.240. Das System soll die Adressen 10.1.1.1 bis 10.1.1.5 und 202.0.75.17 bis 202.0.75.20 belegen. Nur die erste Adresse in einem Netzwerk sollte die richtige Netzwerkmaske haben. Alle anderen Adressen (10.1.1.2 bis 10.1.1.5 und 202.0.75.18 bis 202.0.75.20) müssen die Maske 255.255.255.255 erhalten.

Die folgenden Einträge in /etc/rc.conf konfigurieren den Adapter entsprechend dem Beispiel:

ifconfig_fxp0="inet 10.1.1.1 netmask 255.255.255.0"
ifconfig_fxp0_alias0="inet 10.1.1.2 netmask 255.255.255.255"
ifconfig_fxp0_alias1="inet 10.1.1.3 netmask 255.255.255.255"
ifconfig_fxp0_alias2="inet 10.1.1.4 netmask 255.255.255.255"
ifconfig_fxp0_alias3="inet 10.1.1.5 netmask 255.255.255.255"
ifconfig_fxp0_alias4="inet 202.0.75.17 netmask 255.255.255.240"
ifconfig_fxp0_alias5="inet 202.0.75.18 netmask 255.255.255.255"
ifconfig_fxp0_alias6="inet 202.0.75.19 netmask 255.255.255.255"
ifconfig_fxp0_alias7="inet 202.0.75.20 netmask 255.255.255.255"

Dies kann mit einer durch Leerzeichen getrennten Liste von IP-Adressbereichen auch einfacher ausgedrückt werden. Die erste Adresse hat wieder die angegebene Netzwerkmaske und die zusätzlichen Adressen haben die Netzwerkmaske 255.255.255.255.

ifconfig_fxp0_aliases="inet 10.1.1.1-5/24 inet 202.0.75.17-20/28"

11.7. Konfiguration der Systemprotokollierung

Beigetragen von Niclas Zeising.

Die Aufzeichnung und Kontrolle von Log-Meldungen ist ein wichtiger Aspekt der Systemadministration. Die Informationen werden nicht nur verwendet um Hard- und Softwarefehler ausfindig zu machen, auch zur Überwachung der Sicherheit und der Reaktion bei einem Zwischenfall spielen diese Aufzeichnungen eine wichtige Rolle. Die meisten Systemdienste und Anwendungen erzeugen Log-Meldungen.

FreeBSD stellt mit syslogd ein Werkzeug zur Verwaltung von Protokollen bereit. In der Voreinstellung wird syslogd beim Booten automatisch gestartet. Dieses Verhalten wird über die Variable syslogd_enable in /etc/rc.conf gesteuert. Dazu gibt es noch zahlreiche Argumente, die in der Variable syslogd_flags in /etc/rc.conf gesetzt werden können. Lesen Sie syslogd(8) für weitere Informationen über die verfügbaren Argumente.

Dieser Abschnitt beschreibt die Konfiguration und Verwendung des FreeBSD Protokollservers, und diskutiert auch die Log-Rotation und das Management von Logdateien.

11.7.1. Konfiguration der lokalen Protokollierung

Die Konfigurationsdatei /etc/syslog.conf steuert, was syslogd mit Log-Meldungen macht, sobald sie empfangen werden. Es gibt verschiedene Parameter, die das Verhalten bei eingehenden Ereignissen kontrollieren. facility beschreibt das Subsystem, welches das Ereignis generiert hat. Beispielsweise der Kernel, oder ein Daemon. level hingegen beschreibt den Schweregrad des aufgetretenen Ereignisses. Dies macht es möglich, Meldungen in verschiedenen Logdateien zu protokollieren, oder Meldungen zu verwerfen, je nach Konfiguration von facility und level. Ebenfalls besteht die Möglichkeit auf Meldungen zu reagieren, die von einer bestimmten Anwendung stammen, oder von einem spezifischen Host erzeugt wurden.

Die Konfigurationsdatei von syslogd(8) enthält für jede Aktion eine Zeile. Die Syntax besteht aus einem Auswahlfeld, gefolgt von einem Aktionsfeld. Die Syntax für das Auswahlfeld ist facility.level. Dies entspricht Log-Meldungen von facility mit einem Level von level oder höher. Um noch präziser festzulegen was protokolliert wird, kann dem Level optional ein Vergleichsflag vorangestellt werden. Mehrere Auswahlen können, durch Semikolon (;) getrennt, für die gleiche Aktion verwendet werden. * wählt dabei alles aus. Das Aktionsfeld definiert, wohin die Log-Meldungen gesendet werden, beispielsweise in eine Datei oder zu einem entfernten Log-Server. Als Beispiel dient hier /etc/syslog.conf aus FreeBSD:

# $FreeBSD$
#
#       Spaces ARE valid field separators in this file. However,
#       other *nix-like systems still insist on using tabs as field
#       separators. If you are sharing this file between systems, you$
#       may want to use only tabs as field separators here.
#       Consult the syslog.conf(5) manpage.
*.err;kern.warning;auth.notice;mail.crit                /dev/console
*.notice;authpriv.none;kern.debug;lpr.info;mail.crit;news.err   /var/log/messages
security.*                                      /var/log/security
auth.info;authpriv.info                         /var/log/auth.log
mail.info                                       /var/log/maillog
lpr.info                                        /var/log/lpd-errs
ftp.info                                        /var/log/xferlog
cron.*                                          /var/log/cron
!-devd
*.=debug                                        /var/log/debug.log
*.emerg                                         *
# uncomment this to log all writes to /dev/console to /var/log/console.log
#console.info                                   /var/log/console.log
# uncomment this to enable logging of all log messages to /var/log/all.log
# touch /var/log/all.log and chmod it to mode 600 before it will work
#*.*                                            /var/log/all.log
# uncomment this to enable logging to a remote loghost named loghost
#*.*                                            @loghost
# uncomment these if you're running inn
# news.crit                                     /var/log/news/news.crit
# news.err                                      /var/log/news/news.err
# news.notice                                   /var/log/news/news.notice
# Uncomment this if you wish to see messages produced by devd
# !devd
# *.>=info
!ppp
*.*                                             /var/log/ppp.log
!*

In diesem Beispiel:

  • Zeile 8 selektiert alle Meldungen vom Level err, sowie kern.warning, auth.notice und mail.crit und schickt diese zur Konsole (/dev/console).

  • Zeile 12 selektiert alle Meldungen von mail ab dem Level info oder höher und schreibt diese in /var/log/maillog.

  • Zeile 17 benutzt ein Vergleichsflag (=), um nur Meldungen vom Level debug zu selektieren und schreibt diese in /var/log/debug.log.

  • Zeile 33 zeigt ein Beispiel für die Nutzung einer Programmspezifikation. Die nachfolgenden Regeln sind dann nur für Programme gültig, welche der Programmspezifikation stehen. In diesem Fall werden alle Meldungen von ppp (und keinem anderen Programm) in /var/log/ppp.log geschrieben.

Die verfügbaren level, beginnend mit den höchst kritischen, hin zu den weniger kritischen, sind: emerg, alert, crit, err, warning, notice, info und debug.

Die facilities, in beliebiger Reihenfolge, sind: auth, authpriv, console, cron, daemon, ftp, kern, lpr, mail, mark, news, security, syslog, user, uucp, sowie local0 bis local7. Beachten Sie, dass andere Betriebssysteme hiervon abweichende facilities haben können.

