Skip site navigation (1)Skip section navigation (2)

FreeBSD Manual Pages

  
 
  

home | help
rsync(1)							      rsync(1)

NAME
       rsync --	a fast,	versatile, remote (and local) file-copying tool

SYNOPSIS
       Local:  rsync [OPTION...] SRC...	[DEST]

       Access via remote shell:
	 Pull: rsync [OPTION...] [USER@]HOST:SRC... [DEST]
	 Push: rsync [OPTION...] SRC...	[USER@]HOST:DEST

       Access via rsync	daemon:
	 Pull: rsync [OPTION...] [USER@]HOST::SRC... [DEST]
	       rsync [OPTION...] rsync://[USER@]HOST[:PORT]/SRC... [DEST]
	 Push: rsync [OPTION...] SRC...	[USER@]HOST::DEST
	       rsync [OPTION...] SRC...	rsync://[USER@]HOST[:PORT]/DEST

       Usages with just	one SRC	arg and	no DEST	arg will list the source files
       instead of copying.

DESCRIPTION
       Rsync is	a fast and extraordinarily versatile file  copying  tool.   It
       can  copy  locally,  to/from  another  host  over  any remote shell, or
       to/from a remote	rsync daemon.  It offers a  large  number  of  options
       that  control  every  aspect  of	 its behavior and permit very flexible
       specification of	the set	of files to be copied.	It is famous  for  its
       delta-transfer  algorithm,  which  reduces the amount of	data sent over
       the network by sending only the differences between  the	 source	 files
       and  the	 existing  files in the	destination.  Rsync is widely used for
       backups and mirroring and as an improved	copy command for everyday use.

       Rsync finds files that need to be transferred using a "quick check" al-
       gorithm	(by default) that looks	for files that have changed in size or
       in last-modified	time.  Any changes in the other	 preserved  attributes
       (as  requested  by  options)  are made on the destination file directly
       when the	quick check indicates that the file's data does	not need to be
       updated.

       Some of the additional features of rsync	are:

       o      support  for copying links, devices, owners, groups, and permis-
	      sions

       o      exclude and exclude-from options similar to GNU tar

       o      a	CVS exclude mode for ignoring the same files  that  CVS	 would
	      ignore

       o      can use any transparent remote shell, including ssh or rsh

       o      does not require super-user privileges

       o      pipelining of file transfers to minimize latency costs

       o      support  for anonymous or	authenticated rsync daemons (ideal for
	      mirroring)

GENERAL
       Rsync copies files either to or from a remote host, or locally  on  the
       current	host  (it  does	 not  support copying files between two	remote
       hosts).

       There are two different ways for	rsync to contact a remote system:  us-
       ing  a  remote-shell  program  as the transport (such as	ssh or rsh) or
       contacting an rsync daemon directly via TCP.  The  remote-shell	trans-
       port  is	used whenever the source or destination	path contains a	single
       colon (:) separator after a host	specification.	 Contacting  an	 rsync
       daemon  directly	happens	when the source	or destination path contains a
       double colon (::) separator after a  host  specification,  OR  when  an
       rsync://	 URL  is  specified (see also the "USING RSYNC-DAEMON FEATURES
       VIA A REMOTE-SHELL CONNECTION" section for an exception to this	latter
       rule).

       As a special case, if a single source arg is specified without a	desti-
       nation, the files are listed in an output format	similar	to "ls -l".

       As expected, if neither the source or destination path specify a	remote
       host, the copy occurs locally (see also the --list-only option).

       Rsync  refers  to the local side	as the "client"	and the	remote side as
       the "server".  Don't confuse "server" with an rsync daemon -- a	daemon
       is  always  a  server, but a server can be either a daemon or a remote-
       shell spawned process.

SETUP
       See the file README for installation instructions.

       Once installed, you can use rsync to any	machine	that  you  can	access
       via a remote shell (as well as some that	you can	access using the rsync
       daemon-mode protocol).  For remote transfers, a modern rsync  uses  ssh
       for  its	 communications, but it	may have been configured to use	a dif-
       ferent remote shell by default, such as rsh or remsh.

       You can also specify any	remote shell you like, either by using the  -e
       command line option, or by setting the RSYNC_RSH	environment variable.

       Note  that  rsync  must be installed on both the	source and destination
       machines.

USAGE
       You use rsync in	the same way you use rcp. You must  specify  a	source
       and a destination, one of which may be remote.

       Perhaps the best	way to explain the syntax is with some examples:

	      rsync -t *.c foo:src/

       This would transfer all files matching the pattern *.c from the current
       directory to the	directory src on the machine foo. If any of the	 files
       already	exist on the remote system then	the rsync remote-update	proto-
       col is used to update the file by sending only the differences. See the
       tech report for details.

	      rsync -avz foo:src/bar /data/tmp

       This would recursively transfer all files from the directory src/bar on
       the machine foo into the	/data/tmp/bar directory	on the local  machine.
       The  files  are	transferred in "archive" mode, which ensures that sym-
       bolic links, devices, attributes,  permissions,	ownerships,  etc.  are
       preserved  in  the transfer.  Additionally, compression will be used to
       reduce the size of data portions	of the transfer.

	      rsync -avz foo:src/bar/ /data/tmp

       A trailing slash	on the source changes this behavior to avoid  creating
       an  additional  directory level at the destination.  You	can think of a
       trailing	/ on a source as meaning "copy the contents of this directory"
       as  opposed  to "copy the directory by name", but in both cases the at-
       tributes	of the containing directory are	transferred to the  containing
       directory  on  the  destination.	 In other words, each of the following
       commands	copies the files in the	same way, including their  setting  of
       the attributes of /dest/foo:

	      rsync -av	/src/foo /dest
	      rsync -av	/src/foo/ /dest/foo

       Note  also  that	 host  and  module references don't require a trailing
       slash to	copy the contents of the default directory.  For example, both
       of these	copy the remote	directory's contents into "/dest":

	      rsync -av	host: /dest
	      rsync -av	host::module /dest

       You  can	 also  use rsync in local-only mode, where both	the source and
       destination don't have a	`:' in the name. In this case it behaves  like
       an improved copy	command.

       Finally,	 you can list all the (listable) modules available from	a par-
       ticular rsync daemon by leaving off the module name:

	      rsync somehost.mydomain.com::

       See the following section for more details.

ADVANCED USAGE
       The syntax for requesting multiple files	from a remote host is done  by
       specifying  additional remote-host args in the same style as the	first,
       or with the hostname omitted.  For instance, all	these work:

	      rsync -av	host:file1 :file2 host:file{3,4} /dest/
	      rsync -av	host::modname/file{1,2}	host::modname/file3 /dest/
	      rsync -av	host::modname/file1 ::modname/file{3,4}

       Older versions of rsync required	using quoted spaces in the  SRC,  like
       these examples:

	      rsync -av	host:'dir1/file1 dir2/file2' /dest
	      rsync host::'modname/dir1/file1 modname/dir2/file2' /dest

       This  word-splitting  still works (by default) in the latest rsync, but
       is not as easy to use as	the first method.

       If you need to transfer a filename that contains	 whitespace,  you  can
       either specify the --protect-args (-s) option, or you'll	need to	escape
       the whitespace in a way that the	remote shell will understand.  For in-
       stance:

	      rsync -av	host:'file\ name\ with\	spaces'	/dest

CONNECTING TO AN RSYNC DAEMON
       It  is  also possible to	use rsync without a remote shell as the	trans-
       port.  In this case you will directly connect to	a remote rsync daemon,
       typically  using	 TCP port 873.	(This obviously	requires the daemon to
       be running on the remote	system,	so refer to the	STARTING AN RSYNC DAE-
       MON TO ACCEPT CONNECTIONS section below for information on that.)

       Using rsync in this way is the same as using it with a remote shell ex-
       cept that:

       o      you either use a double colon :: instead of a  single  colon  to
	      separate the hostname from the path, or you use an rsync:// URL.

       o      the first	word of	the "path" is actually a module	name.

       o      the  remote  daemon may print a message of the day when you con-
	      nect.

       o      if you specify no	path name on the remote	daemon then  the  list
	      of accessible paths on the daemon	will be	shown.

       o      if you specify no	local destination then a listing of the	speci-
	      fied files on the	remote daemon is provided.

       o      you must not specify the --rsh (-e) option.

       An example that copies all the files in a remote	module named "src":

	   rsync -av host::src /dest

       Some modules on the remote daemon may require  authentication.  If  so,
       you  will receive a password prompt when	you connect. You can avoid the
       password	prompt by setting the environment variable  RSYNC_PASSWORD  to
       the  password you want to use or	using the --password-file option. This
       may be useful when scripting rsync.

       WARNING:	On some	systems	 environment  variables	 are  visible  to  all
       users. On those systems using --password-file is	recommended.

       You  may	 establish the connection via a	web proxy by setting the envi-
       ronment variable	RSYNC_PROXY to a hostname:port pair pointing  to  your
       web proxy.  Note	that your web proxy's configuration must support proxy
       connections to port 873.

       You may also establish a	daemon connection using	a program as  a	 proxy
       by  setting the environment variable RSYNC_CONNECT_PROG to the commands
       you wish	to run in place	of making a  direct  socket  connection.   The
       string  may contain the escape "%H" to represent	the hostname specified
       in the rsync command (so	use "%%" if you	need  a	 single	 "%"  in  your
       string).	 For example:

	 export	RSYNC_CONNECT_PROG='ssh	proxyhost nc %H	873'
	 rsync -av targethost1::module/src/ /dest/
	 rsync -av rsync:://targethost2/module/src/ /dest/

       The command specified above uses	ssh to run nc (netcat) on a proxyhost,
       which forwards all data to port 873 (the	rsync daemon) on the  targeth-
       ost (%H).

USING RSYNC-DAEMON FEATURES VIA	A REMOTE-SHELL CONNECTION
       It is sometimes useful to use various features of an rsync daemon (such
       as named	modules) without actually allowing any new socket  connections
       into  a	system	(other	than what is already required to allow remote-
       shell access).  Rsync supports connecting to  a	host  using  a	remote
       shell  and  then	 spawning a single-use "daemon"	server that expects to
       read its	config file in the home	dir of the remote user.	 This  can  be
       useful if you want to encrypt a daemon-style transfer's data, but since
       the daemon is started up	fresh by the remote user, you may not be  able
       to  use	features  such as chroot or change the uid used	by the daemon.
       (For another way	to encrypt a daemon transfer, consider	using  ssh  to
       tunnel  a  local	 port to a remote machine and configure	a normal rsync
       daemon on that remote host to only allow	connections from "localhost".)

       From the	user's perspective, a daemon transfer via a remote-shell  con-
       nection uses nearly the same command-line syntax	as a normal rsync-dae-
       mon transfer, with the only exception being that	 you  must  explicitly
       set the remote shell program on the command-line	with the --rsh=COMMAND
       option.	(Setting the RSYNC_RSH in the environment  will	 not  turn  on
       this functionality.)  For example:

	   rsync -av --rsh=ssh host::module /dest

       If you need to specify a	different remote-shell user, keep in mind that
       the user@ prefix	in front of the	 host  is  specifying  the  rsync-user
       value  (for  a  module  that requires user-based	authentication).  This
       means that you must give	the '-l	user' option to	 ssh  when  specifying
       the remote-shell, as in this example that uses the short	version	of the
       --rsh option:

	   rsync -av -e	"ssh -l	ssh-user" rsync-user@host::module /dest

       The "ssh-user" will be used at the ssh level; the "rsync-user" will  be
       used to log-in to the "module".

STARTING AN RSYNC DAEMON TO ACCEPT CONNECTIONS
       In order	to connect to an rsync daemon, the remote system needs to have
       a daemon	already	running	(or it needs to	have configured	something like
       inetd to	spawn an rsync daemon for incoming connections on a particular
       port).  For full	information on how to start a daemon  that  will  han-
       dling  incoming	socket connections, see	the rsyncd.conf(5) man page --
       that is the config file for the daemon, and it contains	the  full  de-
       tails  for  how to run the daemon (including stand-alone	and inetd con-
       figurations).

       If you're using one of the remote-shell transports  for	the  transfer,
       there is	no need	to manually start an rsync daemon.

EXAMPLES
       Here are	some examples of how I use rsync.

       To  backup  my  wife's  home directory, which consists of large MS Word
       files and mail folders, I use a cron job	that runs

	      rsync -Cavz . arvidsjaur:backup

       each night over a PPP connection	to a duplicate directory on my machine
       "arvidsjaur".

       To  synchronize my samba	source trees I use the following Makefile tar-
       gets:

	   get:
		   rsync -avuzb	--exclude '*~' samba:samba/ .
	   put:
		   rsync -Cavuzb . samba:samba/
	   sync: get put

       this allows me to sync with a CVS directory at the  other  end  of  the
       connection. I then do CVS operations on the remote machine, which saves
       a lot of	time as	the remote CVS protocol	isn't very efficient.

       I mirror	a directory between my "old" and "new" ftp sites with the com-
       mand:

       rsync -az -e ssh	--delete ~ftp/pub/samba	nimbus:"~ftp/pub/tridge"

       This is launched	from cron every	few hours.

OPTIONS	SUMMARY
       Here is a short summary of the options available	in rsync. Please refer
       to the detailed description below for a complete	description.

	-v, --verbose		    increase verbosity
	-q, --quiet		    suppress non-error messages
	    --no-motd		    suppress daemon-mode MOTD (see caveat)
	-c, --checksum		    skip based on checksum, not	mod-time & size
	-a, --archive		    archive mode; equals -rlptgoD (no -H,-A,-X)
	    --no-OPTION		    turn off an	implied	OPTION (e.g. --no-D)
	-r, --recursive		    recurse into directories
	-R, --relative		    use	relative path names
	    --no-implied-dirs	    don't send implied dirs with --relative
	-b, --backup		    make backups (see --suffix & --backup-dir)
	    --backup-dir=DIR	    make backups into hierarchy	based in DIR
	    --suffix=SUFFIX	    backup suffix (default ~ w/o --backup-dir)
	-u, --update		    skip files that are	newer on the receiver
	    --inplace		    update destination files in-place
	    --append		    append data	onto shorter files
	    --append-verify	    --append w/old data	in file	checksum
	-d, --dirs		    transfer directories without recursing
	-l, --links		    copy symlinks as symlinks
	-L, --copy-links	    transform symlink into referent file/dir
	    --copy-unsafe-links	    only "unsafe" symlinks are transformed
	    --safe-links	    ignore symlinks that point outside the tree
	-k, --copy-dirlinks	    transform symlink to dir into referent dir
	-K, --keep-dirlinks	    treat symlinked dir	on receiver as dir
	-H, --hard-links	    preserve hard links
	-p, --perms		    preserve permissions
	-E, --executability	    preserve executability
	    --chmod=CHMOD	    affect file	and/or directory permissions
	-A, --acls		    preserve ACLs (implies -p)
	-X, --xattrs		    preserve extended attributes
	-o, --owner		    preserve owner (super-user only)
	-g, --group		    preserve group
	    --devices		    preserve device files (super-user only)
	    --specials		    preserve special files
	-D			    same as --devices --specials
	-t, --times		    preserve modification times
	-O, --omit-dir-times	    omit directories from --times
	    --super		    receiver attempts super-user activities
	    --fake-super	    store/recover privileged attrs using xattrs
	-S, --sparse		    handle sparse files	efficiently
	-n, --dry-run		    perform a trial run	with no	changes	made
	-W, --whole-file	    copy files whole (w/o delta-xfer algorithm)
	-x, --one-file-system	    don't cross	filesystem boundaries
	-B, --block-size=SIZE	    force a fixed checksum block-size
	-e, --rsh=COMMAND	    specify the	remote shell to	use
	    --rsync-path=PROGRAM    specify the	rsync to run on	remote machine
	    --existing		    skip creating new files on receiver
	    --ignore-existing	    skip updating files	that exist on receiver
	    --remove-source-files   sender removes synchronized	files (non-dir)
	    --del		    an alias for --delete-during
	    --delete		    delete extraneous files from dest dirs
	    --delete-before	    receiver deletes before transfer (default)
	    --delete-during	    receiver deletes during xfer, not before
	    --delete-delay	    find deletions during, delete after
	    --delete-after	    receiver deletes after transfer, not before
	    --delete-excluded	    also delete	excluded files from dest dirs
	    --ignore-errors	    delete even	if there are I/O errors
	    --force		    force deletion of dirs even	if not empty
	    --max-delete=NUM	    don't delete more than NUM files
	    --max-size=SIZE	    don't transfer any file larger than	SIZE
	    --min-size=SIZE	    don't transfer any file smaller than SIZE
	    --partial		    keep partially transferred files
	    --partial-dir=DIR	    put	a partially transferred	file into DIR
	    --delay-updates	    put	all updated files into place at	end
	-m, --prune-empty-dirs	    prune empty	directory chains from file-list
	    --numeric-ids	    don't map uid/gid values by	user/group name
	    --timeout=SECONDS	    set	I/O timeout in seconds
	    --contimeout=SECONDS    set	daemon connection timeout in seconds
	-I, --ignore-times	    don't skip files that match	size and time
	    --size-only		    skip files that match in size
	    --modify-window=NUM	    compare mod-times with reduced accuracy
	-T, --temp-dir=DIR	    create temporary files in directory	DIR
	-y, --fuzzy		    find similar file for basis	if no dest file
	    --compare-dest=DIR	    also compare received files	relative to DIR
	    --copy-dest=DIR	    ...	and include copies of unchanged	files
	    --link-dest=DIR	    hardlink to	files in DIR when unchanged
	-z, --compress		    compress file data during the transfer
	    --compress-level=NUM    explicitly set compression level
	    --skip-compress=LIST    skip compressing files with	suffix in LIST
	-C, --cvs-exclude	    auto-ignore	files in the same way CVS does
	-f, --filter=RULE	    add	a file-filtering RULE
	-F			    same as --filter='dir-merge	/.rsync-filter'
				    repeated: --filter='- .rsync-filter'
	    --exclude=PATTERN	    exclude files matching PATTERN
	    --exclude-from=FILE	    read exclude patterns from FILE
	    --include=PATTERN	    don't exclude files	matching PATTERN
	    --include-from=FILE	    read include patterns from FILE
	    --files-from=FILE	    read list of source-file names from	FILE
	-0, --from0		    all	*from/filter files are delimited by 0s
	-s, --protect-args	    no space-splitting;	wildcard chars only
	    --address=ADDRESS	    bind address for outgoing socket to	daemon
	    --port=PORT		    specify double-colon alternate port	number
	    --sockopts=OPTIONS	    specify custom TCP options
	    --blocking-io	    use	blocking I/O for the remote shell
	    --stats		    give some file-transfer stats
	-8, --8-bit-output	    leave high-bit chars unescaped in output
	-h, --human-readable	    output numbers in a	human-readable format
	    --progress		    show progress during transfer
	-P			    same as --partial --progress
	-i, --itemize-changes	    output a change-summary for	all updates
	    --out-format=FORMAT	    output updates using the specified FORMAT
	    --log-file=FILE	    log	what we're doing to the	specified FILE
	    --log-file-format=FMT   log	updates	using the specified FMT
	    --password-file=FILE    read daemon-access password	from FILE
	    --list-only		    list the files instead of copying them
	    --bwlimit=KBPS	    limit I/O bandwidth; KBytes	per second
	    --write-batch=FILE	    write a batched update to FILE
	    --only-write-batch=FILE like --write-batch but w/o updating	dest
	    --read-batch=FILE	    read a batched update from FILE
	    --protocol=NUM	    force an older protocol version to be used
	    --iconv=CONVERT_SPEC    request charset conversion of filenames
	    --checksum-seed=NUM	    set	block/file checksum seed (advanced)
	-4, --ipv4		    prefer IPv4
	-6, --ipv6		    prefer IPv6
	    --version		    print version number
       (-h) --help		    show this help (see	below for -h comment)

       Rsync can also be run as	a daemon, in which case	the following  options
       are accepted:

	    --daemon		    run	as an rsync daemon
	    --address=ADDRESS	    bind to the	specified address
	    --bwlimit=KBPS	    limit I/O bandwidth; KBytes	per second
	    --config=FILE	    specify alternate rsyncd.conf file
	    --no-detach		    do not detach from the parent
	    --port=PORT		    listen on alternate	port number
	    --log-file=FILE	    override the "log file" setting
	    --log-file-format=FMT   override the "log format" setting
	    --sockopts=OPTIONS	    specify custom TCP options
	-v, --verbose		    increase verbosity
	-4, --ipv4		    prefer IPv4
	-6, --ipv6		    prefer IPv6
	-h, --help		    show this help (if used after --daemon)

OPTIONS
       rsync  uses  the	GNU long options package. Many of the command line op-
       tions have two variants,	one short and one long.	 These are  shown  be-
       low,  separated	by commas. Some	options	only have a long variant.  The
       `=' for options that take a parameter is	optional;  whitespace  can  be
       used instead.

