Skip site navigation (1)Skip section navigation (2)

FreeBSD Manual Pages

  
 
  

home | help
sc::Integral(3)			     MPQC		       sc::Integral(3)

NAME
       sc::Integral - The Integral abstract class acts as a factory to provide
       objects that compute one	and two	electron integrals.

SYNOPSIS
       #include	<integral.h>

       Inherits	sc::SavableState.

       Inherited by sc::IntegralCCA, sc::IntegralCints,	and sc::IntegralV3.

   Public Member Functions
       Integral	(StateIn &)
	   Restore the Integral	object from the	given StateIn object.
       Integral	(const Ref< KeyVal > &)
	   Construct the Integral object from the given	KeyVal object.
       void save_data_state (StateOut &)
	   Save	the base classes (with save_data_state)	and the	members	in the
	   same	order that the StateIn CTOR initializes	them.
       virtual Integral	* clone	()=0
	   Clones the given Integral factory. The new factory may need to have
	   set_basis and set_storage to	be called on it.
       virtual int equiv (const	Ref< Integral >	&)
	   Returns nonzero if this and the given Integral object have the same
	   integral ordering, normalization conventions, etc.
       void set_storage	(size_t	i)
	   Sets	the total amount of storage, in	bytes, that is available.
       size_t storage_used ()
	   Returns how much storage has	been used.
       size_t storage_unused ()
	   Returns how much storage was	not needed.
       virtual size_t storage_required_eri (const Ref< GaussianBasisSet	> &b1,
	   const Ref< GaussianBasisSet > &b2=0,	const Ref< GaussianBasisSet >
	   &b3=0, const	Ref< GaussianBasisSet >	&b4=0)
	   Returns how much storage will be needed to initialize a two-body
	   integrals evaluator for electron repulsion integrals.
       virtual size_t storage_required_grt (const Ref< GaussianBasisSet	> &b1,
	   const Ref< GaussianBasisSet > &b2=0,	const Ref< GaussianBasisSet >
	   &b3=0, const	Ref< GaussianBasisSet >	&b4=0)
	   Returns how much storage will be needed to initialize a two-body
	   integrals evaluator for linear R12 integrals.
       virtual size_t storage_required_eri_deriv (const	Ref< GaussianBasisSet
	   > &b1, const	Ref< GaussianBasisSet >	&b2=0, const Ref<
	   GaussianBasisSet > &b3=0, const Ref<	GaussianBasisSet > &b4=0)
	   Returns how much storage will be needed to initialize a two-body
	   integrals evaluator for derivative electron repulsion integrals.
       void adjust_storage (ptrdiff_t s)
	   The specific	integral classes use this to tell Integral how much
	   memory they are using/freeing.
       Ref< PetiteList > petite_list ()
	   Return the PetiteList object.
       Ref< PetiteList > petite_list (const Ref< GaussianBasisSet > &)
	   Return the PetiteList object	for the	given basis set.
       ShellRotation shell_rotation (int am, SymmetryOperation &, int pure=0)
	   Return the ShellRotation object for a shell of the given angular
	   momentum.
       virtual void set_basis (const Ref< GaussianBasisSet > &b1, const	Ref<
	   GaussianBasisSet > &b2=0, const Ref<	GaussianBasisSet > &b3=0,
	   const Ref< GaussianBasisSet > &b4=0)
	   Set the basis set for each center.
       virtual CartesianIter * new_cartesian_iter (int)=0
	   Return a CartesianIter object.
       virtual RedundantCartesianIter *	new_redundant_cartesian_iter (int)=0
	   Return a RedundantCartesianIter object.
       virtual RedundantCartesianSubIter * new_redundant_cartesian_sub_iter
	   (int)=0
	   Return a RedundantCartesianSubIter object.
       virtual SphericalTransformIter *	new_spherical_transform_iter (int l,
	   int inv=0, int subl=-1)=0
	   Return a SphericalTransformIter object.
       virtual const SphericalTransform	* spherical_transform (int l, int
	   inv=0, int subl=-1)=0
	   Return a SphericalTransform object.
       virtual Ref< OneBodyInt > overlap ()=0
	   Return a OneBodyInt that computes the overlap.
       virtual Ref< OneBodyInt > kinetic ()=0
	   Return a OneBodyInt that computes the kinetic energy.
       virtual Ref< OneBodyInt > point_charge (const Ref< PointChargeData >
	   &)=0
	   Return a OneBodyInt that computes the integrals for interactions
	   with	point charges.
       virtual Ref< OneBodyOneCenterInt	> point_charge1	(const Ref<
	   PointChargeData > &)
	   Return a OneBodyInt that computes the integrals for interactions
	   with	point charges.
       virtual Ref< OneBodyInt > nuclear ()=0
	   Return a OneBodyInt that computes the nuclear repulsion integrals.
       virtual Ref< OneBodyInt > hcore ()=0
	   Return a OneBodyInt that computes the core Hamiltonian integrals.
       virtual Ref< OneBodyInt > efield_dot_vector (const Ref<
	   EfieldDotVectorData > &)=0
	   Return a OneBodyInt that computes the electric field	integrals
	   dotted with a given vector.
       virtual Ref< OneBodyInt > dipole	(const Ref< DipoleData > &)=0
	   Return a OneBodyInt that computes electric dipole moment integrals.
       virtual Ref< OneBodyInt > quadrupole (const Ref<	DipoleData > &)=0
	   Return a OneBodyInt that computes electric quadrupole moment
	   integrals.
       virtual Ref< OneBodyDerivInt > overlap_deriv ()=0
	   Return a OneBodyDerivInt that computes overlap derivatives.
       virtual Ref< OneBodyDerivInt > kinetic_deriv ()=0
	   Return a OneBodyDerivInt that computes kinetic energy derivatives.
       virtual Ref< OneBodyDerivInt > nuclear_deriv ()=0
	   Return a OneBodyDerivInt that computes nuclear repulsion
	   derivatives.
       virtual Ref< OneBodyDerivInt > hcore_deriv ()=0
	   Return a OneBodyDerivInt that computes core Hamiltonian
	   derivatives.
       virtual Ref< TwoBodyThreeCenterInt > electron_repulsion3	()
	   Return a TwoBodyThreeCenterInt that computes	electron repulsion
	   integrals.
       virtual Ref< TwoBodyThreeCenterDerivInt > electron_repulsion3_deriv ()
	   Return a TwoBodyThreeCenterInt that computes	electron repulsion
	   integrals.
       virtual Ref< TwoBodyTwoCenterInt	> electron_repulsion2 ()
	   Return a TwoBodyTwoCenterInt	that computes electron repulsion
	   integrals.
       virtual Ref< TwoBodyTwoCenterDerivInt > electron_repulsion2_deriv ()
	   Return a TwoBodyTwoCenterInt	that computes electron repulsion
	   integrals.
       virtual Ref< TwoBodyInt > electron_repulsion ()=0
	   Return a TwoBodyInt that computes electron repulsion	integrals.
       virtual Ref< TwoBodyDerivInt > electron_repulsion_deriv ()=0
	   Return a TwoBodyDerivInt that computes electron repulsion
	   derivatives.
       virtual Ref< TwoBodyInt > grt ()
	   Return a TwoBodyInt that computes two-electron integrals specific
	   to linear R12 methods.
       Ref< MessageGrp > messagegrp ()
	   Return the MessageGrp used by the integrals objects.

