Skip site navigation (1)Skip section navigation (2)

FreeBSD Manual Pages


home | help
rsync(1)							      rsync(1)

       rsync - a fast, versatile, remote (and local) file-copying tool

       Local:  rsync [OPTION...] SRC...	[DEST]

       Access via remote shell:
	 Pull: rsync [OPTION...] [USER@]HOST:SRC... [DEST]
	 Push: rsync [OPTION...] SRC...	[USER@]HOST:DEST

       Access via rsync	daemon:
	 Pull: rsync [OPTION...] [USER@]HOST::SRC... [DEST]
	       rsync [OPTION...] rsync://[USER@]HOST[:PORT]/SRC... [DEST]
	 Push: rsync [OPTION...] SRC...	[USER@]HOST::DEST
	       rsync [OPTION...] SRC...	rsync://[USER@]HOST[:PORT]/DEST

       Usages with just	one SRC	arg and	no DEST	arg will list the source files
       instead of copying.

       Rsync is	a fast and extraordinarily versatile file  copying  tool.   It
       can  copy  locally,  to/from  another  host  over  any remote shell, or
       to/from a remote	rsync daemon.  It offers a  large  number  of  options
       that  control  every  aspect  of	 its behavior and permit very flexible
       specification of	the set	of files to be copied.	It is famous  for  its
       delta-transfer  algorithm,  which  reduces the amount of	data sent over
       the network by sending only the differences between  the	 source	 files
       and  the	 existing  files in the	destination.  Rsync is widely used for
       backups and mirroring and as an improved	copy command for everyday use.

       Rsync finds files that need to be transferred using a "quick check" al-
       gorithm	(by default) that looks	for files that have changed in size or
       in last-modified	time.  Any changes in the other	 preserved  attributes
       (as  requested  by  options)  are made on the destination file directly
       when the	quick check indicates that the file's data does	not need to be

       Some of the additional features of rsync	are:

       o      support  for copying links, devices, owners, groups, and permis-

       o      exclude and exclude-from options similar to GNU tar

       o      a	CVS exclude mode for ignoring the same files  that  CVS	 would

       o      can use any transparent remote shell, including ssh or rsh

       o      does not require super-user privileges

       o      pipelining of file transfers to minimize latency costs

       o      support  for anonymous or	authenticated rsync daemons (ideal for

       Rsync copies files either to or from a remote host, or locally  on  the
       current	host  (it  does	 not  support copying files between two	remote

       There are two different ways for	rsync to contact a remote system:  us-
       ing  a  remote-shell  program  as the transport (such as	ssh or rsh) or
       contacting an rsync daemon directly via TCP.  The  remote-shell	trans-
       port  is	used whenever the source or destination	path contains a	single
       colon (:) separator after a host	specification.	 Contacting  an	 rsync
       daemon  directly	happens	when the source	or destination path contains a
       double colon (::) separator after a  host  specification,  OR  when  an
       rsync://	 URL  is  specified (see also the "USING RSYNC-DAEMON FEATURES
       VIA A REMOTE-SHELL CONNECTION" section for an exception to this	latter

       As a special case, if a single source arg is specified without a	desti-
       nation, the files are listed in an output format	similar	to "ls -l".

       As expected, if neither the source or destination path specify a	remote
       host, the copy occurs locally (see also the --list-only option).

       Rsync  refers  to the local side	as the "client"	and the	remote side as
       the "server".  Don't confuse "server" with an rsync daemon -- a	daemon
       is  always  a  server,  but  a  server  can be either a daemon or a re-
       mote-shell spawned process.

       See the file README for installation instructions.

       Once installed, you can use rsync to any	machine	that  you  can	access
       via a remote shell (as well as some that	you can	access using the rsync
       daemon-mode protocol).  For remote transfers, a modern rsync  uses  ssh
       for  its	 communications, but it	may have been configured to use	a dif-
       ferent remote shell by default, such as rsh or remsh.

       You can also specify any	remote shell you like, either by using the  -e
       command line option, or by setting the RSYNC_RSH	environment variable.

       Note  that  rsync  must be installed on both the	source and destination

       You use rsync in	the same way you use rcp. You must  specify  a	source
       and a destination, one of which may be remote.

       Perhaps the best	way to explain the syntax is with some examples:

	      rsync -t *.c foo:src/

       This would transfer all files matching the pattern *.c from the current
       directory to the	directory src on the machine foo. If any of the	 files
       already	exist on the remote system then	the rsync remote-update	proto-
       col is used to update the file by sending only the differences  in  the
       data.   Note  that  the expansion of wildcards on the commandline (*.c)
       into a list of files is handled by the shell before it runs  rsync  and
       not  by	rsync  itself  (exactly	the same as all	other posix-style pro-

	      rsync -avz foo:src/bar /data/tmp

       This would recursively transfer all files from the directory src/bar on
       the  machine foo	into the /data/tmp/bar directory on the	local machine.
       The files are transferred in "archive" mode, which  ensures  that  sym-
       bolic  links,  devices,	attributes,  permissions, ownerships, etc. are
       preserved in the	transfer.  Additionally, compression will be  used  to
       reduce the size of data portions	of the transfer.

	      rsync -avz foo:src/bar/ /data/tmp

       A  trailing slash on the	source changes this behavior to	avoid creating
       an additional directory level at	the destination.  You can think	 of  a
       trailing	/ on a source as meaning "copy the contents of this directory"
       as opposed to "copy the directory by name", but in both cases  the  at-
       tributes	 of the	containing directory are transferred to	the containing
       directory on the	destination.  In other words, each  of	the  following
       commands	 copies	 the files in the same way, including their setting of
       the attributes of /dest/foo:

	      rsync -av	/src/foo /dest
	      rsync -av	/src/foo/ /dest/foo

       Note also that host and module  references  don't  require  a  trailing
       slash to	copy the contents of the default directory.  For example, both
       of these	copy the remote	directory's contents into "/dest":

	      rsync -av	host: /dest
	      rsync -av	host::module /dest

       You can also use	rsync in local-only mode, where	both  the  source  and
       destination  don't have a ':' in	the name. In this case it behaves like
       an improved copy	command.

       Finally,	you can	list all the (listable)	modules	available from a  par-
       ticular rsync daemon by leaving off the module name:


       See the following section for more details.

       The  syntax for requesting multiple files from a	remote host is done by
       specifying additional remote-host args in the same style	as the	first,
       or with the hostname omitted.  For instance, all	these work:

	      rsync -av	host:file1 :file2 host:file{3,4} /dest/
	      rsync -av	host::modname/file{1,2}	host::modname/file3 /dest/
	      rsync -av	host::modname/file1 ::modname/file{3,4}

       Older  versions	of rsync required using	quoted spaces in the SRC, like
       these examples:

	      rsync -av	host:'dir1/file1 dir2/file2' /dest
	      rsync host::'modname/dir1/file1 modname/dir2/file2' /dest

       This word-splitting still works (by default) in the latest  rsync,  but
       is not as easy to use as	the first method.

       If  you	need  to transfer a filename that contains whitespace, you can
       either specify the --protect-args (-s) option, or you'll	need to	escape
       the whitespace in a way that the	remote shell will understand.  For in-

	      rsync -av	host:'file\ name\ with\	spaces'	/dest

       It is also possible to use rsync	without	a remote shell as  the	trans-
       port.  In this case you will directly connect to	a remote rsync daemon,
       typically using TCP port	873.  (This obviously requires the  daemon  to
       be running on the remote	system,	so refer to the	STARTING AN RSYNC DAE-
       MON TO ACCEPT CONNECTIONS section below for information on that.)

       Using rsync in this way is the same as using it with a remote shell ex-
       cept that:

       o      you  either  use	a double colon :: instead of a single colon to
	      separate the hostname from the path, or you use an rsync:// URL.

       o      the first	word of	the "path" is actually a module	name.

       o      the remote daemon	may print a message of the day when  you  con-

       o      if  you  specify no path name on the remote daemon then the list
	      of accessible paths on the daemon	will be	shown.

       o      if you specify no	local destination then a listing of the	speci-
	      fied files on the	remote daemon is provided.

       o      you must not specify the --rsh (-e) option.

       An example that copies all the files in a remote	module named "src":

	   rsync -av host::src /dest

       Some  modules  on  the remote daemon may	require	authentication.	If so,
       you will	receive	a password prompt when you connect. You	can avoid  the
       password	 prompt	 by setting the	environment variable RSYNC_PASSWORD to
       the password you	want to	use or using the --password-file option.  This
       may be useful when scripting rsync.

       WARNING:	 On  some  systems  environment	 variables  are	visible	to all
       users. On those systems using --password-file is	recommended.

       You may establish the connection	via a web proxy	by setting  the	 envi-
       ronment	variable  RSYNC_PROXY to a hostname:port pair pointing to your
       web proxy.  Note	that your web proxy's configuration must support proxy
       connections to port 873.

       You  may	 also establish	a daemon connection using a program as a proxy
       by setting the environment variable RSYNC_CONNECT_PROG to the  commands
       you  wish  to  run  in place of making a	direct socket connection.  The
       string may contain the escape "%H" to represent the hostname  specified
       in  the	rsync  command	(so  use "%%" if you need a single "%" in your
       string).	 For example:

	 export	RSYNC_CONNECT_PROG='ssh	proxyhost nc %H	873'
	 rsync -av targethost1::module/src/ /dest/
	 rsync -av rsync:://targethost2/module/src/ /dest/

       The command specified above uses	ssh to run nc (netcat) on a proxyhost,
       which  forwards all data	to port	873 (the rsync daemon) on the targeth-
       ost (%H).

       It is sometimes useful to use various features of an rsync daemon (such
       as  named modules) without actually allowing any	new socket connections
       into a system (other  than  what	 is  already  required	to  allow  re-
       mote-shell access).  Rsync supports connecting to a host	using a	remote
       shell and then spawning a single-use "daemon" server  that  expects  to
       read  its  config file in the home dir of the remote user.  This	can be
       useful if you want to encrypt a daemon-style transfer's data, but since
       the  daemon is started up fresh by the remote user, you may not be able
       to use features such as chroot or change	the uid	used  by  the  daemon.
       (For  another  way  to encrypt a	daemon transfer, consider using	ssh to
       tunnel a	local port to a	remote machine and configure  a	 normal	 rsync
       daemon on that remote host to only allow	connections from "localhost".)

       From  the user's	perspective, a daemon transfer via a remote-shell con-
       nection uses nearly the same command-line syntax	as a normal rsync-dae-
       mon  transfer,  with  the only exception	being that you must explicitly
       set the remote shell program on the command-line	with the --rsh=COMMAND
       option.	 (Setting  the	RSYNC_RSH  in the environment will not turn on
       this functionality.)  For example:

	   rsync -av --rsh=ssh host::module /dest

       If you need to specify a	different remote-shell user, keep in mind that
       the  user@  prefix  in  front  of the host is specifying	the rsync-user
       value (for a module that	 requires  user-based  authentication).	  This
       means  that  you	 must give the '-l user' option	to ssh when specifying
       the remote-shell, as in this example that uses the short	version	of the
       --rsh option:

	   rsync -av -e	"ssh -l	ssh-user" rsync-user@host::module /dest

       The  "ssh-user" will be used at the ssh level; the "rsync-user" will be
       used to log-in to the "module".

       In order	to connect to an rsync daemon, the remote system needs to have
       a daemon	already	running	(or it needs to	have configured	something like
       inetd to	spawn an rsync daemon for incoming connections on a particular
       port).	For  full  information on how to start a daemon	that will han-
       dling incoming socket connections, see the rsyncd.conf(5) man  page  --
       that  is	 the  config file for the daemon, and it contains the full de-
       tails for how to	run the	daemon (including stand-alone and  inetd  con-

       If  you're  using  one of the remote-shell transports for the transfer,
       there is	no need	to manually start an rsync daemon.

       Rsync always sorts the specified	filenames into its  internal  transfer
       list.  This handles the merging together	of the contents	of identically
       named directories, makes	it easy	to remove duplicate filenames, and may
       confuse	someone	 when  the  files are transferred in a different order
       than what was given on the command-line.

       If you need a particular	file to	be transferred prior to	 another,  ei-
       ther  separate  the files into different	rsync calls, or	consider using
       --delay-updates (which doesn't affect the sorted	 transfer  order,  but
       does make the final file-updating phase happen much more	rapidly).

       Here are	some examples of how I use rsync.

       To  backup  my  wife's  home directory, which consists of large MS Word
       files and mail folders, I use a cron job	that runs

	      rsync -Cavz . arvidsjaur:backup

       each night over a PPP connection	to a duplicate directory on my machine

       To  synchronize my samba	source trees I use the following Makefile tar-

		   rsync -avuzb	--exclude '*~' samba:samba/ .
		   rsync -Cavuzb . samba:samba/
	   sync: get put

       this allows me to sync with a CVS directory at the  other  end  of  the
       connection. I then do CVS operations on the remote machine, which saves
       a lot of	time as	the remote CVS protocol	isn't very efficient.

       I mirror	a directory between my "old" and "new" ftp sites with the com-

       rsync -az -e ssh	--delete ~ftp/pub/samba	nimbus:"~ftp/pub/tridge"

       This is launched	from cron every	few hours.

       Here is a short summary of the options available	in rsync. Please refer
       to the detailed description below for a complete	description.

	-v, --verbose		    increase verbosity
	    --info=FLAGS	    fine-grained informational verbosity
	    --debug=FLAGS	    fine-grained debug verbosity
	    --msgs2stderr	    special output handling for	debugging
	-q, --quiet		    suppress non-error messages
	    --no-motd		    suppress daemon-mode MOTD (see caveat)
	-c, --checksum		    skip based on checksum, not	mod-time & size
	-a, --archive		    archive mode; equals -rlptgoD (no -H,-A,-X)
	    --no-OPTION		    turn off an	implied	OPTION (e.g. --no-D)
	-r, --recursive		    recurse into directories
	-R, --relative		    use	relative path names
	    --no-implied-dirs	    don't send implied dirs with --relative
	-b, --backup		    make backups (see --suffix & --backup-dir)
	    --backup-dir=DIR	    make backups into hierarchy	based in DIR
	    --suffix=SUFFIX	    backup suffix (default ~ w/o --backup-dir)
	-u, --update		    skip files that are	newer on the receiver
	    --inplace		    update destination files in-place
	    --append		    append data	onto shorter files
	    --append-verify	    --append w/old data	in file	checksum
	-d, --dirs		    transfer directories without recursing
	-l, --links		    copy symlinks as symlinks
	-L, --copy-links	    transform symlink into referent file/dir
	    --copy-unsafe-links	    only "unsafe" symlinks are transformed
	    --safe-links	    ignore symlinks that point outside the tree
	    --munge-links	    munge symlinks to make them	safer
	-k, --copy-dirlinks	    transform symlink to dir into referent dir
	-K, --keep-dirlinks	    treat symlinked dir	on receiver as dir
	-H, --hard-links	    preserve hard links
	-p, --perms		    preserve permissions
	    --fileflags		    preserve file-flags	(aka chflags)
	-E, --executability	    preserve executability
	    --chmod=CHMOD	    affect file	and/or directory permissions
	-A, --acls		    preserve ACLs (implies -p)
	-X, --xattrs		    preserve extended attributes
	-o, --owner		    preserve owner (super-user only)
	-g, --group		    preserve group
	    --devices		    preserve device files (super-user only)
	    --specials		    preserve special files
	-D			    same as --devices --specials
	-t, --times		    preserve modification times
	-O, --omit-dir-times	    omit directories from --times
	-J, --omit-link-times	    omit symlinks from --times
	    --super		    receiver attempts super-user activities
	    --fake-super	    store/recover privileged attrs using xattrs
	-S, --sparse		    handle sparse files	efficiently
	    --preallocate	    allocate dest files	before writing
	-n, --dry-run		    perform a trial run	with no	changes	made
	-W, --whole-file	    copy files whole (w/o delta-xfer algorithm)
	-x, --one-file-system	    don't cross	filesystem boundaries
	-B, --block-size=SIZE	    force a fixed checksum block-size
	-e, --rsh=COMMAND	    specify the	remote shell to	use
	    --rsync-path=PROGRAM    specify the	rsync to run on	remote machine
	    --existing		    skip creating new files on receiver
	    --ignore-existing	    skip updating files	that exist on receiver
	    --remove-source-files   sender removes synchronized	files (non-dir)
	    --del		    an alias for --delete-during
	    --delete		    delete extraneous files from dest dirs
	    --delete-before	    receiver deletes before xfer, not during
	    --delete-during	    receiver deletes during the	transfer
	    --delete-delay	    find deletions during, delete after
	    --delete-after	    receiver deletes after transfer, not during
	    --delete-excluded	    also delete	excluded files from dest dirs
	    --ignore-missing-args   ignore missing source args without error
	    --delete-missing-args   delete missing source args from destination
	    --ignore-errors	    delete even	if there are I/O errors
	    --force-delete	    force deletion of dirs even	if not empty
	    --force-change	    affect user/system immutable files/dirs
	    --force-uchange	    affect user-immutable files/dirs
	    --force-schange	    affect system-immutable files/dirs
	    --max-delete=NUM	    don't delete more than NUM files
	    --max-size=SIZE	    don't transfer any file larger than	SIZE
	    --min-size=SIZE	    don't transfer any file smaller than SIZE
	    --partial		    keep partially transferred files
	    --partial-dir=DIR	    put	a partially transferred	file into DIR
	    --delay-updates	    put	all updated files into place at	end
	-m, --prune-empty-dirs	    prune empty	directory chains from file-list
	    --numeric-ids	    don't map uid/gid values by	user/group name
	    --usermap=STRING	    custom username mapping
	    --groupmap=STRING	    custom groupname mapping
	    --chown=USER:GROUP	    simple username/groupname mapping
	    --timeout=SECONDS	    set	I/O timeout in seconds
	    --contimeout=SECONDS    set	daemon connection timeout in seconds
	-I, --ignore-times	    don't skip files that match	size and time
	    --size-only		    skip files that match in size
	    --modify-window=NUM	    compare mod-times with reduced accuracy
	-T, --temp-dir=DIR	    create temporary files in directory	DIR
	-y, --fuzzy		    find similar file for basis	if no dest file
	    --compare-dest=DIR	    also compare received files	relative to DIR
	    --copy-dest=DIR	    ...	and include copies of unchanged	files
	    --link-dest=DIR	    hardlink to	files in DIR when unchanged
	-z, --compress		    compress file data during the transfer
	    --compress-level=NUM    explicitly set compression level
	    --skip-compress=LIST    skip compressing files with	suffix in LIST
	-C, --cvs-exclude	    auto-ignore	files in the same way CVS does
	-f, --filter=RULE	    add	a file-filtering RULE
	-F			    same as --filter='dir-merge	/.rsync-filter'
				    repeated: --filter='- .rsync-filter'
	    --exclude=PATTERN	    exclude files matching PATTERN
	    --exclude-from=FILE	    read exclude patterns from FILE
	    --include=PATTERN	    don't exclude files	matching PATTERN
	    --include-from=FILE	    read include patterns from FILE
	    --files-from=FILE	    read list of source-file names from	FILE
	-0, --from0		    all	*from/filter files are delimited by 0s
	-s, --protect-args	    no space-splitting;	wildcard chars only
	    --address=ADDRESS	    bind address for outgoing socket to	daemon
	    --port=PORT		    specify double-colon alternate port	number
	    --sockopts=OPTIONS	    specify custom TCP options
	    --blocking-io	    use	blocking I/O for the remote shell
	    --outbuf=N|L|B	    set	out buffering to None, Line, or	Block
	    --stats		    give some file-transfer stats
	-8, --8-bit-output	    leave high-bit chars unescaped in output
	-h, --human-readable	    output numbers in a	human-readable format
	    --progress		    show progress during transfer
	-P			    same as --partial --progress
	-i, --itemize-changes	    output a change-summary for	all updates
	-M, --remote-option=OPTION  send OPTION	to the remote side only
	    --out-format=FORMAT	    output updates using the specified FORMAT
	    --log-file=FILE	    log	what we're doing to the	specified FILE
	    --log-file-format=FMT   log	updates	using the specified FMT
	    --password-file=FILE    read daemon-access password	from FILE
	    --list-only		    list the files instead of copying them
	    --bwlimit=RATE	    limit socket I/O bandwidth
	    --write-batch=FILE	    write a batched update to FILE
	    --only-write-batch=FILE like --write-batch but w/o updating	dest
	    --read-batch=FILE	    read a batched update from FILE
	    --protocol=NUM	    force an older protocol version to be used
	    --iconv=CONVERT_SPEC    request charset conversion of filenames
	    --checksum-seed=NUM	    set	block/file checksum seed (advanced)
	-4, --ipv4		    prefer IPv4
	-6, --ipv6		    prefer IPv6
	    --version		    print version number
       (-h) --help		    show this help (see	below for -h comment)

       Rsync can also be run as	a daemon, in which case	the following  options
       are accepted:

	    --daemon		    run	as an rsync daemon
	    --address=ADDRESS	    bind to the	specified address
	    --bwlimit=RATE	    limit socket I/O bandwidth
	    --config=FILE	    specify alternate rsyncd.conf file
	-M, --dparam=OVERRIDE	    override global daemon config parameter
	    --no-detach		    do not detach from the parent
	    --port=PORT		    listen on alternate	port number
	    --log-file=FILE	    override the "log file" setting
	    --log-file-format=FMT   override the "log format" setting
	    --sockopts=OPTIONS	    specify custom TCP options
	-v, --verbose		    increase verbosity
	-4, --ipv4		    prefer IPv4
	-6, --ipv6		    prefer IPv6
	-h, --help		    show this help (if used after --daemon)

       Rsync  accepts  both long (double-dash +	word) and short	(single-dash +
       letter) options.	 The full list of the available	options	are  described
       below.  If an option can	be specified in	more than one way, the choices
       are comma-separated.  Some options only have  a	long  variant,	not  a
       short.	If  the	option takes a parameter, the parameter	is only	listed
       after the long variant, even though it must also	be specified  for  the
       short.	When specifying	a parameter, you can either use	the form --op-
       tion=param or replace the '=' with whitespace.  The parameter may  need
       to  be quoted in	some manner for	it to survive the shell's command-line
       parsing.	 Keep in mind that a leading tilde (~) in a filename  is  sub-
       stituted	 by  your  shell,  so --option=~/foo will not change the tilde
       into your home directory	(remove	the '='	for that).

