
R

High Performance Multi-Port
Memory Controller

Application Note

XAPP535 (v1.1) December 10, 2004

High Performance Multi-Port Memory Controller www.xilinx.com XAPP535 (v1.1) December 10, 2004

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, RocketIO, SelectIO, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability
for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2004 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

The following table shows the revision history for this document..

R

Version Revision

06/04/04 1.0 Initial Xilinx release.

12/10/04 1.1 Copyediting and formatting done for compliance with Xilinx standards.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 3
XAPP535 (v1.1) December 10, 2004

Preface: About This Document
Document Contents . 7

Additional Resources . 7

Typographical Conventions . 8

Chapter 1: Introduction
Overview . 10

Performance Levels . 12

Chapter 2: Reference Systems
Gigabit Loopback Reference System. 15

Introduction . 15
Hardware . 15

IP Version and Source . 21
Simulation and Verification . 22

Synthesis and Implementation . 23
Design Flow Environment . 23

Memory Map . 24
ML300 Specific Registers. 25

GSRD Dual TFT Reference System . 27

Introduction . 27
Hardware . 27

IP Version and Source . 33
Simulation and Verification . 34

Synthesis and Implementation . 35
Design Flow Environment . 35

Memory Map . 36
ML300-Specific Registers . 37

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
Multi-Port Memory Controller (MPMC) . 39

Overview . 39

Features . 39
Related Documentation . 39

High-Level Block Diagram . 40

Table of Contents

http://www.xilinx.com

4 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

R

Hardware . 40
Timing Diagrams . 49

Simulation and Verification . 59
Using the MPMC in a System . 59

Module Port Interface . 60

Communication Direct Memory Access Controller (CDMAC) 62
Overview . 62

Features . 62
Related Documents . 62

High-Level Block Diagram . 63
Theory of Operation . 64

Hardware . 77
Timing Diagrams . 103

Simulation and Verification . 112
Directory Structure . 114

Using the CDMAC in a System . 115
Software . 115

Module Port Interface . 116

PLB to MPMC Personality Module . 119
Overview . 119

Features . 119
Related Documents . 119

High-Level Block Diagram . 119
Hardware . 119

Simulation and Verification . 121
Module Port Interface . 121

DCR to OPB Bridge . 124

Overview . 124
Features . 124

Related Documents . 124
High-Level Block Diagram . 125

Hardware . 126
Module Port Interface . 127

LocalLink TFT Controller . 128

Overview . 128
Features . 128

Related Documents . 128
High-Level Block Diagram . 128

Hardware . 129
Simulation and Verification . 130

LocalLink TFT Controller Pixel Organization . 132
Module Port Interface . 135

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 5
XAPP535 (v1.1) December 10, 2004

R

LocalLink Data Generator . 137
Overview . 137

Features . 137
Related Documents . 137

High-Level Block Diagram . 137
Hardware . 138

Simulation and Verification . 150
Directory Structure . 150

Using the LocalLink Data Generator . 151
Module Port Interface . 151

EDK Cores . 152

Chapter 4: Software Models for Elements Contained in the GSRD
CDMAC Software Model . 153

CDMAC DMA Descriptor Model . 153
CDMAC Programming Model . 154

CDMAC Register Definitions . 155

LocalLink Data Generator Software Model . 160
LocalLink Data Generator Programming Model . 160

LocalLink Data Generator Register Definitions . 160

Chapter 5: Software Applications Contained in the GSRD
Stand-Alone Software . 165

Overview . 165
Data Generator TFT Tests . 165

CDMAC Verification Tests . 169
GSRD Verification Test . 176

Loopback Reference System Verification Tests . 181
Performance Metrics . 184

Linux Device Driver. 188

LwIP . 188

Chapter 6: Building the GSRD Under EDK
Supported Features . 189

http://www.xilinx.com

6 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

R

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 7
XAPP535 (v1.1) December 10, 2004

R

Preface

About This Document

This application note introduces two key technologies from the Gigabit System Reference
Design (GSRD): the Multi-Port Memory Controller (MPMC) which allows multiple entities
to directly access memory, bypassing a system bus; and the Communication Direct
Memory Access Controller (CDMAC) which works with the MPMC to provide multiple
channels of Direct Memory Access (DMA) for communication style devices.

Document Contents
This document contains the following chapters:

• Chapter 1, “Introduction” provides an overview of the Multi-Port Memory Controller
(MPMC).

• Chapter 2, “Reference Systems” covers two of the three systems that are provided: the
Dual TFT Controller Reference System, and the Loopback Reference System. Features
and functionality unique to each of these systems are described in detail.

• Chapter 3, “Hardware Data Sheets for Elements Used in the GSRD” contains all of the
datasheets for each of the hardware elements present in the reference systems. This
includes the MPMC and CDMAC, as well as many other ancillary hardware IPs that
are used to make demonstrable systems.

• Chapter 4, “Software Models for Elements Contained in the GSRD” provides an
overview of the software models for the major cores that are provided with the GSRD.
This includes documentation for the software model of the CDMAC, and the
LocalLink Data Generator.

• Chapter 5, “Software Applications Contained in the GSRD” provides an overview of
the software that is provided with the GSRD. This includes the CDMAC Verification
Tests, Performance Metrics, Data Generator Tests, and demonstration applications.
Additional demonstration applications and related documentation are shipped with
the ZIP file.

• Chapter 6, “Building the GSRD Under EDK” provides some assistance in using the
Xilinx Embedded Development Kit (EDK) to build the various reference systems, run
simulations, create bitstreams and run applications on real hardware (using the Xilinx
ML300 Evaluation Platform). This chapter assumes the reader is familiar with EDK.

Additional Resources
To search the database of silicon and software questions and answers, or to create a
technical support case in WebCase, visit the following Xilinx website:

http://www.xilinx.com/support

http://www.xilinx.com
http://www.xilinx.com/ml300/

http://www.xilinx.com/ml300/

http://www.xilinx.com/support

8 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Preface: About This Document
R

Typographical Conventions
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Italic font

References to other documents
See the ML300 User Guide for
more information.

Emphasis in text
The address (F) is asserted after
clock event 2.

Underlined Text Indicates a link to a web page. http://www.xilinx.com/gsrd

http://www.xilinx.com
http://www.xilinx.com/gsrd

High Performance Multi-Port Memory Controller www.xilinx.com 9
XAPP535 (v1.1) December 10, 2004

R

Chapter 1

Introduction

Modern systems require vast amounts of data bandwidth. Requirements for the processing
subsystem and movement of gigabits per second of data between peripherals and memory,
make up the bulk of this bandwidth demand. Most systems try to offload the processing
subsystem so that it does not try to produce or consume the data. Rather, the processing
subsystem acts more like a traffic cop to control the flow of the data from point to point. In
many systems, the processing subsystem controls the flow of this data by setting up a
Direct Memory Access (DMA) engine to move the data.

The problem with many modern systems is that the processing subsystem and DMA
engine(s) must vie for access to the same memory resources via a system bus. This system
bus causes the performance of the system to be limited to the performance of the bus. The
memory subsystem is often capable of much more data bandwidth, but is limited by the
slower processor subsystem bus.

The Gigabit System Reference Design (GSRD), described in XAPP536, demonstrates a
variety of technologies surrounding the movement of data within a system using Xilinx
Virtex-II Pro™ series Field Programmable Gate Arrays (FPGAs). The GSRD begins with
the premise that the memory subsystem is capable of more data bandwidth than the
processor subsystem bus can deliver. From this premise, an architecture is derived that
offers more data bandwidth than is available in traditional on-chip bus-based systems.

This application note introduces two key technologies from the GSRD: the Multi-Port
Memory Controller (MPMC) which allows multiple entities to directly access memory,
bypassing a system bus; and the Communication Direct Memory Access Controller
(CDMAC) which works with the MPMC to provide multiple channels of DMA for
communication style devices. The LocalLink Gigabit Ethernet Media Access Controller
(GMAC) peripheral, which provides Gigabit Ethernet access across a LocalLink interface
instead of a bus-based interface, is described in detail in XAPP536.

Two of the GSRD's key technologies, the MPMC and CDMAC, are described in detail in
this chapter. The third key technology, the LocalLink GMAC peripheral, is described in
XAPP536. The package of files provided with this document provides three different
reference systems that are pre-built to demonstrate various aspects of the three key
elements. The main GSRD system shows the instantiation of all three elements: MPMC,
CDMAC, and GMAC peripheral. In addition, this system contains a data generator and a
TFT Display controller that are used to demonstrate the amount of data that can be pulled
from the memory while the IBM PPC405 central processing unit (CPU) contained in the
Virtex-II Pro device consumes its bandwidth.

This system can boot the Linux operating system and run applications across the Gigabit
Ethernet link. The two remaining systems are designed to illustrate high bandwidth data
movement and verification of the infrastructure. All three of the reference system designs
are to be used as a springboard for further development of high data bandwidth systems.
Hardware and software source code is provided for most modules, and all systems have
been built and verified using the Xilinx ML300 Evaluation Platform, ISE FPGA tools, and
the Xilinx Embedded Design Kit (EDK).

http://www.xilinx.com
http://www.xilinx.com/ml300/
http://www.xilinx.com/bvdocs/appnotes/xapp536.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp536.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp536.pdf

10 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 1: Introduction
R

Overview
This Gigabit System Reference Design consists of the three main elements: MPMC,
CDMAC, and GMAC Peripheral. The MPMC is a quadruple port memory controller used
to provide memory access for the PPC405 and four DMA engines to double data rate
(DDR) SDRAM. DDR memory is used because it provides substantial burst data
bandwidth over most competing memory technologies. While the MPMC was designed
with DDR in mind, its actual implementation could be adopted to differing memory
technologies. The PPC405 CPU is a Harvard architecture CPU, therefore it provides
separate Processor Local Bus (PLB) ports for the instruction and data side processor local
bus. The GSRD connects the I and D ports to two of the ports on the MPMC, and reserves
the other two ports for up to four channels of DMA using the bolt-on CDMAC. The main
advantage of the MPMC is that it can simultaneously arbitrate all four ports with a priori
knowledge to most efficiently use the DDR memory. In contrast, an on-chip bus-based
system must serially arbitrate for access to the bus, let alone access to the memory. Since
the MPMC has specialized knowledge about what each port is talking too, it can make
optimizations that minimize the latency for getting data back to each port.

Figure 1-1 illustrates the limitations between shared PLB-based systems and those built
with the MPMC technology. In a shared bus-based system (such as PLB), the available CPU
bandwidth is adversely affected as DMA bandwidth increases.

The MPMC system can sustain a much larger draw down of DMA bandwidth before the
CPU sees a loss in performance. The area between the two curves is where the MPMC
differentiates itself. MPMC illustrates that it permits substantially more DMA bandwidth

Figure 1-1: CPU Availability vs. DMA Bandwidth

X535_01_113004

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.5 1 1.5 2 2.5

GSRD CPU vs DMA Performance

DMA Bandwidth (Gbit / Sec)

C
P

U
 A

va
ila

bi
lit

y

3 3

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 11
XAPP535 (v1.1) December 10, 2004

Overview
R

while the CPU is still highly available. When more DMA bandwidth is demanded in a
shared bus system, the system bus becomes the limiting factor, and the CPU's availability
rapidly diminishes.

Another key element of the GSRD is the CDMAC. It is called a 'Communication' DMA
Controller because it is focused on talking to full duplex communication devices, such as
the GMAC peripheral. The CDMAC is built to use two ports of the MPMC, and provides
two full duplex channels of DMA via four independent DMA engines. The CDMAC thus
consists of two transmit and two receive DMA engines. These four engines vie for access to
the DDR memory via the MPMC. The CDMAC is tightly coupled to the MPMC so that it
can be smaller and more agile than other types of DMA controllers. One of the major
advantages of such tight coupling is that the MPMC can be designed to take advantage of
the fact that it knows two of its ports are talking to DMA. This provides a priori knowledge
about how to best control the DDR memory and how to pull as much bandwidth from it as
possible. For example, whereas the PPC405 can only request accesses of 32 bytes at a time
from the DDR memory, the CDMAC requests 128 bytes of data at a time. This provides
huge gains in bandwidth because the DDR memory spends more of its time in the data
phase than in the control phase.

The last key element to the GSRD is the LocalLink GMAC peripheral. This peripheral is
different from other gigabit Ethernet peripherals because it does not use an on-chip bus to
communicate its data. Rather, it uses the Xilinx LocalLink interface. LocalLink is a very
lightweight interface for communication devices that provides a simple protocol to
transfer data unidirectionally. Full duplex communication devices such as the GMAC
peripheral consume two LocalLink interfaces. The major advantage of using LocalLink
over an on-chip bus is that it vastly simplifies the logic requirements for the peripheral,
and allows the peripheral to run at a higher clock rate. The GMAC peripheral thus
becomes tightly coupled to the memory subsystem, bypassing the traditional bottlenecks
of the on-chip bus. Another advantage of the LocalLink interface to the GMAC peripheral
is the freedom to add intelligent processing agents to the pipeline.

The GMAC peripheral contains two additional features that greatly enhance the
performance of Ethernet-based systems: Transport Layer (UDP and TCP) checksum
offload, and filtering of bad or truncated frames. The checksum offload logic has a
significant effect on overall system performance because it places in hardware a task that is
normally completed by the CPU. This is one example of an intelligent processing agent
added to the LocalLink interface. Since the hardware automatically calculates the
incoming and outgoing checksums, the CPU is now free to do other things. More
importantly, when the CPU is calculating checksums, the Ethernet link must wait for the
CPU to complete its calculation, which directly affects the effective line rate of the Ethernet
link. Similarly, the hardware contains packet-filtering logic that discards bad or truncated
packets. This hardware prevents the CPU from having to determine that the packet was
bad or truncated -- again offering the CPU more opportunity to do other things.

