
XAPP536 (v1.1) June 3, 2004 www.xilinx.com 1
1-800-255-7778

© 2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary This application note describes the Gigabit System Reference Design (GSRD). The GSRD
leverages the techniques outlined in Xilinx application note XAPP535 (available online soon) to
demonstrate a high-performance Gigabit Ethernet reference system using a Xilinx Virtex-
II Pro™ Field-Programmable Gate Array (FPGA). This application note contains four major
sections.

The “GSRD EDK Reference System” section discusses how the GSRD EDK Reference
System (ml300_gsrd_gemac_tft) included in the design files, is capable of booting the
Linux operating system, and running Netperf over the Gigabit Ethernet link. The reference
system has been built and verified using the Xilinx ML300 Evaluation Platform, Xilinx ISE FPGA
tools, and the Xilinx Embedded Development Kit (EDK). The GSRD EDK Reference System
(ml300_gsrd_gemac_tft) consists of the three main elements:

• Multi Port Memory Controller (MPMC)

• Communications DMA Controller (CDMAC)

• LocalLink GMAC Peripheral

The MPMC is a quad port memory controller that is used to provide memory access for the
PPC405 and DMA engines. The PPC405 CPU is a Harvard architecture CPU; therefore, it
provides separate Processor Local Bus (PLB) ports for the instructions and data. GSRD
connects the Instruction and Data MB ports to two of the ports on the MPMC.

The CDMAC uses two ports of the MPMC to provide two full duplex channels of DMA.
XAPP535 describes the MPMC and CDMAC system components in greater detail, and the
benefits of a multi-ported memory controller.

The LocalLink GMAC Peripheral provides a Gigabit Ethernet Interface. This peripheral uses a
streaming interface – the Xilinx LocalLink interface. LocalLink is a lightweight streaming
interface for communication devices that provides a simple protocol to transfer data in a single
direction. Full duplex communication devices such as the GMAC Peripheral utilize two
LocalLink interfaces. The LocalLink interface specification can be found by registering for the
Aurora Reference Design.

The “GSRD Hardware Peripheral Data Sheets” section contains data sheets for each hardware
peripheral in GSRD.

The “GSRD Software Components” section provides an overview of the software provided with
GSRD. GSRD provides two software applications as performance metrics: bare metal Ethernet
and Netperf on Linux. These applications will help to explore the boundaries of performance
that exist in various use models.

The “Building the GSRD Reference System under EDK” section contains instructions for using
EDK to build the GSRD Reference System, run simulations, and run applications on real
hardware (Xilinx ML300 Evaluation Platform).

Application Note: Virtex-II™ Pro

XAPP536 (v1.1) June 3, 2004

Gigabit System Reference Design
Author: Xilinx Systems Engineering Group

R

http://www.xilinx.com/aurora/
http://www.xilinx.com/ml300/

2 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

Introduction
R

Introduction The six key ideas upon which GSRD relies for high performance are outlined below:

• Parallel architecture leveraged from XAPP535

• The PPC 405 does not process payload data

• Support for Arbitrary Alignment of DMA Buffers using byte re-alignment

• Transport layer checksum offload

• Jumbo frames (9KB)

• Interrupt Moderation

GSRD alleviates the PPC 405 CPU from processing payload data by eliminating the need for
the processor to move data buffers and perform checksum calculations over the payload data.
The PPC405 processes only the headers of TCP/IP and related protocols.

Byte re-alignment is a feature of the CDMAC described in XAPP535. It is significant for GSRD
because Ethernet and TCP/IP are byte wide protocols. The CDMAC contains byte-shifting logic
to support the movement from/to any memory byte offset. This feature eliminates the
requirement for the CPU to copy buffers before DMA occurs, relieving pressure on memory
bandwidth and freeing the processor to do other work.

The LocalLink GMAC Peripheral is capable of performing the checksum calculation in
hardware as the payload data is DMA’d from memory to the peripheral (and vice versa). The
combination of the support for byte re-alignment and checksum offload serves to completely
remove the PPC405 CPU from the high-speed Ethernet data path.

Standard Ethernet uses 1518 byte frames. Jumbo frame enabled Ethernet uses larger frames
– typically 9KB. The support of Jumbo frames reduces the number of Ethernet frames per
datum. Utilizing Jumbo frames, more data is transferred on the network with the same PPC405
header-processing rate.

Instead of interrupting the processor on every Ethernet frame, Interrupt Moderation waits until
there are several frames to process before interrupting the processor, amortizing the interrupt
overhead across multiple Ethernet frames. If too many interrupts are generated, the CPU will
spend all of its time processing these interrupts, and no time executing application code. This
is a state known as live lock. Using jumbo frames helps to eliminate the occurrence of live lock.

GSRD EDK
Reference
System

This section describes the contents of the GSRD Reference System and provides information
about how the system is organized, implemented, and verified. The information presented
introduces many aspects of the reference system, but additional and more detailed information
about the software, tools, peripherals, and interface protocols exists in the “GSRD Hardware
Peripheral Data Sheets” section and the “GSRD Software Components” section, as well as in
XAPP535.

The GSRD EDK Reference System can be found in the ZIP file under the following directory.

gsrd/projects/ml300_gsrd_gemac_tft/

Hardware

Figure 1 provides a high-level view of the hardware components of the system. This design
demonstrates a system built around the MPMC coupled with 32-bit DDR SDRAM memory. A
dual engine CDMAC connects to two ports of the MPMC. The instruction and data side
PPC405 ports connect to the other two MPMC ports via PLB-to-MPMC Interface modules.
LocalLink interfaces connect the CDMAC to the Gigabit Ethernet MAC, Color Bar Data
Generator, and TFT Controller. LocalLink is a protocol specification optimized for high-
performance streaming communications applications such as Gigabit Ethernet.

Lower bandwidth devices such as the Universal Asynchronous Receiver Transmitter (UART),
Interrupt Controller, and the General Purpose Input Output (GPIO) are attached to the CPU
DCR bus. DCR is an IBM CoreConnect bus primarily used with control and status registers

GSRD EDK Reference System

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 3
1-800-255-7778

R

where simplicity is desired. Refer to the DCR CoreConnect Architecture Specifications for more
information. The use of DCR for peripherals reduces the loading on the high bandwidth MPMC
ports while minimizing FPGA resource utilization since large bus bridges can be avoided.

MPMC

The MPMC allows the 32-bit DDR SDRAM memory resource to be shared over 4 independent
interface ports. More information about the MPMC and CDMAC components is available in
XAPP535.

Two MPMC ports are connected to the two PLB ports of the PPC405 via PLB to MPMC
Interface modules. The PLB to MPMC Interfaces translates transactions from the Instruction

Figure 1: GSRD EDK Reference System High-Level Block Diagram

FPGA

ML300 Evaluation Platform

Lo
ca

lL
in

k

Lo
ca

lL
in

k

Lo
ca

lL
in

k

Lo
ca

lL
in

k

X536_01_051204

DCR2OPB

Port 0 Port 1

PLB Port Interface PLB Port Interface

Port 2 Port 3

CDMAC

Tx0 Rx1 Tx1Rx0

PPC405

ISPLB

DSPLB

DCR

LocalLink
Data

Generator

LocalLink
TFT

Controller

LocalLink GMAC
Peripheral

Dual
GPIO

Pushbuttons
and LEDs

DCR2OPB

DDR SDRAM

MPMC

UART
Lite

XCVR

DB9

Fiber Optics

Media Type:
1000BASE-SX

4 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD EDK Reference System
R

and Data side PLB ports of the PPC405 into MPMC transactions. It handles all the necessary
handshaking signals and clock synchronization between the PLB and MPMC interfaces. The
remaining two MPMC ports attach to the CDMAC. This permits the CDMAC to manage the flow
of two bi-directional streams of data to and from memory.

CDMAC

The CDMAC manages the flow of data between peripherals and memory. It supports variable
packet sizes and can transfer data from/to arbitrary aligned memory addresses (byte
resolution). CDMAC control and status registers are accessible by the PPC405 via the DCR
interface.

The CDMAC is configured so that the Data Generator and TFT Controller will not have errors
generated when the DMA engine reaches a descriptor with the completed bit set. However, if
the DMA engine reaches a descriptor with the completed bit set on the GMAC Peripheral ports,
an error is generated.

LocalLink Devices

LocalLink is a protocol for a point-to-point connection infrastructure optimized for streaming
communications applications. The protocol supports flow control from the source or destination
side of the data transfer. It also includes additional control signals to mark the start and end of
frames and data payloads.

The GMAC Peripheral, a TFT Controller, and Data Generator are connected to the CDMAC in
this reference system.

DCR

The DCR offers a very simple interface protocol and is used for accessing control and status
registers in various devices. It allows for register access to various devices without loading
down the high-speed interfaces. Since DCR devices are generally accessed infrequently and
do not have high-performance requirements, they are used throughout the reference design for
functions such as error status registers, interrupt controllers, and device initialization logic.

Interrupts

An interrupt controller for non-critical interrupts is controlled through the DCR. It allows multiple
edge or level-sensitive interrupts from peripherals to be OR'ed together back to the CPU.

GSRD EDK Reference System

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 5
1-800-255-7778

R

Clock Generation and Distribution

Virtex-II Pro FPGAs have abundant clock management and global clock buffer resources. The
reference system uses these capabilities to generate a variety of different clocks. Figure 2
illustrates the use of the Digital Clock Managers (DCMs) for generating the main clocks in the
design. A 100 MHz input clock is used to generate the main system clock that drives the PLB,
MPMC, LocalLink, and OCM components. The CLK90 output of the DCM produces a 100 MHz
clock that is phase shifted by 90 degrees for use by the MPMC. The main 100 MHz clock is
divided down by four to create a 25 MHz TFT video clock. The CPU clock is multiplied up from
the PLB clock to 300 MHz. A second DCM uses the 62.5 MHz input reference clock to generate
62.5 MHz and 125 MHz clocks with the necessary phase relationship for the GMAC Peripheral.

CPU Debug via JTAG

The CPU can be debugged via JTAG with a variety of software development tools. The
preferred method of communicating with the CPU via JTAG is to combine the CPU JTAG chain
with the FPGA's main JTAG chain, which is also used to download bit files. Sharing the same
JTAG chain for CPU debug and FPGA programming simplifies the number of cables needed
since a single JTAG cable (like the Xilinx Parallel IV Cable) can be used for bit file download as
well as CPU software debugging.

Other Devices

The GSRD Reference System contains 16KB Instruction-Side and 16KB Data-Side OCM
modules. The OCM consists of Block RAM directly connected to the CPU. They allow the CPU
fast access to memory and are useful for providing instructions and/or data directly to the CPU,
bypassing the caches.

IP Version and Source

Table 1 summarizes the IP cores making up the reference design. The sum of the cores used
in this design are shipped with the EDK product. Others are part of the reference design.

Figure 2: GSRD Reference System Clock Generation

CLK0

DCM 1

CLK90

CLKDV

CLKFX

IN

CLK0

CLK2X180

IN

DCM 2

100 MHz

100 MHz

25 MHz

300 MHz
PPC405

TFT

PLB,DCR,MPMC,
LocalLink,OCM

MPMC
(DDR SDRAM)100 MHzExternal

Ocsillator

62.5 MHz

X536_02_051204

External
Ocsillator

62.5 MHz

125 MHz
GMAC Peripheral

6 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD EDK Reference System
R

Simulation and Verification

Simulation Overview

For simulation, the main test bench module testbench.v instantiates the FPGA (system.v)
as the device under test and includes behavioral models for the FPGA to interact with. In
addition to behavioral models for memory devices, clock oscillators, and external peripherals,
the test bench also instantiates a CoreConnect bus monitor to observe the DCR bus for
protocol violations. The test bench can also preload some of the memories in the system for
purposes such as loading software for the CPU to execute. The MGT transmit and receive
signal pairs are tied together in a loopback configuration. The sim_params.v file is designed
to be modified by the user to customize various simulation options. These options include
message display options, maximum simulation time, and clock frequency. The user should edit
this file to reflect personal simulation preferences.