   Static Public Member	Functions
       static Integral * initial_integral (int &argc, char **argv)
	   Create an integral factory.
       static void set_default_integral	(const Ref< Integral > &)
	   Specifies a new default Integral factory.
       static Integral * get_default_integral ()
	   Returns the default Integral	factory.

   Protected Member Functions
       Integral	(const Ref< GaussianBasisSet > &b1, const Ref<
	   GaussianBasisSet > &b2, const Ref< GaussianBasisSet > &b3, const
	   Ref<	GaussianBasisSet > &b4)
	   Initialize the Integral object given	a GaussianBasisSet for each
	   center.

   Protected Attributes
       Ref< GaussianBasisSet > bs1_
       Ref< GaussianBasisSet > bs2_
       Ref< GaussianBasisSet > bs3_
       Ref< GaussianBasisSet > bs4_
       size_t storage_
       size_t storage_used_
       Ref< MessageGrp > grp_

Detailed Description
       The Integral abstract class acts	as a factory to	provide	objects	that
       compute one and two electron integrals.

Member Function	Documentation
   virtual Ref<OneBodyInt> sc::Integral::dipole	(const Ref< DipoleData > &)
       [pure virtual]
       Return a	OneBodyInt that	computes electric dipole moment	integrals. The
       canonical order of integrals in a set is	x, y, z.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   virtual Ref<TwoBodyTwoCenterInt> sc::Integral::electron_repulsion2 ()
       [virtual]
       Return a	TwoBodyTwoCenterInt that computes electron repulsion
       integrals. If this is not re-implemented	it will	throw.

