Skip site navigation (1)Skip section navigation (2)

FreeBSD Manual Pages

Man Page or Keyword Search:
Man Architecture
Apropos Keyword Search (all sections) Output format
home | help
LSOF(8)								       LSOF(8)

NAME
       lsof - list open	files

SYNOPSIS
       lsof [ -?abChlnNOPRtUvVX	] [ -A A ] [ -c	c ] [ +c c ] [ +|-d d ]	[ +|-D
       D ] [ +|-e s ] [	+|-E ] [ +|-f [cfgGn] ]	[ -F [f] ] [ -g	[s] ] [	-i [i]
       ]  [ -k k ] [ -K	k ] [ +|-L [l] ] [ +|-m	m ] [ +|-M ] [ -o [o] ]	[ -p s
       ] [ +|-r	[t[m_fmt_]] ] [	-s [p:s] ] [ -S	[t] ] [	-T [t] ] [ -u  s  ]  [
       +|-w ] [	-x [fl]	] [ -z [z] ] [ -Z [Z] ]	[ -- ] [names]

DESCRIPTION
       Lsof  revision 4.90 lists on its	standard output	file information about
       files opened by processes for the following UNIX	dialects:

	    Apple Darwin 9 and Mac OS X	10.[567]
	    FreeBSD 8.[234], 9.0 and 1[012].0 for AMD64-based systems
	    Linux 2.1.72 and above for x86-based systems
	    Solaris 9, 10 and 11

       (See the	DISTRIBUTION section of	this manual page  for  information  on
       how to obtain the latest	lsof revision.)

       An  open	file may be a regular file, a directory, a block special file,
       a character special file, an executing text  reference,	a  library,  a
       stream  or  a  network  file  (Internet socket, NFS file	or UNIX	domain
       socket.)	 A specific file or all	the files in  a	 file  system  may  be
       selected	by path.

       Instead	of  a  formatted display, lsof will produce output that	can be
       parsed by other programs.  See the -F, option description, and the OUT-
       PUT FOR OTHER PROGRAMS section for more information.

       In  addition to producing a single output list, lsof will run in	repeat
       mode.  In repeat	mode it	will produce output, delay,  then  repeat  the
       output  operation  until	stopped	with an	interrupt or quit signal.  See
       the +|-r	[t[m_fmt_]] option description for more	information.

OPTIONS
       In the absence of any options, lsof lists all open files	 belonging  to
       all active processes.

       If  any	list  request option is	specified, other list requests must be
       specifically requested -	e.g., if -U is specified for  the  listing  of
       UNIX  socket  files, NFS	files won't be listed unless -N	is also	speci-
       fied; or	if a user list is specified with the -u	 option,  UNIX	domain
       socket  files,  belonging  to  users  not  in the list, won't be	listed
       unless the -U option is also specified.

       Normally	list options that are specifically stated  are	ORed  -	 i.e.,
       specifying  the	-i option without an address and the -ufoo option pro-
       duces a listing of all network files OR files  belonging	 to  processes
       owned by	user ``foo''.  The exceptions are:

       1) the `^' (negated) login name or user ID (UID), specified with	the -u
	  option;

       2) the `^' (negated) process ID (PID), specified	with the -p option;

       3) the `^' (negated) process group ID (PGID),  specified	 with  the  -g
	  option;

       4) the `^' (negated) command, specified with the	-c option;

       5) the  (`^')  negated  TCP or UDP protocol state names,	specified with
	  the -s [p:s] option.

       Since they represent exclusions,	they are applied without ORing or AND-
       ing and take effect before any other selection criteria are applied.

       The -a option may be used to AND	the selections.	 For example, specify-
       ing -a, -U, and -ufoo produces a	listing	of only	UNIX socket files that
       belong to processes owned by user ``foo''.

       Caution:	 the  -a option	causes all list	selection options to be	ANDed;
       it can't	be used	to cause ANDing	of selected pairs of selection options
       by  placing it between them, even though	its placement there is accept-
       able.  Wherever -a is placed, it	causes the  ANDing  of	all  selection
       options.

       Items of	the same selection set - command names,	file descriptors, net-
       work addresses, process	identifiers,  user  identifiers,  zone	names,
       security	 contexts - are	joined in a single ORed	set and	applied	before
       the result participates	in  ANDing.   Thus,  for  example,  specifying
       -i@aaa.bbb,  -i@ccc.ddd,	 -a,  and -ufff,ggg will select	the listing of
       files that belong to either login ``fff'' OR ``ggg'' AND	 have  network
       connections to either host aaa.bbb OR ccc.ddd.

       Options	may be grouped together	following a single prefix -- e.g., the
       option set ``-a -b -C'' may be stated as	-abC.  However,	 since	values
       are optional following +|-f, -F,	-g, -i,	+|-L, -o, +|-r,	-s, -S,	-T, -x
       and -z.	when you have no values	for them be careful that the following
       character isn't ambiguous.  For example,	-Fn might represent the	-F and
       -n options, or it might represent the n field identifier	character fol-
       lowing  the  -F option.	When ambiguity is possible, start a new	option
       with a `-' character - e.g., ``-F -n''.	If the next option is  a  file
       name,  follow the possibly ambiguous option with	``--'' - e.g., ``-F --
       name''.

       Either the `+' or the `-' prefix	may be applied to a group of  options.
       Options that don't take on separate meanings for	each prefix - e.g., -i
       - may be	grouped	under either prefix.  Thus, for	example, ``+M -i'' may
       be  stated  as  ``+Mi''	and  the  group	means the same as the separate
       options.	 Be careful of prefix grouping when one	or more	options	in the
       group  does  take on separate meanings under different prefixes - e.g.,
       +|-M; ``-iM'' is	not the	same request as	``-i +M''.  When in doubt, use
       separate	options	with appropriate prefixes.

       -? -h	These  two  equivalent	options	 select	 a usage (help)	output
		list.  Lsof displays a shortened form of this output  when  it
		detects	 an  error in the options supplied to it, after	it has
		displayed messages explaining each  error.   (Escape  the  `?'
		character as your shell	requires.)

       -a	causes list selection options to be ANDed, as described	above.

       -A A	is available on	systems	configured for AFS  whose  AFS	kernel
		code  is  implemented via dynamic modules.  It allows the lsof
		user to	specify	A as an	alternate name	list  file  where  the
		kernel	addresses  of the dynamic modules might	be found.  See
		the lsof FAQ (The FAQ section gives its	location.)   for  more
		information about dynamic modules, their symbols, and how they
		affect lsof.

       -b	causes lsof to avoid  kernel  functions	 that  might  block  -
		lstat(2), readlink(2), and stat(2).

		See  the  BLOCKS  AND TIMEOUTS and AVOIDING KERNEL BLOCKS sec-
		tions for information on using this option.

       -c c	selects	the listing of files for processes executing the  com-
		mand  that begins with the characters of c.  Multiple commands
		may be specified, using	multiple -c options.  They are	joined
		in a single ORed set before participating in AND option	selec-
		tion.

		If c begins with a `^',	then the following characters  specify
		a command name whose processes are to be ignored (excluded.)

		If  c  begins  and  ends  with	a  slash ('/'),	the characters
		between	the slashes are	interpreted as a  regular  expression.
		Shell meta-characters in the regular expression	must be	quoted
		to prevent their interpretation	by  the	 shell.	  The  closing
		slash may be followed by these modifiers:

		     b	  the regular expression is a basic one.
		     i	  ignore the case of letters.
		     x	  the regular expression is an extended	one
			  (default).

		See  the  lsof	FAQ (The FAQ section gives its location.)  for
		more information on basic and extended regular expressions.

		The simple command specification is  tested  first.   If  that
		test fails, the	command	regular	expression is applied.	If the
		simple command test succeeds, the command  regular  expression
		test  isn't  made.   This may result in	``no command found for
		regex:'' messages when lsof's -V option	is specified.

       +c w	defines	the maximum number of initial characters of the	 name,
		supplied  by  the UNIX dialect,	of the UNIX command associated
		with a process to be printed in	the COMMAND column.  (The lsof
		default	is nine.)

		Note  that  many  UNIX dialects	do not supply all command name
		characters to lsof in the files	and structures from which lsof
		obtains	 command  name.	  Often	 dialects  limit the number of
		characters supplied in	those  sources.	  For  example,	 Linux
		2.4.27	and  Solaris  9	 both  limit command name length to 16
		characters.

		If w is	zero ('0'), all	command	characters supplied to lsof by
		the UNIX dialect will be printed.

		If w is	less than the length of	the column title, ``COMMAND'',
		it will	be raised to that length.

       -C	disables the reporting of any path name	 components  from  the
		kernel's  name	cache.	 See the KERNEL	NAME CACHE section for
		more information.

       +d s	causes lsof to search for all open instances  of  directory  s
		and  the  files	 and directories it contains at	its top	level.
		+d does	NOT descend the	directory tree,	rooted at s.  The +D D
		option	may  be	 used to request a full-descent	directory tree
		search,	rooted at directory D.

		Processing of the +d option does  not  follow  symbolic	 links
		within s unless	the -x or -x  l	option is also specified.  Nor
		does it	search for open	files on file system mount  points  on
		subdirectories	of  s  unless  the  -x or -x  f	option is also
		specified.

		Note: the authority of the user	of this	option	limits	it  to
		searching  for	files  that the	user has permission to examine
		with the system	stat(2)	function.

       -d s	specifies a list of file descriptors (FDs) to exclude from  or
		include	in the output listing.	The file descriptors are spec-
		ified in  the  comma-separated	set  s	-  e.g.,  ``cwd,1,3'',
		``^6,^2''.  (There should be no	spaces in the set.)

		The  list is an	exclusion list if all entries of the set begin
		with `^'.  It is an inclusion list if  no  entry  begins  with
		`^'.  Mixed lists are not permitted.

		A  file	 descriptor  number range may be in the	set as long as
		neither	member is empty, both members  are  numbers,  and  the
		ending	member is larger than the starting one - e.g., ``0-7''
		or ``3-10''.  Ranges may be specified for  exclusion  if  they
		have  the  `^'	prefix	-  e.g.,  ``^0-7''  excludes  all file
		descriptors 0 through 7.

		Multiple file descriptor numbers are joined in a  single  ORed
		set before participating in AND	option selection.

		When  there  are  exclusion  and inclusion members in the set,
		lsof reports them as errors and	exits with a  non-zero	return
		code.

		See  the  description of File Descriptor (FD) output values in
		the OUTPUT section for more  information  on  file  descriptor
		names.

       +D D	causes	lsof  to  search for all open instances	of directory D
		and all	the files and directories it contains to its  complete
		depth.

		Processing  of	the  +D	 option	does not follow	symbolic links
		within D unless	the -x or -x  l	option is also specified.  Nor
		does  it  search for open files	on file	system mount points on
		subdirectories of D unless the -x or  -x   f  option  is  also
		specified.

		Note:  the  authority  of the user of this option limits it to
		searching for files that the user has  permission  to  examine
		with the system	stat(2)	function.

		Further	 note: lsof may	process	this option slowly and require
		a large	amount of dynamic memory to do it.  This is because it
		must  descend  the entire directory tree, rooted at D, calling
		stat(2)	for each file and directory, building a	 list  of  all
		the  files  it finds, and searching that list for a match with
		every open file.  When directory D is large, these  steps  can
		take a long time, so use this option prudently.

       -D D	directs	 lsof's	use of the device cache	file.  The use of this
		option is sometimes restricted.	 See  the  DEVICE  CACHE  FILE
		section	 and  the sections that	follow it for more information
		on this	option.

		-D must	be followed by a function letter; the function	letter
		may  optionally	 be  followed by a path	name.  Lsof recognizes
		these function letters:

		     ? - report	device cache file paths
		     b - build the device cache	file
		     i - ignore	the device cache file
		     r - read the device cache file
		     u - read and update the device cache file

		The b, r, and u	functions, accompanied by  a  path  name,  are
		sometimes  restricted.	 When  these functions are restricted,
		they will not appear in	the description	of the -D option  that
		accompanies  -h	 or  -?	  option output.  See the DEVICE CACHE
		FILE section and the sections that follow it for more informa-
		tion on	these functions	and when they're restricted.

		The  ?	 function  reports  the	read-only and write paths that
		lsof can use for the device cache file,	the names of any envi-
		ronment	 variables whose values	lsof will examine when forming
		the device cache file path, and	the format  for	 the  personal
		device	cache  file  path.   (Escape the `?' character as your
		shell requires.)

		When available,	the b, r, and u	functions may be  followed  by
		the  device  cache  file's  path.   The	 standard  default  is
		.lsof_hostname in the home directory of	the real user ID  that
		executes  lsof,	but this could have been changed when lsof was
		configured and	compiled.   (The  output  of  the  -h  and  -?
		options	 show  the  current default prefix - e.g., ``.lsof''.)
		The suffix, hostname, is the first  component  of  the	host's
		name returned by gethostname(2).

		When  available,  the  b  function directs lsof	to build a new
		device cache file at the default or specified path.

		The i function directs lsof to ignore the default device cache
		file and obtain	its information	about devices via direct calls
		to the kernel.

		The r function directs lsof to read the	device	cache  at  the
		default	or specified path, but prevents	it from	creating a new
		device cache file when none exists  or	the  existing  one  is
		improperly structured.	The r function,	when specified without
		a path name, prevents lsof from	updating an incorrect or  out-
		dated  device  cache file, or creating a new one in its	place.
		The r function is always available when	it is specified	 with-
		out  a path name argument; it may be restricted	by the permis-
		sions of the lsof process.

		When available,	the u function directs lsof to read the	device
		cache  file at the default or specified	path, if possible, and
		to rebuild it, if necessary.  This is the default device cache
		file function when no -D option	has been specified.

       +|-e s	exempts	 the  file system whose	path name is s from being sub-
		jected to kernel function calls	 that  might  block.   The  +e
		option	exempts	 stat(2), lstat(2) and most readlink(2)	kernel
		function calls.	  The  -e  option  exempts  only  stat(2)  and
		lstat(2)  kernel function calls.  Multiple file	systems	may be
		specified with separate	+|-e specifications and	each may  have
		readlink(2) calls exempted or not.

		This option is currently implemented only for Linux.

		CAUTION:  this	option can easily be mis-applied to other than
		the file system	of interest, because it	uses path name	rather
		than  the more reliable	device and inode numbers.  (Device and
		inode  numbers	are  acquired  via  the	 potentially  blocking
		stat(2)	 kernel	 call  and are thus not	available, but see the
		+|-m m option as a possible alternative	way to	supply	device
		numbers.)   Use	 this option with great	care and fully specify
		the path name of the file system to be exempted.

		When open files	on exempted file systems are reported, it  may
		not  be	 possible to obtain all	their information.  Therefore,
		some  information  columns  will  be  blank,  the   characters
		``UNKN'' preface the values in the TYPE	column,	and the	appli-
		cable exemption	option is added	in parentheses to the  end  of
		the  NAME  column.   (Some  device number information might be
		made available via the +|-m m option.)