Table 1: IP Cores in the GSRD EDK Reference System

Hardware IP Version Source

bram_block 1.00.a Local EDK Installation

cdmac 1.00.a “gsrd_lib” Library

clk_rst_startup 1.00.a Local “pcores” Directory

dcr_intc 1.00.b Local EDK Installation

dcr_v29 1.00.a Local EDK Installation

dcr2opb_bridge 1.00.a “gsrd_lib” Library

dcr2opb_bridge 1.00.a Local EDK Installation

dsbram_if_cntlr 2.00.a Local EDK Installation

dsocm_v10 1.00.b Local EDK Installation

isbram_if_cntlr 2.00.a Local EDK Installation

isocm_v10 1.00.b Local EDK Installation

ll_data_gen 1.00.a “gsrd_lib” Library

ll_gmac_periph 1.00.a “gsrd_lib” Library

ll_tft_cntlr 1.00.a “gsrd_lib” Library

misc 1.00.a Local “pcores” Directory

mpmc 1.00.a “gsrd_lib” Library

my_jtag_logic 1.00.a Local “pcores” Directory

opb_gpio 2.00.a Local EDK Installation

opb_uartlite 1.00.b Local EDK Installation

opb_v20 1.10.b Local EDK Installation

plb_m1s1 1.00.a “gsrd_lib” Library

plb_mpmc_if 1.00.a “gsrd_lib” Library

ppc_trace 1.00.a Local “pcores” Directory

ppc405 2.00.c Local EDK Installation

GSRD EDK Reference System

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 7
1-800-255-7778

R

SWIFT and BFM CPU Models

The reference system demonstrates two different simulation methods to help verify designs
using the PPC405 CPU. One method uses a full simulation model of the CPU based on the
actual silicon. The second method employs Bus Functional Models (BFMs) to generate
processor bus cycles from a command scripting language. These two methods offer different
trade-offs between behavior in real hardware, ease of generating bus cycles, and the amount of
real time to simulate a given clock cycle.

A SWIFT model can be used to simulate the CPU executing software instructions. In this
scenario, the executable binary images of the software are preloaded into memory from which
the CPU can boot up and run the code. Though this is a relatively slow way to exercise the
design, it more accurately reflects the actual behavior of the system.

The SWIFT model is most useful for helping to bring up software and for correlating behavior in
real hardware with simulation results. The reference system demonstrates the SWIFT model
simulation flow by allowing the user to write a C program that is compiled into an executable
binary file. This executable (in ELF format) is then converted into BRAM initialization
commands using a tool called Data2MEM.

Note: Data2MEM can also generate memory files for the Verilog command readmemh to use to
initialize external DDR memory.

When a simulation begins and reset is released, the PPC405 SWIFT model fetches the
instructions from BRAM (which is mapped to the boot vector) and begins running the program.
The user can then observe the bus cycles generated by the PPC405 CPU or any other signal
in the design. For debugging purposes, the values of the PPC405 internal program counter,
general-purpose registers, and special-purpose registers are available for display during
simulation.

Generating a desired sequence of bus operations from the CPU might require a lot of software
setup or simulation time. For early hardware bring-up or IP development, a bus functional
model can be used to speed up simulation cycles and avoid having to write software. A model
of the CPU is available in which two PLB master BFMs and one DCR BFM are instantiated to
drive the CPU's PLB/DCR ports. These BFMs are provided in the CoreConnect toolkit and
allow the user to generate bus operations by writing a script written in the Bus Functional
Language (BFL). The reference design provides a sample BFL script that exercises many of
the peripherals in the system. Refer to the CoreConnect Toolkit documentation for more
information.

Since the PPC405 CPU SWIFT model and BFM model both have the same set of port
interfaces, users can switch between the two simulation methods by compiling the appropriate
set of files without having to modify the system's design source files. Users may need to modify
their test benches to take into account the model being used.

Behavioral Models

The reference system includes some behavioral models to help exercise the devices and
peripherals in the FPGA. Many of these models are freely available from various manufacturers
and include interface protocol-checking features. The behavioral models and features included
in the reference design are as follows.

• DDR memory models for testing the memory controllers

♦ These models can also be preloaded with data for simulations

• Pull-ups connected to the GPIO for reading and driving outputs without getting unknown
values

• Terminal interface connected to the UART for sending and receiving serial data

♦ The terminal allows a user to interact with the simulation in real time

♦ Characters sent out by the UART are displayed on a terminal, while characters typed
into the terminal program are serialized and sent to the UART

8 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD EDK Reference System
R

♦ A simple file I/O mechanism passes data between the hardware simulator and the
terminal program

• MGT transmit and receive pairs connected together in a loopback configuration

Synthesis and Implementation

The reference system can be synthesized and placed/routed into a Virtex-II Pro FPGA under
the EDK tools. In particular, the ML300 board is targeted (although the design can be adapted
to other boards). A basic set of timing constraints for the design is provided to allow the design
to go through place and route.

Design Flow Environment

The EDK provides an environment to help manage the design flow including simulation,
synthesis, implementation, and software compilation. EDK offers a Graphical User Interface
(GUI) or command line interface to run these tools as part of the design flow. Consult the EDK
documentation for more information.

Memory Map

This section diagrams the system memory map. It also documents the location of the DCR
devices. The memory map reflects the default location of the system devices as defined in the
system.mhs file.

Table 2: DCR Device Map

Device Address Boundaries Size

Lower Upper

UART Lite 0x000 0x007 32B

Dual GPIO 0x008 0x00B 16B

Data Generator 0x010 0x017 32B

GMAC Peripheral 0x030 0x037 32B

TFT Controller 0x080 0x081 8B

Built-In ISOCM Controller 0x100 0x103 16B

CDMAC 0x140 0x17F 256B

Built-In DSOCM Controller 0x200 0x203 16B

INTC 0x3F0 0x3F7 32B

GSRD EDK Reference System

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 9
1-800-255-7778

R

Table 3: Memory Maps

Device Address Boundaries Size Comment
Lower Upper

DDR SDRAM 0x00000000 0x07FFFFFF 128MB

DDR SDRAM Shadow Memory 0x08000000 0x0FFFFFFF 128MB Shadow memory allows TFT
video memory to be accessed
as an uncached region.

Data Side OCM Space 0xFE000000 0xFE003FFF 16KB 16KB address spaces wrap
over 16MB region of
0xFE000000 to 0xFEFFFFFF.

Instruction Side OCM Space 0xFFFFC000 0xFFFFFFFF 16KB 16KB address spaces wrap
over 16MB region of
0xFF000000 to 0xFFFFFFFF.

10 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

GSRD Hardware
Peripheral Data
Sheets

DCR to OPB Bridge

See XAPP535.

LocalLink TFT Controller

See XAPP535.

LocalLink Data Generator

See XAPP535.

LocalLink Gigabit Ethernet Media Access Controller (GMAC) Peripheral

Overview

The LocalLink GMAC Peripheral incorporates the Xilinx 1-Gigabit Ethernet MAC Core to
provide a 1-Gigabit per second full duplex Ethernet Interface. The block diagram of the
Peripheral is shown in Figure 3. Data is communicated via DMA operations over the LocalLink
interfaces. Configuration and control of the peripheral is communicated via the DCR interface.
The PHY interface is implemented as 1000BASE-X Physical Coding Sublayer (PCS) and
Physical Medium Attachment (PMA), but the hardware can be tailored to accommodate
external Ethernet PHYs using the Gigabit Media Independent Interface (GMII) Interface.

More information regarding the Xilinx LogiCORE 1-Gigabit Ethernet MAC can be found here:

http://www.xilinx.com/systemio/gmac/index.htm

Figure 3: LocalLink Gigabit Ethernet MAC Peripheral Block Diagram

Transmit
Peripheral

TX LocalLink I/F

Xilinx LogiCORE
1-Gigabit

Ethernet MAC

Receive
Peripheral

RX LocalLink I/F
1000BASE-X

X536_03_051204

DCR-to-Host
Interface

Management
Interface

DCR I/F

Peripheral DCR
Registers

TX Client Interface

RX Client Interface

http://www.xilinx.com/systemio/gmac/index.htm

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 11
1-800-255-7778

R

Features

Summary of LogiCORE 1-Gigabit Ethernet MAC Features

• Single-speed, Full Duplex 1-Gigabit Ethernet MAC

• Designed to IEEE 802.3-2002 specification

• Full-Duplex Physical Coding Sublayer (PCS) with Physical Medium Attachment (PMA) for
1000BASE-X

• PCS supports Auto-Negotiation for information exchange with a link partner

• Support of VLAN frames to specification IEEE 802.3-2002

• Configurable flow control through MAC Control pause frames

• Configurable support of jumbo frames of any length

• Configurable inter-frame gap adjustment

• Available under terms of the SignOnce IP License

LocalLink Peripheral Specific Features

• 32-bit LocalLink transmit and receive interfaces to Communications DMA Controller

• Configuration/Status registers accessible over DCR bus

• Filtering of bad or truncated frames to reduce processor and memory utilization

• 16KB Transmit and Receive Buffers

• Transport Layer (UDP and TCP) checksum hardware assist

• All Valid Ethernet frames are passed to the software

12 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

Peripheral Design Facts

Programming Model

The Xilinx LogiCORE GMAC within the peripheral can be configured and controlled through a
set of DCR registers. These registers act as a bridge between the GMAC Core internal
registers and the DCR bus. This interface is described in the “DCR-to-GMAC Host Interface”
section. Additional DCR registers provide control/status of the LocalLink Peripheral. They are
described in the “Peripheral Registers” section

The Data Flow of the LocalLink GMAC Peripheral is controlled through buffer descriptors
passed along from the DMA Controller. This is described further in the “Transmit Data Flow -
DMA Operation” and “Receive Data Flow - DMA Operation” sections.

DCR Registers

Figure 4 illustrates the DCR Register Model of the LocalLink GMAC Peripheral. The first four
registers allow access to the internal LogiCORE GMAC core registers through a DCR to Host
Interface block in the hardware. Registers four through seven allow control and monitoring of
the Peripheral portion of the design.

Table 4: Peripheral Design Facts

PCORE Specifics

Supported Device(s) Virtex-II Pro

Version ll_gmac_periph_v1_00_a

Design File Format Verilog

Resource Utilization

LUTs

FFs

Block RAMs 18

MGTs 1

Design Tool Requirements

Xilinx Implementation
Tools

ISE 6.2i

EDK Version 6.2

Simulation ModelSim SE/EE 5.7b

Synthesis XST

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 13
1-800-255-7778

R

DCR-to-GMAC Host Interface

The LogiCORE GMAC core provides a processor independent hardware Management
Interface. The interface is used to:

• configure the MAC core

• access optional statistics counters

• access PCS Sublayer registers via MII Data Input Output (MDIO)

The DCR-to-GMAC Host Interface block translates DCR reads and writes into transactions on
the GMAC processor independent Management Interface. The DCR-to-GMAC Host Interface
Registers are defined below.

Figure 4: LocalLink GMAC Peripheral Register Model

X536_04_051204

XGPCON

HIFRDY

HIFCON

HIFMSW

0 31

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

D
C

R
 O

ffs
et

M
S

B

LS
B

HIFLSW

XGPSTAT

XGPROV

XGPPTIME

DCR-to-Host
Interface
Registers

LocalLink
GMAC

Peripheral
Registers

14 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

HIFMSW Register

The HIFMSW register is used for GMAC Management Interface reads/writes when the value
written is larger than a 4-byte quantity (32-bit). For example, Ethernet MAC address values are
48-bit values. If an Ethernet MAC address is to be written or read, the 16 most significant bits
of the 48-bit MAC address would be placed in this register.

In the example above, the upper 16-bits of the MAC address are placed in the right-most
portion of the HIFMSW register – [16:31].

HIFLSW Register

The HIFLSW register is used for GMAC Management Interface reads/writes. Data is placed
here by software prior to a Management Interface write. Data is placed here by the DCR-to-
Host Interface during a Management Interface read.