       --help Print  a	short  help  page  describing the options available in
	      rsync and	exit.  For backward-compatibility with older  versions
	      of  rsync, the help will also be output if you use the -h	option
	      without any other	args.

       --version
	      print the	rsync version number and exit.

       -v, --verbose
	      This option increases the	amount of information  you  are	 given
	      during the transfer.  By default,	rsync works silently. A	single
	      -v will give you information about what files are	 being	trans-
	      ferred  and a brief summary at the end. Two -v options will give
	      you information on what files are	 being	skipped	 and  slightly
	      more  information	 at  the  end. More than two -v	options	should
	      only be used if you are debugging	rsync.

	      Note that	the names of the transferred files that	are output are
	      done  using  a  default  --out-format of "%n%L", which tells you
	      just the name of the file	and, if	the item is a link,  where  it
	      points.  At the single -v	level of verbosity, this does not men-
	      tion when	a file gets its	attributes changed.  If	you ask	for an
	      itemized list of changed attributes (either --itemize-changes or
	      adding "%i" to the --out-format setting),	 the  output  (on  the
	      client)  increases  to mention all items that are	changed	in any
	      way.  See	the --out-format option	for more details.

       -q, --quiet
	      This option decreases the	amount of information  you  are	 given
	      during  the  transfer,  notably suppressing information messages
	      from the remote server. This  option  is	useful	when  invoking
	      rsync from cron.

       --no-motd
	      This option affects the information that is output by the	client
	      at the start of a	daemon transfer.  This suppresses the message-
	      of-the-day  (MOTD) text, but it also affects the list of modules
	      that the daemon sends in response	to the "rsync host::"  request
	      (due to a	limitation in the rsync	protocol), so omit this	option
	      if you want to request the list of modules from the daemon.

       -I, --ignore-times
	      Normally rsync will skip any files that  are  already  the  same
	      size  and	 have  the  same  modification timestamp.  This	option
	      turns off	this "quick check" behavior, causing all files	to  be
	      updated.

       --size-only
	      This  modifies rsync's "quick check" algorithm for finding files
	      that need	to be transferred, changing it	from  the  default  of
	      transferring files with either a changed size or a changed last-
	      modified time to just looking for	files  that  have  changed  in
	      size.  This is useful when starting to use rsync after using an-
	      other mirroring system which may	not  preserve  timestamps  ex-
	      actly.

       --modify-window
	      When  comparing  two  timestamps,	rsync treats the timestamps as
	      being equal if they differ by no	more  than  the	 modify-window
	      value.   This  is	 normally  0 (for an exact match), but you may
	      find it useful to	set this to a larger value in some situations.
	      In  particular,  when  transferring to or	from an	MS Windows FAT
	      filesystem (which	represents times with a	2-second  resolution),
	      --modify-window=1	is useful (allowing times to differ by up to 1
	      second).

       -c, --checksum
	      This changes the way rsync checks	if the files have been changed
	      and  are in need of a transfer.  Without this option, rsync uses
	      a	"quick check" that (by default)	checks if each file's size and
	      time of last modification	match between the sender and receiver.
	      This option changes this to compare a 128-bit checksum for  each
	      file  that  has a	matching size.	Generating the checksums means
	      that both	sides will expend a lot	of disk	I/O  reading  all  the
	      data  in	the  files  in	the transfer (and this is prior	to any
	      reading that will	be done	to transfer changed  files),  so  this
	      can slow things down significantly.

	      The  sending  side generates its checksums while it is doing the
	      file-system scan that builds the list of	the  available	files.
	      The  receiver  generates	its  checksums when it is scanning for
	      changed files, and will checksum any file	that has the same size
	      as the corresponding sender's file:  files with either a changed
	      size or a	changed	checksum are selected for transfer.

	      Note that	rsync always verifies that each	transferred  file  was
	      correctly	 reconstructed	on  the	 receiving  side by checking a
	      whole-file checksum that is generated  as	 the  file  is	trans-
	      ferred,  but  that automatic after-the-transfer verification has
	      nothing to do with this option's before-the-transfer "Does  this
	      file need	to be updated?"	check.

	      For  protocol  30	 and  beyond  (first  supported	in 3.0.0), the
	      checksum used is MD5.  For older protocols, the checksum used is
	      MD4.

       -a, --archive
	      This  is equivalent to -rlptgoD. It is a quick way of saying you
	      want recursion and want to preserve almost everything  (with  -H
	      being  a	notable	 omission).   The  only	exception to the above
	      equivalence is when --files-from is specified, in	which case  -r
	      is not implied.

	      Note that	-a does	not preserve hardlinks,	because	finding	multi-
	      ply-linked files is expensive.  You must separately specify -H.

       --no-OPTION
	      You may turn off one or more implied options  by	prefixing  the
	      option  name with	"no-".	Not all	options	may be prefixed	with a
	      "no-": only options that are  implied  by	 other	options	 (e.g.
	      --no-D,  --no-perms)  or have different defaults in various cir-
	      cumstances (e.g. --no-whole-file,	--no-blocking-io,  --no-dirs).
	      You  may	specify	either the short or the	long option name after
	      the "no-"	prefix (e.g. --no-R is the same	as --no-relative).

	      For example: if you want to use -a (--archive) but don't want -o
	      (--owner),  instead  of  converting  -a  into -rlptgD, you could
	      specify -a --no-o	(or -a --no-owner).

	      The order	of the options is important:  if  you  specify	--no-r
	      -a,  the -r option would end up being turned on, the opposite of
	      -a --no-r.  Note also that the side-effects of the  --files-from
	      option  are  NOT	positional, as it affects the default state of
	      several options and slightly changes the meaning of -a (see  the
	      --files-from option for more details).

       -r, --recursive
	      This  tells  rsync  to  copy  directories	recursively.  See also
	      --dirs (-d).

	      Beginning	with rsync 3.0.0, the recursive	algorithm used is  now
	      an  incremental  scan that uses much less	memory than before and
	      begins the transfer after	the scanning of	the first few directo-
	      ries  have  been	completed.  This incremental scan only affects
	      our recursion algorithm, and does	 not  change  a	 non-recursive
	      transfer.	 It is also only possible when both ends of the	trans-
	      fer are at least version 3.0.0.

	      Some options require rsync to know the full file list, so	 these
	      options  disable the incremental recursion mode.	These include:
	      --delete-before, --delete-after, --prune-empty-dirs,  and	 --de-
	      lay-updates.   Because of	this, the default delete mode when you
	      specify --delete is now --delete-during when both	 ends  of  the
	      connection  are  at least	3.0.0 (use --del or --delete-during to
	      request this improved deletion mode explicitly).	See  also  the
	      --delete-delay  option  that  is	a  better  choice  than	 using
	      --delete-after.

	      Incremental recursion can	be disabled using the  --no-inc-recur-
	      sive option or its shorter --no-i-r alias.

       -R, --relative
	      Use  relative  paths. This means that the	full path names	speci-
	      fied on the command line are sent	to the server rather than just
	      the  last	 parts	of  the	filenames. This	is particularly	useful
	      when you want to send several different directories at the  same
	      time. For	example, if you	used this command:

		 rsync -av /foo/bar/baz.c remote:/tmp/

	      ...  this	would create a file named baz.c	in /tmp/ on the	remote
	      machine. If instead you used

		 rsync -avR /foo/bar/baz.c remote:/tmp/

	      then a file named	/tmp/foo/bar/baz.c would be created on the re-
	      mote  machine,  preserving its full path.	 These extra path ele-
	      ments are	called "implied	directories" (i.e. the "foo"  and  the
	      "foo/bar"	directories in the above example).

	      Beginning	with rsync 3.0.0, rsync	always sends these implied di-
	      rectories	as real	directories in the file	list, even if  a  path
	      element  is really a symlink on the sending side.	 This prevents
	      some really unexpected behaviors when copying the	full path of a
	      file  that you didn't realize had	a symlink in its path.	If you
	      want to duplicate	a server-side symlink, include both  the  sym-
	      link via its path, and referent directory	via its	real path.  If
	      you're dealing with an older rsync on the	sending	side, you  may
	      need to use the --no-implied-dirs	option.

	      It is also possible to limit the amount of path information that
	      is sent as implied directories for each path you specify.	  With
	      a	 modern	 rsync on the sending side (beginning with 2.6.7), you
	      can insert a dot and a slash into	the source path, like this:

		 rsync -avR /foo/./bar/baz.c remote:/tmp/

	      That would create	/tmp/bar/baz.c on the remote  machine.	 (Note
	      that  the	dot must be followed by	a slash, so "/foo/." would not
	      be abbreviated.)	(2) For	older rsync versions, you  would  need
	      to  use  a  chdir	 to  limit the source path.  For example, when
	      pushing files:

		 (cd /foo; rsync -avR bar/baz.c	remote:/tmp/)

	      (Note that the parens put	the two	commands into a	sub-shell,  so
	      that  the	 "cd" command doesn't remain in	effect for future com-
	      mands.)  If you're pulling files from an older rsync,  use  this
	      idiom (but only for a non-daemon transfer):

		 rsync -avR --rsync-path="cd /foo; rsync" \
		     remote:bar/baz.c /tmp/

       --no-implied-dirs
	      This  option  affects the	default	behavior of the	--relative op-
	      tion.  When it is	specified, the attributes of the  implied  di-
	      rectories	 from  the source names	are not	included in the	trans-
	      fer.  This means that the	corresponding  path  elements  on  the
	      destination  system  are	left  unchanged	if they	exist, and any
	      missing implied directories are created with default attributes.
	      This even	allows these implied path elements to have big differ-
	      ences, such as being a symlink to	a directory on	the  receiving
	      side.

	      For  instance,  if a command-line	arg or a files-from entry told
	      rsync to transfer	 the  file  "path/foo/file",  the  directories
	      "path"  and  "path/foo" are implied when --relative is used.  If
	      "path/foo" is a symlink to "bar" on the destination system,  the
	      receiving	 rsync would ordinarily	delete "path/foo", recreate it
	      as a directory, and receive the file  into  the  new  directory.
	      With    --no-implied-dirs,    the	   receiving   rsync   updates
	      "path/foo/file" using the	existing path  elements,  which	 means
	      that  the	file ends up being created in "path/bar".  Another way
	      to  accomplish  this   link   preservation   is	to   use   the
	      --keep-dirlinks  option  (which will also	affect symlinks	to di-
	      rectories	in the rest of the transfer).

	      When pulling files from an rsync older than 3.0.0, you may  need
	      to use this option if the	sending	side has a symlink in the path
	      you request and you wish the implied directories	to  be	trans-
	      ferred as	normal directories.

       -b, --backup
	      With  this  option, preexisting destination files	are renamed as
	      each file	is transferred or deleted.  You	can control where  the
	      backup  file  goes  and what (if any) suffix gets	appended using
	      the --backup-dir and --suffix options.

	      Note  that  if  you  don't   specify   --backup-dir,   (1)   the
	      --omit-dir-times	option will be implied,	and (2)	if --delete is
	      also in effect (without --delete-excluded),  rsync  will	add  a
	      "protect"	 filter-rule  for  the backup suffix to	the end	of all
	      your existing excludes (e.g. -f "P *~").	This will prevent pre-
	      viously  backed-up  files	 from being deleted.  Note that	if you
	      are supplying your own filter rules, you may  need  to  manually
	      insert  your own exclude/protect rule somewhere higher up	in the
	      list so that it has a  high  enough  priority  to	 be  effective
	      (e.g.,  if  your rules specify a trailing	inclusion/exclusion of
	      `*', the auto-added rule would never be reached).

       --backup-dir=DIR
	      In combination with the --backup option,	this  tells  rsync  to
	      store  all  backups  in the specified directory on the receiving
	      side.  This can be used for incremental backups.	You can	 addi-
	      tionally specify a backup	suffix using the --suffix option (oth-
	      erwise the files backed up in the	specified directory will  keep
	      their original filenames).

       --suffix=SUFFIX
	      This  option  allows  you	 to override the default backup	suffix
	      used with	the --backup (-b) option. The default suffix is	a ~ if
	      no --backup-dir was specified, otherwise it is an	empty string.

       -u, --update
	      This  forces rsync to skip any files which exist on the destina-
	      tion and have a modified time that  is  newer  than  the	source
	      file.   (If an existing destination file has a modification time
	      equal to the source file's, it will be updated if	the sizes  are
	      different.)

	      Note  that this does not affect the copying of symlinks or other
	      special files.  Also, a difference of file  format  between  the
	      sender  and receiver is always considered	to be important	enough
	      for an update, no	matter what date is on the objects.  In	 other
	      words, if	the source has a directory where the destination has a
	      file, the	transfer would occur regardless	of the timestamps.

	      This option is a transfer	rule, not an exclude,  so  it  doesn't
	      affect  the  data	 that  goes  into  the file-lists, and thus it
	      doesn't affect deletions.	 It just limits	the files that the re-
	      ceiver requests to be transferred.

       --inplace
	      This  option  changes how	rsync transfers	a file when the	file's
	      data needs to be updated:	instead	of the default method of  cre-
	      ating a new copy of the file and moving it into place when it is
	      complete,	rsync instead writes the updated data directly to  the
	      destination file.

	      This  has	several	effects: (1) in-use binaries cannot be updated
	      (either the OS will prevent this	from  happening,  or  binaries
	      that attempt to swap-in their data will misbehave	or crash), (2)
	      the file's data will be in  an  inconsistent  state  during  the
	      transfer,	(3) a file's data may be left in an inconsistent state
	      after the	transfer if the	transfer is interrupted	or if  an  up-
	      date  fails, (4) a file that does	not have write permissions can
	      not be updated, and (5) the efficiency of	rsync's	delta-transfer
	      algorithm	may be reduced if some data in the destination file is
	      overwritten before it can	be copied to a position	later  in  the
	      file  (one  exception to this is if you combine this option with
	      --backup,	since rsync is smart enough to use the backup file  as
	      the basis	file for the transfer).

	      WARNING: you should not use this option to update	files that are
	      being accessed by	others,	so be careful  when  choosing  to  use
	      this for a copy.

	      This  option  is	useful for transfer of large files with	block-
	      based changes or appended	data, and also	on  systems  that  are
	      disk bound, not network bound.

	      The option implies --partial (since an interrupted transfer does
	      not delete the file), but	conflicts with --partial-dir and --de-
	      lay-updates.  Prior to rsync 2.6.4 --inplace was also incompati-
	      ble with --compare-dest and --link-dest.

       --append
	      This causes rsync	to update a file by appending  data  onto  the
	      end  of  the file, which presumes	that the data that already ex-
	      ists on the receiving side is identical with the	start  of  the
	      file on the sending side.	 If a file needs to be transferred and
	      its size on the receiver is the same or longer than the size  on
	      the  sender,  the	file is	skipped.  This does not	interfere with
	      the updating of a	file's non-content  attributes	(e.g.  permis-
	      sions, ownership,	etc.) when the file does not need to be	trans-
	      ferred, nor does it  affect  the	updating  of  any  non-regular
	      files.   Implies	--inplace, but does not	conflict with --sparse
	      (since it	is always extending a file's length).

       --append-verify
	      This works just like the --append	option,	but the	existing  data
	      on the receiving side is included	in the full-file checksum ver-
	      ification	step, which will cause a file to be resent if the  fi-
	      nal  verification	step fails (rsync uses a normal, non-appending
	      --inplace	transfer for the resend).

	      Note: prior to rsync 3.0.0,  the	--append  option  worked  like
	      --append-verify,	so  if you are interacting with	an older rsync
	      (or the transfer is using	a protocol prior  to  30),  specifying
	      either append option will	initiate an --append-verify transfer.