       +|-E	+E specifies that Linux	 pipe  and  Linux  UNIX	 socket	 files
		should be displayed with endpoint information and the files of
		the endpoints should also be  displayed.   Note:  UNIX	socket
		file  endpoint	information is available only when the compile
		flags line of -v output	contains HASUXSOCKEPT.

		Pipe endpoint information is displayed in the NAME  column  in
		the form ``PID,cmd,FDmode'', where PID is the endpoint process
		ID; cmd	is the endpoint	process	command; FD  is	 the  endpoint
		file's	descriptor;  and  mode	is  the	endpoint file's	access
		mode.

		UNIX socket file endpoint information is displayed in the NAME
		column in the form
		``type=TYPE ->INO=INODE	PID,cmd,FDmode'',  where  TYPE	is the
		socket type; INODE is  the  i-node  number  of	the  connected
		socket;	 and  PID, cmd,	FD, and	mode are the same as with pipe
		endpoint information.  Note: UNIX socket file endpoint	infor-
		mation	is  available  only  when the compile flags line of -v
		output contains	HASUXSOCKEPT.

		Multiple occurrences of	 this  information  can	 appear	 in  a
		file's NAME column.

		-E specfies that Linux pipe and	Linux UNIX socket files	should
		be displayed with endpoint information,	but not	the  files  of
		the endpoints.

       +|-f [cfgGn]
		f by itself clarifies how path name arguments are to be	inter-
		preted.	 When followed by c, f,	g, G, or n in any  combination
		it  specifies that the listing of kernel file structure	infor-
		mation is to be	enabled	(`+') or inhibited (`-').

		Normally a path	name argument is taken to  be  a  file	system
		name  if  it  matches  a mounted-on directory name reported by
		mount(8), or if	it represents a	block  device,	named  in  the
		mount  output  and  associated	with a mounted directory name.
		When +f	is specified, all path name arguments will be taken to
		be  file  system names,	and lsof will complain if any are not.
		This can be useful, for	example, when  the  file  system  name
		(mounted-on  device)  isn't  a block device.  This happens for
		some CD-ROM file systems.

		When -f	is specified by	itself,	all path name  arguments  will
		be  taken  to be simple	files.	Thus, for example, the ``-f --
		/'' arguments direct lsof to search for	open files with	a  `/'
		path name, not all open	files in the `/' (root)	file system.

		Be  careful to make sure +f and	-f are properly	terminated and
		aren't followed	by a character (e.g., of the file or file sys-
		tem  name)  that  might	be taken as a parameter.  For example,
		use ``--'' after +f and	-f as in these examples.

		     $ lsof +f -- /file/system/name
		     $ lsof -f -- /file/name

		The  listing  of  information  from  kernel  file  structures,
		requested  with	the +f [cfgGn] option form, is normally	inhib-
		ited, and is not available in whole or part for	some  dialects
		- e.g.,	/proc-based Linux kernels below	2.6.22.	 When the pre-
		fix to f is a plus sign	(`+'), these characters	 request  file
		structure information:

		     c	  file structure use count (not	Linux)
		     f	  file structure address (not Linux)
		     g	  file flag abbreviations (Linux 2.6.22	and up)
		     G	  file flags in	hexadecimal (Linux 2.6.22 and up)
		     n	  file structure node address (not Linux)

		When the prefix	is minus (`-') the same	characters disable the
		listing	of the indicated values.

		File  structure	 addresses,  use  counts,  flags,   and	  node
		addresses  may	be used	to detect more readily identical files
		inherited by child processes and identical  files  in  use  by
		different processes.  Lsof column output can be	sorted by out-
		put columns holding the	values and listed to identify  identi-
		cal  file use, or lsof field output can	be parsed by an	AWK or
		Perl post-filter script, or by a C program.

       -F f	specifies a character list, f, that selects the	fields	to  be
		output	for  processing	 by another program, and the character
		that terminates	each output field.  Each field to be output is
		specified  with	a single character in f.  The field terminator
		defaults to NL,	but may	be changed to NUL (000).  See the OUT-
		PUT  FOR OTHER PROGRAMS	section	for a description of the field
		identification characters and the field	output process.

		When the field selection character list	is empty, all standard
		fields	are  selected  (except	the raw	device field, security
		context	and zone field for compatibility reasons) and  the  NL
		field terminator is used.

		When  the  field selection character list contains only	a zero
		(`0'), all fields are selected (except the  raw	 device	 field
		for compatibility reasons) and the NUL terminator character is
		used.

		Other combinations of fields and their associated field	termi-
		nator  character  must	be  set	with explicit entries in f, as
		described in the OUTPUT	FOR OTHER PROGRAMS section.

		When a field selection character identifies an item lsof  does
		not  normally list - e.g., PPID, selected with -R - specifica-
		tion of	the field character - e.g., ``-FR'' - also selects the
		listing	of the item.

		When  the  field  selection character list contains the	single
		character `?', lsof will display a  help  list	of  the	 field
		identification	characters.  (Escape the `?' character as your
		shell requires.)

       -g [s]	excludes or selects the	listing	of  files  for	the  processes
		whose optional process group IDentification (PGID) numbers are
		in the comma-separated set s - e.g., ``123'' or	 ``123,^456''.
		(There should be no spaces in the set.)

		PGID  numbers  that begin with `^' (negation) represent	exclu-
		sions.

		Multiple PGID numbers are joined in a single ORed  set	before
		participating  in  AND option selection.  However, PGID	exclu-
		sions are applied without ORing	 or  ANDing  and  take	effect
		before other selection criteria	are applied.

		The -g option also enables the output display of PGID numbers.
		When specified without a PGID set that's all it	does.

       -i [i]	selects	the listing of files any  of  whose  Internet  address
		matches	 the  address specified	in i.  If no address is	speci-
		fied, this option selects the listing of all Internet and x.25
		(HP-UX)	network	files.

		If  -i4	 or  -i6  is specified with no following address, only
		files of the indicated IP version,  IPv4  or  IPv6,  are  dis-
		played.	  (An  IPv6  specification  may	 be  used  only	if the
		dialects  supports  IPv6,  as  indicated   by	``[46]''   and
		``IPv[46]''  in	lsof's -h or -?	 output.)  Sequentially	speci-
		fying -i4, followed by -i6 is the same as specifying  -i,  and
		vice-versa.   Specifying  -i4,	or -i6 after -i	is the same as
		specifying -i4 or -i6 by itself.

		Multiple addresses (up to a limit of  100)  may	 be  specified
		with  multiple	-i  options.   (A  port	number or service name
		range is counted as one	address.)  They	are joined in a	single
		ORed set before	participating in AND option selection.

		An  Internet address is	specified in the form (Items in	square
		brackets are optional.):

		[46][protocol][@hostname|hostaddr][:service|port]

		where:
		     46	specifies the IP version, IPv4 or IPv6
			  that applies to the following	address.
			  '6' may be be	specified only if the UNIX
			  dialect supports IPv6.  If neither '4' nor
			  '6' is specified, the	following address
			  applies to all IP versions.
		     protocol is a protocol name - TCP,	UDP
		     hostname is an Internet host name.	 Unless	a
			  specific IP version is specified, open
			  network files	associated with	host names
			  of all versions will be selected.
		     hostaddr is a numeric Internet IPv4 address in
			  dot form; or an IPv6 numeric address in
			  colon	form, enclosed in brackets, if the
			  UNIX dialect supports	IPv6.  When an IP
			  version is selected, only its	numeric
			  addresses may	be specified.
		     service is	an /etc/services name -	e.g., smtp -
			  or a list of them.
		     port is a port number, or a list of them.

		IPv6 options may be used only if  the  UNIX  dialect  supports
		IPv6.  To see if the dialect supports IPv6, run	lsof and spec-
		ify the	-h or -?  (help) option.  If the displayed description
		of  the	 -i  option contains ``[46]'' and ``IPv[46]'', IPv6 is
		supported.

		IPv4 host names	and addresses may not be specified if  network
		file  selection	is limited to IPv6 with	-i 6.  IPv6 host names
		and addresses may not be specified if network  file  selection
		is  limited  to	 IPv4  with  -i	 4.  When an open IPv4 network
		file's address is mapped in an IPv6 address, the  open	file's
		type  will be IPv6, not	IPv4, and its display will be selected
		by '6',	not '4'.

		At least one address component -  4,  6,  protocol,  hostname,
		hostaddr,  or  service - must be supplied.  The	`@' character,
		leading	the host specification,	is always required; as is  the
		`:',  leading the port specification.  Specify either hostname
		or hostaddr.  Specify either service name list or port	number
		list.	If  a service name list	is specified, the protocol may
		also need to be	specified if the TCP,  UDP  and	 UDPLITE  port
		numbers	 for  the  service name	are different.	Use any	case -
		lower or upper - for protocol.

		Service	names and port numbers may be combined in a list whose
		entries	 are  separated	 by  commas  and  whose	 numeric range
		entries	are separated by minus signs.  There may be no	embed-
		ded spaces, and	all service names must belong to the specified
		protocol.  Since service  names	 may  contain  embedded	 minus
		signs,	the starting entry of a	range can't be a service name;
		it can be a port number, however.

		Here are some sample addresses:

		     -i6 - IPv6	only
		     TCP:25 - TCP and port 25
		     @1.2.3.4 -	Internet IPv4 host address 1.2.3.4
		     @[3ffe:1ebc::1]:1234 - Internet IPv6 host address
			  3ffe:1ebc::1,	port 1234
		     UDP:who - UDP who service port
		     TCP@lsof.itap:513 - TCP, port 513 and host	name lsof.itap
		     tcp@foo:1-10,smtp,99 - TCP, ports 1 through 10,
			  service name smtp, port 99, host name	foo
		     tcp@bar:1-smtp - TCP, ports 1 through smtp, host bar
		     :time - either TCP, UDP or	UDPLITE	time service port

       -K k	selects	the  listing  of  tasks	 (threads)  of	processes,  on
		dialects where task (thread) reporting is supported.  (If help
		output - i.e., the output of the -h or	-?   options  -	 shows
		this  option, then task	(thread) reporting is supported	by the
		dialect.)

		If -K is followed by a value,  k,  it  must  be	 ``i''.	  That
		causes	lsof  to  ignore  tasks,  particularly in the default,
		list-everything	case when no other options are specified.

		When -K	and -a are both	specified on Linux, and	the tasks of a
		main  process  are selected by other options, the main process
		will also be listed as though it were a	task,  but  without  a
		task ID.  (See the description of the TID column in the	OUTPUT
		section.)

		Where the FreeBSD version supports threads, all	 threads  will
		be listed with their IDs.

		In  general threads and	tasks inherit the files	of the caller,
		but may	close some and open others, so lsof always reports all
		the open files of threads and tasks.

       -k k	specifies  a  kernel  name  list file, k, in place of /vmunix,
		/mach, etc.   -k  is  not  available  under  AIX  on  the  IBM
		RISC/System 6000.

       -l	inhibits the conversion	of user	ID numbers to login names.  It
		is also	useful when login name lookup is working improperly or
		slowly.

       +|-L [l]	enables	 (`+')	or  disables  (`-')  the  listing of file link
		counts,	where they are available - e.g., they aren't available
		for sockets, or	most FIFOs and pipes.

		When  +L  is  specified	 without  a following number, all link
		counts will be listed.	When -L	is specified (the default), no
		link counts will be listed.

		When  +L  is  followed	by  a number, only files having	a link
		count less than	that number will be listed.   (No  number  may
		follow	-L.)   A specification of the form ``+L1'' will	select
		open files that	have been unlinked.  A	specification  of  the
		form ``+aL1 _file_system_'' will select	unlinked open files on
		the specified file system.

		For other link count comparisons, use field output (-F)	and  a
		post-processing	script or program.

       +|-m m	specifies  an  alternate kernel	memory file or activates mount
		table supplement processing.

		The option form	-m m specifies a kernel	 memory	 file,	m,  in
		place of /dev/kmem or /dev/mem - e.g., a crash dump file.

		The  option  form  +m requests that a mount supplement file be
		written	to the standard	output file.  All  other  options  are
		silently ignored.

		There  will  be	 a  line in the	mount supplement file for each
		mounted	file system, containing	the mounted file system	direc-
		tory,  followed	by a single space, followed by the device num-
		ber in hexadecimal "0x"	format - e.g.,

		     / 0x801

		Lsof can use the mount supplement file to get  device  numbers
		for  file  systems  when  it  can't  get  them	via stat(2) or
		lstat(2).

		The option form	+m m identifies	m as a mount supplement	 file.

		Note:  the  +m and +m m	options	are not	available for all sup-
		ported dialects.  Check	the output of lsof's -h	or -?  options
		to see if the +m and +m	m options are available.

       +|-M	Enables	(+) or disables	(-) the	reporting of portmapper	regis-
		trations for local TCP,	UDP and	UDPLITE	ports, where port map-
		ping  is  supported.   (See  the last paragraph	of this	option
		description for	information about where	 portmapper  registra-
		tion reporting is supported.)

		The default reporting mode is set by the lsof builder with the
		HASPMAPENABLED #define in the dialect's	machine.h header file;
		lsof  is  distributed  with the	HASPMAPENABLED #define deacti-
		vated, so portmapper reporting is disabled by default and must
		be requested with +M.  Specifying lsof's -h or -?  option will
		report the default mode.   Disabling  portmapper  registration
		when  it  is  already  disabled	 or  enabling  it when already
		enabled	is acceptable.	When portmapper	registration reporting
		is enabled, lsof displays the portmapper registration (if any)
		for local TCP, UDP or UDPLITE ports in square brackets immedi-
		ately  following  the  port  numbers  or service names - e.g.,
		``:1234[name]''	or ``:name[100083]''.  The registration	infor-
		mation	may  be	a name or number, depending on what the	regis-
		tering program supplied	to the portmapper when	it  registered
		the port.

		When  portmapper  registration	reporting is enabled, lsof may
		run a little more slowly or even become	blocked	when access to
		the  portmapper	 becomes  congested  or	 stopped.  Reverse the
		reporting mode to determine if portmapper registration report-
		ing is slowing or blocking lsof.

		For purposes of	portmapper registration	reporting lsof consid-
		ers a TCP, UDP or UDPLITE port local if: it is	found  in  the
		local  part  of	 its  containing kernel	structure; or if it is
		located	in the foreign part of its containing kernel structure
		and  the local and foreign Internet addresses are the same; or
		if it is located in the	foreign	part of	its containing	kernel
		structure  and the foreign Internet address is INADDR_LOOPBACK
		(127.0.0.1).  This rule	may  make  lsof	 ignore	 some  foreign
		ports  on  machines  with multiple interfaces when the foreign
		Internet address is on a different interface  from  the	 local
		one.