Figure 5: Host Interface Most Significant Word (HIFMSW) Register Definition

X536_05_051204

HIFMSW

bits [0:31] HIFMSW: Host Interface Most Significant Data Word Register

access: read/write

default value: undefined

0x0

D
C

R
 O

ffs
et

M
S

B

LS
B

25 26 27 2821 22 23 2417 18 19 2013 14 15 1612 29 30 318 9 10 114 5 6 70 1 2 3

Figure 6: Host Interface Least Significant Word (HIFLSW) Register Definition

X536_06_051204

HIFLSW

bits [0:31] HIFLSW: Host Interface Least Significant Data Word Register

access: read/write

default value: undefined

0x1

D
C

R
 O

ffs
et

M
S

B

LS
B

25 26 27 2821 22 23 2417 18 19 2013 14 15 1612 29 30 318 9 10 114 5 6 70 1 2 3

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 15
1-800-255-7778

R

HIFCON Register

This register controls the operation of the DCR-to-Host Interface bridging function. Software
writes this DCR register to initiate a read or a write. All values in this register should be written
during the same DCR write because any write to this register initiates an operation on the DCR-
to-Host Interface Bridge. See Figure 9 for more details.

Figure 7: Host Interface Control (HIFCON) Register Definition

X536_07_051204

0x2 RESERVED RESERVED MIADDRS
E

L

D
C

R
 O

ffs
et

M
S

B

LS
B

O
P

25 26 27 2821 22 23 2417 18 19 2013 14 15 1612 29 30 318 9 10 114 5 6 70 1 2 3

bits [0:15] UNIMPLEMENTED: Read as 0x0000

bit 16 OP: Operation
0 = Initiate a read transaction to the Management Interface
1 = Initiate a write transaction to the Management Interface

access: write

default value: 0

bits [17:20] RESERVED: Read as 0x0

bit 21 SEL: GMAC Select - this bit should always be set to 0

access: write

default value: 0

bits [22:31] MIADDR: Management Interface Address
This address is used for the transaction being initiated

access: write

default: 0x000

16 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

HIFRDY Register

The HIFRDY register provides the status of the DCR-to-Host Interface Bridge. It should be
polled by software before any new operations are attempted. When a new operation is started,
the corresponding ready-bit will be deasserted – the bit will be asserted again once the
operation is completed.

Figure 8: Host Interface Ready (HIFRDY) Register Definition

X536_08_051204

bits [0:23] RESERVED: Read as 0x00007F

bit 24 RESERVED: Read as 0

bit 25 GWR: GMAC Write Ready
0 = Not ready
1 = Initiates GMAC Management Interface is ready for a write transfer

access: read

default value: 1

bit 26 GRR: GMAC Read Ready
0 = Not ready
1 = Indicates GMAC Management Interface is ready for a read transfer

access: read

default: 1

bits [27:28] RESERVED: Read as 0b11

bit 29 MWR: MIIM Write Ready
0 = Not ready, or write in progress
1 = Indicates PCS Sublayer is ready for a write transfer

access: read

default: 1

bit 30 MRR: MIIM Read Ready
0 = Not ready, or read in progress
1 = Indicates PCS Sublayer is ready for a read transfer

access: read

default: 1

0x3 RESERVED -

G
R

R

D
C

R
 O

ffs
et

M
S

B

LS
B

G
W

R

M
W

R

M
R

R

--

25 26 27 2821 22 23 2417 18 19 2013 14 15 1612 29 30 318 9 10 114 5 6 70 1 2 3

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 17
1-800-255-7778

R

DCR-to-GMAC Host Interface Address Map

The MIADDR field of the HIFCON register provides a keyhole (or window) into a set of registers
used for bridging between the DCR bus and the Management Interface of the LogiCORE
GMAC core. This is depicted in Figure 9. The “MIIM Write Data” and “MIIM Address” registers
are used for PCS Sublayer register block reads and writes. The remaining registers are directly
mapped to the LogiCORE GMAC core Management registers – see the 1-Gigabit Ethernet
MAC Core Data Sheet for detailed bit maps of these registers.

In order to write any of the PCS Sublayer registers defined in the 1-Gigabit Ethernet MAC Core
Data Sheet, the data must be written into the “MIIM Write Data” register shown in Figure 9.
Then the PHY address and Register number are written to the “MIIM Address” register. The
mapping of the “MIIM Address” is shown in Figure 11. The PHY Address (PHY_ADDR) is the
5-bit address of the PHY – the PHY_ADDR is set to 0b00001 for GSRD. The Register Address
(REG_ADDR) is the PCS Sublayer register number to be accessed. In this way, the “MIIM
Address” register is a window into the PCS Sublayer Register Block. This relationship is
illustrated in Figure 9.

Figure 9: DCR-to-GMAC Host Interface Memory Map

X536_09_051204

Flow Control Configuration

Management Configuration

Transmitter Configuration

Receiver Configuration (Word 0)

31 0

0x200

0x240

0x280

0x2C0

M
IA

D
D

R

M
S

B

LS
B

Receiver Configuration (Word 1)

DCR-to-GMAC Host Interface Memory Map

0x340

MIIM Write Data

MIIM Address

0x3B0

0x3B4

MIADDRHIFCON0x2

D
C

R
 O

ffs
et

0 31

M
S

B

LS
B

22

Figure 10: MIIM Address Register used to Access PCS Sublayer Register Block

X536_10_051204

Auto-Negotiation Advertizement Register

PHY Identifier Register

Control Register

15 0

0

1

2

3

M
S

B

LS
B

Status Register

PCS Sublayer Managed Register Block

4

MIIM Address

M
IA

D
D

R

0 31

M
S

B

LS
B

22

REG_ADDRPHY_ADDR

26 27

PHY Identifier Register

0x3B4

R
E

G
_A

D
D

R

18 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

MIIM Address Register

Peripheral Registers

Software can control and read the current status of the peripheral using these registers.
Currently, only the XGPROV register is implemented.

XGPCON Register

The XGPCON register controls the operation of the peripheral. It is not implemented at this
time.

XGPSTAT Register

The XGPSTAT register provides operation status of the peripheral. It is not implemented at this
time.

Figure 11: MIIM Address Bit Mapping

X536_11_051204

bits [0:21] UNIMPLEMENTED

default value: undefined

bits [22:26] PHY_ADDR: PHY Address

This address is set to 0b00001 for GSRD.

access: write

default value: undefined

bits [27:31] REG_ADDR: PCS Sublayer Register Number

access: write

default value: undefined

0x3B4 RESERVED

M
IA

D
D

R

PHY_ADDR REG_ADDR

M
S

B

LS
B

25 26 27 2821 22 23 2417 18 19 2013 14 15 1612 29 30 318 9 10 114 5 6 70 1 2 3

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 19
1-800-255-7778

R

XGPROV Register

The XGPROV register provides a count of all RX FIFO overflow events. This register does not
count the number of frames received during a FIFO full state, only the frame that caused the full
condition to occur. The XGPERR register provides a count of all incoming frames with errors
(including truncated frames). All truncated and bad frames are silently discarded by the
peripheral.

XGPPTIME Register

Figure 12: Peripheral RX FIFO Overflow (XGPROV) Register Definition

X536_12_051204

bits [0:15] XGPERR: Peripheral RX Frame Error Count
Incremented if incoming frame contains an error. Saturates at 0xFFFF.

access: read/write

default value: 0x0000

bits [8:31] XGPROV: Peripheral RX FIFO Overflow Count
Incremented if incoming frame fills the RX FIFO. Saturates at 0xFFFF.

access: read/write

default value: 0x0000

0x3

D
C

R
 O

ffs
et

XGPROV

M
S

B

LS
B

25 26 27 2821 22 23 2417 18 19 2013 14 15 1612 29 30 318 9 10 114 5 6 70 1 2 3

XGPERR

Figure 13: XGPPTIME Register Definition

X536_13_051204

bit 0 TP: Transmit PAUSE Frame
0 = No action taken
1 = Initiates the transmission of a PAUSE Frame

Note: This bit is self clearing

access: read/write

default value: 0

bits [1:15] RESERVED: Read as 0b000000000000000

bits [8:31] XGPPTIME: PAUSE Time
Sets the PAUSE Time field for subsequent PAUSE frames

access: read/write

default value: 0x0000

0x4 RESERVED

D
C

R
 O

ffs
et

XGPPTIMETP

M
S

B

LS
B

25 26 27 2821 22 23 2417 18 19 2013 14 15 1612 29 30 318 9 10 114 5 6 70 1 2 3

20 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

The XGPPTIME register is used to set the 16-bit PAUSE value that should be transmitted with
a flow control frame. This register can also be used to force a flow control frame to be
transmitted. Transmit side Flow Control is not implemented at this time.

Initialization and Control

The LocalLink Peripheral does not require initialization.

The default implementation of GSRD uses the PCS/PMA version of the LogiCORE GMAC. The
PCS/PMA Sublayer (or PHY) is implemented as part of the FPGA using the Xilinx MGT to
directly drive optics transceivers onboard the ML300. Upon power-up the PCS Sublayer is
electrically isolated from the data path of the GMAC. Software must clear the Isolate bit located
in the PCS Sublayer Managed Register Block. Refer to the 1-Gigabit Ethernet MAC Core Data
Sheet for more details regarding this and other features of the LogiCORE. The required steps
to clear this Isolate bit are summarized below:

Enable MDIO and set up MDIO clock divider via the Management Configuration Word.

For a system clock of 100MHz:

Management Configuration Word <= 0x00000034

Write the PCS Sublayer Control Register (Register 0) with the Isolate bit cleared:

PCS Sublayer Control Reg <= 0x00001140

See the 1-Gigabit Ethernet MAC Core Data Sheet for detailed descriptions of these registers.

DCR-to-Host Interface Use Model

Software cannot directly access the internal registers of the LogiCORE GMAC core. These
registers must be accessed through the DCR-to-GMAC Host Interface. The following sections
describe the details of reading and writing the internal registers of the LogiCORE GMAC core.

For these discussions, we will assume the DCR Base Address for the Peripheral is 0x30 – the
default implementation of GSRD.

Writing LogiCORE GMAC Management and PCS Sublayer Registers

Writing to these registers is a multi-step process. The steps to write to a GMAC Management
Register are outlined below:

1. Write HIFLSW DCR register with desired data.

2. Write HIFCON DCR register with address in MIADDR field, bit 16 set, and 21 cleared.

3. Poll HIFRDY DCR register until the write is complete (optional).

Writing to the PCS Sublayer Registers requires an extra step because there is one more level
of address indirection as described in the “DCR-to-GMAC Host Interface Address Map”
section. The process is outlined below:

1. Write HIFLSW with desired data destined for the PCS Sublayer Register.

2. Write HIFCON with the address of the “MIIM Write Data” register (0x000083B0).

3. Write HIFLSW with a concatenation of the 5-bit PHY address and the PCS Sublayer
Register offset.

4. Write HIFCON with the address of the “MIIM Address” register (0x000083B4).

See Figure 11 for the bit map of the MIIM Address.

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 21
1-800-255-7778

R

Let’s revisit the example shown in the “Initialization and Control” section where we showed the
steps to clear the Isolate bit inside the PCS Sublayer. Recall that MDIO must be enabled first,
and the clock divider must be set via the Management Configuration Word. Next, the PCS
Sublayer Control Register (Register 0) must be written, clearing the Isolate bit. The following
code segment shows DCR moves for this example. Notice that bit 16 is set when writing the
HIFCON register indicating a write operation.

Note: Assume DCR Base Address is 0x30.

// Management Configuration Word <= 0x00000034
mtdcr(0x30 + 1, 0x00000034);
mtdcr(0x30 + 2, 0x00008340);

// PCS Sublayer Control Reg <= 0x00001140
// PHY Address = 0b00001
// PCS Register Number = 0

mtdcr(0x30 + 1, 0x00001140);
mtdcr(0x30 + 2, 0x000083B0);

mtdcr(0x30 + 1, 0x00000020);
mtdcr(0x30 + 2, 0x000083B4);

while (!(mfdcr(0x30 + 3) & 0x00000004)) ;

Reading LogiCORE GMAC Management and PCS Sublayer Registers

Reading these registers is a multi-step process similar to writing. The steps are outlined below:

1. Write HIFCON DCR register with address in MIADDR field, and bits 16 and 21 cleared.

2. Read HIFLSW DCR register to initiate a read.

Reading from the PCS Sublayer Registers requires additional steps. This process is outlined
below:

1. Write HIFLSW DCR register with MIIM Address (PHY_ADDR+REG_ADDR).

2. Write HIFCON DCR register with address of MIIM Address register (0x000003B4).

3. Poll the HIFRDY register until the read is complete.

4. Read HIFLSW DCR register to get requested data.

An example of a read from the PCS Sublayer register 0 is shown below:

Note: Assume DCR Base Address is 0x30 and that the MDIO has already been enabled.