Figure 1-2 shows a typical system implemented using the three key technologies outlined
above. In this example, the MPMC is connected to the PPC405 CPU and the CDMAC. The
CDMAC is in turn connected to three LocalLink devices. One of the devices is a full-duplex
device and the other two are half-duplex devices, one in each direction. The PPC405 uses
the Device Control Register (DCR) bus to talk to some additional devices such as the
interrupt controller and UART, as well as control the CDMAC and LocalLink devices. This
example is intended only to illustrate the basic architecture of the system. It is very possible
to build systems wherein the D-side PLB of the PPC405 is shared in a standard PLB system,
and/or where some other high-speed device(s) is connected to the CDMAC.

http://www.xilinx.com

12 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 1: Introduction
R

Performance Levels
It is natural to inquire as to the performance levels that are sustainable under the GSRD.
This is a challenging question to address because it depends greatly upon the needs of the
system. For example, a system running a Real Time Operating System (RTOS) might have
substantially less performance than a system running a stand-alone software application.
What is not obvious is how much impact the software running on the system can have. The
GSRD was designed originally to address the needs of a hardware system to obtain very
high bandwidth. However, in systems that can take advantage of such high bandwidth,
there is a substantial burden on software to 'keep up' with the advantages provided by the
hardware.

The GSRD provides three points of view to consider this question: A full Linux
implementation, including Gigabit Ethernet driver; lwIP, a simple TCP/IP stack freely

Figure 1-2: Typical GSRD System using MPMC and CDMAC

LocalLink
Full Duplex

Data
Consumer

DDR SDRAM

PPC405

DCR

ISPLB

DSPLB

Lo
ca

lL
in

k

Lo
ca

lL
in

k

Lo
ca

lL
in

k

Lo
ca

lL
in

k

DCR2OPB

LocalLink
Rx Device

LocalLink
Tx Device

Dual
GPIO

DCR2OPB

UART
Lite

Pushbuttons
and LEDs XCVR

DB9

MPMC

PLB Port Interface PLB Port Interface
CDMAC

Port 0 Port 1 Port 2 Port 3

Rx0 Tx0 Rx1 Tx1

ML300 Evaluation Platform

FPGA

X535_02_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 13
XAPP535 (v1.1) December 10, 2004

Performance Levels
R

available, and a few stand-alone applications which exercise the ports to the fullest degree
possible. Using each of these applications, customers can evaluate the relative
performance of each style of use. Generally, the result is that if the CPU can keep the
CDMAC well fed with DMA descriptors, then large quantities of data can be moved by the
CDMAC per unit time. However, in many instances, the size of data being moved is such
that the CPU spends all of its time managing the CDMAC instead of doing other useful
things. These applications help to explore the boundaries of performance that exist in
various styles of use that systems typically employ.

Table 1-1 is provided to summarize the performance that can be obtained with the GSRD,
as shipped with this document. Five comparisons are made. The first two use the Gigabit
Serial Reference System (GSRS) the operation of Linux and a lightweight TCP/IP stack
running on top of the gigabit Ethernet hardware. These two data points provide insight
into the relative performance of the gigabit Ethernet link. The last three comparisons use
each of the three reference systems in order to provide performance metrics when all four
ports are being used. The Loopback design metric seeks to show the maximum practical
performance that is possible when the communication devices process as much data as the
memory is capable of providing. The GSRD Verification Test design metric uses the GSRS
and broadcasts video data from a data generator to memory, from memory across the
gigabit Ethernet link back into memory, and from memory to the TFT display on the Xilinx
ML300 Evaluation Platform. The Dual TFT design metric provides performance data when
there are two data generators in the system, and two TFTs moving independent video data
across the four CDMAC engines. Whereas the first three metrics only utilize two of the
four CDMAC engines, the last three metrics provide differing levels of performance as the
CDMAC engines' data rates are increased. This permits the study of the effect the DMA
overhead has on the CPUs availability.

Table 1-1: GSRD Measured Performance Capabilities

Test Tx0 Data Rate Rx0 Data Rate Tx1 Data Rate Rx1 Data Rate CPU Availability

Linux, NetPerf, 9 KB 0 0 510 Mb/sec 280 Mb/sec 20%

Loopback High Speed

GSRD TFT Echo 643,606,522 bps 712,882,538 bps 999,426,901 bps 938,275,284 bps 77%

Dual TFT Moves

http://www.xilinx.com/ml300/
http://www.xilinx.com/ml300/
http://www.xilinx.com

14 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 1: Introduction
R

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 15
XAPP535 (v1.1) December 10, 2004

R

Chapter 2

Reference Systems

Gigabit Loopback Reference System

Introduction
The Gigabit Loopback System Reference Design (GSRD) demonstrates a system utilizing
high bandwidth devices that move large amounts of data using DMA transactions and
high-speed memory. The system incorporates a Multi-Port Memory Controller (MPMC)
and a Communications Direct Memory Access Controller (CDMAC) as the infrastructure
to move large amounts of data while providing sufficient memory bandwidth for the CPU
and other peripherals. A Loopback Module redirects data on the transmit paths back to the
receive paths with variable latencies. The Loopback Module is connected to the CDMAC in
the system to assist in system testing and performance analysis. This system is a
demonstration and development vehicle for high bandwidth Virtex-II Pro systems such as
those using RocketIO™ Multi-Gigabit Transceivers (MGTs) or other data intensive
applications.

This document describes the contents of the reference system and provides information
about how the system is organized, implemented, and verified. The information presented
introduces many aspects of the reference system, but refer to additional specific
documentation for more detailed information about the software, tools, peripherals,
interface protocols, and capabilities of the FPGA.

Hardware

Overview

Figure 2-1 provides a high-level view of the hardware contents of the system. This design
demonstrates a system built around the MPMC coupled with 32-bit DDR SDRAM
memory. A dual engine CDMAC connects to two ports of the MPMC. The instruction and
data side PPC405 ports connect to the other two MPMC ports via PLB-to-MPMC Interface
modules. Four separate point-to-point LocalLink buses connect the CDMAC to the
Loopback Module. LocalLink is a protocol specification optimized for high-performance
communications applications such as gigabit Ethernet.

Lower performance devices such as the UART, interrupt controller, and GPIOs are
attached to the CPU's DCR bus. DCR is an IBM CoreConnect bus primarily used with
control and status registers where simplicity is desired. Refer to the DCR CoreConnect
Architecture Specifications for more information. The use of DCR for peripherals reduces the
loading on the high-performance MPMC ports while minimizing FPGA resource
utilization since large bus bridges can be avoided.

http://www.xilinx.com

16 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 2: Reference Systems
R

The hardware devices used in this design are described in more detail in the Processor IP
User Guide, available at http://www.xilinx.com/ise/embedded/proc_ip_ref_guide.pdf,
and in Chapter 3, “Hardware Data Sheets for Elements Used in the GSRD”.

MPMC

The MPMC allows the 32-bit DDR SDRAM memory resource to be shared over four
independent interface ports. These ports each permit full read and write access from the
CDMAC and PPC405. Each MPMC port is implemented as a direct point-to-point
connection rather than a shared bus, thus permitting higher performance and not
requiring additional bus arbiters.

Figure 2-1: GSRD Loopback Reference System Block Diagram

Loopback

DDR SDRAM

PPC405

DCR

ISPLB

DSPLB

Lo
ca

lL
in

k

Lo
ca

lL
in

k

Lo
ca

lL
in

k

Lo
ca

lL
in

k

DCR2OPB

Dual
GPIO

DCR2OPB

UART
Lite

Pushbuttons
and LEDs XCVR

DB9

MPMC

PLB Port Interface PLB Port Interface
CDMAC

Port 0 Port 1 Port 2 Port 3

Rx0 Tx0 Rx1 Tx1

ML300 Evaluation Platform

FPGA

X535_03_113004

http://www.xilinx.com
http://www.xilinx.com/ise/embedded/proc_ip_ref_guide.pdf

High Performance Multi-Port Memory Controller www.xilinx.com 17
XAPP535 (v1.1) December 10, 2004

Gigabit Loopback Reference System
R

Other highlights of the MPMC include:

• Independent read and write data FIFOs for each port

• Highly efficient block RAM-based state machines

• Pipelined control, data, and arbitration logic

Two MPMC ports are connected to the two PLB ports of the PPC405 via PLB to MPMC
Interface modules. The PLB to MPMC Interfaces translate transactions from the Instruction
and Data side PLB ports of the PPC405 into MPMC transactions. It handles all the
necessary handshaking signals and clock synchronization between the PLB and MPMC
interfaces. The remaining two MPMC ports attach to the quad engine CDMAC. This
permits the CDMAC to manage the flow of two bidirectional streams of data to and from
memory.

Since all four ports of the MPMC access a common shared memory resource, data transfers
between the CPU and the CDMAC are coordinated through the MPMC. For example, each
one can read or write to a common location in memory and stay coordinated using
interrupts and DCR. This removes the need for a direct communications path between the
CPU and the CDMAC. This architecture helps to reduce FPGA resources and improve
system performance.

CDMAC

The CDMAC manages the flow of data between peripherals and memory. It supports
variable packet sizes and can transfer data to unaligned memory addresses (byte
resolution). CDMAC control and status registers are accessible by the CPU via DCR
interface. Using DCR frees up the high-speed ports to only be used for data transfer and
not for control. The CDMAC also has the ability to read a linked list of DMA transfer
descriptors directly from memory, and it can generate interrupts based on the completion
of a task or the detection of an error. Therefore, the CPU can set up a chain of DMA
descriptors of memory and then command the CDMAC to autonomously transfer the data
according to the descriptors. This frees up CPU resources for other tasks.

The CDMAC is configured so that the LocalLink Data Generators and LocalLink TFT
Controllers do not generate errors when the DMA engine reaches a descriptor with the
“completed” bit set.

LocalLink Devices

LocalLink is a protocol specification for a point-to-point connection infrastructure
optimized for communications applications. The protocol supports flow control from the
source or destination side of the data transfer. It also includes additional control signals to
mark the start and end of frames and data payloads. Consult the LocalLink Specification
for more information.

Each CDMAC engine controls a separate LocalLink transmit and receive path. Both
CDMAC engines connect to the Loopback Module. The Loopback Module takes the data
from the transmit path and sends it back along the receive path. The returned data can go
back to the same CDMAC engine or can be cross-coupled to the other CDMAC engine. It
can also insert varying amounts of delay to the data being sent back. The amount of the
delay is programmable by the CPU via DCR commands. The delay can be set to different
fixed values or with a pseudo-random set of delays.

http://www.xilinx.com
http://www.xilinx.com/aurora

18 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 2: Reference Systems
R

DCR

The DCR offers a very simple interface protocol and is used to access control and status
registers in various devices. It allows for register access to various devices without loading
down the On-Chip Peripheral Bus (OPB) and PLB interfaces. Since DCR devices are
generally accessed infrequently and do not have high-performance requirements, they are
used throughout the reference design for functions, such as error status registers, interrupt
controllers, and device initialization logic.

The CPU contains a DCR master interface that is accessed through special Move To DCR
and Move From DCR instructions. Since DCR devices are not memory mapped and their
access is treated as a privileged instruction, take care in SW to properly access DCR
devices. The DCR specification requires that the DCR master and slave clocks be
synchronous to each other and related in frequency by an integer multiple. It is important
to be aware of the clock domains of each of the DCR devices to ensure proper functionality.

Control/status registers in the CDMAC and Loopback Module are all accessed via DCR. In
addition there are three peripherals on DCR: Uartlite, a dual GPIO controller, and the
interrupt controller. Since the Uartlite and GPIO are natively OPB devices, a simple DCR to
OPB interface bridge is added. This DCR to OPB interface is extremely compact and only
implements the minimum necessary functionality to talk to these devices.

Using the DCR rather than the memory mapped PLB to communicate with peripherals
reduces loading on the high-speed paths to allow for greater system performance. Since
peripheral and control/status registers are accessed relatively infrequently and are lower
bandwidth devices, it is appropriate to use DCR. Using DCR also lessens the need for bus
bridges that can be complex or would introduce greater latency.

Interrupts

The CPU also contains two interrupt pins, one for critical interrupt requests, and the other
for non-critical interrupts. An interrupt controller for non-critical interrupts is controlled
through the DCR. It allows multiple edge or level sensitive interrupts from peripherals to
be OR'ed together back to the CPU. It also provides the ability for bitwise masking of
individual interrupts. Table 2-1 and Table 2-2 summarize the connections from the IP to the
interrupt controller.

Table 2-1: GSRD Loopback Reference System

M
SB

L
SB

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

C
D

M
A

C
 I

N
T

U
A

R
T

L
it

e
IN

T

Table 2-2: List of IP Connections to the Interrupt Controller

Bit Description

[1]
CDMAC_INT: The CDMAC INT pin is tied to this INTC input.

The CDMAC INT pin is active high level triggered

[0]
UARTLite_INT: The UARTLite INT pin is tied to this INTC input.

The UARTLite INT pin is rising edge triggered

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 19
XAPP535 (v1.1) December 10, 2004

Gigabit Loopback Reference System
R

Clock/Reset Distribution

Virtex-II Pro FPGAs have abundant clock management and global clock buffer resources.
The reference system uses these capabilities to generate a variety of different clocks.
Figure 2-2 illustrates use of the Digital Clock Managers (DCMs) for generating the main
clocks in the design. A 100 MHz input reference clock is used to generate the main 100
MHz system clock that drives the PLB, MPMC, LocalLink, and On-Chip Memory (OCM).
The CLK90 output of the DCM produces a 100 MHz clock that is phase shifted by 90
degrees for use by the DDR SDRAM controller. The CPU clock is multiplied up from the
PLB clock to 300 MHz.

CPU Debug via JTAG

The CPU can be debugged via JTAG with a variety of software development tools from
VxWorks, GNU, IBM and others. In this design, two different types of JTAG chains are
supported for connecting to the CPU. This permits the widest compatibility among JTAG
products that support the PPC405.

The preferred method of communicating with the CPU via JTAG is to combine the CPU
JTAG chain with the FPGA's main JTAG chain, which is also used to download bitstreams.
This method requires the user to instantiate a JTAGPPC component from the Xilinx FPGA
primitives library and directly connect it to the CPU in the user’s design. The primary
advantage of sharing the same JTAG chain for CPU debug and FPGA programming is that
this simplifies the number of cables needed since a single JTAG cable (like the Xilinx
Parallel IV Cable) can be used for bitstream download as well as CPU software debugging.

