Skip site navigation (1)Skip section navigation (2)

FreeBSD Manual Pages

  
 
  

home | help
RSAUTL(1)                           OpenSSL                          RSAUTL(1)

N
       rsautl - RSA utility

S
       ooppeennssssll rrssaauuttll [--iinn ffiillee] [--oouutt ffiillee] [--iinnkkeeyy ffiillee] [--ppuubbiinn] [--cceerrttiinn]
       [--ssiiggnn] [--vveerriiffyy] [--eennccrryypptt] [--ddeeccrryypptt] [--ppkkccss] [--ssssll] [--rraaww] [--hheexx--
       dduummpp] [--aassnn11ppaarrssee]

D
       The rrssaauuttll command can be used to sign, verify, encrypt and decrypt
       data using the RSA algorithm.

C
       --iinn ffiilleennaammee
           This specifies the input filename to read data from or standard
           input if this option is not specified.

       --oouutt ffiilleennaammee
           specifies the output filename to write to or standard output by
           default.

       --iinnkkeeyy ffiillee
           the input key file, by default it should be an RSA private key.

       --ppuubbiinn
           the input file is an RSA public key.

       --cceerrttiinn
           the input is a certificate containing an RSA public key.

       --ssiiggnn
           sign the input data and output the signed result. This requires and
           RSA private key.

       --vveerriiffyy
           verify the input data and output the recovered data.

       --eennccrryypptt
           encrypt the input data using an RSA public key.

       --ddeeccrryypptt
           decrypt the input data using an RSA private key.

       --ppkkccss,, --ooaaeepp,, --ssssll,, --rraaww
           the padding to use: PKCS#1 v1.5 (the default), PKCS#1 OAEP, special
           padding used in SSL v2 backwards compatible handshakes, or no pad-
           ding, respectively.  For signatures, only --ppkkccss and --rraaww can be
           used.

       --hheexxdduummpp
           hex dump the output data.

       --aassnn11ppaarrssee
           asn1parse the output data, this is useful when combined with the
           --vveerriiffyy option.

N
       rrssaauuttll because it uses the RSA algorithm directly can only be used to
       sign or verify small pieces of data.

E
       Sign some data using a private key:

        openssl rsautl -sign -in file -inkey key.pem -out sig

       Recover the signed data

        openssl rsautl -verify -in sig -inkey key.pem

       Examine the raw signed data:

        openssl rsautl -verify -in file -inkey key.pem -raw -hexdump

        0000 - 00 01 ff ff ff ff ff ff-ff ff ff ff ff ff ff ff   ................
        0010 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff   ................
        0020 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff   ................
        0030 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff   ................
        0040 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff   ................
        0050 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff   ................
        0060 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff   ................
        0070 - ff ff ff ff 00 68 65 6c-6c 6f 20 77 6f 72 6c 64   .....hello world

       The PKCS#1 block formatting is evident from this. If this was done
       using encrypt and decrypt the block would have been of type 2 (the sec-
       ond byte) and random padding data visible instead of the 0xff bytes.

       It is possible to analyse the signature of certificates using this
       utility in conjunction with aassnn11ppaarrssee. Consider the self signed example
       in certs/pca-cert.pem . Running aassnn11ppaarrssee as follows yields:

        openssl asn1parse -in pca-cert.pem

           0:d=0  hl=4 l= 742 cons: SEQUENCE
           4:d=1  hl=4 l= 591 cons:  SEQUENCE
           8:d=2  hl=2 l=   3 cons:   cont [ 0 ]
          10:d=3  hl=2 l=   1 prim:    INTEGER           :02
          13:d=2  hl=2 l=   1 prim:   INTEGER           :00
          16:d=2  hl=2 l=  13 cons:   SEQUENCE
          18:d=3  hl=2 l=   9 prim:    OBJECT            :md5WithRSAEncryption
          29:d=3  hl=2 l=   0 prim:    NULL
          31:d=2  hl=2 l=  92 cons:   SEQUENCE
          33:d=3  hl=2 l=  11 cons:    SET
          35:d=4  hl=2 l=   9 cons:     SEQUENCE
          37:d=5  hl=2 l=   3 prim:      OBJECT            :countryName
          42:d=5  hl=2 l=   2 prim:      PRINTABLESTRING   :AU
         ....
         599:d=1  hl=2 l=  13 cons:  SEQUENCE
         601:d=2  hl=2 l=   9 prim:   OBJECT            :md5WithRSAEncryption
         612:d=2  hl=2 l=   0 prim:   NULL
         614:d=1  hl=3 l= 129 prim:  BIT STRING

       The final BIT STRING contains the actual signature. It can be extracted
       with:

        openssl asn1parse -in pca-cert.pem -out sig -noout -strparse 614

       The certificate public key can be extracted with:

        openssl x509 -in test/testx509.pem -pubout -noout >pubkey.pem

       The signature can be analysed with:

        openssl rsautl -in sig -verify -asn1parse -inkey pubkey.pem -pubin

           0:d=0  hl=2 l=  32 cons: SEQUENCE
           2:d=1  hl=2 l=  12 cons:  SEQUENCE
           4:d=2  hl=2 l=   8 prim:   OBJECT            :md5
          14:d=2  hl=2 l=   0 prim:   NULL
          16:d=1  hl=2 l=  16 prim:  OCTET STRING
             0000 - f3 46 9e aa 1a 4a 73 c9-37 ea 93 00 48 25 08 b5   .F...Js.7...H%..

       This is the parsed version of an ASN1 DigestInfo structure. It can be
       seen that the digest used was md5. The actual part of the certificate
       that was signed can be extracted with:

        openssl asn1parse -in pca-cert.pem -out tbs -noout -strparse 4

       and its digest computed with:

        openssl md5 -c tbs
        MD5(tbs)= f3:46:9e:aa:1a:4a:73:c9:37:ea:93:00:48:25:08:b5

       which it can be seen agrees with the recovered value above.

S
       dgst(1), rsa(1), genrsa(1)

3rd Berkeley Distribution           0.9.7a                           RSAUTL(1)

N | S | D | C | N | E | S

Want to link to this manual page? Use this URL:
<
https://www.freebsd.org/cgi/man.cgi?query=rsautl&sektion=1&manpath=FreeBSD+4.11-RELEASE>

home | help