		See  the  lsof	FAQ (The FAQ section gives its location.)  for
		further	 discussion  of	 portmapper   registration   reporting
		issues.

		Portmapper   registration   reporting  is  supported  only  on
		dialects that have RPC header files.   (Some  Linux  distribu-
		tions with GlibC 2.14 do not have them.)  When portmapper reg-
		istration reporting is supported, the -h or  -?	  help	output
		will show the +|-M option.

       -n	inhibits  the  conversion of network numbers to	host names for
		network	 files.	  Inhibiting  conversion  may  make  lsof  run
		faster.	  It is	also useful when host name lookup is not work-
		ing properly.

       -N	selects	the listing of NFS files.

       -o	directs	lsof to	display	file offset at all times.   It	causes
		the  SIZE/OFF  output  column  title  to be changed to OFFSET.
		Note: on some UNIX dialects lsof can't obtain accurate or con-
		sistent	 file offset information from its kernel data sources,
		sometimes just for particular kinds  of	 files	(e.g.,	socket
		files.)	 Consult the lsof FAQ (The FAQ section gives its loca-
		tion.)	for more information.

		The -o and -s options are mutually exclusive; they can't  both
		be  specified.	When neither is	specified, lsof	displays what-
		ever value - size or offset - is appropriate and available for
		the type of the	file.

       -o o	defines	 the  number of	decimal	digits (o) to be printed after
		the ``0t'' for a file offset before the	form  is  switched  to
		``0x...''.  An o value of zero (unlimited) directs lsof	to use
		the ``0t'' form	for all	offset output.

		This option does NOT direct lsof  to  display  offset  at  all
		times;	specify	-o (without a trailing number) to do that.  -o
		o only specifies the number of digits after ``0t''  in	either
		mixed  size and	offset or offset-only output.  Thus, for exam-
		ple, to	direct lsof to display offset at all times with	a dec-
		imal digit count of 10,	use:

		     -o	-o 10
		or
		     -oo10

		The  default number of digits allowed after ``0t'' is normally
		8, but may have	been changed by	the lsof builder.  Consult the
		description  of	 the -o	o option in the	output of the -h or -?
		option to determine the	default	that is	in effect.

       -O	directs	lsof to	bypass the strategy it	uses  to  avoid	 being
		blocked	by some	kernel operations - i.e., doing	them in	forked
		child processes.  See the BLOCKS  AND  TIMEOUTS	 and  AVOIDING
		KERNEL	BLOCKS	sections for more information on kernel	opera-
		tions that may block lsof.

		While use of this option will reduce lsof startup overhead, it
		may also cause lsof to hang when the kernel doesn't respond to
		a function.  Use this option cautiously.

       -p s	excludes or selects the	listing	of  files  for	the  processes
		whose optional process IDentification (PID) numbers are	in the
		comma-separated	set s -	e.g., ``123'' or ``123,^456''.	(There
		should be no spaces in the set.)

		PID  numbers  that  begin with `^' (negation) represent	exclu-
		sions.

		Multiple process ID numbers are	joined in a  single  ORed  set
		before	participating  in  AND option selection.  However, PID
		exclusions are applied without ORing or	ANDing and take	effect
		before other selection criteria	are applied.

       -P	inhibits the conversion	of port	numbers	to port	names for net-
		work files.  Inhibiting	the conversion may  make  lsof	run  a
		little faster.	It is also useful when port name lookup	is not
		working	properly.

       +|-r [t[m_fmt_]]
		puts lsof in repeat mode.  There  lsof	lists  open  files  as
		selected by other options, delays t seconds (default fifteen),
		then repeats the listing, delaying  and	 listing  repetitively
		until  stopped	by  a  condition  defined by the prefix	to the
		option.

		If the prefix is a `-',	repeat mode is endless.	 Lsof must  be
		terminated with	an interrupt or	quit signal.

		If  the	prefix is `+', repeat mode will	end the	first cycle no
		open files are listed -	and of course  when  lsof  is  stopped
		with  an  interrupt  or	 quit  signal.	 When repeat mode ends
		because	no files are listed, the process  exit	code  will  be
		zero  if  any  open  files were	ever listed; one, if none were
		ever listed.

		Lsof marks the end of each listing:  if	 field	output	is  in
		progress  (the	-F,  option  has  been specified), the default
		marker is `m'; otherwise the default marker  is	 ``========''.
		The marker is followed by a NL character.

		The  optional  "m<fmt>"	 argument  specifies  a	format for the
		marker line.  The <fmt>	characters following  `m'  are	inter-
		preted	as a format specification to the strftime(3) function,
		when both it and the localtime(3) function  are	 available  in
		the  dialect's	C library.  Consult the	strftime(3) documenta-
		tion for what may appear in its	 format	 specification.	  Note
		that  when field output	is requested with the -F option, <fmt>
		cannot contain the NL format, ``%n''.	Note  also  that  when
		<fmt>  contains	 spaces	 or  other  characters that affect the
		shell's	interpretation of  arguments,  <fmt>  must  be	quoted
		appropriately.

		Repeat mode reduces lsof startup overhead, so it is more effi-
		cient to use this mode than to call lsof repetitively  from  a
		shell script, for example.

		To use repeat mode most	efficiently, accompany +|-r with spec-
		ification of other lsof	selection options, so  the  amount  of
		kernel	memory	access	lsof  does  will be kept to a minimum.
		Options	that filter at the process level - e.g., -c,  -g,  -p,
		-u - are the most efficient selectors.

		Repeat	mode is	useful when coupled with field output (see the
		-F, option description)	and a supervising awk or Perl  script,
		or a C program.

       -R	directs	 lsof to list the Parent Process IDentification	number
		in the PPID column.

       -s [p:s]	s alone	directs	lsof to	display	file size at  all  times.   It
		causes the SIZE/OFF output column title	to be changed to SIZE.
		If the file does not have a size, nothing is displayed.

		The optional -s	 p:s  form  is	available  only	 for  selected
		dialects, and only when	the -h or -?  help output lists	it.

		When  the optional form	is available, the s may	be followed by
		a protocol name	(p), either TCP	or UDP,	a colon	 (`:')	and  a
		comma-separated	 protocol  state  name list, the option	causes
		open TCP and UDP files to be excluded if their	state  name(s)
		are  in	 the  list (s) preceded	by a `^'; or included if their
		name(s)	are not	preceded by a `^'.

		When an	inclusion list is defined,  only  network  files  with
		state  names  in  the list will	be present in the lsof output.
		Thus, specifying one state name	means that only	network	 files
		with that lone state name will be listed.

		Case  is unimportant in	the protocol or	state names, but there
		may be no spaces and the colon (`:') separating	 the  protocol
		name (p) and the state name list (s) is	required.

		If  only  TCP and UDP files are	to be listed, as controlled by
		the specified exclusions and inclusions, the -i	option must be
		specified,  too.   If only a single protocol's files are to be
		listed,	add its	name as	an argument to the -i option.

		For example, to	list only network files	with TCP state LISTEN,
		use:

		     -iTCP -sTCP:LISTEN

		Or,  for  example,  to	list network files with	all UDP	states
		except Idle, use:

		     -iUDP -sUDP:Idle

		State names vary with UNIX dialects, so	it's not  possible  to
		provide	 a  complete  list.   Some common TCP state names are:
		CLOSED,	IDLE, BOUND, LISTEN, ESTABLISHED, SYN_SENT,  SYN_RCDV,
		ESTABLISHED,   CLOSE_WAIT,   FIN_WAIT1,	  CLOSING,   LAST_ACK,
		FIN_WAIT_2, and	TIME_WAIT.  Two	common	UDP  state  names  are
		Unbound	and Idle.

		See  the  lsof	FAQ (The FAQ section gives its location.)  for
		more information on how	to use protocol	 state	exclusion  and
		inclusion, including examples.

		The -o (without	a following decimal digit count) and -s	option
		(without a following protocol and state	name list)  are	 mutu-
		ally exclusive;	they can't both	be specified.  When neither is
		specified, lsof	displays whatever value	- size or offset -  is
		appropriate and	available for the type of file.

		Since  some  types  of	files don't have true sizes - sockets,
		FIFOs, pipes, etc. - lsof displays for their sizes the content
		amounts	in their associated kernel buffers, if possible.

       -S [t]	specifies  an optional time-out	seconds	value for kernel func-
		tions -	lstat(2), readlink(2), and stat(2) - that might	other-
		wise  deadlock.	  The  minimum for t is	two; the default, fif-
		teen; when no value is specified, the default is used.

		See the	BLOCKS AND TIMEOUTS section for	more information.

       -T [t]	controls the  reporting	 of  some  TCP/TPI  information,  also
		reported  by  netstat(1), following the	network	addresses.  In
		normal output the information  appears	in  parentheses,  each
		item  except  TCP  or  TPI state name identified by a keyword,
		followed by `=', separated from	others by a single space:

		     <TCP or TPI state name>
		     QR=<read queue length>
		     QS=<send queue length>
		     SO=<socket	options	and values>
		     SS=<socket	states>
		     TF=<TCP flags and values>
		     WR=<window	read length>
		     WW=<window	write length>

		Not all	values are reported for	all UNIX dialects.  Items val-
		ues (when available) are reported after	the item name and '='.

		When the field output mode is in effect	(See OUTPUT FOR	 OTHER
		PROGRAMS.)   each  item	 appears as a field with a `T' leading
		character.

		-T with	no following key characters disables TCP/TPI  informa-
		tion reporting.

		-T with	following characters selects the reporting of specific
		TCP/TPI	information:

		     f	  selects reporting of socket options,
			  states and values, and TCP flags and
			  values.
		     q	  selects queue	length reporting.
		     s	  selects connection state reporting.
		     w	  selects window size reporting.

		Not all	selections are enabled for some	UNIX dialects.	 State
		may  be	 selected for all dialects and is reported by default.
		The -h or -?  help output for the -T  option  will  show  what
		selections may be used with the	UNIX dialect.

		When  -T  is used to select information	- i.e.,	it is followed
		by one or more selection characters - the displaying of	 state
		is  disabled  by  default,  and	it must	be explicitly selected
		again in the characters	following -T.  (In effect,  then,  the
		default	 is equivalent to -Ts.)	 For example, if queue lengths
		and state are desired, use -Tqs.

		Socket options,	socket states, some socket values,  TCP	 flags
		and  one TCP value may be reported (when available in the UNIX
		dialect) in the	form of	the names that commonly	 appear	 after
		SO_,  so_,  SS_, TCP_  and TF_ in the dialect's	header files -
		most	often	 <sys/socket.h>,     <sys/socketvar.h>	   and
		<netinet/tcp_var.h>.  Consult those header files for the mean-
		ing of the flags, options, states and values.

		``SO=''	precedes socket	options	and  values;  ``SS='',	socket
		states;	and ``TF='', TCP flags and values.

		If  a flag or option has a value, the value will follow	an '='
		and  the  name	--   e.g.,   ``SO=LINGER=5'',	``SO=QLIM=5'',
		``TF=MSS=512''.	 The following seven values may	be reported:

		     Name
		     Reported  Description (Common Symbol)

		     KEEPALIVE keep alive time (SO_KEEPALIVE)
		     LINGER    linger time (SO_LINGER)
		     MSS       maximum segment size (TCP_MAXSEG)
		     PQLEN	    partial listen queue connections
		     QLEN      established listen queue	connections
		     QLIM      established listen queue	limit
		     RCVBUF    receive buffer length (SO_RCVBUF)
		     SNDBUF    send buffer length (SO_SNDBUF)

		Details	 on what socket	options	and values, socket states, and
		TCP flags and values may  be  displayed	 for  particular  UNIX
		dialects  may be found in the answer to	the ``Why doesn't lsof
		report socket options, socket states, and TCP flags and	values
		for  my	 dialect?''  and ``Why doesn't lsof report the partial
		listen queue connection	count for my dialect?''	 questions  in
		the lsof FAQ (The FAQ section gives its	location.)

       -t	specifies  that	 lsof should produce terse output with process
		identifiers only and no	header - e.g., so that the output  may
		be piped to kill(1).  -t selects the -w	option.

       -u s	selects	the listing of files for the user whose	login names or
		user ID	numbers	are in	the  comma-separated  set  s  -	 e.g.,
		``abe'',  or  ``548,root''.  (There should be no spaces	in the
		set.)

		Multiple login names or	user ID	numbers	are joined in a	single
		ORed set before	participating in AND option selection.

		If  a login name or user ID is preceded	by a `^', it becomes a
		negation - i.e., files of processes owned by the login name or
		user ID	will never be listed.  A negated login name or user ID
		selection is neither ANDed nor ORed with other selections;  it
		is applied before all other selections and absolutely excludes
		the listing of the files of  the  process.   For  example,  to
		direct	lsof to	exclude	the listing of files belonging to root
		processes, specify ``-u^root'' or ``-u^0''.

       -U	selects	the listing of UNIX domain socket files.

       -v	selects	the listing of lsof  version  information,  including:
		revision  number;  when	 the  lsof binary was constructed; who
		constructed the	binary and where; the  name  of	 the  compiler
		used  to  construct the	lsof binary; the version number	of the
		compiler when readily available; the compiler and loader flags
		used  to  construct  the  lsof binary; and system information,
		typically the output of	uname's	-a option.

       -V	directs	lsof to	indicate the items it was asked	 to  list  and
		failed to find - command names,	file names, Internet addresses
		or files, login	names, NFS files, PIDs,	PGIDs, and UIDs.

		When other options  are	 ANDed	to  search  options,  or  com-
		pile-time options restrict the listing of some files, lsof may
		not report that	it failed to find a search item	when an	 ANDed
		option or compile-time option prevents the listing of the open
		file containing	the located search item.

		For example, ``lsof -V -iTCP@foobar -a -d 999''	may not	report
		a  failure  to locate open files at ``TCP@foobar'' and may not
		list any, if none have a file descriptor  number  of  999.   A
		similar	 situation  arises when	HASSECURITY and	HASNOSOCKSECU-
		RITY are defined at compile time and they prevent the  listing
		of open	files.

       +|-w	Enables	 (+)  or  disables (-) the suppression of warning mes-
		sages.

		The lsof builder may choose to have warning messages  disabled
		or  enabled  by	default.  The default warning message state is
		indicated in the output	of the -h or  -?   option.   Disabling
		warning	 messages  when	 they are already disabled or enabling
		them when already enabled is acceptable.

		The -t option selects the -w option.

       -x [fl]	may accompany the +d and +D options to direct their processing
		to  cross  over	symbolic links and|or file system mount	points
		encountered when scanning the directory	(+d) or	directory tree
		(+D).

		If  -x	is  specified by itself	without	a following parameter,
		cross-over processing of both symbolic links and  file	system
		mount points is	enabled.  Note that when -x is specified with-
		out a parameter, the next argument must	begin with '-' or '+'.