Um alle Meldungen vom Level notice und höher in /var/log/daemon.log zu protokollieren, fügen Sie folgenden Eintrag hinzu:

daemon.notice                                        /var/log/daemon.log

Für weitere Informationen zu verschiedenen Level und faclilities, lesen Sie syslog(3) und syslogd(8). Weitere Informationen zu /etc/syslog.conf, dessen Syntax und erweiterten Anwendungsbeispielen, finden Sie in syslog.conf(5).

11.7.2. Management und Rotation von Logdateien

Logdateien können schnell wachsen und viel Speicherplatz belegen, was es schwieriger macht, nützliche Informationen zu finden. Log-Management versucht, diesen Effekt zu mildern. FreeBSD verwendet newsyslog für die Verwaltung von Logdateien. Dieses in FreeBSD integrierte Programm rotiert und komprimiert in regelmäßigen Abständen Logdateien. Optional kann es auch fehlende Logdateien erstellen und Programme benachrichtigen, wenn Logdateien verschoben wurden. Die Logdateien können von syslogd oder einem anderen Programm generiert werden. Obwohl newsyslog normalerweise von cron(8) aufgerufen wird, ist es kein Systemdämon. In der Standardkonfiguration wird dieser Job jede Stunde ausgeführt.

Um zu wissen, welche Maßnahmen zu ergreifen sind, liest newsyslog seine Konfigurationsdatei /etc/newsyslog.conf. Diese Konfigurationsdatei enthält eine Zeile für jede Datei, die von newsyslog verwaltet wird. Jede Zeile enthält Informationen über den Besitzer der Datei, die Dateiberechtigungen, wann die Datei rotiert wird, optionale Flags, welche die Log-Rotation beeinflussen (bspw. Komprimierung) und Programme, denen ein Signal geschickt wird, wenn Logdateien rotiert werden. Hier folgt die Standardkonfiguration in FreeBSD:

# configuration file for newsyslog
# $FreeBSD$
#
# Entries which do not specify the '/pid_file' field will cause the
# syslogd process to be signalled when that log file is rotated.  This
# action is only appropriate for log files which are written to by the
# syslogd process (ie, files listed in /etc/syslog.conf).  If there
# is no process which needs to be signalled when a given log file is
# rotated, then the entry for that file should include the 'N' flag.
#
# The 'flags' field is one or more of the letters: BCDGJNUXZ or a '-'.
#
# Note: some sites will want to select more restrictive protections than the
# defaults.  In particular, it may be desirable to switch many of the 644
# entries to 640 or 600.  For example, some sites will consider the
# contents of maillog, messages, and lpd-errs to be confidential.  In the
# future, these defaults may change to more conservative ones.
#
# logfilename          [owner:group]    mode count size when  flags [/pid_file] [sig_num]
/var/log/all.log                        600  7     *    @T00  J
/var/log/amd.log                        644  7     100  *     J
/var/log/auth.log                       600  7     100  @0101T JC
/var/log/console.log                    600  5     100  *     J
/var/log/cron                           600  3     100  *     JC
/var/log/daily.log                      640  7     *    @T00  JN
/var/log/debug.log                      600  7     100  *     JC
/var/log/kerberos.log                   600  7     100  *     J
/var/log/lpd-errs                       644  7     100  *     JC
/var/log/maillog                        640  7     *    @T00  JC
/var/log/messages                       644  5     100  @0101T JC
/var/log/monthly.log                    640  12    *    $M1D0 JN
/var/log/pflog                          600  3     100  *     JB    /var/run/pflogd.pid
/var/log/ppp.log        root:network    640  3     100  *     JC
/var/log/devd.log                       644  3     100  *     JC
/var/log/security                       600  10    100  *     JC
/var/log/sendmail.st                    640  10    *    168   B
/var/log/utx.log                        644  3     *    @01T05 B
/var/log/weekly.log                     640  5     1    $W6D0 JN
/var/log/xferlog                        600  7     100  *     JC

Jede Zeile beginnt mit dem Namen der Protokolldatei, die rotiert werden soll, optional gefolgt von Besitzer und Gruppe für rotierende, als auch für neu erstellte Dateien. Das Feld mode definiert die Zugriffsrechte der Datei. count gibt an, wie viele rotierte Dateien aufbewahrt werden sollen. Anhand der size- und when-Flags erkennt newsyslog, wann die Datei rotiert werden muss. Eine Logdatei wird rotiert, wenn ihre Größe den Wert von size überschreitet, oder wenn die Zeit im when-Feld abgelaufen ist. Ein * bedeutet, dass dieses Feld ignoriert wird. Das flags-Feld gibt newsyslog weitere Instruktionen, zum Beispiel wie eine Datei zu rotieren ist, oder eine Datei zu erstellen falls diese nicht existiert. Die letzten beiden Felder sind optional und bestimmen die PID-Datei und wann die Datei rotiert wird.

Weitere Informationen zu allen Feldern, gültigen Flags und wie Sie die Rotationszeit angeben können, finden Sie in newsyslog.conf(5). Denken Sie daran, dass newsyslog von cron(8) aufgerufen wird und somit Dateien auch nur dann rotiert, wenn es von cron(8) aufgerufen wird, und nicht häufiger.

11.7.3. Protokollierung von anderen Hosts

Beigetragen von Tom Rhodes.
Übersetzt von Benedict Reuschling.

Die Überwachung der Protokolldateien kann bei steigender Anzahl von Rechnern sehr unhandlich werden. Eine zentrale Protokollierung kann manche administrativen Belastungen bei der Verwaltung von Protokolldateien reduzieren.

Die Aggregation, Zusammenführung und Rotation von Protokolldateien kann in FreeBSD mit syslogd und newsyslog konfiguriert werden. In der folgenden Beispielkonfiguration sammelt Host A, genannt logserv.example.com, Protokollinformationen für das lokale Netzwerk. Host B, genannt logclient.example.com wird seine Protokollinformationen an den Server weiterleiten.

11.7.3.1. Konfiguration des Protokollservers

Ein Protokollserver ist ein System, welches Protokollinformationen von anderen Hosts akzeptiert. Bevor Sie diesen Server konfigurieren, prüfen Sie folgendes:

  • Falls eine Firewall zwischen dem Protokollserver und den -Clients steht, muss das Regelwerk der Firewall UDP auf Port 514 sowohl auf Client- als auch auf Serverseite freigegeben werden.

  • Der syslogd-Server und alle Clientrechner müssen gültige Einträge für sowohl Vorwärts- als auch Umkehr-DNS besitzen. Falls im Netzwerk kein DNS-Server vorhanden ist, muss auf jedem System die Datei /etc/hosts mit den richtigen Einträgen gepflegt werden. Eine funktionierende Namensauflösung ist zwingend erforderlich, ansonsten würde der Server die Protokollnachrichten ablehnen.

Bearbeiten Sie /etc/syslog.conf auf dem Server. Tragen Sie den Namen des Clients ein, den Verbindungsweg und den Namen der Protokolldatei. Dieses Beispiel verwendet den Rechnernamen B, alle Verbindungswege, und die Protokolle werden in /var/log/logclient.log gespeichert.

Beispiel 11.1. Einfache Server Konfiguration
+logclient.example.com
*.*     /var/log/logclient.log

Fügen Sie für jeden Client zwei Zeilen hinzu, falls Sie mehrere Clients in diese Datei aufnehmen. Weitere Informationen über die verfügbaren Verbindungswege finden Sie in syslog.conf(5).