An alternate method of using JTAG with the CPU is to directly connect the CPU's JTAG
pins to the FPGA's user I/O. In this case, the CPU is on a separate JTAG chain from the
FPGA. This method requires two separate JTAG cables be used but is more compatible
with third party JTAG tools which cannot perform the necessary JTAG commands to
support a single combined JTAG chain with multiple devices on it.

The design contains a simple autosensing circuit to multiplex between the two types of
JTAG chains. The JTAG circuit is normally in the state where it connects the CPU to the
JTAGPPC component for a single combined JTAG chain. The design then senses the TCK
pin on the CPU-only JTAG port. This pin is normally held high with a pull-up. If the TCK
pin is ever pulled low (by an external JTAG programmer connected to this port) it switches
over the CPU JTAG pins to the other JTAG port. Any internal reset condition returns the
JTAG multiplexer back to the default state. Use this circuit for evaluation only. Replace it
with a fixed circuit after the desired method of using JTAG has been determined. This
autosensing circuit is not as reliable as a fixed circuit since small glitches on TCK can cause

Figure 2-2: GSRD Loopback Reference System, Clock Generation

CLK0

DCM 1

CLK90

CLKDV

CLKFX

IN

100 MHz

100 MHz

300 MHz
PPC405

PLB,DCR,MPMC,
LocalLink,OCM

MPMC
(DDR SDRAM)100 MHzExternal

Ocsillator

X535_04_113004

http://www.xilinx.com

20 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 2: Reference Systems
R

a false detection. In addition, the JTAG switching circuit can prevent System ACE
(described later) from functioning correctly because System ACE relies on using the
combined JTAG chain to talk to the CPU. If using System ACE with the autosensing circuit
present, connect any external JTAG programmer to the CPU-only JTAG port until after
System ACE download is complete.

Other Devices

In addition to the MPMC, LocalLink, and DCR devices, the system contains 16KB
Instruction-Side and 16KB Data-Side OCM modules. The OCM consists of block RAMs
directly connected to the CPU. They allow the CPU fast access to memory and are useful
for providing instructions or data directly to the CPU, bypassing the cache. Refer to the
OCM documentation for information about applications and design information.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 21
XAPP535 (v1.1) December 10, 2004

Gigabit Loopback Reference System
R

IP Version and Source
Table 2-3 summarizes the list of IP cores making up the reference system. The table shows
the hardware version number of each IP core used in the design. The table also lists
whether the source of the IP is from the EDK installation or whether it is reference IP in the
local library directory.

Table 2-3: IP Cores in the GSRD Loopback Reference System

Hardware IP Version Source

bram_block 1.00.a Local EDK Installation

cdmac 1.00.a “gsrd_lib” Library

clk_rst_startup 1.00.a Local “pcores” Directory

dcr_intc 1.00.b Local EDK Installation

dcr_v29 1.00.a Local EDK Installation

dcr2opb_bridge 1.00.a “gsrd_lib” Library

dsbram_if_cntlr 2.00.a Local EDK Installation

dsocm_v10 1.00.b Local EDK Installation

isbram_if_cntlr 2.00.a Local EDK Installation

isocm_v10 1.00.b Local EDK Installation

ll_loopback 1.00.a “gsrd_lib” Library

misc 1.00.a Local “pcores” Directory

mpmc 1.00.a “gsrd_lib” Library

my_jtag_logic 1.00.a Local “pcores” Directory

opb_gpio 2.00.a Local EDK Installation

opb_uartlite 1.00.b Local EDK Installation

opb_v20 1.10.b Local EDK Installation

plb_m1s1 1.00.a “gsrd_lib” Library

plb_mpmc_if 1.00.a “gsrd_lib” Library

ppc_trace 1.00.a Local “pcores” Directory

ppc405 2.00.c Local EDK Installation

http://www.xilinx.com

22 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 2: Reference Systems
R

Simulation and Verification

Simulation Overview

For simulation, the main testbench module (testbench.v) instantiates the FPGA
(system.v) as the device under test and includes behavioral models for the FPGA to
interact with. In addition to behavioral models for memory devices, clock oscillators, and
external peripherals, the testbench also instantiates a CoreConnect bus monitor to observe
the DCR bus for protocol violations. The testbench can also preload some of the memories
in the system for purposes such as loading software for the CPU to execute. The user can
modify the sim_params.v file to customize various simulation options. These options
include message display options, maximum simulation time, and clock frequency. The
user should edit this file to reflect personal simulation preferences.

SWIFT and BFM CPU Models

The reference design demonstrates two different simulation methods to help verify
designs using the PPC405 CPU. One method uses a full simulation model of the CPU
based on the actual silicon. The second method employs Bus Functional Models (BFMs) to
generate processor bus cycles from a command scripting language. These two methods
offer different trade-offs between behavior in real hardware, ease of generating bus cycles,
and the amount of real time to simulate a given clock cycle.

A SWIFT model can be used to simulate the CPU executing software instructions. In this
scenario, the executable binary images of the software are preloaded into memory from
which the CPU can boot up and run the code. Though this is a relatively slow way to
exercise the design, it more accurately reflects the actual behavior of the system.

The SWIFT model is most useful for helping to bring up software and for correlating
behavior in real hardware with simulation results. The reference design demonstrates the
SWIFT model simulation flow, by allowing the user to write a C program that is compiled
into an executable binary file. This executable (in ELF format) is then converted into block
RAM initialization commands using a tool called Data2MEM. (The Data2MEM can also
generate memory files for the Verilog command readmemh to use to initialize external
DDR memory.)

When a simulation begins and reset is released, the CPU SWIFT model fetches the
instructions from block RAM (which is mapped to the boot vector) and begins running the
program. The user can then observe the bus cycles generated by the CPU or any other
signal in the design. For debugging purposes, the values of the CPU’s internal program
counter, general-purpose registers, and special-purpose registers are available for display
during simulation.

Generating a desired sequence of bus operations from the CPU can require a lot of software
setup or simulation time. For early hardware bring-up or IP development, use a BFM to
speed up simulation cycles and avoid having to write software. A model of the CPU is
available in which two PLB master BFMs and one DCR BFM are instantiated to drive the
CPU's PLB/DCR ports. The CoreConnect toolkits contain these BFMs and allow the user to
generate bus operations by writing a script written in the Bus Functional Language (BFL).
The reference design provides a sample BFL script that exercises many of the peripherals in
the system. For more information, see the CoreConnect Toolkit documentation.

Since the CPU SWIFT model and BFM model both have the same set of port interfaces,
users can switch between the two simulation methods by compiling the appropriate set of
files without having to modify the system’s design source files. Users, however, might
need to modify their testbenches to take into account which model is being used.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 23
XAPP535 (v1.1) December 10, 2004

Gigabit Loopback Reference System
R

Behavioral Models

The reference design includes some behavioral models to help exercise the devices and
peripherals in the FPGA. Many of these models are freely available from various
manufacturers and include interface protocol-checking features. The behavioral models
and features included in the reference design are:

• DDR memory models for testing the memory controllers

− These models can also be preloaded with data for simulations

• Pull-ups connected to the GPIO for reading and driving outputs without getting
unknown values

• Terminal interface connected to the UARTs for sending and receiving serial data

− The terminal allows a user to interact with the simulation in real time

− Characters sent out by the UARTs are displayed on a terminal while characters
typed into the terminal program are serialized and sent to the UARTs

− A simple file I/O mechanism passes data between the hardware simulator and
the terminal program

Synthesis and Implementation
The reference design can be synthesized and placed/routed into a Virtex-II Pro FPGA
under the EDK tools. In particular, the ML300 board is targeted (although the design can be
adapted to other boards). A basic set of timing constraints for the design is provided to
allow the design to pass place and route.

Design Flow Environment
The EDK provides an environment to help manage the design flow including simulation,
synthesis, implementation, and software compilation. EDK offers a GUI or command line
interface to run these tools as part of the design flow. Consult the EDK documentation for
more information.

http://www.xilinx.com

24 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 2: Reference Systems
R

Memory Map
Table 2-4 and Table 2-5 show the default location of the system devices as defined in the
system.mhs file and the location of the DCR devices.

Table 2-4: CPU-Connected DCR Device Map

Device
Address Boundaries

Size
Upper Lower

UART lite 0x007 0x000 32B

Dual GPIO 0x00B 0x008 16B

Data Generator 0x017 0x010 32B

TFT Controller 0x081 0x080 8B

Built-In ISOCM Controller 0x103 0x100 16B

Loopback Module 0x127 0x120 8B

CDMAC 0x17F 0x140 256B

Built-In DSOCM Controller 0x203 0x200 16B

INTC 0x3F7 0x3F0 32B

Table 2-5: Memory Map

Device
Address Boundaries

Size Comment
Upper Lower

DDR SDRAM 0x07FFFFFF 0x00000000 128MB

DDR SDRAM Shadow Memory 0x0FFFFFFF 0x08000000 128MB
Shadow memory allows TFT
video memory to be accessed
as an uncached region.

Data Side OCM Space 0xFE003FFF 0xFE000000 16KB
16KB address spaces wraps
over 16MB region of
0xFE000000 to 0xFEFFFFFF

Instruction Side OCM Space 0xFFFFFFFF 0xFFFFC000 16KB
16KB address spaces wraps
over 16MB region of
0xFF000000 to 0xFFFFFFFF

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 25
XAPP535 (v1.1) December 10, 2004

Gigabit Loopback Reference System
R

ML300 Specific Registers
The design also contains a number of register bits to control various items on the ML300
such as the buttons and LEDs. The 32-bit GPIO pins on the ML300 are controlled with a
standard set of GPIO registers at DCR Address 0x002. See the Processor IP User Guide,
available at http://www.xilinx.com/ise/embedded/proc_ip_ref_guide.pdf, for more
information about the GPIO. Table 2-6, Table 2-7, Table 2-8 and Table 2-9 contain
information about LEDS, pushbuttons, control and status registers specific to the ML300
implementation of design.

Table 2-6: ML300 Game/Button Register

M
SB

L
SB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

D
C
R
_
B
A
S
E

+

0
x
0
0

R
E

SE
R

V
E

D

L
E

FT
_G

A
M

E_
SW

_L
EF

T

L
E

FT
_G

A
M

E
_S

W
_T

O
P

L
E

FT
_G

A
M

E
_S

W
_R

IG
H

T

L
E

FT
_G

A
M

E_
SW

_B
O

T
T

O
M

L
E

FT
_T

O
P

_P
U

SH
B

U
T

T
O

N

L
E

FT
_M

ID
_P

U
SH

B
U

T
T

O
N

L
E

FT
_B

O
T

T
O

M
_P

U
SH

B
U

T
T

O
N

R
E

SE
R

V
E

D

R
IG

H
T

_G
A

M
E

_S
W

_L
E

FT

R
IG

H
T

_G
A

M
E

_S
W

_T
O

P

R
IG

H
T

_G
A

M
E

_S
W

_R
IG

H
T

R
IG

H
T

_G
A

M
E

_S
W

_B
O

T
T

O
M

R
IG

H
T

_T
O

P
_P

U
SH

BU
T

TO
N

R
IG

H
T

_M
ID

_P
U

SH
B

U
T

T
O

N

R
IG

H
T

_B
O

T
T

O
M

_P
U

SH
B

U
T

T
O

N

L
E

D
 -

Y
E

L
L

O
W

, D
S4

2,
 T

O
P,

 B
IT

15

L
E

D
 -

Y
E

L
L

O
W

, D
S4

3,
 T

O
P,

 B
IT

14

L
E

D
 -

Y
E

L
L

O
W

, D
S4

4,
 T

O
P,

 B
IT

13

L
E

D
 -

Y
E

L
L

O
W

, D
S4

5,
 T

O
P,

 B
IT

12

L
E

D
 -

Y
E

L
L

O
W

, D
S4

6,
 T

O
P,

 B
IT

11

L
E

D
 -

Y
E

L
L

O
W

, D
S4

7,
 T

O
P,

 B
IT

10

L
E

D
 -

Y
E

L
L

O
W

, D
S4

8,
 T

O
P,

 B
IT

9

L
E

D
 -

Y
E

L
L

O
W

, D
S4

9,
 T

O
P,

 B
IT

8

L
E

D
 -

B
L

U
E

, D
S5

9,
 L

E
FT

, B
IT

8

L
E

D
 -

G
R

EE
N

, D
S5

9,
 L

E
FT

, B
IT

7

L
E

D
 -

G
R

EE
N

, D
S5

9,
 L

E
FT

, B
IT

6

L
E

D
 -

G
R

EE
N

, D
S5

9,
 L

E
FT

, B
IT

5

L
E

D
 -

B
L

U
E

, D
S5

9,
 R

IG
H

T,
 B

IT
3

L
E

D
 -

G
R

E
E

N
, D

S5
9,

 R
IG

H
T,

 B
IT

2

L
E

D
 -

G
R

E
E

N
, D

S5
9,

 R
IG

H
T,

 B
IT

1

L
E

D
 -

G
R

E
E

N
, D

S5
9,

 R
IG

H
T,

 B
IT

0

Table 2-7: LED Register Map

Bit Description

 DCR Address 0x008

[0] RESERVED: read-only

[1]
LEFT_GAME_SW_LEFT: read-only

Left Game switch of ML300, left pushbutton. 1 = pushed

[2]
LEFT_GAME_SW_TOP: read-only

Left Game switch of ML300, top pushbutton. 1 = pushed

[3]
LEFT_GAME_SW_RIGHT: read-only

Left Game switch of ML300, right pushbutton. 1 = pushed

[4]
LEFT_GAME_SW_BOTTOM: read-only

Left Game switch of ML300, bottom pushbutton. 1 = pushed

[5]
LEFT_TOP_PUSHBUTTON: read-only

Left side PB of ML300, top pushbutton. 1 = pushed

[6]
LEFT_MID_PUSHBUTTON: read-only

Left side PB of ML300, mid pushbutton. 1 = pushed

[7]
LEFT_BOTTOM_PUSHBUTTON: read-only

Left side PB of ML300, bottom pushbutton. 1 = pushed

[8] RESERVED: read-only

[9]
RIGHT_GAME_SW_LEFT: read-only

Right Game switch of ML300, left pushbutton. 1 = pushed

[10]
RIGHT_GAME_SW_TOP: read-only

Right Game switch of ML300, top pushbutton. 1 = pushed

http://www.xilinx.com
http://www.xilinx.com/ise/embedded/proc_ip_ref_guide.pdf

26 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 2: Reference Systems
R

[11]
RIGHT_GAME_SW_RIGHT: read-only

Right Game switch of ML300, right pushbutton. 1 = pushed

[12]
RIGHT_GAME_SW_BOTTOM: read-only

Right Game switch of ML300, bottom pushbutton. 1 = pushed

[13]
RIGHT_TOP_PUSHBUTTON: read-only

Right side PB of ML300, top pushbutton. 1 = pushed

[14]
RIGHT_MID_PUSHBUTTON: read-only

Right side PB of ML300, mid pushbutton. 1 = pushed

[15]
RIGHT_BOTTOM_PUSHBUTTON: read-only

Right side PB of ML300, bottom pushbutton. 1 = pushed

[16:31]
LEDs: read-write

Left, Top and Right side LEDs on ML300, 1 = LED on]