       -d, --dirs
	      Tell  the	 sending  side to include any directories that are en-
	      countered.  Unlike --recursive, a	directory's contents  are  not
	      copied unless the	directory name specified is "."	or ends	with a
	      trailing slash (e.g. ".",	"dir/.", "dir/", etc.).	 Without  this
	      option  or  the --recursive option, rsync	will skip all directo-
	      ries it encounters (and output a message to that effect for each
	      one).   If  you specify both --dirs and --recursive, --recursive
	      takes precedence.

	      The --dirs option	is implied by the --files-from option  or  the
	      --list-only  option  (including an implied --list-only usage) if
	      --recursive wasn't specified (so that directories	 are  seen  in
	      the listing).  Specify --no-dirs (or --no-d) if you want to turn
	      this off.

	      There is also a backward-compatibility helper option, --old-dirs
	      (or  --old-d)  that  tells  rsync	 to  use  a  hack of "-r --ex-
	      clude='/*/*'" to get an older rsync to list a  single  directory
	      without recursing.

       -l, --links
	      When  symlinks are encountered, recreate the symlink on the des-
	      tination.

       -L, --copy-links
	      When symlinks are	encountered, the item that they	point to  (the
	      referent)	is copied, rather than the symlink.  In	older versions
	      of rsync,	this option also had the side-effect  of  telling  the
	      receiving	 side to follow	symlinks, such as symlinks to directo-
	      ries.  In	a modern rsync such as this one, you'll	need to	 spec-
	      ify  --keep-dirlinks  (-K) to get	this extra behavior.  The only
	      exception	is when	sending	files to an rsync that is too  old  to
	      understand -K -- in that case, the -L option will	still have the
	      side-effect of -K	on that	older receiving	rsync.

       --copy-unsafe-links
	      This tells rsync to copy the referent  of	 symbolic  links  that
	      point  outside  the  copied  tree.   Absolute  symlinks are also
	      treated like ordinary files, and so  are	any  symlinks  in  the
	      source  path itself when --relative is used.  This option	has no
	      additional effect	if --copy-links	was also specified.

       --safe-links
	      This tells rsync to ignore any symbolic links which  point  out-
	      side  the	 copied	 tree. All absolute symlinks are also ignored.
	      Using this option	in conjunction with --relative may give	 unex-
	      pected results.

       -k, --copy-dirlinks
	      This  option causes the sending side to treat a symlink to a di-
	      rectory as though	it were	a real directory.  This	is  useful  if
	      you  don't  want	symlinks to non-directories to be affected, as
	      they would be using --copy-links.

	      Without this option, if the sending side has replaced  a	direc-
	      tory  with  a  symlink  to  a directory, the receiving side will
	      delete anything that is in the way of the	new symlink, including
	      a	 directory hierarchy (as long as --force or --delete is	in ef-
	      fect).

	      See also --keep-dirlinks for an analogous	option for the receiv-
	      ing side.

       -K, --keep-dirlinks
	      This  option  causes  the	receiving side to treat	a symlink to a
	      directory	as though it were a real directory,  but  only	if  it
	      matches  a real directory	from the sender.  Without this option,
	      the receiver's symlink would be deleted and replaced with	a real
	      directory.

	      For  example,  suppose  you transfer a directory "foo" that con-
	      tains a file "file", but "foo" is	a symlink to  directory	 "bar"
	      on  the receiver.	 Without --keep-dirlinks, the receiver deletes
	      symlink "foo", recreates it as a	directory,  and	 receives  the
	      file into	the new	directory.  With --keep-dirlinks, the receiver
	      keeps the	symlink	and "file" ends	up in "bar".

	      One note of caution:  if you use --keep-dirlinks,	you must trust
	      all  the	symlinks  in  the  copy!  If it	is possible for	an un-
	      trusted user to create their own symlink to any  directory,  the
	      user  could then (on a subsequent	copy) replace the symlink with
	      a	real directory and affect the content  of  whatever  directory
	      the  symlink  references.	 For backup copies, you	are better off
	      using something like a bind mount	instead	of a symlink to	modify
	      your receiving hierarchy.

	      See also --copy-dirlinks for an analogous	option for the sending
	      side.

       -H, --hard-links
	      This tells rsync to look for hard-linked files in	 the  transfer
	      and link together	the corresponding files	on the receiving side.
	      Without this option,  hard-linked	 files	in  the	 transfer  are
	      treated as though	they were separate files.

	      When  you	are updating a non-empty destination, this option only
	      ensures that files that are hard-linked together on  the	source
	      are  hard-linked	together on the	destination.  It does NOT cur-
	      rently endeavor to break already existing	hard links on the des-
	      tination that do not exist between the source files.  Note, how-
	      ever, that if  one  or  more  extra-linked  files	 have  content
	      changes,	they  will  become unlinked when updated (assuming you
	      are not using the	--inplace option).

	      Note that	rsync can only detect hard links  between  files  that
	      are  inside  the transfer	set.  If rsync updates a file that has
	      extra hard-link connections to files outside the transfer,  that
	      linkage will be broken.  If you are tempted to use the --inplace
	      option to	avoid this breakage, be	very careful that you know how
	      your files are being updated so that you are certain that	no un-
	      intended changes happen due to lingering hard links (and see the
	      --inplace	option for more	caveats).

	      If  incremental recursion	is active (see --recursive), rsync may
	      transfer a missing hard-linked file before it finds that another
	      link  for	that contents exists elsewhere in the hierarchy.  This
	      does not affect the accuracy of the  transfer,  just  its	 effi-
	      ciency.	One way	to avoid this is to disable incremental	recur-
	      sion using the --no-inc-recursive	option.

       -p, --perms
	      This option causes the receiving rsync to	 set  the  destination
	      permissions to be	the same as the	source permissions.  (See also
	      the --chmod option for a way to modify what rsync	 considers  to
	      be the source permissions.)

	      When this	option is off, permissions are set as follows:

	      o	     Existing files (including updated files) retain their ex-
		     isting permissions,  though  the  --executability	option
		     might change just the execute permission for the file.

	      o	     New  files	 get their "normal" permission bits set	to the
		     source file's permissions masked with the	receiving  di-
		     rectory's	 default  permissions  (either	the  receiving
		     process's umask, or the  permissions  specified  via  the
		     destination  directory's  default ACL), and their special
		     permission	bits disabled except in	the case where	a  new
		     directory	inherits  a  setgid bit	from its parent	direc-
		     tory.

	      Thus,  when  --perms  and	 --executability  are  both  disabled,
	      rsync's  behavior	 is the	same as	that of	other file-copy	utili-
	      ties, such as cp(1) and tar(1).

	      In summary: to give destination files (both  old	and  new)  the
	      source permissions, use --perms.	To give	new files the destina-
	      tion-default  permissions	 (while	 leaving  existing  files  un-
	      changed),	 make  sure  that  the	--perms	 option	is off and use
	      --chmod=ugo=rwX (which ensures that all non-masked bits get  en-
	      abled).	If  you'd  care	to make	this latter behavior easier to
	      type, you	could define a popt alias for it, such as putting this
	      line  in	the file ~/.popt (the following	defines	the -Z option,
	      and includes --no-g to use the default group of the  destination
	      dir):

		 rsync alias -Z	--no-p --no-g --chmod=ugo=rwX

	      You  could  then	use  this new option in	a command such as this
	      one:

		 rsync -avZ src/ dest/

	      (Caveat: make sure that -a does not follow -Z, or	it will	re-en-
	      able the two "--no-*" options mentioned above.)

	      The  preservation	 of the	destination's setgid bit on newly-cre-
	      ated directories when --perms is off was added in	 rsync	2.6.7.
	      Older  rsync  versions  erroneously  preserved the three special
	      permission bits for newly-created	files when  --perms  was  off,
	      while  overriding	 the  destination's  setgid  bit  setting on a
	      newly-created directory.	Default	ACL observance	was  added  to
	      the  ACL	patch  for  rsync 2.6.7, so older (or non-ACL-enabled)
	      rsyncs use the umask even	if default ACLs	are present.  (Keep in
	      mind  that it is the version of the receiving rsync that affects
	      these behaviors.)

       -E, --executability
	      This option causes rsync to preserve the executability (or  non-
	      executability)  of regular files when --perms is not enabled.  A
	      regular file is considered to be executable if at	least one  `x'
	      is  turned  on in	its permissions.  When an existing destination
	      file's executability differs  from  that	of  the	 corresponding
	      source  file,  rsync modifies the	destination file's permissions
	      as follows:

	      o	     To	make a file non-executable, rsync turns	 off  all  its
		     `x' permissions.

	      o	     To	 make  a file executable, rsync	turns on each `x' per-
		     mission that has a	corresponding `r' permission enabled.

	      If --perms is enabled, this option is ignored.

       -A, --acls
	      This option causes rsync to update the destination  ACLs	to  be
	      the same as the source ACLs.  The	option also implies --perms.

	      The  source and destination systems must have compatible ACL en-
	      tries for	this option to work properly.	See  the  --fake-super
	      option for a way to backup and restore ACLs that are not compat-
	      ible.

       -X, --xattrs
	      This option causes rsync	to  update  the	 remote	 extended  at-
	      tributes to be the same as the local ones.

	      For  systems  that support extended-attribute namespaces,	a copy
	      being done by a super-user copies	 all  namespaces  except  sys-
	      tem.*.   A  normal user only copies the user.* namespace.	 To be
	      able to backup and restore non-user namespaces as	a normal user,
	      see the --fake-super option.

       --chmod
	      This  option  tells  rsync  to apply one or more comma-separated
	      "chmod" strings to the permission	of the files in	the  transfer.
	      The  resulting value is treated as though	it was the permissions
	      that the sending side supplied for the file,  which  means  that
	      this  option  can	 seem  to  have	no effect on existing files if
	      --perms is not enabled.

	      In addition  to  the  normal  parsing  rules  specified  in  the
	      chmod(1) manpage,	you can	specify	an item	that should only apply
	      to a directory by	prefixing it with a `D', or  specify  an  item
	      that  should  only  apply	 to a file by prefixing	it with	a `F'.
	      For example:

	      --chmod=Dg+s,ug+w,Fo-w,+X

	      It is also legal to specify multiple --chmod  options,  as  each
	      additional  option  is  just  appended to	the list of changes to
	      make.

	      See the --perms and --executability options for how the  result-
	      ing  permission  value can be applied to the files in the	trans-
	      fer.

       -o, --owner
	      This option causes rsync to set the  owner  of  the  destination
	      file  to be the same as the source file, but only	if the receiv-
	      ing rsync	is being run as	the super-user (see also  the  --super
	      and  --fake-super	 options).   Without this option, the owner of
	      new and/or transferred files are set to the invoking user	on the
	      receiving	side.

	      The  preservation	 of ownership will associate matching names by
	      default, but may fall back to using the ID number	in  some  cir-
	      cumstances (see also the --numeric-ids option for	a full discus-
	      sion).

       -g, --group
	      This option causes rsync to set the  group  of  the  destination
	      file  to	be the same as the source file.	 If the	receiving pro-
	      gram is not running as the  super-user  (or  if  --no-super  was
	      specified),  only	groups that the	invoking user on the receiving
	      side is a	member of will be preserved.  Without this option, the
	      group  is	 set  to the default group of the invoking user	on the
	      receiving	side.

	      The preservation of group	information  will  associate  matching
	      names  by	 default,  but may fall	back to	using the ID number in
	      some circumstances (see also the --numeric-ids option for	a full
	      discussion).

       --devices
	      This  option causes rsync	to transfer character and block	device
	      files to the remote system to recreate these devices.  This  op-
	      tion  has	no effect if the receiving rsync is not	run as the su-
	      per-user (see also the --super and --fake-super options).

       --specials
	      This option causes rsync to transfer special files such as named
	      sockets and fifos.

       -D     The -D option is equivalent to --devices --specials.

       -t, --times
	      This  tells  rsync to transfer modification times	along with the
	      files and	update them on the remote system.  Note	that  if  this
	      option  is  not  used, the optimization that excludes files that
	      have not been modified cannot be effective; in  other  words,  a
	      missing -t or -a will cause the next transfer to behave as if it
	      used -I, causing all files to be updated (though rsync's	delta-
	      transfer	algorithm will make the	update fairly efficient	if the
	      files haven't actually changed, you're  much  better  off	 using
	      -t).

       -O, --omit-dir-times
	      This tells rsync to omit directories when	it is preserving modi-
	      fication times (see --times).  If	NFS is sharing the directories
	      on the receiving side, it	is a good idea to use -O.  This	option
	      is inferred if you use --backup without --backup-dir.

       --super
	      This tells the receiving side to attempt	super-user  activities
	      even if the receiving rsync wasn't run by	the super-user.	 These
	      activities include: preserving users  via	 the  --owner  option,
	      preserving  all  groups (not just	the current user's groups) via
	      the --groups option, and copying devices via the	--devices  op-
	      tion.   This  is	useful	for systems that allow such activities
	      without being the	super-user, and	also  for  ensuring  that  you
	      will get errors if the receiving side isn't being	run as the su-
	      per-user.	 To turn off super-user	activities, the	super-user can
	      use --no-super.

       --fake-super
	      When  this option	is enabled, rsync simulates super-user activi-
	      ties by saving/restoring the privileged attributes  via  special
	      extended	attributes that	are attached to	each file (as needed).
	      This includes the	file's owner and group (if it is not  the  de-
	      fault),  the file's device info (device &	special	files are cre-
	      ated as empty text files), and any permission bits that we won't
	      allow  to	 be  set on the	real file (e.g.	 the real file gets u-
	      s,g-s,o-t	for safety) or that would  limit  the  owner's	access
	      (since  the real super-user can always access/change a file, the
	      files we create can always be accessed/changed by	 the  creating
	      user).   This option also	handles	ACLs (if --acls	was specified)
	      and non-user extended attributes (if --xattrs was	specified).

	      This is a	good way to backup data	without	 using	a  super-user,
	      and to store ACLs	from incompatible systems.

	      The  --fake-super	 option	only affects the side where the	option
	      is used.	To affect the remote side of  a	 remote-shell  connec-
	      tion, specify an rsync path:

		rsync -av --rsync-path="rsync --fake-super" /src/ host:/dest/

	      Since  there is only one "side" in a local copy, this option af-
	      fects both the sending and receiving of files.  You'll  need  to
	      specify a	copy using "localhost" if you need to avoid this, pos-
	      sibly using the "lsh" shell script (from the support  directory)
	      as a substitute for an actual remote shell (see --rsh).

	      This option is overridden	by both	--super	and --no-super.

	      See  also	 the  "fake super" setting in the daemon's rsyncd.conf
	      file.

       -S, --sparse
	      Try to handle sparse files efficiently  so  they	take  up  less
	      space on the destination.	 Conflicts with	--inplace because it's
	      not possible to overwrite	data in	a sparse fashion.

	      NOTE: Don't use this option when the destination	is  a  Solaris
	      "tmpfs"  filesystem.  It	doesn't	seem to	handle seeks over null
	      regions correctly	and ends up corrupting the files.

       -n, --dry-run
	      This makes rsync perform a  trial	 run  that  doesn't  make  any
	      changes (and produces mostly the same output as a	real run).  It
	      is most commonly used in	combination  with  the	-v,  --verbose
	      and/or  -i,  --itemize-changes options to	see what an rsync com-
	      mand is going to do before one actually runs it.

	      The output of --itemize-changes is supposed to  be  exactly  the
	      same on a	dry run	and a subsequent real run (barring intentional
	      trickery and system call failures); if it	isn't, that's  a  bug.
	      Other output is the same to the extent practical,	but may	differ
	      in some areas.  Notably, a dry run does not send the actual data
	      for  file	 transfers,  so	 --progress  has no effect, the	"bytes
	      sent", "bytes received", "literal	data", and "matched data" sta-
	      tistics  are too small, and the "speedup"	value is equivalent to
	      a	run where no file transfers are	needed.

       -W, --whole-file
	      With this	option rsync's delta-transfer algorithm	 is  not  used
	      and  the	whole file is sent as-is instead.  The transfer	may be
	      faster if	this option is used when  the  bandwidth  between  the
	      source  and destination machines is higher than the bandwidth to
	      disk  (especially	 when  the  "disk"  is	actually  a  networked
	      filesystem).   This is the default when both the source and des-
	      tination are specified as	local paths.

       -x, --one-file-system
	      This tells rsync to avoid	crossing a  filesystem	boundary  when
	      recursing.   This	 does  not limit the user's ability to specify
	      items to copy from multiple filesystems, just rsync's  recursion
	      through the hierarchy of each directory that the user specified,
	      and also the analogous recursion on the  receiving  side	during
	      deletion.	 Also keep in mind that	rsync treats a "bind" mount to
	      the same device as being on the same filesystem.

	      If this option is	repeated, rsync	omits all mount-point directo-
	      ries  from  the copy.  Otherwise,	it includes an empty directory
	      at each mount-point it encounters	(using the attributes  of  the
	      mounted  directory  because  those of the	underlying mount-point
	      directory	are inaccessible).

	      If rsync has been	told to	collapse symlinks (via --copy-links or
	      --copy-unsafe-links), a symlink to a directory on	another	device
	      is treated like a	mount-point.  Symlinks to non-directories  are
	      unaffected by this option.

       --existing, --ignore-non-existing
	      This  tells rsync	to skip	creating files (including directories)
	      that do not exist	yet on the destination.	  If  this  option  is
	      combined with the	--ignore-existing option, no files will	be up-
	      dated (which can be useful if all	you want to do is  delete  ex-
	      traneous files).

	      This  option  is	a transfer rule, not an	exclude, so it doesn't
	      affect the data that goes	 into  the  file-lists,	 and  thus  it
	      doesn't affect deletions.	 It just limits	the files that the re-
	      ceiver requests to be transferred.

       --ignore-existing
	      This tells rsync to skip updating	files that  already  exist  on
	      the  destination	(this does not ignore existing directories, or
	      nothing would get	done).	See also --existing.

	      This option is a transfer	rule, not an exclude,  so  it  doesn't
	      affect  the  data	 that  goes  into  the file-lists, and thus it
	      doesn't affect deletions.	 It just limits	the files that the re-
	      ceiver requests to be transferred.