Konfigurieren Sie als nächstes /etc/rc.conf:

syslogd_enable="YES"
syslogd_flags="-a logclient.example.com -v -v"

Der erste Eintrag startet syslogd während des Bootens. Der zweite Eintrag erlaubt es, Daten von dem spezifizierten Client auf diesem Server zu akzeptieren. Die Verwendung von -v -v erhöht die Anzahl von Protokollnachrichten. Dies ist hilfreich für die Feineinstellung der Verbindungswege, da Administratoren auf diese Weise erkennen, welche Arten von Nachrichten von welchen Verbindungswegen protokolliert werden.

Mehrere -a-Optionen können angegeben werden, um die Protokollierung von mehreren Clients zu erlauben. IP-Adressen und ganze Netzblöcke können ebenfalls spezifiziert werden. Eine vollständige Liste der Optionen finden Sie in syslogd(8).

Zum Schluss muss die Protokolldatei erstellt werden:

# touch /var/log/logclient.log

Zu diesem Zeitpunkt sollte syslogd neu gestartet und überprüft werden:

# service syslogd restart
# pgrep syslog

Wenn eine PID zurückgegeben wird, wurde der Server erfolgreich neu gestartet und die Clientkonfiguration kann beginnen. Wenn der Server nicht neu gestartet wurde, suchen Sie in /var/log/messages nach dem Fehler.

11.7.3.2. Konfiguration des Protokollclients

Ein Protokollclient sendet Protokollinformationen an einen Protokollserver. Zusätzlich behält er eine lokale Kopie seiner eigenen Protokolle.

Sobald der Server konfiguriert ist, bearbeiten Sie /etc/rc.conf auf dem Client:

syslogd_enable="YES"
syslogd_flags="-s -v -v"

Der erste Eintrag aktiviert den syslogd-Dienst während des Systemstarts. Der zweite Eintrag erhöht die Anzahl der Protokollnachrichten. Die Option -s verhindert, dass dieser Client Protokolle von anderen Hosts akzeptiert.

Als nächstes muss der Protokollserver in der /etc/syslog.conf des Clients eingetragen werden. In diesem Beispiel wird das @-Symbol benutzt, um sämtliche Protokolldaten an einen bestimmten Server zu senden:

*.*               @logserv.example.com

Nachdem die Änderungs gespeichert wurden, muss syslogd neu gestartet werden, damit die Änderungen wirksam werden:

# service syslogd restart

Um zu testen, ob Protokollnachrichten über das Netzwerk gesendet werden, kann logger(1) auf dem Client benutzt werden, um eine Nachricht an syslogd zu schicken:

# logger "Test message from logclient"

Diese Nachricht sollte jetzt sowohl in /var/log/messages auf dem Client, als auch in /var/log/logclient.log auf dem Server vorhanden sein.

11.7.3.3. Fehlerbehebung beim Protokollserver

Wenn der Server keine Nachrichten empfängt, ist die Ursache wahrscheinlich ein Netzwerkproblem, ein Problem bei der Namensauflösung oder ein Tippfehler in einer Konfigurationsdatei. Um die Ursache zu isolieren, müssen Sie sicherstellen, dass sich Server und Client über den in /etc/rc.conf konfigurierten Hostnamen mit ping erreichen lässt. Falls dies nicht gelingt sollten Sie die Netzwerkverkabelung überprüfen, außerdem Firewallregeln sowie die Einträge für Hosts im DNS und /etc/hosts. Überprüfen Sie diese Dinge auf dem Server und dem Client, bis der ping von beiden Hosts erfolgreich ist.

Wenn sich die Hosts gegenseitig mit ping erreichen können, der Server aber immer noch keine Nachrichten empfängt, können Sie vorübergehend die Ausführlichkeit der Protokollierung erhöhen, um die Ursache für das Problem weiter einzugrenzen. In dem folgenden Beispiel ist auf dem Server die Datei /var/log/logclient.log leer und in der Datei /var/log/messages auf dem Client ist keine Ursache für das Problem erkennbar. Um nun die Ausführlichkeit der Protokollierung zu erhöhen, passen Sie auf dem Server den Eintrag syslogd_flags an. Anschließend starten Sie den Dienst neu:

syslogd_flags="-d -a logclient.example.com -v -v"
# service syslogd restart

Informationen wie diese werden sofort nach dem Neustart auf der Konsole erscheinen:

logmsg: pri 56, flags 4, from logserv.example.com, msg syslogd: restart
syslogd: restarted
logmsg: pri 6, flags 4, from logserv.example.com, msg syslogd: kernel boot file is /boot/kernel/kernel
Logging to FILE /var/log/messages
syslogd: kernel boot file is /boot/kernel/kernel
cvthname(192.168.1.10)
validate: dgram from IP 192.168.1.10, port 514, name logclient.example.com;
rejected in rule 0 due to name mismatch.

In diesem Beispiel werden die Nachrichten aufgrund eines fehlerhaften Namens abgewiesen. Der Hostname sollte logclient und nicht logclien sein. Beheben Sie den Tippfehler, starten Sie den Dienst neu und überprüfen Sie das Ergebnis:

# service syslogd restart
logmsg: pri 56, flags 4, from logserv.example.com, msg syslogd: restart
syslogd: restarted
logmsg: pri 6, flags 4, from logserv.example.com, msg syslogd: kernel boot file is /boot/kernel/kernel
syslogd: kernel boot file is /boot/kernel/kernel
logmsg: pri 166, flags 17, from logserv.example.com,
msg Dec 10 20:55:02 <syslog.err> logserv.example.com syslogd: exiting on signal 2
cvthname(192.168.1.10)
validate: dgram from IP 192.168.1.10, port 514, name logclient.example.com;
accepted in rule 0.
logmsg: pri 15, flags 0, from logclient.example.com, msg Dec 11 02:01:28 trhodes: Test message 2
Logging to FILE /var/log/logclient.log
Logging to FILE /var/log/messages

Zu diesem Zeitpunkt werden die Nachrichten korrekt empfangen und in die richtige Datei geschrieben.

11.7.3.4. Sicherheitsbedenken

Wie mit jedem Netzwerkdienst, müssen Sicherheitsanforderungen in Betracht gezogen werden, bevor ein Protokollserver eingesetzt wird. Manchmal enthalten Protokolldateien sensitive Daten über aktivierte Dienste auf dem lokalen Rechner, Benutzerkonten und Konfigurationsdaten. Daten, die vom Client an den Server geschickt werden, sind weder verschlüsselt noch mit einem Passwort geschützt. Wenn ein Bedarf für Verschlüsselung besteht, ist es möglich security/stunnel zu verwenden, welches die Protokolldateien über einen verschlüsselten Tunnel versendet.

Lokale Sicherheit ist ebenfalls ein Thema. Protokolldateien sind während der Verwendung oder nach ihrer Rotation nicht verschlüsselt. Lokale Benutzer versuchen vielleicht, auf diese Dateien zuzugreifen, um zusätzliche Einsichten in die Systemkonfiguration zu erlangen. Es ist absolut notwendig, die richtigen Berechtigungen auf diesen Dateien zu setzen. Das Werkzeug newsyslog unterstützt das Setzen von Berechtigungen auf gerade erstellte oder rotierte Protokolldateien. Protokolldateien mit Zugriffsmodus 600 sollten verhindern, dass lokale Benutzer darin herumschnüffeln. Zusätzliche Informationen finden Sie in newsyslog.conf(5).