Table 2-7: LED Register Map (Continued)

Bit Description

Table 2-8: ML300 Control Register

M
SB

L
SB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PL
B

 E
R

R
O

R
 C

L
E

A
R

R
E

SE
R

V
E

D

B
L

U
E

 I
L

L
U

M
IN

A
T

E
D

 L
E

D
s

RESERVED

SOFTWARE POWERDOWN

D
C
R
_
B
A
S
E

+

0
x
0
1

W
R

IT
E

 0
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 0
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 0
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 0
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

Table 2-9: ML300 Control Register Map

Bit Description Default Value

DCR Address 0x009

[0]
PLB ERROR CLEAR: write-only

Writing a “1” to this bit clears the PLB Error LED on ML300. This bit must then be written with a “0” to
re-enable the PLB Error LED

[1:2] RESERVED: read-only

[3]

BLUE ILLUMINATION LEDs: write-only

The blue illumination LEDs on ML300 are normally turned on when the system reset has initially completed
and all DCMs have been locked. This bit permits software to turn on or off the blue illumination LEDs after
this system reset. Writing a “0” turns off the LEDs while writing a “1” turns them on

[4:19] RESERVED: read-only

[20:31]
SOFTWARE POWERDOWN: write-only

Writing the hex value 0x0FF as in “off” causes the ML300 to power itself down. The 0x0FF value must be held
for about 1-2 seconds before ML300 powers down.

0x000

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 27
XAPP535 (v1.1) December 10, 2004

GSRD Dual TFT Reference System
R

GSRD Dual TFT Reference System

Introduction
The GSRD Dual TFT Reference System demonstrates a system utilizing high bandwidth
devices that move large amounts of data using DMA transactions and high-speed memory.
The system incorporates an MPMC and a CDMAC as the infrastructure to move large
amounts of data while providing sufficient memory bandwidth for the CPU and other
peripherals. Two LocalLink Data Generators and two LocalLink TFT Controllers are
connected to the CDMAC in the system to assist in system testing and performance
analysis. This system is a demonstration and development vehicle for high bandwidth
Virtex-II Pro systems such as those using RocketIO MGTs or other data intensive
applications.

This section describes the contents of the Reference System and provides information
about how the system is organized, implemented, and verified. The information presented
introduces many aspects of the Dual TFT Reference System, but refer to additional specific
documentation for more detailed information about the software, tools, peripherals,
interface protocols, and capabilities of the FPGA.

Hardware

Overview

Figure 2-3 provides a high-level view of the hardware contents of the system. This design
demonstrates a system built around the MPMC coupled with 32-bit DDR SDRAM
memory. A dual engine CDMAC connects to two ports of the MPMC. The instruction and
data side PPC405 ports connect to the other two MPMC ports via PLB-to-MPMC Interface
modules. Four separate point-to-point LocalLink buses connect the CDMAC to two
LocalLink Data Generators and two LocalLink TFT Controllers. LocalLink is a protocol
specification optimized for high-performance communications applications such as
gigabit Ethernet.

Lower performance devices such as the UART, interrupt controller, and GPIOs are
attached to the CPU's DCR bus. DCR is an IBM CoreConnect bus primarily used with
control and status registers where simplicity is desired. Refer to the DCR CoreConnect
Architecture Specifications for more information. Using DCR for peripherals reduces the
loading on the high-performance MPMC ports while minimizing FPGA resource
utilization since large bus bridges can be avoided.

The hardware devices used in this design are also described in more detail in the Processor
IP User Guide, available at http://www.xilinx.com/ise/embedded/proc_ip_ref_guide.pdf,
and in Chapter 3, “Hardware Data Sheets for Elements Used in the GSRD”.

http://www.xilinx.com
http://www.xilinx.com/ise/embedded/proc_ip_ref_guide.pdf

28 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 2: Reference Systems
R

MPMC

The MPMC allows the 32-bit DDR SDRAM memory resource to be shared over four
independent interface ports. These ports each permit full read and write access from the
CDMAC and PPC405. Each MPMC port is implemented as a direct point-to-point
connection rather than a shared bus, thus permitting higher performance and not
requiring additional bus arbiters.

Other highlights of the MPMC include:

• Independent read and write data FIFOs for each port

• Highly efficient block RAM-based state machines

• Pipelined control, data, and arbitration logic

Figure 2-3: GSRD Dual TFT Reference System Block Diagram

DDR SDRAM

PPC405

DCR

ISPLB

DSPLB

Lo
ca

lL
in

k

Lo
ca

lL
in

k

Lo
ca

lL
in

k

Lo
ca

lL
in

k

DCR2OPB

LocalLink
Data

Generator

LocalLink
Data

Generator

LocalLink
TFT

Controller

LocalLink
TFT

Controller

Dual
GPIO

DCR2OPB

UART
Lite

Pushbuttons
and LEDs XCVR

DB9

MPMC

PLB Port Interface PLB Port Interface
CDMAC

Port 0 Port 1 Port 2 Port 3

Rx0 Tx0 Rx1 Tx1

ML300 Evaluation Platform

FPGA

X535_05_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 29
XAPP535 (v1.1) December 10, 2004

GSRD Dual TFT Reference System
R

Two MPMC ports are connected to the two PLB ports of the PPC405 via PLB to MPMC
Interface modules. The PLB to MPMC Interfaces translate transactions from the Instruction
and Data side PLB ports of the PPC405 into MPMC transactions. It handles all the
necessary handshaking signals and clock synchronization between the PLB and MPMC
interfaces. The remaining two MPMC ports attach to the quad engine CDMAC. This
permits the CDMAC to manage the flow of two bidirectional streams of data to and from
memory.

Since all four ports of the MPMC access a common shared memory resource, data transfers
between the CPU and the CDMAC are coordinated through the MPMC. For example, each
one can read or write to a common location in memory and stay coordinated using
interrupts and DCR commands. This removes the need for a direct communications path
between the CPU and the CDMAC. This architecture helps to reduce FPGA resources and
improve system performance.

CDMAC

The CDMAC manages the flow of data between peripherals and memory. It supports
variable packet sizes and can transfer data to unaligned memory addresses (byte
resolution). CDMAC control and status registers are accessible by the CPU via DCR
interface. The use of DCR frees up the high-speed ports to only be used for data transfer
and not for control. The CDMAC also has the ability to read a linked list of DMA transfer
descriptors directly from memory, and it can generate interrupts based on the completion
of a task or the detection of an error. Therefore, the CPU can set up a chain of DMA
descriptors in memory and then command the CDMAC to autonomously transfer the data
according to the descriptors. This frees up CPU resources for other tasks.

The CDMAC engines in this reference design are configured so that the LocalLink Data
Generators and LocalLink TFT Controllers do not generate errors when the DMA engine
reaches a descriptor with the “completed” bit set.

LocalLink Devices

LocalLink is a protocol specification for a point-to-point connection infrastructure
optimized for communications applications. The protocol supports flow control from the
source or destination side of the data transfer. It also includes additional control signals to
mark the start and end of frames and data payloads. Consult the LocalLink Specification
for more information.

Each CDMAC engine controls a separate LocalLink transmit and receive path. One
CDMAC engine attaches to a LocalLink Data Generator and LocalLink TFT Controller. The
other engine connects to a second LocalLink Data Generator and a second LocalLink TFT
Controller.

Since the ML300 board (where this reference design is implemented) has only one TFT
display, the user must select which display to view using the buttons on the boards. The
TFT output signals from the two TFT Controllers are sent to a multiplexer so that the user
can select which TFT controller’s output to view. Pressing button SW12 on the ML300
selects TFT Controller 0 while pushing button SW19 selects TFT Controller 1 for display.

DCR

The DCR offers a very simple interface protocol for accessing control and status registers in
various devices. It allows for register access to various devices without loading down the
OPB and PLB interfaces. Since DCR devices are generally accessed infrequently and do not
have high-performance requirements, they are used throughout the reference design for
functions, such as error status registers, interrupt controllers, and device initialization logic.

http://www.xilinx.com
http://www.xilinx.com/aurora

30 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 2: Reference Systems
R

The CPU contains a DCR master interface that is accessed through special Move To DCR
and Move From DCR instructions. Since DCR devices are not memory mapped and their
access is treated as a privileged instruction, take care in SW to properly access DCR
devices. The DCR specification requires that the DCR master and slave clocks be
synchronous to each other and related in frequency by an integer multiple. It is important
to be aware of the clock domains of each of the DCR devices to ensure proper functionality.

Control/status registers in the CDMAC, LocalLink Data Generator, and LocalLink TFT
Controller are all accessed via DCR. In addition there are three peripherals on DCR:
Uartlite, a dual GPIO controller, and the interrupt controller. The Uartlite and GPIO are
natively OPB devices, so a simple DCR to OPB interface bridge is included. This DCR to
OPB interface is extremely compact and only implements the minimum necessary
functionality to talk to these devices.

Using the DCR rather than the memory mapped PLB to communicate with peripherals
reduces loading on high-speed paths to allow for greater system performance. The use of
DCR is appropriate because peripheral and control/status registers are accessed relatively
infrequently and are lower bandwidth devices. Using DCR also lessens the need for bus
bridges that might be complex or would introduce greater latency.

Interrupts

The CPU contains two interrupt pins, one for critical interrupt requests, and the other for
non-critical interrupts. A DCR-based Interrupt Controller (INTC) peripheral is connected
to the non-critical interrupts of the PPC405. It allows multiple edge or level sensitive
interrupts from peripherals to be OR'ed together back to the CPU. It also provides the
ability for bitwise masking of individual interrupts.

Table 2-10: GSRD Dual TFT Reference System

M
SB

LS
B

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

C
D

M
A

C
 IN

T

U
A

R
T

L
ite

 I
N

T
Table 2-11: List of IP Connections to the Interrupt Controller

Bit Description Default Value

[1]
CDMAC_INT: The CDMAC INT pin is tied to this INTC input.

The CDMAC INT pin is active high level triggered

[0]
UARTLite_INT: The UARTLite INT pin is tied to this INTC input.

The UARTLite INT pin is rising edge triggered

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 31
XAPP535 (v1.1) December 10, 2004

GSRD Dual TFT Reference System
R

Clock/Reset Distribution

Virtex-II Pro FPGAs have abundant clock management and global clock buffer resources.
The reference system uses these capabilities to generate a variety of different clocks.
Figure 2-4 illustrates the use of the DCMs for generating the main clocks in the design. A
100 MHz input reference clock is used to generate the main 100 MHz system clock that
drives the PLB, MPMC, LocalLink, and OCM. The CLK90 output of the DCM produces a
100 MHz clock that is phase shifted by 90 degrees for use by the DDR SDRAM controller.
The main 100 MHz clock is divided down by four to create a 25 MHz TFT video clock. The
CPU clock is multiplied up from the PLB clock to 300 MHz.

CPU Debug via JTAG

The CPU can be debugged via JTAG with a variety of software development tools from
VxWorks, GNU, IBM and others. In this design, two different types of JTAG chains are
supported for connecting to the CPU. This permits the widest compatibility among JTAG
products that support the PPC405.

The preferred method of communicating with the CPU via JTAG is to combine the CPU
JTAG chain with the FPGA's main JTAG chain, which is also used to download bitstreams.
This method requires the user to instantiate a JTAGPPC component from the Xilinx FPGA
primitives library and directly connect it to the CPU in the user’s design. The primary
advantage of sharing the same JTAG chain for CPU debug and FPGA programming is that
a single JTAG cable (like the Xilinx Parallel IV Cable) can be used for bitstream download
as well as CPU software debugging.

An alternate method of using JTAG with the CPU is to directly connect the CPU’s JTAG
pins to the FPGA's user I/O. In this case, the CPU is on a separate JTAG chain from the
FPGA. This method requires two separate JTAG cables be used but is more compatible
with third party JTAG tools which cannot perform the necessary JTAG commands to
support a single combined JTAG chain with multiple devices on it.

The design contains a simple autosensing circuit to multiplex between the two types of
JTAG chains. The JTAG circuit is normally in the state where it connects the CPU to the
JTAGPPC component for a single combined JTAG chain. The design then senses the TCK
pin on the CPU-only JTAG port. This pin is normally held high with a pull-up. If the TCK
pin is ever pulled low (by an external JTAG programmer connected to this port) it switches
over the CPU JTAG pins to the other JTAG port. Any internal reset condition returns the
JTAG multiplexer back to the default state. Use this circuit for evaluation only. Replace it
with a fixed circuit after the desired method of using JTAG has been determined. This
autosensing circuit is not as reliable as a fixed circuit since small glitches on TCK can cause
a false detection. In addition, the JTAG switching circuit can prevent System ACE

Figure 2-4: GSRD Dual TFT Reference System Clock Generation

CLK0

DCM 1

CLK90

CLKDV

CLKFX

IN

100 MHz

100 MHz

25 MHz

300 MHz
PPC405

TFT

PLB,DCR,MPMC,
LocalLink,OCM

MPMC
(DDR SDRAM)100 MHzExternal

Ocsillator

X535_06_113004

http://www.xilinx.com

32 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 2: Reference Systems
R

(described later) from functioning correctly because System ACE relies on using the
combined JTAG chain to talk to the CPU. If using System ACE with the autosensing circuit
present, do not connect any external JTAG programmer to the CPU-only JTAG port until
after System ACE download is complete.