       --help Print a short help page  describing  the	options	 available  in
	      rsync  and exit.	For backward-compatibility with	older versions
	      of rsync,	the help will also be output if	you use	the -h	option
	      without any other	args.

	      print the	rsync version number and exit.

       -v, --verbose
	      This  option  increases  the amount of information you are given
	      during the transfer.  By default,	rsync works silently. A	single
	      -v  will	give you information about what	files are being	trans-
	      ferred and a brief summary at the	end. Two -v options will  give
	      you  information	on  what  files	are being skipped and slightly
	      more information at the end. More	than  two  -v  options	should
	      only be used if you are debugging	rsync.

	      In a modern rsync, the -v	option is equivalent to	the setting of
	      groups of	--info and --debug options.  You  can  choose  to  use
	      these  newer options in addition to, or in place of using	--ver-
	      bose, as any fine-grained	settings override the implied settings
	      of  -v.  Both --info and --debug have a way to ask for help that
	      tells you	exactly	what flags are set for each increase  in  ver-

	      However, do keep in mind that a daemon's "max verbosity" setting
	      will limit how high of a level the various individual flags  can
	      be  set on the daemon side.  For instance, if the	max is 2, then
	      any info and/or debug flag that is set to	a  higher  value  than
	      what  would be set by -vv	will be	downgraded to the -vv level in
	      the daemon's logging.

	      This option lets you have	fine-grained control over the informa-
	      tion  output  you	 want  to see.	An individual flag name	may be
	      followed by a level number, with 0 meaning to silence that  out-
	      put,  1  being  the default output level,	and higher numbers in-
	      creasing the output of that flag (for those that support	higher
	      levels).	 Use  --info=help to see all the available flag	names,
	      what they	output,	and what flag names are	 added	for  each  in-
	      crease in	the verbose level.  Some examples:

		  rsync	-a --info=progress2 src/ dest/
		  rsync	-avv --info=stats2,misc1,flist0	src/ dest/

	      Note  that  --info=name's	output is affected by the --out-format
	      and --itemize-changes (-i) options.  See those options for  more
	      information on what is output and	when.

	      This  option was added to	3.1.0, so an older rsync on the	server
	      side might reject	your attempts at fine-grained control (if  one
	      or more flags needed to be send to the server and	the server was
	      too old to understand  them).   See  also	 the  "max  verbosity"
	      caveat above when	dealing	with a daemon.

	      This  option  lets  you have fine-grained	control	over the debug
	      output you want to see.  An individual flag name may be followed
	      by  a level number, with 0 meaning to silence that output, 1 be-
	      ing the default output level, and	higher numbers increasing  the
	      output of	that flag (for those that support higher levels).  Use
	      --debug=help to see all the available flag names,	what they out-
	      put, and what flag names are added for each increase in the ver-
	      bose level.  Some	examples:

		  rsync	-avvv --debug=none src/	dest/
		  rsync	-avA --del --debug=del2,acl src/ dest/

	      Note  that  some	debug  messages	 will  only  be	 output	  when
	      --msgs2stderr  is	 specified, especially those pertaining	to I/O
	      and buffer debugging.

	      This option was added to 3.1.0, so an older rsync	on the	server
	      side  might reject your attempts at fine-grained control (if one
	      or more flags needed to be send to the server and	the server was
	      too  old	to  understand	them).	 See  also the "max verbosity"
	      caveat above when	dealing	with a daemon.

	      This option changes rsync	to send	all  its  output  directly  to
	      stderr  rather  than to send messages to the client side via the
	      protocol (which normally	outputs	 info  messages	 via  stdout).
	      This is mainly intended for debugging in order to	avoid changing
	      the data sent via	the protocol, since the	 extra	protocol  data
	      can  change  what	 is  being tested.  Keep in mind that a	daemon
	      connection does not have a stderr	channel	to send	messages  back
	      to  the client side, so if you are doing any daemon-transfer de-
	      bugging using this option, you should start up  a	 daemon	 using
	      --no-detach  so that you can see the stderr output on the	daemon

	      This option has the side-effect  of  making  stderr  output  get
	      line-buffered  so	 that  the merging of the output of 3 programs
	      happens in a more	readable manner.

       -q, --quiet
	      This option decreases the	amount of information  you  are	 given
	      during  the  transfer,  notably suppressing information messages
	      from the remote server. This  option  is	useful	when  invoking
	      rsync from cron.

	      This option affects the information that is output by the	client
	      at the start of a	daemon transfer.   This	 suppresses  the  mes-
	      sage-of-the-day  (MOTD)  text,  but  it also affects the list of
	      modules that the daemon sends in response	to the "rsync  host::"
	      request  (due  to	 a  limitation in the rsync protocol), so omit
	      this option if you want to request the list of modules from  the

       -I, --ignore-times
	      Normally	rsync  will  skip  any files that are already the same
	      size and have the	 same  modification  timestamp.	  This	option
	      turns  off  this "quick check" behavior, causing all files to be

	      This modifies rsync's "quick check" algorithm for	finding	 files
	      that  need  to  be  transferred, changing	it from	the default of
	      transferring files with either  a	 changed  size	or  a  changed
	      last-modified  time  to just looking for files that have changed
	      in size.	This is	useful when starting to	use rsync after	 using
	      another  mirroring  system which may not preserve	timestamps ex-

	      When comparing two timestamps, rsync treats  the	timestamps  as
	      being  equal  if	they  differ by	no more	than the modify-window
	      value.  This is normally 0 (for an exact	match),	 but  you  may
	      find it useful to	set this to a larger value in some situations.
	      In particular, when transferring to or from an  MS  Windows  FAT
	      filesystem  (which represents times with a 2-second resolution),
	      --modify-window=1	is useful (allowing times to differ by up to 1

       -c, --checksum
	      This changes the way rsync checks	if the files have been changed
	      and are in need of a transfer.  Without this option, rsync  uses
	      a	"quick check" that (by default)	checks if each file's size and
	      time of last modification	match between the sender and receiver.
	      This  option changes this	to compare a 128-bit checksum for each
	      file that	has a matching size.  Generating the  checksums	 means
	      that  both  sides	 will expend a lot of disk I/O reading all the
	      data in the files	in the transfer	(and  this  is	prior  to  any
	      reading  that  will  be done to transfer changed files), so this
	      can slow things down significantly.

	      The sending side generates its checksums while it	is  doing  the
	      file-system  scan	 that  builds the list of the available	files.
	      The receiver generates its checksums when	 it  is	 scanning  for
	      changed files, and will checksum any file	that has the same size
	      as the corresponding sender's file:  files with either a changed
	      size or a	changed	checksum are selected for transfer.

	      Note  that  rsync	always verifies	that each transferred file was
	      correctly	reconstructed on the  receiving	 side  by  checking  a
	      whole-file  checksum  that  is  generated	 as the	file is	trans-
	      ferred, but that automatic after-the-transfer  verification  has
	      nothing  to do with this option's	before-the-transfer "Does this
	      file need	to be updated?"	check.

	      For protocol 30 and  beyond  (first  supported  in  3.0.0),  the
	      checksum used is MD5.  For older protocols, the checksum used is

       -a, --archive
	      This is equivalent to -rlptgoD. It is a quick way	of saying  you
	      want  recursion  and want	to preserve almost everything (with -H
	      being a notable omission).  The  only  exception	to  the	 above
	      equivalence  is when --files-from	is specified, in which case -r
	      is not implied.

	      Note that	-a does	not preserve hardlinks,	because	finding	multi-
	      ply-linked  files	is expensive.  You must	separately specify -H.
	      Note also	that for backward compatibility, -a currently does not
	      imply the	--fileflags option.

	      You  may	turn  off one or more implied options by prefixing the
	      option name with "no-".  Not all options may be prefixed with  a
	      "no-":  only  options  that  are	implied	by other options (e.g.
	      --no-D, --no-perms) or have different defaults in	 various  cir-
	      cumstances  (e.g.	--no-whole-file, --no-blocking-io, --no-dirs).
	      You may specify either the short or the long option  name	 after
	      the "no-"	prefix (e.g. --no-R is the same	as --no-relative).

	      For example: if you want to use -a (--archive) but don't want -o
	      (--owner), instead of converting	-a  into  -rlptgD,  you	 could
	      specify -a --no-o	(or -a --no-owner).

	      The  order  of  the options is important:	 if you	specify	--no-r
	      -a, the -r option	would end up being turned on, the opposite  of
	      -a  --no-r.  Note	also that the side-effects of the --files-from
	      option are NOT positional, as it affects the  default  state  of
	      several  options and slightly changes the	meaning	of -a (see the
	      --files-from option for more details).

       -r, --recursive
	      This tells rsync to  copy	 directories  recursively.   See  also
	      --dirs (-d).

	      Beginning	 with rsync 3.0.0, the recursive algorithm used	is now
	      an incremental scan that uses much less memory than  before  and
	      begins the transfer after	the scanning of	the first few directo-
	      ries have	been completed.	 This incremental  scan	 only  affects
	      our  recursion  algorithm,  and  does not	change a non-recursive
	      transfer.	 It is also only possible when both ends of the	trans-
	      fer are at least version 3.0.0.

	      Some  options require rsync to know the full file	list, so these
	      options disable the incremental recursion	mode.  These  include:
	      --delete-before,	--delete-after,	 --prune-empty-dirs, and --de-
	      lay-updates.  Because of this, the default delete	mode when  you
	      specify  --delete	 is  now --delete-during when both ends	of the
	      connection are at	least 3.0.0 (use --del or  --delete-during  to
	      request  this  improved deletion mode explicitly).  See also the
	      --delete-delay  option  that  is	a  better  choice  than	 using

	      Incremental  recursion can be disabled using the --no-inc-recur-
	      sive option or its shorter --no-i-r alias.

       -R, --relative
	      Use relative paths. This means that the full path	 names	speci-
	      fied on the command line are sent	to the server rather than just
	      the last parts of	the filenames.	This  is  particularly	useful
	      when  you	want to	send several different directories at the same
	      time. For	example, if you	used this command:

		 rsync -av /foo/bar/baz.c remote:/tmp/

	      ... this would create a file named baz.c in /tmp/	on the	remote
	      machine. If instead you used

		 rsync -avR /foo/bar/baz.c remote:/tmp/

	      then a file named	/tmp/foo/bar/baz.c would be created on the re-
	      mote machine, preserving its full	path.  These extra  path  ele-
	      ments  are  called "implied directories" (i.e. the "foo" and the
	      "foo/bar"	directories in the above example).

	      Beginning	with rsync 3.0.0, rsync	always sends these implied di-
	      rectories	 as  real directories in the file list,	even if	a path
	      element is really	a symlink on the sending side.	This  prevents
	      some really unexpected behaviors when copying the	full path of a
	      file that	you didn't realize had a symlink in its	path.  If  you
	      want  to	duplicate a server-side	symlink, include both the sym-
	      link via its path, and referent directory	via its	real path.  If
	      you're  dealing with an older rsync on the sending side, you may
	      need to use the --no-implied-dirs	option.

	      It is also possible to limit the amount of path information that
	      is  sent as implied directories for each path you	specify.  With
	      a	modern rsync on	the sending side (beginning with  2.6.7),  you
	      can insert a dot and a slash into	the source path, like this:

		 rsync -avR /foo/./bar/baz.c remote:/tmp/

	      That  would  create /tmp/bar/baz.c on the	remote machine.	 (Note
	      that the dot must	be followed by a slash,	so "/foo/." would  not
	      be  abbreviated.)	  For  older rsync versions, you would need to
	      use a chdir to limit the source path.  For example, when pushing

		 (cd /foo; rsync -avR bar/baz.c	remote:/tmp/)

	      (Note  that the parens put the two commands into a sub-shell, so
	      that the "cd" command doesn't remain in effect for  future  com-
	      mands.)	If  you're pulling files from an older rsync, use this
	      idiom (but only for a non-daemon transfer):

		 rsync -avR --rsync-path="cd /foo; rsync" \
		     remote:bar/baz.c /tmp/

	      This option affects the default behavior of the  --relative  op-
	      tion.   When  it is specified, the attributes of the implied di-
	      rectories	from the source	names are not included in  the	trans-
	      fer.   This  means  that	the corresponding path elements	on the
	      destination system are left unchanged if	they  exist,  and  any
	      missing implied directories are created with default attributes.
	      This even	allows these implied path elements to have big differ-
	      ences,  such  as being a symlink to a directory on the receiving

	      For instance, if a command-line arg or a files-from  entry  told
	      rsync  to	 transfer  the	file  "path/foo/file", the directories
	      "path" and "path/foo" are	implied	when --relative	is  used.   If
	      "path/foo"  is a symlink to "bar"	on the destination system, the
	      receiving	rsync would ordinarily delete "path/foo", recreate  it
	      as  a  directory,	 and  receive the file into the	new directory.
	      With   --no-implied-dirs,	  the	 receiving    rsync    updates
	      "path/foo/file"  using  the  existing path elements, which means
	      that the file ends up being created in "path/bar".  Another  way
	      to   accomplish	this   link   preservation   is	  to  use  the
	      --keep-dirlinks option (which will also affect symlinks  to  di-
	      rectories	in the rest of the transfer).

	      When  pulling files from an rsync	older than 3.0.0, you may need
	      to use this option if the	sending	side has a symlink in the path
	      you  request  and	 you wish the implied directories to be	trans-
	      ferred as	normal directories.

       -b, --backup
	      With this	option,	preexisting destination	files are  renamed  as
	      each  file is transferred	or deleted.  You can control where the
	      backup file goes and what	(if any) suffix	 gets  appended	 using
	      the --backup-dir and --suffix options.

	      Note   that   if	 you   don't  specify  --backup-dir,  (1)  the
	      --omit-dir-times option will be implied, and (2) if --delete  is
	      also  in	effect	(without  --delete-excluded), rsync will add a
	      "protect"	filter-rule for	the backup suffix to the  end  of  all
	      your existing excludes (e.g. -f "P *~").	This will prevent pre-
	      viously backed-up	files from being deleted.  Note	 that  if  you
	      are  supplying  your  own	filter rules, you may need to manually
	      insert your own exclude/protect rule somewhere higher up in  the
	      list  so	that  it  has  a  high enough priority to be effective
	      (e.g., if	your rules specify a trailing  inclusion/exclusion  of
	      '*', the auto-added rule would never be reached).

	      In  combination  with  the  --backup option, this	tells rsync to
	      store all	backups	in the specified directory  on	the  receiving
	      side.   This can be used for incremental backups.	 You can addi-
	      tionally specify a backup	suffix using the --suffix option (oth-
	      erwise  the files	backed up in the specified directory will keep
	      their original filenames).

	      Note that	if you specify a relative path,	the  backup  directory
	      will  be	relative to the	destination directory, so you probably
	      want to specify either an	absolute path or a  path  that	starts
	      with  "../".  If an rsync	daemon is the receiver,	the backup dir
	      cannot go	outside	the module's path  hierarchy,  so  take	 extra
	      care not to delete it or copy into it.

	      This  option  allows  you	 to override the default backup	suffix
	      used with	the --backup (-b) option. The default suffix is	a ~ if
	      no --backup-dir was specified, otherwise it is an	empty string.

       -u, --update
	      This  forces rsync to skip any files which exist on the destina-
	      tion and have a modified time that  is  newer  than  the	source
	      file.   (If an existing destination file has a modification time
	      equal to the source file's, it will be updated if	the sizes  are

	      Note that	this does not affect the copying of dirs, symlinks, or
	      other special files.  Also, a difference of file format  between
	      the  sender  and	receiver  is always considered to be important
	      enough for an update, no matter what date	is on the objects.  In
	      other words, if the source has a directory where the destination
	      has a file, the transfer would occur  regardless	of  the	 time-

	      This  option  is	a transfer rule, not an	exclude, so it doesn't
	      affect the data that goes	 into  the  file-lists,	 and  thus  it
	      doesn't affect deletions.	 It just limits	the files that the re-
	      ceiver requests to be transferred.

	      This option changes how rsync transfers a	 file  when  its  data
	      needs to be updated: instead of the default method of creating a
	      new copy of the file and moving it into place when  it  is  com-
	      plete,  rsync  instead  writes  the updated data directly	to the
	      destination file.

	      This has several effects:

	      o	     Hard links	are not	broken.	 This means the	new data  will
		     be	 visible  through  other hard links to the destination
		     file.  Moreover, attempts to copy differing source	 files
		     onto  a multiply-linked destination file will result in a
		     "tug of war" with the destination data changing back  and

	      o	     In-use  binaries  cannot  be  updated (either the OS will
		     prevent this from happening, or binaries that attempt  to
		     swap-in their data	will misbehave or crash).

	      o	     The  file's  data will be in an inconsistent state	during
		     the transfer and will be left that	way if the transfer is
		     interrupted or if an update fails.

	      o	     A	file  that  rsync  cannot  write to cannot be updated.
		     While a super user	can update any	file,  a  normal  user
		     needs  to be granted write	permission for the open	of the
		     file for writing to be successful.

	      o	     The efficiency of rsync's delta-transfer algorithm	may be
		     reduced if	some data in the destination file is overwrit-
		     ten before	it can be copied to a position	later  in  the
		     file.   This  does	 not  apply if you use --backup, since
		     rsync is smart enough to use the backup file as the basis
		     file for the transfer.

	      WARNING: you should not use this option to update	files that are
	      being accessed by	others,	so be careful  when  choosing  to  use
	      this for a copy.

	      This   option  is	 useful	 for  transferring  large  files  with
	      block-based changes or appended data, and	also on	 systems  that
	      are  disk	 bound,	 not  network  bound.  It can also help	keep a
	      copy-on-write filesystem snapshot	from diverging the entire con-
	      tents of a file that only	has minor changes.

	      The option implies --partial (since an interrupted transfer does
	      not delete the file), but	conflicts with --partial-dir and --de-
	      lay-updates.  Prior to rsync 2.6.4 --inplace was also incompati-
	      ble with --compare-dest and --link-dest.

	      This causes rsync	to update a file by appending  data  onto  the
	      end  of  the file, which presumes	that the data that already ex-
	      ists on the receiving side is identical with the	start  of  the
	      file on the sending side.	 If a file needs to be transferred and
	      its size on the receiver is the same or longer than the size  on
	      the  sender,  the	file is	skipped.  This does not	interfere with
	      the updating of a	file's non-content  attributes	(e.g.  permis-
	      sions, ownership,	etc.) when the file does not need to be	trans-
	      ferred, nor does it  affect  the	updating  of  any  non-regular
	      files.   Implies	--inplace, but does not	conflict with --sparse
	      (since it	is always extending a file's length).

	      This works just like the --append	option,	but the	existing  data
	      on the receiving side is included	in the full-file checksum ver-
	      ification	step, which will cause a file to be resent if the  fi-
	      nal  verification	step fails (rsync uses a normal, non-appending
	      --inplace	transfer for the resend).

	      Note: prior to rsync 3.0.0,  the	--append  option  worked  like
	      --append-verify,	so  if you are interacting with	an older rsync
	      (or the transfer is using	a protocol prior  to  30),  specifying
	      either append option will	initiate an --append-verify transfer.