11.8. Konfigurationsdateien

11.8.1. /etc Layout

Konfigurationsdateien finden sich in einigen Verzeichnissen unter anderem in:

/etcEnthält generelle systemspezifische Konfigurationsinformationen.
/etc/defaultsDefault Versionen der Konfigurationsdateien.
/etc/mailEnthält die sendmail(8) Konfiguration und weitere MTA Konfigurationsdateien.
/etc/pppHier findet sich die Konfiguration für die User- und Kernel-ppp Programme.
/etc/namedbDas Vorgabeverzeichnis, in dem Daten von named(8) gehalten werden. Normalerweise werden hier named.conf und Zonendaten abgelegt.
/usr/local/etcInstallierte Anwendungen legen hier ihre Konfigurationsdateien ab. Dieses Verzeichnis kann Unterverzeichnisse für bestimmte Anwendungen enthalten.
/usr/local/etc/rc.drc(8)-Skripten installierter Anwendungen.
/var/dbAutomatisch generierte systemspezifische Datenbanken, wie die Paket-Datenbank oder die locate(1)-Datenbank.

11.8.2. Hostnamen

11.8.2.1. /etc/resolv.conf

Wie ein FreeBSD-System auf das Internet Domain Name System (DNS) zugreift, wird in /etc/resolv.conf festgelegt.

Die gebräuchlichsten Einträge in /etc/resolv.conf sind:

nameserverDie IP-Adresse eines Nameservers, den der Resolver abfragen soll. Bis zu drei Server werden in der Reihenfolge, in der sie aufgezählt sind, abgefragt.
searchSuchliste mit Domain-Namen zum Auflösen von Hostnamen. Die Liste wird normalerweise durch den Domain-Teil des lokalen Hostnamens festgelegt.
domainDer lokale Domain-Name.

Beispiel für eine typische /etc/resolv.conf:

search example.com
nameserver 147.11.1.11
nameserver 147.11.100.30

Anmerkung:

Nur eine der Anweisungen search oder domain sollte benutzt werden.

Wenn Sie DHCP benutzen, überschreibt dhclient(8) für gewöhnlich /etc/resolv.conf mit den Informationen vom DHCP-Server.

11.8.2.2. /etc/hosts

/etc/hosts ist eine einfache textbasierte Datenbank. Zusammen mit DNS und NIS stellt sie eine Abbildung zwischen Namen und IP-Adressen zur Verfügung. Anstatt named(8) zu konfigurieren, können hier lokale Rechner, die über ein LAN verbunden sind, eingetragen werden. Lokale Einträge für gebräuchliche Internet-Adressen in /etc/hosts verhindern die Abfrage eines externen Servers und beschleunigen die Namensauflösung.

# $FreeBSD$
#
#
# Host Database
#
# This file should contain the addresses and aliases for local hosts that
# share this file.  Replace 'my.domain' below with the domainname of your
# machine.
#
# In the presence of the domain name service or NIS, this file may
# not be consulted at all; see /etc/nsswitch.conf for the resolution order.
#
#
::1         localhost localhost.my.domain
127.0.0.1       localhost localhost.my.domain
#
# Imaginary network.
#10.0.0.2       myname.my.domain myname
#10.0.0.3       myfriend.my.domain myfriend
#
# According to RFC 1918, you can use the following IP networks for
# private nets which will never be connected to the Internet:
#
#   10.0.0.0    -   10.255.255.255
#   172.16.0.0  -   172.31.255.255
#   192.168.0.0 -   192.168.255.255
#
# In case you want to be able to connect to the Internet, you need
# real official assigned numbers.  Do not try to invent your own network
# numbers but instead get one from your network provider (if any) or
# from your regional registry (ARIN, APNIC, LACNIC, RIPE NCC, or AfriNIC.)
#

/etc/hosts hat das folgende Format:

[Internet Adresse] [Offizieller Hostname] [Alias1] [Alias2] ...

Zum Beispiel:

10.0.0.1 myRealHostname.example.com myRealHostname foobar1 foobar2

Weitere Informationen entnehmen Sie bitte hosts(5).

11.9. Einstellungen mit sysctl(8)

Mit sysctl(8) können Sie Änderungen an einem laufenden FreeBSD-System vornehmen. Unter anderem können Optionen des TCP/IP-Stacks oder des virtuellen Speichermanagements verändert werden. Unter der Hand eines erfahrenen Systemadministrators kann dies die Systemperformance erheblich verbessern. Über 500 Variablen können mit sysctl(8) gelesen und gesetzt werden.

Der Hauptzweck von sysctl(8) besteht darin, Systemeinstellungen zu lesen und zu verändern.

Alle auslesbaren Variablen werden wie folgt angezeigt:

% sysctl -a

Um eine spezielle Variable zu lesen, geben Sie den Namen an:

% sysctl kern.maxproc
kern.maxproc: 1044

Um eine Variable zu setzen, benutzen Sie die Syntax Variable= Wert:

# sysctl kern.maxfiles=5000
kern.maxfiles: 2088 -> 5000

Mit sysctl können Strings, Zahlen oder Boolean-Werte gesetzt werden. Bei Boolean-Werten steht 1 für wahr und 0 für falsch.

Um die Variablen automatisch während des Systemstarts zu setzen, fügen Sie sie in /etc/sysctl.conf ein. Weitere Informationen finden Sie in der Hilfeseite sysctl.conf(5) und in Abschnitt 11.9.1, „sysctl.conf.

11.9.1. sysctl.conf

/etc/sysctl.conf sieht ähnlich wie /etc/rc.conf aus. Werte werden in der Form Variable=Wert gesetzt. Die angegebenen Werte werden gesetzt, nachdem sich das System bereits im Mehrbenutzermodus befindet. Allerdings lassen sich im Mehrbenutzermodus nicht alle Werte setzen.

Um das Protokollieren von fatalen Signalen abzustellen und Benutzer daran zu hindern, von anderen Benutzern gestartete Prozesse zu sehen, können Sie in /etc/sysctl.conf die folgenden Variablen setzen:

# Do not log fatal signal exits (e.g. sig 11)
kern.logsigexit=0

# Prevent users from seeing information about processes that
# are being run under another UID.
security.bsd.see_other_uids=0

11.9.2. Schreibgeschützte Variablen

Contributed by Tom Rhodes.

Wenn schreibgeschützte sysctl(8)-Variablen verändert werden, ist ein Neustart des Systems erforderlich.

Beispielsweise hat cardbus(4) auf einigen Laptops Schwierigkeiten, Speicherbereiche zu erkennen. Es treten dann Fehlermeldungen wie die folgende auf:

cbb0: Could not map register memory
device_probe_and_attach: cbb0 attach returned 12

Um dieses Problem zu lösen, muss eine schreibgeschützte sysctl(8)-Variable verändert werden. Fügen Sie hw.pci.allow_unsupported_io_range=1 in /boot/loader.conf hinzu und starten Sie das System neu. Danach sollte cardbus(4) fehlerfrei funktionieren.

11.10. Tuning von Laufwerken

Der folgende Abschnitt beschreibt die verschiedenen Methoden zur Feinabstimmung der Laufwerke. Oft sind mechanische Teile in Laufwerken, wie SCSI-Laufwerke, verbaut. Diese können einen Flaschenhals bei der Gesamtleistung des Systems darstellen. Sie können zwar auch ein Laufwerk ohne mechanische Teile einbauen, wie z.B. ein Solid-State-Drive, aber Laufwerke mit mechanischen Teilen werden auch in naher Zukunft nicht vom Markt verschwinden. Bei der Feinabstimmung ist es ratsam, die Funktionen von iostat(8) zu verwenden, um verschiedene Änderungen zu testen und um nützliche IO-Informationen des Systems zu erhalten.