// PHY Address = 0b00001
// PCS Register Number = 0

mtdcr(0x30 + 1, 0x00000020);
mtdcr(0x30 + 2, 0x000003B4);

while (!(mfdcr(0x34) & 0x00000002)) ;

pcsReg = mfdcr(0x30 + 1);

22 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

Transmit Data Flow - DMA Operation

The software interface to the Ethernet Transmit Data Path is through DMA Descriptors. The
LocalLink GMAC Peripheral usage of the Transmit DMA Descriptor is shown in Figure 14.
Words three, four, and five are used to communicate Checksum control information to the
hardware. The USR0 and USR1 Words are available to the software driver to store state
information. These fields are preserved after the DMA transaction is complete.

Note: Note: The TXCON, CSUMSTART, CSUMINSERT, and CSUMINIT fields of the first descriptor
describing an Ethernet frame are sent to the peripheral. Subsequent descriptors for that frame will not be
passed to the peripheral.

Figure 14: Transmit Specific DMA Descriptor

X536_14_051204

CSUMINIT

CSUMSTART CSUMINSERT

TXCON

0 31

0x00

0x04

0x08

0x0C

0x10

0x14

0x18 USR0

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

0x1C

0

1

2

3

4

5

6

7

B
yt

e
A

dd
re

ss

32
-b

it
W

or
d

C
ou

nt

RESERVED

STATUS RESERVED

M
S

B

LS
B

USR1

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 23
1-800-255-7778

R

TXCON Descriptor Field

Note: This 32-bit Word in the DMA Descriptor is shared between the DMA Controller and the GMAC
Peripheral.

CSUMSTART and CSUMINSERT Descriptor Field

Figure 15: TX DMA Descriptor - STATUS and TXCON Field Definition

X536_15_051204

bits [0:7] STATUS: CDMAC Status

bits [8:15] RESERVED: Read as 0x00

bits [16:29] TXCON: Unused bits of TXCON field

bit 30 TCP: TCP Segment
0 = Buffer contains UDP Datagram
1 = Buffer contains TCP Segment

bit 31 CALC: Calculate Transport Layer Checksum in Hardware
0 = Disable Hardware Calculation for this Ethernet frame
1 = Enable Hardware Calculation for this Ethernet frame

TXCON

M
S

B

LS
B

T
C

P

C
A

LCRESERVEDSTATUS0x0C3

B
yt

e
A

dd
re

ss

32
-b

it
W

or
d

C
ou

nt

25 26 27 2821 22 23 2417 18 19 2013 14 15 1612 29 30 318 9 10 114 5 6 70 1 2 3

Figure 16: TX DMA Descriptor - CSUMSTART and CSUMINSERT Field Definition

X536_16_051204

bits [0:5] RESERVED: Unimplemented bits

bits [6:15] CSUMSTART: Byte offset where CSUM calculation should start

bits [16:21] RESERVED: Unimplemented bits

bits [22:31] CSUMINSERT: Checksum insert byte offset

Byte offset from the start of the frame where the resulting 16-bit checksum
will be inserted, indexed from 0

CSUMINSERT

M
S

B

LS
B

CSUMSTART0x104

B
yt

e
A

dd
re

ss

32
-b

it
W

or
d

C
ou

nt

RESERVEDRESERVED

25 26 27 2821 22 23 2417 18 19 2013 14 15 1612 29 30 318 9 10 114 5 6 70 1 2 3

24 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

CSUMINIT Descriptor Field

The Descriptor shown in Figure 14 can be chained together to gather a single Ethernet frame
that has been built spanning multiple memory buffers. Let’s examine a case where we have a
large contiguous data buffer. The application sends this buffer to the TCP stack for
transmission. The protocol stack will span this large buffer across multiple Ethernet frames as
needed to adhere to the TCP protocol. The protocol stack builds as many Ethernet, IP, and TCP
headers (protocol headers) as needed to send the contents of the data buffer. To illustrate this
scenario graphically, consider a data buffer that must be transmitted using 2 Ethernet frames (2
TCP segments). Figure 18 shows the DMA Descriptor chain that the software driver must set
up and pass along to the DMA Controller.

Figure 17: TX DMA Descriptor - CSUMINIT Field Definition

X536_17_051204

bits [0:5] RESERVED: Unimplemented bits

bits [16:31] CSUMINIT: Initial value to be loaded into checksum accumulate register

This value is used to initialize the checksum hardware engine with a seed
value. This can be used to write the result of the software-calculated pseudo
header 16-bit ones complement addition. If not used, the field must be set to zero.

CSUMINIT

M
S

B

LS
B

0x145

B
yt

e
A

dd
re

ss

32
-b

it
W

or
d

C
ou

nt

RESERVED

25 26 27 2821 22 23 2417 18 19 2013 14 15 1612 29 30 318 9 10 114 5 6 70 1 2 3

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 25
1-800-255-7778

R

Figure 18: Example Transmit Descriptor Chain (2 frames shown)

X536_18_051204

PROTOCOL
HEADER

BUFFER 1

DATA
BUFFER

1

PROTOCOL
HEADER

BUFFER 2

DATA
BUFFER
 1 cont.

CSUMINIT

CSUMSTART CSUMINSERT

TXCON

USR0

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

RESERVED

STATUS RESERVED

USR1

CSUMINIT

CSUMSTART CSUMINSERT

TXCON

USR0

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

RESERVED

STATUS RESERVED

USR1

CSUMINIT

CSUMSTART CSUMINSERT

TXCON

USR0

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

RESERVED

STATUS RESERVED

USR1

CSUMINIT

CSUMSTART CSUMINSERT

TXCON

USR0

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

RESERVED

STATUS RESERVED

USR1

Frame 1

Frame 2

26 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

Receive Data Flow - DMA Operation

The software interface to the Receive Peripheral data path is through DMA Descriptors. The
Receive DMA Descriptor layout is shown in Figure 19. The fields carry status communicated
from the GMAC Peripheral to the software driver. The last descriptor describing an Ethernet
frame carries valid RXSTAT and FRAMELEN fields. All other descriptors for that frame do not
have valid RXSTAT and FRAMELEN fields.

Figure 19: Receive Specific DMA Descriptor

X536_19_051204

0 31

0x00

0x04

0x08

0x0C

0x10

0x14

0x18

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

0x1C

0

1

2

3

4

5

6

7

B
yt

e
A

dd
re

ss

32
-b

it
W

or
d

C
ou

nt

RESERVED

STATUS

M
S

B

LS
B

FRAMELEN

RESERVED

RESERVED

RXSTAT

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 27
1-800-255-7778

R

RXSTAT Descriptor Field

Note: This field is valid in the last descriptor of a chain that describes an Ethernet frame.

FRAMELEN Descriptor Field

Note: This field is valid in the last descriptor of a chain that describes an Ethernet frame.

Figure 20: RX DMA Descriptor - RXSTAT Field Definition

X536_20_051204

bit 0 GOOD: Good Frame
1 = Good Frame

bit 1 BAD: Bad Frame
1 = Bad frame

bit 2 FCON: Flow Control Frame
0 = not a flow control frame
1 = flow control frame

bit 3 VLAN: VLAN Frame
0 = frame does not contain a VLAN Tag
1 = frame contains a VLAN Tag

bit 4 FCSE: Frame Check Sequence (CRC) Error
0 = frame passed FCS validation
1 = frame failed FCS validation

bit 5 TRUN: Frame Truncated
0 = frame not truncated
1 = frame truncated due to FIFO overflow

bits [6:15] RESERVED: unimplemented in hardware

bits [16:31] RAWCSUM: Raw 16-bit Ones Complement Checksum

This field carries the 16-bit ones complement checksum calculated by the peripheral
over the entire Ethernet frame.

RAWCSUM

M
S

B

LS
B

G
O

O
D

B
A

D
RESERVED0x186

B
yt

e
A

dd
re

ss

32
-b

it
W

or
d

C
ou

nt

25 26 27 2821 22 23 2417 18 19 2013 14 15 1612 29 30 318 9 10 114 5 6 70 1 2 3

F
C

O
N

V
LA

N

F
C

S
E

T
R

U
N

Figure 21: RX DMA Descriptor - FRAMELEN Field Definition

X536_21_051204

bits [0:15] RESERVED: unimplemented in hardware (filled with zero)

bits [16:31] FRAMELEN: Length of Frame in bytes

FRAMELEN

M
S

B

LS
B

0x1C7

B
yt

e
A

dd
re

ss

32
-b

it
W

or
d

C
ou

nt

RESERVED

25 26 27 2821 22 23 2417 18 19 2013 14 15 1612 29 30 318 9 10 114 5 6 70 1 2 3

28 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

The Receive Descriptor shown in Figure 19 can be chained together to scatter a single
Ethernet Frame over multiple memory buffers, and many frames can be chained together.
Note, only one, or a fraction of one Ethernet frame can be associated with a single descriptor.
Figure 22 shows a typical chain of Receive Descriptors. The chain illustrated contains 4
Ethernet Frames after the DMA Controller has moved them into the data buffers.

Note: Both the DMAC_START_OF_PACKET and DMAC_END_OF_PACKET bits are set in each
descriptor. This indicates that the frame starts and ends in each descriptor – 1 frame per buffer/descriptor.

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 29
1-800-255-7778

R

Figure 22: Example Receive Descriptor Chain (2 frames shown after DMA complete)

X536_22_051204

FRAME DATA
BUFFER

2

FRAME DATA
BUFFER

4

FRAME DATA
BUFFER

1

FRAME DATA
BUFFER

3

NOTE: Each descriptor shown has its DMAC_START_OF_PACKET
and DMAC_END_OF_PACKET bits set. This indicates that an
entire Ethernet Frame is contained in each buffer.

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

RESERVED

FRAMELEN

RESERVED

RESERVED

RXSTAT

11

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

RESERVED

FRAMELEN

RESERVED

RESERVED

RXSTAT

11

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

RESERVED

FRAMELEN

RESERVED

RESERVED

RXSTAT

11

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

RESERVED

FRAMELEN

RESERVED

RESERVED

RXSTAT

11

30 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

Software Considerations for Checksum Offload

The software driver must be involved in the checksum offload. This section explores the
software algorithms necessary for the software driver. The checksum capability in the hardware
peripheral is very simple. The CPU must perform ones complement checksum arithmetic over
the IP and TCP/UDP headers.

Transmit Checksum Offload

The software driver must control the checksum offload of each frame. The fields shown in
Figure 14 must be set by software in the first descriptor of each frame. The driver must also
compute the TCP/UDP Header and Pseudo header checksums and insert those into the
CSUMINIT field of the descriptor. Alternatively, the TCP/IP stack can put the computed Pseudo
header checksum into the TCP or UDP header located in the frame itself. Then, the hardware
will calculate the checksum over the TCP or UDP header as well as the payload.

Receive Checksum Offload

Software must perform ones complement operations on the RAWCSUM value produced by the
hardware. Software must effectively subtract out the 14 bytes of the Ethernet Header, and the
20 bytes of IP header, and then add in the 12-byte Pseudo Header. After completing these
operations, the driver can complement the result to get the final Transport Layer Checksum of
the incoming segment or datagram. Software can then fill in the TCP/IP socket buffer structure
with the resulting checksum pass/fail, etc.

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 31
1-800-255-7778

R

Hardware Functional Description

The block diagram of the LocalLink GMAC Peripheral is shown in Figure 23. Data flows
between the RocketIO and the CDMAC LocalLink Interfaces – the Transmit and Receive paths
are completely independent. The Peripheral and the internal LogiCORE GMAC are controlled
via the DCR Interface. The “Programming Model” section discusses the LocalLink GMAC
Peripheral from a software point of view. This section describes the hardware design from a
functional point of view.

