# FreeBSD Manual Pages

r.horizon(1) GRASS GIS User's Manual r.horizon(1)NAMEr.horizon- Computes horizon angle height from a digital elevation model. The module has two different modes of operation: 1. Computes the entire horizon around a single point whose coordinates are given with the 'co- ord' option. The horizon height (in radians). 2. Computes one or more raster maps of the horizon height in a single direction. The input for this is the angle (in degrees), which is measured counterclockwise with east=0, north=90 etc. The output is the horizon height in radians.KEYWORDSraster, solar, sun positionSYNOPSISr.horizonr.horizon--helpr.horizon[-dc]elevation=name[direction=float] [step=float] [start=float] [end=float] [bufferzone=float] [e_buff=float] [w_buff=float] [n_buff=float] [s_buff=float] [maxdistance=float] [output=basename] [coordinates=east,north] [distance=float] [file=name] [--overwrite] [--help] [--verbose] [--quiet] [--ui]Flags:-dWrite output in degrees (default is radians)-cWrite output in compass orientation (default is CCW, East=0)--overwriteAllow output files to overwrite existing files--helpPrint usage summary--verboseVerbose module output--quietQuiet module output--uiForce launching GUI dialogParameters:elevation=nameA[required]Name of input elevation raster mapdirection=floatDirection in which you want to know the horizon heightstep=floatAngle step size for multidirectional horizon [degrees]start=floatStart angle for multidirectional horizon [degrees] Default:0.0end=floatEnd angle for multidirectional horizon [degrees] Default:360.0bufferzone=floatFor horizon rasters, read from the DEM an extra buffer around the present regione_buff=floatFor horizon rasters, read from the DEM an extra buffer eastward the present regionw_buff=floatFor horizon rasters, read from the DEM an extra buffer westward the present regionn_buff=floatFor horizon rasters, read from the DEM an extra buffer northward the present regions_buff=floatFor horizon rasters, read from the DEM an extra buffer southward the present regionmaxdistance=floatThe maximum distance to consider when finding the horizon heightoutput=basenameName for output basename raster map(s)coordinates=east,northCoordinate for which you want to calculate the horizondistance=floatSampling distance step coefficient (0.5-1.5) Default:1.0file=nameName of file for output (use output=- for stdout) Default:-DESCRIPTIONr.horizoncomputes the angular height of terrain horizon in radians. It reads a raster of elevation data and outputs the horizon outline in one of two modes:osingle point: as a series of horizon heights in the specified directions from the given point. The results are written to the stdout.oraster: in this case the output is one or more raster maps, with each point in a raster giving the horizon height in a spe- cific direction. One raster is created for each direction. The directions are given as azimuthal angles (in degrees), with the an- gle starting with 0 towards East and moving counterclockwise (North is 90, etc.). The calculation takes into account the actual projection, so the angles are corrected for direction distortions imposed by it. The directions are thus aligned to those of the geographic projection and not the coordinate system given by the rows and columns of the raster map. This correction implies that the resulting cardinal directions represent true orientation towards the East, North, West and South. The only exception of this feature is LOCATION with x,y coordinate system, where this correction is not applied. Using the-cflag, the azimuthal angles will be printed in compass ori- entation (North=0, clockwise).Inputparameters:Theelevationparameter is an input elevation raster map. If the buffer options are used (see below), this raster should extend over the area that accommodate the presently defined region plus defined buffer zones. Thestepparameter gives the angle step (in degrees) between successive azimuthal directions for the calculation of the horizon. Thus, a value of 5 for thestepwill give a total of 360/5=72 directions (72 raster maps if used in the raster map mode). Thestartparameter gives the angle start (in degrees) for the calcula- tion of the horizon. The default value is 0 (East with North being 90 etc.). Theendparameter gives the angle end (in degrees) for the calculation of the horizon. The end point is omitted! So for example if we run r.horizon with step=10, start=30 and end=70 the raster maps generated by r.horizon will be only for angles: 30, 40, 50, 60. The default value is 360. Thedirectionparameter gives the initial direction of the first out- put. This parameter acts as an direction angle offset. For example, if you want to get horizon angles for directions 45 and 225 degrees, thedirectionshould be set to 45 andstepto 180. If you only want one single direction, use this parameter to specify desired direction of horizon angle, and set thestepsize to 0 degrees. Otherwise all angles for a given startingdirectionwith step ofstepare calculated. Thedistancecontrols the sampling distance step size for the search for horizon along the line of sight. The default value is 1.0 meaning that the step size will be taken from the raster resolution. Setting the value below 1.0 might slightly improve results for directions apart from the cardinal ones, but increasing the processing load of the search algorithm. Themaxdistancevalue gives a maximum distance to move away from the origin along the line of sight in order to search for the horizon height. The defaultmaxdistanceis the full map extent. The smaller this value the faster the calculation but the higher the risk that you may miss a terrain feature that can contribute significantly to the horizon outline. Note that a viewshed can be calculated withr.view-shed. Thecoordinateparameter takes a pair of easting-northing values in the current coordinate system and calculates the values of angular height of the horizon around this point. To achieve the consistency of the re- sults, the point coordinate is aligned to the midpoint of the closest elevation raster cell. If