11.10.1. Sysctl Variablen

11.10.1.1. vfs.vmiodirenable

Die sysctl(8)-Variable vfs.vmiodirenable besitzt in der Voreinstellung den Wert 1. Die Variable kann auf den Wert 0 (deaktiviert) oder 1 (aktiviert) gesetzt werden. Sie steuert, wie Verzeichnisse vom System zwischengespeichert werden. Die meisten Verzeichnisse sind klein und benutzen nur ein einzelnes Fragment, typischerweise 1 kB, im Dateisystem und 512 Bytes im Buffer-Cache. Ist die Variable deaktiviert, wird der Buffer-Cache nur eine limitierte Anzahl Verzeichnisse zwischenspeichern, auch wenn das System über sehr viel Speicher verfügt. Ist die Variable aktiviert, kann der Buffer-Cache den VM-Page-Cache benutzen, um Verzeichnisse zwischenzuspeichern. Der ganze Speicher steht damit zum Zwischenspeichern von Verzeichnissen zur Verfügung. Der Nachteil bei dieser Vorgehensweise ist, dass zum Zwischenspeichern eines Verzeichnisses mindestens eine physikalische Seite im Speicher, die normalerweise 4 kB groß ist, anstelle von 512 Bytes gebraucht wird. Es wird empfohlen, diese Option aktiviert zu lassen, wenn Sie Dienste zur Verfügung stellen, die viele Dateien manipulieren. Beispiele für solche Dienste sind Web-Caches, große Mail-Systeme oder Netnews. Die aktivierte Variable vermindert, trotz des verschwendeten Speichers, in aller Regel nicht die Leistung des Systems, obwohl Sie das nachprüfen sollten.

11.10.1.2. vfs.write_behind

In der Voreinstellung besitzt die sysctl(8)-Variable vfs.write_behind den Wert 1 (aktiviert). Mit dieser Einstellung schreibt das Dateisystem anfallende vollständige Cluster, die besonders beim sequentiellen Schreiben großer Dateien auftreten, direkt auf das Medium aus. Dies verhindert, dass sich im Buffer-Cache veränderte Puffer (dirty buffers) ansammeln, die die I/O-Verarbeitung nicht mehr beschleunigen würden. Unter bestimmten Umständen blockiert diese Funktion allerdings Prozesse. Setzen Sie in diesem Fall die Variable vfs.write_behind auf den Wert 0.

11.10.1.3. vfs.hirunningspace

Die sysctl(8)-Variable vfs.hirunningspace bestimmt systemweit die Menge ausstehender Schreiboperationen, die dem Platten-Controller zu jedem beliebigen Zeitpunkt übergeben werden können. Normalerweise können Sie den Vorgabewert verwenden. Auf Systemen mit vielen Platten kann der Wert aber auf 4 bis 5 Megabyte erhöht werden. Ein zu hoher Wert (größer als der Schreib-Schwellwert des Buffer-Caches) kann zu Leistungsverlusten führen. Setzen Sie den Wert daher nicht zu hoch! Hohe Werte können auch Leseoperationen verzögern, die gleichzeitig mit Schreiboperationen ausgeführt werden.

Es gibt weitere sysctl(8)-Variablen, mit denen Sie den Buffer-Cache und den VM-Page-Cache beeinflussen können. Es wird nicht empfohlen, diese Variablen zu verändern, da das VM-System den virtuellen Speicher selbst sehr gut verwaltet.

11.10.1.4. vm.swap_idle_enabled

Die sysctl(8)-Variable vm.swap_idle_enabled ist für große Mehrbenutzer-Systeme gedacht, auf denen sich viele Benutzer an- und abmelden und auf denen es viele Prozesse im Leerlauf (idle) gibt. Solche Systeme fragen kontinuierlich freien Speicher an. Wenn Sie die Variable vm.swap_idle_enabled aktivieren, können Sie die Auslagerungs-Hysterese von Seiten mit den Variablen vm.swap_idle_threshold1 und vm.swap_idle_threshold2 einstellen. Die Schwellwerte beider Variablen geben die Zeit in Sekunden an, in denen sich ein Prozess im Leerlauf befinden muss. Wenn die Werte so eingestellt sind, dass Seiten früher als nach dem normalen Algorithmus ausgelagert werden, verschafft das dem Auslagerungs-Prozess mehr Luft. Aktivieren Sie diese Funktion nur, wenn Sie sie wirklich benötigen: Die Speicherseiten werden eher früher als später ausgelagert. Der Platz im Swap-Bereich wird dadurch schneller verbraucht und die Plattenaktivitäten steigen an. Auf kleinen Systemen hat diese Funktion spürbare Auswirkungen. Auf großen Systemen, die sowieso schon Seiten auslagern müssen, können ganze Prozesse leichter in den Speicher geladen oder ausgelagert werden.

11.10.1.5. hw.ata.wc

Obwohl das Abstellen des IDE-Schreib-Zwischenspeichers die Bandbreite zum Schreiben auf die IDE-Festplatte verringert, kann es aus Gründen der Datenkonsistenz als notwendig angesehen werden. Das Problem ist, dass IDE-Platten keine zuverlässige Aussage über das Ende eines Schreibvorgangs treffen. Wenn der Schreib-Zwischenspeicher aktiviert ist, werden die Daten nicht in der Reihenfolge ihres Eintreffens geschrieben. Es kann sogar passieren, dass das Schreiben mancher Blöcke im Fall von starker Plattenaktivität auf unbefristete Zeit verzögert wird. Ein Absturz oder Stromausfall zu dieser Zeit kann die Dateisysteme erheblich beschädigen. Sie sollten den Wert der sysctl(8)-Variable hw.ata.wc auf dem System überprüfen. Wenn der Schreib-Zwischenspeicher abgestellt ist, können Sie ihn beim Systemstart aktivieren, indem Sie die Variable in /boot/loader.conf auf den Wert 1 setzen.

Weitere Informationen finden Sie in ata(4).

11.10.1.6. SCSI_DELAY (kern.cam.scsi_delay)

Mit der Kerneloption SCSI_DELAY kann die Dauer des Systemstarts verringert werden. Der Vorgabewert ist recht hoch und er verzögert den Systemstart um 15 oder mehr Sekunden. Normalerweise kann dieser Wert, insbesondere mit modernen Laufwerken, mit der sysctl(8)-Variable kern.cam.scsi_delay auf 5 Sekunden heruntergesetzt werden. Die Variable sowie die Kerneloption verwenden für die Zeitangabe Millisekunden und nicht Sekunden.

11.10.2. Soft Updates

Mit tunefs(8) lassen sich Feineinstellungen an Dateisystemen vornehmen. Das Programm hat verschiedene Optionen. Soft Updates werden wie folgt ein- und ausgeschaltet:

# tunefs -n enable /filesystem
# tunefs -n disable /filesystem

Ein eingehängtes Dateisystem kann nicht mit tunefs(8) modifiziert werden. Soft Updates werden am besten im Single-User Modus aktiviert, bevor Partitionen eingehangen sind.

Durch Einsatz eines Zwischenspeichers wird die Performance im Bereich der Metadaten, vorwiegend beim Anlegen und Löschen von Dateien, gesteigert. Es wird empfohlen, Soft Updates auf allen UFS-Dateisystemen zu aktivieren. Allerdings sollten Sie sich über die zwei Nachteile von Soft Updates bewusst sein: Erstens garantieren Soft Updates zwar die Konsistenz der Daten im Fall eines Absturzes, aber es kann passieren, dass das Dateisystem über mehrere Sekunden oder gar eine Minute nicht synchronisiert wurde. Nicht geschriebene Daten gehen dann vielleicht verloren. Zweitens verzögern Soft Updates die Freigabe von Datenblöcken. Eine größere Aktualisierung eines fast vollen Dateisystems, wie dem Root-Dateisystem, z.B. während eines make installworld, kann das Dateisystem vollaufen lassen. Dadurch würde die Aktualisierung fehlschlagen.