		The  optional  'f'  parameter  enables file system mount point
		cross-over processing; 'l', symbolic link cross-over  process-
		ing.

		The  -x	option may not be supplied without also	supplying a +d
		or +D option.

       -X	This is	a dialect-specific option.

	   AIX:
		This IBM AIX RISC/System 6000 option requests the reporting of
		executed text file and shared library references.

		WARNING: because this option uses the kernel readx() function,
		its use	on a  busy  AIX	 system	 might	cause  an  application
		process	 to  hang  so completely that it can neither be	killed
		nor stopped.  I	have never seen	this happen or had a report of
		its  happening,	 but  I	think there is a remote	possibility it
		could happen.

		By default use of readx() is disabled.	On AIX	5L  and	 above
		lsof  may  need	 setuid-root permission	to perform the actions
		this option requests.

		The lsof builder may specify that the -X option	be  restricted
		to  processes  whose real UID is root.	If that	has been done,
		the -X option will not appear in the -h	 or  -?	  help	output
		unless	the real UID of	the lsof process is root.  The default
		lsof distribution allows any UID to specify -X,	so by  default
		it will	appear in the help output.

		When  AIX  readx()  use	 is  disabled, lsof may	not be able to
		report information for all text	and  loader  file  references,
		but  it	 may  also  avoid exacerbating an AIX kernel directory
		search kernel error, known as the Stale	Segment	ID bug.

		The readx() function, used by lsof or  any  other  program  to
		access some sections of	kernel virtual memory, can trigger the
		Stale Segment ID bug.  It can cause the	kernel's  dir_search()
		function to believe erroneously	that part of an	in-memory copy
		of a file system directory has been zeroed.  Another  applica-
		tion  process, distinct	from lsof, asking the kernel to	search
		the  directory	-  e.g.,  by  using  open(2)   -   can	 cause
		dir_search()  to  loop	forever,  thus hanging the application
		process.

		Consult	the lsof FAQ (The FAQ  section	gives  its  location.)
		and the	00README file of the lsof distribution for a more com-
		plete description of the Stale Segment ID bug, its  APAR,  and
		methods	for defining readx() use when compiling	lsof.

	   Linux:
		This  Linux  option  requests  that lsof skip the reporting of
		information on all open	TCP, UDP and  UDPLITE  IPv4  and  IPv6
		files.

		This  Linux  option  is	 most  useful  when  the system	has an
		extremely large	number of open TCP, UDP	and UDPLITE files, the
		processing  of	whose  information  in	the /proc/net/tcp* and
		/proc/net/udp* files would take	lsof a long  time,  and	 whose
		reporting is not of interest.

		Use  this option with care and only when you are sure that the
		information you	want lsof to  display  isn't  associated  with
		open TCP, UDP or UDPLITE socket	files.

	   Solaris 10 and above:
		This  Solaris  10  and	above option requests the reporting of
		cached paths for files that have been deleted -	i.e.,  removed
		with rm(1) or unlink(2).

		The  cached  path  is followed by the string ``	(deleted)'' to
		indicate that the path by which	the file was opened  has  been
		deleted.

		Because	 intervening  changes made to the path - i.e., renames
		with mv(1) or rename(2)	- are not recorded in the cached path,
		what  lsof  reports  is	 only  the  path by which the file was
		opened,	not its	possibly different final path.

       -z [z]	specifies how Solaris 10 and higher zone information is	to  be
		handled.

		Without	 a following argument -	e.g., NO z - the option	speci-
		fies that zone names are to be listed in the ZONE output  col-
		umn.

		The  -z	option may be followed by a zone name, z.  That	causes
		lsof to	list only open files for processes in that zone.  Mul-
		tiple  -z z option and argument	pairs may be specified to form
		a list of named	zones.	Any open file of any process in	any of
		the  zones  will be listed, subject to other conditions	speci-
		fied by	other options and arguments.

       -Z [Z]	specifies how SELinux security contexts	are to be handled.  It
		and  'Z'  field	 output	 character  support are	inhibited when
		SELinux	is disabled in the running Linux kernel.   See	OUTPUT
		FOR  OTHER PROGRAMS for	more information on the	'Z' field out-
		put character.

		Without	a following argument - e.g., NO	Z - the	option	speci-
		fies  that  security  contexts	are  to	be listed in the SECU-
		RITY-CONTEXT output column.

		The -Z option may be followed by a wildcard  security  context
		name,  Z.   That  causes lsof to list only open	files for pro-
		cesses in that security	context.  Multiple  -Z	Z  option  and
		argument  pairs	 may  be  specified to form a list of security
		contexts.  Any open file of any	process	in any of the security
		contexts will be listed, subject to other conditions specified
		by other options and arguments.	 Note that Z can be  A:B:C  or
		*:B:C or A:B:* or *:*:C	to match against the A:B:C context.

       --	The  double minus sign option is a marker that signals the end
		of the keyed options.  It may be used, for example,  when  the
		first file name	begins with a minus sign.  It may also be used
		when the absence of a value for	the last keyed option must  be
		signified  by  the  presence  of a minus sign in the following
		option and before the start of the file	names.

       names	These are path names of	 specific  files  to  list.   Symbolic
		links  are  resolved  before use.  The first name may be sepa-
		rated from the preceding options with the ``--'' option.

		If a name is the mounted-on directory of a file	system or  the
		device	of  the	file system, lsof will list all	the files open
		on the file system.  To	be considered a	file system, the  name
		must  match a mounted-on directory name	in mount(8) output, or
		match the name of a block device associated with a  mounted-on
		directory  name.  The +|-f option may be used to force lsof to
		consider a name	a file system identifier (+f) or a simple file
		(-f).

		If  name  is  a	path to	a directory that is not	the mounted-on
		directory name of a file system, it is treated just as a regu-
		lar  file is treated - i.e., its listing is restricted to pro-
		cesses that have it open as a file or  as  a  process-specific
		directory,  such as the	root or	current	working	directory.  To
		request	that lsof look for open	files inside a directory name,
		use the	+d s and +D D options.

		If  a name is the base name of a family	of multiplexed files -
		e.g, AIX's /dev/pt[cs] - lsof will  list  all  the  associated
		multiplexed  files  on	the  device  that  are	open  -	 e.g.,
		/dev/pt[cs]/1, /dev/pt[cs]/2, etc.

		If a name is a UNIX domain  socket  name,  lsof	 will  usually
		search for it by the characters	of the name alone - exactly as
		it is specified	and is recorded	in the	kernel	socket	struc-
		ture.	(See  the next paragraph for an	exception to that rule
		for Linux.)  Specifying	a relative path	- e.g.,	 ./file	 -  in
		place  of  the	file's absolute	path - e.g., /tmp/file - won't
		work because lsof must match the characters you	 specify  with
		what it	finds in the kernel UNIX domain	socket structures.

		If a name is a Linux UNIX domain socket	name, in one case lsof
		is able	to search for it  by  its  device  and	inode  number,
		allowing  name	to be a	relative path.	The case requires that
		the absolute path -- i.e., one beginning with a	slash ('/') be
		used  by  the  process	that  created the socket, and hence be
		stored in the /proc/net/unix file; and it requires  that  lsof
		be  able  to  obtain  the  device and node numbers of both the
		absolute  path	in  /proc/net/unix  and	 name  via  successful
		stat(2)	 system	 calls.	  When	those conditions are met, lsof
		will be	able to	search for the UNIX domain  socket  when  some
		path to	it is is specified in name.  Thus, for example,	if the
		path is	/dev/log, and an lsof search  is  initiated  when  the
		working	directory is /dev, then	name could be ./log.

		If  a name is none of the above, lsof will list	any open files
		whose device and inode match that of the specified path	 name.

		If  you	 have also specified the -b option, the	only names you
		may safely specify are file systems for	which your mount table
		supplies  alternate  device  numbers.  See the AVOIDING	KERNEL
		BLOCKS and ALTERNATE DEVICE NUMBERS sections for more informa-
		tion.

		Multiple  file	names  are  joined in a	single ORed set	before
		participating in AND option selection.

AFS
       Lsof supports the recognition of	AFS files for these dialects (and  AFS
       versions):

	    AIX	4.1.4 (AFS 3.4a)
	    HP-UX 9.0.5	(AFS 3.4a)
	    Linux 1.2.13 (AFS 3.3)
	    Solaris 2.[56] (AFS	3.4a)

       It may recognize	AFS files on other versions of these dialects, but has
       not been	tested there.  Depending on how	AFS is implemented,  lsof  may
       recognize  AFS files in other dialects, or may have difficulties	recog-
       nizing AFS files	in the supported dialects.

       Lsof may	have trouble identifying all aspects of	AFS files in supported
       dialects	 when  AFS  kernel  support is implemented via dynamic modules
       whose addresses do not appear in	the kernel's variable name  list.   In
       that  case,  lsof  may  have to guess at	the identity of	AFS files, and
       might not be able to obtain volume information from the kernel that  is
       needed  for  calculating	AFS volume node	numbers.  When lsof can't com-
       pute volume node	numbers, it reports blank in the NODE column.

       The -A A	option is available in some dialect  implementations  of  lsof
       for specifying the name list file where dynamic module kernel addresses
       may be found.  When this	option is available, it	will be	listed in  the
       lsof help output, presented in response to the -h or -?

       See the lsof FAQ	(The FAQ section gives its location.)  for more	infor-
       mation about dynamic modules, their symbols, and	how they  affect  lsof
       options.

       Because AFS path	lookups	don't seem to participate in the kernel's name
       cache operations, lsof can't identify  path  name  components  for  AFS
       files.

SECURITY
       Lsof  has  three	features that may cause	security concerns.  First, its
       default compilation mode	allows anyone to list all open files with  it.
       Second,	by default it creates a	user-readable and user-writable	device
       cache file in the home directory	of the	real  user  ID	that  executes
       lsof.   (The  list-all-open-files and device cache features may be dis-
       abled when lsof is compiled.)  Third, its -k and	-m options name	alter-
       nate kernel name	list or	memory files.

       Restricting  the	 listing  of  all open files is	controlled by the com-
       pile-time HASSECURITY and HASNOSOCKSECURITY options.  When  HASSECURITY
       is  defined, lsof will allow only the root user to list all open	files.
       The non-root user may list only open files of processes with  the  same
       user  IDentification  number  as	 the  real  user ID number of the lsof
       process (the one	that its user logged on	with).

       However,	if HASSECURITY and HASNOSOCKSECURITY are both defined,	anyone
       may  list  open	socket	files,	provided they are selected with	the -i
       option.

       When HASSECURITY	is not defined,	anyone may list	all open files.

       Help output, presented in response to the -h or -?  option,  gives  the
       status of the HASSECURITY and HASNOSOCKSECURITY definitions.

       See  the	Security section of the	00README file of the lsof distribution
       for information on building lsof	with the HASSECURITY and  HASNOSOCKSE-
       CURITY options enabled.

       Creation	and use	of a user-readable and user-writable device cache file
       is controlled by	the compile-time HASDCACHE  option.   See  the	DEVICE
       CACHE  FILE  section and	the sections that follow it for	details	on how
       its path	is formed.  For	security considerations	 it  is	 important  to
       note  that  in the default lsof distribution, if	the real user ID under
       which lsof is executed is root, the device cache	file will  be  written
       in  root's  home	 directory  - e.g., / or /root.	 When HASDCACHE	is not
       defined,	lsof does not write or attempt to read a device	cache file.

       When HASDCACHE is defined, the lsof help	output,	presented in  response
       to the -h, -D?, or -?  options, will provide device cache file handling
       information.  When HASDCACHE is not defined, the	-h or -?  output  will
       have no -D option description.

       Before  you  decide to disable the device cache file feature - enabling
       it improves the performance of lsof by reducing the startup overhead of
       examining  all the nodes	in /dev	(or /devices) -	read the discussion of
       it in the 00DCACHE file of the lsof distribution	and the	lsof FAQ  (The
       FAQ section gives its location.)

       WHEN  IN	DOUBT, YOU CAN TEMPORARILY DISABLE THE USE OF THE DEVICE CACHE
       FILE WITH THE -Di OPTION.

       When lsof user declares alternate kernel	name list or memory files with
       the  -k	and  -m	options, lsof checks the user's	authority to read them
       with access(2).	This is	intended to  prevent  whatever	special	 power
       lsof's modes might confer on it from letting it read files not normally
       accessible via the authority of the real	user ID.

OUTPUT
       This section describes the information lsof lists for each  open	 file.
       See the OUTPUT FOR OTHER	PROGRAMS section for additional	information on
       output that can be processed by another program.

       Lsof only outputs printable (declared so	by isprint(3)) 8  bit  charac-
       ters.   Non-printable characters	are printed in one of three forms: the
       C ``\[bfrnt]'' form; the	control	character `^' form (e.g., ``^@'');  or
       hexadecimal  leading ``\x'' form	(e.g., ``\xab'').  Space is non-print-
       able in the COMMAND column (``\x20'') and printable elsewhere.

       For some	dialects  -  if	 HASSETLOCALE  is  defined  in	the  dialect's
       machine.h  header  file - lsof will print the extended 8	bit characters
       of a language locale.  The lsof process must  be	 supplied  a  language
       locale environment variable (e.g., LANG)	whose value represents a known
       language	locale in which	the extended characters	are considered	print-
       able  by	 isprint(3).  Otherwise	lsof considers the extended characters
       non-printable and prints	them according to its rules for	 non-printable
       characters, stated above.  Consult your dialect's setlocale(3) man page
       for the names of	other environment variables that may be	used in	 place
       of LANG - e.g., LC_ALL, LC_CTYPE, etc.

       Lsof's  language	 locale	support	for a dialect also covers wide charac-
       ters - e.g., UTF-8 - when HASSETLOCALE and HASWIDECHAR are  defined  in
       the  dialect's  machine.h  header  file,	 and  when a suitable language
       locale has been defined in the appropriate environment variable for the
       lsof  process.  Wide characters are printable under those conditions if
       iswprint(3) reports them	to be.	If  HASSETLOCALE,  HASWIDECHAR	and  a
       suitable	language locale	aren't defined,	or if iswprint(3) reports wide
       characters that aren't printable, lsof considers	 the  wide  characters
       non-printable  and  prints  each	of their 8 bits	according to its rules
       for non-printable characters, stated above.

       Consult the answers to the "Language locale support" questions  in  the
       lsof FAQ	(The FAQ section gives its location.) for more information.

       Lsof dynamically	sizes the output columns each time it runs, guarantee-
       ing that	each column is a minimum size.	It also	guarantees  that  each
       column is separated from	its predecessor	by at least one	space.