       Reimplemented in	sc::IntegralV3.

   virtual Ref<TwoBodyTwoCenterDerivInt>
       sc::Integral::electron_repulsion2_deriv () [virtual]
       Return a	TwoBodyTwoCenterInt that computes electron repulsion
       integrals. If this is not re-implemented	it will	throw.

   virtual Ref<TwoBodyThreeCenterInt> sc::Integral::electron_repulsion3	()
       [virtual]
       Return a	TwoBodyThreeCenterInt that computes electron repulsion
       integrals. If this is not re-implemented	it will	throw.

       Reimplemented in	sc::IntegralV3.

   virtual Ref<TwoBodyThreeCenterDerivInt>
       sc::Integral::electron_repulsion3_deriv () [virtual]
       Return a	TwoBodyThreeCenterInt that computes electron repulsion
       integrals. If this is not re-implemented	it will	throw.

   virtual int sc::Integral::equiv (const Ref< Integral	> &) [virtual]
       Returns nonzero if this and the given Integral object have the same
       integral	ordering, normalization	conventions, etc.

   virtual Ref<TwoBodyInt> sc::Integral::grt ()	[virtual]
       Return a	TwoBodyInt that	computes two-electron integrals	specific to
       linear R12 methods. According to	the convention in the literature, 'g'
       stands for electron repulsion integral, 'r' for the integral of r12
       operator, and 't' for the commutator integrals. Implementation for this
       kind of TwoBodyInt is optional.

       Reimplemented in	sc::IntegralCints.

   static Integral* sc::Integral::initial_integral (int	& argc,	char **	argv)
       [static]
       Create an integral factory. This	routine	looks for a -integral
       argument, then the environmental	variable INTEGRAL. The argument	to
       -integral should	be either string for a ParsedKeyVal constructor	or a
       classname. This factory is not guaranteed to have its storage and basis
       sets set	up properly, hence set_basis and set_storage need to be	called
       on it.

   virtual CartesianIter* sc::Integral::new_cartesian_iter (int) [pure
       virtual]
       Return a	CartesianIter object. The caller is responsible	for freeing
       the object.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   virtual RedundantCartesianIter* sc::Integral::new_redundant_cartesian_iter
       (int) [pure virtual]
       Return a	RedundantCartesianIter object. The caller is responsible for
       freeing the object.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   virtual RedundantCartesianSubIter*
       sc::Integral::new_redundant_cartesian_sub_iter (int) [pure virtual]
       Return a	RedundantCartesianSubIter object. The caller is	responsible
       for freeing the object.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   virtual SphericalTransformIter* sc::Integral::new_spherical_transform_iter
       (int l, int inv = 0, int	subl = -1) [pure virtual]
       Return a	SphericalTransformIter object. The caller is responsible for
       freeing the object.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   virtual Ref<OneBodyInt> sc::Integral::nuclear () [pure virtual]
       Return a	OneBodyInt that	computes the nuclear repulsion integrals.
       Charges from the	atoms on center	one are	used. If center	two is not
       identical to center one,	then the charges on center two are included as
       well.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   virtual Ref<OneBodyInt> sc::Integral::quadrupole (const Ref<	DipoleData >
       &) [pure	virtual]
       Return a	OneBodyInt that	computes electric quadrupole moment integrals.
       The canonical order of integrals	in a set is x^2, xy, xz, y^2, yz, z^2.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

   void	sc::Integral::save_data_state (StateOut	&) [virtual]
       Save the	base classes (with save_data_state) and	the members in the
       same order that the StateIn CTOR	initializes them. This must be
       implemented by the derived class	if the class has data.

       Reimplemented from sc::SavableState.

       Reimplemented in	sc::IntegralV3,	sc::IntegralCCA, and
       sc::IntegralCints.

   ShellRotation sc::Integral::shell_rotation (int am, SymmetryOperation &,
       int pure	= 0)
       Return the ShellRotation	object for a shell of the given	angular
       momentum. Pass nonzero to pure to do solid harmonics.

   virtual const SphericalTransform* sc::Integral::spherical_transform (int l,
       int inv = 0, int	subl = -1) [pure virtual]
       Return a	SphericalTransform object. The pointer is only valid while
       this Integral object is valid.

       Implemented in sc::IntegralV3, sc::IntegralCCA, and sc::IntegralCints.

Author
       Generated automatically by Doxygen for MPQC from	the source code.

Version	2.3.1			Sun Feb	28 2021		       sc::Integral(3)

NAME | SYNOPSIS | Detailed Description | Member Function Documentation | Author

Want to link to this manual page? Use this URL:
<https://www.freebsd.org/cgi/man.cgi?query=sc_Integral&sektion=3&manpath=FreeBSD+13.0-RELEASE+and+Ports>

home | help