Skip site navigation (1)Skip section navigation (2)

FreeBSD Manual Pages

  
 
  

home | help
bus_set_resource(9)
associate a definite resource with a given resource ID
fold(1)
fold long lines for finite width output device
fpclassify(3), isfinite(3), isinf(3), isnan(3), isnormal(3)
classify a floating-point number
pthread_mutex_timedlock(3)
lock a mutex without blocking indefinitely
ADMISSIONS(3), ADMISSIONS_get0_admissionAuthority(3), ADMISSIONS_get0_namingAuthority(3), ADMISSIONS_get0_professionInfos(3), ADMISSIONS_set0_admissionAuthority(3), ADMISSIONS_set0_namingAuthority(3), ADMISSIONS_set0_professionInfos(3), ADMISSION_SYNTAX(3), ADMISSION_SYNTAX_get0_admissionAuthority(3), ADMISSION_SYNTAX_get0_contentsOfAdmissions(3), ADMISSION_SYNTAX_set0_admissionAuthority(3), ADMISSION_SYNTAX_set0_contentsOfAdmissions(3), NAMING_AUTHORITY(3), NAMING_AUTHORITY_get0_authorityId(3), NAMING_AUTHORITY_get0_authorityURL(3), NAMING_AUTHORITY_get0_authorityText(3), NAMING_AUTHORITY_set0_authorityId(3), NAMING_AUTHORITY_set0_authorityURL(3), NAMING_AUTHORITY_set0_authorityText(3), PROFESSION_INFO(3), PROFESSION_INFOS(3), PROFESSION_INFO_get0_addProfessionInfo(3), PROFESSION_INFO_get0_namingAuthority(3), PROFESSION_INFO_get0_professionItems(3), PROFESSION_INFO_get0_professionOIDs(3), PROFESSION_INFO_get0_registrationNumber(3), PROFESSION_INFO_set0_addProfessionInfo(3), PROFESSION_INFO_set0_namingAuthority(3), PROFESSION_INFO_set0_professionItems(3), PROFESSION_INFO_set0_professionOIDs(3), PROFESSION_INFO_set0_registrationNumber(3)
Accessors and settors for ADMISSION_SYNTAX
BSpar_isolve(3)
Solve a symmetric indefinite system of equations using symmlq preconditioned by one of several preconditioners
BSpar_sym_solve(3)
Solve a symmetric positive definite system of equations using conjugate gradients preconditioned by one of several preconditioners. The rhs can be a block of vectors. The user should not call this function directly, but BSpar_solve()
SDL_WaitEvent(3)
Waits indefinitely for the next available event
activateCDKSelection(3), activateCDKSelection destroyCDKSelection drawCDKSelection eraseCDKSelection getCDKSelectionBox getCDKSelectionChoice getCDKSelectionChoices getCDKSelectionCurrent getCDKSelectionHighlight getCDKSelectionItems getCDKSelectionMode getCDKSelectionModes getCDKSelectionTitle injectCDKSelection moveCDKSelection newCDKSelection positionCDKSelection setCDKSelection setCDKSelectionBackgroundAttrib setCDKSelectionBackgroundColor setCDKSelectionBox setCDKSelectionBoxAttribute setCDKSelectionChoice setCDKSelectionChoices setCDKSelectionCurrent setCDKSelectionHighlight setCDKSelectionHorizontalChar setCDKSelectionItems setCDKSelectionLLChar setCDKSelectionLRChar setCDKSelectionMode setCDKSelectionModes setCDKSelectionPostProcess setCDKSelectionPreProcess setCDKSelectionTitle setCDKSelectionULChar setCDKSelectionURChar setCDKSelectionVerticalChar cdk_selection(3)
curses selection list widget
bus_set_resource(9)
associate a definite resource with a given resource ID
create_bmp_for_stripline_coupler(1)
bitmap generator for coupler with thin striplines between two infinitely wide groundplanes (part of atlc)
create_bmp_for_symmetrical_stripline(1)
bitmap generator for thin conductor between two infinite groundplanes (part of atlc)
fold(1)
fold long lines for finite width output device
fpclassify(3), isfinite(3), isinf(3), isnan(3), isnormal(3)
classify a floating-point number
fsm(1)
Finite State Machine representation. man1/alc_origin.1
fsm(5)
Alliance VHDL Finite State Machine description subset. man1/alc_origin.1
glFlush(3), "glFlush(3)
force execution of GL commands in finite time
gmsh(1), Gmsh(1)
3D finite element mesh generator with built-in CAD engine and post-processor
iv_init(3), iv_deinit(3), iv_inited(3)
initialise and deinitialise ivykis
ldns-zcat(1)
reunite (z)split up a zone files
minetest(6)
Multiplayer infinite-world block sandbox
minetest(6), minetestserver(6)
Multiplayer infinite-world block sandbox
pchegs2(l), PCHEGS2(l)
reduce a complex Hermitian-definite generalized eigenproblem to standard form
pchegst(l), PCHEGST(l)
reduce a complex Hermitian-definite generalized eigenproblem to standard form
pcpbtrf(l), PCPBTRF(l)
compute a Cholesky factorization of an N-by-N complex banded symmetric positive definite distributed matrix with bandwidth BW
pcpocon(l), PCPOCON(l)
estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite distributed matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by PCPOTRF
pcpoequ(l), PCPOEQU(l)
