Skip site navigation (1)Skip section navigation (2)

FreeBSD Man Pages

Man Page or Keyword Search:
Man Architecture
Apropos Keyword Search (all sections) Output format
home | help
MUTEX(9)               FreeBSD Kernel Developer's Manual              MUTEX(9)

     mutex, mtx_init, mtx_lock, mtx_lock_spin, mtx_lock_flags,
     mtx_lock_spin_flags, mtx_trylock, mtx_trylock_flags, mtx_unlock,
     mtx_unlock_spin, mtx_unlock_flags, mtx_unlock_spin_flags, mtx_destroy,
     mtx_initialized, mtx_owned, mtx_recursed, mtx_assert, MTX_SYSINIT -
     kernel synchronization primitives

     #include <sys/param.h>
     #include <sys/lock.h>
     #include <sys/mutex.h>

     mtx_init(struct mtx *mutex, const char *name, const char *type,
         int opts);

     mtx_lock(struct mtx *mutex);

     mtx_lock_spin(struct mtx *mutex);

     mtx_lock_flags(struct mtx *mutex, int flags);

     mtx_lock_spin_flags(struct mtx *mutex, int flags);

     mtx_trylock(struct mtx *mutex);

     mtx_trylock_flags(struct mtx *mutex, int flags);

     mtx_unlock(struct mtx *mutex);

     mtx_unlock_spin(struct mtx *mutex);

     mtx_unlock_flags(struct mtx *mutex, int flags);

     mtx_unlock_spin_flags(struct mtx *mutex, int flags);

     mtx_destroy(struct mtx *mutex);

     mtx_initialized(struct mtx *mutex);

     mtx_owned(struct mtx *mutex);

     mtx_recursed(struct mtx *mutex);

     mtx_assert(struct mtx *mutex, int what);

     MTX_SYSINIT(name, struct mutex *mtx, const char *description, int opts);

     Mutexes are the most basic and primary method of process synchronization.
     The major design considerations for mutexes are:

     1.   Acquiring and releasing uncontested mutexes should be as cheap as

     2.   They must have the information and storage space to support priority

     3.   A process must be able to recursively acquire a mutex, provided that
          the mutex is initialized to support recursion.

     There are currently two flavors of mutexes, those that context switch
     when they block and those that do not.

     By default, MTX_DEF mutexes will context switch when they are already
     held.  As a machine dependent optimization they may spin for some amount
     of time before context switching.  It is important to remember that since
     a process may be preempted at any time, the possible context switch
     introduced by acquiring a mutex is guaranteed to not break anything that
     isn't already broken.

     Mutexes which do not context switch are MTX_SPIN mutexes.  These should
     only be used to protect data shared with any devices that require non-
     preemptive interrupts, and low level scheduling code.  In most/all
     architectures both acquiring and releasing of a uncontested spin mutex is
     more expensive than the same operation on a non spin mutex.  In order to
     protect an interrupt service routine from blocking against itself all
     interrupts are blocked on a processor while holding a spin lock.  It is
     permissible to hold multiple spin mutexes.  In this case it is a required
     that they be released in the opposite order to that which they were

     Once a spin mutex has been acquired it is not permissible to acquire a
     blocking mutex.

     The storage needed to implement a mutex is provided by a struct mtx.  In
     general this should be treated as an opaque object and referenced only
     with the mutex primitives.

     The mtx_init() function must be used to initialize a mutex before it can
     be passed to mtx_lock().  The name option is used to identify the lock in
     debugging output etc.  The type option is used by the witness code to
     classify a mutex when doing checks of lock ordering.  If type is NULL,
     name is used in its place.  The pointer passed in as name and type is
     saved rather than the data it points to.  The data pointed to must remain
     stable until the mutex is destroyed.  The opts argument is used to set
     the type of mutex.  It may contain either MTX_DEF or MTX_SPIN but not
     both.  See below for additional initialization options.  It is not
     permissible to pass the same mutex to mtx_init() multiple times without
     intervening calls to mtx_destroy().