       -d, --dirs
	      Tell  the	 sending  side to include any directories that are en-
	      countered.  Unlike --recursive, a	directory's contents  are  not
	      copied unless the	directory name specified is "."	or ends	with a
	      trailing slash (e.g. ".",	"dir/.", "dir/", etc.).	 Without  this
	      option  or  the --recursive option, rsync	will skip all directo-
	      ries it encounters (and output a message to that effect for each
	      one).   If  you specify both --dirs and --recursive, --recursive
	      takes precedence.

	      The --dirs option	is implied by the --files-from option  or  the
	      --list-only  option  (including an implied --list-only usage) if
	      --recursive wasn't specified (so that directories	 are  seen  in
	      the listing).  Specify --no-dirs (or --no-d) if you want to turn
	      this off.

	      There is also a backward-compatibility helper option, --old-dirs
	      (or  --old-d)  that  tells  rsync	 to  use  a  hack of "-r --ex-
	      clude='/*/*'" to get an older rsync to list a  single  directory
	      without recursing.

       -l, --links
	      When  symlinks are encountered, recreate the symlink on the des-

       -L, --copy-links
	      When symlinks are	encountered, the item that they	point to  (the
	      referent)	is copied, rather than the symlink.  In	older versions
	      of rsync,	this option also had the side-effect  of  telling  the
	      receiving	 side to follow	symlinks, such as symlinks to directo-
	      ries.  In	a modern rsync such as this one, you'll	need to	 spec-
	      ify  --keep-dirlinks  (-K) to get	this extra behavior.  The only
	      exception	is when	sending	files to an rsync that is too  old  to
	      understand -K -- in that case, the -L option will	still have the
	      side-effect of -K	on that	older receiving	rsync.

	      This tells rsync to copy the referent  of	 symbolic  links  that
	      point  outside  the  copied  tree.   Absolute  symlinks are also
	      treated like ordinary files, and so  are	any  symlinks  in  the
	      source  path itself when --relative is used.  This option	has no
	      additional effect	if --copy-links	was also specified.

	      This tells rsync to ignore any symbolic links which  point  out-
	      side  the	 copied	 tree. All absolute symlinks are also ignored.
	      Using this option	in conjunction with --relative may give	 unex-
	      pected results.

	      This  option  tells  rsync to (1)	modify all symlinks on the re-
	      ceiving side in a	way that makes them unusable  but  recoverable
	      (see below), or (2) to unmunge symlinks on the sending side that
	      had been stored in a munged state.  This is useful if you	 don't
	      quite  trust the source of the data to not try to	slip in	a sym-
	      link to a	unexpected place.

	      The way rsync disables the use of	symlinks is to prefix each one
	      with the string "/rsyncd-munged/".  This prevents	the links from
	      being used as long as that directory does	not exist.  When  this
	      option  is  enabled,  rsync will refuse to run if	that path is a
	      directory	or a symlink to	a directory.

	      The option only affects the client side of the transfer,	so  if
	      you  need	 it  to	affect the server, specify it via --remote-op-
	      tion.  (Note that	in a local transfer, the client	 side  is  the

	      This  option has no affect on a daemon, since the	daemon config-
	      ures whether it wants munged symlinks via	its  "munge  symlinks"
	      parameter.   See	also  the  "munge-symlinks" perl script	in the
	      support directory	of the source code.

       -k, --copy-dirlinks
	      This option causes the sending side to treat a symlink to	a  di-
	      rectory  as  though it were a real directory.  This is useful if
	      you don't	want symlinks to non-directories to  be	 affected,  as
	      they would be using --copy-links.

	      Without  this  option, if	the sending side has replaced a	direc-
	      tory with	a symlink to a	directory,  the	 receiving  side  will
	      delete anything that is in the way of the	new symlink, including
	      a	directory hierarchy (as	long as	--force-delete or --delete  is
	      in effect).

	      See also --keep-dirlinks for an analogous	option for the receiv-
	      ing side.

	      --copy-dirlinks applies to all symlinks to  directories  in  the
	      source.	If you want to follow only a few specified symlinks, a
	      trick you	can use	is to pass them	as additional source args with
	      a	 trailing  slash,  using --relative to make the	paths match up
	      right.  For example:

	      rsync -r --relative src/./ src/./follow-me/ dest/

	      This works because rsync calls lstat(2) on  the  source  arg  as
	      given, and the trailing slash makes lstat(2) follow the symlink,
	      giving rise to a directory in the	file-list which	overrides  the
	      symlink found during the scan of "src/./".

       -K, --keep-dirlinks
	      This  option  causes  the	receiving side to treat	a symlink to a
	      directory	as though it were a real directory,  but  only	if  it
	      matches  a real directory	from the sender.  Without this option,
	      the receiver's symlink would be deleted and replaced with	a real

	      For  example,  suppose  you transfer a directory "foo" that con-
	      tains a file "file", but "foo" is	a symlink to  directory	 "bar"
	      on  the receiver.	 Without --keep-dirlinks, the receiver deletes
	      symlink "foo", recreates it as a	directory,  and	 receives  the
	      file into	the new	directory.  With --keep-dirlinks, the receiver
	      keeps the	symlink	and "file" ends	up in "bar".

	      One note of caution:  if you use --keep-dirlinks,	you must trust
	      all  the	symlinks  in  the  copy!  If it	is possible for	an un-
	      trusted user to create their own symlink to any  directory,  the
	      user  could then (on a subsequent	copy) replace the symlink with
	      a	real directory and affect the content  of  whatever  directory
	      the  symlink  references.	 For backup copies, you	are better off
	      using something like a bind mount	instead	of a symlink to	modify
	      your receiving hierarchy.

	      See also --copy-dirlinks for an analogous	option for the sending

       -H, --hard-links
	      This tells rsync to look for hard-linked files in	the source and
	      link together the	corresponding files on the destination.	 With-
	      out this option, hard-linked files in the	source are treated  as
	      though they were separate	files.

	      This option does NOT necessarily ensure that the pattern of hard
	      links on the destination exactly matches	that  on  the  source.
	      Cases  in	which the destination may end up with extra hard links
	      include the following:

	      o	     If	the destination	contains extraneous  hard-links	 (more
		     linking  than  what  is present in	the source file	list),
		     the copying algorithm will	 not  break  them  explicitly.
		     However, if one or	more of	the paths have content differ-
		     ences, the	normal file-update process  will  break	 those
		     extra links (unless you are using the --inplace option).

	      o	     If	you specify a --link-dest directory that contains hard
		     links, the	linking	of the destination files  against  the
		     --link-dest files can cause some paths in the destination
		     to	become linked together due to the --link-dest associa-

	      Note  that  rsync	 can only detect hard links between files that
	      are inside the transfer set.  If rsync updates a file  that  has
	      extra  hard-link connections to files outside the	transfer, that
	      linkage will be broken.  If you are tempted to use the --inplace
	      option to	avoid this breakage, be	very careful that you know how
	      your files are being updated so that you are certain that	no un-
	      intended changes happen due to lingering hard links (and see the
	      --inplace	option for more	caveats).

	      If incremental recursion is active (see --recursive), rsync  may
	      transfer a missing hard-linked file before it finds that another
	      link for that contents exists elsewhere in the hierarchy.	  This
	      does  not	 affect	the accuracy of	the transfer (i.e. which files
	      are hard-linked together), just its efficiency (i.e. copying the
	      data for a new, early copy of a hard-linked file that could have
	      been found later in  the	transfer  in  another  member  of  the
	      hard-linked  set	of files).  One	way to avoid this inefficiency
	      is to disable incremental	recursion using	the --no-inc-recursive

       -p, --perms
	      This  option  causes  the	receiving rsync	to set the destination
	      permissions to be	the same as the	source permissions.  (See also
	      the  --chmod  option for a way to	modify what rsync considers to
	      be the source permissions.)

	      When this	option is off, permissions are set as follows:

	      o	     Existing files (including updated files) retain their ex-
		     isting  permissions,  though  the	--executability	option
		     might change just the execute permission for the file.

	      o	     New files get their "normal" permission bits set  to  the
		     source  file's  permissions masked	with the receiving di-
		     rectory's	default	 permissions  (either  the   receiving
		     process's	umask,	or  the	 permissions specified via the
		     destination directory's default ACL), and	their  special
		     permission	 bits  disabled	except in the case where a new
		     directory inherits	a setgid bit from  its	parent	direc-

	      Thus,  when  --perms  and	 --executability  are  both  disabled,
	      rsync's behavior is the same as that of other  file-copy	utili-
	      ties, such as cp(1) and tar(1).

	      In  summary:  to	give  destination files	(both old and new) the
	      source permissions, use --perms.	To give	new files the destina-
	      tion-default  permissions	 (while	 leaving  existing  files  un-
	      changed),	make sure that the  --perms  option  is	 off  and  use
	      --chmod=ugo=rwX  (which ensures that all non-masked bits get en-
	      abled).  If you'd	care to	make this latter  behavior  easier  to
	      type, you	could define a popt alias for it, such as putting this
	      line in the file ~/.popt (the following defines the  -Z  option,
	      and  includes --no-g to use the default group of the destination

		 rsync alias -Z	--no-p --no-g --chmod=ugo=rwX

	      You could	then use this new option in a  command	such  as  this

		 rsync -avZ src/ dest/

	      (Caveat: make sure that -a does not follow -Z, or	it will	re-en-
	      able the two "--no-*" options mentioned above.)

	      The preservation of the destination's setgid bit	on  newly-cre-
	      ated  directories	 when --perms is off was added in rsync	2.6.7.
	      Older rsync versions erroneously	preserved  the	three  special
	      permission  bits	for  newly-created files when --perms was off,
	      while overriding the  destination's  setgid  bit	setting	 on  a
	      newly-created  directory.	  Default  ACL observance was added to
	      the ACL patch for	rsync 2.6.7,  so  older	 (or  non-ACL-enabled)
	      rsyncs use the umask even	if default ACLs	are present.  (Keep in
	      mind that	it is the version of the receiving rsync that  affects
	      these behaviors.)

       -E, --executability
	      This  option  causes  rsync  to  preserve	 the executability (or
	      non-executability) of regular files when --perms is not enabled.
	      A	 regular  file	is considered to be executable if at least one
	      'x' is turned on in its permissions.  When an existing  destina-
	      tion file's executability	differs	from that of the corresponding
	      source file, rsync modifies the destination  file's  permissions
	      as follows:

	      o	     To	 make  a  file non-executable, rsync turns off all its
		     'x' permissions.

	      o	     To	make a file executable,	rsync turns on each  'x'  per-
		     mission that has a	corresponding 'r' permission enabled.

	      If --perms is enabled, this option is ignored.

       -A, --acls
	      This  option  causes  rsync to update the	destination ACLs to be
	      the same as the source ACLs.  The	option also implies --perms.

	      The source and destination systems must have compatible ACL  en-
	      tries  for  this	option to work properly.  See the --fake-super
	      option for a way to backup and restore ACLs that are not compat-

       -X, --xattrs
	      This  option causes rsync	to update the destination extended at-
	      tributes to be the same as the source ones.

	      For systems that support extended-attribute namespaces,  a  copy
	      being  done  by  a  super-user copies all	namespaces except sys-
	      tem.*.  A	normal user only copies	the user.* namespace.	To  be
	      able to backup and restore non-user namespaces as	a normal user,
	      see the --fake-super option.

	      Note that	this option does not copy rsyncs special xattr	values
	      (e.g.  those  used by --fake-super) unless you repeat the	option
	      (e.g. -XX).  This	"copy all xattrs" mode	cannot	be  used  with

	      This option causes rsync to update the file-flags	to be the same
	      as the source files and directories (if  your  OS	 supports  the
	      chflags(2) system	call).	 Some flags can	only be	altered	by the
	      super-user and some might	only be	 unset	below  a  certain  se-
	      cure-level  (usually  single-user	 mode).	It will	not make files
	      alterable	that are set to	immutable  on  the  receiver.	To  do
	      that, see	--force-change,	--force-uchange, and --force-schange.

	      This option causes rsync to disable both user-immutable and sys-
	      tem-immutable flags on files and directories that	are being  up-
	      dated  or	 deleted on the	receiving side.	 This option overrides
	      --force-uchange and --force-schange.

	      This option causes rsync	to  disable  user-immutable  flags  on
	      files  and  directories that are being updated or	deleted	on the
	      receiving	side.  It does not try to affect system	 flags.	  This
	      option overrides --force-change and --force-schange.

	      This  option  causes  rsync to disable system-immutable flags on
	      files and	directories that are being updated or deleted  on  the
	      receiving	side.  It does not try to affect user flags.  This op-
	      tion overrides --force-change and	--force-uchange.

	      This option tells	rsync to apply	one  or	 more  comma-separated
	      "chmod"  modes  to  the permission of the	files in the transfer.
	      The resulting value is treated as	though it were the permissions
	      that  the	 sending  side supplied	for the	file, which means that
	      this option can seem to have no  effect  on  existing  files  if
	      --perms is not enabled.

	      In  addition  to	the  normal  parsing  rules  specified	in the
	      chmod(1) manpage,	you can	specify	an item	that should only apply
	      to  a  directory	by prefixing it	with a 'D', or specify an item
	      that should only apply to	a file by prefixing  it	 with  a  'F'.
	      For  example, the	following will ensure that all directories get
	      marked set-gid, that no files are	other-writable,	that both  are
	      user-writable  and group-writable, and that both have consistent
	      executability across all bits:


	      Using octal mode numbers is also allowed:


	      It is also legal to specify multiple --chmod  options,  as  each
	      additional  option  is  just  appended to	the list of changes to

	      See the --perms and --executability options for how the  result-
	      ing  permission  value can be applied to the files in the	trans-

       -o, --owner
	      This option causes rsync to set the  owner  of  the  destination
	      file  to be the same as the source file, but only	if the receiv-
	      ing rsync	is being run as	the super-user (see also  the  --super
	      and  --fake-super	 options).   Without this option, the owner of
	      new and/or transferred files are set to the invoking user	on the
	      receiving	side.

	      The  preservation	 of ownership will associate matching names by
	      default, but may fall back to using the ID number	in  some  cir-
	      cumstances (see also the --numeric-ids option for	a full discus-

       -g, --group
	      This option causes rsync to set the  group  of  the  destination
	      file  to	be the same as the source file.	 If the	receiving pro-
	      gram is not running as the  super-user  (or  if  --no-super  was
	      specified),  only	groups that the	invoking user on the receiving
	      side is a	member of will be preserved.  Without this option, the
	      group  is	 set  to the default group of the invoking user	on the
	      receiving	side.

	      The preservation of group	information  will  associate  matching
	      names  by	 default,  but may fall	back to	using the ID number in
	      some circumstances (see also the --numeric-ids option for	a full

	      This  option causes rsync	to transfer character and block	device
	      files to the remote system to recreate these devices.  This  op-
	      tion  has	no effect if the receiving rsync is not	run as the su-
	      per-user (see also the --super and --fake-super options).

	      This option causes rsync to transfer special files such as named
	      sockets and fifos.

       -D     The -D option is equivalent to --devices --specials.

       -t, --times
	      This  tells  rsync to transfer modification times	along with the
	      files and	update them on the remote system.  Note	that  if  this
	      option  is  not  used, the optimization that excludes files that
	      have not been modified cannot be effective; in  other  words,  a
	      missing -t or -a will cause the next transfer to behave as if it
	      used -I,	causing	 all  files  to	 be  updated  (though  rsync's
	      delta-transfer  algorithm	 will make the update fairly efficient
	      if the files haven't actually changed, you're  much  better  off
	      using -t).

       -O, --omit-dir-times
	      This tells rsync to omit directories when	it is preserving modi-
	      fication times (see --times).  If	NFS is sharing the directories
	      on the receiving side, it	is a good idea to use -O.  This	option
	      is inferred if you use --backup without --backup-dir.

	      This option also has the side-effect of avoiding early  creation
	      of  directories  in  incremental	recursion copies.  The default
	      --inc-recursive copying normally does an	early-create  pass  of
	      all the sub-directories in a parent directory in order for it to
	      be able to then set the modify  time  of	the  parent  directory
	      right away (without having to delay that until a bunch of	recur-
	      sive copying has finished).  This	early-create idiom is not nec-
	      essary  if directory modify times	are not	being preserved, so it
	      is skipped.  Since early-create directories don't	have  accurate
	      mode,  mtime, or ownership, the use of this option can help when
	      someone wants to avoid these partially-finished directories.

       -J, --omit-link-times
	      This tells rsync to omit symlinks	when it	is preserving  modifi-
	      cation times (see	--times).

	      This  tells  the receiving side to attempt super-user activities
	      even if the receiving rsync wasn't run by	the super-user.	 These
	      activities  include:  preserving	users  via the --owner option,
	      preserving all groups (not just the current user's  groups)  via
	      the  --groups  option, and copying devices via the --devices op-
	      tion.  This is useful for	systems	 that  allow  such  activities
	      without  being  the  super-user,	and also for ensuring that you
	      will get errors if the receiving side isn't being	run as the su-
	      per-user.	 To turn off super-user	activities, the	super-user can
	      use --no-super.

	      When this	option is enabled, rsync simulates super-user  activi-
	      ties  by	saving/restoring the privileged	attributes via special
	      extended attributes that are attached to each file (as  needed).
	      This  includes  the file's owner and group (if it	is not the de-
	      fault), the file's device	info (device & special files are  cre-
	      ated as empty text files), and any permission bits that we won't
	      allow to be set on the real  file	 (e.g.	 the  real  file  gets
	      u-s,g-s,o-t  for	safety)	or that	would limit the	owner's	access
	      (since the real super-user can always access/change a file,  the
	      files  we	 create	can always be accessed/changed by the creating
	      user).  This option also handles ACLs (if	--acls was  specified)
	      and non-user extended attributes (if --xattrs was	specified).

	      This  is	a  good	way to backup data without using a super-user,
	      and to store ACLs	from incompatible systems.

	      The --fake-super option only affects the side where  the	option
	      is  used.	  To  affect the remote	side of	a remote-shell connec-
	      tion, use	the --remote-option (-M) option:

		rsync -av -M--fake-super /src/ host:/dest/

	      For a local copy,	this option affects both the  source  and  the
	      destination.   If	 you  wish  a local copy to enable this	option
	      just for the destination files, specify -M--fake-super.  If  you
	      wish  a  local  copy  to	enable this option just	for the	source
	      files, combine --fake-super with -M--super.

	      This option is overridden	by both	--super	and --no-super.

	      See also the "fake super"	setting	in  the	 daemon's  rsyncd.conf

       -S, --sparse
	      Try  to  handle  sparse  files  efficiently so they take up less
	      space on the destination.	 Conflicts with	--inplace because it's
	      not possible to overwrite	data in	a sparse fashion.

	      This tells the receiver to allocate each destination file	to its
	      eventual size before writing data	to the file.  Rsync will  only
	      use  the real filesystem-level preallocation support provided by
	      Linux's fallocate(2) system call or Cygwin's posix_fallocate(3),
	      not  the	slow glibc implementation that writes a	zero byte into
	      each block.

	      Without this option, larger files	may not	be entirely contiguous
	      on the filesystem, but with this option rsync will probably copy
	      more slowly.  If the destination	is  not	 an  extent-supporting
	      filesystem (such as ext4,	xfs, NTFS, etc.), this option may have
	      no positive effect at all.

       -n, --dry-run
	      This makes rsync perform a  trial	 run  that  doesn't  make  any
	      changes (and produces mostly the same output as a	real run).  It
	      is most commonly used in	combination  with  the	-v,  --verbose
	      and/or  -i,  --itemize-changes options to	see what an rsync com-
	      mand is going to do before one actually runs it.

	      The output of --itemize-changes is supposed to  be  exactly  the
	      same on a	dry run	and a subsequent real run (barring intentional
	      trickery and system call failures); if it	isn't, that's  a  bug.
	      Other  output should be mostly unchanged,	but may	differ in some
	      areas.  Notably, a dry run does not send	the  actual  data  for
	      file  transfers,	so --progress has no effect, the "bytes	sent",
	      "bytes received",	"literal data",	and "matched data"  statistics
	      are  too	small,	and the	"speedup" value	is equivalent to a run
	      where no file transfers were needed.

       -W, --whole-file
	      With this	option rsync's delta-transfer algorithm	 is  not  used
	      and  the	whole file is sent as-is instead.  The transfer	may be
	      faster if	this option is used when  the  bandwidth  between  the
	      source  and destination machines is higher than the bandwidth to
	      disk  (especially	 when  the  "disk"  is	actually  a  networked
	      filesystem).   This is the default when both the source and des-
	      tination	are  specified	as  local  paths,  but	only   if   no
	      batch-writing option is in effect.