1. DCR-to-Host Interface

The DCR-to-Host Interface block acts as a bridge between the DCR bus and the Xilinx
LogiCORE GMAC. This block is provided as a black box in this reference design.

Peripheral DCR Registers

The Peripheral DCR Registers block provides an interface to registers that are inside the
Transmit and Receive Peripherals. Only one register is currently implemented in this reference
design. See the “Peripheral Registers” section for more details.

Transmit Peripheral

The Transmit Peripheral serves as an attachment between the Gigabit Ethernet MAC and the
CDMAC. The block diagram for the Transmit Peripheral is shown in Figure 24. There are four
main components: TX_DMAC_IF, TX_FIFO, CSUM_FIFO, and TX_GMAC_IF.

Figure 23: LocalLink GMAC Peripheral Block Diagram

X536_23_051204

TX Peripheral

TX_REM[3:0]

TX_DATA[31:0]
TX_SOF_N
TX_SOP_N
TX_EOP_N
TX_EOF_N
TX_SRC_RDY_N
TX_DST_RDY_N

C
D

M
A

C
 T

X
 L

oc
al

Li
nk

 I/
F

Xilinx LogiCORE

GMAC

RX Peripheral

C
D

M
A

C
 R

X
 L

oc
al

Li
nk

 I/
F

TXP
TXN

RXP
RXN

R
ocketIO

DCR-to-Host
Interface

GMAC Host Interface

DCR_ABUS[0:9]

DCR_WRITE
DCR_READ

DCR_WR_DBUS[0:31]

DCR_ACK
DCR_RD_DBUS[0:31]

D
C

R
 I/

F

Peripheral DCR
Registers

RX_REM[3:0]

RX_DATA[31:0]
RX_SOF_N
RX_SOP_N
RX_EOP_N
RX_EOF_N
RX_SRC_RDY_N
RX_DST_RDY_N

TX Client Interface

RX Client Interface

32 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

TX_DMAC_IF – Transmit DMA Controller Interface and Checksum Offload Generation.
The upstream interface of this module is LocalLink. The downstream interface comprises 2
COREGen FIFOs.

TX_FIFO – Transmit FIFO – This Asynchronous FIFO holds Ethernet frames. The
LocalLink signals SOF_N, EOF_N, and REM are stored in this FIFO as well, using the
extra parity bits of the Block RAM. Note: These signals are stored in the FIFO as active
high, and the REM is converted to binary encoding.

TX_CSUM_FIFO – Transmit Checksum FIFO. This Asynchronous FIFO holds the TCP or
UDP checksum for the frames in the TX_FIFO. Each entry in the CSUM_FIFO corresponds
to a single Ethernet frame in the TX_FIFO.

TX_GMAC_IF – Transmit GMAC Interface. When the TX_CSUM_FIFO is not empty, there
is at least one complete frame in the TX_FIFO. The TX_GMAC_IF module reads the TCP
or UDP checksum and its insertion point from the TX_CSUM_FIFO. Then it reads the
Ethernet frame from the TX_FIFO, and inserts the 16-bit checksum value at the
appropriate offset. The CSUM_EN bit in the 36-bit WORD of the TX_CSUM_FIFO controls
the checksum insertion.

The LocalLink interface is used to transfer Ethernet frame data as well as control information.
The user-defined fields of the first descriptor describing an Ethernet frame are passed from
main memory through the CDMAC in the header section of the LocalLink transaction. Figure 25
illustrates a typical waveform of the interface.

Between SOF_N and SOP_N, the CDMAC passes the first descriptor that describes the
current Ethernet frame. Descriptors must be guaranteed by software to be cache-line aligned (8
byte aligned). Between the SOP_N and EOP_N, the CDMAC passes the Ethernet frame. The
CDMAC handles the alignment in memory of each successive memory buffer. The CDMAC
guarantees the data to be 32-bit aligned over the LocalLink interface, even on clock cycles
where it de-asserts its ready signal – the remainder (REM) is valid only on the assertion of the
EOP_N signal.

Figure 24: Transmit GMAC Peripheral Block Diagram

X536_24_051204

TX_FIFO
36 x 4096

(16KB)
TX

CTRL

REM[3:0]

DIN[31:0]

SOF_N

SOP_N

EOP_N

EOF_N

SRC_RDY_N

DST_RDY_N

DOUT[31:0]

DATA_WREN

FIFO_FULL

REM_ENC[1:0]

TX
CSUM_FIFO

36 x 512

16:8 TX_DATA[7:0]

DATA_SOF

DATA_EOF

CSUM[15:0]

[35:0]

CSUM_WREN

CSUM_WRACK

OFFSET[9:0]

CSUM_EN

[35:0]

32:8

TX_GMAC_IF

C
D

M
A

C
 L

oc
al

Li
nk

 I/
F

LogiC
O

R
E

 G
M

A
C

 Transm
it I/F

TX_DMAC_IF

TX_DATA_VALID

TX_ACK

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 33
1-800-255-7778

R

Transmit DMA Controller Interface (TX_DMAC_IF)

The TX_DMAC_IF module has a LocalLink interface on the upstream and FIFO interfaces on
the downstream. Data flows through this block as the checksum is being calculated on the data.
The CDMAC passes the first descriptor of each Ethernet frame through the LocalLink
streaming interface. The TX_DMAC_IF module captures the descriptor into local registers as it
is passed from the CDMAC over the LocalLink interface. Figure 26 is a waveform of the first
DMA Descriptor being transferred from the CDMAC to the TX_DMAC_IF. The irrelevant fields
of the descriptor are grayed out in the figure. Only the TXCON, CSUMSTART, CSUMINSERT,
and CSUMINIT fields are captured by the TX_DMAC_IF module.

Figure 25: Typical Waveform of LocalLink Streaming an Ethernet Frame

X536_25_051204

FIRST DMA DESCRIPTOR ...

...

...

...

...

...

...

...

...

...

...ETHERNET FRAMEETHERNET FRAME

... ...

LAST DMA DESCRIPTOR

CLK

EOF_N

EOP_N

DST_RDY_N

SRC_RDY_N

D[31:0]

SOP_N

SOF_N

REM[3:0]

...

...

...

...

LocalLink Header LocalLink Payload LocalLink Footer

34 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

The TX_DMAC_IF module also calculates a 16-bit transport layer checksum. The goal of the
checksum offload is to keep the processor from having to touch the TCP or UDP data payload.
In TCP/IP implementations that do not use checksum offload, the processor reads each
payload data byte from memory to calculate the one’s compliment 16-bit TCP/UDP checksum.
This is an expensive operation – the processor would not be able keep up with the bandwidth
requirements of Gigabit Ethernet if it must touch every payload data byte.

The checksum offload implementation is simplified as much as possible to keep hardware
costs low while still maintaining the performance gain that checksum offload allows. The basic
building block of the checksum offload implementation is a 16-bit adder with a carry in from the
last stage. The CSUM16 block is shown in Figure 27. This design requires two CSUM16 blocks
to accommodate the 32-bit data width.

Figure 26: Transmit Local Link Header is First DMAC Descriptor of Ethernet Frame

X536_26_051204

E
T

H
E

R
N

E
T

 F
R

A
M

E

N
E

X
T

 D
E

S
C

R
IP

TO
R

P
O

IN
T

E
R

CLK

EOF_N

EOP_N

DST_RDY_N

SRC_RDY_N

D[31:0]

SOP_N

SOF_N

REM[3:0]

B
U

F
F

E
R

 A
D

D
R

E
S

S

B
U

F
F

E
R

 L
E

N
G

T
H

C
D

M
A

C
S

TA
T

U
S

C
S

U
M

S
TA

R
T

C
S

U
M

IN
S

E
R

T

C
S

U
M

IN
IT

T
X

C
O

N
-

MSB

LSB

...

...

...

...

...

...

...

...

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 35
1-800-255-7778

R

There is a special case for checksums of UDP datagrams. A quote from the UDP RFC 768:

If the computed checksum is zero, it is transmitted as all ones (the equivalent in one's
complement arithmetic). An all zero transmitted checksum value means that the transmitter
generated no checksum (for debugging or for higher level protocols that don't care).

If the frame encapsulates a UDP datagram, and if the resulting checksum is zero, then a value
of all ones is written into the TX_CSUM_FIFO. This case does not exist for TCP because a
checksum of zero is legal.

Transmit FIFO (TX_FIFO)

The TX_FIFO module is generated using CoreGen. This FIFO holds Ethernet frames to be
transmitted to the Gigabit Ethernet MAC.

Transmit Checksum FIFO (TX_CSUM_FIFO)

The CSUM_FIFO is generated using CoreGen. This FIFO holds the calculated checksum value
from the TX_DMAC_IF block. It also doubles as a frame counter – when this FIFO is not empty,
there is at least one Ethernet frame in the TX_FIFO. The depth of this FIFO must be at least
274 words deep (16384/60).

Transmit GMAC Interface (TX_GMAC_IF)

The TX_GMAC_IF module sits between the FIFOs and the LogiCORE GMAC. This module
reads Ethernet frames from the TX_FIFO and transfers them to the GMAC transmit interface.

Receive Peripheral

The Receive Peripheral serves as an attachment between the LogiCORE Gigabit Ethernet
MAC and the CDMAC. The block diagram in Figure 28 shows that there are 4 sub-modules in
the Receive Peripheral: RX_GMAC_IF, RX_STATUS_FIFO, RX_FIFO, and RX_DMAC_IF. The
Receive Peripheral calculates a running 16-bit ones compliment checksum over entire Ethernet
frames as they are written into the RX_FIFO. For each good and bad Ethernet frame that is
written into the RX_FIFO, a single status Word is written into the RX_STATUS_FIFO.

Figure 27: Basic 16-bit Checksum Building Block

X536_27_051204

D FDRE

CE

C

Q

R

+

a

b

ci

co

sADD16
x16

D FDRE

CE

C

Q

R

0

1

enable[1:0]

csum

0

din[15:0]

csum_vld

clk

reset

0

1

0

36 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

The LocalLink interface between the RX_GMAC_PERIPH and the CDMAC is the similar to the
Transmit Peripheral, but data flows in the opposite direction. The LocalLink footer is used to
communicate frame status to the host via the final descriptor of the chain that describes an
Ethernet frame. Figure 29 shows the tail end of a LocalLink frame being transferred from the
Receive Peripheral to memory via the CDMAC Controller. The figure shows status information
being transferred in the footer section of the LocalLink transfer, which is written into the last
descriptor in the chain that describes an Ethernet frame.

Figure 28: RX_GMAC Peripheral Block Diagram

X536_28_051204

RX_STATS[22:0]

RX_DATA[7:0]

RX_DATA_VALID

RX_GOOD_FRAME

RX_BAD_FRAME

RX_STATS_VLD

RX_FIFO
36 x 4096

(16KB)

REM[3:0]

DOUT[31:0]

SOF_N

SOP_N

EOP_N

EOF_N

SRC_RDY_N

DST_RDY_N

RX STATUS
FIFO

36 x 512

C
D

M
A

C
 LocalLink I/F

RX_DMAC_IF

RX_STAT_RDEN

RXF_DATA_OUT[31:0]

RXF_SOF_OUT

RXF_EOF_OUT

RXF_REM_ENC_OUT[1:0]

STATUS_EMPTY

RXF_RDEN

RXF_RDACK

RX_GMAC_IF

BAD_FRAME

CSUM[15:0]

[35:0]

Lo
gi

C
O

R
E

 G
M

A
C

R
ec

ei
ve

 I/
F

RXF_DATA[31:0]

RXF_WREN

RXF_FULL

RXF_REM_ENC[1:0]

RXF_SOF

RXF_EOF

[35:0]

STAT_WREN

STATUS_FULL

ALMOST_FULL

FLOW_CONTROL_FRAME

VLAN_FRAME

FCS_ERROR

TRUNCATED

STAT_WR_DATA

STAT_RD_DATA

STAT_WE

Fr
am

e
E

rr
or

 C
ou

nt
R

eg
is

te
r

In
te

rf
ac

e

GOOD_FRAME

14'b00000000000000

RX_STATUS_FIFO_DOUT

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 37
1-800-255-7778

R

Receive GMAC Interface (RX_GMAC_IF)

The Receive GMAC Interface Module sits between the GMAC and the FIFOs. This block
accumulates 32-bit Words and writes them into the RX_FIFO. At the end of each frame the
running checksum and frame status are written into the RX_STATUS_FIFO. If the FIFO
becomes “almost full” (one free entry in the FIFO) during the process of receiving a frame, the
EOF flag will be asserted and written into the RX_FIFO to indicate the end of the frame. The
GOOD_BAD_N signal will be asserted to indicate a bad frame (truncated), and the rest of the
frame will be thrown away (not written into FIFO). These events are counted in a DCR readable
register – see the “XGPROV Register” section for more details.