Other Devices

In addition to the MPMC, LocalLink, and DCR devices, the system contains 16KB
Instruction-Side and 16KB Data-Side OCM modules. The OCM consists of block RAMs
directly connected to the CPU. They allow the CPU fast access to memory and are useful
for providing instructions or data directly to the CPU, bypassing the cache. Refer to the
OCM documentation for information about applications and design information.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 33
XAPP535 (v1.1) December 10, 2004

GSRD Dual TFT Reference System
R

IP Version and Source
Table 2-12 summarizes the list of IP cores making up the reference system. The table shows
the hardware version number of each IP core used in the design. The table also lists
whether the source of the IP is from the EDK installation or whether it is reference IP in the
local library directory.

Table 2-12: IP Cores in the Dual TFT Reference System

Hardware IP Version Source

bram_block 1.00.a Local EDK Installation

cdmac 1.00.a “gsrd_lib” Library

clk_rst_startup 1.00.a Local “pcores” Directory

dcr_intc 1.00.b Local EDK Installation

dcr_v29 1.00.a Local EDK Installation

dcr2opb_bridge 1.00.a “gsrd_lib” Library

dsbram_if_cntlr 2.00.a Local EDK Installation

dsocm_v10 1.00.b Local EDK Installation

isbram_if_cntlr 2.00.a Local EDK Installation

isocm_v10 1.00.b Local EDK Installation

ll_data_gen 1.00.a “gsrd_lib” Library

ll_tft_cntlr 1.00.a “gsrd_lib” Library

misc 1.00.a Local “pcores” Directory

mpmc 1.00.a “gsrd_lib” Library

my_jtag_logic 1.00.a Local “pcores” Directory

opb_gpio 2.00.a Local EDK Installation

opb_uartlite 1.00.b Local EDK Installation

opb_v20 1.10.b Local EDK Installation

plb_m1s1 1.00.a “gsrd_lib” Library

plb_mpmc_if 1.00.a “gsrd_lib” Library

ppc_trace 1.00.a Local “pcores” Directory

ppc405 2.00.c Local EDK Installation

http://www.xilinx.com

34 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 2: Reference Systems
R

Simulation and Verification

Simulation Overview

For simulation, the main testbench module (testbench.v) instantiates the FPGA
(system.v) as the device under test and includes behavioral models for the FPGA to
interact with. In addition to behavioral models for memory devices, clock oscillators, and
external peripherals, the testbench also instantiates a CoreConnect bus monitor to observe
the DCR bus for protocol violations. The testbench can also preload some of the memories
in the system for purposes such as loading software for the CPU to execute. The user can
modify the sim_params.v file to customize various simulation options. These options
include message display options, maximum simulation time, and clock frequency. The
user should edit this file to reflect personal simulation preferences.

SWIFT and BFM CPU Models

The reference design demonstrates two different simulation methods to help verify
designs using the PPC405 CPU. One method uses a full simulation model of the CPU
based on the actual silicon. The second method employs BFMs to generate processor bus
cycles from a command scripting language. These two methods offer different trade-offs
between behavior in real hardware, ease of generating bus cycles, and the amount of real
time to simulate a given clock cycle.

A SWIFT model can be used to simulate the CPU executing software instructions. In this
scenario, the executable binary images of the software are preloaded into memory from
which the CPU can boot up and run the code. Though this is a relatively slow way to
exercise the design, it more accurately reflects the actual behavior of the system.

The SWIFT model is most useful for helping to bring up software and for correlating
behavior in real hardware with simulation results. The reference design demonstrates the
SWIFT model simulation flow, by allowing the user to write a C program that is compiled
into an executable binary file. This executable (in ELF format) is then converted into block
RAM initialization commands using a tool called Data2MEM. (The Data2MEM can also
generate memory files for the Verilog command readmemh, which can initialize external
DDR memory.)

When a simulation begins and reset is released, the CPU SWIFT model fetches the
instructions from block RAM (the first instruction is mapped to the boot vector) and begins
running the program. The user can then observe bus cycles generated by the CPU or any
other signal in the design. For debugging purposes, the values of the CPU's internal
program counter, general-purpose registers, and special-purpose registers are available for
display during simulation.

Generating a desired sequence of bus operations from the CPU can require a lot of software
setup or simulation time. For early hardware bring-up or IP development, use a BFM to
speed up simulation cycles and avoid having to write software. A model of the CPU is
available in which two PLB master BFMs and one DCR BFM are instantiated to drive the
CPU's PLB/DCR ports. These BFMs are in the CoreConnect toolkits and allow the user to
generate bus operations by writing a script written in the BFL. The reference design
provides a sample BFL script that exercises many of the peripherals in the system. Refer to
the CoreConnect Toolkit documentation for more information.

Since the CPU SWIFT model and BFM model both have the same set of port interfaces,
users can switch between the two simulation methods by compiling the appropriate set of
files without having to modify the system’s design source files. Users might need to
modify their testbenches to take into account which model is being used.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 35
XAPP535 (v1.1) December 10, 2004

GSRD Dual TFT Reference System
R

Behavioral Models

The reference design includes some behavioral models to help exercise the devices and
peripherals in the FPGA. Many of these models are freely available from various
manufacturers and include interface protocol-checking features. The behavioral models
and features included in the reference design are:

• DDR memory models for testing the memory controllers

− These models can also be preloaded with data for simulations

• Pull-ups connected to the GPIO for reading and driving outputs without getting
unknown values

• Terminal interface connected to the UARTs for sending and receiving serial data

− The terminal allows a user to interact with the simulation in real time

− Characters sent out by the UARTs are displayed on a terminal while characters
typed into the terminal program are serialized and sent to the UARTs

• A simple file I/O mechanism passes data between the hardware simulator and the
terminal program

Synthesis and Implementation
The reference design can be synthesized and placed/routed into a Virtex-II Pro FPGA
under the EDK tools. In particular, the ML300 board is targeted (although the design can be
adapted to other boards). A basic set of timing constraints for the design is provided to
allow the design to pass place and route.

Design Flow Environment
The EDK provides an environment to help manage the design flow including simulation,
synthesis, implementation, and software compilation. EDK offers a GUI or command line
interface to run these tools as part of the design flow. Consult the EDK documentation for
more information.

http://www.xilinx.com

36 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 2: Reference Systems
R

Memory Map
This section diagrams the system memory map. It also documents the location of the DCR
devices. The memory map reflects the default location of the system devices as defined in
the system.mhs file. See Table 2-13 and Table 2-14.

Table 2-13: CPU-Connected DCR Device Map

Device
Address Boundaries

Size
Upper Lower

UART lite 0x007 0x000 32B

Dual GPIO 0x00B 0x008 16B

Data Generator 0 0x017 0x010 32B

Data Generator 1 0x027 0x020 32B

TFT Controller 0 0x081 0x080 8B

TFT Controller 1 0x085 0x084 8B

Built-In ISOCM Controller 0x103 0x100 16B

CDMAC 0x17F 0x140 256B

Built-In DSOCM Controller 0x203 0x200 16B

INTC 0x3F7 0x3F0 32B

Table 2-14: Memory Map

Device
Address Boundaries

Size Comment
Upper Lower

DDR SDRAM 0x07FFFFFF 0x00000000 128MB

DDR SDRAM Shadow Memory 0x0FFFFFFF 0x08000000 128MB
Shadow memory allows TFT
video memory to be accessed
as an uncached region.

Data Side OCM Space 0xFE003FFF 0xFE000000 16KB
16KB address spaces wraps
over 16MB region of
0xFE000000 to 0xFEFFFFFF

Instruction Side OCM Space 0xFFFFFFFF 0xFFFFC000 16KB
16KB address spaces wraps
over 16MB region of
0xFF000000 to 0xFFFFFFFF

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 37
XAPP535 (v1.1) December 10, 2004

GSRD Dual TFT Reference System
R

ML300-Specific Registers
The design also contains a number of register bits to control various items on the ML300,
such as buttons and LEDs. The 32-bit GPIO pins on the ML300 are controlled with a standard
set of GPIO registers at DCR Address 0x00A. See the Processor IP User Guide, available at
http://www.xilinx.com/ise/embedded/proc_ip_ref_guide.pdf, for more information
about the GPIO. Table 2-15, Table 2-16, Table 2-17, and Table 2-18 contain information about
control and status registers specific to the ML300 implementation of the design.

Table 2-15: ML300 Game/Button Register

M
SB

L
SB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

D
C
R
_
B
A
S
E

+

0
x
0
0

R
E

SE
R

V
E

D

L
E

FT
_G

A
M

E
_S

W
_L

E
FT

L
E

FT
_G

A
M

E
_S

W
_T

O
P

L
E

FT
_G

A
M

E
_S

W
_R

IG
H

T

L
E

FT
_G

A
M

E
_S

W
_B

O
T

T
O

M

L
E

FT
_T

O
P

_P
U

SH
B

U
T

T
O

N

L
E

FT
_M

ID
_P

U
SH

B
U

T
T

O
N

LE
FT

_B
O

T
TO

M
_P

U
SH

BU
T

T
O

N

R
E

SE
R

V
E

D

R
IG

H
T

_G
A

M
E

_S
W

_L
E

FT

R
IG

H
T

_G
A

M
E

_S
W

_T
O

P

R
IG

H
T

_G
A

M
E

_S
W

_R
IG

H
T

R
IG

H
T

_G
A

M
E

_S
W

_B
O

T
T

O
M

R
IG

H
T

_T
O

P_
PU

SH
B

U
T

T
O

N

R
IG

H
T

_M
ID

_P
U

SH
B

U
T

T
O

N

R
IG

H
T

_B
O

T
TO

M
_P

U
SH

B
U

T
TO

N

L
E

D
 -

 Y
E

L
L

O
W

, D
S4

2,
 T

O
P,

 B
IT

15

L
E

D
 -

 Y
E

L
L

O
W

, D
S4

3,
 T

O
P,

 B
IT

14

L
E

D
 -

 Y
E

L
L

O
W

, D
S4

4,
 T

O
P,

 B
IT

13

L
E

D
 -

 Y
E

L
L

O
W

, D
S4

5,
 T

O
P,

 B
IT

12

L
E

D
 -

 Y
E

L
L

O
W

, D
S4

6,
 T

O
P,

 B
IT

11

L
E

D
 -

 Y
E

L
L

O
W

, D
S4

7,
 T

O
P,

 B
IT

10

L
E

D
 -

 Y
E

L
L

O
W

, D
S4

8,
 T

O
P,

 B
IT

9

L
E

D
 -

 Y
E

L
L

O
W

, D
S4

9,
 T

O
P,

 B
IT

8

LE
D

 -
 B

L
U

E
, D

S5
9,

 L
E

FT
, B

IT
8

LE
D

 -
 G

R
EE

N
, D

S5
9,

 L
E

FT
, B

IT
7

LE
D

 -
 G

R
EE

N
, D

S5
9,

 L
E

FT
, B

IT
6

LE
D

 -
 G

R
EE

N
, D

S5
9,

 L
E

FT
, B

IT
5

L
E

D
 -

 B
L

U
E

, D
S5

9,
 R

IG
H

T,
 B

IT
3

L
E

D
 -

 G
R

E
E

N
, D

S5
9,

 R
IG

H
T,

 B
IT

2

L
E

D
 -

 G
R

E
E

N
,D

S5
9,

 R
IG

H
T,

 B
IT

1

L
E

D
 -

 G
R

E
E

N
, D

S5
9,

 R
IG

H
T,

 B
IT

0

Table 2-16: LED Register Map

Bit Description

 DCR Address 0x008

[0] RESERVED: read-only

[1]
LEFT_GAME_SW_LEFT: read-only

Left Game switch of ML300, left pushbutton. 1 = pushed

[2]
LEFT_GAME_SW_TOP: read-only

Left Game switch of ML300, top pushbutton. 1 = pushed

[3]
LEFT_GAME_SW_RIGHT: read-only

Left Game switch of ML300, right pushbutton. 1 = pushed

[4]
LEFT_GAME_SW_BOTTOM: read-only

Left Game switch of ML300, bottom pushbutton. 1 = pushed

[5]
LEFT_TOP_PUSHBUTTON: read-only

Left side PB of ML300, top pushbutton. 1 = pushed

[6]
LEFT_MID_PUSHBUTTON: read-only

Left side PB of ML300, mid pushbutton. 1 = pushed

[7]
LEFT_BOTTOM_PUSHBUTTON: read-only

Left side PB of ML300, bottom pushbutton. 1 = pushed

[8] RESERVED: read-only

[9]
RIGHT_GAME_SW_LEFT: read-only

Right Game switch of ML300, left pushbutton. 1 = pushed

[10]
RIGHT_GAME_SW_TOP: read-only

Right Game switch of ML300, top pushbutton. 1 = pushed

http://www.xilinx.com
http://www.xilinx.com/ise/embedded/proc_ip_ref_guide.pdf

38 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 2: Reference Systems
R

[11]
RIGHT_GAME_SW_RIGHT: read-only

Right Game switch of ML300, right pushbutton. 1 = pushed

[12]
RIGHT_GAME_SW_BOTTOM: read-only

Right Game switch of ML300, bottom pushbutton. 1 = pushed

[13]
RIGHT_TOP_PUSHBUTTON: read-only

Right side PB of ML300, top pushbutton. 1 = pushed

[14]
RIGHT_MID_PUSHBUTTON: read-only

Right side PB of ML300, mid pushbutton. 1 = pushed

[15]
RIGHT_BOTTOM_PUSHBUTTON: read-only

Right side PB of ML300, bottom pushbutton. 1 = pushed

[16:31]
LEDs: read-write

Left, Top and Right side LEDs on ML300, 1 = LED on]

Table 2-16: LED Register Map (Continued)

Bit Description

Table 2-17: ML300 Control Register

M
SB

L
SB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PL
B

 E
R

R
O

R
 C

L
E

A
R

R
E

SE
R

V
E

D

B
L

U
E

 I
L

L
U

M
IN

A
T

E
D

 L
E

D
s

RESERVED

SOFTWARE POWERDOWN

D
C
R
_
B
A
S
E

+

0
x
0
1

W
R

IT
E

 0
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 0
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 0
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 0
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

W
R

IT
E

 1
 H

E
R

E
 T

O
 P

W
R

 D
O

W
N

Table 2-18: ML300 Control Register Map

Bit Description Default Value

DCR Address 0x009

[0]
PLB ERROR CLEAR: write-only

Writing a “1” to this bit clears the PLB Error LED on ML300. This bit must then be written with a “0” to
re-enable the PLB Error LED

[1:2] RESERVED: read-only

[3]

BLUE ILLUMINATION LEDs: write-only

The blue illumination LEDs on ML300 are normally turned on when the system reset has initially completed
and all DCMs have been locked. This bit permits software to turn on or off the blue illumination LEDs after
this system reset. Writing a “0” turns off the LEDs while writing a “1” turns them on

[4:19] RESERVED: read-only

[20:31]
SOFTWARE POWERDOWN: write-only

Writing the hex value 0x0FF as in “off” causes the ML300 to power itself down. The 0x0FF value must be held
for about 1-2 seconds before ML300 powers down.

