Skip site navigation (1)Skip section navigation (2)

FreeBSD Manual Pages


home | help
MPSOLVE(1)			 User Commands			    MPSOLVE(1)

       MPSolve - A multiprecision polynomial rootfinder

       mpsolve [-a alg]	[-b] [-c] [-G goal] [-o	digits]	[-i digits] [-j	n] [-t
       type] [-S set] [-D detect] [-O format] [-l  filename]  [-x]  [-d]  [-v]
       [-r] [infile | -p poly]

       -a alg Select  the algorithm used to solve the polynomial/secular equa-

	      u: Classic unisolve algorithm  (Aberth  iterations  and  dynamic
	      s:  Secular  algorithm,  using regeneration of increasingly bet-

	      secular equations	with the same roots of the polynomial

       -b     Perform Aberth iterations	in Jacobi-style	instead	of  Gauss-Sei-

       -c     Enable crude approximation mode

       -G goal
	      Select the goal to reach.	Possible values	are:

	      a: Approximate the roots
	      i: Isolate the roots
	      c: Count the roots in the	search set

       -o digits
	      Number of	guaranteed digits of the roots

       -i digits
	      Digits of	precision of the input coefficients

       -j n   Number of	threads	to spawn as workers

       -t type
	      Type can be 'f' for floating point or 'd'	for DPE

       -S set Restrict the search set for the roots set	can be one of:

	      u: upper half-plane { x |	Im(x) >	0 }
	      d: lower half-plane { x |	Im(x) <	0 }
	      l: left half-plane { x | Re(x) < 0 }
	      r: right half-plane { x |	Re(x) >	0 }
	      i: inside	the unit circle: { x | |x| < 1 }
	      o: outside the unit circle { x | |x| > 1 }
	      R: real axis { x | Im(x) = 0 }
	      I: imaginary axis	{ x | Re(x) = 0	}

       -D detect
	      Detect properties	of the roots:

	      r: real roots
	      i: imaginary roots
	      b: both

       -O format
	      Select format for	output:

	      f: full output
	      b: bare output
	      c: compact output
	      v: verbose output
	      g: gnuplot-ready output
	      gf: gnuplot-full mode, can be piped to gnuplot and display error
	      gp: The same as gf but only with points (suitable	for  high  de-
	      gree polynomials)

	      For example:

	      mpsolve -as -Ogf myfile.pol | gnuplot

       -l filename Set filename	as the output for the log, instead of the tty.
	      Use this option with

	      -d[domains] to activate the desired debug	domains.

       -x     Enable graphic visualization of convergence

       -d[domains] Activate debug on selected domains, that can	be one of:

	      t: trace
	      a: approximation
	      c: cluster
	      i: improvement
	      w: timings
	      o: input/Output
	      m: memory	management
	      f: function calls
	      p: debug stop condition and development of iteration packets
	      r: regeneration Example: -dfi for	function calls and improvement

       -p poly
	      Solve the	polynomial specified on	the command line.

	      For example: mpsolve -p "x^4-6x^9+6/7x + 5"

       -r     Use a recursive strategy to dispose the initial approximations.
	      This option is available only for	monomial polynomials.
	      Note: this option	is considered experimental.

       -v     Print the	version	and exit

       The full	documentation for MPSolve is maintained	as a  Texinfo  manual.
       If  the	info and MPSolve programs are properly installed at your site,
       the command

	      info MPSolve

       should give you access to the complete manual.

MPSolve	3.2.1			  March	2013			    MPSOLVE(1)


Want to link to this manual page? Use this URL:

home | help