       -x, --one-file-system
	      This  tells  rsync  to avoid crossing a filesystem boundary when
	      recursing.  This does not	limit the user's  ability  to  specify
	      items  to	copy from multiple filesystems,	just rsync's recursion
	      through the hierarchy of each directory that the user specified,
	      and  also	 the  analogous	recursion on the receiving side	during
	      deletion.	 Also keep in mind that	rsync treats a "bind" mount to
	      the same device as being on the same filesystem.

	      If this option is	repeated, rsync	omits all mount-point directo-
	      ries from	the copy.  Otherwise, it includes an  empty  directory
	      at  each	mount-point it encounters (using the attributes	of the
	      mounted directory	because	those of  the  underlying  mount-point
	      directory	are inaccessible).

	      If rsync has been	told to	collapse symlinks (via --copy-links or
	      --copy-unsafe-links), a symlink to a directory on	another	device
	      is  treated like a mount-point.  Symlinks	to non-directories are
	      unaffected by this option.

       --existing, --ignore-non-existing
	      This tells rsync to skip creating	files (including  directories)
	      that  do	not  exist  yet	on the destination.  If	this option is
	      combined with the	--ignore-existing option, no files will	be up-
	      dated  (which  can be useful if all you want to do is delete ex-
	      traneous files).

	      This option is a transfer	rule, not an exclude,  so  it  doesn't
	      affect  the  data	 that  goes  into  the file-lists, and thus it
	      doesn't affect deletions.	 It just limits	the files that the re-
	      ceiver requests to be transferred.

	      This  tells  rsync  to skip updating files that already exist on
	      the destination (this does not ignore existing  directories,  or
	      nothing would get	done).	See also --existing.

	      This  option  is	a transfer rule, not an	exclude, so it doesn't
	      affect the data that goes	 into  the  file-lists,	 and  thus  it
	      doesn't affect deletions.	 It just limits	the files that the re-
	      ceiver requests to be transferred.

	      This option can be useful	for  those  doing  backups  using  the
	      --link-dest  option when they need to continue a backup run that
	      got interrupted.	Since a	--link-dest run	is copied into	a  new
	      directory	 hierarchy  (when it is	used properly),	using --ignore
	      existing will ensure that	the already-handled  files  don't  get
	      tweaked (which avoids a change in	permissions on the hard-linked
	      files).  This does mean that this	option is only looking at  the
	      existing files in	the destination	hierarchy itself.

	      This  tells  rsync  to  remove  from  the	sending	side the files
	      (meaning non-directories)	that are a part	of  the	 transfer  and
	      have been	successfully duplicated	on the receiving side.

	      Note  that  you should only use this option on source files that
	      are quiescent.  If you are using this to move files that show up
	      in  a  particular	directory over to another host,	make sure that
	      the finished files get renamed into the  source  directory,  not
	      directly	written	into it, so that rsync can't possibly transfer
	      a	file that is not yet fully written.  If	you can't first	 write
	      the  files  into	a different directory, you should use a	naming
	      idiom that lets rsync avoid transferring files that are not  yet
	      finished	(e.g.  name the	file "" when it is written, re-
	      name it to "foo" when it is done,	and then use the option	 --ex-
	      clude='*.new' for	the rsync transfer).

	      Starting	with  3.1.0,  rsync  will skip the sender-side removal
	      (and output an error) if the file's size or modify time has  not
	      stayed unchanged.

	      This  tells  rsync to delete extraneous files from the receiving
	      side (ones that aren't on	the sending side), but	only  for  the
	      directories  that	 are  being synchronized.  You must have asked
	      rsync to send the	whole directory	(e.g. "dir" or "dir/") without
	      using  a	wildcard  for  the directory's contents	(e.g. "dir/*")
	      since the	wildcard is expanded by	the shell and rsync thus  gets
	      a	 request  to  transfer individual files, not the files'	parent
	      directory.  Files	that are excluded from the transfer  are  also
	      excluded from being deleted unless you use the --delete-excluded
	      option or	mark the rules as only matching	on  the	 sending  side
	      (see the include/exclude modifiers in the	FILTER RULES section).

	      Prior  to	 rsync	2.6.7, this option would have no effect	unless
	      --recursive was enabled.	Beginning with 2.6.7,  deletions  will
	      also occur when --dirs (-d) is enabled, but only for directories
	      whose contents are being copied.

	      This option can be dangerous if used incorrectly!	 It is a  very
	      good  idea to first try a	run using the --dry-run	option (-n) to
	      see what files are going to be deleted.

	      If the sending side detects any I/O errors, then the deletion of
	      any  files  at  the  destination will be automatically disabled.
	      This is to prevent temporary filesystem failures	(such  as  NFS
	      errors)  on  the sending side from causing a massive deletion of
	      files on the destination.	 You can override this with the	 --ig-
	      nore-errors option.

	      The   --delete   option	may   be  combined  with  one  of  the
	      --delete-WHEN options without conflict, as well as  --delete-ex-
	      cluded.  However,	if none	of the --delete-WHEN options are spec-
	      ified, rsync will	 choose	 the  --delete-during  algorithm  when
	      talking  to  rsync 3.0.0 or newer, and the --delete-before algo-
	      rithm when talking to an older rsync.  See  also	--delete-delay
	      and --delete-after.

	      Request  that  the  file-deletions on the	receiving side be done
	      before the transfer starts.  See --delete	(which is implied) for
	      more details on file-deletion.

	      Deleting	before	the  transfer  is helpful if the filesystem is
	      tight for	space and removing extraneous files would help to make
	      the  transfer  possible.	However, it does introduce a delay be-
	      fore the start of	the transfer, and this delay might  cause  the
	      transfer	to  timeout  (if  --timeout  was  specified).  It also
	      forces rsync to use the old, non-incremental recursion algorithm
	      that  requires  rsync to scan all	the files in the transfer into
	      memory at	once (see --recursive).

       --delete-during,	--del
	      Request that the file-deletions on the receiving	side  be  done
	      incrementally as the transfer happens.  The per-directory	delete
	      scan is done right before	each directory is checked for updates,
	      so  it  behaves like a more efficient --delete-before, including
	      doing the	deletions prior	to any per-directory filter files  be-
	      ing  updated.   This  option  was	 first	added in rsync version
	      2.6.4.  See --delete (which is  implied)	for  more  details  on

	      Request  that  the  file-deletions on the	receiving side be com-
	      puted during the transfer	(like --delete-during),	and  then  re-
	      moved  after  the	 transfer completes.  This is useful when com-
	      bined with --delay-updates and/or	--fuzzy, and is	more efficient
	      than  using  --delete-after  (but	 can behave differently, since
	      --delete-after computes the deletions in a separate  pass	 after
	      all updates are done).  If the number of removed files overflows
	      an internal buffer, a temporary file will	be created on the  re-
	      ceiving side to hold the names (it is removed while open,	so you
	      shouldn't	see it during the transfer).  If the creation  of  the
	      temporary	 file  fails,  rsync  will  try	 to fall back to using
	      --delete-after (which it cannot do if --recursive	 is  doing  an
	      incremental scan).  See --delete (which is implied) for more de-
	      tails on file-deletion.

	      Request that the file-deletions on the receiving	side  be  done
	      after  the  transfer  has	 completed.  This is useful if you are
	      sending new per-directory	merge files as a part of the  transfer
	      and  you	want  their  exclusions	 to take effect	for the	delete
	      phase of the current transfer.  It also forces rsync to use  the
	      old,  non-incremental recursion algorithm	that requires rsync to
	      scan all the files in the	transfer  into	memory	at  once  (see
	      --recursive).   See --delete (which is implied) for more details
	      on file-deletion.

	      In addition to deleting the files	on the receiving side that are
	      not  on  the  sending  side, this	tells rsync to also delete any
	      files on the receiving side that are excluded  (see  --exclude).
	      See the FILTER RULES section for a way to	make individual	exclu-
	      sions behave this	way on the receiver, and for a way to  protect
	      files  from  --delete-excluded.  See --delete (which is implied)
	      for more details on file-deletion.

	      When rsync is first processing the explicitly  requested	source
	      files  (e.g. command-line	arguments or --files-from entries), it
	      is normally an error if the file cannot be found.	  This	option
	      suppresses  that	error,	and does not try to transfer the file.
	      This does	not affect subsequent vanished-file errors if  a  file
	      was initially found to be	present	and later is no	longer there.

	      This  option  takes the behavior of (the implied)	--ignore-miss-
	      ing-args option a	step farther:  each missing arg	will become  a
	      deletion	request	 of  the corresponding destination file	on the
	      receiving	side (should it	exist).	 If the	destination file is  a
	      non-empty	 directory,  it	 will  only be successfully deleted if
	      --force or --delete are in effect.  Other	than that, this	option
	      is independent of	any other type of delete processing.

	      The  missing  source  files are represented by special file-list
	      entries which display as a "*missing" entry in  the  --list-only

	      Tells  --delete to go ahead and delete files even	when there are
	      I/O errors.

	      This option tells	rsync to delete	a non-empty directory when  it
	      is  to be	replaced by a non-directory.  This is only relevant if
	      deletions	are not	active (see --delete for details).

	      This option can be abbreviated --force for backward  compatibil-
	      ity.   Note that some older rsync	versions used to still require
	      --force when using --delete-after, and it	used to	 be  non-func-
	      tional unless the	--recursive option was also enabled.

	      This  tells  rsync not to	delete more than NUM files or directo-
	      ries.  If	that limit is  exceeded,  all  further	deletions  are
	      skipped through the end of the transfer.	At the end, rsync out-
	      puts a warning (including	a count	of the skipped deletions)  and
	      exits with an error code of 25 (unless some more important error
	      condition	also occurred).

	      Beginning	with version 3.0.0, you	may specify --max-delete=0  to
	      be  warned about any extraneous files in the destination without
	      removing any of them.  Older clients interpreted this as "unlim-
	      ited",  so if you	don't know what	version	the client is, you can
	      use the less obvious --max-delete=-1  as	a  backward-compatible
	      way  to  specify that no deletions be allowed (though really old
	      versions didn't warn when	the limit was exceeded).

	      This tells rsync to avoid	transferring any file that  is	larger
	      than  the	 specified SIZE. The SIZE value	can be suffixed	with a
	      string to	indicate a size	multiplier, and	may  be	 a  fractional
	      value (e.g. "--max-size=1.5m").

	      This  option  is	a transfer rule, not an	exclude, so it doesn't
	      affect the data that goes	 into  the  file-lists,	 and  thus  it
	      doesn't affect deletions.	 It just limits	the files that the re-
	      ceiver requests to be transferred.

	      The suffixes are as  follows:  "K"  (or  "KiB")  is  a  kibibyte
	      (1024),  "M"  (or	 "MiB")	is a mebibyte (1024*1024), and "G" (or
	      "GiB") is	a gibibyte (1024*1024*1024).  If you want  the	multi-
	      plier  to	 be  1000  instead  of	1024, use "KB",	"MB", or "GB".
	      (Note: lower-case	is also	accepted for all values.)  Finally, if
	      the suffix ends in either	"+1" or	"-1", the value	will be	offset
	      by one byte in the indicated direction.

	      Examples:	  --max-size=1.5mb-1	is    1499999	 bytes,	   and
	      --max-size=2g+1 is 2147483649 bytes.

	      Note   that   rsync  versions  prior  to	3.1.0  did  not	 allow

	      This tells rsync to avoid	transferring any file that is  smaller
	      than  the	 specified  SIZE,  which  can help in not transferring
	      small, junk files.  See the --max-size option for	a  description
	      of SIZE and other	information.

	      Note   that   rsync  versions  prior  to	3.1.0  did  not	 allow

       -B, --block-size=BLOCKSIZE
	      This forces the block size used in rsync's delta-transfer	 algo-
	      rithm  to	 a  fixed value.  It is	normally selected based	on the
	      size of each file	being updated.	See the	technical  report  for

       -e, --rsh=COMMAND
	      This  option  allows  you	 to choose an alternative remote shell
	      program to use for communication between the  local  and	remote
	      copies  of  rsync.  Typically, rsync is configured to use	ssh by
	      default, but you may prefer to use rsh on	a local	network.

	      If this option is	used with [user@]host::module/path,  then  the
	      remote  shell COMMAND will be used to run	an rsync daemon	on the
	      remote host, and all data	will be	transmitted through  that  re-
	      mote  shell connection, rather than through a direct socket con-
	      nection to a running rsync daemon	on the remote host.   See  the
	      TION" above.

	      Command-line arguments are permitted in  COMMAND	provided  that
	      COMMAND  is  presented  to rsync as a single argument.  You must
	      use spaces (not tabs or other whitespace)	to separate  the  com-
	      mand  and	 args  from each other,	and you	can use	single-	and/or
	      double-quotes to preserve	spaces in an argument (but  not	 back-
	      slashes).	  Note	that  doubling	a  single-quote	 inside	a sin-
	      gle-quoted string	gives you a single-quote;  likewise  for  dou-
	      ble-quotes  (though  you	need  to pay attention to which	quotes
	      your shell is parsing and	which quotes rsync is parsing).	  Some

		  -e 'ssh -p 2234'
		  -e 'ssh -o "ProxyCommand nohup ssh firewall nc -w1 %h	%p"'

	      (Note  that  ssh	users  can alternately customize site-specific
	      connect options in their .ssh/config file.)

	      You can also choose the remote shell program using the RSYNC_RSH
	      environment  variable, which accepts the same range of values as

	      See also the --blocking-io option	which is affected by this  op-

	      Use  this	to specify what	program	is to be run on	the remote ma-
	      chine to start-up	rsync.	Often used when	rsync is  not  in  the
	      default	 remote-shell's	  path	 (e.g.	 --rsync-path=/usr/lo-
	      cal/bin/rsync).  Note that PROGRAM is run	with  the  help	 of  a
	      shell,  so  it  can  be any program, script, or command sequence
	      you'd care to run, so long as it	does  not  corrupt  the	 stan-
	      dard-in &	standard-out that rsync	is using to communicate.

	      One  tricky  example  is to set a	different default directory on
	      the remote machine for use with the --relative option.  For  in-

		  rsync	-avR --rsync-path="cd /a/b && rsync" host:c/d /e/

       -M, --remote-option=OPTION
	      This  option is used for more advanced situations	where you want
	      certain effects to be limited to one side	of the transfer	 only.
	      For instance, if you want	to pass	--log-file=FILE	and --fake-su-
	      per to the remote	system,	specify	it like	this:

		  rsync	-av -M --log-file=foo -M--fake-super src/ dest/

	      If you want to have an option affect only	the local  side	 of  a
	      transfer	when it	normally affects both sides, send its negation
	      to the remote side.  Like	this:

		  rsync	-av -x -M--no-x	src/ dest/

	      Be cautious using	this, as it is possible	to  toggle  an	option
	      that  will  cause	rsync to have a	different idea about what data
	      to expect	next over the socket, and that will make it fail in  a
	      cryptic fashion.

	      Note  that it is best to use a separate --remote-option for each
	      option you want to pass.	This makes your	useage compatible with
	      the --protect-args option.  If that option is off, any spaces in
	      your remote options will be split	by the remote shell unless you
	      take steps to protect them.

	      When performing a	local transfer,	the "local" side is the	sender
	      and the "remote" side is the receiver.

	      Note some	versions of the	popt option-parsing library have a bug
	      in  them	that  prevents	you from using an adjacent arg with an
	      equal  in	  it   next   to   a   short   option	letter	 (e.g.
	      -M--log-file=/tmp/foo.   If  this	 bug  affects  your version of
	      popt, you	can use	the version of	popt  that  is	included  with

       -C, --cvs-exclude
	      This  is a useful	shorthand for excluding	a broad	range of files
	      that you often don't want	to transfer between systems. It	uses a
	      similar  algorithm  to  CVS to determine if a file should	be ig-

	      The exclude list is initialized to exclude the  following	 items
	      (these  initial items are	marked as perishable --	see the	FILTER
	      RULES section):

		     RCS  SCCS	CVS  CVS.adm   RCSLOG	cvslog.*   tags	  TAGS
		     .make.state  .nse_depinfo *~ #* .#* ,* _$*	*$ *.old *.bak
		     *.BAK *.orig *.rej	.del-* *.a *.olb *.o *.obj *.so	 *.exe
		     *.Z *.elc *.ln core .svn/ .git/ .hg/ .bzr/

	      then,  files  listed in a	$HOME/.cvsignore are added to the list
	      and any files listed in the CVSIGNORE environment	variable  (all
	      cvsignore	names are delimited by whitespace).

	      Finally, any file	is ignored if it is in the same	directory as a
	      .cvsignore file and matches one of the patterns listed  therein.
	      Unlike rsync's filter/exclude files, these patterns are split on
	      whitespace.  See the cvs(1) manual for more information.

	      If you're	combining -C with your own --filter rules, you	should
	      note that	these CVS excludes are appended	at the end of your own
	      rules, regardless	of  where  the	-C  was	 placed	 on  the  com-
	      mand-line.   This	makes them a lower priority than any rules you
	      specified	explicitly.  If	you want to control  where  these  CVS
	      excludes	get  inserted  into your filter	rules, you should omit
	      the -C as	a command-line option and use a	combination of	--fil-
	      ter=:C  and  --filter=-C	(either	 on  your  command-line	 or by
	      putting the ":C" and "-C"	rules into a  filter  file  with  your
	      other rules).  The first option turns on the per-directory scan-
	      ning for the .cvsignore file.  The second	option does a one-time
	      import of	the CVS	excludes mentioned above.

       -f, --filter=RULE
	      This  option allows you to add rules to selectively exclude cer-
	      tain files from the list of files	to  be	transferred.  This  is
	      most useful in combination with a	recursive transfer.

	      You  may use as many --filter options on the command line	as you
	      like to build up the list	of files to exclude.   If  the	filter
	      contains whitespace, be sure to quote it so that the shell gives
	      the rule to rsync	as a single argument.	The  text  below  also
	      mentions	that  you  can	use an underscore to replace the space
	      that separates a rule from its arg.

	      See the FILTER RULES section for detailed	 information  on  this

       -F     The  -F  option  is a shorthand for adding two --filter rules to
	      your command.  The first time it is used is a shorthand for this

		 --filter='dir-merge /.rsync-filter'

	      This  tells  rsync to look for per-directory .rsync-filter files
	      that have	been sprinkled through the  hierarchy  and  use	 their
	      rules  to	 filter	the files in the transfer.  If -F is repeated,
	      it is a shorthand	for this rule:

		 --filter='exclude .rsync-filter'

	      This filters out the .rsync-filter  files	 themselves  from  the

	      See  the	FILTER	RULES  section for detailed information	on how
	      these options work.

	      This option is a simplified form of the --filter option that de-
	      faults to	an exclude rule	and does not allow the full rule-pars-
	      ing syntax of normal filter rules.

	      See the FILTER RULES section for detailed	 information  on  this

	      This option is related to	the --exclude option, but it specifies
	      a	FILE that contains exclude patterns  (one  per	line).	 Blank
	      lines  in	 the  file  and	lines starting with ';'	or '#' are ig-
	      nored.  If FILE is -, the	list will be read from standard	input.

	      This option is a simplified form of the --filter option that de-
	      faults to	an include rule	and does not allow the full rule-pars-
	      ing syntax of normal filter rules.

	      See the FILTER RULES section for detailed	 information  on  this

	      This option is related to	the --include option, but it specifies
	      a	FILE that contains include patterns  (one  per	line).	 Blank
	      lines  in	 the  file  and	lines starting with ';'	or '#' are ig-
	      nored.  If FILE is -, the	list will be read from standard	input.

	      Using this option	allows you to specify the exact	list of	 files
	      to  transfer  (as	read from the specified	FILE or	- for standard
	      input).  It also tweaks the default behavior of  rsync  to  make
	      transferring just	the specified files and	directories easier:

	      o	     The  --relative  (-R)  option is implied, which preserves
		     the path information that is specified for	each  item  in
		     the file (use --no-relative or --no-R if you want to turn
		     that off).

	      o	     The --dirs	(-d) option is implied,	which will create  di-
		     rectories specified in the	list on	the destination	rather
		     than noisily skipping them	(use --no-dirs	or  --no-d  if
		     you want to turn that off).

	      o	     The --archive (-a)	option's behavior does not imply --re-
		     cursive (-r), so specify it explicitly, if	you want it.

	      o	     These side-effects	change the default state of rsync,  so
		     the  position  of	the  --files-from  option  on the com-
		     mand-line has no bearing on how other options are	parsed
		     (e.g.  -a works the same before or	after --files-from, as
		     does --no-R and all other options).