     The mtx_lock() function acquires a MTX_DEF mutual exclusion lock on
     behalf of the currently running kernel thread.  If another kernel thread
     is holding the mutex, the caller will be disconnected from the CPU until
     the mutex is available (i.e. it will sleep).

     The mtx_lock_spin() function acquires a MTX_SPIN mutual exclusion lock on
     behalf of the currently running kernel thread.  If another kernel thread
     is holding the mutex, the caller will spin until the mutex becomes
     available.  Interrupts are disabled during the spin and remain disabled
     following the acquiring of the lock.

     It is possible for the same thread to recursively acquire a mutex with no
     ill effects, provided that the MTX_RECURSE bit was passed to mtx_init()
     during the initialization of the mutex.

     The mtx_lock_flags() and mtx_lock_spin_flags() functions acquire a
     MTX_DEF or MTX_SPIN lock, respectively, and also accept a flags argument.
     In both cases, the only flag presently available for lock acquires is
     MTX_QUIET.  If the MTX_QUIET bit is turned on in the flags argument, then
     if KTR_LOCK tracing is being done, it will be silenced during the lock

     The mtx_trylock() function is used to acquire exclusive access to those
     objects protected by the mutex pointed to by mutex.  If the mutex cannot
     be immediately acquired mtx_trylock() will return 0, otherwise the mutex
     will be acquired and a non-zero value will be returned.

     The mtx_trylock_flags() function has the same behavior as mtx_trylock()
     but should be used when the caller desires to pass in a flags value.
     Presently, the only valid value in the mtx_trylock() case is MTX_QUIET,
     and its effects are identical to those described for mtx_lock() and
     mtx_lock_spin() above.

     The mtx_unlock() function releases a MTX_DEF mutual exclusion lock; if a
     higher priority thread is waiting for the mutex, the releasing thread
     will be disconnected to allow the higher priority thread to acquire the
     mutex and run unless the current thread is executing in a critical

     The mtx_unlock_spin() function releases a MTX_SPIN mutual exclusion lock;
     interrupt state prior to the acquiring of the lock is restored.

     The mtx_unlock_flags() and mtx_unlock_spin_flags() functions behave in
     exactly the same way as do the standard mutex unlock routines above,
     while also allowing a flags argument which may specify MTX_QUIET.  The
     behavior of MTX_QUIET is identical to its behavior in the mutex lock

     The mtx_destroy() function is used to destroy mutex so the data
     associated with it may be freed or otherwise overwritten.  Any mutex
     which is destroyed must previously have been initialized with mtx_init().
     It is permissible to have a single hold count on a mutex when it is
     destroyed.  It is not permissible to hold the mutex recursively, or have
     another process blocked on the mutex when it is destroyed.

     The mtx_initialized() function returns non-zero if mutex has been
     initialized and zero otherwise.

     The mtx_owned() function returns non-zero if the current process holds
     mutex.  If the current process does not hold mutex zero is returned.

     The mtx_recursed() function returns non-zero if the mutex is recursed.
     This check should only be made if the running thread already owns mutex.

     The mtx_assert() function allows assertions to be made about mutex.  If
     the assertions are not true and the kernel is compiled with INVARIANTS
     then the kernel will panic.  Currently the following assertions are

     MA_OWNED        Assert that the current thread holds the mutex pointed to
                     by the first argument.

     MA_NOTOWNED     Assert that the current thread does not hold the mutex
                     pointed to by the first argument.

     MA_RECURSED     Assert that the current thread has recursed on the mutex
                     pointed to by the first argument.  This assertion is only
                     valid in conjunction with MA_OWNED.

     MA_NOTRECURSED  Assert that the current thread has not recursed on the
                     mutex pointed to by the first argument.  This assertion
                     is only valid in conjunction with MA_OWNED.