	      This  option  can	 be  useful  for those doing backups using the
	      --link-dest option when they need	to continue a backup run  that
	      got  interrupted.	  Since	a --link-dest run is copied into a new
	      directory	hierarchy (when	it is used properly),  using  --ignore
	      existing	will  ensure  that the already-handled files don't get
	      tweaked (which avoids a change in	permissions on the hard-linked
	      files).	This does mean that this option	is only	looking	at the
	      existing files in	the destination	hierarchy itself.

       --remove-source-files
	      This tells rsync to remove  from	the  sending  side  the	 files
	      (meaning	non-directories)  that	are a part of the transfer and
	      have been	successfully duplicated	on the receiving side.

       --delete
	      This tells rsync to delete extraneous files from	the  receiving
	      side  (ones  that	 aren't	on the sending side), but only for the
	      directories that are being synchronized.	You  must  have	 asked
	      rsync to send the	whole directory	(e.g. "dir" or "dir/") without
	      using a wildcard for the	directory's  contents  (e.g.  "dir/*")
	      since  the wildcard is expanded by the shell and rsync thus gets
	      a	request	to transfer individual files, not  the	files'	parent
	      directory.   Files  that are excluded from the transfer are also
	      excluded from being deleted unless you use the --delete-excluded
	      option  or  mark	the rules as only matching on the sending side
	      (see the include/exclude modifiers in the	FILTER RULES section).

	      Prior to rsync 2.6.7, this option	would have  no	effect	unless
	      --recursive  was	enabled.  Beginning with 2.6.7,	deletions will
	      also occur when --dirs (-d) is enabled, but only for directories
	      whose contents are being copied.

	      This  option can be dangerous if used incorrectly!  It is	a very
	      good idea	to first try a run using the --dry-run option (-n)  to
	      see what files are going to be deleted.

	      If the sending side detects any I/O errors, then the deletion of
	      any files	at the destination  will  be  automatically  disabled.
	      This  is	to  prevent temporary filesystem failures (such	as NFS
	      errors) on the sending side causing a massive deletion of	 files
	      on the destination.  You can override this with the --ignore-er-
	      rors option.

	      The  --delete  option  may  be  combined	 with	one   of   the
	      --delete-WHEN  options without conflict, as well as --delete-ex-
	      cluded.  However,	if none	of the --delete-WHEN options are spec-
	      ified,  rsync  will  choose  the	--delete-during	algorithm when
	      talking to rsync 3.0.0 or	newer, and the	--delete-before	 algo-
	      rithm  when  talking to an older rsync.  See also	--delete-delay
	      and --delete-after.

       --delete-before
	      Request that the file-deletions on the receiving	side  be  done
	      before the transfer starts.  See --delete	(which is implied) for
	      more details on file-deletion.

	      Deleting before the transfer is helpful  if  the	filesystem  is
	      tight for	space and removing extraneous files would help to make
	      the transfer possible.  However, it does introduce a  delay  be-
	      fore  the	 start of the transfer,	and this delay might cause the
	      transfer to timeout  (if	--timeout  was	specified).   It  also
	      forces rsync to use the old, non-incremental recursion algorithm
	      that requires rsync to scan all the files	in the	transfer  into
	      memory at	once (see --recursive).

       --delete-during,	--del
	      Request  that  the  file-deletions on the	receiving side be done
	      incrementally as the transfer happens.  The per-directory	delete
	      scan is done right before	each directory is checked for updates,
	      so it behaves like a more	efficient  --delete-before,  including
	      doing  the deletions prior to any	per-directory filter files be-
	      ing updated.  This option	 was  first  added  in	rsync  version
	      2.6.4.   See  --delete  (which  is  implied) for more details on
	      file-deletion.

       --delete-delay
	      Request that the file-deletions on the receiving	side  be  com-
	      puted  during  the transfer (like	--delete-during), and then re-
	      moved after the transfer completes.  This	is  useful  when  com-
	      bined with --delay-updates and/or	--fuzzy, and is	more efficient
	      than using --delete-after	(but  can  behave  differently,	 since
	      --delete-after  computes	the deletions in a separate pass after
	      all updates are done).  If the number of removed files overflows
	      an  internal buffer, a temporary file will be created on the re-
	      ceiving side to hold the names (it is removed while open,	so you
	      shouldn't	 see  it during	the transfer).	If the creation	of the
	      temporary	file fails, rsync will	try  to	 fall  back  to	 using
	      --delete-after  (which  it  cannot do if --recursive is doing an
	      incremental scan).  See --delete (which is implied) for more de-
	      tails on file-deletion.

       --delete-after
	      Request  that  the  file-deletions on the	receiving side be done
	      after the	transfer has completed.	 This is  useful  if  you  are
	      sending  new per-directory merge files as	a part of the transfer
	      and you want their exclusions to	take  effect  for  the	delete
	      phase  of	the current transfer.  It also forces rsync to use the
	      old, non-incremental recursion algorithm that requires rsync  to
	      scan  all	 the  files  in	 the transfer into memory at once (see
	      --recursive).  See --delete (which is implied) for more  details
	      on file-deletion.

       --delete-excluded
	      In addition to deleting the files	on the receiving side that are
	      not on the sending side, this tells rsync	 to  also  delete  any
	      files  on	 the receiving side that are excluded (see --exclude).
	      See the FILTER RULES section for a way to	make individual	exclu-
	      sions  behave this way on	the receiver, and for a	way to protect
	      files from --delete-excluded.  See --delete (which  is  implied)
	      for more details on file-deletion.

       --ignore-errors
	      Tells  --delete to go ahead and delete files even	when there are
	      I/O errors.

       --force
	      This option tells	rsync to delete	a non-empty directory when  it
	      is  to be	replaced by a non-directory.  This is only relevant if
	      deletions	are not	active (see --delete for details).

	      Note for older rsync versions: --force used to still be required
	      when  using --delete-after, and it used to be non-functional un-
	      less the --recursive option was also enabled.

       --max-delete=NUM
	      This tells rsync not to delete more than NUM files  or  directo-
	      ries.   If that limit is exceeded, a warning is output and rsync
	      exits with an error code of 25 (new for 3.0.0).

	      Also new for version 3.0.0, you may specify --max-delete=0 to be
	      warned about any extraneous files	in the destination without re-
	      moving any of them.  Older clients interpreted this  as  "unlim-
	      ited",  so if you	don't know what	version	the client is, you can
	      use the less obvious --max-delete=-1  as	a  backward-compatible
	      way  to  specify that no deletions be allowed (though older ver-
	      sions didn't warn	when the limit was exceeded).

       --max-size=SIZE
	      This tells rsync to avoid	transferring any file that  is	larger
	      than  the	 specified SIZE. The SIZE value	can be suffixed	with a
	      string to	indicate a size	multiplier, and	may  be	 a  fractional
	      value (e.g. "--max-size=1.5m").

	      This  option  is	a transfer rule, not an	exclude, so it doesn't
	      affect the data that goes	 into  the  file-lists,	 and  thus  it
	      doesn't affect deletions.	 It just limits	the files that the re-
	      ceiver requests to be transferred.

	      The suffixes are as  follows:  "K"  (or  "KiB")  is  a  kibibyte
	      (1024),  "M"  (or	 "MiB")	is a mebibyte (1024*1024), and "G" (or
	      "GiB") is	a gibibyte (1024*1024*1024).  If you want  the	multi-
	      plier  to	 be  1000  instead  of	1024, use "KB",	"MB", or "GB".
	      (Note: lower-case	is also	accepted for all values.)  Finally, if
	      the suffix ends in either	"+1" or	"-1", the value	will be	offset
	      by one byte in the indicated direction.

	      Examples:	  --max-size=1.5mb-1	is    1499999	 bytes,	   and
	      --max-size=2g+1 is 2147483649 bytes.

       --min-size=SIZE
	      This  tells rsync	to avoid transferring any file that is smaller
	      than the specified SIZE, which  can  help	 in  not  transferring
	      small,  junk files.  See the --max-size option for a description
	      of SIZE and other	information.

       -B, --block-size=BLOCKSIZE
	      This forces the block size used in rsync's delta-transfer	 algo-
	      rithm  to	 a  fixed value.  It is	normally selected based	on the
	      size of each file	being updated.	See the	technical  report  for
	      details.

       -e, --rsh=COMMAND
	      This  option  allows  you	 to choose an alternative remote shell
	      program to use for communication between the  local  and	remote
	      copies  of  rsync.  Typically, rsync is configured to use	ssh by
	      default, but you may prefer to use rsh on	a local	network.

	      If this option is	used with [user@]host::module/path,  then  the
	      remote  shell COMMAND will be used to run	an rsync daemon	on the
	      remote host, and all data	will be	transmitted through  that  re-
	      mote  shell connection, rather than through a direct socket con-
	      nection to a running rsync daemon	on the remote host.   See  the
	      section  "USING RSYNC-DAEMON FEATURES VIA	A REMOTE-SHELL CONNEC-
	      TION" above.

	      Command-line arguments are permitted in  COMMAND	provided  that
	      COMMAND  is  presented  to rsync as a single argument.  You must
	      use spaces (not tabs or other whitespace)	to separate  the  com-
	      mand  and	 args  from each other,	and you	can use	single-	and/or
	      double-quotes to preserve	spaces in an argument (but  not	 back-
	      slashes).	  Note	that  doubling a single-quote inside a single-
	      quoted string gives you a	 single-quote;	likewise  for  double-
	      quotes  (though  you  need to pay	attention to which quotes your
	      shell is parsing and which quotes	rsync is parsing).  Some exam-
	      ples:

		  -e 'ssh -p 2234'
		  -e 'ssh -o "ProxyCommand nohup ssh firewall nc -w1 %h	%p"'

	      (Note  that  ssh	users  can alternately customize site-specific
	      connect options in their .ssh/config file.)

	      You can also choose the remote shell program using the RSYNC_RSH
	      environment  variable, which accepts the same range of values as
	      -e.

	      See also the --blocking-io option	which is affected by this  op-
	      tion.

       --rsync-path=PROGRAM
	      Use  this	to specify what	program	is to be run on	the remote ma-
	      chine to start-up	rsync.	Often used when	rsync is  not  in  the
	      default	 remote-shell's	  path	 (e.g.	 --rsync-path=/usr/lo-
	      cal/bin/rsync).  Note that PROGRAM is run	with  the  help	 of  a
	      shell,  so  it  can  be any program, script, or command sequence
	      you'd care to run, so long as it does not	corrupt	the  standard-
	      in & standard-out	that rsync is using to communicate.

	      One  tricky  example  is to set a	different default directory on
	      the remote machine for use with the --relative option.  For  in-
	      stance:

		  rsync	-avR --rsync-path="cd /a/b && rsync" host:c/d /e/

       -C, --cvs-exclude
	      This  is a useful	shorthand for excluding	a broad	range of files
	      that you often don't want	to transfer between systems. It	uses a
	      similar  algorithm  to  CVS to determine if a file should	be ig-
	      nored.

	      The exclude list is initialized to exclude the  following	 items
	      (these  initial items are	marked as perishable --	see the	FILTER
	      RULES section):

		     RCS  SCCS	CVS  CVS.adm   RCSLOG	cvslog.*   tags	  TAGS
		     .make.state  .nse_depinfo *~ #* .#* ,* _$*	*$ *.old *.bak
		     *.BAK *.orig *.rej	.del-* *.a *.olb *.o *.obj *.so	 *.exe
		     *.Z *.elc *.ln core .svn/ .git/ .bzr/

	      then,  files  listed in a	$HOME/.cvsignore are added to the list
	      and any files listed in the CVSIGNORE environment	variable  (all
	      cvsignore	names are delimited by whitespace).

	      Finally, any file	is ignored if it is in the same	directory as a
	      .cvsignore file and matches one of the patterns listed  therein.
	      Unlike rsync's filter/exclude files, these patterns are split on
	      whitespace.  See the cvs(1) manual for more information.

	      If you're	combining -C with your own --filter rules, you	should
	      note that	these CVS excludes are appended	at the end of your own
	      rules, regardless	of where the -C	was  placed  on	 the  command-
	      line.  This makes	them a lower priority than any rules you spec-
	      ified explicitly.	 If you	want to	control	where  these  CVS  ex-
	      cludes  get inserted into	your filter rules, you should omit the
	      -C as a command-line option and use a combination	of --filter=:C
	      and  --filter=-C	(either	on your	command-line or	by putting the
	      ":C" and "-C" rules into a filter	file with your	other  rules).
	      The  first  option  turns	 on the	per-directory scanning for the
	      .cvsignore file.	The second option does a  one-time  import  of
	      the CVS excludes mentioned above.

       -f, --filter=RULE
	      This  option allows you to add rules to selectively exclude cer-
	      tain files from the list of files	to  be	transferred.  This  is
	      most useful in combination with a	recursive transfer.

	      You  may use as many --filter options on the command line	as you
	      like to build up the list	of files to exclude.   If  the	filter
	      contains whitespace, be sure to quote it so that the shell gives
	      the rule to rsync	as a single argument.	The  text  below  also
	      mentions	that  you  can	use an underscore to replace the space
	      that separates a rule from its arg.

	      See the FILTER RULES section for detailed	 information  on  this
	      option.

       -F     The  -F  option  is a shorthand for adding two --filter rules to
	      your command.  The first time it is used is a shorthand for this
	      rule:

		 --filter='dir-merge /.rsync-filter'

	      This  tells  rsync to look for per-directory .rsync-filter files
	      that have	been sprinkled through the  hierarchy  and  use	 their
	      rules  to	 filter	the files in the transfer.  If -F is repeated,
	      it is a shorthand	for this rule:

		 --filter='exclude .rsync-filter'

	      This filters out the .rsync-filter  files	 themselves  from  the
	      transfer.

	      See  the	FILTER	RULES  section for detailed information	on how
	      these options work.

       --exclude=PATTERN
	      This option is a simplified form of the --filter option that de-
	      faults to	an exclude rule	and does not allow the full rule-pars-
	      ing syntax of normal filter rules.

	      See the FILTER RULES section for detailed	 information  on  this
	      option.

       --exclude-from=FILE
	      This option is related to	the --exclude option, but it specifies
	      a	FILE that contains exclude patterns  (one  per	line).	 Blank
	      lines  in	 the  file  and	lines starting with `;'	or `#' are ig-
	      nored.  If FILE is -, the	list will be read from standard	input.

       --include=PATTERN
	      This option is a simplified form of the --filter option that de-
	      faults to	an include rule	and does not allow the full rule-pars-
	      ing syntax of normal filter rules.

	      See the FILTER RULES section for detailed	 information  on  this
	      option.

       --include-from=FILE
	      This option is related to	the --include option, but it specifies
	      a	FILE that contains include patterns  (one  per	line).	 Blank
	      lines  in	 the  file  and	lines starting with `;'	or `#' are ig-
	      nored.  If FILE is -, the	list will be read from standard	input.

       --files-from=FILE
	      Using this option	allows you to specify the exact	list of	 files
	      to  transfer  (as	read from the specified	FILE or	- for standard
	      input).  It also tweaks the default behavior of  rsync  to  make
	      transferring just	the specified files and	directories easier:

	      o	     The  --relative  (-R)  option is implied, which preserves
		     the path information that is specified for	each  item  in
		     the file (use --no-relative or --no-R if you want to turn
		     that off).

	      o	     The --dirs	(-d) option is implied,	which will create  di-
		     rectories specified in the	list on	the destination	rather
		     than noisily skipping them	(use --no-dirs	or  --no-d  if
		     you want to turn that off).

	      o	     The --archive (-a)	option's behavior does not imply --re-
		     cursive (-r), so specify it explicitly, if	you want it.

	      o	     These side-effects	change the default state of rsync,  so
		     the  position  of the --files-from	option on the command-
		     line has no bearing on how	other options are parsed (e.g.
		     -a	 works	the same before	or after --files-from, as does
		     --no-R and	all other options).

	      The filenames that are read from the FILE	are  all  relative  to
	      the  source  dir	-- any leading slashes are removed and no ".."
	      references are allowed to	go higher than the  source  dir.   For
	      example, take this command:

		 rsync -a --files-from=/tmp/foo	/usr remote:/backup

	      If  /tmp/foo  contains  the  string  "bin" (or even "/bin"), the
	      /usr/bin directory will be created as /backup/bin	on the	remote
	      host.   If it contains "bin/" (note the trailing slash), the im-
	      mediate contents of the directory	would also  be	sent  (without
	      needing  to be explicitly	mentioned in the file -- this began in
	      version 2.6.4).  In both cases, if the -r	 option	 was  enabled,
	      that  dir's  entire hierarchy would also be transferred (keep in
	      mind that	-r needs to be specified explicitly with --files-from,
	      since  it	 is  not implied by -a).  Also note that the effect of
	      the (enabled by default) --relative option is to duplicate  only
	      the  path	 info  that is read from the file -- it	does not force
	      the duplication of the source-spec path (/usr in this case).

	      In addition, the --files-from file can be	read from  the	remote
	      host instead of the local	host if	you specify a "host:" in front
	      of the file (the host must match one end of the transfer).  As a
	      short-cut, you can specify just a	prefix of ":" to mean "use the
	      remote end of the	transfer".  For	example:

		 rsync -a --files-from=:/path/file-list	src:/ /tmp/copy

	      This would copy all the files specified in  the  /path/file-list
	      file that	was located on the remote "src"	host.

       -0, --from0
	      This  tells  rsync that the rules/filenames it reads from	a file
	      are terminated by	a null ('\0') character,  not  a  NL,  CR,  or
	      CR+LF.	 This	 affects    --exclude-from,    --include-from,
	      --files-from, and	any merged files specified in a	--filter rule.
	      It  does	not  affect --cvs-exclude (since all names read	from a
	      .cvsignore file are split	on whitespace).

	      If the --iconv and --protect-args	options	are specified and  the
	      --files-from  filenames are being	sent from one host to another,
	      the filenames will be translated from the	sending	host's charset
	      to the receiving host's charset.

       -s, --protect-args
	      This  option  sends all filenames	and some options to the	remote
	      rsync without allowing the remote	shell to interpret them.  This
	      means  that  spaces are not split	in names, and any non-wildcard
	      special characters are not translated  (such  as	~,  $,	;,  &,
	      etc.).   Wildcards are expanded on the remote host by rsync (in-
	      stead of the shell doing it).