       COMMAND	  contains  the	 first nine characters of the name of the UNIX
		  command associated with the process.	If a non-zero w	 value
		  is  specified	 to  the  +c w option, the column contains the
		  first	w characters of	the name of the	UNIX  command  associ-
		  ated with the	process	up to the limit	of characters supplied
		  to lsof by the UNIX dialect.	(See the description of	the +c
		  w  command  or  the  lsof FAQ	for more information.  The FAQ
		  section gives	its location.)

		  If w is less than the	length of  the	column	title,	``COM-
		  MAND'', it will be raised to that length.

		  If  a	zero w value is	specified to the +c w option, the col-
		  umn contains all the characters of the name of the UNIX com-
		  mand associated with the process.

		  All  command name characters maintained by the kernel	in its
		  structures are displayed in field output  when  the  command
		  name	descriptor  (`c')  is  specified.   See	the OUTPUT FOR
		  OTHER	COMMANDS section for information  on  selecting	 field
		  output and the associated command name descriptor.

       PID	  is the Process IDentification	number of the process.

       TID	  is the task (thread) IDentification number, if task (thread)
		  reporting is supported by the	dialect	and a task (thread) is
		  being	 listed.  (If help output - i.e., the output of	the -h
		  or -?	 options -  shows  this	 option,  then	task  (thread)
		  reporting is supported by the	dialect.)

		  A  blank  TID	 column	in Linux indicates a process - i.e., a
		  non-task.

       TASKCMD	  is the task command name.  Generally this will be  the  same
		  as  the  process  named in the COMMAND column, but some task
		  implementations (e.g., Linux)	permit a task  to  change  its
		  command name.

		  The TASKCMD column width is subject to the same size limita-
		  tion as the COMMAND column.

       ZONE	  is the Solaris 10 and	higher zone name.  This	column must be
		  selected with	the -z option.

       SECURITY-CONTEXT
		  is  the  SELinux  security  context.	 This  column  must be
		  selected with	the -Z option.	Note that  the	-Z  option  is
		  inhibited when SELinux is disabled in	the running Linux ker-
		  nel.

       PPID	  is the Parent	Process	IDentification number of the  process.
		  It  is only displayed	when the -R option has been specified.

       PGID	  is the process group IDentification number  associated  with
		  the  process.	  It  is only displayed	when the -g option has
		  been specified.

       USER	  is the user ID number	or login name of the user to whom  the
		  process  belongs,  usually  the  same	 as reported by	ps(1).
		  However, on Linux USER is the	user ID	number or  login  that
		  owns	the  directory	in  /proc where	lsof finds information
		  about	the process.  Usually that is the same value  reported
		  by  ps(1),  but  may differ when the process has changed its
		  effective user ID.   (See  the  -l  option  description  for
		  information  on  when	a user ID number or login name is dis-
		  played.)

       FD	  is the File Descriptor number	of the file or:

		       cwd  current working directory;
		       Lnn  library references (AIX);
		       err  FD information error (see NAME column);
		       jld  jail directory (FreeBSD);
		       ltx  shared library text	(code and data);
		       Mxx  hex	memory-mapped type number xx.
		       m86  DOS	Merge mapped file;
		       mem  memory-mapped file;
		       mmap memory-mapped device;
		       pd   parent directory;
		       rtd  root directory;
		       tr   kernel trace file (OpenBSD);
		       txt  program text (code and data);
		       v86  VP/ix mapped file;

		  FD is	followed by one	of these  characters,  describing  the
		  mode under which the file is open:

		       r for read access;
		       w for write access;
		       u for read and write access;
		       space if	mode unknown and no lock
			    character follows;
		       `-' if mode unknown and lock
			    character follows.

		  The  mode character is followed by one of these lock charac-
		  ters,	describing the type of lock applied to the file:

		       N for a Solaris NFS lock	of unknown type;
		       r for read lock on part of the file;
		       R for a read lock on the	entire file;
		       w for a write lock on part of the file;
		       W for a write lock on the entire	file;
		       u for a read and	write lock of any length;
		       U for a lock of unknown type;
		       x for an	SCO OpenServer Xenix lock on part      of  the
		  file;
		       X for an	SCO OpenServer Xenix lock on the entire	file;
		       space if	there is no lock.

		  See  the  LOCKS  section  for	 more  information on the lock
		  information character.

		  The FD column	contents constitutes a single field for	 pars-
		  ing in post-processing scripts.

       TYPE	  is  the  type	 of  the node associated with the file - e.g.,
		  GDIR,	GREG, VDIR, VREG, etc.

		  or ``IPv4'' for an IPv4 socket;

		  or ``IPv6'' for an open IPv6 network	file  -	 even  if  its
		  address is IPv4, mapped in an	IPv6 address;

		  or ``ax25'' for a Linux AX.25	socket;

		  or ``inet'' for an Internet domain socket;

		  or ``lla'' for a HP-UX link level access file;

		  or ``rte'' for an AF_ROUTE socket;

		  or ``sock'' for a socket of unknown domain;

		  or ``unix'' for a UNIX domain	socket;

		  or ``x.25'' for an HP-UX x.25	socket;

		  or ``BLK'' for a block special file;

		  or ``CHR'' for a character special file;

		  or ``DEL'' for a Linux map file that has been	deleted;

		  or ``DIR'' for a directory;

		  or ``DOOR'' for a VDOOR file;

		  or ``FIFO'' for a FIFO special file;

		  or ``KQUEUE''	for a BSD style	kernel event queue file;

		  or ``LINK'' for a symbolic link file;

		  or ``MPB'' for a multiplexed block file;

		  or ``MPC'' for a multiplexed character file;

		  or  ``NOFD'' for a Linux /proc/<PID>/fd directory that can't
		  be opened -- the directory path appears in the NAME  column,
		  followed by an error message;

		  or ``PAS'' for a /proc/as file;

		  or ``PAXV'' for a /proc/auxv file;

		  or ``PCRE'' for a /proc/cred file;

		  or ``PCTL'' for a /proc control file;

		  or ``PCUR'' for the current /proc process;

		  or ``PCWD'' for a /proc current working directory;

		  or ``PDIR'' for a /proc directory;

		  or ``PETY'' for a /proc executable type (etype);

		  or ``PFD'' for a /proc file descriptor;

		  or ``PFDR'' for a /proc file descriptor directory;

		  or ``PFIL'' for an executable	/proc file;

		  or ``PFPR'' for a /proc FP register set;

		  or ``PGD'' for a /proc/pagedata file;

		  or ``PGID'' for a /proc group	notifier file;

		  or ``PIPE'' for pipes;

		  or ``PLC'' for a /proc/lwpctl	file;

		  or ``PLDR'' for a /proc/lpw directory;

		  or ``PLDT'' for a /proc/ldt file;

		  or ``PLPI'' for a /proc/lpsinfo file;

		  or ``PLST'' for a /proc/lstatus file;

		  or ``PLU'' for a /proc/lusage	file;

		  or ``PLWG'' for a /proc/gwindows file;

		  or ``PLWI'' for a /proc/lwpsinfo file;

		  or ``PLWS'' for a /proc/lwpstatus file;

		  or ``PLWU'' for a /proc/lwpusage file;

		  or ``PLWX'' for a /proc/xregs	file;

		  or ``PMAP'' for a /proc map file (map);

		  or ``PMEM'' for a /proc memory image file;

		  or ``PNTF'' for a /proc process notifier file;

		  or ``POBJ'' for a /proc/object file;

		  or ``PODR'' for a /proc/object directory;

		  or  ``POLP''	for  an	 old format /proc light	weight process
		  file;

		  or ``POPF'' for an old format	/proc PID file;

		  or ``POPG'' for an old format	/proc page data	file;

		  or ``PORT'' for a SYSV named pipe;

		  or ``PREG'' for a /proc register file;

		  or ``PRMP'' for a /proc/rmap file;

		  or ``PRTD'' for a /proc root directory;

		  or ``PSGA'' for a /proc/sigact file;

		  or ``PSIN'' for a /proc/psinfo file;

		  or ``PSTA'' for a /proc status file;

		  or ``PSXSEM''	for a POSIX semaphore file;

		  or ``PSXSHM''	for a POSIX shared memory file;

		  or ``PTS'' for a /dev/pts file;

		  or ``PUSG'' for a /proc/usage	file;

		  or ``PW'' for	a /proc/watch file;

		  or ``PXMP'' for a /proc/xmap file;

		  or ``REG'' for a regular file;

		  or ``SMT'' for a shared memory transport file;

		  or ``STSO'' for a stream socket;

		  or ``UNNM'' for an unnamed type file;

		  or ``XNAM'' for an OpenServer	Xenix special file of  unknown
		  type;

		  or ``XSEM'' for an OpenServer	Xenix semaphore	file;

		  or ``XSD'' for an OpenServer Xenix shared data file;

		  or  the  four	 type  number octets if	the corresponding name
		  isn't	known.

       FILE-ADDR  contains the kernel file structure address when f  has  been
		  specified to +f;

       FCT	  contains  the	 file  reference  count	 from  the kernel file
		  structure when c has been specified to +f;

       FILE-FLAG  when g or G has been specified to +f,	 this  field  contains
		  the  contents	 of  the  f_flag[s]  member of the kernel file
		  structure and	the kernel's per-process open file  flags  (if
		  available);  `G' causes them to be displayed in hexadecimal;
		  `g', as short-hand names; two	lists may  be  displayed  with
		  entries  separated by	commas,	the lists separated by a semi-
		  colon	(`;'); the first list may contain short-hand names for
		  f_flag[s] values from	the following table:

		       AIO	 asynchronous I/O (e.g., FAIO)
		       AP	 append
		       ASYN	 asynchronous I/O (e.g., FASYNC)
		       BAS	 block,	test, and set in use
		       BKIU	 block if in use
		       BL	 use block offsets
		       BSK	 block seek
		       CA	 copy avoid
		       CIO	 concurrent I/O
		       CLON	 clone
		       CLRD	 CL read
		       CR	 create
		       DF	 defer
		       DFI	 defer IND
		       DFLU	 data flush
		       DIR	 direct
		       DLY	 delay
		       DOCL	 do clone
		       DSYN	 data-only integrity
		       DTY	 must be a directory
		       EVO	 event only
		       EX	 open for exec
		       EXCL	 exclusive open
		       FSYN	 synchronous writes
		       GCDF	 defer during unp_gc() (AIX)
		       GCMK	 mark during unp_gc() (AIX)
		       GTTY	 accessed via /dev/tty
		       HUP	 HUP in	progress
		       KERN	 kernel
		       KIOC	 kernel-issued ioctl
		       LCK	 has lock
		       LG	 large file
		       MBLK	 stream	message	block
		       MK	 mark
		       MNT	 mount
		       MSYN	 multiplex synchronization
		       NATM	 don't update atime
		       NB	 non-blocking I/O
		       NBDR	 no BDRM check
		       NBIO	 SYSV non-blocking I/O
		       NBF	 n-buffering in	effect
		       NC	 no cache
		       ND	 no delay
		       NDSY	 no data synchronization
		       NET	 network
		       NFLK	 don't follow links
		       NMFS	 NM file system
		       NOTO	 disable background stop
		       NSH	 no share
		       NTTY	 no controlling	TTY
		       OLRM	 OLR mirror
		       PAIO	 POSIX asynchronous I/O
		       PP	 POSIX pipe
		       R	 read
		       RC	 file and record locking cache
		       REV	 revoked
		       RSH	 shared	read
		       RSYN	 read synchronization
		       RW	 read and write	access
		       SL	 shared	lock
		       SNAP	 cooked	snapshot
		       SOCK	 socket
		       SQSH	 Sequent shared	set on open
		       SQSV	 Sequent SVM set on open
		       SQR	 Sequent set repair on open
		       SQS1	 Sequent full shared open
		       SQS2	 Sequent partial shared	open
		       STPI	 stop I/O
		       SWR	 synchronous read
		       SYN	 file integrity	while writing
		       TCPM	 avoid TCP collision
		       TR	 truncate
		       W	 write
		       WKUP	 parallel I/O synchronization
		       WTG	 parallel I/O synchronization
		       VH	 vhangup pending
		       VTXT	 virtual text
		       XL	 exclusive lock

		  this	list of	names was derived from F* #define's in dialect
		  header  files	  <fcntl.h>,   <linux</fs.h>,	<sys/fcntl.c>,
		  <sys/fcntlcom.h>,  and  <sys/file.h>;	 see the lsof.h	header
		  file for a list showing the correspondence between the above
		  short-hand names and the header file definitions;

		  the second list (after the semicolon)	may contain short-hand
		  names	for kernel per-process open file flags from  this  ta-
		  ble:

		       ALLC	 allocated
		       BR	 the file has been read
		       BHUP	 activity stopped by SIGHUP
		       BW	 the file has been written
		       CLSG	 closing
		       CX	 close-on-exec (see fcntl(F_SETFD))
		       LCK	 lock was applied
		       MP	 memory-mapped
		       OPIP	 open pending -	in progress
		       RSVW	 reserved wait
		       SHMT	 UF_FSHMAT set (AIX)
		       USE	 in use	(multi-threaded)

       NODE-ID	  (or  INODE-ADDR for some dialects) contains a	unique identi-
		  fier for the file node (usually the kernel  vnode  or	 inode
		  address, but also occasionally a concatenation of device and
		  node number) when n has been specified to +f;

       DEVICE	  contains the device numbers,	separated  by  commas,	for  a
		  character  special, block special, regular, directory	or NFS
		  file;

		  or ``memory''	for a memory  file  system  node  under	 Tru64
		  UNIX;

		  or  the address of the private data area of a	Solaris	socket
		  stream;

		  or a kernel reference	address	that identifies	the file  (The
		  kernel  reference  address may be used for FIFO's, for exam-
		  ple.);

		  or the base address or device	name of	a Linux	 AX.25	socket
		  device.

		  Usually  only	the lower thirty two bits of Tru64 UNIX	kernel
		  addresses are	displayed.

       SIZE, SIZE/OFF, or OFFSET
		  is the size of the file or the  file	offset	in  bytes.   A
		  value	 is  displayed in this column only if it is available.
		  Lsof displays	whatever value - size or offset	- is appropri-
		  ate for the type of the file and the version of lsof.

		  On  some UNIX	dialects lsof can't obtain accurate or consis-
		  tent file offset information from its	kernel	data  sources,
		  sometimes  just  for particular kinds	of files (e.g.,	socket
		  files.)  In other cases, files don't have true sizes - e.g.,
		  sockets, FIFOs, pipes	- so lsof displays for their sizes the
		  content amounts it finds in their kernel buffer  descriptors
		  (e.g.,  socket  buffer  size counts or TCP/IP	window sizes.)
		  Consult the lsof FAQ (The FAQ	section	gives  its  location.)
		  for more information.

		  The  file  size  is displayed	in decimal; the	offset is nor-
		  mally	displayed in decimal with a leading ``0t'' if it  con-
		  tains	8 digits or less; in hexadecimal with a	leading	``0x''
		  if it	is longer than 8 digits.  (Consult  the	 -o  o	option
		  description  for information on when 8 might default to some
		  other	value.)