0x000

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 39
XAPP535 (v1.1) December 10, 2004

R

Chapter 3

Hardware Data Sheets for Elements
Used in the GSRD

Multi-Port Memory Controller (MPMC)

Overview
The MPMC is a quad-port DDR SDRAM memory controller that significantly increases the
bandwidth usage of the DDR SDRAM by reducing arbitration time and allowing
transaction overlap. This core uses a 32-bit data path and operates at 200 MHz DDR (100
MHz system clock). The MPMC was tested using the Xilinx ML300 Evaluation Platform,
and the Xilinx ML310 Embedded Development Platform. The reference systems that use
the MPMC are illustrated in Chapter 2, “Reference Systems,” and in XAPP536 “Gigabit
System Reference Design.”

Features
• Quad Port Interfaces for 64-bit data

• Interface to 32-bit DDR SDRAM with 100 MHz Clock (200 MHz Data Rate)

• Direct connection to the CDMAC

• Each Port Interface uses a personality module to configure the Port’s type

• Port personality modules for CDMAC and PLB

• Extensive test benches and simulations to allow easier user modification

Related Documentation
• Infineon's 256-Mbit DDR SDRAMs

• Xilinx ML300 Evaluation Platform

• Xilinx ML310 Embedded Development Platform

http://www.xilinx.com
http://www.xilinx.com/ml300/
http://www.xilinx.com/ml310/
http://www.xilinx.com/bvdocs/appnotes/xapp536.pdf
http://www.xilinx.com/ml300/
http://www.xilinx.com/ml310/

40 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

High-Level Block Diagram
Figure 3-1 illustrates a high-level block diagram of how the MPMC is built. The MPMC has
one interface to DDR SDRAM and four port interfaces. The port interfaces can individually
be connected to personality modules such as the PLB to MPMC Interface. Inside the
MPMC are eight main modules: the four port interfaces, the data path, address path, port
arbitration, and DDR memory control logic.

Hardware
As described above, there are four major elements in the MPMC: the address path, data
path, control path, and the arbiter. Figure 3-2 shows the top-level block diagram. Table 3-3
through Table 3-5 describe the I/O signals. Each main element is constructed as
independently as possible, so that they can be easily modified. The “MPMC Address
Path,” “MPMC Data Path,” “MPMC Control Path,” and “MPMC Port Arbiter,” sections
describe each block in more detail.

Figure 3-1: MPMC High-Level Block Diagram

PORT 0

DO DI C ADDR

PORT 1

DO DI C ADDR

PORT 2

DO DI C ADDR

PORT 3

DO DI C ADDR

PORT
ARBITRATION

DDR MEMORY
CONTROL LOGIC

DATA
PATH

ADDR
PATH

DDR SDRAM INTERFACE PINS

PORT INTERFACES X535_07_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 41
XAPP535 (v1.1) December 10, 2004

Multi-Port Memory Controller (MPMC)
R

Figure 3-2: MPMC Top Level Diagram

Address Path

Control Path

Data Path

Arbiter

DDR_CKE_O

DDR_Cas_O

DDR_Cs_O

DDR_We_O

DDR_Dqs_O

DDR_Dqs_T

DDR_Dq_I

DDR_Dq_O

DDR_Dq_T

DDR_BE_I

DDR_BE_O

DDR_BE_T

D
D

R
 Interface

DDR_BA

DDR_A

P
ort Interface

B
A

_final_C
E

A
ddr_C

E

col_C
L8

col_cnt_ld

col_cnt_enbl

col_sel

m
ode_on

m
ode_reg_on

A
10_set

A
10_reset

m
ode_reg_A

8

P
x_A

ddrD
etect

P
x_portsel_addr

P
x_A

ddr_C
E

Px_Addr

Px_Addr

Px_Addr_Req

Px_RNW

Px_Size

Px_AddrAck

Px_rdDataAck_Pos

Px_rdDataAck_Neg

Px_rdDataRdy

Px_rdComp

Px_wrDataAck_Pos

Px_wrDataAck_Neg

Px_wrComp

Px_wr_fifo_busy

Px_rd_fifo_busy

Px_wr_fifo_full_Pos

Px_wr_fifo_full_Neg

Px_rdWdAddr_Pos

Px_rdWdAddr_Neg

Px_rd_rst

BA_final_CE

Addr_CE

DDR_mode_set

DDR_mode_complete

BI_AR

BI_WW

BI_WR

BI_CL4W

BI_CL4R

BI_CL8W

BI_CL8R

BI_B16W

BI_B16R

BI_Complete

portsel_data

wrData_pop_last

rdData_push_last

w
rD

ata_C
E

rdD
ata_C

E

w
rD

ata_T
S

w
rD

ata_T
S

_C
E

w
rD

ata_set

w
rD

ata_T
S

_set

w
rD

ata_pop

rdD
ata_push

P
x_portsel_data

P
x_rdD

ata_P
ush_P

os

P
x_rdD

ata_P
ush_N

eg

P
x_w

rD
ata_P

op_N
eg

Px_wr_rst

Px_rd_rst

Px_rdData_Pos

Px_rdData_Neg

Px_wrData_Pos

Px_wrData_Neg

Px_wrDataBE_Pos

Px_wrDataBE_Neg

Px_wrDataAck_Pos

Px_wrDataAck_Neg

Px_rdDataAck_Pos

Px_rdDataAck_Neg

X535_08_113004

http://www.xilinx.com

42 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

The MPMC contains four ports. Each port has a simple memory interface that it presents.
Modules can be added to these ports to affect the style of bus interface that the application
requires. For example, the reference systems ship with the MPMC PLB interface, which is
replicated and used to tie the MPMC directly to the PPC405 CPU that is contained in
Virtex-II Pro FPGAs. In the case of the reference systems contained in this application note,
Port 0 of the MPMC is tied to the ISPLB and Port 1 is tied to the DSPLB of the PPC405.

The MPMC can be integrated with another important element: the CDMAC. The CDMAC
is an additional bolt-in element to the MPMC that provides for very high bandwidth data
movement. The CDMAC contains four independent DMA engines. The CDMAC utilizes
two ports on the MPMC to gain access to the memory. This allows the CDMAC to have a
TX and RX DMA engine per port to the MPMC. Importantly, the CDMAC is very tightly
coupled to the MPMC expressly because the MPMC can utilize the knowledge of which
DMA transaction occurs next in the arbitration of the next DDR memory cycle. This tight
coupling results in a very impressive amount of available DMA bandwidth, while still
permitting the PPC405 CPU to have highly available access to the memory.

The MPMC structure uses some novel approaches in order to increase speed of operation,
and decrease the area required to implement the MPMC. For example, a block RAM is
used to implement a powerful state machine that controls the DDR SDRAM. This state
machine can be easily updated using the tools that are provided with this application note.
In another example, the built-in port arbiter can be easily modified to suit a particular
application or performance requirement.

MPMC Address Path

Figure 3-3 shows the address path logic.

Four 32-bit addresses are provided to the address path through the four port interfaces,
represented by Px_Addr. The control path and arbiter provide inputs to multiplex and
register these addresses to the DDR. There are three pipeline stages in the address path.
The first stage allows the arbiter to immediately acknowledge an address request if the

Figure 3-3: MPMC Address Path Block Diagram

Px_Addr
Px_AddrAck

Sys_clk

D Q
CE

X535_09_121004

D Q
CE

DDR_BA

DDR_A

Select
Port

extract
bank

address

extract
row/col
address

DDR
Initialization

Logic

DDR
Initialization

Logic

Addr_CE
Sys_clk 370

Middle_CE
Sys_clk

D Q
CE

R

S

D Q
CE

R

S

DDR
Initialization

Logic

13

Sys_clk 270
Bank Addr_CE

2

25
0

1

2

3

P0

P1

P2

P3

{Px_Addr[26:3],Ob0}
25

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 43
XAPP535 (v1.1) December 10, 2004

Multi-Port Memory Controller (MPMC)
R

port is not busy. The second stage allows the control path to select which port is active and
frees the pipeline so another address request can be accepted from the port. The third stage
contains information about the burst length to which the DDR SDRAM is configured. A
counter is used to increment the row address as needed. In addition, this stage allows the
initialization sequence to set or reset particular bits in the address and moves the address
back by 90 degrees to improve timing at the DDR pins.

Note: (Important) Currently the MPMC always acknowledges the requests for service, even if the
request is not for the MPMC. It is the Port Interface’s responsibility to only send valid address
requests to the MPMC.

MPMC Data Path

Figure 3-4 shows the data path logic. Each port has independent 64-bit read/write data
buses, which are implemented as two 32-bit buses. The first 32-bit word of data is
represented by Px_aaData_Pos, the second word by Px_aaData_Neg, where aa is either rd
or wr. This data is qualified with a data acknowledge signal, Px_aaDataAck_bbb, where
bbb is either Pos or Neg.

For writes, a peripheral pushes each 32-bit data block into a 32-bit by 16 deep FIFO with
the assertion of the corresponding data acknowledge. As there is a FIFO for both the Pos
data and the Neg data, the FIFOs for each port can hold a total of 128 bytes, which is also
the size of the largest burst transfer. The control path is responsible for sending control
signals to activate a particular port, pop the data out of the FIFOs, and send the data and
byte enables to the DDR pins at the appropriate time. Note that the byte enables are
actually data masks and therefore the personality module should invert the byte enables to
support this convention.

Figure 3-4: MPMC Data Path Logic Block Diagram

X535_10_113004

DDR_DQ

36

Sys_clk

D Q D Q

Port
Select
logic

0

1

2

3

P0

P1

P2

P3

Sys_clk

D Q 0

1

2

3

P0

P1

P2

P3

D Q

Sys_clk

D Q

Sys_clk 180

Q

Sys_clk

Sys_clk 180

D0

D1

CLK0

CLK1

Q

Sys_clk

Sys_clk 180

D0

D1

CLK0

CLK1

threestate
logic

36

36
Px_wrData_Pos

Px_wrDataBE_Pos

Px_wrDataAck_Pos

Sys_clk

DI

BEI

PUSH

D0

BEO

POP

32

4

pop
logic

36
Px_wrData_Neg

Px_wrDataBE_Neg

Px_wrDataAck_Neg

Sys_clk

DI

BEI

PUSH

D0

BEO

POP

32

4

pop
logic

Port
Select
logic

Px_rdData_Neg

Px_rdDataAck_Neg

Sys_clk

DO

POP

DI

PUSH

push
logic

Px_rdData_Pos

Px_rdDataAck_Pos

Sys_clk

DO

POP

DI

PUSH

push
logic

Sys_clk

DQ
32

32

Sys_clk270

DQ

Sys_clk90

DQ

32

4

32

4

DDR_BE

32

4

32

32
32-bit X 16 deep FIFO

32-bit X 16 deep FIFO

36-bit X 16 deep FIFO

36-bit X 16 deep FIFO

R
ea

d
da

ta
 p

at
h

W
rit

e
da

ta
 p

at
h

http://www.xilinx.com

44 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

The write FIFOs have several status signals of which the connecting peripheral should be
aware. The Px_wr_fifo_full_bbb signal indicates that a particular FIFO is full and that no
more data can be pushed into that particular FIFO. The Px_wr_fifo_busy signal indicates
that a write request has been acknowledged, but has not been written to memory. When
this signal is asserted, the peripheral cannot reset the FIFOs on the corresponding port. If
this signal is deasserted, the peripheral can reset the FIFOs using the Px_wr_rst signal. This
can be useful for speculative execution. The data for a write can be pushed into the FIFOs,
and then if the write is not wanted, the FIFOs can be reset before issuing an address
request.

The read data path is very similar to the write data path. As the data is read from the DDR
pins, each 32-bit data block is realigned to the positive clock edge and pushed into a 32-bit
by 16 deep FIFO. Because the data comes out of the DDR at least as fast as the peripheral
can consume the data, the peripheral can start popping data out of the FIFOs as soon as the
first word is placed into the FIFOs. The Px_rdDataRdy signal is asserted for one clock cycle
to indicate that the peripheral can begin popping data out of the corresponding FIFOs.

Similar to the write FIFOs, the read FIFOs have several status signals that the peripheral
should be aware of. The Px_rd_fifo_busy signal indicates that a read request has been
acknowledged, but that the DDR has not pushed all of the data into the FIFOs. If this
signal is deasserted, the peripheral can reset the FIFOs for the corresponding port using the
Px_rd_rst signal. This can be useful if a peripheral only supports 128 byte bursts, but only
needs to read one word. By resetting the FIFOs instead of continuing to pop unneeded
data out of the FIFOs, the read latency can be reduced.

MPMC Control Path

The main architectural concept of the control path is to use a block RAM to play sequences
of control signals. This design allows a compact, efficient, and high-performance state
machine for the MPMC. Figure 3-5 shows the control path logic.

The DDR has a specific sequence of signals that it needs for each type of transfer. For
example, in a 100 MHz system (200 MHz DDR), a four-word cache-line write has the
following control sequence to the DDR’s pins: Activate, NOP, Write, NOP, NOP, NOP,
NOP, Precharge, NOP. To achieve this sequence, the arbiter tells the control path that it
requires a four-word cache-line write by asserting BI_CL4W for one clock cycle. The arbiter
also sends signals (Px_portsel_addr and Px_portsel_data) to the address path and the data
path to indicate which port the write was issued on. The assertion of BI_CL4W triggers the

Figure 3-5: MPMC Control Path Block Diagram

X535_11_113004

Add registers
and/or logic

to shift particular
control signals.