	      The filenames that are read from the FILE	are  all  relative  to
	      the  source  dir	-- any leading slashes are removed and no ".."
	      references are allowed to	go higher than the  source  dir.   For
	      example, take this command:

		 rsync -a --files-from=/tmp/foo	/usr remote:/backup

	      If  /tmp/foo  contains  the  string  "bin" (or even "/bin"), the
	      /usr/bin directory will be created as /backup/bin	on the	remote
	      host.   If it contains "bin/" (note the trailing slash), the im-
	      mediate contents of the directory	would also  be	sent  (without
	      needing  to be explicitly	mentioned in the file -- this began in
	      version 2.6.4).  In both cases, if the -r	 option	 was  enabled,
	      that  dir's  entire hierarchy would also be transferred (keep in
	      mind that	-r needs to be specified explicitly with --files-from,
	      since  it	 is  not implied by -a).  Also note that the effect of
	      the (enabled by default) --relative option is to duplicate  only
	      the  path	 info  that is read from the file -- it	does not force
	      the duplication of the source-spec path (/usr in this case).

	      In addition, the --files-from file can be	read from  the	remote
	      host instead of the local	host if	you specify a "host:" in front
	      of the file (the host must match one end of the transfer).  As a
	      short-cut, you can specify just a	prefix of ":" to mean "use the
	      remote end of the	transfer".  For	example:

		 rsync -a --files-from=:/path/file-list	src:/ /tmp/copy

	      This would copy all the files specified in  the  /path/file-list
	      file that	was located on the remote "src"	host.

	      If  the --iconv and --protect-args options are specified and the
	      --files-from filenames are being sent from one host to  another,
	      the filenames will be translated from the	sending	host's charset
	      to the receiving host's charset.

	      NOTE: sorting the	list of	files in the --files-from input	 helps
	      rsync  to	 be  more  efficient, as it will avoid re-visiting the
	      path elements that are shared between adjacent entries.  If  the
	      input  is	 not  sorted, some path	elements (implied directories)
	      may end up being scanned multiple	times, and rsync will  eventu-
	      ally  unduplicate	them after they	get turned into	file-list ele-

       -0, --from0
	      This tells rsync that the	rules/filenames	it reads from  a  file
	      are  terminated  by  a  null  ('\0') character, not a NL,	CR, or
	      CR+LF.	 This	 affects    --exclude-from,    --include-from,
	      --files-from, and	any merged files specified in a	--filter rule.
	      It does not affect --cvs-exclude (since all names	 read  from  a
	      .cvsignore file are split	on whitespace).

       -s, --protect-args
	      This  option  sends all filenames	and most options to the	remote
	      rsync without allowing the remote	shell to interpret them.  This
	      means  that  spaces are not split	in names, and any non-wildcard
	      special characters are not translated  (such  as	~,  $,	;,  &,
	      etc.).   Wildcards are expanded on the remote host by rsync (in-
	      stead of the shell doing it).

	      If you use this option with --iconv, the args related to the re-
	      mote  side  will also be translated from the local to the	remote
	      character-set.  The translation happens  before  wild-cards  are
	      expanded.	 See also the --files-from option.

	      You  may also control this option	via the	RSYNC_PROTECT_ARGS en-
	      vironment	variable.  If this variable has	a non-zero value, this
	      option will be enabled by	default, otherwise it will be disabled
	      by default.  Either state	is overridden by a manually  specified
	      positive	or  negative  version of this option (note that	--no-s
	      and --no-protect-args are	the negative  versions).   Since  this
	      option  was  first introduced in 3.0.0, you'll need to make sure
	      it's disabled if you ever	need to	interact with a	 remote	 rsync
	      that is older than that.

	      Rsync can	also be	configured (at build time) to have this	option
	      enabled by default (with is overridden by	both  the  environment
	      and the command-line).  This option will eventually become a new
	      default setting at some as-yet-undetermined point	in the future.

       -T, --temp-dir=DIR
	      This option instructs rsync to use DIR as	 a  scratch  directory
	      when  creating  temporary	copies of the files transferred	on the
	      receiving	side.  The default behavior is to create  each	tempo-
	      rary  file  in  the same directory as the	associated destination
	      file.  Beginning with rsync 3.1.1, the  temp-file	 names	inside
	      the specified DIR	will not be prefixed with an extra dot (though
	      they will	still have a random suffix added).

	      This option is most often	used when the receiving	disk partition
	      does  not	 have  enough free space to hold a copy	of the largest
	      file in the transfer.  In	this case (i.e.	when the  scratch  di-
	      rectory  is  on  a  different disk partition), rsync will	not be
	      able to rename each received temporary file over the top of  the
	      associated  destination  file,  but  instead  must  copy it into
	      place.  Rsync does this by copying the file over the top of  the
	      destination  file,  which	 means	that the destination file will
	      contain truncated	data during this copy.	If this	were not  done
	      this  way	 (even if the destination file were first removed, the
	      data locally copied to a temporary file in the  destination  di-
	      rectory,	and  then renamed into place) it would be possible for
	      the old file to continue taking up disk space (if	someone	had it
	      open),  and  thus	 there might not be enough room	to fit the new
	      version on the disk at the same time.

	      If you are using this option for reasons other than  a  shortage
	      of  disk	space, you may wish to combine it with the --delay-up-
	      dates option, which will ensure that all copied  files  get  put
	      into  subdirectories  in the destination hierarchy, awaiting the
	      end of the transfer.  If you don't have enough room to duplicate
	      all the arriving files on	the destination	partition, another way
	      to tell rsync that you aren't overly concerned about disk	 space
	      is to use	the --partial-dir option with a	relative path; because
	      this tells rsync that it is OK to	stash off a copy of  a	single
	      file  in	a  subdir in the destination hierarchy,	rsync will use
	      the partial-dir as a staging area	to bring over the copied file,
	      and  then	 rename	it into	place from there. (Specifying a	--par-
	      tial-dir with an absolute	path does not have this	side-effect.)

       -y, --fuzzy
	      This option tells	rsync that it should look for a	basis file for
	      any  destination	file  that  is missing.	 The current algorithm
	      looks in the same	directory as the destination file for either a
	      file  that  has  an identical size and modified-time, or a simi-
	      larly-named file.	 If found, rsync uses the fuzzy	basis file  to
	      try to speed up the transfer.

	      If  the  option is repeated, the fuzzy scan will also be done in
	      any matching alternate destination directories that  are	speci-
	      fied via --compare-dest, --copy-dest, or --link-dest.

	      Note  that  the  use of the --delete option might	get rid	of any
	      potential	fuzzy-match files, so  either  use  --delete-after  or
	      specify some filename exclusions if you need to prevent this.

	      This  option  instructs  rsync to	use DIR	on the destination ma-
	      chine as an additional hierarchy to  compare  destination	 files
	      against  doing transfers (if the files are missing in the	desti-
	      nation directory).  If a file is found in	DIR that is  identical
	      to  the  sender's	 file, the file	will NOT be transferred	to the
	      destination directory.  This is useful  for  creating  a	sparse
	      backup  of  just files that have changed from an earlier backup.
	      This option is typically used to copy into an  empty  (or	 newly
	      created) directory.

	      Beginning	 in version 2.6.4, multiple --compare-dest directories
	      may be provided, which will cause	rsync to search	 the  list  in
	      the  order  specified  for  an exact match.  If a	match is found
	      that differs only	in attributes, a local copy is	made  and  the
	      attributes  updated.  If a match is not found, a basis file from
	      one of the DIRs will be selected to try to speed up  the	trans-

	      If DIR is	a relative path, it is relative	to the destination di-
	      rectory.	See also --copy-dest and --link-dest.

	      NOTE: beginning with version 3.1.0, rsync	 will  remove  a  file
	      from  a  non-empty  destination  hierarchy  if an	exact match is
	      found in one of the compare-dest hierarchies (making the end re-
	      sult more	closely	match a	fresh copy).

	      This  option  behaves  like  --compare-dest, but rsync will also
	      copy unchanged files found in DIR	to the	destination  directory
	      using a local copy.  This	is useful for doing transfers to a new
	      destination while	leaving	existing files intact, and then	 doing
	      a	 flash-cutover	when  all  files have been successfully	trans-

	      Multiple --copy-dest directories may  be	provided,  which  will
	      cause rsync to search the	list in	the order specified for	an un-
	      changed file.  If	a match	is not found, a	basis file from	one of
	      the DIRs will be selected	to try to speed	up the transfer.

	      If DIR is	a relative path, it is relative	to the destination di-
	      rectory.	See also --compare-dest	and --link-dest.

	      This option behaves like --copy-dest, but	 unchanged  files  are
	      hard  linked  from  DIR to the destination directory.  The files
	      must be identical	in all preserved attributes (e.g. permissions,
	      possibly	ownership)  in	order  for  the	files to be linked to-
	      gether.  An example:

		rsync -av --link-dest=$PWD/prior_dir host:src_dir/ new_dir/

	      If file's	aren't linking,	double-check their  attributes.	  Also
	      check  if	 some attributes are getting forced outside of rsync's
	      control, such a mount option that	 squishes  root	 to  a	single
	      user,  or	 mounts	a removable drive with generic ownership (such
	      as OS X's	"Ignore	ownership on this volume" option).

	      Beginning	in version 2.6.4, multiple --link-dest directories may
	      be  provided,  which  will cause rsync to	search the list	in the
	      order specified for an exact match.  If a	match  is  found  that
	      differs  only  in	 attributes,  a	local copy is made and the at-
	      tributes updated.	 If a match is not found, a  basis  file  from
	      one  of  the DIRs	will be	selected to try	to speed up the	trans-

	      This option works	best when copying into	an  empty  destination
	      hierarchy,  as  existing files may get their attributes tweaked,
	      and that can affect alternate destination	files via  hard-links.
	      Also,  itemizing	of  changes  can get a bit muddled.  Note that
	      prior to version 3.1.0, an alternate-directory exact match would
	      never be found (nor linked into the destination) when a destina-
	      tion file	already	exists.

	      Note that	if you combine this option with	--ignore-times,	 rsync
	      will not link any	files together because it only links identical
	      files together as	a substitute for transferring the file,	 never
	      as an additional check after the file is updated.

	      If DIR is	a relative path, it is relative	to the destination di-
	      rectory.	See also --compare-dest	and --copy-dest.

	      Note that	rsync versions prior to	2.6.1 had  a  bug  that	 could
	      prevent  --link-dest  from working properly for a	non-super-user
	      when -o was specified (or	implied	by -a).	 You  can  work-around
	      this bug by avoiding the -o option when sending to an old	rsync.

       -z, --compress
	      With  this  option, rsync	compresses the file data as it is sent
	      to the destination machine, which	reduces	the amount of data be-
	      ing  transmitted -- something that is useful over	a slow connec-

	      Note that	this option typically achieves better compression  ra-
	      tios than	can be achieved	by using a compressing remote shell or
	      a	compressing transport because it takes advantage  of  the  im-
	      plicit  information in the matching data blocks that are not ex-
	      plicitly sent over the connection.  This matching-data  compres-
	      sion  comes at a cost of CPU, though, and	can be disabled	by re-
	      peating the -z option, but only if both sides are	at least  ver-
	      sion 3.1.1.

	      Note that	if your	version	of rsync was compiled with an external
	      zlib (instead of the zlib	that comes packaged with  rsync)  then
	      it   will	 not  support  the  old-style  compression,  only  the
	      new-style	(repeated-option) compression.	 In  the  future  this
	      new-style	compression will likely	become the default.

	      The  client  rsync  requests new-style compression on the	server
	      via the --new-compress option, so	if you	see  that  option  re-
	      jected  it  means	 that  the server is not new enough to support
	      -zz.  Rsync also accepts the --old-compress option for a	future
	      time when	new-style compression becomes the default.

	      See the --skip-compress option for the default list of file suf-
	      fixes that will not be compressed.

	      Explicitly set the compression level to use (see --compress) in-
	      stead of letting it default.  If NUM is non-zero,	the --compress
	      option is	implied.

	      Override the list	of file	suffixes that will not be  compressed.
	      The  LIST	 should	be one or more file suffixes (without the dot)
	      separated	by slashes (/).

	      You may specify an empty string to indicate that no file	should
	      be skipped.

	      Simple  character-class matching is supported: each must consist
	      of a list	of letters inside the square brackets (e.g. no special
	      classes, such as "[:alpha:]", are	supported, and '-' has no spe-
	      cial meaning).

	      The characters asterisk (*) and question-mark (?)	have  no  spe-
	      cial meaning.

	      Here's  an example that specifies	6 suffixes to skip (since 1 of
	      the 5 rules matches 2 suffixes):


	      The default list of suffixes that	will not be compressed is this
	      (in this version of rsync):

	      7z  ace  avi bz2 deb gpg gz iso jpeg jpg lz lzma lzo mov mp3 mp4
	      ogg png rar rpm rzip tbz tgz tlz txz xz z	zip

	      This list	will be	replaced by your --skip-compress list  in  all
	      but  one	situation:  a  copy  from a daemon rsync will add your
	      skipped suffixes to its list of non-compressing files  (and  its
	      list may be configured to	a different default).

	      With  this option	rsync will transfer numeric group and user IDs
	      rather than using	user and group names and mapping them at  both

	      By  default  rsync will use the username and groupname to	deter-
	      mine what	ownership to give files. The special  uid  0  and  the
	      special  group  0	 are never mapped via user/group names even if
	      the --numeric-ids	option is not specified.

	      If a user	or group has no	name on	the source system or it	has no
	      match  on	 the  destination system, then the numeric ID from the
	      source system is used instead.  See also	the  comments  on  the
	      "use  chroot" setting in the rsyncd.conf manpage for information
	      on how the chroot	setting	affects	rsync's	ability	to look	up the
	      names of the users and groups and	what you can do	about it.

       --usermap=STRING, --groupmap=STRING
	      These  options allow you to specify users	and groups that	should
	      be mapped	to other values	by the receiving side.	The STRING  is
	      one  or  more  FROM:TO pairs of values separated by commas.  Any
	      matching FROM value from the sender is replaced with a TO	 value
	      from  the	 receiver.   You may specify usernames or user IDs for
	      the FROM and TO values,  and  the	 FROM  value  may  also	 be  a
	      wild-card	 string,  which	 will  be matched against the sender's
	      names (wild-cards	do NOT match against ID	 numbers,  though  see
	      below  for why a '*' matches everything).	 You may instead spec-
	      ify a range of ID	numbers	via an inclusive range:	LOW-HIGH.  For

		--usermap=0-99:nobody,wayne:admin,*:normal --groupmap=usr:1,1:usr

	      The first	match in the list is the one that is used.  You	should
	      specify all your user mappings using a single --usermap  option,
	      and/or all your group mappings using a single --groupmap option.

	      Note  that  the  sender's	 name for the 0	user and group are not
	      transmitted to the receiver, so you should  either  match	 these
	      values  using  a	0, or use the names in effect on the receiving
	      side (typically "root").	All other FROM names  match  those  in
	      use on the sending side.	All TO names match those in use	on the
	      receiving	side.

	      Any IDs that do not have a name on the sending side are  treated
	      as  having  an empty name	for the	purpose	of matching.  This al-
	      lows them	to be matched via a "*"	or using an empty  name.   For

		--usermap=:nobody --groupmap=*:nobody

	      When  the	--numeric-ids option is	used, the sender does not send
	      any names, so all	the IDs	are treated as having an  empty	 name.
	      This  means that you will	need to	specify	numeric	FROM values if
	      you want to map these nameless IDs to different values.

	      For the --usermap	option to have any effect,  the	 -o  (--owner)
	      option  must be used (or implied), and the receiver will need to
	      be running as a super-user (see also the	--fake-super  option).
	      For  the --groupmap option to have any effect, the -g (--groups)
	      option must be used (or implied),	and the	receiver will need  to
	      have permissions to set that group.

	      This  option  forces  all	 files	to be owned by USER with group
	      GROUP.  This is a	simpler	interface  than	 using	--usermap  and
	      --groupmap  directly,  but it is implemented using those options
	      internally, so you cannot	mix them.  If either the USER or GROUP
	      is  empty, no mapping for	the omitted user/group will occur.  If
	      GROUP is empty, the trailing colon may be	omitted, but  if  USER
	      is empty,	a leading colon	must be	supplied.

	      If  you  specify	"--chown=foo:bar,  this	is exactly the same as
	      specifying "--usermap=*:foo --groupmap=*:bar", only easier.

	      This option allows you to	set a maximum I/O timeout in  seconds.
	      If no data is transferred	for the	specified time then rsync will
	      exit. The	default	is 0, which means no timeout.

	      This option allows you to	set the	amount of time that rsync will
	      wait  for	 its connection	to an rsync daemon to succeed.	If the
	      timeout is reached, rsync	exits with an error.

	      By default rsync will bind to the	wildcard address when connect-
	      ing  to  an  rsync  daemon.   The	--address option allows	you to
	      specify a	specific IP address (or	hostname)  to  bind  to.   See
	      also this	option in the --daemon mode section.

	      This  specifies  an alternate TCP	port number to use rather than
	      the default of 873.  This	is only	needed if you  are  using  the
	      double-colon  (::) syntax	to connect with	an rsync daemon	(since
	      the URL syntax has a way to specify the port as a	 part  of  the
	      URL).  See also this option in the --daemon mode section.

	      This  option can provide endless fun for people who like to tune
	      their systems to the utmost degree. You can  set	all  sorts  of
	      socket  options  which  may  make	transfers faster (or slower!).
	      Read the man page	for the	setsockopt() system call  for  details
	      on  some	of  the	 options you may be able to set. By default no
	      special socket options are set. This only	affects	direct	socket
	      connections  to  a remote	rsync daemon.  This option also	exists
	      in the --daemon mode section.

	      This tells rsync to use blocking I/O  when  launching  a	remote
	      shell  transport.	  If  the remote shell is either rsh or	remsh,
	      rsync defaults to	using blocking I/O, otherwise it  defaults  to
	      using  non-blocking  I/O.	  (Note	 that ssh prefers non-blocking

	      This sets	the output buffering mode.  The	mode can be None  (aka
	      Unbuffered), Line, or Block (aka Full).  You may specify as lit-
	      tle as a single letter for the mode,  and	 use  upper  or	 lower

	      The  main	use of this option is to change	Full buffering to Line
	      buffering	when rsync's output is going to	a file or pipe.

       -i, --itemize-changes
	      Requests a simple	itemized list of the changes  that  are	 being
	      made to each file, including attribute changes.  This is exactly
	      the same as specifying --out-format='%i %n%L'.   If  you	repeat
	      the option, unchanged files will also be output, but only	if the
	      receiving	rsync is at least version 2.6.7	(you can use -vv  with
	      older  versions  of  rsync, but that also	turns on the output of
	      other verbose messages).

	      The "%i" escape has a cryptic output that	is  11	letters	 long.
	      The  general  format  is like the	string YXcstpogfax, where Y is
	      replaced by the type of update being done, X is replaced by  the
	      file-type,  and  the other letters represent attributes that may
	      be output	if they	are being modified.

	      The update types that replace the	Y are as follows:

	      o	     A < means that a file is being transferred	to the	remote
		     host (sent).

	      o	     A	>  means that a	file is	being transferred to the local
		     host (received).

	      o	     A c means that a local change/creation is	occurring  for
		     the  item	(such  as  the	creation of a directory	or the
		     changing of a symlink, etc.).

	      o	     A h means that the	item is	a hard link  to	 another  item
		     (requires --hard-links).

	      o	     A	.  means that the item is not being updated (though it
		     might have	attributes that	are being modified).

	      o	     A * means that the	rest of	the itemized-output area  con-
		     tains a message (e.g. "deleting").

	      The  file-types  that replace the	X are: f for a file, a d for a
	      directory, an L for a symlink, a D for a device, and a S	for  a
	      special file (e.g. named sockets and fifos).

	      The  other  letters  in  the string above	are the	actual letters
	      that will	be output if the associated attribute for the item  is
	      being  updated or	a "." for no change.  Three exceptions to this
	      are: (1) a newly created item replaces each letter with  a  "+",
	      (2)  an identical	item replaces the dots with spaces, and	(3) an
	      unknown attribute	replaces each letter with a "?"	(this can hap-
	      pen when talking to an older rsync).