		  Thus the leading ``0t'' and ``0x'' identify an  offset  when
		  the  column may contain both a size and an offset (i.e., its
		  title	is SIZE/OFF).

		  If the -o option is specified, lsof always displays the file
		  offset (or nothing if	no offset is available)	and labels the
		  column OFFSET.  The offset  always  begins  with  ``0t''  or
		  ``0x'' as described above.

		  The  lsof  user can control the switch from ``0t'' to	``0x''
		  with the -o o	option.	  Consult  its	description  for  more
		  information.

		  If the -s option is specified, lsof always displays the file
		  size (or nothing if no size is  available)  and  labels  the
		  column  SIZE.	 The -o	and -s options are mutually exclusive;
		  they can't both be specified.

		  For files that don't have a fixed size - e.g., don't	reside
		  on a disk device - lsof will display appropriate information
		  about	the current size or position of	 the  file  if	it  is
		  available in the kernel structures that define the file.

       NLINK	  contains the file link count when +L has been	specified;

       NODE	  is the node number of	a local	file;

		  or the inode number of an NFS	file in	the server host;

		  or the Internet protocol type	- e.g, ``TCP'';

		  or ``STR'' for a stream;

		  or ``CCITT'' for an HP-UX x.25 socket;

		  or the IRQ or	inode number of	a Linux	AX.25 socket device.

       NAME	  is  the name of the mount point and file system on which the
		  file resides;

		  or the name of a file	specified in the names	option	(after
		  any symbolic links have been resolved);

		  or the name of a character special or	block special device;

		  or  the  local  and  remote  Internet	addresses of a network
		  file;	the local host name or IP  number  is  followed	 by  a
		  colon	 (':'),	 the  port,  ``->'',  and  the two-part	remote
		  address; IP addresses	may be reported	as numbers  or	names,
		  depending  on	 the +|-M, -n, and -P options; colon-separated
		  IPv6	numbers	 are  enclosed	in   square   brackets;	  IPv4
		  INADDR_ANY  and  IPv6	IN6_IS_ADDR_UNSPECIFIED	addresses, and
		  zero port numbers are	represented by an  asterisk  ('*');  a
		  UDP  destination  address  may  be followed by the amount of
		  time elapsed since the last packet was sent to the  destina-
		  tion;	 TCP, UDP and UDPLITE remote addresses may be followed
		  by  TCP/TPI  information  in	parentheses  -	state	(e.g.,
		  ``(ESTABLISHED)'',  ``(Unbound)''),  queue sizes, and	window
		  sizes	(not all dialects) - in	a fashion similar to what net-
		  stat(1)  reports;  see  the  -T  option  description	or the
		  description of the TCP/TPI field in OUTPUT  FOR  OTHER  PRO-
		  GRAMS	 for more information on state,	queue size, and	window
		  size;

		  or the address or name of a  UNIX  domain  socket,  possibly
		  including a stream clone device name,	a file system object's
		  path name, local and foreign kernel addresses,  socket  pair
		  information, and a bound vnode address;

		  or the local and remote mount	point names of an NFS file;

		  or ``STR'', followed by the stream name;

		  or  a	 stream	 character device name,	followed by ``->'' and
		  the stream name or a list of stream module names,  separated
		  by ``->'';

		  or ``STR:'' followed by the SCO OpenServer stream device and
		  module names,	separated by ``->'';

		  or system directory name, `` -- '', and as  many  components
		  of the path name as lsof can find in the kernel's name cache
		  for selected dialects	(See the KERNEL	NAME CACHE section for
		  more information.);

		  or ``PIPE->'', followed by a Solaris kernel pipe destination
		  address;

		  or ``COMMON:'', followed by  the  vnode  device  information
		  structure's device name, for a Solaris common	vnode;

		  or  the  address family, followed by a slash (`/'), followed
		  by fourteen comma-separated  bytes  of  a  non-Internet  raw
		  socket address;

		  or  the  HP-UX  x.25	local address, followed	by the virtual
		  connection number (if	any), followed by the  remote  address
		  (if any);

		  or ``(dead)''	for disassociated Tru64	UNIX files - typically
		  terminal files that have been	 flagged  with	the  TIOCNOTTY
		  ioctl	and closed by daemons;

		  or ``rd=<offset>'' and ``wr=<offset>'' for the values	of the
		  read and write offsets of a FIFO;

		  or ``clone n:/dev/event'' for	SCO OpenServer file clones  of
		  the /dev/event device, where n is the	minor device number of
		  the file;

		  or ``(socketpair: n)'' for a Solaris 2.6, 8, 9  or  10  UNIX
		  domain  socket,  created by the socketpair(3N) network func-
		  tion;

		  or ``no PCB''	for socket files that do not have  a  protocol
		  block	 associated  with  them,  optionally  followed	by ``,
		  CANTSENDMORE'' if sending on the socket has  been  disabled,
		  or  ``,  CANTRCVMORE''  if  receiving	on the socket has been
		  disabled (e.g., by the shutdown(2) function);

		  or the local and remote addresses of a Linux IPX socket file
		  in  the  form	<net>:[<node>:]<port>, followed	in parentheses
		  by the transmit and receive queue sizes, and the  connection
		  state;

		  or  ``dgram''	 or ``stream'' for the type UnixWare 7.1.1 and
		  above	in-kernel UNIX domain sockets,	followed  by  a	 colon
		  (':')	 and  the  local path name when	available, followed by
		  ``->'' and the remote	path name or kernel socket address  in
		  hexadecimal when available;

		  or the association value, association	index, endpoint	value,
		  local	address, local port, remote address  and  remote  port
		  for Linux SCTP sockets;

		  or  ``protocol:  ''  followed	by the Linux socket's protocol
		  attribute.

       For dialects that support a ``namefs'' file system, allowing  one  file
       to   be	 attached   to	 another   with	 fattach(3C),  lsof  will  add
       ``(FA:<address1><direction><address2>)''	  to	the    NAME    column.
       <address1> and <address2> are hexadecimal vnode addresses.  <direction>
       will be ``<-'' if <address2> has	been fattach'ed	to  this  vnode	 whose
       address	is  <address1>;	and ``->'' if <address1>, the vnode address of
       this vnode, has been fattach'ed to <address2>.  <address1> may be omit-
       ted if it already appears in the	DEVICE column.

       Lsof  may  add  two  parenthetical  notes  to  the NAME column for open
       Solaris 10 files: ``(?)'' if lsof considers the path name of  question-
       able  accuracy;	and  ``(deleted)'' if the -X option has	been specified
       and lsof	detects	the open file's	path name has been  deleted.   Consult
       the  lsof  FAQ (The FAQ section gives its location.)  for more informa-
       tion on these NAME column additions.

LOCKS
       Lsof can't adequately report the	wide  variety  of  UNIX	 dialect  file
       locks  in a single character.  What it reports in a single character is
       a compromise between the	information it finds in	 the  kernel  and  the
       limitations of the reporting format.

       Moreover, when a	process	holds several byte level locks on a file, lsof
       only reports the	status of the first lock it encounters.	 If  it	 is  a
       byte level lock,	then the lock character	will be	reported in lower case
       - i.e., `r', `w', or `x'	 -  rather  than  the  upper  case  equivalent
       reported	for a full file	lock.

       Generally  lsof	can  only  report  on locks held by local processes on
       local files.  When a local process sets a lock on  a  remotely  mounted
       (e.g.,  NFS)  file,  the	 remote	 server	 host usually records the lock
       state.  One exception is	Solaris	- at some patch	levels of 2.3, and  in
       all  versions  above  2.4,  the	Solaris	 kernel	records	information on
       remote locks in local structures.

       Lsof has	trouble	reporting locks	for some UNIX dialects.	  Consult  the
       BUGS section of this manual page	or the lsof FAQ	(The FAQ section gives
       its location.)  for more	information.

OUTPUT FOR OTHER PROGRAMS
       When the	-F option is specified,	lsof produces output that is  suitable
       for  processing by another program - e.g, an awk	or Perl	script,	or a C
       program.

       Each unit of information	is output in a field that is identified	with a
       leading character and terminated	by a NL	(012) (or a NUL	(000) if the 0
       (zero) field identifier character is specified.)	 The data of the field
       follows	immediately  after  the	 field	identification	character  and
       extends to the field terminator.

       It is possible to think of field	output as process and  file  sets.   A
       process	set  begins  with a field whose	identifier is `p' (for process
       IDentifier (PID)).  It extends to the beginning of the next  PID	 field
       or  the beginning of the	first file set of the process, whichever comes
       first.  Included	in the process set are fields that identify  the  com-
       mand, the process group IDentification (PGID) number, the task (thread)
       ID (TID), and the user ID (UID) number or login name.

       A file set begins with a	 field	whose  identifier  is  `f'  (for  file
       descriptor).   It  is followed by lines that describe the file's	access
       mode, lock state, type, device, size, offset, inode, protocol, name and
       stream  module  names.  It extends to the beginning of the next file or
       process set, whichever comes first.

       When the	NUL (000) field	terminator has been selected with the 0	(zero)
       field  identifier character, lsof ends each process and file set	with a
       NL (012)	character.

       Lsof always produces one	field, the PID (`p') field.  All other	fields
       may  be declared	optionally in the field	identifier character list that
       follows the -F option.  When a field selection character	identifies  an
       item lsof does not normally list	- e.g.,	PPID, selected with -R - spec-
       ification of the	field character	- e.g.,	``-FR''	 -  also  selects  the
       listing of the item.

       It is entirely possible to select a set of fields that cannot easily be
       parsed -	e.g., if the field descriptor field is not selected, it	may be
       difficult  to  identify	file sets.  To help you	avoid this difficulty,
       lsof supports the -F option; it selects the output of all  fields  with
       NL  terminators	(the  -F0 option pair selects the output of all	fields
       with NUL	terminators).  For compatibility reasons neither  -F  nor  -F0
       select the raw device field.

       These  are  the	fields	that  lsof will	produce.  The single character
       listed first is the field identifier.

	    a	 file access mode
	    c	 process command name (all characters from proc	or
		 user structure)
	    C	 file structure	share count
	    d	 file's	device character code
	    D	 file's	major/minor device number (0x<hexadecimal>)
	    f	 file descriptor (always selected)
	    F	 file structure	address	(0x<hexadecimal>)
	    G	 file flaGs (0x<hexadecimal>; names if +fg follows)
	    g	 process group ID
	    i	 file's	inode number
	    K	 tasK ID
	    k	 link count
	    l	 file's	lock status
	    L	 process login name
	    m	 marker	between	repeated output
	    M	 the task comMand name
	    n	 file name, comment, Internet address
	    N	 node identifier (ox<hexadecimal>
	    o	 file's	offset (decimal)
	    p	 process ID (always selected)
	    P	 protocol name
	    r	 raw device number (0x<hexadecimal>)
	    R	 parent	process	ID
	    s	 file's	size (decimal)
	    S	 file's	stream identification
	    t	 file's	type
	    T	 TCP/TPI information, identified by prefixes (the
		 `=' is	part of	the prefix):
		     QR=<read queue size>
		     QS=<send queue size>
		     SO=<socket	options	and values> (not all dialects)
		     SS=<socket	states>	(not all dialects)
		     ST=<connection state>
		     TF=<TCP flags and values> (not all	dialects)
		     WR=<window	read size>  (not all dialects)
		     WW=<window	write size>  (not all dialects)
		 (TCP/TPI information isn't reported for all supported
		   UNIX	dialects. The -h or -? help output for the
		   -T option will show what TCP/TPI reporting can be
		   requested.)
	    u	 process user ID
	    z	 Solaris 10 and	higher zone name
	    Z	 SELinux security context (inhibited when SELinux is disabled)
	    0	 use NUL field terminator character in place of	NL
	    1-9	 dialect-specific field	identifiers (The output
		 of -F?	identifies the information to be found
		 in dialect-specific fields.)

       You can get on-line help	information  on	 these	characters  and	 their
       descriptions by specifying the -F?  option pair.	 (Escape the `?' char-
       acter as	your shell requires.)  Additional information on field content
       can be found in the OUTPUT section.

       As  an  example,	 ``-F pcfn'' will select the process ID	(`p'), command
       name (`c'), file	descriptor (`f') and file name (`n') fields with an NL
       field terminator	character; ``-F	pcfn0''	selects	the same output	with a
       NUL (000) field terminator character.

       Lsof doesn't produce all	fields for every process  or  file  set,  only
       those  that  are	 available.   Some fields are mutually exclusive: file
       device characters and file major/minor device numbers; file inode  num-
       ber  and	 protocol name;	file name and stream identification; file size
       and offset.  One	or the other member of these mutually  exclusive  sets
       will appear in field output, but	not both.

       Normally	 lsof ends each	field with a NL	(012) character.  The 0	(zero)
       field identifier	character may be specified to change the field	termi-
       nator  character	 to  a	NUL  (000).  A NUL terminator may be easier to
       process with xargs (1), for example, or	with  programs	whose  quoting
       mechanisms  may	not  easily  cope  with	the range of characters	in the
       field output.  When the NUL field terminator is in use, lsof ends  each
       process and file	set with a NL (012).

       Three aids to producing programs	that can process lsof field output are
       included	in the lsof distribution.  The	first  is  a  C	 header	 file,
       lsof_fields.h, that contains symbols for	the field identification char-
       acters, indexes for storing them	in a table,  and  explanation  strings
       that may	be compiled into programs.  Lsof uses this header file.

       The  second  aid	 is a set of sample scripts that process field output,
       written in awk, Perl 4, and Perl	5.  They're  located  in  the  scripts
       subdirectory of the lsof	distribution.

       The  third aid is the C library used for	the lsof test suite.  The test
       suite is	written	in C and uses field output  to	validate  the  correct
       operation  of lsof.  The	library	can be found in	the tests/LTlib.c file
       of the  lsof  distribution.   The  library  uses	 the  first  aid,  the
       lsof_fields.h header file.

BLOCKS AND TIMEOUTS
       Lsof  can  be blocked by	some kernel functions that it uses - lstat(2),
       readlink(2), and	stat(2).  These	functions are stalled in  the  kernel,
       for  example,  when  the	 hosts	where  mounted NFS file	systems	reside
       become inaccessible.

       Lsof attempts to	break these blocks with	timers	and  child  processes,
       but  the	 techniques are	not wholly reliable.  When lsof	does manage to
       break a block, it will report the break with  an	 error	message.   The
       messages	may be suppressed with the -t and -w options.

       The  default  timeout value may be displayed with the -h	or -?  option,
       and it may be changed with the -S [t] option.  The minimum for t	is two
       seconds,	 but  you should avoid small values, since slow	system respon-
       siveness	can cause short	timeouts to expire  unexpectedly  and  perhaps
       stop lsof before	it can produce any output.