(See brwnfsm. table.txt)

decode
pattern

BI_WW

BI_WR

BI_CL4W

BI_ CL4R

BI_CL8W

BI_CL8R

BI_B16W

BI_B16R

BI_AR

DDR_Mode_Set

Sys_clk

D Q
4

control
signals
(see figure 3-2)

Sys_clk

Q

CE

R

reset
pattern
logic

counter
clock enable

logic

Addr[8:5]

Addr[4:0]

Q
30

Sys_clk R
counter

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 45
XAPP535 (v1.1) December 10, 2004

Multi-Port Memory Controller (MPMC)
R

correct sequence to be played by the controller. Outputs are sent to the address path, data
path, arbiter, and DDR. To reduce the latency, some of these outputs can go through a set of
registers to delay the signal rather than increasing the length of the sequence by placing the
delay in the sequence. A completed signal (BI_Complete) is asserted as soon as the system
permits another request from the arbiter. This allows the system to remove a cycle or two
of latency each time the arbiter has a secondary request using pipelining techniques.

The block RAM is initialized through init strings for simulation and synthesis. A simple C
program (gen_bram_fsm_init.c) converts a text file (bram_fsm_table.txt) into
block RAM init strings for simulation and synthesis. After compiling the C program, run
build_bram_init to produce the init strings. Then, copy the init strings into
mpmc_ctl_path.v.

Optional: User Compilation of the Block RAM FSM

The Finite State Machine (FSM) for the MPMC can be easily modified by the system
designer should the need arise. This step requires access to a C compiler that supports
STDIO, such as gcc. The following steps are not required unless there is a need to change
the MPMC FSM. The directions assume the use of gcc.

Locate the directory containing the mpmc<version> directory. For example,
C:\EDK\gsrd\edk_libs\gsrd_lib\pcores\mpmc<version>. CD to this directory,
and then to test\bin\bram_scripts. The directory contains the following files:

bram_fsm.defparam
bram_fsm.xcprops
bram_fsm.xst
bram_fsm_table.txt
build_bram_init

The bram_fsm_table.txt file can be edited to create the FSM inside the block RAM. A
snippet of that file is reproduced below. The format of the file is set up to represent up to 16
patterns of 32 Data Signal Patterns with up to 32 control signals. The values listed in the
Data Signal Pattern (horizontals) are the state of the Control Signals (vertical) during the
indicated state (0 to 31). To effect a change in the FSM, the system designer must compile a
small C program and then run a script to create the intermediate files, which XST requires
to properly build the FSM into the block RAM.

To compile the C source file:

1. cd to the test\bin\bram_scripts\bin directory, if not already there.

2. Type gcc - o gen_bram_fsm_init gen_bram_fsm_init.c

3. Type cd ..

4. Type build_bram_init

This creates the following:

bram_fsm.defparams
bram_fsm.xcprops
bram_fsm.xst

5. Copy these three files into the hdl\verilog\mpmc_ctl_path.v file as follows:

− Open files bram_fsm.xxxx file and search for the contents of the ̀ defparam in
mpmc_ctl_path.v.

− Replace the existing `defparam contents in mpmc_ctl_path.v with those from
the new files.

http://www.xilinx.com

46 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

6. When EDK is run the next time (after cleaning the hardware files), the block RAM
contents are properly made for the FSM.

Note: Use Simulation to verify that the block RAM updates performed as expected. Execution of
testbench_mpmc.v allows the system designer to see the changes that were made.

bram_fsm_table.txt Snippet:

// ---
// BRAM FSM Tables
// Line comments are "//"
// Block Comments are "/* */" - Cannot be nested!
// ---
// FSM PATTERN 0 WW:
// Data Signal Patterns (Up to 32)
//--
// Control Signals0 1 2 3
// (32 Signals) 01234567890123456789012345678901 Comments
// ---
/* 00 BI_Complete: */ 00000100000000000000000000000000 //
/* 01 DDR_Cke: */ 11111111111111111111111111111111 //
/* 02 DDR_Cas: */ 11011111111111111111111111111111 //
/* 03 DDR_Cs: */ 00000000000000000000000000000000 //
/* 04 DDR_Ras: */ 01111101111111111111111111111111 //
/* 05 DDR_We: */ 11011101111111111111111111111111 //
/* 06 DDR_Dqs_toggle: */ 00011000000000000000000000000000 // Delayed by 1 cycles
/* 07 DDR_Dqs_t: */ 10000111111111111111111111111111 // Delayed by 2 cycles
/* 08 DDR_mode_complete: */ 00000000000000000000000000000000 //
/* 09 Addr_BA_Final_CE: */ 10000000000000000000000000000000 //
/* 10 Addr_Addr_CE: */ 10100010000000000000000000000000 //
/* 11 Addr_col_sel: */ 01100000000000000000000000000000 //
/* 12 Addr_mode_on: */ 00000000000000000000000000000000 //
/* 13 Addr_mode_reg_on: */ 00000000000000000000000000000000 //
/* 14 Addr_A8_on: */ 00000000000000000000000000000000 //
/* 15 Addr_A10_set: */ 00000010000000000000000000000000 //
/* 16 Addr_A10_reset: */ 00100000000000000000000000000000 //
/* 17 Addr_count: */ 00010000000000000000000000000000 //
/* 18 Addr_load: */ 10000000000000000000000000000000 //
/* 19 Addr_CL8: */ 00000000000000000000000000000000 //
/* 20 Data_Wr_CE: */ 11111111111111111111111111111111 // Delayed by 1 cycles
/* 21 Data_Rd_CE: */ 11111111111111111111111111111111 // Delayed by 1 cycles
/* 22 Data_Wr_ts: */ 10000111111111111111111111111111 // Delayed by 1 cycles
/* 23 Data_Wr_tsCE: */ 11111111111111111111111111111111 // Delayed by 1 cycles
/* 24 Data_Wr_set: */ 00010000000000000000000000000000 // Delayed by 1 cycles
/* 25 Data_PortSel: */ 10000000000000000000000000000000 //
/* 26 Data_Wr_pop: */ 10000000000000000000000000000000 // Delayed by 3 cycles
/* 27 Data_Rd_push: */ 00000000000000000000000000000000 // Delayed by 4 cycles
/* 28 Data_Wr_pop_last: */ 00100000000000000000000000000000 // Delayed by 1 cycles
/* 29 Data_Rd_push_last: */ 00000000000000000000000000000000 // Delayed by 4 cycles
/* 30 Unused: */ 00000000000000000000000000000000 //
/* 31 Unused: */ 00000000000000000000000000000000 //

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 47
XAPP535 (v1.1) December 10, 2004

Multi-Port Memory Controller (MPMC)
R

MPMC Port Arbiter

The port arbiter takes address requests from each port and translates them into the
instruction sequence shown in Table 3-1.

Note: Burst 16 indicates 16 double words, which is actually 32 words. A burst 16 transfer is required
to be 32 word address aligned. During write operations, the byte enables are valid for all words.

On startup, the arbiter issues a set of instructions to play the initialization sequences and
starts an auto refresh timer. Each time the auto refresh timer is asserted, the arbiter holds
off the next instruction and issues an instruction to play the auto refresh sequence.

Figure 3-6 illustrates the arbitration algorithm. This algorithm is optimized around the
assumption that Port 0 is Instruction Side PLB (ISPLB), Port 1 is Data Side PLB (DSPLB),
and Ports 2 and 3 are CDMAC instantiations. Each port is given a time slot. If the port does
not have a request, other ports have the opportunity to use the time slot. If none of the
ports that were given the option want the time slot, there is a one-cycle latency before
moving to the next time slot. This state machine breaks the system into six time slots, as
shown in Table 3-2. For example, Port 0 has the first opportunity to take time slot 1. If Port
0 is not requesting, Port 1 has the opportunity to use the time slot. If neither Port 0 nor Port
1 can use the time slot, a one-cycle latency is taken and the state machine moves on to time
slot 2. Even if Port 2 or Port 3 is requesting, the one cycle latency is still taken. In time slot
3, Port 2 is given the first opportunity to take the time slot. If Port 2 is not requesting, the
time slot is broken into two time slots for the CPU. Port 0 gets the first opportunity to use
time slot 3a and Port 1 gets the first opportunity to use time slot 3b. The CPU only supports
word and cache-line transfers while the CDMAC only supports 32-word burst and 8-word
cache-line transfers. Since 32-word burst transfers take approximately twice as long as 8-
word cache-line transfers, the time slots associated with Ports 2 and 3 are broken into four
time slots. When the CDMAC is utilizing Port 2 or Port 3, the CPU attached to port 0 and 1
must wait its turn. If on the other hand the CDMAC is not using a port, the CPU has an
opportunity to gain access to the memory during the time slot. The ISPLB is given

Table 3-1: Arbitration Instructions

Px_RNW Px_Size
Instruction
Sequence

Description

1’b0 2’b00 WW Word Write sequence. (1x32 bits data)

1’b1 2’b00 WR Word Read sequence. (1x32 bits data)

1’b0 2’b01 CL4W Cache-line 4 Write sequence. (4x32 bits data)

1’b1 2’b01 CL4R Cache-line 4 Read sequence. (4x32 bits data)

1’b0 2’b10 CL8W Cache-line 8 Read sequence. (8x32 bits data)

1’b1 2’b10 CL8R Cache-line 8 Read sequence. (8x32 bits data)

1’b0 2’b11 B16W Burst 16 Read sequence. (32x32 bits data)

1’b1 2’b11 B16R Burst 16 Write sequence. (32x32 bits data)

AR Auto refresh sequence.

DDR_MODE0 First initialization sequence.

DDR_MODE1 Second initialization sequence.

NOP NOP sequence.

http://www.xilinx.com

48 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

preferential access, since the CPU typically would prefer instruction fetch. This is why time
slots 3 and 4 are broken into 2 time slots and given to the CPU if the CDMAC does not want
to use the time slot. For different applications, this table and state machine can be modified
to meet the needs of the system.

In addition to the arbitration algorithm, the ways in which the requests are acknowledged
reduce the latency of the system. The first request on each port is acknowledged
immediately with a combinational acknowledge. If there is a second request, the system
checks if there is room in the FIFOs for the second request and acknowledge the request on
the next cycle. Up to three instructions can be in the FIFO at once.

The arbiter is also in control of the read word address signals to the peripheral. There
signals tell the peripheral which word is being read out of the FIFOs. For example, if a read
request is issued for a cache line transfer at address 0x1C, Px_rdData_Pos will present data
in the following order: 0x18, 0x10, 0x08, 0x00. Px_rdData_Neg will present data in the
following order: 0x1C, 0x14, 0x0C, 0x04. Px_RdWdAdd_Pos will present values in the
following sequence: 0x6, 0x4, 0x2, 0x0. Px_RdWdAdd_Neg will present values in the
following sequence: 0x7, 0x5, 0x3, 0x1.

Table 3-2: Arbitration Algorithm

Time Slot

1 2 3a 3b 4a 4b

Priority 1 P0 P1 P2 P3

2 P1 P0 P0 P1 P0 P1

3 P1 P0 P1 P0

Figure 3-6: MPMC Arbitration State Machine

Initialization Start

Time Slot 1 Time Slot 2 Stall Time Slot 3a

Time Slot 4b Stall Time Slot 4a Stall Time Slot 3b

Stall

Stall Stall

sys_rstddr_mode_set

ts1 assert cond

ts1 assert
cond

ts3b assert
cond

complete ts2 assert
cond

complete

complete

complete
ts4a.1 assert cond &&

ts4a.1 assert cond

ts4b assert cond

(ts4a.2 assert cond ||
ts4a.3 assert cond)

complete

ddr_mode_complete

ts
4b

 a
ss

er
t c

on
d

ts3a.1 assert cond

ts
3a

 a
ss

er
t c

on
d

ts3a.1 assert cond &&
(ts3a.2 assert cond ||
ts3a.3 assert cond)

ts2 assert cond

ts4a assert cond ts3b assert cond X535_12_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 49
XAPP535 (v1.1) December 10, 2004

Multi-Port Memory Controller (MPMC)
R

Timing Diagrams
This section provides details about the internal timings within the MPMC. The top half of
the diagrams show the Port Interface for Port O. The lower half of the diagrams show the
memory interface. The MPMC is configured to use registered DIMMs.

MPMC Read Word Timing Diagram

Figure 3-7 is an example of a single word read operation. The peripheral asserts
P0_AddrReq and holds the signal asserted until P0_AddrAck is asserted. Once the request
has been acknowledged, P0_rd_fifo_busy is asserted until the memory has been accessed
and the data pushed into the read FIFOs. P0_rdDataRdy indicates that memory has
pushed the first word into the read FIFOs and that the peripheral can start popping the
data out of the FIFOs using P0_rdDataAck_Pos and P0_rdDataAck_Neg. Once the last
word of data has been popped out of the FIFOs, the peripheral asserts P0_rdComp for one
clock cycle. This signal can be asserted with the last data. Even though only one word has
been requested, the Port Interface is required to assert both the P0_rdDataAck_Pos signal
and the P0_rdDataAck_Neg signal.

Figure 3-7: MPMC Read Word Timing Diagram

X535_13_113004

0ns 20ns 40ns 60ns 80ns 100ns 120ns 140ns 160ns 180n

SYS_CLK
SYS_CLK90
P0_AddrReq
P0_AddrAck

P0_Addr
P0_RNW

P0_Size[1:0]
P0_rdDataRdy

P0_rdDataAck_Pos
P0_rdDataAck_Neg

P0_rdData_Pos[31:0]
P0_rdData_Neg[31:0]

P0_rdWdAddr_Pos[4:0]
P0_rdWdAddr_Neg[4:0]

P0_rdComp
P0_rd_rst

P0_rd_fifo_busy
DDR_Cke

DDR_Cs_n
DDR_Cas_n
DDR_Ras_n
DDR_We_n

DDR_A[12:0]
DDR_BA[1:0]
DDR_Dm[3:0]

DDR_Dq[31:0]
DDR_Dqs[3:0]

00

1111111111111111 11111111 33333333
2222222222222222 22222222 44444444

0000 00 02
0101 01 03

04000400 0000 0400
00
ZZ

ZZZZZZZZZZZZZZZZ ZZZZZZZZ
ZZ 0 F 0 F 0 Z

http://www.xilinx.com

50 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

MPMC Write Word Timing Diagram

Figure 3-8 is an example of a single-word write operation. The peripheral asserts
P0_AddrReq and holds the signal asserted until P0_AddrAck is asserted. Once the request
has been acknowledged, P0_wr_fifo_busy is asserted until the data has been popped into
memory. The peripheral can push data into the write FIFOs at any time by asserting
P0_wrDataAck_Pos or P0_wrDataAck_Neg. In this example, the data is pushed into the
FIFOs after the request. As soon as the last word has been pushed into memory, the
peripheral should assert P0_wrComp for one clock cycle. Even though only one word is
being written to memory, the peripheral is required to assert both the P0_wrDataAck_Pos
signal and the P0_wrDataAck_Neg signal.