	      The attribute that is associated with each letter	is as follows:

	      o	     A	c  means  either  that	a regular file has a different
		     checksum (requires	--checksum) or that a symlink, device,
		     or	 special  file	has a changed value.  Note that	if you
		     are sending files to an rsync prior to 3.0.1, this	change
		     flag  will	be present only	for checksum-differing regular

	      o	     A s means the size	of a regular  file  is	different  and
		     will be updated by	the file transfer.

	      o	     A t means the modification	time is	different and is being
		     updated to	the sender's value (requires --times).	An al-
		     ternate  value of T means that the	modification time will
		     be	set  to	 the  transfer	time,  which  happens  when  a
		     file/symlink/device is updated without --times and	when a
		     symlink is	changed	and the	receiver can't set  its	 time.
		     (Note:  when  using  an rsync 3.0.0 client, you might see
		     the s flag	combined with t	instead	of the proper  T  flag
		     for this time-setting failure.)

	      o	     A p means the permissions are different and are being up-
		     dated to the sender's value (requires --perms).

	      o	     An	o means	the owner is different and is being updated to
		     the sender's value	(requires --owner and super-user priv-

	      o	     A g means the group is different and is being updated  to
		     the sender's value	(requires --group and the authority to
		     set the group).

	      o	     The f means that the fileflags information	changed.

	      o	     The a means that the ACL information changed.

	      o	     The x  means  that	 the  extended	attribute  information

	      One  other  output  is  possible:	 when deleting files, the "%i"
	      will output the string "*deleting" for each item that  is	 being
	      removed  (assuming that you are talking to a recent enough rsync
	      that it logs deletions instead of	outputting them	as  a  verbose

	      This allows you to specify exactly what the rsync	client outputs
	      to the user on a per-update basis.  The format is	a text	string
	      containing  embedded  single-character escape sequences prefixed
	      with a percent (%) character.   A	default	format	of  "%n%L"  is
	      assumed if either	--info=name or -v is specified (this tells you
	      just the name of the file	and, if	the item is a link,  where  it
	      points).	For a full list	of the possible	escape characters, see
	      the "log format" setting in the rsyncd.conf manpage.

	      Specifying the --out-format option implies the  --info=name  op-
	      tion,  which will	mention	each file, dir,	etc. that gets updated
	      in a significant way  (a	transferred  file,  a  recreated  sym-
	      link/device, or a	touched	directory).  In	addition, if the item-
	      ize-changes escape (%i) is included in the string	(e.g.  if  the
	      --itemize-changes	 option	 was  used),  the logging of names in-
	      creases to mention any item that is changed in any way (as  long
	      as  the  receiving  side	is  at	least 2.6.4).  See the --item-
	      ize-changes option for a description of the output of "%i".

	      Rsync will output	the out-format string prior to a file's	trans-
	      fer  unless  one of the transfer-statistic escapes is requested,
	      in which case the	logging	is done	 at  the  end  of  the	file's
	      transfer.	 When this late	logging	is in effect and --progress is
	      also specified, rsync will also output the name of the file  be-
	      ing  transferred prior to	its progress information (followed, of
	      course, by the out-format	output).

	      This option causes rsync to log what it  is  doing  to  a	 file.
	      This  is	similar	 to the	logging	that a daemon does, but	can be
	      requested	for the	client	side  and/or  the  server  side	 of  a
	      non-daemon  transfer.  If	specified as a client option, transfer
	      logging will be enabled with a default format of "%i %n%L".  See
	      the --log-file-format option if you wish to override this.

	      Here's  a	 example  command that requests	the remote side	to log
	      what is happening:

		rsync -av --remote-option=--log-file=/tmp/rlog src/ dest/

	      This is very useful if you need to debug	why  a	connection  is
	      closing unexpectedly.

	      This  allows  you	 to specify exactly what per-update logging is
	      put into the file	specified by the --log-file option (which must
	      also  be	specified for this option to have any effect).	If you
	      specify an empty string, updated files will not be mentioned  in
	      the log file.  For a list	of the possible	escape characters, see
	      the "log format" setting in the rsyncd.conf manpage.

	      The default FORMAT used if --log-file is specified and this  op-
	      tion is not is '%i %n%L'.

	      This  tells  rsync  to  print a verbose set of statistics	on the
	      file transfer,  allowing	you  to	 tell  how  effective  rsync's
	      delta-transfer  algorithm	 is  for  your	data.	This option is
	      equivalent to --info=stats2 if combined with 0 or	1 -v  options,
	      or --info=stats3 if combined with	2 or more -v options.

	      The current statistics are as follows:

	      o	     Number  of	 files	is  the	 count	of all "files" (in the
		     generic sense),  which  includes  directories,  symlinks,
		     etc.   The	 total	count  will  be	 followed by a list of
		     counts by filetype	(if the	total is non-zero).  For exam-
		     ple:  "(reg:  5,  dir:  3,	 link: 2, dev: 1, special: 1)"
		     lists the totals for  regular  files,  directories,  sym-
		     links, devices, and special files.	 If any	of value is 0,
		     it	is completely omitted from the list.

	      o	     Number of created files is	the count of how many  "files"
		     (generic  sense)  were  created  (as opposed to updated).
		     The total count will be followed by a list	of  counts  by
		     filetype (if the total is non-zero).

	      o	     Number  of	deleted	files is the count of how many "files"
		     (generic sense) were created  (as	opposed	 to  updated).
		     The  total	 count will be followed	by a list of counts by
		     filetype (if the total is non-zero).  Note	that this line
		     is	 only  output  if deletions are	in effect, and only if
		     protocol 31 is being used (the default for	rsync 3.1.x).

	      o	     Number of regular files transferred is the	count of  nor-
		     mal  files	 that  were updated via	rsync's	delta-transfer
		     algorithm,	which does not include	dirs,  symlinks,  etc.
		     Note  that	rsync 3.1.0 added the word "regular" into this

	      o	     Total file	size is	the total sum of all file sizes	in the
		     transfer.	 This  does not	count any size for directories
		     or	special	files, but does	include	the size of symlinks.

	      o	     Total transferred file size is the	total sum of all files
		     sizes for just the	transferred files.

	      o	     Literal  data  is	how much unmatched file-update data we
		     had to send to the	receiver for it	to  recreate  the  up-
		     dated files.

	      o	     Matched  data  is	how much data the receiver got locally
		     when recreating the updated files.

	      o	     File list size is how big the file-list data was when the
		     sender sent it to the receiver.  This is smaller than the
		     in-memory size for	the file list due to some  compressing
		     of	duplicated data	when rsync sends the list.

	      o	     File  list	 generation time is the	number of seconds that
		     the sender	spent creating the file	list.  This requires a
		     modern rsync on the sending side for this to be present.

	      o	     File list transfer	time is	the number of seconds that the
		     sender spent sending the file list	to the receiver.

	      o	     Total bytes sent is the count of all the bytes that rsync
		     sent from the client side to the server side.

	      o	     Total  bytes  received  is	 the  count of all non-message
		     bytes that	rsync received by the  client  side  from  the
		     server  side.   "Non-message"  bytes  means that we don't
		     count the bytes for a verbose  message  that  the	server
		     sent to us, which makes the stats more consistent.

       -8, --8-bit-output
	      This  tells  rsync to leave all high-bit characters unescaped in
	      the output instead of trying to test  them  to  see  if  they're
	      valid  in	the current locale and escaping	the invalid ones.  All
	      control characters (but never tabs) are always escaped,  regard-
	      less of this option's setting.

	      The  escape  idiom  that started in 2.6.7	is to output a literal
	      backslash	(\) and	a hash (#), followed by	exactly	3  octal  dig-
	      its.  For	example, a newline would output	as "\#012".  A literal
	      backslash	that is	in a filename is not escaped unless it is fol-
	      lowed by a hash and 3 digits (0-9).

       -h, --human-readable
	      Output  numbers  in  a  more human-readable format.  There are 3
	      possible levels:	(1) output numbers with	 a  separator  between
	      each  set	 of 3 digits (either a comma or	a period, depending on
	      if the decimal point is represented by a period or a comma); (2)
	      output  numbers  in  units  of 1000 (with	a character suffix for
	      larger units -- see below); (3) output numbers in	units of 1024.

	      The default is human-readable level 1.  Each -h option increases
	      the  level  by one.  You can take	the level down to 0 (to	output
	      numbers as pure digits)  by  specifing  the  --no-human-readable
	      (--no-h) option.

	      The  unit	 letters  that	are  appended in levels	2 and 3	are: K
	      (kilo), M	(mega),	 G  (giga),  or	 T  (tera).   For  example,  a
	      1234567-byte  file  would	 output	 as 1.23M in level-2 (assuming
	      that a period is your local decimal point).

	      Backward compatibility note:  versions of	rsync prior  to	 3.1.0
	      do not support human-readable level 1, and they default to level
	      0.  Thus,	specifying one or two -h options will behave in	a com-
	      parable  manner  in  old	and new	versions as long as you	didn't
	      specify a	--no-h option prior to one or more  -h	options.   See
	      the --list-only option for one difference.

	      By  default, rsync will delete any partially transferred file if
	      the transfer is interrupted. In some circumstances  it  is  more
	      desirable	 to keep partially transferred files. Using the	--par-
	      tial option tells	rsync to keep the partial  file	 which	should
	      make a subsequent	transfer of the	rest of	the file much faster.

	      A	 better	way to keep partial files than the --partial option is
	      to specify a DIR that will be used to hold the partial data (in-
	      stead  of	 writing it out	to the destination file).  On the next
	      transfer,	rsync will use a file found in this  dir  as  data  to
	      speed up the resumption of the transfer and then delete it after
	      it has served its	purpose.

	      Note that	if --whole-file	is specified (or  implied),  any  par-
	      tial-dir	file  that  is	found for a file that is being updated
	      will simply be removed (since rsync is sending files without us-
	      ing rsync's delta-transfer algorithm).

	      Rsync will create	the DIR	if it is missing (just the last	dir --
	      not the whole path).  This makes it easy to use a	relative  path
	      (such  as	 "--partial-dir=.rsync-partial")  to have rsync	create
	      the partial-directory in the destination file's  directory  when
	      needed,  and  then  remove  it  again  when  the partial file is

	      If the partial-dir value is not an absolute path,	rsync will add
	      an  exclude rule at the end of all your existing excludes.  This
	      will prevent the sending of any partial-dir files	that may exist
	      on the sending side, and will also prevent the untimely deletion
	      of partial-dir items on the receiving  side.   An	 example:  the
	      above  --partial-dir  option would add the equivalent of "-f '-p
	      .rsync-partial/'"	at the end of any other	filter rules.

	      If you are supplying your	own exclude rules, you may need	to add
	      your  own	 exclude/hide/protect rule for the partial-dir because
	      (1) the auto-added rule may be ineffective at the	 end  of  your
	      other  rules,  or	 (2)  you may wish to override rsync's exclude
	      choice.  For instance, if	you want to make  rsync	 clean-up  any
	      left-over	 partial-dirs  that  may  be  lying around, you	should
	      specify --delete-after and add a "risk" filter rule, e.g.	 -f 'R
	      .rsync-partial/'.	 (Avoid	using --delete-before or --delete-dur-
	      ing unless you don't need	rsync to use any of the	left-over par-
	      tial-dir data during the current run.)

	      IMPORTANT:  the  --partial-dir  should  not be writable by other
	      users or it is a security	risk.  E.g. AVOID "/tmp".

	      You can also set the partial-dir value the RSYNC_PARTIAL_DIR en-
	      vironment	 variable.   Setting  this in the environment does not
	      force --partial to be enabled, but rather	it affects where  par-
	      tial  files  go  when --partial is specified.  For instance, in-
	      stead of using --partial-dir=.rsync-tmp along  with  --progress,
	      you  could  set RSYNC_PARTIAL_DIR=.rsync-tmp in your environment
	      and then just use	the -P option  to  turn	 on  the  use  of  the
	      .rsync-tmp  dir  for partial transfers.  The only	times that the
	      --partial	option does not	look for this  environment  value  are
	      (1) when --inplace was specified (since --inplace	conflicts with
	      --partial-dir), and (2) when --delay-updates was specified  (see

	      For  the	purposes  of the daemon-config's "refuse options" set-
	      ting, --partial-dir does not imply --partial.  This is so	that a
	      refusal  of  the	--partial  option  can be used to disallow the
	      overwriting of destination files with a partial transfer,	 while
	      still allowing the safer idiom provided by --partial-dir.

	      This  option puts	the temporary file from	each updated file into
	      a	holding	directory until	the end	of the transfer, at which time
	      all  the files are renamed into place in rapid succession.  This
	      attempts to make the updating of the files a little more atomic.
	      By  default the files are	placed into a directory	named ".~tmp~"
	      in each file's destination directory, but	 if  you've  specified
	      the  --partial-dir  option, that directory will be used instead.
	      See the comments in the --partial-dir section for	 a  discussion
	      of how this ".~tmp~" dir will be excluded	from the transfer, and
	      what you can do if you want rsync	to cleanup old	".~tmp~"  dirs
	      that  might be lying around.  Conflicts with --inplace and --ap-

	      This option uses more memory on the receiving side (one bit  per
	      file  transferred)  and  also requires enough free disk space on
	      the receiving side to hold an additional copy of all the updated
	      files.   Note  also  that	you should not use an absolute path to
	      --partial-dir unless (1) there is	no chance of any of the	 files
	      in  the  transfer	 having	 the  same name	(since all the updated
	      files will be put	into a single directory	if the path  is	 abso-
	      lute)  and (2) there are no mount	points in the hierarchy	(since
	      the delayed updates will fail if	they  can't  be	 renamed  into

	      See  also	the "atomic-rsync" perl	script in the "support"	subdir
	      for an update algorithm  that  is	 even  more  atomic  (it  uses
	      --link-dest and a	parallel hierarchy of files).

       -m, --prune-empty-dirs
	      This option tells	the receiving rsync to get rid of empty	direc-
	      tories from the file-list,  including  nested  directories  that
	      have no non-directory children.  This is useful for avoiding the
	      creation of a bunch of  useless  directories  when  the  sending
	      rsync  is	 recursively  scanning	a hierarchy of files using in-
	      clude/exclude/filter rules.

	      Note that	the use	of transfer rules, such	as the --min-size  op-
	      tion,  does  not	affect	what goes into the file	list, and thus
	      does not leave directories empty,	even if	none of	the files in a
	      directory	match the transfer rule.

	      Because the file-list is actually	being pruned, this option also
	      affects what directories get deleted when	a  delete  is  active.
	      However,	keep  in  mind that excluded files and directories can
	      prevent existing items from being	deleted	due to an exclude both
	      hiding  source  files and	protecting destination files.  See the
	      perishable filter-rule option for	how to avoid this.

	      You can prevent the pruning of certain  empty  directories  from
	      the file-list by using a global "protect"	filter.	 For instance,
	      this option would	ensure that the	directory "emptydir" was  kept
	      in the file-list:

	      --filter 'protect	emptydir/'

	      Here's  an  example  that	 copies	all .pdf files in a hierarchy,
	      only creating the	necessary destination directories to hold  the
	      .pdf  files, and ensures that any	superfluous files and directo-
	      ries in the destination are removed (note	 the  hide  filter  of
	      non-directories being used instead of an exclude):

	      rsync -avm --del --include='*.pdf' -f 'hide,! */'	src/ dest

	      If  you didn't want to remove superfluous	destination files, the
	      more  time-honored  options  of  "--include='*/'	--exclude='*'"
	      would  work  fine	 in  place of the hide-filter (if that is more
	      natural to you).

	      This  option  tells  rsync  to  print  information  showing  the
	      progress	of  the	transfer. This gives a bored user something to
	      watch.  With a modern rsync  this	 is  the  same	as  specifying
	      --info=flist2,name,progress,  but	any user-supplied settings for
	      those  info  flags   takes   precedence	(e.g.	"--info=flist0

	      While  rsync  is	transferring  a	 regular  file,	 it  updates a
	      progress line that looks like this:

		    782448  63%	 110.64kB/s    0:00:04

	      In this example, the receiver has	reconstructed 782448 bytes  or
	      63% of the sender's file,	which is being reconstructed at	a rate
	      of 110.64	kilobytes per second, and the transfer will finish  in
	      4	seconds	if the current rate is maintained until	the end.

	      These statistics can be misleading if rsync's delta-transfer al-
	      gorithm is in use.  For example, if the sender's	file  consists
	      of the basis file	followed by additional data, the reported rate
	      will probably drop dramatically when the receiver	 gets  to  the
	      literal data, and	the transfer will probably take	much longer to
	      finish than the receiver	estimated  as  it  was	finishing  the
	      matched part of the file.

	      When  the	 file  transfer	 finishes, rsync replaces the progress
	      line with	a summary line that looks like this:

		    1,238,099 100%  146.38kB/s	  0:00:08  (xfr#5, to-chk=169/396)

	      In this example, the file	was 1,238,099 bytes long in total, the
	      average rate of transfer for the whole file was 146.38 kilobytes
	      per second over the 8 seconds that it took to complete,  it  was
	      the 5th transfer of a regular file during	the current rsync ses-
	      sion, and	there are 169 more files for the receiver to check (to
	      see  if they are up-to-date or not) remaining out	of the 396 to-
	      tal files	in the file-list.

	      In an incremental	recursion scan,	rsync  won't  know  the	 total
	      number  of  files	 in the	file-list until	it reaches the ends of
	      the scan,	but since it starts to transfer	files during the scan,
	      it  will	display	a line with the	text "ir-chk" (for incremental
	      recursion	check) instead of "to-chk" until  the  point  that  it
	      knows  the  full size of the list, at which point	it will	switch
	      to using "to-chk".  Thus,	seeing "ir-chk"	lets you know that the
	      total count of files in the file list is still going to increase
	      (and each	time it	does, the count	of files left to  check	  will
	      increase by the number of	the files added	to the list).

       -P     The  -P  option is equivalent to --partial --progress.  Its pur-
	      pose is to make it much easier to	specify	these two options  for
	      a	long transfer that may be interrupted.

	      There  is	also a --info=progress2	option that outputs statistics
	      based on the whole transfer, rather than individual files.   Use
	      this  flag without outputting a filename (e.g. avoid -v or spec-
	      ify --info=name0 if you want to see how the  transfer  is	 doing
	      without  scrolling  the  screen with a lot of names.  (You don't
	      need  to	specify	 the  --progress  option  in  order   to   use

	      This  option  allows  you	to provide a password for accessing an
	      rsync daemon via a file or via standard input if FILE is -.  The
	      file  should  contain  just  the password	on the first line (all
	      other lines are ignored).	 Rsync will exit with an error if FILE
	      is  world	 readable  or  if  a  root-run	rsync  command finds a
	      non-root-owned file.

	      This option does not supply a password to	a remote shell	trans-
	      port  such  as  ssh; to learn how	to do that, consult the	remote
	      shell's documentation.  When accessing an	rsync daemon  using  a
	      remote  shell  as	the transport, this option only	comes into ef-
	      fect after the remote shell finishes its authentication (i.e. if
	      you have also specified a	password in the	daemon's config	file).

	      This  option will	cause the source files to be listed instead of
	      transferred.  This option	is  inferred  if  there	 is  a	single
	      source  arg  and no destination specified, so its	main uses are:
	      (1) to turn a copy command that includes a destination arg  into
	      a	 file-listing  command,	or (2) to be able to specify more than
	      one source arg (note: be sure to include the destination).  Cau-
	      tion:  keep  in  mind  that a source arg with a wild-card	is ex-
	      panded by	the shell into multiple	args, so it is never  safe  to
	      try to list such an arg without using this option.  For example:

		  rsync	-av --list-only	foo* dest/

	      Starting	with  rsync 3.1.0, the sizes output by --list-only are
	      affected by the --human-readable option.	By default  they  will
	      contain  digit separators, but higher levels of readability will
	      output the sizes with unit suffixes.  Note also that the	column
	      width for	the size output	has increased from 11 to 14 characters
	      for all human-readable levels.  Use --no-h if you	want just dig-
	      its in the sizes,	and the	old column width of 11 characters.

	      Compatibility  note:   when requesting a remote listing of files
	      from an rsync that is version 2.6.3 or older, you	may  encounter
	      an  error	 if  you ask for a non-recursive listing.  This	is be-
	      cause a file listing implies the --dirs option w/o  --recursive,
	      and older	rsyncs don't have that option.	To avoid this problem,
	      either specify the --no-dirs option (if you don't	need to	expand
	      a	 directory's  content),	 or  turn on recursion and exclude the
	      content of subdirectories: -r --exclude='/*/*'.

	      This option allows you to	specify	the maximum transfer rate  for
	      the  data	 sent  over the	socket,	specified in units per second.
	      The RATE value can be suffixed with a string to indicate a  size
	      multiplier,    and    may	   be	a   fractional	 value	 (e.g.
	      "--bwlimit=1.5m").  If no	suffix is specified, the value will be
	      assumed  to  be  in  units of 1024 bytes (as if "K" or "KiB" had
	      been appended).  See the --max-size option for a description  of
	      all the available	suffixes. A value of zero specifies no limit.

	      For  backward-compatibility  reasons,  the  rate	limit  will be
	      rounded to the nearest KiB unit, so no rate  smaller  than  1024
	      bytes per	second is possible.