Receive FIFO (RX_FIFO)

The Receive FIFO is used to buffer Ethernet frames from the Gigabit Ethernet MAC. The extra
parity bits of the Block RAM are used to store SOF, EOF, and REM flags used for frame
delineation. The SOF and EOF flags are stored active high, and the REM is stored as a binary
encoding of the remaining bytes in the last Word.

Receive Status FIFO (RX_STATUS_FIFO)

The Receive Status FIFO holds status and checksum for each Ethernet frame in the RX_FIFO.
Each entry in this RX_STATUS_FIFO corresponds to an entire Ethernet frame in the RX_FIFO.
When RX_STATUS_FIFO is not empty, there is at least one frame in the RX_FIFO.

Receive DMA Controller Interface (RX_DMA_IF)

The Receive DMA Controller Interface provides a link between the FIFOs and the CDMAC.
When RX_STATUS_FIFO is not empty, the RX_DMA_IF reads a single word from it to obtain
the status for the next Ethernet frame. The frame is then read from the RX_FIFO until the next

Figure 29: Receive LocalLink Footer Carries Ethernet Frame Status

X536_29_051204

E
T

H
E

R
N

E
T

 F
R

A
M

E

N
E

X
T

 D
E

S
C

R
IP

TO
R

P
O

IN
T

E
R

CLK

EOF_N

EOP_N

DST_RDY_N

SRC_RDY_N

D[31:0]

SOP_N

SOF_N

REM[3:0]

B
U

F
F

E
R

 A
D

D
R

E
S

S

B
U

F
F

E
R

 L
E

N
G

T
H

C
D

M
A

C
S

TA
T

U
S

R
X

S
TA

T

-

MSB

LSB

...

...

...

...

...

...

...

...

F
R

A
M

E
LE

N

-

-

38 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Hardware Peripheral Data Sheets
R

EOF flag is encountered in the parity bits of the RX_FIFO. The frame is passed along to the
CDMAC over the LocalLink Interface only if no errors have occurred during the reception of the
frame, and it has not been truncated due to RX_FIFO overflow. After the end of the frame is
reached, the status word read from the RX_STATUS_FIFO is written as part of the footer
section of the LocalLink Interface.

Design Parameters

I/O Signals

Table 5: Design Parameters

Parameter Name Default Value Description

C_DCR_BASE_ADDR 10'b00_0011_0000 Base Address of DCR register set. The LocalLink GMAC Peripheral
has a total of 8 DCR registers.

C_USE_GMII 0 When set to 1, GMII is used to communicate with external PHY. This is
not implemented in version 1 of the reference design.

C_USE_PCS_PMA 1 When set to 1, the PCS and PMA Sublayer version of the GMAC is
instantiated and the Rocket I/O MGT is used as the PHY.

Table 6: I/O Signals

Signal Name Interface Direction Description

TX_DATA[31:0] TX CDMA LocalLink INPUT Transmit Data.

TX_REM[3:0] TX CDMA LocalLink INPUT Transmit Remainder.

TX_SRC_RDY_N TX CDMA LocalLink INPUT Transmit Source (CDMAC) Ready.

TX_DST_RDY_N TX CDMA LocalLink OUTPUT Transmit Destination (LL_GMAC_PERIPH) Ready.

TX_SOF_N TX CDMA LocalLink INPUT Transmit Start of LocalLink Frame.

TX_SOP_N TX CDMA LocalLink INPUT Transmit Start of LocalLink Payload.

TX_EOP_N TX CDMA LocalLink INPUT Transmit End of LocalLink Payload.

TX_EOF_N TX CDMA LocalLink INPUT Transmit End of LocalLink Frame.

RX_DATA[31:0] RX CDMA LocalLink OUTPUT Receive Data.

RX_REM[3:0] RX CDMA LocalLink OUTPUT Receive Remainder.

RX_SRC_RDY_N RX CDMA LocalLink OUTPUT Receive Source (LL_GMAC_PERIPH) Ready.

RX_DST_RDY_N RX CDMA LocalLink INPUT Receive Destination (CDMAC) Ready.

RX_SOF_N RX CDMA LocalLink OUTPUT Receive Start of LocalLink Frame.

RX_SOP_N RX CDMA LocalLink OUTPUT Receive Start of LocalLink Payload.

RX_EOP_N RX CDMA LocalLink OUTPUT Receive End of LocalLink Payload.

RX_EOF_N RX CDMA LocalLink OUTPUT Receive End of LocalLink Frame.

GSRD Hardware Peripheral Data Sheets

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 39
1-800-255-7778

R

REFCLK GMAC PCS & PMA INPUT High-Quality Reference clock for Multi-Gigabit
Transceivers (62.5MHz). See Rocket I/O User Guide.

REFCLK2 GMAC PCS & PMA INPUT Alternative High-Quality Reference clock for Multi-
Gigabit Transceivers (62.5MHz). See Rocket I/O User
Guide.

BREFCLK GMAC PCS & PMA INPUT Alternative High-Quality Reference clock for Multi-
Gigabit Transceivers (62.5 MHz). This optionally
replaces REFCLK. See Rocket I/O User Guide.

BREFCLK2 GMAC PCS & PMA INPUT Alternative High-Quality Reference clock for Multi-
Gigabit Transceivers (62.5 MHz). This optionally
replaces REFCLK2. See Rocket I/O User Guide.

REFCLKSEL GMAC PCS & PMA INPUT Selects between either (B)REFCLK or (B)REFCLK2
as the input clock source to the MGT. See Rocket I/O
User Guide.

USERCLK GMAC PCS & PMA INPUT Clock signal at 62.5 MHz. This is connected to the
TXUSRCLK and RXUSRCLK ports of the Rocket I/O
MGT.

USERCLK2 GMAC PCS & PMA INPUT Clock signal at 125MHz. This is connected to the
TXUSRCLK2 and RXUSRCLK2 ports of the Rocket
I/O MGT.

DCM_LOCKED GMAC PCS & PMA INPUT The LOCKED port of the DCM must be connected to
this port. The GMAC core will hold its Rocket I/O MGT
in reset until DCM_LOCKED is asserted high.

TXP / TXN GMAC PCS & PMA OUTPUT Differential pair for serial transmission from PMA to
PMD. The clock is embedded in the data stream.

RXP / RXN GMAC PCS & PMA INPUT Differential pair for serial reception from PMD to PMA.
The clock is extracted from the data stream.

GTX_CLK GMAC GMII INPUT Clock signal at 125 MHz.

GMII_COL GMAC GMII INPUT Control Signal from PHY.

GMII_CRS GMAC GMII INPUT Control Signal from PHY.

GMII_TXD[7:0] GMAC GMII OUTPUT Transmit data to PHY.

GMII_TX_EN GMAC GMII OUTPUT Data Enable control signal to PHY.

GMII_TX_ER GMAC GMII OUTPUT Error control signal to PHY.

GMII_TX_CLK GMAC GMII OUTPUT Clock out to PHY.

GMII_RXD[7:0] GMAC GMII INPUT Received data from PHY.

GMII_RX_DV GMAC GMII INPUT Data Valid control signal from PHY.

GMII_RX_ER GMAC GMII INPUT Error control signal from PHY.

GMII_RX_CLK GMAC GMII INPUT Recovered clock from received data stream by PHY.

DCR_READ DCR INPUT Driven high to initiate a DCR Read.

DCR_WRITE DCR INPUT Driven high to initiate a DCR Write.

DCR_ACK DCR OUTPUT Driven high in acknowledge DCR transaction.

Table 6: I/O Signals (Continued)

40 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Software Components
R

GSRD Software
Components

LocalLink GMAC Peripheral Device Driver

Overview

The GSRD software device driver enables higher layer software (e.g., a TCP/IP stack) to
transmit and receive Ethernet frames. The driver handles the initializing the GMAC Peripheral
and sets up the CDMAC to transmit and receive Ethernet frames.

Features

Scatter-Gather Direct Memory Access (DMA) Operations

This feature allows non-contiguous buffers in memory to be transmitted as a single Ethernet
frame. For example, the various protocol headers like Ethernet and TCP/IP can be in a different
memory area from the payload. Scatter-gather DMA also allows multiple Ethernet frames in
different areas in memory to be transmitted via a single DMA operation.

Interrupt Moderation (Coalescing)

The driver is designed to operate in an interrupt-driven environment. The CPU is interrupted
when frames are received or when frames are transmitted successfully. The interrupt
coalescing feature reduces the number of interrupts to the CPU. With this feature, interrupts
occur only after a multiple number of frames have been received or transmitted successfully.
The Coalescing value is programmable through the driver interface.

Device Configuration

The device can be configured in various ways during the FPGA implementation process.
Configuration parameters for the GMAC Peripheral are derived from the EDK software build
process and stored in tables for use by the device driver. The device driver provides an API that
allows the user to initialize and configure the GMAC Peripheral and the associated PHY.

RTOS Independence

The device driver is designed to be OS-independent and portable. It has been ported to stand-
alone applications and to Monta Vista Linux 3.0. The device driver interfaces to any OS via an
adaptation layer that is OS-specific and facilitates communication between the driver and the
OS or application. The driver uses configurable C macros that define OS and processor
specific features like use of mutual-exclusion, virtual memory and data caches.

Jumbo Frames and VLAN tags

The device driver provides an API for configuring the peripheral for transmitting or receiving
jumbo frames or VLAN-tagged frames.

Asynchronous Callbacks

The device driver services interrupts and passes Ethernet frames to the higher layer software
through asynchronous callback functions. The higher layer software must register its callback
functions during initialization. The driver requires callback functions for received frames, for
confirmation of transmitted frames, and for asynchronous errors.

DCR_RD_DBUS[0:31] DCR OUTPUT DCR Read Data Bus.

DCR_WR_DBUS[0:31] DCR INPUT DCR Write Data Bus.

DCR_ABUS[0:9] DCR INPUT DCR Address Bus.

SYS_CLK System INPUT System Clock.

RESET System INPUT Reset Synchronous to SYS_CLK.

Table 6: I/O Signals (Continued)

GSRD Software Components

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 41
1-800-255-7778

R

Initialization and Control

The device driver provides API calls and data structures that allow the GMAC Peripheral, the
associated PHY and the Transmit and Receive DMA engines to be initialized. Out of a total of
two DMA transmit engines and two DMA receive engines, the device driver associates one
DMA engine for transmit and one DMA engine for receive exclusively for the GMAC Peripheral.

The following is a list of initialization functions that should be called by the application (in order).

Table 7: Initialization Functions

Function Name
Required (R) /
Optional (O) Description

XGPemac_Initialize() R Initializes the peripheral and PHY.

XGPemac_SetOptions() O Enables jumbo frames/VLAN tags on
transmit or receive.

XGPDmaEngine_Initialize() R Called once for transmit and once for
receive to initialize software structures
to the proper DMA engines.

XGPSetDmaChannel() R Associates the two initialized DMA
engines that make up a channel for
use by the GMAC Peripheral.

XGPemac_SetSgSendHandler() R Registers the application Transmit
Complete callback function that is
called when a frame (or set of frames)
is successfully transmitted.

XGPemac_SetSgRecvHandler() R Registers the application Receive
Callback function that is called when a
frame (or set of frames) is
successfully received.