	      If you use this option with  --iconv,  the  args	will  also  be
	      translated  from	the  local  to	the remote character-set.  The
	      translation happens before wild-cards are	 expanded.   See  also
	      the --files-from option.

       -T, --temp-dir=DIR
	      This  option  instructs  rsync to	use DIR	as a scratch directory
	      when creating temporary copies of	the files transferred  on  the
	      receiving	 side.	 The default behavior is to create each	tempo-
	      rary file	in the same directory as  the  associated  destination
	      file.

	      This option is most often	used when the receiving	disk partition
	      does not have enough free	space to hold a	copy  of  the  largest
	      file  in	the transfer.  In this case (i.e. when the scratch di-
	      rectory is on a different	disk partition),  rsync	 will  not  be
	      able  to rename each received temporary file over	the top	of the
	      associated destination file,  but	 instead  must	copy  it  into
	      place.   Rsync does this by copying the file over	the top	of the
	      destination file,	which means that  the  destination  file  will
	      contain  truncated data during this copy.	 If this were not done
	      this way (even if	the destination	file were first	 removed,  the
	      data  locally  copied to a temporary file	in the destination di-
	      rectory, and then	renamed	into place) it would be	 possible  for
	      the old file to continue taking up disk space (if	someone	had it
	      open), and thus there might not be enough	room to	 fit  the  new
	      version on the disk at the same time.

	      If  you  are using this option for reasons other than a shortage
	      of disk space, you may wish to combine it	with  the  --delay-up-
	      dates  option,  which  will ensure that all copied files get put
	      into subdirectories in the destination hierarchy,	 awaiting  the
	      end of the transfer.  If you don't have enough room to duplicate
	      all the arriving files on	the destination	partition, another way
	      to  tell rsync that you aren't overly concerned about disk space
	      is to use	the --partial-dir option with a	relative path; because
	      this  tells  rsync that it is OK to stash	off a copy of a	single
	      file in a	subdir in the destination hierarchy,  rsync  will  use
	      the partial-dir as a staging area	to bring over the copied file,
	      and then rename it into place from there.	(Specifying  a	--par-
	      tial-dir with an absolute	path does not have this	side-effect.)

       -y, --fuzzy
	      This option tells	rsync that it should look for a	basis file for
	      any destination file that	is  missing.   The  current  algorithm
	      looks in the same	directory as the destination file for either a
	      file that	has an identical size and modified-time,  or  a	 simi-
	      larly-named  file.  If found, rsync uses the fuzzy basis file to
	      try to speed up the transfer.

	      Note that	the use	of the --delete	option might get  rid  of  any
	      potential	 fuzzy-match  files,  so  either use --delete-after or
	      specify some filename exclusions if you need to prevent this.

       --compare-dest=DIR
	      This option instructs rsync to use DIR on	 the  destination  ma-
	      chine  as	 an  additional	hierarchy to compare destination files
	      against doing transfers (if the files are	missing	in the	desti-
	      nation  directory).  If a	file is	found in DIR that is identical
	      to the sender's file, the	file will NOT be  transferred  to  the
	      destination  directory.	This  is  useful for creating a	sparse
	      backup of	just files that	have changed from an earlier backup.

	      Beginning	in version 2.6.4, multiple --compare-dest  directories
	      may  be  provided,  which	will cause rsync to search the list in
	      the order	specified for an exact match.  If  a  match  is	 found
	      that  differs  only  in attributes, a local copy is made and the
	      attributes updated.  If a	match is not found, a basis file  from
	      one  of  the DIRs	will be	selected to try	to speed up the	trans-
	      fer.

	      If DIR is	a relative path, it is relative	to the destination di-
	      rectory.	See also --copy-dest and --link-dest.

       --copy-dest=DIR
	      This  option  behaves  like  --compare-dest, but rsync will also
	      copy unchanged files found in DIR	to the	destination  directory
	      using a local copy.  This	is useful for doing transfers to a new
	      destination while	leaving	existing files intact, and then	 doing
	      a	 flash-cutover	when  all  files have been successfully	trans-
	      ferred.

	      Multiple --copy-dest directories may  be	provided,  which  will
	      cause rsync to search the	list in	the order specified for	an un-
	      changed file.  If	a match	is not found, a	basis file from	one of
	      the DIRs will be selected	to try to speed	up the transfer.

	      If DIR is	a relative path, it is relative	to the destination di-
	      rectory.	See also --compare-dest	and --link-dest.

       --link-dest=DIR
	      This option behaves like --copy-dest, but	 unchanged  files  are
	      hard  linked  from  DIR to the destination directory.  The files
	      must be identical	in all preserved attributes (e.g. permissions,
	      possibly	ownership)  in	order  for  the	files to be linked to-
	      gether.  An example:

		rsync -av --link-dest=$PWD/prior_dir host:src_dir/ new_dir/

	      If file's	aren't linking,	double-check their  attributes.	  Also
	      check  if	 some attributes are getting forced outside of rsync's
	      control, such a mount option that	 squishes  root	 to  a	single
	      user,  or	 mounts	a removable drive with generic ownership (such
	      as OS X's	"Ignore	ownership on this volume" option).

	      Beginning	in version 2.6.4, multiple --link-dest directories may
	      be  provided,  which  will cause rsync to	search the list	in the
	      order specified for an exact match.  If a	match  is  found  that
	      differs  only  in	 attributes,  a	local copy is made and the at-
	      tributes updated.	 If a match is not found, a  basis  file  from
	      one  of  the DIRs	will be	selected to try	to speed up the	trans-
	      fer.

	      This option works	best when copying into	an  empty  destination
	      hierarchy,  as  rsync treats existing files as definitive	(so it
	      never looks in the link-dest dirs	when a	destination  file  al-
	      ready  exists),  and  as	malleable  (so it might	change the at-
	      tributes of a destination	file,  which  affects  all  the	 hard-
	      linked versions).

	      Note  that if you	combine	this option with --ignore-times, rsync
	      will not link any	files together because it only links identical
	      files  together as a substitute for transferring the file, never
	      as an additional check after the file is updated.

	      If DIR is	a relative path, it is relative	to the destination di-
	      rectory.	See also --compare-dest	and --copy-dest.

	      Note  that  rsync	 versions  prior to 2.6.1 had a	bug that could
	      prevent --link-dest from working properly	for  a	non-super-user
	      when  -o	was specified (or implied by -a).  You can work-around
	      this bug by avoiding the -o option when sending to an old	rsync.

       -z, --compress
	      With this	option,	rsync compresses the file data as it  is  sent
	      to the destination machine, which	reduces	the amount of data be-
	      ing transmitted -- something that	is useful over a slow  connec-
	      tion.

	      Note  that this option typically achieves	better compression ra-
	      tios than	can be achieved	by using a compressing remote shell or
	      a	 compressing  transport	 because it takes advantage of the im-
	      plicit information in the	matching data blocks that are not  ex-
	      plicitly sent over the connection.

	      See the --skip-compress option for the default list of file suf-
	      fixes that will not be compressed.

       --compress-level=NUM
	      Explicitly set the compression level to use (see --compress) in-
	      stead of letting it default.  If NUM is non-zero,	the --compress
	      option is	implied.

       --skip-compress=LIST
	      Override the list	of file	suffixes that will not be  compressed.
	      The  LIST	 should	be one or more file suffixes (without the dot)
	      separated	by slashes (/).

	      You may specify an empty string to indicate that no file	should
	      be skipped.

	      Simple  character-class matching is supported: each must consist
	      of a list	of letters inside the square brackets (e.g. no special
	      classes, such as "[:alpha:]", are	supported).

	      The  characters  asterisk	(*) and	question-mark (?) have no spe-
	      cial meaning.

	      Here's an	example	that specifies 6 suffixes to skip (since 1  of
	      the 5 rules matches 2 suffixes):

		  --skip-compress=gz/jpg/mp[34]/7z/bz2

	      The default list of suffixes that	will not be compressed is this
	      (several of these	are newly added	for 3.0.0):

		  gz/zip/z/rpm/deb/iso/bz2/t[gb]z/7z/mp[34]/mov/avi/ogg/jpg/jpeg

	      This list	will be	replaced by your --skip-compress list  in  all
	      but  one	situation:  a  copy  from a daemon rsync will add your
	      skipped suffixes to its list of non-compressing files  (and  its
	      list may be configured to	a different default).

       --numeric-ids
	      With  this option	rsync will transfer numeric group and user IDs
	      rather than using	user and group names and mapping them at  both
	      ends.

	      By  default  rsync will use the username and groupname to	deter-
	      mine what	ownership to give files. The special  uid  0  and  the
	      special  group  0	 are never mapped via user/group names even if
	      the --numeric-ids	option is not specified.

	      If a user	or group has no	name on	the source system or it	has no
	      match  on	 the  destination system, then the numeric ID from the
	      source system is used instead.  See also	the  comments  on  the
	      "use  chroot" setting in the rsyncd.conf manpage for information
	      on how the chroot	setting	affects	rsync's	ability	to look	up the
	      names of the users and groups and	what you can do	about it.

       --timeout=TIMEOUT
	      This  option allows you to set a maximum I/O timeout in seconds.
	      If no data is transferred	for the	specified time then rsync will
	      exit. The	default	is 0, which means no timeout.

       --contimeout
	      This option allows you to	set the	amount of time that rsync will
	      wait for its connection to an rsync daemon to succeed.   If  the
	      timeout is reached, rsync	exits with an error.

       --address
	      By default rsync will bind to the	wildcard address when connect-
	      ing to an	rsync daemon.  The  --address  option  allows  you  to
	      specify  a  specific  IP	address	(or hostname) to bind to.  See
	      also this	option in the --daemon mode section.

       --port=PORT
	      This specifies an	alternate TCP port number to use  rather  than
	      the  default  of	873.  This is only needed if you are using the
	      double-colon (::)	syntax to connect with an rsync	daemon	(since
	      the  URL	syntax	has a way to specify the port as a part	of the
	      URL).  See also this option in the --daemon mode section.

       --sockopts
	      This option can provide endless fun for people who like to  tune
	      their  systems  to  the  utmost degree. You can set all sorts of
	      socket options which may make  transfers	faster	(or  slower!).
	      Read  the	 man page for the setsockopt() system call for details
	      on some of the options you may be	able to	 set.  By  default  no
	      special  socket options are set. This only affects direct	socket
	      connections to a remote rsync daemon.  This option  also	exists
	      in the --daemon mode section.

       --blocking-io
	      This  tells  rsync  to  use blocking I/O when launching a	remote
	      shell transport.	If the remote shell is either  rsh  or	remsh,
	      rsync  defaults  to using	blocking I/O, otherwise	it defaults to
	      using non-blocking I/O.  (Note  that  ssh	 prefers  non-blocking
	      I/O.)

       -i, --itemize-changes
	      Requests	a  simple  itemized list of the	changes	that are being
	      made to each file, including attribute changes.  This is exactly
	      the  same	 as  specifying	--out-format='%i %n%L'.	 If you	repeat
	      the option, unchanged files will also be output, but only	if the
	      receiving	 rsync is at least version 2.6.7 (you can use -vv with
	      older versions of	rsync, but that	also turns on  the  output  of
	      other verbose messages).

	      The  "%i"	 escape	 has a cryptic output that is 11 letters long.
	      The general format is like the string YXcstpoguax,  where	 Y  is
	      replaced	by the type of update being done, X is replaced	by the
	      file-type, and the other letters represent attributes  that  may
	      be output	if they	are being modified.

	      The update types that replace the	Y are as follows:

	      o	     A	< means	that a file is being transferred to the	remote
		     host (sent).

	      o	     A > means that a file is being transferred	to  the	 local
		     host (received).

	      o	     A	c  means that a	local change/creation is occurring for
		     the item (such as the creation  of	 a  directory  or  the
		     changing of a symlink, etc.).

	      o	     A	h  means  that the item	is a hard link to another item
		     (requires --hard-links).

	      o	     A . means that the	item is	not being updated  (though  it
		     might have	attributes that	are being modified).

	      o	     A	* means	that the rest of the itemized-output area con-
		     tains a message (e.g. "deleting").

	      The file-types that replace the X	are: f for a file, a d	for  a
	      directory,  an  L	for a symlink, a D for a device, and a S for a
	      special file (e.g. named sockets and fifos).

	      The other	letters	in the string above  are  the  actual  letters
	      that  will be output if the associated attribute for the item is
	      being updated or a "." for no change.  Three exceptions to  this
	      are:  (1)	 a newly created item replaces each letter with	a "+",
	      (2) an identical item replaces the dots with spaces, and (3)  an
	      unknown attribute	replaces each letter with a "?"	(this can hap-
	      pen when talking to an older rsync).

	      The attribute that is associated with each letter	is as follows:

	      o	     A c means either that a  regular  file  has  a  different
		     checksum (requires	--checksum) or that a symlink, device,
		     or	special	file has a changed value.  Note	 that  if  you
		     are sending files to an rsync prior to 3.0.1, this	change
		     flag will be present only for checksum-differing  regular
		     files.

	      o	     A	s  means  the  size of a regular file is different and
		     will be updated by	the file transfer.

	      o	     A t means the modification	time is	different and is being
		     updated to	the sender's value (requires --times).	An al-
		     ternate value of T	means that the modification time  will
		     be	 set  to  the  transfer	 time,	which  happens	when a
		     file/symlink/device is updated without --times and	when a
		     symlink  is  changed and the receiver can't set its time.
		     (Note: when using an rsync	3.0.0 client,  you  might  see
		     the  s  flag combined with	t instead of the proper	T flag
		     for this time-setting failure.)

	      o	     A p means the permissions are different and are being up-
		     dated to the sender's value (requires --perms).

	      o	     An	o means	the owner is different and is being updated to
		     the sender's value	(requires --owner and super-user priv-
		     ileges).

	      o	     A	g means	the group is different and is being updated to
		     the sender's value	(requires --group and the authority to
		     set the group).

	      o	     The u slot	is reserved for	future use.

	      o	     The a means that the ACL information changed.

	      o	     The  x  means  that  the  extended	 attribute information
		     changed.

	      One other	output is possible:  when  deleting  files,  the  "%i"
	      will  output  the	string "*deleting" for each item that is being
	      removed (assuming	that you are talking to	a recent enough	 rsync
	      that  it	logs deletions instead of outputting them as a verbose
	      message).

       --out-format=FORMAT
	      This allows you to specify exactly what the rsync	client outputs
	      to  the user on a	per-update basis.  The format is a text	string
	      containing embedded single-character escape  sequences  prefixed
	      with  a  percent	(%) character.	 A default format of "%n%L" is
	      assumed if -v is specified (which	reports	the name of  the  file
	      and,  if	the item is a link, where it points).  For a full list
	      of the possible escape characters, see the "log format"  setting
	      in the rsyncd.conf manpage.

	      Specifying  the --out-format option will mention each file, dir,
	      etc. that	gets updated in	a significant way (a transferred file,
	      a	 recreated  symlink/device, or a touched directory).  In addi-
	      tion, if the itemize-changes escape  (%i)	 is  included  in  the
	      string (e.g. if the --itemize-changes option was used), the log-
	      ging of names increases to mention any item that is  changed  in
	      any  way (as long	as the receiving side is at least 2.6.4).  See
	      the --itemize-changes option for a description of	the output  of
	      "%i".

	      Rsync will output	the out-format string prior to a file's	trans-
	      fer unless one of	the transfer-statistic escapes	is  requested,
	      in  which	 case  the  logging  is	 done at the end of the	file's
	      transfer.	 When this late	logging	is in effect and --progress is
	      also  specified, rsync will also output the name of the file be-
	      ing transferred prior to its progress information	(followed,  of
	      course, by the out-format	output).

       --log-file=FILE
	      This  option  causes  rsync  to  log what	it is doing to a file.
	      This is similar to the logging that a daemon does,  but  can  be
	      requested	 for  the client side and/or the server	side of	a non-
	      daemon transfer.	If specified as	a client option, transfer log-
	      ging  will  be  enabled with a default format of "%i %n%L".  See
	      the --log-file-format option if you wish to override this.

	      Here's a example command that requests the remote	 side  to  log
	      what is happening:

		rsync -av --rsync-path="rsync --log-file=/tmp/rlog" src/ dest/

	      This  is	very  useful  if you need to debug why a connection is
	      closing unexpectedly.

       --log-file-format=FORMAT
	      This allows you to specify exactly what  per-update  logging  is
	      put into the file	specified by the --log-file option (which must
	      also be specified	for this option	to have	any effect).   If  you
	      specify  an empty	string,	updated	files will not be mentioned in
	      the log file.  For a list	of the possible	escape characters, see
	      the "log format" setting in the rsyncd.conf manpage.

	      The  default FORMAT used if --log-file is	specified and this op-
	      tion is not is '%i %n%L'.

       --stats
	      This tells rsync to print	a verbose set  of  statistics  on  the
	      file transfer, allowing you to tell how effective	rsync's	delta-
	      transfer algorithm is for	your data.

	      The current statistics are as follows:

	      o	     Number of files is	the  count  of	all  "files"  (in  the
		     generic  sense),  which  includes	directories, symlinks,
		     etc.

	      o	     Number of files transferred is the	count of normal	 files
		     that  were	 updated via rsync's delta-transfer algorithm,
		     which does	not include created dirs, symlinks, etc.

	      o	     Total file	size is	the total sum of all file sizes	in the
		     transfer.	 This  does not	count any size for directories
		     or	special	files, but does	include	the size of symlinks.

	      o	     Total transferred file size is the	total sum of all files
		     sizes for just the	transferred files.

	      o	     Literal  data  is	how much unmatched file-update data we
		     had to send to the	receiver for it	to  recreate  the  up-
		     dated files.

	      o	     Matched  data  is	how much data the receiver got locally
		     when recreating the updated files.

	      o	     File list size is how big the file-list data was when the
		     sender sent it to the receiver.  This is smaller than the
		     in-memory size for	the file list due to some  compressing
		     of	duplicated data	when rsync sends the list.

	      o	     File  list	 generation time is the	number of seconds that
		     the sender	spent creating the file	list.  This requires a
		     modern rsync on the sending side for this to be present.

	      o	     File list transfer	time is	the number of seconds that the
		     sender spent sending the file list	to the receiver.

	      o	     Total bytes sent is the count of all the bytes that rsync
		     sent from the client side to the server side.

	      o	     Total  bytes  received  is	 the  count of all non-message
		     bytes that	rsync received by the  client  side  from  the
		     server  side.   "Non-message"  bytes  means that we don't
		     count the bytes for a verbose  message  that  the	server
		     sent to us, which makes the stats more consistent.