	      Rsync  writes  data  over	 the socket in blocks, and this	option
	      both limits the size of the blocks that rsync writes, and	 tries
	      to  keep the average transfer rate at the	requested limit.  Some
	      "burstiness" may be seen where rsync writes out a	block of  data
	      and then sleeps to bring the average rate	into compliance.

	      Due to the internal buffering of data, the --progress option may
	      not be an	accurate reflection on how  fast  the  data  is	 being
	      sent.   This  is because some files can show up as being rapidly
	      sent when	the data is quickly buffered, while other can show  up
	      as  very	slow  when  the	 flushing of the output	buffer occurs.
	      This may be fixed	in a future version.

	      Record a file that can later be  applied	to  another  identical
	      destination  with	--read-batch. See the "BATCH MODE" section for
	      details, and also	the --only-write-batch option.

	      Works like --write-batch,	except that no updates are made	on the
	      destination  system  when	 creating  the	batch.	 This lets you
	      transport	the changes to the destination system via  some	 other
	      means and	then apply the changes via --read-batch.

	      Note  that you can feel free to write the	batch directly to some
	      portable media: if this media fills to capacity before  the  end
	      of the transfer, you can just apply that partial transfer	to the
	      destination and repeat the whole process to get the rest of  the
	      changes  (as long	as you don't mind a partially updated destina-
	      tion system while	the multi-update cycle is happening).

	      Also note	that you only save bandwidth when pushing changes to a
	      remote  system  because  this  allows the	batched	data to	be di-
	      verted from the sender into the batch  file  without  having  to
	      flow  over the wire to the receiver (when	pulling, the sender is
	      remote, and thus can't write the batch).

	      Apply all	of the changes stored in FILE, a file previously  gen-
	      erated  by  --write-batch.  If FILE is -,	the batch data will be
	      read from	standard input.	 See the "BATCH	MODE" section for  de-

	      Force  an	older protocol version to be used.  This is useful for
	      creating a batch file that is compatible with an	older  version
	      of  rsync.   For instance, if rsync 2.6.4	is being used with the
	      --write-batch option, but	rsync 2.6.3 is what will  be  used  to
	      run the --read-batch option, you should use "--protocol=28" when
	      creating the batch file to force the older protocol  version  to
	      be  used in the batch file (assuming you can't upgrade the rsync
	      on the reading system).

	      Rsync can	convert	filenames between character  sets  using  this
	      option.	Using a	CONVERT_SPEC of	"." tells rsync	to look	up the
	      default character-set via	the locale setting.  Alternately,  you
	      can  fully specify what conversion to do by giving a local and a
	      remote charset separated by a comma  in  the  order  --iconv=LO-
	      CAL,REMOTE,  e.g.	  --iconv=utf8,iso88591.   This	 order ensures
	      that the option will stay	the same  whether  you're  pushing  or
	      pulling  files.  Finally,	you can	specify	either --no-iconv or a
	      CONVERT_SPEC of "-" to turn off  any  conversion.	  The  default
	      setting  of  this	 option	 is site-specific, and can also	be af-
	      fected via the RSYNC_ICONV environment variable.

	      For a list of what charset names your local iconv	 library  sup-
	      ports, you can run "iconv	--list".

	      If you specify the --protect-args	option (-s), rsync will	trans-
	      late the filenames you specify on	the command-line that are  be-
	      ing sent to the remote host.  See	also the --files-from option.

	      Note  that  rsync	 does not do any conversion of names in	filter
	      files (including include/exclude files).	It is up to you	to en-
	      sure  that  you're  specifying  matching rules that can match on
	      both sides of the	transfer.  For instance, you can specify extra
	      include/exclude  rules  if there are filename differences	on the
	      two sides	that need to be	accounted for.

	      When you pass an --iconv option to an rsync daemon  that	allows
	      it,  the daemon uses the charset specified in its	"charset" con-
	      figuration parameter regardless of the remote charset you	 actu-
	      ally  pass.   Thus,  you may feel	free to	specify	just the local
	      charset for a daemon transfer (e.g. --iconv=utf8).

       -4, --ipv4 or -6, --ipv6
	      Tells rsync to prefer IPv4/IPv6  when  creating  sockets.	  This
	      only affects sockets that	rsync has direct control over, such as
	      the outgoing socket when directly	contacting  an	rsync  daemon.
	      See also these options in	the --daemon mode section.

	      If  rsync	 was complied without support for IPv6,	the --ipv6 op-
	      tion will	have no	effect.	 The --version output will tell	you if
	      this is the case.

	      Set  the checksum	seed to	the integer NUM.  This 4 byte checksum
	      seed is included in each block and MD4 file checksum calculation
	      (the  more  modern MD5 file checksums don't use a	seed).	By de-
	      fault the	checksum seed is generated by the server and  defaults
	      to  the  current time() .	 This option is	used to	set a specific
	      checksum seed, which is useful for applications  that  want  re-
	      peatable	block checksums, or in the case	where the user wants a
	      more random checksum seed.  Setting NUM to 0 causes rsync	to use
	      the default of time() for	checksum seed.

       The options allowed when	starting an rsync daemon are as	follows:

	      This  tells rsync	that it	is to run as a daemon.	The daemon you
	      start running may	be accessed using an rsync  client  using  the
	      host::module or rsync://host/module/ syntax.

	      If  standard input is a socket then rsync	will assume that it is
	      being run	via inetd, otherwise it	will detach from  the  current
	      terminal	and  become a background daemon.  The daemon will read
	      the config file (rsyncd.conf) on each connect made by  a	client
	      and respond to requests accordingly.  See	the rsyncd.conf(5) man
	      page for more details.

	      By default rsync will bind to the	wildcard address when run as a
	      daemon  with  the	 --daemon option.  The --address option	allows
	      you to specify a specific	IP address (or hostname) to  bind  to.
	      This  makes  virtual  hosting  possible  in conjunction with the
	      --config option.	See also the "address" global  option  in  the
	      rsyncd.conf manpage.

	      This  option allows you to specify the maximum transfer rate for
	      the data the daemon sends	over the socket.  The client can still
	      specify  a  smaller --bwlimit value, but no larger value will be
	      allowed.	See the	client version of this option (above) for some
	      extra details.

	      This  specifies an alternate config file than the	default.  This
	      is only relevant when --daemon is	 specified.   The  default  is
	      /usr/local/etc/rsync/rsyncd.conf	unless	the  daemon is running
	      over a remote shell program and the remote user is not  the  su-
	      per-user;	in that	case the default is rsyncd.conf	in the current
	      directory	(typically $HOME).

       -M, --dparam=OVERRIDE
	      This option can be used to set a	daemon-config  parameter  when
	      starting	up  rsync  in daemon mode.  It is equivalent to	adding
	      the parameter at the end of the global  settings	prior  to  the
	      first module's definition.  The parameter	names can be specified
	      without spaces, if you so	desire.	 For instance:

		  rsync	--daemon -M pidfile=/path/

	      When running as a	daemon,	this option instructs rsync to not de-
	      tach itself and become a background process.  This option	is re-
	      quired when running as a service on Cygwin, and may also be use-
	      ful when rsync is	supervised by a	program	such as	daemontools or
	      AIX's System Resource Controller.	 --no-detach  is  also	recom-
	      mended  when  rsync is run under a debugger.  This option	has no
	      effect if	rsync is run from inetd	or sshd.

	      This specifies an	alternate TCP port number for  the  daemon  to
	      listen  on  rather than the default of 873.  See also the	"port"
	      global option in the rsyncd.conf manpage.

	      This option tells	the rsync daemon to  use  the  given  log-file
	      name instead of using the	"log file" setting in the config file.

	      This  option  tells  the	rsync  daemon  to use the given	FORMAT
	      string instead of	using the "log format" setting in  the	config
	      file.   It  also enables "transfer logging" unless the string is
	      empty, in	which case transfer logging is turned off.

	      This overrides the socket	options	 setting  in  the  rsyncd.conf
	      file and has the same syntax.

       -v, --verbose
	      This  option increases the amount	of information the daemon logs
	      during its startup phase.	 After the client connects,  the  dae-
	      mon's verbosity level will be controlled by the options that the
	      client used and the "max verbosity" setting in the module's con-
	      fig section.

       -4, --ipv4 or -6, --ipv6
	      Tells rsync to prefer IPv4/IPv6 when creating the	incoming sock-
	      ets that the rsync daemon	will use to  listen  for  connections.
	      One  of these options may	be required in older versions of Linux
	      to work around an	IPv6 bug in the	kernel (if you see an "address
	      already  in  use"	error when nothing else	is using the port, try
	      specifying --ipv6	or --ipv4 when starting	the daemon).

	      If rsync was complied without support for	IPv6, the  --ipv6  op-
	      tion will	have no	effect.	 The --version output will tell	you if
	      this is the case.

       -h, --help
	      When specified after --daemon, print a short help	page  describ-
	      ing the options available	for starting an	rsync daemon.

       The  filter rules allow for flexible selection of which files to	trans-
       fer (include) and which files to	skip (exclude).	 The rules either  di-
       rectly  specify	include/exclude	 patterns or they specify a way	to ac-
       quire more include/exclude patterns (e.g. to read them from a file).

       As the list of files/directories	to transfer  is	 built,	 rsync	checks
       each  name  to  be transferred against the list of include/exclude pat-
       terns in	turn, and the first matching pattern is	acted on:  if it is an
       exclude pattern,	then that file is skipped; if it is an include pattern
       then that filename is not skipped; if no	 matching  pattern  is	found,
       then the	filename is not	skipped.

       Rsync  builds  an ordered list of filter	rules as specified on the com-
       mand-line.  Filter rules	have the following syntax:


       You have	your choice of using either short or long RULE names,  as  de-
       scribed	below.	 If you	use a short-named rule,	the ','	separating the
       RULE from the MODIFIERS is optional.  The PATTERN or FILENAME that fol-
       lows  (when present) must come after either a single space or an	under-
       score (_).  Here	are the	available rule prefixes:

	      exclude, - specifies an exclude pattern.
	      include, + specifies an include pattern.
	      merge, . specifies a merge-file to read for more rules.
	      dir-merge, : specifies a per-directory merge-file.
	      hide, H specifies	a pattern for hiding files from	the transfer.
	      show, S files that match the pattern are not hidden.
	      protect, P specifies a pattern for protecting files  from	 dele-
	      risk, R files that match the pattern are not protected.
	      clear, ! clears the current include/exclude list (takes no arg)

       When  rules are being read from a file, empty lines are ignored,	as are
       comment lines that start	with a "#".

       Note that the --include/--exclude command-line options do not allow the
       full  range  of	rule parsing as	described above	-- they	only allow the
       specification of	include/exclude	patterns plus a	"!" token to clear the
       list  (and the normal comment parsing when rules	are read from a	file).
       If a pattern does not begin with	"- " (dash,  space)  or	 "+  "	(plus,
       space),	then  the  rule	will be	interpreted as if "+ " (for an include
       option) or "- " (for an exclude option) were prefixed to	the string.  A
       --filter	 option, on the	other hand, must always	contain	either a short
       or long rule name at the	start of the rule.

       Note also that the --filter, --include, and --exclude options take  one
       rule/pattern  each. To add multiple ones, you can repeat	the options on
       the command-line, use the merge-file syntax of the --filter option,  or
       the --include-from/--exclude-from options.

       You can include and exclude files by specifying patterns	using the "+",
       "-", etc. filter	rules (as  introduced  in  the	FILTER	RULES  section
       above).	 The  include/exclude  rules  each  specify  a pattern that is
       matched against the names of the	files that  are	 going	to  be	trans-
       ferred.	These patterns can take	several	forms:

       o      if the pattern starts with a / then it is	anchored to a particu-
	      lar spot in the hierarchy	of  files,  otherwise  it  is  matched
	      against the end of the pathname.	This is	similar	to a leading ^
	      in regular expressions.  Thus "/foo" would match a name of "foo"
	      at  either  the "root of the transfer" (for a global rule) or in
	      the merge-file's directory (for a	per-directory rule).   An  un-
	      qualified	"foo" would match a name of "foo" anywhere in the tree
	      because the algorithm is applied recursively from	the top	 down;
	      it  behaves  as  if each path component gets a turn at being the
	      end of the filename.  Even the unanchored	"sub/foo" would	 match
	      at  any  point in	the hierarchy where a "foo" was	found within a
	      directory	named "sub".  See the section on ANCHORING INCLUDE/EX-
	      CLUDE PATTERNS for a full	discussion of how to specify a pattern
	      that matches at the root of the transfer.

       o      if the pattern ends with a / then	it will	only  match  a	direc-
	      tory, not	a regular file,	symlink, or device.

       o      rsync  chooses  between doing a simple string match and wildcard
	      matching by checking if the pattern contains one of these	 three
	      wildcard characters: '*',	'?', and '[' .

       o      a	'*' matches any	path component,	but it stops at	slashes.

       o      use '**' to match	anything, including slashes.

       o      a	'?' matches any	character except a slash (/).

       o      a	 '['  introduces  a  character	class, such as [a-z] or	[[:al-

       o      in a wildcard pattern, a backslash can be	used to	escape a wild-
	      card  character,	but  it	is matched literally when no wildcards
	      are present.  This means that there is an	extra level  of	 back-
	      slash  removal  when a pattern contains wildcard characters com-
	      pared to a pattern that has none.	 e.g. if you add a wildcard to
	      "foo\bar"	 (which	 matches  the backslash) you would need	to use
	      "foo\\bar*" to avoid the "\b" becoming just "b".

       o      if the pattern contains a	/ (not counting	a  trailing  /)	 or  a
	      "**",  then  it  is matched against the full pathname, including
	      any leading directories. If the pattern doesn't contain a	/ or a
	      "**", then it is matched only against the	final component	of the
	      filename.	 (Remember that	the algorithm is  applied  recursively
	      so  "full	 filename"  can	actually be any	portion	of a path from
	      the starting directory on	down.)

       o      a	trailing "dir_name/***"	will match both	the directory  (as  if
	      "dir_name/"  had been specified) and everything in the directory
	      (as if "dir_name/**" had been  specified).   This	 behavior  was
	      added in version 2.6.7.

       Note  that, when	using the --recursive (-r) option (which is implied by
       -a), every subcomponent of every	path is	visited	from the top down,  so
       include/exclude patterns	get applied recursively	to each	subcomponent's
       full name (e.g. to include "/foo/bar/baz" the subcomponents "/foo"  and
       "/foo/bar"  must	 not  be  excluded).   The  exclude  patterns actually
       short-circuit the directory traversal stage when	rsync finds the	 files
       to  send.   If a	pattern	excludes a particular parent directory,	it can
       render a	deeper include pattern ineffectual because rsync did  not  de-
       scend through that excluded section of the hierarchy.  This is particu-
       larly important when using a trailing '*'  rule.	  For  instance,  this
       won't work:

	      +	/some/path/this-file-will-not-be-found
	      +	/file-is-included
	      -	*

       This  fails  because the	parent directory "some"	is excluded by the '*'
       rule, so	rsync  never  visits  any  of  the  files  in  the  "some"  or
       "some/path" directories.	 One solution is to ask	for all	directories in
       the hierarchy to	be included by using a single rule:  "+	 */"  (put  it
       somewhere   before   the	  "-   *"   rule),   and   perhaps   use   the
       --prune-empty-dirs option.  Another solution is to add specific include
       rules  for  all the parent dirs that need to be visited.	 For instance,
       this set	of rules works fine:

	      +	/some/
	      +	/some/path/
	      +	/some/path/this-file-is-found
	      +	/file-also-included
	      -	*

       Here are	some examples of exclude/include matching:

       o      "- *.o" would exclude all	names matching *.o

       o      "- /foo" would exclude a file (or	directory) named  foo  in  the
	      transfer-root directory

       o      "- foo/" would exclude any directory named foo

       o      "-  /foo/*/bar" would exclude any	file named bar which is	at two
	      levels below a directory named foo in the	 transfer-root	direc-

       o      "-  /foo/**/bar"	would  exclude	any file named bar two or more
	      levels below a directory named foo in the	 transfer-root	direc-

       o      The  combination of "+ */", "+ *.c", and "- *" would include all
	      directories and C	source files but nothing else  (see  also  the
	      --prune-empty-dirs option)

       o      The  combination of "+ foo/", "+ foo/bar.c", and "- *" would in-
	      clude only the foo directory and foo/bar.c  (the	foo  directory
	      must be explicitly included or it	would be excluded by the "*")

       The following modifiers are accepted after a "+"	or "-":

       o      A	 /  specifies  that the	include/exclude	rule should be matched
	      against the absolute pathname of the current item.  For example,
	      "-/  /usr/local/etc/rsync/passwd"	 would exclude the passwd file
	      any time the transfer was	sending	files from the	"/etc"	direc-
	      tory,  and "-/ subdir/foo" would always exclude "foo" when it is
	      in a dir named "subdir", even if "foo" is	at  the	 root  of  the
	      current transfer.

       o      A	! specifies that the include/exclude should take effect	if the
	      pattern fails to match.  For instance, "-! */" would exclude all

       o      A	 C  is	used to	indicate that all the global CVS-exclude rules
	      should be	inserted as excludes in	place of  the  "-C".   No  arg
	      should follow.

       o      An  s  is	 used to indicate that the rule	applies	to the sending
	      side.  When a rule affects the sending side, it  prevents	 files
	      from  being  transferred.	  The  default is for a	rule to	affect
	      both sides unless	--delete-excluded was specified, in which case
	      default  rules  become  sender-side only.	 See also the hide (H)
	      and show (S) rules, which	are an alternate way to	specify	 send-
	      ing-side includes/excludes.

       o      An  r is used to indicate	that the rule applies to the receiving
	      side.  When a rule affects the receiving side, it	prevents files
	      from being deleted.  See the s modifier for more info.  See also
	      the protect (P) and risk (R) rules, which	are an	alternate  way
	      to specify receiver-side includes/excludes.

       o      A	 p indicates that a rule is perishable,	meaning	that it	is ig-
	      nored in directories that	are being deleted.  For	instance,  the
	      -C  option's  default  rules  that exclude things	like "CVS" and
	      "*.o" are	marked as perishable, and will not prevent a directory
	      that  was	removed	on the source from being deleted on the	desti-

       You can merge whole files into your filter rules	by specifying either a
       merge  (.)  or a	dir-merge (:) filter rule (as introduced in the	FILTER
       RULES section above).

       There are two kinds  of	merged	files  --  single-instance  ('.')  and
       per-directory  (':').   A  single-instance merge	file is	read one time,
       and its rules are incorporated into the filter list in the place	of the
       "."  rule.  For per-directory merge files, rsync	will scan every	direc-
       tory that it traverses for the named file, merging  its	contents  when
       the  file  exists  into	the  current  list  of inherited rules.	 These
       per-directory rule files	must be	created	on the sending side because it
       is  the	sending	 side that is being scanned for	the available files to
       transfer.  These	rule files may also need to be transferred to the  re-
       ceiving	side  if  you want them	to affect what files don't get deleted

       Some examples:

	      merge /usr/local/etc/rsync/rsync/default.rules
	      .	/usr/local/etc/rsync/rsync/default.rules
	      dir-merge	.per-dir-filter
	      dir-merge,n- .non-inherited-per-dir-excludes
	      :n- .non-inherited-per-dir-excludes

       The following modifiers are accepted after a merge or dir-merge rule:

       o      A	- specifies that the file should consist of only exclude  pat-
	      terns, with no other rule-parsing	except for in-file comments.

       o      A	 + specifies that the file should consist of only include pat-
	      terns, with no other rule-parsing	except for in-file comments.

       o      A	C is a way to specify that  the	 file  should  be  read	 in  a
	      CVS-compatible  manner.	This  turns  on	'n', 'w', and '-', but
	      also allows the list-clearing token (!) to be specified.	If  no
	      filename is provided, ".cvsignore" is assumed.

       o      A	 e  will  exclude  the merge-file name from the	transfer; e.g.
	      "dir-merge,e .rules" is like "dir-merge .rules" and "- .rules".

       o      An n specifies that the rules are	not inherited  by  subdirecto-

       o      A	 w  specifies  that the	rules are word-split on	whitespace in-
	      stead of the normal line-splitting.  This	also  turns  off  com-
	      ments.   Note: the space that separates the prefix from the rule
	      is treated specially, so "- foo +	bar" is	parsed	as  two	 rules
	      (assuming	that prefix-parsing wasn't also	disabled).

       o      You  may	also  specify  any of the modifiers for	the "+"	or "-"
	      rules (above) in order to	have the rules that are	read  in  from
	      the  file	 default to having that	modifier set (except for the !
	      modifier,	which would not	be useful).  For  instance,  "merge,-/
	      .excl"  would  treat  the	contents of .excl as absolute-path ex-
	      cludes, while "dir-merge,s .filt"	and ":sC" would	each make  all
	      their  per-directory  rules  apply only on the sending side.  If
	      the merge	rule specifies sides to	affect (via the	s or  r	 modi-
	      fier or both), then the rules in the file	must not specify sides
	      (via a modifier or a rule	prefix such as hide).