compute row and column scalings intended to equilibrate a distributed Hermitian positive definite matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) and reduce its condition number (with respect to the two-norm)
pcporfs(l), PCPORFS(l)
improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian positive definite and provides error bounds and backward error estimates for the solutions
pcpotf2(l), PCPOTF2(l)
compute the Cholesky factorization of a complex hermitian positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
pcpotrf(l), PCPOTRF(l)
compute the Cholesky factorization of an N-by-N complex hermitian positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
pcpotri(l), PCPOTRI(l)
compute the inverse of a complex Hermitian positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**H*U or L*L**H computed by PCPOTRF
pcpttrf(l), PCPTTRF(l)
compute a Cholesky factorization of an N-by-N complex tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
pdfunite(1)
Portable Document Format (PDF) page merger
pdnmesh(1)
A 2D finite element mesh generator and solver
pdnmesh_input(5), pdnmesh input format(5)
used by pdnmesh, a 2D finite element program
pdpbtrf(l), PDPBTRF(l)
compute a Cholesky factorization of an N-by-N real banded symmetric positive definite distributed matrix with bandwidth BW
pdpocon(l), PDPOCON(l)
estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite distributed matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by PDPOTRF
pdpoequ(l), PDPOEQU(l)
compute row and column scalings intended to equilibrate a distributed symmetric positive definite matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) and reduce its condition number (with respect to the two-norm)
pdporfs(l), PDPORFS(l)
improve the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite and provides error bounds and backward error estimates for the solutions
pdpotf2(l), PDPOTF2(l)
compute the Cholesky factorization of a real symmetric positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
pdpotrf(l), PDPOTRF(l)
compute the Cholesky factorization of an N-by-N real symmetric positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
pdpotri(l), PDPOTRI(l)
compute the inverse of a real symmetric positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**T*U or L*L**T computed by PDPOTRF
pdpttrf(l), PDPTTRF(l)
compute a Cholesky factorization of an N-by-N real tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
pdsygs2(l), PDSYGS2(l)
reduce a real symmetric-definite generalized eigenproblem to standard form
pdsygst(l), PDSYGST(l)
reduce a real symmetric-definite generalized eigenproblem to standard form
pspbtrf(l), PSPBTRF(l)
compute a Cholesky factorization of an N-by-N real banded symmetric positive definite distributed matrix with bandwidth BW
pspocon(l), PSPOCON(l)
estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite distributed matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by PSPOTRF
pspoequ(l), PSPOEQU(l)
compute row and column scalings intended to equilibrate a distributed symmetric positive definite matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) and reduce its condition number (with respect to the two-norm)
psporfs(l), PSPORFS(l)
improve the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite and provides error bounds and backward error estimates for the solutions
pspotf2(l), PSPOTF2(l)
compute the Cholesky factorization of a real symmetric positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
pspotrf(l), PSPOTRF(l)
compute the Cholesky factorization of an N-by-N real symmetric positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
pspotri(l), PSPOTRI(l)
compute the inverse of a real symmetric positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**T*U or L*L**T computed by PSPOTRF
pspttrf(l), PSPTTRF(l)
compute a Cholesky factorization of an N-by-N real tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
pssygs2(l), PSSYGS2(l)
reduce a real symmetric-definite generalized eigenproblem to standard form
pssygst(l), PSSYGST(l)
reduce a real symmetric-definite generalized eigenproblem to standard form
pthread_mutex_timedlock(3)
lock a mutex without blocking indefinitely
pzhegs2(l), PZHEGS2(l)
reduce a complex Hermitian-definite generalized eigenproblem to standard form
pzhegst(l), PZHEGST(l)
reduce a complex Hermitian-definite generalized eigenproblem to standard form
pzpbtrf(l), PZPBTRF(l)
compute a Cholesky factorization of an N-by-N complex banded symmetric positive definite distributed matrix with bandwidth BW
pzpocon(l), PZPOCON(l)
estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite distributed matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by PZPOTRF