       When lsof has to	break a	block during its access	of mounted file	system
       information, it normally	 continues,  although  with  less  information
       available to display about open files.

       Lsof  can  also be directed to avoid the	protection of timers and child
       processes when using the	kernel functions that might block by  specify-
       ing  the	 -O  option.  While this will allow lsof to start up with less
       overhead, it exposes lsof completely  to	 the  kernel  situations  that
       might block it.	Use this option	cautiously.

AVOIDING KERNEL	BLOCKS
       You  can	use the	-b option to tell lsof to avoid	using kernel functions
       that would block.  Some cautions	apply.

       First, using this option	 usually  requires  that  your	system	supply
       alternate device	numbers	in place of the	device numbers that lsof would
       normally	obtain with the	lstat(2) and stat(2)  kernel  functions.   See
       the  ALTERNATE DEVICE NUMBERS section for more information on alternate
       device numbers.

       Second, you can't specify names for lsof	to locate unless they're  file
       system  names.  This is because lsof needs to know the device and inode
       numbers of files	listed with names in the  lsof	options,  and  the  -b
       option  prevents	 lsof  from obtaining them.  Moreover, since lsof only
       has device numbers for the file systems that have alternates, its abil-
       ity  to	locate	files on file systems depends completely on the	avail-
       ability and accuracy of the alternates.	If no  alternates  are	avail-
       able,  or  if  they're incorrect, lsof won't be able to locate files on
       the named file systems.

       Third, if the names of your file	system directories that	 lsof  obtains
       from  your  system's mount table	are symbolic links, lsof won't be able
       to resolve the links.  This is because the -b  option  causes  lsof  to
       avoid  the  kernel  readlink(2)	function  it  uses to resolve symbolic
       links.

       Finally,	using the -b option causes lsof	to issue warning messages when
       it  needs  to use the kernel functions that the -b option directs it to
       avoid.  You can suppress	these messages by specifying  the  -w  option,
       but  if	you do,	you won't see the alternate device numbers reported in
       the warning messages.

ALTERNATE DEVICE NUMBERS
       On some dialects, when lsof has to break	a block	because	it  can't  get
       information  about  a  mounted file system via the lstat(2) and stat(2)
       kernel functions, or because you	specified  the	-b  option,  lsof  can
       obtain  some of the information it needs	- the device number and	possi-
       bly the file system type	- from the system mount	table.	When  that  is
       possible,  lsof	will  report  the device number	it obtained.  (You can
       suppress	the report by specifying the -w	option.)

       You can assist this process if your mount table is  supported  with  an
       /etc/mtab  or /etc/mnttab file that contains an options field by	adding
       a ``dev=xxxx'' field for	mount points that do not  have	one  in	 their
       options	strings.  Note:	you must be able to edit the file - i.e., some
       mount tables like recent	Solaris	/etc/mnttab or Linux /proc/mounts  are
       read-only and can't be modified.

       You  may	 also  be  able	to supply device numbers using the +m and +m m
       options,	provided they are supported by your dialect.  Check the	output
       of  lsof's  -h  or  -?	options	 to see	if the +m and +m m options are
       available.

       The ``xxxx'' portion of the field is the	hexadecimal value of the  file
       system's	device number.	(Consult the st_dev field of the output	of the
       lstat(2)	and stat(2) functions for the appropriate values for your file
       systems.)   Here's  an example from a Sun Solaris 2.6 /etc/mnttab for a
       file system remotely mounted via	NFS:

	    nfs	 ignore,noquota,dev=2a40001

       There's an advantage to having ``dev=xxxx'' entries in your mount table
       file,  especially  for  file  systems  that are mounted from remote NFS
       servers.	 When a	remote server crashes and you  want  to	 identify  its
       users  by  running  lsof	 on one	of its clients,	lsof probably won't be
       able to get output from the lstat(2) and	stat(2)	functions for the file
       system.	 If  it	 can  obtain  the file system's	device number from the
       mount table, it will be able to display the files open on  the  crashed
       NFS server.

       Some  dialects  that  do	not use	an ASCII /etc/mtab or /etc/mnttab file
       for the mount table may still provide an	alternative device  number  in
       their internal mount tables.  This includes AIX,	Apple Darwin, FreeBSD,
       NetBSD, OpenBSD,	and Tru64 UNIX.	 Lsof knows how	to obtain the alterna-
       tive  device  number for	these dialects and uses	it when	its attempt to
       lstat(2)	or stat(2) the file system is blocked.

       If you're not sure your dialect supplies	alternate device  numbers  for
       file  systems from its mount table, use this lsof incantation to	see if
       it reports any alternate	device numbers:

	      lsof -b

       Look for	standard error file warning  messages  that  begin  ``assuming
       "dev=xxxx" from ...''.

KERNEL NAME CACHE
       Lsof  is	 able  to  examine the kernel's	name cache or use other	kernel
       facilities (e.g., the ADVFS  4.x	 tag_to_path()	function  under	 Tru64
       UNIX)  on  some dialects	for most file system types, excluding AFS, and
       extract recently	used path name components from it.  (AFS  file	system
       path  lookups don't use the kernel's name cache;	some Solaris VxFS file
       system operations apparently don't use it, either.)

       Lsof reports the	complete paths it finds	in the NAME column.   If  lsof
       can't  report  all  components in a path, it reports in the NAME	column
       the file	system name, followed by a space, two `-' characters,  another
       space,  and  the	 name  components it has located, separated by the `/'
       character.

       When lsof is run	in repeat mode - i.e., with the	-r option specified  -
       the  extent  to	which  it can report path name components for the same
       file may	vary from cycle	to cycle.  That's because other	 running  pro-
       cesses  can  cause the kernel to	remove entries from its	name cache and
       replace them with others.

       Lsof's use of the kernel	name cache to identify the paths of files  can
       lead  it	to report incorrect components under some circumstances.  This
       can happen when the kernel name cache uses device and node number as  a
       key  (e.g., SCO OpenServer) and a key on	a rapidly changing file	system
       is reused.  If the UNIX dialect's kernel	doesn't	purge the  name	 cache
       entry  for a file when it is unlinked, lsof may find a reference	to the
       wrong entry in the cache.  The lsof FAQ	(The  FAQ  section  gives  its
       location.)  has more information	on this	situation.

       Lsof can	report path name components for	these dialects:

	    FreeBSD
	    HP-UX
	    Linux
	    NetBSD
	    NEXTSTEP
	    OpenBSD
	    OPENSTEP
	    SCO	OpenServer
	    SCO|Caldera	UnixWare
	    Solaris
	    Tru64 UNIX

       Lsof can't report path name components for these	dialects:

	    AIX

       If you want to know why lsof can't report path name components for some
       dialects, see the lsof FAQ (The FAQ section gives its location.)

DEVICE CACHE FILE
       Examining all members of	the /dev (or /devices) node tree with  stat(2)
       functions  can  be  time	 consuming.  What's more, the information that
       lsof needs - device number, inode number, and path - rarely changes.

       Consequently, lsof normally maintains an	ASCII text file	of cached /dev
       (or  /devices) information (exception: the /proc-based Linux lsof where
       it's not	needed.)  The local system administrator who builds  lsof  can
       control	the  way  the device cache file	path is	formed,	selecting from
       these options:

	    Path from the -D option;
	    Path from an environment variable;
	    System-wide	path;
	    Personal path (the default);
	    Personal path, modified by an environment variable.

       Consult the output of the -h, -D? , or -?  help options for the current
       state  of  device  cache	 support.   The	 help output lists the default
       read-mode device	cache file path	that is	 in  effect  for  the  current
       invocation  of  lsof.   The  -D?	 option	output lists the read-only and
       write device cache file paths, the names	of any applicable  environment
       variables, and the personal device cache	path format.

       Lsof  can  detect  that the current device cache	file has been acciden-
       tally or	maliciously modified by	integrity checks, including the	compu-
       tation  and verification	of a sixteen bit Cyclic	Redundancy Check (CRC)
       sum on the file's contents.  When lsof senses something wrong with  the
       file, it	issues a warning and attempts to remove	the current cache file
       and create a new	copy, but only to a path that the process can  legiti-
       mately write.

       The  path  from which a lsof process may	attempt	to read	a device cache
       file may	not be the same	as the	path  to  which	 it  can  legitimately
       write.	Thus when lsof senses that it needs to update the device cache
       file, it	may choose a different path for	writing	it from	the path  from
       which it	read an	incorrect or outdated version.

       If  available,  the -Dr option will inhibit the writing of a new	device
       cache file.  (It's always available when	specified without a path  name
       argument.)

       When  a	new  device  is	added to the system, the device	cache file may
       need to be recreated.  Since lsof compares  the	mtime  of  the	device
       cache  file  with  the mtime and	ctime of the /dev (or /devices)	direc-
       tory, it	usually	detects	that a new device has been added; in that case
       lsof  issues a warning message and attempts to rebuild the device cache
       file.

       Whenever	lsof writes a device cache file, it sets its ownership to  the
       real  UID  of  the executing process, and its permission	modes to 0600,
       this restricting	its reading and	writing	to the file's owner.

LSOF PERMISSIONS THAT AFFECT DEVICE CACHE FILE ACCESS
       Two permissions of the lsof executable affect  its  ability  to	access
       device cache files.  The	permissions are	set by the local system	admin-
       istrator	when lsof is installed.

       The first and rarer permission is setuid-root.  It  comes  into	effect
       when  lsof  is executed;	its effective UID is then root,	while its real
       (i.e., that of the logged-on user) UID is not.  The  lsof  distribution
       recommends that versions	for these dialects run setuid-root.

	    HP-UX 11.11	and 11.23
	    Linux

       The  second and more common permission is setgid.  It comes into	effect
       when the	effective  group  IDentification  number  (GID)	 of  the  lsof
       process	is  set	 to  one that can access kernel	memory devices - e.g.,
       ``kmem'', ``sys'', or ``system''.

       An lsof process that has	setgid permission usually surrenders the  per-
       mission	after it has accessed the kernel memory	devices.  When it does
       that, lsof can allow more liberal device	cache  path  formations.   The
       lsof  distribution recommends that versions for these dialects run set-
       gid and be allowed to surrender setgid permission.

	    AIX	5.[12] and 5.3-ML1
	    Apple Darwin 7.x Power Macintosh systems
	    FreeBSD 4.x, 4.1x, 5.x and [6789].x	for x86-based systems
	    FreeBSD 5.x, [6789].x and 1[012].8for Alpha, AMD64 and Sparc64
		based systems
	    HP-UX 11.00
	    NetBSD 1.[456], 2.x	and 3.x	for Alpha, x86,	and SPARC-based
		systems
	    NEXTSTEP 3.[13] for	NEXTSTEP architectures
	    OpenBSD 2.[89] and 3.[0-9] for x86-based systems
	    OPENSTEP 4.x
	    SCO	OpenServer Release 5.0.6 for x86-based systems
	    SCO|Caldera	UnixWare 7.1.4 for x86-based systems
	    Solaris 2.6, 8, 9 and 10
	    Tru64 UNIX 5.1

       (Note: lsof for AIX 5L and above	needs setuid-root permission if	its -X
       option is used.)

       Lsof for	these dialects does not	support	a device cache,	so the permis-
       sions given to the executable don't apply to the	device cache file.

	    Linux

DEVICE CACHE FILE PATH FROM THE	-D OPTION
       The -D option provides limited means for	specifying  the	 device	 cache
       file  path.  Its	?  function will report	the read-only and write	device
       cache file paths	that lsof will use.

       When the	-D b, r, and u functions are available,	you can	 use  them  to
       request	that the cache file be built in	a specific location (b[path]);
       read but	not rebuilt (r[path]); or read and rebuilt (u[path]).  The  b,
       r,  and	u  functions  are  restricted under some conditions.  They are
       restricted when the lsof	process	is setuid-root.	  The  path  specified
       with the	r function is always read-only,	even when it is	available.

       The  b,	r,  and	 u functions are also restricted when the lsof process
       runs setgid and lsof doesn't surrender the setgid permission.  (See the
       LSOF  PERMISSIONS  THAT	AFFECT	DEVICE CACHE FILE ACCESS section for a
       list of implementations that normally don't surrender their setgid per-
       mission.)

       A further -D function, i	(for ignore), is always	available.

       When  available,	 the  b	function tells lsof to read device information
       from the	kernel with the	stat(2)	function and build a device cache file
       at the indicated	path.

       When  available,	 the  r	 function  tells lsof to read the device cache
       file, but not update it.	 When a	 path  argument	 accompanies  -Dr,  it
       names  the  device cache	file path.  The	r function is always available
       when it is specified without a path name	argument.  If lsof is not run-
       ning  setuid-root  and  surrenders  its	setgid permission, a path name
       argument	may accompany the r function.

       When available, the u function tells lsof to attempt to	read  and  use
       the  device  cache file.	 If it can't read the file, or if it finds the
       contents	of the file incorrect or outdated, it  will  read  information
       from  the kernel, and attempt to	write an updated version of the	device
       cache file, but only to a path it considers  legitimate	for  the  lsof
       process effective and real UIDs.

DEVICE CACHE PATH FROM AN ENVIRONMENT VARIABLE
       Lsof's  second  choice for the device cache file	is the contents	of the
       LSOFDEVCACHE environment	variable.  It avoids this choice if  the  lsof
       process is setuid-root, or the real UID of the process is root.

       A  further  restriction	applies	to a device cache file path taken from
       the LSOFDEVCACHE	environment variable: lsof will	 not  write  a	device
       cache file to the path if the lsof process doesn't surrender its	setgid
       permission.  (See the LSOF PERMISSIONS THAT AFFECT  DEVICE  CACHE  FILE
       ACCESS  section for information on implementations that don't surrender
       their setgid permission.)

       The local system	administrator can disable the use of the  LSOFDEVCACHE
       environment  variable  or  change its name when building	lsof.  Consult
       the output of -D?  for the environment variable's name.

SYSTEM-WIDE DEVICE CACHE PATH
       The local system	administrator may choose to have a system-wide	device
       cache file when building	lsof.  That file will generally	be constructed
       by a special system administration procedure when the system is	booted
       or  when	 the contents of /dev or /devices) changes.  If	defined, it is
       lsof's third device cache file path choice.

       You can tell that a system-wide device cache file is in effect for your
       local installation by examining the lsof	help option output - i.e., the
       output from the -h or -?	 option.

       Lsof will never write to	the system-wide	 device	 cache	file  path  by
       default.	  It  must  be	explicitly  named  with	 a  -D	function  in a
       root-owned procedure.  Once the file has	been  written,	the  procedure
       must  change  its permission modes to 0644 (owner-read and owner-write,
       group-read, and other-read).

PERSONAL DEVICE	CACHE PATH (DEFAULT)
       The default device cache	file path of  the  lsof	 distribution  is  one
       recorded	 in  the  home	directory  of the real UID that	executes lsof.
       Added to	the home directory is a	second	path  component	 of  the  form
       .lsof_hostname.