11.10.2.1. Details über Soft Updates

Bei einem Metadaten-Update werden die Inodes und Verzeichniseinträge aktualisiert auf die Platte zurückgeschrieben. Es gibt zwei klassische Ansätze, um die Metadaten des Dateisystems auf die Platte zu schreiben.

Das historisch übliche Verfahren waren synchrone Updates der Metadaten, d. h. wenn eine Änderung an einem Verzeichnis nötig war, wurde anschließend gewartet, bis diese Änderung tatsächlich auf die Platte zurückgeschrieben worden war. Der Inhalt der Dateien wurde im Buffer Cache zwischengespeichert und später asynchron auf die Platte geschrieben. Der Vorteil dieser Implementierung ist, dass sie sicher funktioniert. Wenn während eines Updates ein Ausfall erfolgt, haben die Metadaten immer einen konsistenten Zustand. Eine Datei ist entweder komplett angelegt oder gar nicht. Wenn die Datenblöcke einer Datei im Fall eines Absturzes noch nicht den Weg aus dem Buffer Cache auf die Platte gefunden haben, kann fsck(8) das Dateisystem reparieren, indem es die Dateilänge einfach auf 0 setzt. Außerdem ist die Implementierung einfach und überschaubar. Der Nachteil ist, dass Änderungen der Metadaten sehr langsam vor sich gehen. Ein rm -r beispielsweise fasst alle Dateien eines Verzeichnisses der Reihe nach an, aber jede dieser Änderungen am Verzeichnis (Löschen einer Datei) wird einzeln synchron auf die Platte geschrieben. Gleiches beim Auspacken großer Hierarchien mit tar -x.

Der zweite Ansatz sind asynchrone Metadaten-Updates. Das ist der Standard, wenn UFS-Dateisysteme mit mount -o async eingehängt werden. Man schickt die Updates der Metadaten einfach auch noch über den Buffer Cache, sie werden also zwischen die Updates der normalen Daten eingeschoben. Vorteil ist, dass man nun nicht mehr auf jeden Update warten muss, Operationen, die zahlreiche Metadaten ändern, werden also viel schneller. Auch hier ist die Implementierung sehr einfach und wenig anfällig für Fehler. Nachteil ist, dass keinerlei Konsistenz des Dateisystems mehr gesichert ist. Wenn mitten in einer Operation, die viele Metadaten ändert, ein Ausfall erfolgt (Stromausfall, drücken des Reset-Schalters), dann ist das Dateisystem anschließend in einem unbestimmten Zustand. Niemand kann genau sagen, was noch geschrieben worden ist und was nicht mehr; die Datenblöcke einer Datei können schon auf der Platte stehen, während die inode Tabelle oder das zugehörige Verzeichnis nicht mehr aktualisiert worden ist. Man kann praktisch kein fsck(8) mehr implementieren, das diesen Zustand wieder reparieren kann, da die dazu nötigen Informationen einfach auf der Platte fehlen. Wenn ein Dateisystem irreparabel beschädigt wurde, hat man nur noch die Möglichkeit es neu zu erzeugen und die Daten vom Backup zurückspielen.

Der Ausweg aus diesem Dilemma ist ein dirty region logging, was auch als Journalling bezeichnet wird. Man schreibt die Metadaten-Updates zwar synchron, aber nur in einen kleinen Plattenbereich, die logging area. Von da aus werden sie dann asynchron auf ihre eigentlichen Bereiche verteilt. Da die logging area ein kleines zusammenhängendes Stückchen ist, haben die Schreibköpfe der Platte bei massiven Operationen auf Metadaten keine allzu großen Wege zurückzulegen, so dass alles ein ganzes Stück schneller geht als bei klassischen synchronen Updates. Die Komplexität der Implementierung hält sich ebenfalls in Grenzen, somit auch die Anfälligkeit für Fehler. Als Nachteil ergibt sich, dass Metadaten zweimal auf die Platte geschrieben werden müssen (einmal in die logging area, einmal an die richtige Stelle), so dass das im Falle regulärer Arbeit (also keine gehäuften Metadatenoperationen) eine Pessimisierung des Falls der synchronen Updates eintritt, es wird alles langsamer. Dafür hat man als Vorteil, dass im Falle eines Absturzes der konsistente Zustand dadurch erzielbar ist, dass die angefangenen Operationen aus dem dirty region log entweder zu Ende ausgeführt oder komplett verworfen werden, wodurch das Dateisystem schnell wieder zur Verfügung steht.

Die Lösung von Kirk McKusick, dem Schöpfer von Berkeley FFS, waren Soft Updates: die notwendigen Updates der Metadaten werden im Speicher gehalten und dann sortiert auf die Platte geschrieben (ordered metadata updates). Dadurch hat man den Effekt, dass im Falle massiver Metadaten-Änderungen spätere Operationen die vorhergehenden, noch nicht auf die Platte geschriebenen Updates desselben Elements im Speicher einholen. Alle Operationen, auf ein Verzeichnis beispielsweise, werden also in der Regel noch im Speicher abgewickelt, bevor der Update überhaupt auf die Platte geschrieben wird (die dazugehörigen Datenblöcke werden natürlich auch so sortiert, dass sie nicht vor ihren Metadaten auf der Platte sind). Im Fall eines Absturzes hat man ein implizites log rewind: alle Operationen, die noch nicht den Weg auf die Platte gefunden haben, sehen danach so aus, als hätten sie nie stattgefunden. Man hat so also den konsistenten Zustand von ca. 30 bis 60 Sekunden früher sichergestellt. Der verwendete Algorithmus garantiert dabei, dass alle tatsächlich benutzten Ressourcen auch in den entsprechenden Bitmaps (Block- und inode Tabellen) als belegt markiert sind. Der einzige Fehler, der auftreten kann, ist, dass Ressourcen noch als belegt markiert sind, die tatsächlich frei sind. fsck(8) erkennt dies und korrigiert diese nicht mehr belegten Ressourcen. Die Notwendigkeit eines Dateisystem-Checks darf aus diesem Grunde auch ignoriert und das Dateisystem mittels mount -f zwangsweise eingebunden werden. Um noch allozierte Ressourcen freizugeben muss später ein fsck(8) nachgeholt werden. Das ist dann auch die Idee des background fsck: beim Starten des Systems wird lediglich ein Schnappschuss des Dateisystems gemacht, mit dem fsck(8) dann später arbeiten kann. Alle Dateisysteme dürfen unsauber eingebunden werden und das System kann sofort in den Multiuser-Modus gehen. Danach wird ein Hintergrund-fsck(8) für die Dateisysteme gestartet, die dies benötigen, um möglicherweise irrtümlich belegte Ressourcen freizugeben. Dateisysteme ohne Soft Updates benötigen natürlich immer noch den üblichen Vordergrund-fsck(8), bevor sie eingebunden werden können.