pzpoequ(l), PZPOEQU(l)
compute row and column scalings intended to equilibrate a distributed Hermitian positive definite matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) and reduce its condition number (with respect to the two-norm)
pzporfs(l), PZPORFS(l)
improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian positive definite and provides error bounds and backward error estimates for the solutions
pzpotf2(l), PZPOTF2(l)
compute the Cholesky factorization of a complex hermitian positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
pzpotrf(l), PZPOTRF(l)
compute the Cholesky factorization of an N-by-N complex hermitian positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
pzpotri(l), PZPOTRI(l)
compute the inverse of a complex Hermitian positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**H*U or L*L**H computed by PZPOTRF
pzpttrf(l), PZPTTRF(l)
compute a Cholesky factorization of an N-by-N complex tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
sc_CartesianIter(3), sc::CartesianIter(3)
CartesianIter gives the ordering of the Cartesian functions within a shell for the particular integrals specialization
sc_FinDispMolecularHessian(3), sc::FinDispMolecularHessian(3)
Computes the molecular hessian by finite displacements of gradients
sc_RedundantCartesianIter(3), sc::RedundantCartesianIter(3)
RedundantCartesianIter objects loop through all possible combinations of a given number of axes
sc_RedundantCartesianSubIter(3), sc::RedundantCartesianSubIter(3)
Like RedundantCartesianIter, except a, b, and c are fixed to a given value
stairs(6)
Escher's infinite staircase
syf(1), SYF(1)
Finite State Machine synthesizer. man1/alc_origin.1
tex(1), initex(1)
text formatting and typesetting
Bio::TreeIO::NewickParser(3), Module(3)
which implements a newick string parser as a finite state machine which enables it to parse the full Newick specification. Taken largely from the Ensembl Compara file with the same name (Bio::EnsEMBL::Compara::Graph::NewickParser), this module adapts the parser to work with BioPerl's event handler-based parsing scheme. This module is used by nhx.pm and newick.pm, and is NOT called directly. Instead, both of those parsing modules extend this module in order to gain access to the main parsing method
CAD::Drawing::Calculate::Finite(3)
Vector graphics and limited space
Convert::IBM390::CP00285(3)
EBCDIC United Kingdom
Convert::IBM390::CP01146(3)
EBCDIC United Kingdom (Euro)
DateTime::Infinite(3)
Infinite past and future DateTime objects
DateTime::Locale::ar_AE(3)
Locale data examples for the Arabic United Arab Emirates (ar-AE) locale
DateTime::Locale::chr_US(3)
Locale data examples for the Cherokee United States (chr-US) locale
DateTime::Locale::cy_GB(3)
Locale data examples for the Welsh United Kingdom (cy-GB) locale
DateTime::Locale::en_GB(3)
Locale data examples for the English United Kingdom (en-GB) locale
DateTime::Locale::en_US(3)
Locale data examples for the English United States (en-US) locale
DateTime::Locale::en_US_POSIX(3)
Locale data examples for the English United States Computer (en-US-POSIX) locale
DateTime::Locale::es_US(3)
Locale data examples for the Spanish United States (es-US) locale
DateTime::Locale::gd_GB(3)
Locale data examples for the Scottish Gaelic United Kingdom (gd-GB) locale
DateTime::Locale::haw_US(3)
Locale data examples for the Hawaiian United States (haw-US) locale
DateTime::Locale::kw_GB(3)
Locale data examples for the Cornish United Kingdom (kw-GB) locale
DateTime::Locale::lkt_US(3)
Locale data examples for the Lakota United States (lkt-US) locale
Gtk2::Gdk::PixbufAnimationIter(3)
wrapper for GdkPixbufAnimationIter
JQuery::Taconite(3)
an Ajax interface
Locale::US(3)
Two letter codes for state identification in the United States and vice versa
Marpa::PP::Semantics::Infinite(3)
How Marpa Deals with Infinite Cycles
Marpa::XS::Semantics::Infinite(3)
How Marpa Deals with Infinite Cycles
Number::Tolerant::Type::infinite(3)
an infinite tolerance
POE::NFA(3)
an event-driven state machine (nondeterministic finite automaton)
Search::Xapian::PositionIterator(3)
Iterate over sets of positions
Set::Infinite(3)
Sets of intervals
Set::Infinite::Basic(3)
Sets of intervals 6 =head1 SYNOPSIS use Set::Infinite::Basic; $set = Set::Infinite::Basic->new(1,2); # [1..2] print $set->union(5,6); # [1..2],[5..6]
Set::Infinite::_recurrence(3)
Extends Set::Infinite with recurrence functions
gen_fsm(3)
Generic Finite State Machine Behaviour
tv_grab_uk_bleb(1)
Grab TV listings for the United Kingdom, from bleb.org
tv_grab_uk_rt(1)
Grab TV listings for United Kingdom/Republic of Ireland
home | help