       Per-directory rules are inherited in all	subdirectories of  the	direc-
       tory  where  the	merge-file was found unless the	'n' modifier was used.
       Each subdirectory's rules are prefixed to the  inherited	 per-directory
       rules  from its parents,	which gives the	newest rules a higher priority
       than the	inherited rules.   The	entire	set  of	 dir-merge  rules  are
       grouped	together in the	spot where the merge-file was specified, so it
       is possible to override dir-merge rules via a rule that	got  specified
       earlier in the list of global rules.  When the list-clearing rule ("!")
       is read from a per-directory file, it only clears the  inherited	 rules
       for the current merge file.

       Another	way  to	prevent	a single rule from a dir-merge file from being
       inherited is to anchor it with a	leading	slash.	Anchored  rules	 in  a
       per-directory merge-file	are relative to	the merge-file's directory, so
       a pattern "/foo"	would only match the file "foo"	in the directory where
       the dir-merge filter file was found.

       Here's  an  example  filter  file  which	 you'd specify via --filter=".

	      merge /home/user/.global-filter
	      -	*.gz
	      dir-merge	.rules
	      +	*.[ch]
	      -	*.o

       This will merge the contents of the /home/user/.global-filter  file  at
       the  start  of  the  list  and  also turns the ".rules" filename	into a
       per-directory filter file.  All rules read in prior to the start	of the
       directory  scan follow the global anchoring rules (i.e. a leading slash
       matches at the root of the transfer).

       If a per-directory merge-file is	specified with a path that is a	parent
       directory of the	first transfer directory, rsync	will scan all the par-
       ent dirs	from that starting point to the	transfer directory for the in-
       dicated per-directory file.  For	instance, here is a common filter (see

	      --filter=': /.rsync-filter'

       That rule tells rsync to	scan for the file .rsync-filter	in all	direc-
       tories  from the	root down through the parent directory of the transfer
       prior to	the start of the normal	directory scan of the file in the  di-
       rectories that are sent as a part of the	transfer.  (Note: for an rsync
       daemon, the root	is always the same as the module's "path".)

       Some examples of	this pre-scanning for per-directory files:

	      rsync -avF /src/path/ /dest/dir
	      rsync -av	--filter=': ../../.rsync-filter' /src/path/ /dest/dir
	      rsync -av	--filter=': .rsync-filter' /src/path/ /dest/dir

       The first two commands above will look for ".rsync-filter" in  "/"  and
       "/src"	before	the  normal  scan  begins  looking  for	 the  file  in
       "/src/path" and its subdirectories.  The	last command avoids  the  par-
       ent-dir	scan  and only looks for the ".rsync-filter" files in each di-
       rectory that is a part of the transfer.

       If you want to include the contents of a	".cvsignore" in	your patterns,
       you  should use the rule	":C", which creates a dir-merge	of the .cvsig-
       nore file, but parsed in	a CVS-compatible manner.  You can use this  to
       affect  where  the --cvs-exclude	(-C) option's inclusion	of the per-di-
       rectory .cvsignore file gets placed into	your rules by putting the ":C"
       wherever	 you like in your filter rules.	 Without this, rsync would add
       the dir-merge rule for the .cvsignore file at the end of	all your other
       rules  (giving  it a lower priority than	your command-line rules).  For

	      cat <<EOT	| rsync	-avC --filter='. -' a/ b
	      +	foo.o
	      -	*.old
	      rsync -avC --include=foo.o -f :C --exclude='*.old' a/ b

       Both of the above rsync commands	are identical.	Each  one  will	 merge
       all the per-directory .cvsignore	rules in the middle of the list	rather
       than at the end.	 This allows their dir-specific	rules to supersede the
       rules  that  follow  the	 :C  instead  of being subservient to all your
       rules.  To affect the other CVS exclude rules (i.e. the default list of
       exclusions,  the	contents of $HOME/.cvsignore, and the value of $CVSIG-
       NORE) you should	omit the -C command-line option	and instead  insert  a
       "-C" rule into your filter rules; e.g. "--filter=-C".

       You  can	clear the current include/exclude list by using	the "!"	filter
       rule (as	introduced in the FILTER RULES section above).	The  "current"
       list  is	 either	 the  global list of rules (if the rule	is encountered
       while parsing the filter	options)  or  a	 set  of  per-directory	 rules
       (which  are  inherited in their own sub-list, so	a subdirectory can use
       this to clear out the parent's rules).

       As mentioned earlier, global include/exclude patterns are  anchored  at
       the "root of the	transfer" (as opposed to per-directory patterns, which
       are anchored at the merge-file's	 directory).   If  you	think  of  the
       transfer	 as  a subtree of names	that are being sent from sender	to re-
       ceiver, the transfer-root is where the tree starts to be	duplicated  in
       the destination directory.  This	root governs where patterns that start
       with a /	match.

       Because the matching is relative	to  the	 transfer-root,	 changing  the
       trailing	 slash on a source path	or changing your use of	the --relative
       option affects the path you need	to use in your matching	 (in  addition
       to  changing how	much of	the file tree is duplicated on the destination
       host).  The following examples demonstrate this.

       Let's say that we want to match two source files, one with an  absolute
       path of "/home/me/foo/bar", and one with	a path of "/home/you/bar/baz".
       Here is how the various command choices differ for a 2-source transfer:

	      Example cmd: rsync -a /home/me /home/you /dest
	      +/- pattern: /me/foo/bar
	      +/- pattern: /you/bar/baz
	      Target file: /dest/me/foo/bar
	      Target file: /dest/you/bar/baz

	      Example cmd: rsync -a /home/me/ /home/you/ /dest
	      +/- pattern: /foo/bar		  (note	missing	"me")
	      +/- pattern: /bar/baz		  (note	missing	"you")
	      Target file: /dest/foo/bar
	      Target file: /dest/bar/baz

	      Example cmd: rsync -a --relative /home/me/ /home/you /dest
	      +/- pattern: /home/me/foo/bar	  (note	full path)
	      +/- pattern: /home/you/bar/baz	  (ditto)
	      Target file: /dest/home/me/foo/bar
	      Target file: /dest/home/you/bar/baz

	      Example cmd: cd /home; rsync -a --relative me/foo	you/ /dest
	      +/- pattern: /me/foo/bar	    (starts at specified path)
	      +/- pattern: /you/bar/baz	    (ditto)
	      Target file: /dest/me/foo/bar
	      Target file: /dest/you/bar/baz

       The easiest way to see what name	you should filter is to	just  look  at
       the  output  when using --verbose and put a / in	front of the name (use
       the --dry-run option if you're not yet ready to copy any	files).

       Without a delete	option,	per-directory rules are	only relevant  on  the
       sending	side,  so  you	can feel free to exclude the merge files them-
       selves without affecting	the transfer.  To make this easy, the 'e' mod-
       ifier  adds  this exclude for you, as seen in these two equivalent com-

	      rsync -av	--filter=': .excl' --exclude=.excl host:src/dir	/dest
	      rsync -av	--filter=':e .excl' host:src/dir /dest

       However,	if you want to do a delete on the receiving side AND you  want
       some  files  to	be excluded from being deleted,	you'll need to be sure
       that the	receiving side knows what files	to exclude.  The  easiest  way
       is  to  include	the  per-directory merge files in the transfer and use
       --delete-after, because this ensures that the receiving side  gets  all
       the  same  exclude  rules as the	sending	side before it tries to	delete

	      rsync -avF --delete-after	host:src/dir /dest

       However,	if the merge files are not a part of the transfer, you'll need
       to either specify some global exclude rules (i.e. specified on the com-
       mand line), or you'll need to maintain  your  own  per-directory	 merge
       files  on  the receiving	side.  An example of the first is this (assume
       that the	remote .rules files exclude themselves):

       rsync -av --filter=': .rules' --filter='. /my/extra.rules'
	  --delete host:src/dir	/dest

       In the above example the	extra.rules file can affect both sides of  the
       transfer,  but  (on  the	sending	side) the rules	are subservient	to the
       rules merged from the .rules files because they	were  specified	 after
       the per-directory merge rule.

       In  one	final  example,	the remote side	is excluding the .rsync-filter
       files from the transfer,	but we want to use our own .rsync-filter files
       to control what gets deleted on the receiving side.  To do this we must
       specifically exclude the	per-directory merge files (so that they	 don't
       get  deleted)  and  then	put rules into the local files to control what
       else should not get deleted.  Like one of these commands:

	   rsync -av --filter=':e /.rsync-filter' --delete \
	       host:src/dir /dest
	   rsync -avFF --delete	host:src/dir /dest

       Batch mode can be used to apply the same	set of updates to many identi-
       cal  systems. Suppose one has a tree which is replicated	on a number of
       hosts.  Now suppose some	changes	have been made to this source tree and
       those  changes need to be propagated to the other hosts.	In order to do
       this using batch	mode, rsync is run with	the write-batch	option to  ap-
       ply  the	 changes  made	to  the	 source	tree to	one of the destination
       trees.  The write-batch option causes the rsync client to  store	 in  a
       "batch  file"  all  the	information  needed  to	 repeat	this operation
       against other, identical	destination trees.

       Generating the batch file once saves having to perform the file status,
       checksum, and data block	generation more	than once when updating	multi-
       ple destination trees. Multicast	transport protocols  can  be  used  to
       transfer	 the batch update files	in parallel to many hosts at once, in-
       stead of	sending	the same data to every host individually.

       To apply	the recorded changes to	another	destination  tree,  run	 rsync
       with the	read-batch option, specifying the name of the same batch file,
       and the destination tree.  Rsync	updates	the destination	tree using the
       information stored in the batch file.

       For   your  convenience,	 a  script  file  is  also  created  when  the
       write-batch option is used:  it will be named the  same	as  the	 batch
       file  with  ".sh"  appended.   This script file contains	a command-line
       suitable	for updating a destination tree	 using	the  associated	 batch
       file. It	can be executed	using a	Bourne (or Bourne-like)	shell, option-
       ally passing in an alternate destination	tree pathname  which  is  then
       used instead of the original destination	path.  This is useful when the
       destination tree	path on	the current host differs from the one used  to
       create the batch	file.


	      $	rsync --write-batch=foo	-a host:/source/dir/ /adest/dir/
	      $	scp foo* remote:
	      $	ssh remote ./ /bdest/dir/

	      $	rsync --write-batch=foo	-a /source/dir/	/adest/dir/
	      $	ssh remote rsync --read-batch=-	-a /bdest/dir/ <foo

       In   these   examples,	rsync  is  used	 to  update  /adest/dir/  from
       /source/dir/ and	the information	to repeat this operation is stored  in
       "foo" and "".  The	host "remote" is then updated with the batched
       data going into the directory /bdest/dir.  The differences between  the
       two  examples  reveals some of the flexibility you have in how you deal
       with batches:

       o      The first	example	shows that the initial copy doesn't have to be
	      local  --	 you can push or pull data to/from a remote host using
	      either the remote-shell syntax or	rsync daemon  syntax,  as  de-

       o      The  first  example  uses	 the  created "" file to get the
	      right rsync options when running the read-batch command  on  the
	      remote host.

       o      The  second  example  reads the batch data via standard input so
	      that the batch file doesn't need to be copied to the remote  ma-
	      chine  first.   This example avoids the script because it
	      needed to	use a modified --read-batch option, but	you could edit
	      the  script  file	 if you	wished to make use of it (just be sure
	      that no other option is trying to	use standard  input,  such  as
	      the "--exclude-from=-" option).


       The  read-batch option expects the destination tree that	it is updating
       to be identical to the destination tree that was	 used  to  create  the
       batch  update fileset.  When a difference between the destination trees
       is encountered the update might be discarded with  a  warning  (if  the
       file  appears  to  be up-to-date	already) or the	file-update may	be at-
       tempted and then, if the	file fails to  verify,	the  update  discarded
       with  an	 error.	  This	means  that  it	 should	 be  safe  to re-run a
       read-batch operation if the command got interrupted.  If	 you  wish  to
       force  the  batched-update  to  always  be  attempted regardless	of the
       file's size and date, use the -I	option (when reading the  batch).   If
       an  error  occurs, the destination tree will probably be	in a partially
       updated state.  In  that	 case,	rsync  can  be	used  in  its  regular
       (non-batch) mode	of operation to	fix up the destination tree.

       The  rsync  version used	on all destinations must be at least as	new as
       the one used to generate	the batch file.	 Rsync will die	with an	 error
       if  the	protocol  version  in  the  batch  file	 is  too  new  for the
       batch-reading rsync to handle.  See also	the --protocol	option	for  a
       way  to	have  the  creating  rsync generate a batch file that an older
       rsync can understand.  (Note that batch files changed format in version
       2.6.3,  so mixing versions older	than that with newer versions will not

       When reading a batch file, rsync	will force the value  of  certain  op-
       tions to	match the data in the batch file if you	didn't set them	to the
       same as the batch-writing command.  Other options can (and  should)  be
       changed.	   For	 instance   --write-batch   changes  to	 --read-batch,
       --files-from is dropped,	and the	 --filter/--include/--exclude  options
       are not needed unless one of the	--delete options is specified.

       The  code  that	creates	 the	file transforms	any filter/in-
       clude/exclude options into a single list	that is	appended as  a	"here"
       document	 to  the  shell	script file.  An advanced user can use this to
       modify the exclude list if a change in what gets	deleted	by --delete is
       desired.	  A  normal user can ignore this detail	and just use the shell
       script as an easy way to	run the	appropriate --read-batch  command  for
       the batched data.

       The  original batch mode	in rsync was based on "rsync+",	but the	latest
       version uses a new implementation.

       Three basic behaviors are possible when	rsync  encounters  a  symbolic
       link in the source directory.

       By  default,  symbolic  links  are  not	transferred at all.  A message
       "skipping non-regular" file is emitted for any symlinks that exist.

       If --links is specified,	then symlinks are recreated with the same tar-
       get on the destination.	Note that --archive implies --links.

       If  --copy-links	is specified, then symlinks are	"collapsed" by copying
       their referent, rather than the symlink.

       Rsync can also distinguish "safe" and "unsafe" symbolic links.  An  ex-
       ample  where this might be used is a web	site mirror that wishes	to en-
       sure that the rsync module that is copied  does	not  include  symbolic
       links to	/usr/local/etc/rsync/passwd in the public section of the site.
       Using --copy-unsafe-links will cause any	links to be copied as the file
       they point to on	the destination.  Using	--safe-links will cause	unsafe
       links to	be omitted altogether.	(Note that you	must  specify  --links
       for --safe-links	to have	any effect.)

       Symbolic	 links	are  considered	 unsafe	 if they are absolute symlinks
       (start with /), empty, or if they contain enough	".." components	to as-
       cend from the directory being copied.

       Here's  a summary of how	the symlink options are	interpreted.  The list
       is in order of precedence, so if	your combination of options isn't men-
       tioned, use the first line that is a complete subset of your options:

	      Turn all symlinks	into normal files (leaving no symlinks for any
	      other options to affect).

       --links --copy-unsafe-links
	      Turn all unsafe symlinks into files and duplicate	all safe  sym-

	      Turn  all	unsafe symlinks	into files, noisily skip all safe sym-

       --links --safe-links
	      Duplicate	safe symlinks and skip unsafe ones.

	      Duplicate	all symlinks.

       rsync occasionally produces error messages that may seem	a little cryp-
       tic.  The  one that seems to cause the most confusion is	"protocol ver-
       sion mismatch --	is your	shell clean?".

       This message is usually caused by your startup scripts or remote	 shell
       facility	 producing  unwanted garbage on	the stream that	rsync is using
       for its transport. The way to diagnose this problem is to run your  re-
       mote shell like this:

	      ssh remotehost /bin/true > out.dat

       then  look  at out.dat. If everything is	working	correctly then out.dat
       should be a zero	length file. If	you are	getting	the above  error  from
       rsync  then  you	 will probably find that out.dat contains some text or
       data. Look at the contents and try to work out what  is	producing  it.
       The  most  common cause is incorrectly configured shell startup scripts
       (such as	.cshrc or .profile) that contain output	statements for non-in-
       teractive logins.

       If  you are having trouble debugging filter patterns, then try specify-
       ing the -vv option.  At this level of verbosity	rsync  will  show  why
       each individual file is included	or excluded.

       0      Success

       1      Syntax or	usage error

       2      Protocol incompatibility

       3      Errors selecting input/output files, dirs

       4      Requested	 action	 not supported:	an attempt was made to manipu-
	      late 64-bit files	on a platform that cannot support them;	or  an
	      option  was specified that is supported by the client and	not by
	      the server.

       5      Error starting client-server protocol

       6      Daemon unable to append to log-file

       10     Error in socket I/O

       11     Error in file I/O

       12     Error in rsync protocol data stream

       13     Errors with program diagnostics

       14     Error in IPC code

       20     Received SIGUSR1 or SIGINT

       21     Some error returned by waitpid()

       22     Error allocating core memory buffers

       23     Partial transfer due to error

       24     Partial transfer due to vanished source files

       25     The --max-delete limit stopped deletions

       30     Timeout in data send/receive

       35     Timeout waiting for daemon connection

	      The CVSIGNORE environment	variable supplements any  ignore  pat-
	      terns in .cvsignore files. See the --cvs-exclude option for more

	      Specify a	default	--iconv	setting	using this  environment	 vari-
	      able. (First supported in	3.0.0.)

	      Specify  a non-zero numeric value	if you want the	--protect-args
	      option to	be enabled by default, or a zero value	to  make  sure
	      that it is disabled by default. (First supported in 3.1.0.)

	      The  RSYNC_RSH  environment  variable allows you to override the
	      default shell used as the	transport for rsync.  Command line op-
	      tions  are  permitted  after the command name, just as in	the -e

	      The RSYNC_PROXY environment variable allows you to redirect your
	      rsync  client to use a web proxy when connecting to a rsync dae-
	      mon. You should set RSYNC_PROXY to a hostname:port pair.

	      Setting RSYNC_PASSWORD to	the required password  allows  you  to
	      run  authenticated  rsync	connections to an rsync	daemon without
	      user intervention. Note that this	does not supply	a password  to
	      a	 remote	 shell transport such as ssh; to learn how to do that,
	      consult the remote shell's documentation.

       USER or LOGNAME
	      The USER or LOGNAME environment variables	are used to  determine
	      the  default  username  sent  to an rsync	daemon.	 If neither is
	      set, the username	defaults to "nobody".

       HOME   The HOME environment variable is used to find the	user's default
	      .cvsignore file.

       /usr/local/etc/rsync/rsyncd.conf	or rsyncd.conf


       times are transferred as	*nix time_t values

       When  transferring  to  FAT  filesystems	 rsync	may re-sync unmodified
       files.  See the comments	on the --modify-window option.

       file permissions, devices, etc. are  transferred	 as  native  numerical

       see also	the comments on	the --delete option

       Please report bugs! See the web site at

       This man	page is	current	for version 3.1.1 of rsync.

       The  options  --server  and  --sender are used internally by rsync, and
       should never be typed by	 a  user  under	 normal	 circumstances.	  Some
       awareness  of these options may be needed in certain scenarios, such as
       when setting up a login that can	only run an rsync  command.   For  in-
       stance,	the support directory of the rsync distribution	has an example
       script named rrsync (for	restricted rsync) that can be used with	a  re-
       stricted	ssh login.

       rsync  is  distributed  under  the GNU General Public License.  See the
       file COPYING for	details.

       A WEB site is available at  The	site  includes
       an  FAQ-O-Matic	which  may  cover  questions unanswered	by this	manual

       The primary ftp site for	rsync is

       We would	be delighted to	hear  from  you	 if  you  like	this  program.
       Please contact the mailing-list at

       This  program  uses  the	 excellent zlib	compression library written by
       Jean-loup Gailly	and Mark Adler.

       Special thanks go out to: John Van Essen,  Matt	McCutchen,  Wesley  W.
       Terpstra,  David	 Dykstra,  Jos Backus, Sebastian Krahmer, Martin Pool,
       and our gone-but-not-forgotten compadre,	J.W. Schultz.

       Thanks also to Richard Brent, Brendan Mackay, Bill Waite, Stephen Roth-
       well and	David Bell.  I've probably missed some people, my apologies if
       I have.

       rsync was originally written by Andrew  Tridgell	 and  Paul  Mackerras.
       Many  people  have later	contributed to it.  It is currently maintained
       by Wayne	Davison.

       Mailing	lists  for  support   and   development	  are	available   at

				  22 Jun 2014			      rsync(1)


Want to link to this manual page? Use this URL:

home | help