       -8, --8-bit-output
	      This  tells  rsync to leave all high-bit characters unescaped in
	      the output instead of trying to test  them  to  see  if  they're
	      valid  in	the current locale and escaping	the invalid ones.  All
	      control characters (but never tabs) are always escaped,  regard-
	      less of this option's setting.

	      The  escape  idiom  that started in 2.6.7	is to output a literal
	      backslash	(\) and	a hash (#), followed by	exactly	3  octal  dig-
	      its.  For	example, a newline would output	as "\#012".  A literal
	      backslash	that is	in a filename is not escaped unless it is fol-
	      lowed by a hash and 3 digits (0-9).

       -h, --human-readable
	      Output  numbers in a more	human-readable format.	This makes big
	      numbers output using larger units, with a	K, M, or G suffix.  If
	      this  option  was	 specified  once,  these units are K (1000), M
	      (1000*1000), and G (1000*1000*1000); if the option is  repeated,
	      the units	are powers of 1024 instead of 1000.

       --partial
	      By  default, rsync will delete any partially transferred file if
	      the transfer is interrupted. In some circumstances  it  is  more
	      desirable	 to keep partially transferred files. Using the	--par-
	      tial option tells	rsync to keep the partial  file	 which	should
	      make a subsequent	transfer of the	rest of	the file much faster.

       --partial-dir=DIR
	      A	 better	way to keep partial files than the --partial option is
	      to specify a DIR that will be used to hold the partial data (in-
	      stead  of	 writing it out	to the destination file).  On the next
	      transfer,	rsync will use a file found in this  dir  as  data  to
	      speed up the resumption of the transfer and then delete it after
	      it has served its	purpose.

	      Note that	if --whole-file	is specified (or  implied),  any  par-
	      tial-dir	file  that  is	found for a file that is being updated
	      will simply be removed (since rsync is sending files without us-
	      ing rsync's delta-transfer algorithm).

	      Rsync will create	the DIR	if it is missing (just the last	dir --
	      not the whole path).  This makes it easy to use a	relative  path
	      (such  as	 "--partial-dir=.rsync-partial")  to have rsync	create
	      the partial-directory in the destination file's  directory  when
	      needed,  and  then  remove  it  again  when  the partial file is
	      deleted.

	      If the partial-dir value is not an absolute path,	rsync will add
	      an  exclude rule at the end of all your existing excludes.  This
	      will prevent the sending of any partial-dir files	that may exist
	      on the sending side, and will also prevent the untimely deletion
	      of partial-dir items on the receiving  side.   An	 example:  the
	      above  --partial-dir  option would add the equivalent of "-f '-p
	      .rsync-partial/'"	at the end of any other	filter rules.

	      If you are supplying your	own exclude rules, you may need	to add
	      your  own	 exclude/hide/protect rule for the partial-dir because
	      (1) the auto-added rule may be ineffective at the	 end  of  your
	      other  rules,  or	 (2)  you may wish to override rsync's exclude
	      choice.  For instance, if	you want to make  rsync	 clean-up  any
	      left-over	 partial-dirs  that  may  be  lying around, you	should
	      specify --delete-after and add a "risk" filter rule, e.g.	 -f 'R
	      .rsync-partial/'.	 (Avoid	using --delete-before or --delete-dur-
	      ing unless you don't need	rsync to use any of the	left-over par-
	      tial-dir data during the current run.)

	      IMPORTANT:  the  --partial-dir  should  not be writable by other
	      users or it is a security	risk.  E.g. AVOID "/tmp".

	      You can also set the partial-dir value the RSYNC_PARTIAL_DIR en-
	      vironment	 variable.   Setting  this in the environment does not
	      force --partial to be enabled, but rather	it affects where  par-
	      tial  files  go  when --partial is specified.  For instance, in-
	      stead of using --partial-dir=.rsync-tmp along  with  --progress,
	      you  could  set RSYNC_PARTIAL_DIR=.rsync-tmp in your environment
	      and then just use	the -P option  to  turn	 on  the  use  of  the
	      .rsync-tmp  dir  for partial transfers.  The only	times that the
	      --partial	option does not	look for this  environment  value  are
	      (1) when --inplace was specified (since --inplace	conflicts with
	      --partial-dir), and (2) when --delay-updates was specified  (see
	      below).

	      For  the	purposes  of the daemon-config's "refuse options" set-
	      ting, --partial-dir does not imply --partial.  This is so	that a
	      refusal  of  the	--partial  option  can be used to disallow the
	      overwriting of destination files with a partial transfer,	 while
	      still allowing the safer idiom provided by --partial-dir.

       --delay-updates
	      This  option puts	the temporary file from	each updated file into
	      a	holding	directory until	the end	of the transfer, at which time
	      all  the files are renamed into place in rapid succession.  This
	      attempts to make the updating of the files a little more atomic.
	      By  default the files are	placed into a directory	named ".~tmp~"
	      in each file's destination directory, but	 if  you've  specified
	      the  --partial-dir  option, that directory will be used instead.
	      See the comments in the --partial-dir section for	 a  discussion
	      of how this ".~tmp~" dir will be excluded	from the transfer, and
	      what you can do if you want rsync	to cleanup old	".~tmp~"  dirs
	      that  might be lying around.  Conflicts with --inplace and --ap-
	      pend.

	      This option uses more memory on the receiving side (one bit  per
	      file  transferred)  and  also requires enough free disk space on
	      the receiving side to hold an additional copy of all the updated
	      files.   Note  also  that	you should not use an absolute path to
	      --partial-dir unless (1) there is	no chance of any of the	 files
	      in  the  transfer	 having	 the  same name	(since all the updated
	      files will be put	into a single directory	if the path  is	 abso-
	      lute)  and (2) there are no mount	points in the hierarchy	(since
	      the delayed updates will fail if	they  can't  be	 renamed  into
	      place).

	      See  also	the "atomic-rsync" perl	script in the "support"	subdir
	      for an update algorithm  that  is	 even  more  atomic  (it  uses
	      --link-dest and a	parallel hierarchy of files).

       -m, --prune-empty-dirs
	      This option tells	the receiving rsync to get rid of empty	direc-
	      tories from the file-list,  including  nested  directories  that
	      have no non-directory children.  This is useful for avoiding the
	      creation of a bunch of  useless  directories  when  the  sending
	      rsync  is	 recursively  scanning	a hierarchy of files using in-
	      clude/exclude/filter rules.

	      Note that	the use	of transfer rules, such	as the --min-size  op-
	      tion,  does  not	affect	what goes into the file	list, and thus
	      does not leave directories empty,	even if	none of	the files in a
	      directory	match the transfer rule.

	      Because the file-list is actually	being pruned, this option also
	      affects what directories get deleted when	a  delete  is  active.
	      However,	keep  in  mind that excluded files and directories can
	      prevent existing items from being	deleted	due to an exclude both
	      hiding  source  files and	protecting destination files.  See the
	      perishable filter-rule option for	how to avoid this.

	      You can prevent the pruning of certain  empty  directories  from
	      the file-list by using a global "protect"	filter.	 For instance,
	      this option would	ensure that the	directory "emptydir" was  kept
	      in the file-list:

	      --filter 'protect	emptydir/'

	      Here's  an  example  that	 copies	all .pdf files in a hierarchy,
	      only creating the	necessary destination directories to hold  the
	      .pdf  files, and ensures that any	superfluous files and directo-
	      ries in the destination are removed (note	 the  hide  filter  of
	      non-directories being used instead of an exclude):

	      rsync -avm --del --include='*.pdf' -f 'hide,! */'	src/ dest

	      If  you didn't want to remove superfluous	destination files, the
	      more  time-honored  options  of  "--include='*/'	--exclude='*'"
	      would  work  fine	 in  place of the hide-filter (if that is more
	      natural to you).

       --progress
	      This  option  tells  rsync  to  print  information  showing  the
	      progress	of  the	transfer. This gives a bored user something to
	      watch.  Implies --verbose	if it wasn't already specified.

	      While rsync  is  transferring  a	regular	 file,	it  updates  a
	      progress line that looks like this:

		    782448  63%	 110.64kB/s    0:00:04

	      In  this example,	the receiver has reconstructed 782448 bytes or
	      63% of the sender's file,	which is being reconstructed at	a rate
	      of  110.64 kilobytes per second, and the transfer	will finish in
	      4	seconds	if the current rate is maintained until	the end.

	      These statistics can be misleading if rsync's delta-transfer al-
	      gorithm  is  in use.  For	example, if the	sender's file consists
	      of the basis file	followed by additional data, the reported rate
	      will  probably  drop  dramatically when the receiver gets	to the
	      literal data, and	the transfer will probably take	much longer to
	      finish  than  the	 receiver  estimated  as  it was finishing the
	      matched part of the file.

	      When the file transfer finishes,	rsync  replaces	 the  progress
	      line with	a summary line that looks like this:

		   1238099 100%	 146.38kB/s    0:00:08	(xfer#5, to-check=169/396)

	      In  this	example, the file was 1238099 bytes long in total, the
	      average rate of transfer for the whole file was 146.38 kilobytes
	      per  second  over	the 8 seconds that it took to complete,	it was
	      the 5th transfer of a regular file during	the current rsync ses-
	      sion, and	there are 169 more files for the receiver to check (to
	      see if they are up-to-date or not) remaining out of the 396  to-
	      tal files	in the file-list.

       -P     The  -P  option is equivalent to --partial --progress.  Its pur-
	      pose is to make it much easier to	specify	these two options  for
	      a	long transfer that may be interrupted.

       --password-file
	      This  option  allows you to provide a password in	a file for ac-
	      cessing an rsync daemon.	The file must not be  world  readable.
	      It should	contain	just the password as a single line.

	      This  option does	not supply a password to a remote shell	trans-
	      port such	as ssh;	to learn how to	do that,  consult  the	remote
	      shell's  documentation.	When accessing an rsync	daemon using a
	      remote shell as the transport, this option only comes  into  ef-
	      fect after the remote shell finishes its authentication (i.e. if
	      you have also specified a	password in the	daemon's config	file).

       --list-only
	      This option will cause the source	files to be listed instead  of
	      transferred.   This  option  is  inferred	 if  there is a	single
	      source arg and no	destination specified, so its main  uses  are:
	      (1)  to turn a copy command that includes	a destination arg into
	      a	file-listing command, or (2) to	be able	to specify  more  than
	      one source arg (note: be sure to include the destination).  Cau-
	      tion: keep in mind that a	source arg with	 a  wild-card  is  ex-
	      panded  by  the shell into multiple args,	so it is never safe to
	      try to list such an arg without using this option.  For example:

		  rsync	-av --list-only	foo* dest/

	      Compatibility note:  when	requesting a remote listing  of	 files
	      from  an rsync that is version 2.6.3 or older, you may encounter
	      an error if you ask for a	non-recursive listing.	 This  is  be-
	      cause  a file listing implies the	--dirs option w/o --recursive,
	      and older	rsyncs don't have that option.	To avoid this problem,
	      either specify the --no-dirs option (if you don't	need to	expand
	      a	directory's content), or turn on  recursion  and  exclude  the
	      content of subdirectories: -r --exclude='/*/*'.

       --bwlimit=KBPS
	      This  option  allows  you	 to specify a maximum transfer rate in
	      kilobytes	per second. This option	is most	effective  when	 using
	      rsync  with  large  files	(several megabytes and up). Due	to the
	      nature of	rsync transfers, blocks	of  data  are  sent,  then  if
	      rsync  determines	the transfer was too fast, it will wait	before
	      sending the next data block. The result is an  average  transfer
	      rate  equaling the specified limit. A value of zero specifies no
	      limit.

       --write-batch=FILE
	      Record a file that can later be  applied	to  another  identical
	      destination  with	--read-batch. See the "BATCH MODE" section for
	      details, and also	the --only-write-batch option.

       --only-write-batch=FILE
	      Works like --write-batch,	except that no updates are made	on the
	      destination  system  when	 creating  the	batch.	 This lets you
	      transport	the changes to the destination system via  some	 other
	      means and	then apply the changes via --read-batch.

	      Note  that you can feel free to write the	batch directly to some
	      portable media: if this media fills to capacity before  the  end
	      of the transfer, you can just apply that partial transfer	to the
	      destination and repeat the whole process to get the rest of  the
	      changes  (as long	as you don't mind a partially updated destina-
	      tion system while	the multi-update cycle is happening).

	      Also note	that you only save bandwidth when pushing changes to a
	      remote  system  because  this  allows the	batched	data to	be di-
	      verted from the sender into the batch  file  without  having  to
	      flow  over the wire to the receiver (when	pulling, the sender is
	      remote, and thus can't write the batch).

       --read-batch=FILE
	      Apply all	of the changes stored in FILE, a file previously  gen-
	      erated  by  --write-batch.  If FILE is -,	the batch data will be
	      read from	standard input.	 See the "BATCH	MODE" section for  de-
	      tails.

       --protocol=NUM
	      Force  an	older protocol version to be used.  This is useful for
	      creating a batch file that is compatible with an	older  version
	      of  rsync.   For instance, if rsync 2.6.4	is being used with the
	      --write-batch option, but	rsync 2.6.3 is what will  be  used  to
	      run the --read-batch option, you should use "--protocol=28" when
	      creating the batch file to force the older protocol  version  to
	      be  used in the batch file (assuming you can't upgrade the rsync
	      on the reading system).

       --iconv=CONVERT_SPEC
	      Rsync can	convert	filenames between character  sets  using  this
	      option.	Using a	CONVERT_SPEC of	"." tells rsync	to look	up the
	      default character-set via	the locale setting.  Alternately,  you
	      can  fully specify what conversion to do by giving a local and a
	      remote charset separated by a comma  in  the  order  --iconv=LO-
	      CAL,REMOTE,  e.g.	  --iconv=utf8,iso88591.   This	 order ensures
	      that the option will stay	the same  whether  you're  pushing  or
	      pulling  files.  Finally,	you can	specify	either --no-iconv or a
	      CONVERT_SPEC of "-" to turn off  any  conversion.	  The  default
	      setting  of  this	 option	 is site-specific, and can also	be af-
	      fected via the RSYNC_ICONV environment variable.

	      For a list of what charset names your local iconv	 library  sup-
	      ports, you can run "iconv	--list".

	      If you specify the --protect-args	option (-s), rsync will	trans-
	      late the filenames you specify on	the command-line that are  be-
	      ing sent to the remote host.  See	also the --files-from option.

	      Note  that  rsync	 does not do any conversion of names in	filter
	      files (including include/exclude files).	It is up to you	to en-
	      sure  that  you're  specifying  matching rules that can match on
	      both sides of the	transfer.  For instance, you can specify extra
	      include/exclude  rules  if there are filename differences	on the
	      two sides	that need to be	accounted for.

	      When you pass an --iconv option to an rsync daemon  that	allows
	      it,  the daemon uses the charset specified in its	"charset" con-
	      figuration parameter regardless of the remote charset you	 actu-
	      ally  pass.   Thus,  you may feel	free to	specify	just the local
	      charset for a daemon transfer (e.g. --iconv=utf8).

       -4, --ipv4 or -6, --ipv6
	      Tells rsync to prefer IPv4/IPv6  when  creating  sockets.	  This
	      only affects sockets that	rsync has direct control over, such as
	      the outgoing socket when directly	contacting  an	rsync  daemon.
	      See also these options in	the --daemon mode section.

	      If  rsync	 was complied without support for IPv6,	the --ipv6 op-
	      tion will	have no	effect.	 The --version output will tell	you if
	      this is the case.

       --checksum-seed=NUM
	      Set  the checksum	seed to	the integer NUM.  This 4 byte checksum
	      seed is included in each block and  file	checksum  calculation.
	      By  default the checksum seed is generated by the	server and de-
	      faults to	the current time() .  This option is  used  to	set  a
	      specific	checksum  seed,	 which is useful for applications that
	      want repeatable block and	file checksums,	or in the  case	 where
	      the  user	 wants	a more random checksum seed.  Setting NUM to 0
	      causes rsync to use the default of time()	for checksum seed.

DAEMON OPTIONS
       The options allowed when	starting an rsync daemon are as	follows:

       --daemon
	      This tells rsync that it is to run as a daemon.  The daemon  you
	      start  running  may  be accessed using an	rsync client using the
	      host::module or rsync://host/module/ syntax.

	      If standard input	is a socket then rsync will assume that	it  is
	      being  run  via inetd, otherwise it will detach from the current
	      terminal and become a background daemon.	The daemon  will  read
	      the  config  file	(rsyncd.conf) on each connect made by a	client
	      and respond to requests accordingly.  See	the rsyncd.conf(5) man
	      page for more details.

       --address
	      By default rsync will bind to the	wildcard address when run as a
	      daemon with the --daemon option.	The  --address	option	allows
	      you  to  specify a specific IP address (or hostname) to bind to.
	      This makes virtual hosting  possible  in	conjunction  with  the
	      --config	option.	  See  also the	"address" global option	in the
	      rsyncd.conf manpage.

       --bwlimit=KBPS
	      This option allows you to	specify	a  maximum  transfer  rate  in
	      kilobytes	 per second for	the data the daemon sends.  The	client
	      can still	specify	a smaller --bwlimit value, but their requested
	      value  will  be  rounded down if they try	to exceed it.  See the
	      client version of	this option (above) for	some extra details.

       --config=FILE
	      This specifies an	alternate config file than the default.	  This
	      is  only	relevant  when	--daemon is specified.	The default is
	      /usr/local/etc/rsyncd.conf unless	the daemon is running  over  a
	      remote  shell program and	the remote user	is not the super-user;
	      in that case the default is rsyncd.conf in the current directory
	      (typically $HOME).