XGPemac_SetSgErrorHandler() R Registers the application
Asynchronous Error Callback function
that is called when error events occur
while transmitting or receiving frames.

XGPemac_SetSgSendSpace() R Builds a circular chain of buffer
descriptors for the Transmit DMA
engine.

XGPemac_SetSgRecvSpace() R Builds a circular chain of buffer
descriptors for the Receive DMA
engine.

XGPemac_SgRecv() R Points the Receive DMA engine to
head of the chain of buffer descriptors.
Each buffer descriptor must have a
valid buffer associated with it before
calling this function. The buffer must
be large enough to hold a maximum-
sized Ethernet frame. This function is
called only once during initialization.

42 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Software Components
R

During initialization, interrupts must be enabled for the DMA engines. This can be done at the
time of configuring the Xilinx Interrupt Controller and setting up interrupts for various other
peripherals in the system. The Xilinx Interrupt Controller must be set up to receive interrupts
from the CDMAC. In addition, the Master Interrupt Enable bit in the CDMAC Interrupt Register
must be set. Refer to the example source code for details regarding interrupts in a stand-alone
system.

Code Snippet for Initialization

status = XGPemac_Initialize(&instance, XGPEMAC_0); /* device ID 0 */

if (status){
 xil_printf("\r\nXGPemac_Initialize error %x\r\n", status);
 return status;
}

XGPDmaEngine_Initialize(&txdma, XGP_CDMAC_TX2_DCRBASE); /* 2nd DMA
channel */
if (status){
 xil_printf("\r\nXGPDmaEngine_Initialize error %x\r\n", status);
 return status;
}

XGPDmaEngine_Initialize(&rxdma, XGP_CDMAC_RX2_DCRBASE); /* 2nd DMA
channel */
if (status){
 xil_printf("\r\nXGPDmaEngine_Initialize error %x\r\n", status);
 return status;
}

XGPSetDmaChannel(&instance, &txdma, &rxdma);

XGPemac_SetSgSendHandler(&instance, (void*)&instance, TxIntHandler);
XGPemac_SetSgRecvHandler(&instance, (void *)&instance, RxIntHandler);
XGPemac_SetSgErrorHandler(&instance,(void *)&instance, ErrorIntHandler);

XGPemac_SetSgSendSpace(&instance, (Xuint32 *)&txbd[0],
sizeof(XGPBufDescriptor) * NUMTXBD) ;
XGPemac_SetSgRecvSpace(&instance, (Xuint32 *)&rxbd[0],
sizeof(XGPBufDescriptor) * NUMRXBD) ;

/*
 Set up the DMA engines to generate interrupts. The code for setting
 up the Xilinx Interrupt Controller and the PowerPC exception handler
 is not shown here. See the example source code for these details.
*/

XGP_CDMAC_SET_INTR_REG(XGP_CMDAC_INT_MIE_MASK);

Software Driver Configuration

The user-configurable macros are found in the file xgpconf.h. Some of the macros are
described below:

• XGP_RX_INT_THRESH – Interrupt coalescing value on receive.

• XGP_TX_INT_THRESH – Interrupt coalescing value on transmit.

• OS_LINUX – Define this to use the driver under the Linux operating system. If this
constant is not defined, a stand-alone system (no O/S) is assumed.

• DCACHE_ON – This option is used for stand-alone systems. It informs the driver that the
buffer descriptors are located in cacheable memory that is cacheable.

GSRD Software Components

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 43
1-800-255-7778

R

• XILINX_CSUM_OFFLOAD – Enables the hardware TCP and UDP header checksum
offload feature in the driver. This is relevant only when using the driver with a TCP/IP
stack. Please see the documentation on the GMAC peripheral and the example source
code for the Linux adapter on using this feature.

Theory of Operation

The device driver communicates to the CDMAC via a special structure called a buffer
descriptor. The buffer descriptor has information to describe a data buffer in memory that needs
to be transferred by the CDMAC. Buffer descriptors are chained together to allow multiple
buffers to be processed in a single DMA operation. Figure 30 illustrates the software structure
used to represent a buffer descriptor. The CDMAC documentation contains details of the
individual buffer descriptor fields.

Ethernet Frame Transmission

To send an Ethernet frame, the application sets up one or more buffer descriptors in its local
stack and calls the XGPemac_Send() routine to transmit the frames associated with the buffer
descriptors. The application can use the app4 field in the buffer descriptor to store protocol
specific information if necessary.

Descriptors associated with the first byte of each Ethernet frame must have the
START_OF_PACKET status bit set. Descriptors associated with the last byte of each Ethernet
frame must have the END_OF_PACKET status bit. The last buffer descriptor in the chain must
have the INT_ON_END (interrupt on end) and STOP_ON_END status bits set.

The code segment below illustrates two Ethernet frames being transmitted. Each Ethernet
frame is stored in a memory buffer pointed to by a buffer descriptor. In this example, each buffer
and associated buffer descriptor describe an entire Ethernet frame.

XGPBufDescriptor localtxbd[2], *bdptr;

 Bdptr = &localtxbd[0]; /* 1st BD */
 memset((char)bdptr, 0, sizeof(XGPBufDescriptor)); /* clear it prior to use */
 bdptr->next_p = &ocaltxbd[1]; /* set up the chain */
 bdptr->buf_p = &tx_buffer[0]; /* point to valid ethernet frame */
 bdptr->buf_len = send_len; /* set up the length of this frame */
 bdptr->stat = XGP_BDSTAT_SOP_MASK | XGP_BDSTAT_EOP_MASK ; /* whole frame */

 bdptr = &localtxbd[1]; /* 2nd BD */
 memset((char)bdptr, 0, sizeof(XGPBufDescriptor)); /* clear it prior to use */
 bdptr->next_p = 0; /* no more left */
 bdptr->buf_p = &tx_buffer[1]; /* point to valid ethernet frame */

Figure 30: Software Driver Representation of Buffer Descriptor

X536_30_051204

app3

app2

app1_2

app4

buf_len

*buf_p

*next_p

stat app1_1

app5

typedef struct xgpbufdescriptor {
 struct xgpbufdescriptor *next_p;
 Xint8 *buf_p;
 Xuint32 buf_len;
 Xuint8 stat;
 Xuint8 app1_1;
 Xuint16 app1_2;
 Xuint32 app2;
 Xuint32 app3;
 Xuint32 app4;
 Xuint32 app5;
} XGPBufDescriptor;

44 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Software Components
R

 bdptr->buf_len = send_len; /* set up the length of this frame */
 bdptr->stat = XGP_BDSTAT_SOP_MASK | XGP_BDSTAT_EOP_MASK |
 XGP_BDSTAT_INT_ON_END_MASK |
 XGP_BDSTAT_STOP_ON_END_MASK ; /* whole frame - int and stop on last*/

 XGPemac_SgSend(&instance, &localtxbd[0], 0); /* send out frame */

The software driver maintains a transmit queue of buffer descriptors that are waiting to be
transmitted. This transmit queue is useful in the case where the DMA transmit engine is busy
executing a prior transaction. The driver waits until the DMA transmit engine is idle before the
queue is given to the engine.

The XGPemac_SgSend() in the example above copies over information from the local buffer
descriptors into two buffer descriptors in the internal chain of buffer descriptors. This approach
enforces the fact that the Ethernet frames can never be sent out of order. The driver then
inserts these descriptors into the transmit queue and initiates a DMA transmit transaction when
the engine is idle (not busy).

When the frames are transmitted successfully, an interrupt is generated because the
application set the interrupt flag in the last buffer descriptor of the chain. The software driver
services the interrupt. The DMA engine marks all the buffer descriptors that it processed by
setting the COMPLETED bit in the status field of the descriptor. The software driver interrupt
handler “scrubs” the buffer descriptor by clearing the COMPLETE bit so they can be re-used for
future transmissions.

The driver interrupt handler then calls the application callback function previously registered
with the XGPemac_SetSgSendHandler() function. The number of frames successfully
transmitted and the actual chain of buffer descriptors that were processed (transmitted) are
passed to the callback function. The callback function performs any application-related
housekeeping functions (for example, freeing any protocol-related structures that it stored in
the app4 field of the buffer descriptor). The callback function is executed in the context of the
interrupt handler and all interrupts are typically disabled, so it needs to be as short as possible.

GSRD Software Components

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 45
1-800-255-7778

R

Figure 31 is a visual representation of the data structures used to manage the internal chain of
Transmit buffer descriptors. There are separate XGPDmaEngine structures for managing the
Transmit and for the Receive DMA engines. Both structures are contained in the main
XGPemac structure. Each XGPDmaEngine structure contains a XGPQueue structure to help
implement a queue (currently implemented for the transmit side only).

The relevant fields in the XGPDmaEngine structure are listed below:

• Head points to the start of the chain of buffer descriptors (in this example, buffer descriptor
0).

• Scrub points to the next buffer descriptor in the chain that needs to be serviced by the
interrupt handler (in this example, buffer descriptor 2).

• Free points to the next free buffer descriptor available for transmit (in this example, buffer
descriptor 7).

The relevant fields in the XGPQueue structure are listed below:

• Qhead points to the start of the transmit queue of buffer descriptors that needs to be
processed by the DMA engine (buffer descriptor 4 in this example).

• Qtail points to the last buffer descriptor in the transmit queue of buffer descriptors (in this
example, buffer descriptor 5).

• Qlen points to the current length of the transmit queue (in this example, 2).

In the example shown in Figure 31, the DMA engine is currently working on buffer descriptor 3.
Descriptors 4 and 5 are in the transmit queue waiting to be processed. Descriptor 6 has been
requested by the application but has not yet been inserted into the transmit queue. Descriptors
7, 0 and 1 are available for use, and descriptor 2 has been processed and the interrupt handler
has not yet scrubbed it.

Figure 31: Data Structures Used to Manage Chain of Transmit Buffer Descriptor Chain

X536_31_051204

6

7

5

4

2

3

1

0

Qhead

Qtail

Qlen

Head

Scrub

Free

XGPQueue XGPDmaEngine

46 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Software Components
R

Ethernet Frame Reception

The chain of receive buffer descriptors must be set up and initialized with valid receive buffers
prior to calling the XGPemac_SgRecv() function. This function must be called only once by the
application during initialization. The DMA engine independently operates on the chain of
receive buffer descriptors after that point.

The DMA receive engine transfers Ethernet frames from the GMAC Peripheral Receive FIFO
and places them into the memory location pointed to by the first free receive buffer descriptor.
After transferring the frame to memory, the DMA engine marks the COMPLETE,
START_OF_PACKET, and END_OF_FRAME bits in the status field of the buffer descriptor. If
the INT_ON_END status bit is set in the buffer descriptor, the CDMAC also generates an
interrupt. The software device driver interrupt handler “scrubs” the processed descriptor(s) by
clearing the COMPLTE, START_OF_PACKET, and END_OF_PACKET bits in the status field of
the buffer descriptor(s). It then calls the application callback function with the number of frames
successfully received. The application callback function must be as short as possible because
it is executed in the context of the interrupt handler when all interrupts are typically disabled.
The callback function must process the received buffers and refill the buffer descriptors with
empty receive buffers.

Note: Any application related fields in the buffer descriptor cannot be used on the receive side for storing
protocol related information (unlike the transmit side where this is possible.

The device driver does not need to queue receive buffer descriptors. The XGPqueue structure
is not used for the receive side. The head and scrub data structures in the XGPDmaEngine
structure are used to manage the circular chain of receive buffer descriptors.

In the example shown in Figure 32, the head variable in the XGPDmaEngine structure points to
the head of the chain of receive descriptors. The scrub variable is the next descriptor that needs
to be scrubbed by the interrupt handler.

Figure 32: Data Structures Used to Manage Chain of Receive Buffer Descriptors

X536_32_051204

6

7

5

4

2

3

1

0

Head

Scrub

Free

XGPDmaEngine

GSRD Software Components

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 47
1-800-255-7778

R

Note: The last descriptor in the chain (in this example, buffer descriptor 7) must have the
STOP_ON_END status bit set. This allows the processing of received data to catch up with data received
at a high rate on the Ethernet network, since the DMA engine stops after transferring data into the buffer
pointed to by buffer descriptor 7. The device driver automatically restarts the DMA engine when it is idle.