       This is lsof's fourth device cache file path choice, and	is usually the
       default.	 If a system-wide device cache file path was defined when lsof
       was  built, this	fourth choice will be applied when lsof	can't find the
       system-wide device cache	file.  This is the only	 time  lsof  uses  two
       paths when reading the device cache file.

       The  hostname part of the second	component is the base name of the exe-
       cuting host, as returned	by gethostname(2).  The	base name  is  defined
       to  be  the  characters	preceding the first `.'	 in the	gethostname(2)
       output, or all the gethostname(2) output	if it contains no `.'.

       The device cache	file belongs to	 the  user  ID	and  is	 readable  and
       writable	 by  the  user ID alone	- i.e.,	its modes are 0600.  Each dis-
       tinct real user ID on a given host that executes	lsof  has  a  distinct
       device  cache file.  The	hostname part of the path distinguishes	device
       cache files in an NFS-mounted home directory into  which	 device	 cache
       files are written from several different	hosts.

       The  personal device cache file path formed by this method represents a
       device cache file that lsof will	attempt	to read, and will  attempt  to
       write  should  it not exist or should its contents be incorrect or out-
       dated.

       The -Dr option without a	path name argument will	inhibit	the writing of
       a new device cache file.

       The -D?	option will list the format specification for constructing the
       personal	device cache file.  The	conversions used in the	format	speci-
       fication	are described in the 00DCACHE file of the lsof distribution.

MODIFIED PERSONAL DEVICE CACHE PATH
       If  this	 option	is defined by the local	system administrator when lsof
       is built, the LSOFPERSDCPATH environment	variable contents may be  used
       to add a	component of the personal device cache file path.

       The  LSOFPERSDCPATH  variable  contents are inserted in the path	at the
       place marked by the local system	administrator with the ``%p''  conver-
       sion  in	 the HASPERSDC format specification of the dialect's machine.h
       header file.  (It's placed  right  after	 the  home  directory  in  the
       default lsof distribution.)

       Thus, for example, if LSOFPERSDCPATH contains ``LSOF'', the home	direc-
       tory is ``/Homes/abe'', the host	name is	``lsof.itap.purdue.edu'',  and
       the  HASPERSDC  format is the default (``%h/%p.lsof_%L''), the modified
       personal	device cache file path is:

	    /Homes/abe/LSOF/.lsof_vic

       The LSOFPERSDCPATH  environment	variable  is  ignored  when  the  lsof
       process is setuid-root or when the real UID of the process is root.

       Lsof  will  not	write to a modified personal device cache file path if
       the lsof	process	doesn't	surrender setgid permission.   (See  the  LSOF
       PERMISSIONS  THAT AFFECT	DEVICE CACHE FILE ACCESS section for a list of
       implementations that normally don't surrender their setgid permission.)

       If,  for	example, you want to create a sub-directory of personal	device
       cache file paths	by using the LSOFPERSDCPATH  environment  variable  to
       name  it,  and  lsof  doesn't surrender its setgid permission, you will
       have to allow lsof to create device cache files at  the	standard  per-
       sonal path and move them	to your	subdirectory with shell	commands.

       The  local  system  administrator may: disable this option when lsof is
       built; change the name of the environment variable from	LSOFPERSDCPATH
       to  something else; change the HASPERSDC	format to include the personal
       path component in another place;	or exclude the personal	path component
       entirely.   Consult  the	 output	of the -D?  option for the environment
       variable's name and the HASPERSDC format	specification.

DIAGNOSTICS
       Errors are identified with messages on the standard error file.

       Lsof returns a one (1) if any error was detected, including the failure
       to locate command names,	file names, Internet addresses or files, login
       names, NFS files, PIDs, PGIDs, or UIDs it was asked to list.  If	the -V
       option  is  specified, lsof will	indicate the search items it failed to
       list.

       It returns a zero (0) if	no errors were detected	and if it was able  to
       list some information about all the specified search arguments.

       When lsof cannot	open access to /dev (or	/devices) or one of its	subdi-
       rectories, or get information on	a file in them with stat(2), it	issues
       a warning message and continues.	 That lsof will	issue warning messages
       about inaccessible files	in /dev	(or /devices) is indicated in its help
       output -	requested with the -h or >B -?	options	-  with	the message:

	    Inaccessible /dev warnings are enabled.

       The  warning message may	be suppressed with the -w option.  It may also
       have been suppressed by the system administrator	when lsof was compiled
       by the setting of the WARNDEVACCESS definition.	In this	case, the out-
       put from	the help options will include the message:

	    Inaccessible /dev warnings are disabled.

       Inaccessible device warning messages usually disappear after  lsof  has
       created a working device	cache file.

EXAMPLES
       For  a  more  extensive set of examples,	documented more	fully, see the
       00QUICKSTART file of the	lsof distribution.

       To list all open	files, use:

	      lsof

       To list all open	Internet, x.25 (HP-UX),	and UNIX domain	files, use:

	      lsof -i -U

       To list all open	IPv4 network files in use by the process whose PID  is
       1234, use:

	      lsof -i 4	-a -p 1234

       Presuming  the  UNIX dialect supports IPv6, to list only	open IPv6 net-
       work files, use:

	      lsof -i 6

       To list all files using any protocol on ports 513, 514, or 515 of  host
       wonderland.cc.purdue.edu, use:

	      lsof -i @wonderland.cc.purdue.edu:513-515

       To  list	all files using	any protocol on	any port of mace.cc.purdue.edu
       (cc.purdue.edu is the default domain), use:

	      lsof -i @mace

       To list all open	files for login	name ``abe'',  or  user	 ID  1234,  or
       process 456, or process 123, or process 789, use:

	      lsof -p 456,123,789 -u 1234,abe

       To list all open	files on device	/dev/hd4, use:

	      lsof /dev/hd4

       To find the process that	has /u/abe/foo open, use:

	      lsof /u/abe/foo

       To send a SIGHUP	to the processes that have /u/abe/bar open, use:

	      kill -HUP	`lsof -t /u/abe/bar`

       To  find	any open file, including an open UNIX domain socket file, with
       the name	/dev/log, use:

	      lsof /dev/log

       To find processes  with	open  files  on	 the  NFS  file	 system	 named
       /nfs/mount/point	whose server is	inaccessible, and presuming your mount
       table supplies the device number	for /nfs/mount/point, use:

	      lsof -b /nfs/mount/point

       To do the preceding search with warning messages	suppressed, use:

	      lsof -bw /nfs/mount/point

       To ignore the device cache file,	use:

	      lsof -Di

       To obtain PID and command name field  output  for  each	process,  file
       descriptor,  file device	number,	and file inode number for each file of
       each process, use:

	      lsof -FpcfDi

       To list the files at descriptors	1 and 3	of every process  running  the
       lsof command for	login ID ``abe'' every 10 seconds, use:

	      lsof -c lsof -a -d 1 -d 3	-u abe -r10

       To  list	 the  current working directory	of processes running a command
       that is exactly four characters long and	has an 'o' or 'O' in character
       three, use this regular expression form of the -c c option:

	      lsof -c /^..o.$/i	-a -d cwd

       To  find	an IP version 4	socket file by its associated numeric dot-form
       address,	use:

	      lsof -i@128.210.15.17

       To find an IP version 6 socket file (when  the  UNIX  dialect  supports
       IPv6) by	its associated numeric colon-form address, use:

	      lsof -i@[0:1:2:3:4:5:6:7]

       To  find	 an  IP	 version 6 socket file (when the UNIX dialect supports
       IPv6) by	an associated numeric colon-form address that  has  a  run  of
       zeroes in it - e.g., the	loop-back address - use:

	      lsof -i@[::1]

       To  obtain  a  repeat  mode marker line that contains the current time,
       use:

	      lsof -rm====%T====

       To add spaces to	the previous marker line, use:

	      lsof -r "m==== %T	===="

BUGS
       Since lsof reads	kernel memory in its  search  for  open	 files,	 rapid
       changes in kernel memory	may produce unpredictable results.

       When  a file has	multiple record	locks, the lock	status character (fol-
       lowing the file descriptor) is derived from a test of  the  first  lock
       structure, not from any combination of the individual record locks that
       might be	described by multiple lock structures.

       Lsof can't search for files with	restrictive access permissions by name
       unless  it  is installed	with root set-UID permission.  Otherwise it is
       limited to searching for	files to which its user	or its	set-GID	 group
       (if any)	has access permission.

       The display of the destination address of a raw socket (e.g., for ping)
       depends on the UNIX operating system.  Some dialects store the destina-
       tion address in the raw socket's	protocol control block,	some do	not.

       Lsof can't always represent Solaris device numbers in the same way that
       ls(1) does.  For	example, the major and minor device numbers  that  the
       lstat(2)	and stat(2) functions report for the directory on which	CD-ROM
       files are mounted (typically /cdrom) are	not the	same as	the ones  that
       it  reports for the device on which CD-ROM files	are mounted (typically
       /dev/sr0).  (Lsof reports the directory numbers.)

       The support for /proc file systems is available only for	BSD and	 Tru64
       UNIX  dialects,	Linux,	and  dialects  derived	from  SYSV  R4 - e.g.,
       FreeBSD,	NetBSD,	OpenBSD, Solaris, UnixWare.

       Some /proc file items - device number, inode number, and	 file  size  -
       are  unavailable	in some	dialects.  Searching for files in a /proc file
       system may require that the full	path name be specified.

       No text (txt) file descriptors are displayed for	Linux processes.   All
       entries	for  files  other than the current working directory, the root
       directory, and numerical	file descriptors are labeled mem  descriptors.

       Lsof  can't  search  for	 Tru64 UNIX named pipes	by name, because their
       kernel implementation of	lstat(2) returns an improper device number for
       a named pipe.

       Lsof  can't  report  fully or correctly on HP-UX	9.01, 10.20, and 11.00
       locks because of	insufficient access to kernel data or  errors  in  the
       kernel  data.   See  the	lsof FAQ (The FAQ section gives	its location.)
       for details.

       The AIX SMT file	type is	a fabrication.	It's made up for  file	struc-
       tures  whose type (15) isn't defined in the AIX /usr/include/sys/file.h
       header file.  One way to	create	such  file  structures	is  to	run  X
       clients with the	DISPLAY	variable set to	``:0.0''.

       The  +|-f[cfgGn]	 option	is not supported under /proc-based Linux lsof,
       because it doesn't read kernel structures from kernel memory.

ENVIRONMENT
       Lsof may	access these environment variables.

       LANG		 defines a language locale.  See setlocale(3) for  the
			 names of other	variables that can be used in place of
			 LANG -	e.g., LC_ALL, LC_TYPE, etc.

       LSOFDEVCACHE	 defines the path to a device  cache  file.   See  the
			 DEVICE	 CACHE	PATH FROM AN ENVIRONMENT VARIABLE sec-
			 tion for more information.

       LSOFPERSDCPATH	 defines the middle component of a  modified  personal
			 device	 cache	file  path.  See the MODIFIED PERSONAL
			 DEVICE	CACHE PATH section for more information.

FAQ
       Frequently-asked	questions and their answers (an	FAQ) are available  in
       the 00FAQ file of the lsof distribution.

       That file is also available via anonymous ftp from lsof.itap.purdue.edu
       at pub/tools/unix/lsofFAQ.  The URL is:

	      ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof/FAQ

FILES
       /dev/kmem	 kernel	virtual	memory device

       /dev/mem		 physical memory device

       /dev/swap	 system	paging device

       .lsof_hostname	 lsof's	device cache file (The	suffix,	 hostname,  is
			 the  first  component	of the host's name returned by
			 gethostname(2).)

AUTHORS
       Lsof was	written	by Victor A.Abell <abe@purdue.edu> of  Purdue  Univer-
       sity.   Many  others  have  contributed to lsof.	 They're listed	in the
       00CREDITS file of the lsof distribution.

DISTRIBUTION
       The latest distribution of lsof is available via	anonymous ftp from the
       host  lsof.itap.purdue.edu.   You'll  find the lsof distribution	in the
       pub/tools/unix/lsof directory.

       You can also use	this URL:

	      ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof

       Lsof is also mirrored elsewhere.	 When you access  lsof.itap.purdue.edu
       and change to its pub/tools/unix/lsof directory,	you'll be given	a list
       of some mirror sites.  The pub/tools/unix/lsof directory	also  contains
       a  more	complete list in its mirrors file.  Use	mirrors	with caution -
       not all mirrors always have the latest lsof revision.

       Some pre-compiled Lsof  executables  are	 available  on	lsof.itap.pur-
       due.edu,	but their use is discouraged - it's better that	you build your
       own from	the sources.  If you feel you must  use	 a  pre-compiled  exe-
       cutable,	 please	 read  the cautions that appear	in the README files of
       the pub/tools/unix/lsof/binaries	subdirectories and in the 00* files of
       the distribution.

       More  information  on  the  lsof	 distribution  can  be	found  in  its
       README.lsof__version_ file.  If you intend to get the lsof distribution
       and build it, please read README.lsof__version_ and the other 00* files
       of the distribution before sending questions to the author.

SEE ALSO
       Not all the following manual pages may exist in every UNIX  dialect  to
       which lsof has been ported.

       access(2),  awk(1),  crash(1),  fattach(3C), ff(1), fstat(8), fuser(1),
       gethostname(2),	isprint(3),  kill(1),  localtime(3),  lstat(2),	  mod-
       load(8),	mount(8), netstat(1), ofiles(8L), perl(1), ps(1), readlink(2),
       setlocale(3), stat(2), strftime(3), time(2), uname(1).

				 Revision-4.90			       LSOF(8)

NAME | SYNOPSIS | DESCRIPTION | OPTIONS | AFS | SECURITY | OUTPUT | LOCKS | OUTPUT FOR OTHER PROGRAMS | BLOCKS AND TIMEOUTS | AVOIDING KERNEL BLOCKS | ALTERNATE DEVICE NUMBERS | KERNEL NAME CACHE | DEVICE CACHE FILE | LSOF PERMISSIONS THAT AFFECT DEVICE CACHE FILE ACCESS | DEVICE CACHE FILE PATH FROM THE -D OPTION | DEVICE CACHE PATH FROM AN ENVIRONMENT VARIABLE | SYSTEM-WIDE DEVICE CACHE PATH | PERSONAL DEVICE CACHE PATH (DEFAULT) | MODIFIED PERSONAL DEVICE CACHE PATH | DIAGNOSTICS | EXAMPLES | BUGS | ENVIRONMENT | FAQ | FILES | AUTHORS | DISTRIBUTION | SEE ALSO

Want to link to this manual page? Use this URL:
<https://www.freebsd.org/cgi/man.cgi?query=lsof&manpath=FreeBSD+11.0-RELEASE+and+Ports>

home | help