     The MTX_SYSINIT() macro is used to generate a call to the mtx_sysinit()
     routine at system startup in order to initialize a given mutex lock.  The
     parameters are the same as mtx_init() but with an additional argument,
     name, that is used in generating unique variable names for the related
     structures associated with the lock and the sysinit routine.

   The Default Mutex Type
     Most kernel code should use the default lock type, MTX_DEF; the default
     lock type will allow the thread to be disconnected from the CPU if it
     cannot get the lock.  The machine dependent implementation may treat the
     lock as a short term spin lock under some circumstances.  However, it is
     always safe to use these forms of locks in an interrupt thread without
     fear of deadlock against an interrupted thread on the same CPU.

   The Spin Mutex Type
     A MTX_SPIN mutex will not relinquish the CPU when it cannot immediately
     get the requested lock, but will loop, waiting for the mutex to be
     released by another CPU.  This could result in deadlock if a thread
     interrupted the thread which held a mutex and then tried to acquire the
     mutex; for this reason spin locks will disable all interrupts (on the
     local CPU only).

     Spin locks are fairly specialized locks that are intended to be held for
     very short periods of time; their primary purpose is to protect portions
     of the code that implement default (i.e. sleep) locks.

   Initialization Options
     The options passed in the opts argument of mtx_init() specify the mutex
     type.  The possibilities are:

     MTX_DEF        Default lock type; will always allow the current thread to
                    be suspended to avoid deadlock conditions against
                    interrupt threads.  The machine dependent implementation
                    of this lock type may spin for a while before suspending
                    the current thread.  If this flag is specified, clearly
                    MTX_SPIN must NOT be specified.

     MTX_SPIN       Spin lock type; will never relinquish the CPU.  All
                    interrupts are disabled on the local CPU while any spin
                    lock is held.

     MTX_RECURSE    Recursion option bit; specifies that the initialized mutex
                    is allowed to recurse.  This bit must be present if the
                    mutex is going to be permitted to recurse.

     MTX_QUIET      Do not log any mutex operations for this lock.

     MTX_NOWITNESS  Instruct witness(4) to ignore this lock.

     MTX_DUPOK      Witness should not log messages about duplicate locks
                    being acquired.

   Lock and Unlock Flags
     The flags passed to the mtx_lock_flags(), mtx_lock_spin_flags(),
     mtx_unlock_flags(), and mtx_unlock_spin_flags() functions provide some
     basic options to the caller, and are often used only under special
     circumstances to modify lock or unlock behavior.  Standard locking and
     unlocking should be performed with the mtx_lock(), mtx_lock_spin(),
     mtx_unlock(), and mtx_unlock_spin() functions.  Only if a flag is
     required should the corresponding flags-accepting routines be used.

     Options that modify mutex behavior:

     MTX_QUIET  This option is used to quiet logging messages during
                individual mutex operations.  This can be used to trim
                superfluous logging messages for debugging purposes.

     If Giant must be acquired, it must be acquired prior to acquiring other
     mutexes.  Put another way: it is impossible to acquire Giant non-
     recursively while holding another mutex.  It is possible to acquire other
     mutexes while holding Giant, and it is possible to acquire Giant
     recursively while holding other mutexes.

     Sleeping while holding a mutex (except for Giant) is almost never safe
     and should be avoided.  There are numerous assertions which will fail if
     this is attempted.

   Functions Which Access Memory in Userspace
     No mutexes should be held (except for Giant) across functions which
     access memory in userspace, such as copyin(9), copyout(9), uiomove(9),
     fuword(9), etc.  No locks are needed when calling these functions.

     condvar(9), msleep(9), mtx_pool(9), sema(9), sx(9)

     These functions appeared in BSD/OS 4.1 and FreeBSD 5.0.

FreeBSD 11.0-PRERELEASE        February 12, 2001       FreeBSD 11.0-PRERELEASE


Want to link to this manual page? Use this URL:

home | help