       --no-detach
	      When running as a	daemon,	this option instructs rsync to not de-
	      tach itself and become a background process.  This option	is re-
	      quired when running as a service on Cygwin, and may also be use-
	      ful when rsync is	supervised by a	program	such as	daemontools or
	      AIX's  System  Resource  Controller.  --no-detach	is also	recom-
	      mended when rsync	is run under a debugger.  This option  has  no
	      effect if	rsync is run from inetd	or sshd.

       --port=PORT
	      This  specifies  an  alternate TCP port number for the daemon to
	      listen on	rather than the	default	of 873.	 See also  the	"port"
	      global option in the rsyncd.conf manpage.

       --log-file=FILE
	      This  option  tells  the	rsync daemon to	use the	given log-file
	      name instead of using the	"log file" setting in the config file.

       --log-file-format=FORMAT
	      This option tells	the rsync  daemon  to  use  the	 given	FORMAT
	      string  instead  of using	the "log format" setting in the	config
	      file.  It	also enables "transfer logging"	unless the  string  is
	      empty, in	which case transfer logging is turned off.

       --sockopts
	      This  overrides  the  socket  options setting in the rsyncd.conf
	      file and has the same syntax.

       -v, --verbose
	      This option increases the	amount of information the daemon  logs
	      during  its  startup phase.  After the client connects, the dae-
	      mon's verbosity level will be controlled by the options that the
	      client used and the "max verbosity" setting in the module's con-
	      fig section.

       -4, --ipv4 or -6, --ipv6
	      Tells rsync to prefer IPv4/IPv6 when creating the	incoming sock-
	      ets  that	 the  rsync daemon will	use to listen for connections.
	      One of these options may be required in older versions of	 Linux
	      to work around an	IPv6 bug in the	kernel (if you see an "address
	      already in use" error when nothing else is using the  port,  try
	      specifying --ipv6	or --ipv4 when starting	the daemon).

	      If  rsync	 was complied without support for IPv6,	the --ipv6 op-
	      tion will	have no	effect.	 The --version output will tell	you if
	      this is the case.

       -h, --help
	      When  specified after --daemon, print a short help page describ-
	      ing the options available	for starting an	rsync daemon.

FILTER RULES
       The filter rules	allow for flexible selection of	which files to	trans-
       fer  (include) and which	files to skip (exclude).  The rules either di-
       rectly specify include/exclude patterns or they specify a  way  to  ac-
       quire more include/exclude patterns (e.g. to read them from a file).

       As  the	list  of  files/directories to transfer	is built, rsync	checks
       each name to be transferred against the list  of	 include/exclude  pat-
       terns in	turn, and the first matching pattern is	acted on:  if it is an
       exclude pattern,	then that file is skipped; if it is an include pattern
       then  that  filename  is	 not skipped; if no matching pattern is	found,
       then the	filename is not	skipped.

       Rsync builds an ordered list of filter rules as specified on  the  com-
       mand-line.  Filter rules	have the following syntax:

	      RULE [PATTERN_OR_FILENAME]
	      RULE,MODIFIERS [PATTERN_OR_FILENAME]

       You  have  your choice of using either short or long RULE names,	as de-
       scribed below.  If you use a short-named	rule, the `,'  separating  the
       RULE from the MODIFIERS is optional.  The PATTERN or FILENAME that fol-
       lows (when present) must	come after either a single space or an	under-
       score (_).  Here	are the	available rule prefixes:

	      exclude, - specifies an exclude pattern.
	      include, + specifies an include pattern.
	      merge, . specifies a merge-file to read for more rules.
	      dir-merge, : specifies a per-directory merge-file.
	      hide, H specifies	a pattern for hiding files from	the transfer.
	      show, S files that match the pattern are not hidden.
	      protect,	P  specifies a pattern for protecting files from dele-
	      tion.
	      risk, R files that match the pattern are not protected.
	      clear, ! clears the current include/exclude list (takes no arg)

       When rules are being read from a	file, empty lines are ignored, as  are
       comment lines that start	with a "#".

       Note that the --include/--exclude command-line options do not allow the
       full range of rule parsing as described above --	they  only  allow  the
       specification of	include/exclude	patterns plus a	"!" token to clear the
       list (and the normal comment parsing when rules are read	from a	file).
       If  a  pattern  does  not  begin	with "-	" (dash, space)	or "+ "	(plus,
       space), then the	rule will be interpreted as if "+ "  (for  an  include
       option) or "- " (for an exclude option) were prefixed to	the string.  A
       --filter	option,	on the other hand, must	always contain either a	 short
       or long rule name at the	start of the rule.

       Note  also that the --filter, --include,	and --exclude options take one
       rule/pattern each. To add multiple ones,	you can	repeat the options  on
       the  command-line, use the merge-file syntax of the --filter option, or
       the --include-from/--exclude-from options.

INCLUDE/EXCLUDE	PATTERN	RULES
       You can include and exclude files by specifying patterns	using the "+",
       "-",  etc.  filter  rules  (as  introduced  in the FILTER RULES section
       above).	The include/exclude rules  each	 specify  a  pattern  that  is
       matched	against	 the  names  of	 the files that	are going to be	trans-
       ferred.	These patterns can take	several	forms:

       o      if the pattern starts with a / then it is	anchored to a particu-
	      lar  spot	 in  the  hierarchy  of	files, otherwise it is matched
	      against the end of the pathname.	This is	similar	to a leading ^
	      in regular expressions.  Thus "/foo" would match a name of "foo"
	      at either	the "root of the transfer" (for	a global rule)	or  in
	      the  merge-file's	 directory (for	a per-directory	rule).	An un-
	      qualified	"foo" would match a name of "foo" anywhere in the tree
	      because  the algorithm is	applied	recursively from the top down;
	      it behaves as if each path component gets	a turn	at  being  the
	      end  of the filename.  Even the unanchored "sub/foo" would match
	      at any point in the hierarchy where a "foo" was found  within  a
	      directory	named "sub".  See the section on ANCHORING INCLUDE/EX-
	      CLUDE PATTERNS for a full	discussion of how to specify a pattern
	      that matches at the root of the transfer.

       o      if  the  pattern	ends with a / then it will only	match a	direc-
	      tory, not	a regular file,	symlink, or device.

       o      rsync chooses between doing a simple string match	 and  wildcard
	      matching	by checking if the pattern contains one	of these three
	      wildcard characters: `*',	`?', and `[' .

       o      a	`*' matches any	path component,	but it stops at	slashes.

       o      use '**' to match	anything, including slashes.

       o      a	`?' matches any	character except a slash (/).

       o      a	`[' introduces a character class,  such	 as  [a-z]  or	[[:al-
	      pha:]].

       o      in a wildcard pattern, a backslash can be	used to	escape a wild-
	      card character, but it is	matched	literally  when	 no  wildcards
	      are present.

       o      if  the  pattern	contains  a / (not counting a trailing /) or a
	      "**", then it is matched against the  full  pathname,  including
	      any leading directories. If the pattern doesn't contain a	/ or a
	      "**", then it is matched only against the	final component	of the
	      filename.	  (Remember  that the algorithm	is applied recursively
	      so "full filename" can actually be any portion of	 a  path  from
	      the starting directory on	down.)

       o      a	 trailing  "dir_name/***" will match both the directory	(as if
	      "dir_name/" had been specified) and everything in	the  directory
	      (as  if  "dir_name/**"  had  been	specified).  This behavior was
	      added in version 2.6.7.

       Note that, when using the --recursive (-r) option (which	is implied  by
       -a),  every subcomponent	of every path is visited from the top down, so
       include/exclude patterns	get applied recursively	to each	subcomponent's
       full  name (e.g.	to include "/foo/bar/baz" the subcomponents "/foo" and
       "/foo/bar" must not be excluded).  The exclude patterns actually	short-
       circuit	the  directory	traversal  stage when rsync finds the files to
       send.  If a pattern excludes a particular parent	directory, it can ren-
       der  a deeper include pattern ineffectual because rsync did not descend
       through that excluded section of	the hierarchy.	This  is  particularly
       important  when	using  a  trailing `*' rule.  For instance, this won't
       work:

	      +	/some/path/this-file-will-not-be-found
	      +	/file-is-included
	      -	*

       This fails because the parent directory "some" is excluded by  the  `*'
       rule,  so  rsync	 never	visits	any  of	 the  files  in	 the "some" or
       "some/path" directories.	 One solution is to ask	for all	directories in
       the  hierarchy  to  be  included	by using a single rule:	"+ */" (put it
       somewhere   before   the	  "-   *"   rule),   and   perhaps   use   the
       --prune-empty-dirs option.  Another solution is to add specific include
       rules for all the parent	dirs that need to be visited.	For  instance,
       this set	of rules works fine:

	      +	/some/
	      +	/some/path/
	      +	/some/path/this-file-is-found
	      +	/file-also-included
	      -	*

       Here are	some examples of exclude/include matching:

       o      "- *.o" would exclude all	names matching *.o

       o      "-  /foo"	 would	exclude	a file (or directory) named foo	in the
	      transfer-root directory

       o      "- foo/" would exclude any directory named foo

       o      "- /foo/*/bar" would exclude any file named bar which is at  two
	      levels  below  a directory named foo in the transfer-root	direc-
	      tory

       o      "- /foo/**/bar" would exclude any	file named  bar	 two  or  more
	      levels  below  a directory named foo in the transfer-root	direc-
	      tory

       o      The combination of "+ */", "+ *.c", and "- *" would include  all
	      directories  and	C  source files	but nothing else (see also the
	      --prune-empty-dirs option)

       o      The combination of "+ foo/", "+ foo/bar.c", and "- *" would  in-
	      clude  only  the	foo directory and foo/bar.c (the foo directory
	      must be explicitly included or it	would be excluded by the "*")

       The following modifiers are accepted after a "+"	or "-":

       o      A	/ specifies that the include/exclude rule  should  be  matched
	      against the absolute pathname of the current item.  For example,
	      "-/ /usr/local/etc/passwd" would exclude	the  passwd  file  any
	      time  the	 transfer was sending files from the "/etc" directory,
	      and "-/ subdir/foo" would	always exclude "foo" when it is	 in  a
	      dir  named "subdir", even	if "foo" is at the root	of the current
	      transfer.

       o      A	! specifies that the include/exclude should take effect	if the
	      pattern fails to match.  For instance, "-! */" would exclude all
	      non-directories.

       o      A	C is used to indicate that all the  global  CVS-exclude	 rules
	      should  be  inserted  as	excludes in place of the "-C".	No arg
	      should follow.

       o      An s is used to indicate that the	rule applies  to  the  sending
	      side.   When  a rule affects the sending side, it	prevents files
	      from being transferred.  The default is for  a  rule  to	affect
	      both sides unless	--delete-excluded was specified, in which case
	      default rules become sender-side only.  See also	the  hide  (H)
	      and  show	(S) rules, which are an	alternate way to specify send-
	      ing-side includes/excludes.

       o      An r is used to indicate that the	rule applies to	the  receiving
	      side.  When a rule affects the receiving side, it	prevents files
	      from being deleted.  See the s modifier for more info.  See also
	      the  protect  (P)	and risk (R) rules, which are an alternate way
	      to specify receiver-side includes/excludes.

       o      A	p indicates that a rule	is perishable, meaning that it is  ig-
	      nored  in	directories that are being deleted.  For instance, the
	      -C option's default rules	that exclude  things  like  "CVS"  and
	      "*.o" are	marked as perishable, and will not prevent a directory
	      that was removed on the source from being	deleted	on the	desti-
	      nation.

MERGE-FILE FILTER RULES
       You can merge whole files into your filter rules	by specifying either a
       merge (.) or a dir-merge	(:) filter rule	(as introduced in  the	FILTER
       RULES section above).

       There  are  two kinds of	merged files --	single-instance	(`.') and per-
       directory (`:').	 A single-instance merge file is read  one  time,  and
       its rules are incorporated into the filter list in the place of the "."
       rule.  For per-directory	merge files, rsync will	scan  every  directory
       that  it	 traverses  for	 the named file, merging its contents when the
       file exists into	the current list of inherited rules.  These per-direc-
       tory  rule  files must be created on the	sending	side because it	is the
       sending side that is being scanned for the available files to transfer.
       These  rule files may also need to be transferred to the	receiving side
       if you want them	to affect what files don't get deleted (see PER-DIREC-
       TORY RULES AND DELETE below).

       Some examples:

	      merge /usr/local/etc/rsync/default.rules
	      .	/usr/local/etc/rsync/default.rules
	      dir-merge	.per-dir-filter
	      dir-merge,n- .non-inherited-per-dir-excludes
	      :n- .non-inherited-per-dir-excludes

       The following modifiers are accepted after a merge or dir-merge rule:

       o      A	 - specifies that the file should consist of only exclude pat-
	      terns, with no other rule-parsing	except for in-file comments.

       o      A	+ specifies that the file should consist of only include  pat-
	      terns, with no other rule-parsing	except for in-file comments.

       o      A	 C  is a way to	specify	that the file should be	read in	a CVS-
	      compatible manner.  This turns on	`n', `w', and  '-',  but  also
	      allows the list-clearing token (!) to be specified.  If no file-
	      name is provided,	".cvsignore" is	assumed.

       o      A	e will exclude the merge-file name  from  the  transfer;  e.g.
	      "dir-merge,e .rules" is like "dir-merge .rules" and "- .rules".

       o      An  n  specifies that the	rules are not inherited	by subdirecto-
	      ries.

       o      A	w specifies that the rules are word-split  on  whitespace  in-
	      stead  of	 the  normal line-splitting.  This also	turns off com-
	      ments.  Note: the	space that separates the prefix	from the  rule
	      is  treated  specially,  so "- foo + bar"	is parsed as two rules
	      (assuming	that prefix-parsing wasn't also	disabled).

       o      You may also specify any of the modifiers	for  the  "+"  or  "-"
	      rules  (above)  in order to have the rules that are read in from
	      the file default to having that  modifier	 set.	For  instance,
	      "merge,-/	 .excl"	would treat the	contents of .excl as absolute-
	      path excludes, while "dir-merge,s	.filt" and  ":sC"  would  each
	      make  all	 their	per-directory  rules apply only	on the sending
	      side.

       Per-directory rules are inherited in all	subdirectories of  the	direc-
       tory  where  the	merge-file was found unless the	`n' modifier was used.
       Each subdirectory's rules are prefixed to the  inherited	 per-directory
       rules  from its parents,	which gives the	newest rules a higher priority
       than the	inherited rules.   The	entire	set  of	 dir-merge  rules  are
       grouped	together in the	spot where the merge-file was specified, so it
       is possible to override dir-merge rules via a rule that	got  specified
       earlier in the list of global rules.  When the list-clearing rule ("!")
       is read from a per-directory file, it only clears the  inherited	 rules
       for the current merge file.

       Another	way  to	prevent	a single rule from a dir-merge file from being
       inherited is to anchor it with a	leading	slash.	Anchored  rules	 in  a
       per-directory merge-file	are relative to	the merge-file's directory, so
       a pattern "/foo"	would only match the file "foo"	in the directory where
       the dir-merge filter file was found.

       Here's  an  example  filter  file  which	 you'd specify via --filter=".
       file":

	      merge /home/user/.global-filter
	      -	*.gz
	      dir-merge	.rules
	      +	*.[ch]
	      -	*.o

       This will merge the contents of the /home/user/.global-filter  file  at
       the  start of the list and also turns the ".rules" filename into	a per-
       directory filter	file.  All rules read in prior to the start of the di-
       rectory	scan  follow  the global anchoring rules (i.e. a leading slash
       matches at the root of the transfer).

       If a per-directory merge-file is	specified with a path that is a	parent
       directory of the	first transfer directory, rsync	will scan all the par-
       ent dirs	from that starting point to the	transfer directory for the in-
       dicated per-directory file.  For	instance, here is a common filter (see
       -F):

	      --filter=': /.rsync-filter'

       That rule tells rsync to	scan for the file .rsync-filter	in all	direc-
       tories  from the	root down through the parent directory of the transfer
       prior to	the start of the normal	directory scan of the file in the  di-
       rectories that are sent as a part of the	transfer.  (Note: for an rsync
       daemon, the root	is always the same as the module's "path".)

       Some examples of	this pre-scanning for per-directory files:

	      rsync -avF /src/path/ /dest/dir
	      rsync -av	--filter=': ../../.rsync-filter' /src/path/ /dest/dir
	      rsync -av	--filter=': .rsync-filter' /src/path/ /dest/dir

       The first two commands above will look for ".rsync-filter" in  "/"  and
       "/src"	before	the  normal  scan  begins  looking  for	 the  file  in
       "/src/path" and its subdirectories.  The	last command avoids  the  par-
       ent-dir	scan  and only looks for the ".rsync-filter" files in each di-
       rectory that is a part of the transfer.

       If you want to include the contents of a	".cvsignore" in	your patterns,
       you  should use the rule	":C", which creates a dir-merge	of the .cvsig-
       nore file, but parsed in	a CVS-compatible manner.  You can use this  to
       affect  where  the --cvs-exclude	(-C) option's inclusion	of the per-di-
       rectory .cvsignore file gets placed into	your rules by putting the ":C"
       wherever	 you like in your filter rules.	 Without this, rsync would add
       the dir-merge rule for the .cvsignore file at the end of	all your other
       rules  (giving  it a lower priority than	your command-line rules).  For
       example:

	      cat <<EOT	| rsync	-avC --filter='. -' a/ b
	      +	foo.o
	      :C
	      -	*.old
	      EOT
	      rsync -avC --include=foo.o -f :C --exclude='*.old' a/ b

       Both of the above rsync commands	are identical.	Each  one  will	 merge
       all the per-directory .cvsignore	rules in the middle of the list	rather
       than at the end.	 This allows their dir-specific	rules to supersede the
       rules  that  follow  the	 :C  instead  of being subservient to all your
       rules.  To affect the other CVS exclude rules (i.e. the default list of
       exclusions,  the	contents of $HOME/.cvsignore, and the value of $CVSIG-
       NORE) you should	omit the -C command-line option	and instead  insert  a
       "-C" rule into your filter rules; e.g. "--filter=-C".