Der Vorteil ist, dass die Metadaten-Operationen beinahe so schnell ablaufen wie im asynchronen Fall, also auch schneller als beim logging, das die Metadaten immer zweimal schreiben muss. Als Nachteil stehen dem die Komplexität des Codes, ein erhöhter Speicherverbrauch und einige spezielle Eigenheiten entgegen. Nach einem Absturz ist ein etwas älterer Stand auf der Platte – statt einer leeren, aber bereits angelegten Datei, wie nach einem herkömmlichen fsck(8) Lauf, ist auf einem Dateisystem mit Soft Updates keine Spur der entsprechenden Datei mehr zu sehen, da weder die Metadaten noch der Dateiinhalt je auf die Platte geschrieben wurden. Weiterhin kann der Platz nach einem rm(1) nicht sofort wieder als verfügbar markiert werden, sondern erst dann, wenn der Update auch auf die Platte vermittelt worden ist. Dies kann besonders dann Probleme bereiten, wenn große Datenmengen in einem Dateisystem installiert werden, das nicht genügend Platz hat, um alle Dateien zweimal unterzubringen.

11.11. Einstellungen von Kernel Limits

11.11.1. Datei und Prozeß Limits

11.11.1.1. kern.maxfiles

Abhängig von den Anforderungen an das System kann die sysctl(8)-Variable kern.maxfiles erhöht oder gesenkt werden. Die Variable legt die maximale Anzahl von Dateideskriptoren auf dem System fest. Wenn die Dateideskriptoren aufgebraucht sind, werden Sie die Meldung file: table is full wiederholt im Puffer für Systemmeldungen sehen. Den Inhalt des Puffers können Sie sich mit dmesg(8) anzeigen lassen.

Jede offene Datei, jedes Socket und jede FIFO verbraucht einen Dateideskriptor. Auf dicken Produktionsservern können leicht Tausende Dateideskriptoren benötigt werden, abhängig von der Art und Anzahl der gleichzeitig laufenden Dienste.

In älteren FreeBSD-Versionen wurde die Voreinstellung von kern.maxfile aus der Kernelkonfigurationsoption maxusers bestimmt. kern.maxfiles wächst proportional mit dem Wert von maxusers. Wenn Sie einen angepassten Kernel kompilieren, empfiehlt es sich diese Option entsprechend der maximalen Benutzerzahl des Systems einzustellen. Obwohl auf einer Produktionsmaschine vielleicht nicht 256 Benutzer gleichzeitig angemeldet sind, können die benötigten Ressourcen ähnlich hoch wie bei einem großen Webserver sein.

Die nur lesbare sysctl(8)-Variable kern.maxusers wird beim Systemstart automatisch aus dem zur Verfügung stehenden Hauptspeicher bestimmt. Im laufenden Betrieb kann dieser Wert aus kern.maxusers ermittelt werden. Einige Systeme benötigen für diese Variable einen anderen Wert, wobei 64, 128 und 256 gewöhnliche Werte darstellen. Es wird nicht empfohlen, die Anzahl der Dateideskriptoren auf einen Wert größer 256 zu setzen, es sei denn, Sie benötigen wirklich eine riesige Anzahl von ihnen. Viele der von kern.maxusers auf einen Standardwert gesetzten Parameter können beim Systemstart oder im laufenden Betrieb in /boot/loader.conf angepasst werden. In loader.conf(5) und /boot/defaults/loader.conf finden Sie weitere Details und Hinweise.

Ältere FreeBSD-Versionen setzen diesen Wert selbst, wenn Sie in der Konfigurationsdatei den Wert 0 [2] angeben. Wenn Sie den Wert selbst bestimmen wollen, sollten Sie maxusers mindestens auf 4 setzen. Dies gilt insbesondere dann, wenn Sie beabsichtigen, Xorg zu benutzen oder Software zu kompilieren. Der wichtigste Wert, der durch maxusers bestimmt wird, die maximale Anzahl an Prozessen ist, die auf 20 + 16 * maxusers gesetzt wird. Wird maxusers auf 1 setzen, können gleichzeitig nur 36 Prozesse laufen, von denen ungefähr 18 schon beim Booten des Systems gestartet werden. Dazu kommen nochmals etwa 15 Prozesse beim Start von Xorg. Selbst eine einfache Aufgabe wie das Lesen einer Manualpage benötigt neun Prozesse zum Filtern, Dekomprimieren und Betrachten der Datei. Für die meisten Benutzer sollte es ausreichen, maxusers auf 64 zu setzen, womit 1044 gleichzeitige Prozesse zur Verfügung stehen. Wenn Sie allerdings den Fehler proc table full beim Start eines Programms oder auf einem Server mit einer großen Benutzerzahl sehen, dann sollten Sie den Wert nochmals erhöhen und den Kernel neu bauen.

Anmerkung:

Die Anzahl der Benutzer, die sich auf einem Rechner anmelden kann, wird durch maxusers nicht begrenzt. Der Wert dieser Variablen legt neben der möglichen Anzahl der Prozesse eines Benutzers weitere sinnvolle Größen für bestimmte Systemtabellen fest.

11.11.1.2. kern.ipc.soacceptqueue

Die sysctl(8)-Variable kern.ipc.soacceptqueue beschränkt die Größe der Warteschlange (Listen-Queue) für neue TCP-Verbindungen. Der Vorgabewert von 128 ist normalerweise zu klein, um neue Verbindungen auf einem stark ausgelasteten Webserver zuverlässig zu handhaben. Auf solchen Servern sollte der Wert auf 1024 oder höher gesetzt werden. Dienste wie sendmail(8) oder Apache können die Größe der Queue selbst einschränken. Oft gibt es die Möglichkeit, die Größe der Listen-Queue in einer Konfigurationsdatei einzustellen. Eine große Listen-Queue übersteht vielleicht auch einen Denial of Service Angriff (DoS).

11.11.2. Netzwerk Limits

Die Kerneloption NMBCLUSTERS schreibt die Anzahl der Netzwerkpuffer (Mbufs) fest, die das System besitzt. Eine zu geringe Anzahl Mbufs auf einem Server mit viel Netzwerkverkehr verringert die Leistung von FreeBSD. Jeder Mbuf-Cluster nimmt ungefähr 2 kB Speicher in Anspruch, so dass ein Wert von 1024 insgesamt 2 Megabyte Speicher für Netzwerkpuffer im System reserviert. Wie viele Cluster benötigt werden, lässt sich durch eine einfache Berechnung herausfinden. Ein Webserver, der maximal 1000 gleichzeitige Verbindungen servieren soll, wobei jede der Verbindungen einen 6 kB großen Sendepuffer und einen 16 kB großen Empfangspuffer benötigt, braucht ungefähr 32 MB Speicher für Netzwerkpuffer. Als Daumenregel verdoppeln Sie diese Zahl, so dass sich für NMBCLUSTERS der Wert 2x32 MB / 2 kB= 64 MB / 2 kB= 32768 ergibt. Für Maschinen mit viel Speicher werden Werte zwischen 4096 und 32768 empfohlen. Unter keinen Umständen sollten Sie diesen Wert willkürlich erhöhen, da dies zu einem Absturz beim Systemstart führen kann. Verwenden Sie netstat(1) mit -m um den Gebrauch der Netzwerkpuffer zu kontrollieren.

Die Netzwerkpuffer können beim Systemstart mit der Loader-Variablen kern.ipc.nmbclusters eingestellt werden. Nur auf älteren FreeBSD-Systemen müssen Sie die Kerneloption NMBCLUSTERS verwenden.

Die Anzahl der sendfile(2) Puffer muss auf ausgelasteten Servern, die den Systemaufruf sendfile(2) oft verwenden, vielleicht erhöht werden. Dazu können Sie die Kerneloption NSFBUFS verwenden oder die Anzahl der Puffer in /boot/loader.conf (siehe loader(8)) setzen. Die Puffer sollten erhöht werden, wenn Sie Prozesse im Zustand sfbufa sehen. Die schreibgeschützte sysctl(8)-Variable kern.ipc.nsfbufs zeigt die Anzahl eingerichteten Puffer im Kernel. Der Wert dieser Variablen wird normalerweise von kern.maxusers bestimmt. Manchmal muss die Pufferanzahl jedoch manuell eingestellt werden.