an analyzed point (or raster cell) lies close to the edge of the de- fined region, the horizon calculation may not be realistic, since it may not see some significant terrain features which could have contrib- uted to the horizon, because these features are outside the region. There are to options how to set the size of the buffer that is used to increase the area of the horizon analysis. Thebufferzoneparameter al- lows you to specify the same size of buffer for all cardinal directions and the parameterse_buff,n_buff,s_buff, andw_buffallow you to specify a buffer size individually for each of the four directions. The buffer parameters influence only size of the read elevation map, while the analysis in the raster mode will be done only for the area speci- fied by the current region definition. Theoutputparameter defines the basename of the output horizon raster maps. The raster name of each horizon direction raster will be con- structed asbasename_ANGLE, where ANGLE is the angle in degrees with the direction. If you user.horizonin the single point mode this op- tion will be ignored. Thefileparameter allows saving the resulting horizon angles in a comma separated ASCII file (single point mode only). If you user.hori-zonin the raster map mode this option will be ignored. At the moment the elevation and maximum distance must be measured in meters, even if you use geographical coordinates (longitude/latitude). If your projection is based on distance (easting and northing), these too must be in meters. The buffer parameters must be in the same units as the raster coordinates (e.g., for latitude-longitude locations buf- fers are measured in degree unit).METHODThe calculation method is based on the method used inr.sunto calcu- late shadows. It starts at a very shallow angle and walks along the line of sight and asks at each step whether the line of sight "hits" the terrain. If so, the angle is increased to allow the line of sight to pass just above the terrain at that point. This is continued until the line of sight reaches a height that is higher than any point in the region or until it reaches the border of the region (see also thebufferzone,e_buff,n_buff,s_buff, andw_buff). The the number of lines of sight (azimuth directions) is determined from thedirectionandstepparameters. The method takes into account the curvature of the Earth whereby remote features will seem to be lower than they actually are. It also accounts for the changes of angles towards cardinal directions caused by the projection (see above).EXAMPLESThe examples are intended for the North Carolina sample dataset.SinglepointmodeExample1: determine horizon angle in 225 degree direction (output of horizon angles CCW from East): g.region raster=elevation -p r.horizon elevation=elevation direction=215 step=0 bufferzone=200 \ coordinates=638871.6,223384.4 maxdistance=5000Example2: determine horizon values starting at 90 deg (North), step size of 5 deg, saving result as CSV file: r.horizon elevation=elevation direction=90 step=5 bufferzone=200 \ coordinates=638871.6,223384.4 maxdistance=5000 file=horizon.csvExample3: test point near highway intersection, saving result as CSV file for plotting the horizon around the highway intersection: g.region n=223540 s=220820 w=634650 e=638780 res=10 -p r.horizon elevation=elevation direction=0 step=5 bufferzone=200 \ coordinates=636483.54,222176.25 maxdistance=5000 -d file=horizon.csv Test point near high way intersection (North Carolina sample dataset) Horizon angles for test point (CCW from East) We can plot horizon in polar coordinates using Matplotlib in Python: import numpy as np import matplotlib.pyplot as plt horizon = np.genfromtxt('horizon.csv', delimiter=',') horizon = horizon[1:, :] ax = plt.subplot(111, polar=True) bars = ax.plot(horizon[:, 0] / 180 * np.pi, (90 - horizon[:, 1]) / 180 * np.pi) # uncomment the 2 following lines when using -c flag # ax.set_theta_direction(-1) # ax.set_theta_zero_location('N') plt.show() Horizon plot in polar coordinates.RastermapmodeRaster map mode (output maps "horangle*" become input forr.sun): g.region raster=elevation -p # we put a bufferzone of 10% of maxdistance around the study area # compute only direction between 90 and 270 degrees r.horizon elevation=elevation step=30 start=90 end=300 \ bufferzone=200 output=horangle maxdistance=5000REFERENCESHofierka J., 1997. Direct solar radiation modelling within an open GIS environment. Proceedings of JEC-GI'97 conference in Vienna, Austria, IOS Press Amsterdam, 575-584 Hofierka J., Huld T., Cebecauer T., Suri M., 2007. Open Source Solar Radiation Tools for Environmental and Renewable Energy Applications, International Symposium on Environmental Software Systems, Prague, 2007 Neteler M., Mitasova H., 2004. Open Source GIS: A GRASS GIS Approach, Springer, New York. ISBN: 1-4020-8064-6, 2nd Edition 2004 (reprinted 2005), 424 pages Project PVGIS, European Commission, DG Joint Research Centre 2001-2007 Suri M., Hofierka J., 2004. A New GIS-based Solar Radiation Model and Its Application for Photovoltaic Assessments. Transactions in GIS, 8(2), 175-190SEE ALSOr.sun,r.sunmask,r.viewshedAUTHORSThomas Huld, Joint Research Centre of the European Commission, Ispra, Italy Tomas Cebecauer, Joint Research Centre of the European Commission, Is- pra, Italy Jaroslav Hofierka, GeoModel s.r.o., Bratislava, Slovakia Marcel Suri, Joint Research Centre of the European Commission, Ispra, ItalyA(C) 2007, Thomas Huld, Tomas Cebecauer, Jaroslav Hofierka, Marcel Suri Thomas.Huld@jrc.it Tomas.Cebecauer@jrc.it hofierka@geomodel.sk Mar- cel.Suri@jrc.itSOURCE CODEAvailable at: r.horizon source code (history) Main index | Raster index | Topics index | Keywords index | Graphical index | Full indexA(C) 2003-2020 GRASS Development Team, GRASS GIS 7.8.3 Reference Manual GRASS 7.8.3 r.horizon(1)

NAME | KEYWORDS | SYNOPSIS | DESCRIPTION | METHOD | EXAMPLES | REFERENCES | SEE ALSO | AUTHORS | SOURCE CODE

Want to link to this manual page? Use this URL:

<https://www.freebsd.org/cgi/man.cgi?query=r.horizon&sektion=1&manpath=FreeBSD+12.2-RELEASE+and+Ports>