LIST-CLEARING FILTER RULE
       You  can	clear the current include/exclude list by using	the "!"	filter
       rule (as	introduced in the FILTER RULES section above).	The  "current"
       list  is	 either	 the  global list of rules (if the rule	is encountered
       while parsing the filter	options)  or  a	 set  of  per-directory	 rules
       (which  are  inherited in their own sub-list, so	a subdirectory can use
       this to clear out the parent's rules).

ANCHORING INCLUDE/EXCLUDE PATTERNS
       As mentioned earlier, global include/exclude patterns are  anchored  at
       the "root of the	transfer" (as opposed to per-directory patterns, which
       are anchored at the merge-file's	 directory).   If  you	think  of  the
       transfer	 as  a subtree of names	that are being sent from sender	to re-
       ceiver, the transfer-root is where the tree starts to be	duplicated  in
       the destination directory.  This	root governs where patterns that start
       with a /	match.

       Because the matching is relative	to  the	 transfer-root,	 changing  the
       trailing	 slash on a source path	or changing your use of	the --relative
       option affects the path you need	to use in your matching	 (in  addition
       to  changing how	much of	the file tree is duplicated on the destination
       host).  The following examples demonstrate this.

       Let's say that we want to match two source files, one with an  absolute
       path of "/home/me/foo/bar", and one with	a path of "/home/you/bar/baz".
       Here is how the various command choices differ for a 2-source transfer:

	      Example cmd: rsync -a /home/me /home/you /dest
	      +/- pattern: /me/foo/bar
	      +/- pattern: /you/bar/baz
	      Target file: /dest/me/foo/bar
	      Target file: /dest/you/bar/baz

	      Example cmd: rsync -a /home/me/ /home/you/ /dest
	      +/- pattern: /foo/bar		  (note	missing	"me")
	      +/- pattern: /bar/baz		  (note	missing	"you")
	      Target file: /dest/foo/bar
	      Target file: /dest/bar/baz

	      Example cmd: rsync -a --relative /home/me/ /home/you /dest
	      +/- pattern: /home/me/foo/bar	  (note	full path)
	      +/- pattern: /home/you/bar/baz	  (ditto)
	      Target file: /dest/home/me/foo/bar
	      Target file: /dest/home/you/bar/baz

	      Example cmd: cd /home; rsync -a --relative me/foo	you/ /dest
	      +/- pattern: /me/foo/bar	    (starts at specified path)
	      +/- pattern: /you/bar/baz	    (ditto)
	      Target file: /dest/me/foo/bar
	      Target file: /dest/you/bar/baz

       The easiest way to see what name	you should filter is to	just  look  at
       the  output  when using --verbose and put a / in	front of the name (use
       the --dry-run option if you're not yet ready to copy any	files).

PER-DIRECTORY RULES AND	DELETE
       Without a delete	option,	per-directory rules are	only relevant  on  the
       sending	side,  so  you	can feel free to exclude the merge files them-
       selves without affecting	the transfer.  To make this easy, the `e' mod-
       ifier  adds  this exclude for you, as seen in these two equivalent com-
       mands:

	      rsync -av	--filter=': .excl' --exclude=.excl host:src/dir	/dest
	      rsync -av	--filter=':e .excl' host:src/dir /dest

       However,	if you want to do a delete on the receiving side AND you  want
       some  files  to	be excluded from being deleted,	you'll need to be sure
       that the	receiving side knows what files	to exclude.  The  easiest  way
       is  to  include	the  per-directory merge files in the transfer and use
       --delete-after, because this ensures that the receiving side  gets  all
       the  same  exclude  rules as the	sending	side before it tries to	delete
       anything:

	      rsync -avF --delete-after	host:src/dir /dest

       However,	if the merge files are not a part of the transfer, you'll need
       to either specify some global exclude rules (i.e. specified on the com-
       mand line), or you'll need to maintain  your  own  per-directory	 merge
       files  on  the receiving	side.  An example of the first is this (assume
       that the	remote .rules files exclude themselves):

       rsync -av --filter=': .rules' --filter='. /my/extra.rules'
	  --delete host:src/dir	/dest

       In the above example the	extra.rules file can affect both sides of  the
       transfer,  but  (on  the	sending	side) the rules	are subservient	to the
       rules merged from the .rules files because they	were  specified	 after
       the per-directory merge rule.

       In  one	final  example,	the remote side	is excluding the .rsync-filter
       files from the transfer,	but we want to use our own .rsync-filter files
       to control what gets deleted on the receiving side.  To do this we must
       specifically exclude the	per-directory merge files (so that they	 don't
       get  deleted)  and  then	put rules into the local files to control what
       else should not get deleted.  Like one of these commands:

	   rsync -av --filter=':e /.rsync-filter' --delete \
	       host:src/dir /dest
	   rsync -avFF --delete	host:src/dir /dest

BATCH MODE
       Batch mode can be used to apply the same	set of updates to many identi-
       cal  systems. Suppose one has a tree which is replicated	on a number of
       hosts.  Now suppose some	changes	have been made to this source tree and
       those  changes need to be propagated to the other hosts.	In order to do
       this using batch	mode, rsync is run with	the write-batch	option to  ap-
       ply  the	 changes  made	to  the	 source	tree to	one of the destination
       trees.  The write-batch option causes the rsync client to  store	 in  a
       "batch  file"  all  the	information  needed  to	 repeat	this operation
       against other, identical	destination trees.

       Generating the batch file once saves having to perform the file status,
       checksum, and data block	generation more	than once when updating	multi-
       ple destination trees. Multicast	transport protocols  can  be  used  to
       transfer	 the batch update files	in parallel to many hosts at once, in-
       stead of	sending	the same data to every host individually.

       To apply	the recorded changes to	another	destination  tree,  run	 rsync
       with the	read-batch option, specifying the name of the same batch file,
       and the destination tree.  Rsync	updates	the destination	tree using the
       information stored in the batch file.

       For  your  convenience,	a  script file is also created when the	write-
       batch option is used:  it will be named the same	as the batch file with
       ".sh"  appended.	 This script file contains a command-line suitable for
       updating	a destination tree using the associated	batch file. It can  be
       executed	 using	a Bourne (or Bourne-like) shell, optionally passing in
       an alternate destination	tree pathname which is then  used  instead  of
       the  original  destination  path.   This	is useful when the destination
       tree path on the	current	host differs from the one used to  create  the
       batch file.

       Examples:

	      $	rsync --write-batch=foo	-a host:/source/dir/ /adest/dir/
	      $	scp foo* remote:
	      $	ssh remote ./foo.sh /bdest/dir/

	      $	rsync --write-batch=foo	-a /source/dir/	/adest/dir/
	      $	ssh remote rsync --read-batch=-	-a /bdest/dir/ <foo

       In   these   examples,	rsync  is  used	 to  update  /adest/dir/  from
       /source/dir/ and	the information	to repeat this operation is stored  in
       "foo" and "foo.sh".  The	host "remote" is then updated with the batched
       data going into the directory /bdest/dir.  The differences between  the
       two  examples  reveals some of the flexibility you have in how you deal
       with batches:

       o      The first	example	shows that the initial copy doesn't have to be
	      local  --	 you can push or pull data to/from a remote host using
	      either the remote-shell syntax or	rsync daemon  syntax,  as  de-
	      sired.

       o      The  first  example  uses	 the  created "foo.sh" file to get the
	      right rsync options when running the read-batch command  on  the
	      remote host.

       o      The  second  example  reads the batch data via standard input so
	      that the batch file doesn't need to be copied to the remote  ma-
	      chine  first.   This example avoids the foo.sh script because it
	      needed to	use a modified --read-batch option, but	you could edit
	      the  script  file	 if you	wished to make use of it (just be sure
	      that no other option is trying to	use standard  input,  such  as
	      the "--exclude-from=-" option).

       Caveats:

       The  read-batch option expects the destination tree that	it is updating
       to be identical to the destination tree that was	 used  to  create  the
       batch  update fileset.  When a difference between the destination trees
       is encountered the update might be discarded with  a  warning  (if  the
       file  appears  to  be up-to-date	already) or the	file-update may	be at-
       tempted and then, if the	file fails to  verify,	the  update  discarded
       with  an	 error.	  This	means that it should be	safe to	re-run a read-
       batch operation if the command got interrupted.	If you wish  to	 force
       the batched-update to always be attempted regardless of the file's size
       and date, use the -I option (when reading the batch).  If an error  oc-
       curs,  the  destination	tree  will  probably be	in a partially updated
       state. In that case, rsync can be used in its regular (non-batch)  mode
       of operation to fix up the destination tree.

       The  rsync  version used	on all destinations must be at least as	new as
       the one used to generate	the batch file.	 Rsync will die	with an	 error
       if  the	protocol  version  in the batch	file is	too new	for the	batch-
       reading rsync to	handle.	 See also the --protocol option	for a  way  to
       have  the  creating rsync generate a batch file that an older rsync can
       understand.  (Note that batch files changed format in version 2.6.3, so
       mixing versions older than that with newer versions will	not work.)

       When  reading  a	 batch file, rsync will	force the value	of certain op-
       tions to	match the data in the batch file if you	didn't set them	to the
       same  as	 the batch-writing command.  Other options can (and should) be
       changed.	  For  instance	  --write-batch	  changes   to	 --read-batch,
       --files-from  is	 dropped, and the --filter/--include/--exclude options
       are not needed unless one of the	--delete options is specified.

       The code	that creates  the  BATCH.sh  file  transforms  any  filter/in-
       clude/exclude  options  into a single list that is appended as a	"here"
       document	to the shell script file.  An advanced user can	 use  this  to
       modify the exclude list if a change in what gets	deleted	by --delete is
       desired.	 A normal user can ignore this detail and just use  the	 shell
       script  as  an easy way to run the appropriate --read-batch command for
       the batched data.

       The original batch mode in rsync	was based on "rsync+", but the	latest
       version uses a new implementation.

SYMBOLIC LINKS
       Three  basic  behaviors	are  possible when rsync encounters a symbolic
       link in the source directory.

       By default, symbolic links are  not  transferred	 at  all.   A  message
       "skipping non-regular" file is emitted for any symlinks that exist.

       If --links is specified,	then symlinks are recreated with the same tar-
       get on the destination.	Note that --archive implies --links.

       If --copy-links is specified, then symlinks are "collapsed" by  copying
       their referent, rather than the symlink.

       rsync  also distinguishes "safe"	and "unsafe" symbolic links.  An exam-
       ple where this might be used is a web site mirror  that	wishes	ensure
       the  rsync module they copy does	not include symbolic links to /usr/lo-
       cal/etc/passwd in the public section of	the  site.   Using  --copy-un-
       safe-links  will	cause any links	to be copied as	the file they point to
       on the destination.  Using --safe-links will cause unsafe links	to  be
       omitted	 altogether.	(Note	that  you  must	 specify  --links  for
       --safe-links to have any	effect.)

       Symbolic	links are considered unsafe  if	 they  are  absolute  symlinks
       (start  with  /),  empty, or if they contain enough ".."	 components to
       ascend from the directory being copied.

       Here's a	summary	of how the symlink options are interpreted.  The  list
       is in order of precedence, so if	your combination of options isn't men-
       tioned, use the first line that is a complete subset of your options:

       --copy-links
	      Turn all symlinks	into normal files (leaving no symlinks for any
	      other options to affect).

       --links --copy-unsafe-links
	      Turn  all	unsafe symlinks	into files and duplicate all safe sym-
	      links.

       --copy-unsafe-links
	      Turn all unsafe symlinks into files, noisily skip	all safe  sym-
	      links.

       --links --safe-links
	      Duplicate	safe symlinks and skip unsafe ones.

       --links
	      Duplicate	all symlinks.

DIAGNOSTICS
       rsync occasionally produces error messages that may seem	a little cryp-
       tic. The	one that seems to cause	the most confusion is  "protocol  ver-
       sion mismatch --	is your	shell clean?".

       This  message is	usually	caused by your startup scripts or remote shell
       facility	producing unwanted garbage on the stream that rsync  is	 using
       for  its	transport. The way to diagnose this problem is to run your re-
       mote shell like this:

	      ssh remotehost /bin/true > out.dat

       then look at out.dat. If	everything is working correctly	 then  out.dat
       should  be  a zero length file. If you are getting the above error from
       rsync then you will probably find that out.dat contains	some  text  or
       data.  Look  at	the contents and try to	work out what is producing it.
       The most	common cause is	incorrectly configured shell  startup  scripts
       (such as	.cshrc or .profile) that contain output	statements for non-in-
       teractive logins.

       If you are having trouble debugging filter patterns, then try  specify-
       ing  the	 -vv  option.	At this	level of verbosity rsync will show why
       each individual file is included	or excluded.

EXIT VALUES
       0      Success

       1      Syntax or	usage error

       2      Protocol incompatibility

       3      Errors selecting input/output files, dirs

       4      Requested	action not supported: an attempt was made  to  manipu-
	      late  64-bit files on a platform that cannot support them; or an
	      option was specified that	is supported by	the client and not  by
	      the server.

       5      Error starting client-server protocol

       6      Daemon unable to append to log-file

       10     Error in socket I/O

       11     Error in file I/O

       12     Error in rsync protocol data stream

       13     Errors with program diagnostics

       14     Error in IPC code

       20     Received SIGUSR1 or SIGINT

       21     Some error returned by waitpid()

       22     Error allocating core memory buffers

       23     Partial transfer due to error

       24     Partial transfer due to vanished source files

       25     The --max-delete limit stopped deletions

       30     Timeout in data send/receive

       35     Timeout waiting for daemon connection

ENVIRONMENT VARIABLES
       CVSIGNORE
	      The  CVSIGNORE  environment variable supplements any ignore pat-
	      terns in .cvsignore files. See the --cvs-exclude option for more
	      details.

       RSYNC_ICONV
	      Specify  a  default --iconv setting using	this environment vari-
	      able.

       RSYNC_RSH
	      The RSYNC_RSH environment	variable allows	you  to	 override  the
	      default shell used as the	transport for rsync.  Command line op-
	      tions are	permitted after	the command name, just as  in  the  -e
	      option.

       RSYNC_PROXY
	      The RSYNC_PROXY environment variable allows you to redirect your
	      rsync client to use a web	proxy when connecting to a rsync  dae-
	      mon. You should set RSYNC_PROXY to a hostname:port pair.

       RSYNC_PASSWORD
	      Setting  RSYNC_PASSWORD  to  the required	password allows	you to
	      run authenticated	rsync connections to an	rsync  daemon  without
	      user  intervention. Note that this does not supply a password to
	      a	remote shell transport such as ssh; to learn how to  do	 that,
	      consult the remote shell's documentation.

       USER or LOGNAME
	      The  USER	or LOGNAME environment variables are used to determine
	      the default username sent	to an rsync  daemon.   If  neither  is
	      set, the username	defaults to "nobody".

       HOME   The HOME environment variable is used to find the	user's default
	      .cvsignore file.

FILES
       /usr/local/etc/rsyncd.conf or rsyncd.conf

SEE ALSO
       rsyncd.conf(5)

BUGS
       times are transferred as	*nix time_t values

       When transferring to  FAT  filesystems  rsync  may  re-sync  unmodified
       files.  See the comments	on the --modify-window option.

       file  permissions,  devices,  etc.  are transferred as native numerical
       values

       see also	the comments on	the --delete option

       Please report bugs! See the web site at http://rsync.samba.org/

VERSION
       This man	page is	current	for version 3.0.6 of rsync.

INTERNAL OPTIONS
       The options --server and	--sender are used  internally  by  rsync,  and
       should  never  be  typed	 by  a	user under normal circumstances.  Some
       awareness of these options may be needed	in certain scenarios, such  as
       when  setting  up  a login that can only	run an rsync command.  For in-
       stance, the support directory of	the rsync distribution has an  example
       script  named rrsync (for restricted rsync) that	can be used with a re-
       stricted	ssh login.

CREDITS
       rsync is	distributed under the GNU public license.  See the file	 COPY-
       ING for details.

       A  WEB site is available	at http://rsync.samba.org/.  The site includes
       an FAQ-O-Matic which may	cover  questions  unanswered  by  this	manual
       page.

       The primary ftp site for	rsync is ftp://rsync.samba.org/pub/rsync.

       We  would  be  delighted	 to  hear  from	 you if	you like this program.
       Please contact the mailing-list at rsync@lists.samba.org.

       This program uses the excellent zlib  compression  library  written  by
       Jean-loup Gailly	and Mark Adler.

THANKS
       Especial	 thanks	 go  out to: John Van Essen, Matt McCutchen, Wesley W.
       Terpstra, David Dykstra,	Jos Backus, Sebastian  Krahmer,	 Martin	 Pool,
       and our gone-but-not-forgotten compadre,	J.W. Schultz.

       Thanks also to Richard Brent, Brendan Mackay, Bill Waite, Stephen Roth-
       well and	David Bell.  I've probably missed some people, my apologies if
       I have.

AUTHOR
       rsync  was  originally  written	by Andrew Tridgell and Paul Mackerras.
       Many people have	later contributed to it.  It is	 currently  maintained
       by Wayne	Davison.

       Mailing	 lists	 for   support	 and   development  are	 available  at
       http://lists.samba.org

				  8 May	2009			      rsync(1)

NAME | SYNOPSIS | DESCRIPTION | GENERAL | SETUP | USAGE | ADVANCED USAGE | CONNECTING TO AN RSYNC DAEMON | USING RSYNC-DAEMON FEATURES VIA A REMOTE-SHELL CONNECTION | STARTING AN RSYNC DAEMON TO ACCEPT CONNECTIONS | EXAMPLES | OPTIONS SUMMARY | OPTIONS | DAEMON OPTIONS | FILTER RULES | INCLUDE/EXCLUDE PATTERN RULES | MERGE-FILE FILTER RULES | LIST-CLEARING FILTER RULE | ANCHORING INCLUDE/EXCLUDE PATTERNS | PER-DIRECTORY RULES AND DELETE | BATCH MODE | SYMBOLIC LINKS | DIAGNOSTICS | EXIT VALUES | ENVIRONMENT VARIABLES | FILES | SEE ALSO | BUGS | VERSION | INTERNAL OPTIONS | CREDITS | THANKS | AUTHOR

Want to link to this manual page? Use this URL:
<https://www.freebsd.org/cgi/man.cgi?query=rsync&manpath=FreeBSD+8.0-RELEASE+and+Ports>

home | help