Interrupt Moderation (Coalescing)

Without Interrupt Moderation, every frame received or transmitted generates an interrupt and
the interrupt handler scrubs the buffer descriptor while servicing the interrupt. For high data
rates, this can lead to a large number of interrupts to the CPU, which reduces the throughput of
the Ethernet link. The Interrupt Moderation (coalescing) feature mitigates this problem by
interrupting the CPU only when a certain number of Ethernet frames has been received. This
value can be tuned for optimum performance. If it is too low, the CPU is interrupted too often
and if the value is too high, the CPU spends more time in the interrupt handler since it has to
scrub more descriptors per interrupt.

On the transmit side, the device driver code enforces the coalescing threshold value while
inserting the buffer descriptors in the transmit queue. It ensures the INT_ON_END status bit is
set after every N descriptors, where N is the coalescing threshold value for the transmit side.
The driver also ensures the last descriptor to be transmitted has the INT_ON_END and
STOP_ON_END bits set. This ensures that an interrupt is generated after all the frames have
been transmitted and the CDMAC stops.

On the receive side, the coalescing of interrupts causes the need to set up a periodic timer to
poll the receive buffers for data. The reason for this can be explained with an example. If the
receive interrupt coalescing value is 10 and the Ethernet channel receives five frames before
the channel goes idle (no more received frames), the five frames will never be processed by the
CPU since it never received an interrupt. This can lead to higher protocol errors like TCP
connection timeouts etc. Even for a channel with constant traffic, this can lead to higher
latencies and lower throughput. The CDMAC contains a programmable timer that can be used
to generate an interrupt every ~100 uS if the coalescing threshold has not been met.

Software File List

The files that make up the software drivers are listed below:

GMAC Peripheral driver files:

Xgpemac.c – main source file

Xgpemac.h – main header file

Xgpemac_l.h – low-level driver definitions

Xgpemac_g.c – peripheral configuration file

CDMAC driver files:

Xgpdma.c – main CDMAC source file

Xgpdma.h – main CDMAC header file

Xgpdma_l.h – CDMAC driver low-level driver definitions

Xgpconf.h – general software driver configuration file

Device Driver Software API

The xapp536.zip file contains API Documentation for the Device Driver in HTML format. Open
the gsrd/doc/drivers/ gsrdxgpemac_dma_v1_00_b/index.html with your favorite
web browser. This documentation was generated directly from the source code using an open
source tool Doxygen. More information about Doxygen can be found here:
http://www.doxygen.org/.

http://www.xilinx.com/esp/networks_telecom/optical/xlnx_net/gsrd_download.htm
http://www.xilinx.com/systemio/gmac/index.htm

48 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

GSRD Software Components
R

Bare Metal Ethernet Transmit and Receive Tests

The following applications are designed to test and demonstrate the functionality of the GSRD
EDK Reference System. These tests are implemented with stand-alone software running on
the embedded PowerPC 405.

The stand-alone test is based on the gsrd_gmac_example stand-alone application available
in the reference design ZIP file (under the gsrd/sw/standalone/gsrd_gmac_example/
directory). A Spirent SmartBits performance analysis system is connected to the GSRD
Reference System on the ML300 board. The interrupt coalescing value on the receive is set to
10 (every 10 frames generate an interrupt), and there are 100 Tx and 100 Rx buffer descriptors
in the test.

The transmit numbers are obtained from statistics obtained on the SmartBits system. A pre-
allocated buffer is sent continuously in a loop using a chain of buffer descriptors. The receive
numbers are obtained by setting up the Programmable Interrupt Timer (PIT) to generate an
interrupt every second to the PowerPC on the GSRD Reference System. The total number of
valid Ethernet frames received per second is printed to the console.

Table 8 and Table 9 show the raw Ethernet performance numbers for various frame sizes. The
“Line Performance” column is calculated by multiplying the raw “Frame Size” by the “Frames
per Second.” The “Payload Performance” column is calculated by multiplying the payload
portion of the “Frame Size.”

Table 8: Bare Metal Ethernet Transmit Performance

Frame Size
(including FCS)

Frames per
Second

Line
Performance

(Mbps)

Payload
Performance

(Mbps)

64 575,428 294.62 211.76

128 597,472 611.81 525.78

512 233,012 954.42 920.86

1518 80,656 979.49 967.87

5000 24,736 989.44 985.88

9000 13,775 991.80 989.82

Table 9: Bare Metal Ethernet Receive Performance

Frame Size
(including FCS)

Frames per Sec-
ond

Line Performance
(Mbps)

Payload Perfor-
mance
(Mbps)

64 779,800 399.26 286.97
128 560,120 573.56 492.91
512 235,000 962.56 928.72
1518 81,300 987.31 975.60
5000 24,900 996.00 992.41
9000 13,057 940.10 938.22

GSRD Software Components

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 49
1-800-255-7778

R

Linux on GSRD Reference System

Linux has been ported to the GSRD EDK Reference System on ML300. Linux boots from a
RAM Disk image embedded in the supplied ELF file. More information about this can be found
in the readme_linux.txt file located in the gsrd/sw/os/linux/ directory of the ZIP file.

Netperf is an open source benchmark utility that measures networking performance. It was
used to measure the TCP performance of Linux on GSRD. Table 10 and Table 11 summarize
the Netperf benchmark results of Linux on GSRD running on the ML300 platform. The raw
output from the Netperf utility is captured in the file performance_linux.txt in the
gsrd/sw/os/linux/ directory.

Linux supports a special system call for transmitting TCP data, sendfile(). The system call
sendfile() enables zero-copy transmission of data, which allows Linux to also take advantage of
the checksum (CSUM) offload capabilities of the GMAC Peripheral. Netperf can be run with the
sendfile() system call.

Table 10: Netperf Transmit Benchmark Results

Frame Size
Receive

Socket Size
(bytes)

Send Socket
Size

(bytes)

Send
Message Size

(bytes)

sendfile()
with CSUM

Offload

CPU
Utilization

Bandwidth
(Mbps)

128 87380 16384 16384 NO 100% 8

128 87380 16384 16384 YES 99% 8

512 87380 16384 16384 NO 99% 47

512 87380 16384 16384 YES 98% 47

1518 87380 16384 16384 NO 98% 112

1518 87380 16384 16384 YES 97% 121

5000 87380 16384 16384 NO 97% 204

5000 87380 16384 16384 YES 97% 296

9000 87380 16384 16384 NO 96% 272

9000 87380 16384 16384 YES 96% 546

Table 11: Netperf Receive Benchmark Results

Frame Size
Receive

Socket Size
(bytes)

Send Socket
Size

(bytes)

Send
Message Size

(bytes)

sendfile()
with CSUM

Offload

CPU
Utilization

Bandwidth
(Mbps)

128 87380 16384 16384 NO 100% 26

512 87380 16384 16384 NO 99% 44

1518 87380 16384 16384 NO 94% 115

5000 87380 16384 16384 NO 95% 241

9000 87380 16384 16384 NO 96% 264

50 www.xilinx.com XAPP536 (v1.1) June 3, 2004
1-800-255-7778

Building the GSRD Reference System under EDK
R

There is no equivalent system call for zero-copy reception of TCP data in Linux – there is still a
single copy in this system from Kernel to User space. For this reason, the checksum offload
capability of the GMAC Peripheral is not used on the receive side under Linux.

For more information about sendfile() on Linux, see:

http://builder.com.com/5100-6372-1044112.html.

For more information about Netperf, see the Netperf website:

http://www.netperf.org/.

Stand-alone TCP/IP Stack

Stand-alone TCP/IP can be used with GSRD when the highest performance possible is
required. The overhead of running a full operating system like Linux is noticeable when
communicating on a Gigabit Ethernet network. lwIP is an open source TCP/IP implementation
for small embedded systems where no operating system is required, although it can be used
with an operating system. lwIP is discussed in XAPP663. Work is currently ongoing to port a
stand-alone TCP/IP Stack to GSRD. As of the date of this publication, this work had not been
completed and will be released in a future version of GSRD.

Building the
GSRD
Reference
System under
EDK

The gsrd/doc/EDK_instructions.pdf document included with the reference design
contains instructions for building the GSRD Reference System under EDK. The section below
describes the special considerations for the 1-Gigabit Ethernet MAC LogiCORE.

Xilinx 1-Gigabit Ethernet MAC LogiCORE Integration

The GSRD EDK Reference System is shipped with an evaluation simulation model of the 1-
Gigabit Ethernet MAC. This model
(gsrd/edk_libs/gsrd_lib/pcores/ll_gmac_periph_v1_00_a/hdl/verilog/gma
c.v) can be used for behavioral simulation only. To generate a bit file through EDK, a “Full
System Hardware Evaluation” license of the 1-Gigabit Ethernet MAC must be obtained from
Xilinx. Follow the instructions on this web page to obtain the license and necessary ISE
updates.

The COREGen tool is used to generate the netlist for the 1-Gigabit Ethernet MAC LogiCORE.
Be sure to configure the core as shown in Figure 33. After the core is generated, copy the
resulting gmac.edn and gmac_gmac_gen_1.ngc files into the
gsrd/edk_libs/gsrd_lib/pcores/ll_gmac_periph_v1_00_a/netlist/ directory.
The gmac.v in the
gsrd/edk_libs/gsrd_lib/pcores/ll_gmac_periph_v1_00_a/hdl/verilog/
directory can still be used as the black-box wrapper and simulation model as long as the
configuration options are kept the same as shown in Figure 33.

http://xilinx.com/ipcenter/ipevaluation/1ge_mac_evaluation.htm
http://builder.com.com/5100-6372-1044112.html
http://www.netperf.org/

Reference Design Files

XAPP536 (v1.1) June 3, 2004 www.xilinx.com 51
1-800-255-7778

R

Reference
Design Files

Xilinx ML300 Evaluation Platform

LocalLink Specification

1-Gigabit Ethernet MAC Data Sheet

XAPP535 High Performance Multi Port Memory Controller

The reference design can be downloaded from the Xilinx website: xapp536.zip.

Getting Started with EDK and MontaVista Linux

Revision
History

The following table shows the revision history for this document.

Figure 33: Gigabit Ethernet MAC COREGen Configuration Screen Capture

Date Version Revision

05/05/04 1.0 Initial Xilinx release.

06/03/04 1.1 Added introductory summary, updated graphics, and general
content edit.

http://www.xilinx.com/esp/networks_telecom/optical/xlnx_net/gsrd_download.htm
http://www.xilinx.com/ml300/
http://xilinx.com/ipcenter/ipevaluation/1ge_mac_evaluation.htm
http://direct.xilinx.com/bvdocs/appnotes/xapp765.pdf

	Gigabit System Reference Design
	Summary
	Introduction
	GSRD EDK Reference System
	Hardware
	MPMC
	CDMAC
	LocalLink Devices
	DCR
	Interrupts
	Clock Generation and Distribution
	CPU Debug via JTAG
	Other Devices
	IP Version and Source
	Simulation and Verification
	Synthesis and Implementation
	Design Flow Environment
	Memory Map

	GSRD Hardware Peripheral Data Sheets
	DCR to OPB Bridge
	LocalLink TFT Controller
	LocalLink Data Generator
	LocalLink Gigabit Ethernet Media Access Controller (GMAC) Peripheral
	Overview
	Features
	Peripheral Design Facts
	Programming Model
	Peripheral Registers
	Initialization and Control
	Transmit Data Flow - DMA Operation
	Receive Data Flow - DMA Operation
	Software Considerations for Checksum Offload
	Hardware Functional Description
	Design Parameters

	GSRD Software Components
	LocalLink GMAC Peripheral Device Driver
	Overview
	Features
	Initialization and Control
	Theory of Operation

	Ethernet Frame Transmission
	Software File List
	Device Driver Software API

	Bare Metal Ethernet Transmit and Receive Tests
	Linux on GSRD Reference System
	Stand-alone TCP/IP Stack

	Building the GSRD Reference System under EDK
	Xilinx 1-Gigabit Ethernet MAC LogiCORE Integration

	Reference Design Files
	Revision History