Wichtig:

Auch wenn ein Socket nicht blockierend angelegt wurde, kann der Aufruf von sendfile(2) blockieren, um auf freie struct sf_buf Puffer zu warten.

11.11.2.1. net.inet.ip.portrange.*

Die sysctl(8)-Variable net.inet.ip.portrange.* legt die Portnummern für TCP- und UDP-Sockets fest. Es gibt drei Bereiche: den niedrigen Bereich, den normalen Bereich und den hohen Bereich. Die meisten Netzprogramme benutzen den normalen Bereich. Dieser Bereich umfasst in der Voreinstellung die Portnummern 1024 bis 5000 und wird durch die Variablen net.inet.ip.portrange.first und net.inet.ip.portrange.last festgelegt. Die festgelegten Bereiche für Portnummern werden von ausgehenden Verbindungen benutzt. Unter bestimmten Umständen, beispielsweise auf stark ausgelasteten Proxy-Servern, sind alle Portnummern für ausgehende Verbindungen belegt. Bereiche für Portnummern spielen auf Servern keine Rolle, die hauptsächlich eingehende Verbindungen verarbeiten (wie ein normaler Webserver) oder nur eine begrenzte Anzahl ausgehender Verbindungen öffnen (beispielsweise ein Mail-Relay). Wenn keine freien Portnummern mehr vorhanden sind, sollte die Variable net.inet.ip.portrange.last langsam erhöht werden. Ein Wert von 10000, 20000 oder 30000 ist angemessen. Beachten Sie auch eine vorhandene Firewall, wenn Sie die Bereiche für Portnummern ändern. Einige Firewalls sperren große Bereiche (normalerweise aus den kleinen Portnummern) und erwarten, dass hohe Portnummern für ausgehende Verbindungen verwendet werden. Daher kann es erforderlich sein, den Wert von net.inet.ip.portrange.first zu erhöhen.

11.11.2.2. TCP Bandwidth Delay Product Begrenzung

Die TCP Bandwidth Delay Product Begrenzung wird aktiviert, indem die sysctl(8)-Variable net.inet.tcp.inflight.enable auf den Wert 1 gesetzt wird. Das System wird dadurch angewiesen, für jede Verbindung, das Produkt aus der Übertragungsrate und der Verzögerungszeit zu bestimmen. Dieses Produkt begrenzt die Datenmenge, die für einen optimalen Durchsatz zwischengespeichert werden muss.

Diese Begrenzung ist nützlich, wenn Sie Daten über Verbindungen mit einem hohen Produkt aus Übertragungsrate und Verzögerungszeit wie Modems, Gigabit-Ethernet oder schnellen WANs, zur Verfügung stellen. Insbesondere wirkt sich die Begrenzung aus, wenn die Verbindung die Option Window-scaling verwendet oder große Sende-Fenster (send window) benutzt. Schalten Sie die Debug-Meldungen aus, wenn Sie die Begrenzung aktiviert haben. Dazu setzen Sie die Variable net.inet.tcp.inflight.debug auf 0. Auf Produktions-Systemen sollten Sie zudem die Variable net.inet.tcp.inflight.min mindestens auf den Wert 6144 setzen. Allerdings kann ein zu hoher Wert, abhängig von der Verbindung, die Begrenzungsfunktion unwirksam machen. Die Begrenzung reduziert die Datenmenge in den Queues von Routern und Switches, sowie die Datenmenge in der Queue der lokalen Netzwerkkarte. Die Verzögerungszeit (Round Trip Time) für interaktive Anwendungen sinkt, da weniger Pakete zwischengespeichert werden. Dies gilt besonders für Verbindungen über langsame Modems. Die Begrenzung wirkt sich allerdings nur auf das Versenden von Daten aus (Uploads, Server). Auf den Empfang von Daten (Downloads) hat die Begrenzung keine Auswirkungen.

Die Variable net.inet.tcp.inflight.stab sollte nicht angepasst werden. Der Vorgabewert der Variablen beträgt 20, das heißt es werden maximal zwei Pakete zu dem Produkt aus Übertragungsrate und Verzögerungszeit addiert. Dies stabilisiert den Algorithmus und verbessert die Reaktionszeit auf Veränderungen. Bei langsamen Verbindungen können sich aber die Laufzeiten der Pakete erhöhen (ohne diesen Algorithmus wären sie allerdings noch höher). In solchen Fällen können Sie versuchen, den Wert der Variablen auf 15, 10 oder 5 herabzusetzen. Gleichzeitig müssen Sie vielleicht auch net.inet.tcp.inflight.min auf einen kleineren Wert (beispielsweise 3500) setzen. Ändern Sie diese Variablen nur ab, wenn Sie keine anderen Möglichkeiten mehr haben.

11.11.3. Virtueller Speicher (Virtual Memory)

11.11.3.1. kern.maxvnodes

Ein vnode ist die interne Darstellung einer Datei oder eines Verzeichnisses. Die Erhöhung der Anzahl der für das Betriebssystem verfügbaren vnodes verringert also die Schreib- und Lesezugriffe auf der Festplatte. vnodes werden im Normalfall vom Betriebssystem automatisch vergeben und müssen nicht manuell angepasst werden. In einigen Fällen stellt der Zugriff auf eine Platte allerdings einen Flaschenhals dar, daher sollten Sie in diesem Fall die Anzahl der möglichen vnodes erhöhen, um dieses Problem zu beheben. Beachten Sie dabei aber die Größe des inaktiven und freien Hauptspeichers.

Um die Anzahl der derzeit verwendeten vnodes zu sehen, geben Sie Folgendes ein:

# sysctl vfs.numvnodes
vfs.numvnodes: 91349

Die maximal mögliche Anzahl der vnodes erhalten Sie durch die Eingabe von:

# sysctl kern.maxvnodes
kern.maxvnodes: 100000

Wenn sich die Anzahl der genutzten vnodes dem maximal möglichen Wert nähert, sollten Sie den Wert kern.maxvnodes zuerst um etwa 1000 erhöhen. Beobachten Sie danach die Anzahl der vom System genutzten vfs.numvnodes. Nähert sich der Wert wiederum dem definierten Maximum, müssen Sie kern.maxvnodes nochmals erhöhen. Sie sollten nun eine Änderung des Speicherverbrauches über top(1) registrieren können und über mehr aktiven Speicher verfügen.

11.12. Hinzufügen von Swap-Bereichen

Manchmal benötigt ein System mehr Swap-Bereiche. Dieser Abschnitt beschreibt zwei Methoden, um Swap-Bereiche hinzuzufügen: auf einer bestehenden Partition oder auf einem neuen Laufwerk, und das Hinzufügen einer Swap-Datei auf einer existierenden Partition.

Für Informationen zur Verschlüsselung von Swap-Partitionen, zu den dabei möglichen Optionen sowie zu den Gründen für eine Verschlüsselung des Auslagerungsspeichers lesen Sie Abschnitt 17.13, „Den Auslagerungsspeicher verschlüsseln“.

11.12.1. Swap auf einer neuen Festplatte oder einer existierenden Partition

Das Hinzufügen einer neuen Festplatte für den Swap-Bereich bietet eine bessere Leistung, als die Verwendung einer Partition auf einem vorhandenem Laufwerk. Die Einrichtung von Partitionen und Laufwerken wird in Abschnitt 17.2, „Hinzufügen von LaufwerkenR