Figure 3-8: MPMC Write Word Timing Diagram

X535_14_113004

0ns 20ns 40ns 60ns 80ns 100ns 120ns 140ns 160ns 180ns 200ns

SYS_CLK
SYS_CLK90
P0_AddrReq
P0_AddrAck

P0_Addr
P0_RNW

P0_Size[1:0]
P0_wrDataAck_Pos
P0_wrDataAck_Neg

P0_wrData_Pos[31:0]
P0_wrData_Neg[31:0]

P0_wrComp
P0_wr_rst

P0_wr_fifo_busy
P0_wr_fifo_full_Pos
P0_wr_fifo_full_Neg

DDR_Cke
DDR_Cs_n

DDR_Cas_n
DDR_Ras_n
DDR_We_n

DDR_A[12:0]
DDR_BA[1:0]
DDR_Dm[3:0]

DDR_Dq[31:0]
DDR_Dqs[3:0]

00

0000000000000000 00000000
0000000000000000 00000000

04000400 0000 0400
00

ZZ 0 F 0 Z
ZZZZZZZZZZZZZZZZ ZZZZZZZZ

ZZ 0 F 0 F 0 Z

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 51
XAPP535 (v1.1) December 10, 2004

Multi-Port Memory Controller (MPMC)
R

MPMC Four-Word Cache-Line Read Timing Diagram

Figure 3-9 is an example of a four-word cache-line read operation. The peripheral asserts
P0_AddrReq and holds the signal asserted until P0_AddrAck is asserted. Once the request
has been acknowledged, P0_rd_fifo_busy is asserted until the memory has been accessed
and the data pushed into the read FIFOs. P0_rdDataRdy indicates that memory has
pushed the first word into the read FIFOs and the peripheral can start popping the data out
of the FIFOs using P0_rdDataAck_Pos and P0_rdDataAck_Neg. P0_rdWdAddr_Pos and
P0_rdWdAddr_Neg are asserted with the data acknowledge signals and indicate which
word the data acknowledge corresponds to. Once the last word of data has been popped
out of the FIFOs, the peripheral asserts P0_rdComp for one clock cycle. This signal can be
asserted with the last data.

Figure 3-9: MPMC Four-Word Cache-Line Read Timing Diagram

X535_15_113004

0ns 20ns 40ns 60ns 80ns 100ns 120ns 140ns 160ns 180ns 200n

SYS_CLK
SYS_CLK90
P0_AddrReq
P0_AddrAck

P0_Addr
P0_RNW

P0_Size[1:0]
P0_rdDataRdy

P0_rdDataAck_Pos
P0_rdDataAck_Neg

P0_rdData_Pos[31:0]
P0_rdData_Neg[31:0]

P0_rdWdAddr_Pos[4:0]
P0_rdWdAddr_Neg[4:0]

P0_rdComp
P0_rd_rst

P0_rd_fifo_busy
DDR_Cke

DDR_Cs_n
DDR_Cas_n
DDR_Ras_n
DDR_We_n

DDR_A[12:0]
DDR_BA[1:0]
DDR_Dm[3:0]

DDR_Dq[31:0]
DDR_Dqs[3:0]

00 1 0

3333333333333333 11111111
4444444444444444 22222222

0202 00 00 02 00
0303 01 01 03 01

04000400 0000 0400
00
ZZ

ZZZZZZZZZZZZZZZZ ZZZZZZZZ
ZZ 0 F 0 F 0 Z

http://www.xilinx.com

52 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

MPMC Four-Word Cache-Line Write Timing Diagram

Figure 3-10 is an example of a four-word cache-line write operation. The peripheral asserts
P0_AddrReq and holds the signal asserted until P0_AddrAck is asserted. Once the request
has been acknowledged, P0_wr_fifo_busy is asserted until the data has been popped into
memory. The peripheral can push data into the write FIFOs at any time by asserting
P0_wrDataAck_Pos or P0_wrDataAck_Neg. In this example, the data is pushed into the
FIFOs after the request. As soon as the last word has been pushed into memory, the
peripheral should assert P0_wrComp for one clock cycle.

Figure 3-10: MPMC Four-Word Cache-Line Write Timing Diagram

X535_16_113004

0ns 20ns 40ns 60ns 80ns 100ns 120ns 140ns 160ns 180ns 200n

SYS_CLK
SYS_CLK90
P0_AddrReq
P0_AddrAck

P0_Addr
P0_RNW

P0_Size[1:0]
P0_wrDataAck_Pos
P0_wrDataAck_Neg

P0_wrData_Pos[31:0]
P0_wrData_Neg[31:0]

P0_wrComp
P0_wr_rst

P0_wr_fifo_busy
P0_wr_fifo_full_Pos
P0_wr_fifo_full_Neg

DDR_Cke
DDR_Cs_n

DDR_Cas_n
DDR_Ras_n
DDR_We_n

DDR_A[12:0]
DDR_BA[1:0]
DDR_Dm[3:0]

DDR_Dq[31:0]
DDR_Dqs[3:0]

00 1 0

0000000000000000 00000000
0000000000000000 00000000

04000400 0000 0400
00

ZZ 0 Z
ZZZZZZZZZZZZZZZZ ZZZZZZZZ

ZZ 0 F 0 F 0 Z

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 53
XAPP535 (v1.1) December 10, 2004

Multi-Port Memory Controller (MPMC)
R

MPMC 8-Word Cache-Line Read Timing Diagram

Figure 3-11 is an example of an 8-word cache-line read operation. The peripheral asserts
P0_AddrReq and holds the signal asserted until P0_AddrAck is asserted. Once the request
has been acknowledged, P0_rd_fifo_busy is asserted until the memory has been accessed
and the data pushed into the read FIFOs. P0_rdDataRdy indicates that memory has
pushed the first word into the read FIFOs and the peripheral can start popping the data out
of the FIFOs using P0_rdDataAck_Pos and P0_rdDataAck_Neg. P0_rdWdAddr_Pos and
P0_rdWdAddr_Neg are asserted with the data acknowledge signals and indicate which
word the data acknowledge corresponds to. Once the last word of data has been popped
out of the FIFOs, the peripheral asserts P0_rdComp for one clock cycle. This signal can be
asserted with the last data.

Figure 3-11: MPMC 8-Word Cache-Line Read Timing Diagram

X535_17_113004

0ns 20ns 40ns 60ns 80ns 100ns 120ns 140ns 160ns 180ns 200ns 220

SYS_CLK
SYS_CLK90
P0_AddrReq
P0_AddrAck

P0_Addr
P0_RNW

P0_Size[1:0]
P0_rdDataRdy

P0_rdDataAck_Pos
P0_rdDataAck_Neg

P0_rdData_Pos[31:0]
P0_rdData_Neg[31:0]

P0_rdWdAddr_Pos[4:0]
P0_rdWdAddr_Neg[4:0]

P0_rdComp
P0_rd_rst

P0_rd_fifo_busy
DDR_Cke

DDR_Cs_n
DDR_Cas_n
DDR_Ras_n
DDR_We_n

DDR_A[12:0]
DDR_BA[1:0]
DDR_Dm[3:0]

DDR_Dq[31:0]
DDR_Dqs[3:0]

00 2 0

1111111111111111 11111111
2222222222222222 22222222

0000 00 02 04 06 00
0101 01 03 05 07 01

04000400 0000 0004 0400
00
ZZ

ZZZZZZZZZZZZZZZZ ZZZZZZZZ
ZZ 0 F 0 F 0 F 0 F 0 Z

http://www.xilinx.com

54 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

MPMC 8-Word Cache-Line Write Timing Diagram

Figure 3-12 is an example of an 8-word cache-line write operation. The peripheral asserts
P0_AddrReq and holds the signal asserted until P0_AddrAck is asserted. Once the request
has been acknowledged, P0_wr_fifo_busy is asserted until the data has been popped into
memory. The peripheral can push data into the write FIFOs at any time by asserting
P0_wrDataAck_Pos or P0_wrDataAck_Neg. In this example, the data is pushed into the
FIFOs after the request. As soon as the last word has been pushed into memory, the
peripheral should assert P0_wrComp for one clock cycle.

Figure 3-12: MPMC 8-Word Cache-Line Write Timing Diagram

X535_18_113004

0ns 50ns 100ns 150ns 200ns 250ns

SYS_CLK
SYS_CLK90
P0_AddrReq
P0_AddrAck

P0_Addr
P0_RNW

P0_Size[1:0]
P0_wrDataAck_Pos
P0_wrDataAck_Neg

P0_wrData_Pos[31:0]
P0_wrData_Neg[31:0]

P0_wrComp
P0_wr_rst

P0_wr_fifo_busy
P0_wr_fifo_full_Pos
P0_wr_fifo_full_Neg

DDR_Cke
DDR_Cs_n

DDR_Cas_n
DDR_Ras_n
DDR_We_n

DDR_A[12:0]
DDR_BA[1:0]
DDR_Dm[3:0]

DDR_Dq[31:0]
DDR_Dqs[3:0]

00 2 0

0000000000000000 00000000
0000000000000000 00000000

04000400 0000 0004 0400
00

ZZ 0 Z
ZZZZZZZZZZZZZZZZ ZZZZZZZZ

ZZ 0 F 0 F 0 F0 F 0 Z

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 55
XAPP535 (v1.1) December 10, 2004

Multi-Port Memory Controller (MPMC)
R

MPMC 32-Word Burst Read Timing Diagram

Figure 3-13 is an example of a 32-word burst read operation. The peripheral asserts
P0_AddrReq and holds the signal asserted until P0_AddrAck is asserted. Once the request
has been acknowledged, P0_rd_fifo_busy is asserted until the memory has been accessed
and the data pushed into the read FIFOs. P0_rdDataRdy indicates that memory has
pushed the first word into the read FIFOs and the peripheral can start popping the data out
of the FIFOs using P0_rdDataAck_Pos and P0_rdDataAck_Neg. As the peripheral is
required to issue requests that are 32-word address aligned, the data comes out of the
memory in order. P0_rdWdAddr_Pos and P0_rdWdAddr_Neg are not used in this case
and can contain invalid data. Once the last word of data has been popped out of the FIFOs,
the peripheral asserts P0_rdComp for one clock cycle. This signal can be asserted with the
last data.

Figure 3-13: MPMC 32-Word Burst Read Timing Diagram

X535_19_113004

0ns 50ns 100ns 150ns 200ns 250ns 300ns 35

SYS_CLK
SYS_CLK90
P0_AddrReq
P0_AddrAck

P0_Addr
P0_RNW

P0_Size[1:0]
P0_rdDataRdy

P0_rdDataAck_Pos
P0_rdDataAck_Neg

P0_rdData_Pos[31:0]
P0_rdData_Neg[31:0]

P0_rdWdAddr_Pos[4:0]
P0_rdWdAddr_Neg[4:0]

P0_rdComp
P0_rd_rst

P0_rd_fifo_busy
DDR_Cke

DDR_Cs_n
DDR_Cas_n
DDR_Ras_n
DDR_We_n

DDR_A[12:0]
DDR_BA[1:0]
DDR_Dm[3:0]

DDR_Dq[31:0]
DDR_Dqs[3:0]

00 3 0

1111111111111111 11111111
2222222222222222 22222222

0000 00020406080A 0C0E00020406080A0C0E 00
0101 01030507090B 0D0F01030507090B0D0F 01

04000400 0000 00040008000C001000140018001C 0400
00
ZZ

ZZZZZZZZZZZZZZZZ ZZZZZZZZ
ZZ 0 F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0 Z

http://www.xilinx.com

56 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

MPMC 32-Word Burst Write Timing Diagram

Figure 3-14 is an example of a 32-word burst write operation. The peripheral asserts
P0_AddrReq and holds the signal asserted until P0_AddrAck is asserted. Once the request
has been acknowledged, P0_wr_fifo_busy is asserted until the data has been popped into
memory. The peripheral can push data into the write FIFOs at any time by asserting
P0_wrDataAck_Pos or P0_wrDataAck_Neg. In this example, the data is pushed into the
FIFOs after the request. As soon as the last word has been pushed into memory, the
peripheral should assert P0_wrComp for one clock cycle.

Figure 3-14: MPMC 32-Word Burst Write Timing Diagram

X535_20_113004

0ns 50ns 100ns 150ns 200ns 250ns 300ns 350ns 400ns 450ns 500n

SYS_CLK
SYS_CLK90
P0_AddrReq
P0_AddrAck

P0_Addr
P0_RNW

P0_Size[1:0]
P0_wrDataAck_Pos
P0_wrDataAck_Neg

P0_wrData_Pos[31:0]
P0_wrData_Neg[31:0]

P0_wrComp
P0_wr_rst

P0_wr_fifo_busy
P0_wr_fifo_full_Pos
P0_wr_fifo_full_Neg

DDR_Cke
DDR_Cs_n

DDR_Cas_n
DDR_Ras_n
DDR_We_n

DDR_A[12:0]
DDR_BA[1:0]
DDR_Dm[3:0]

DDR_Dq[31:0]
DDR_Dqs[3:0]

00 3 0

0000000000000000 00000000
0000000000000000 00000000

04000400 0000 0004 0008 000C 0010 0014 0018 001C 0400
00

ZZ 0 Z
ZZZZZZZZZZZZZZZZ ZZZZZZZZ

ZZ 0 F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F 0 Z

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 57
XAPP535 (v1.1) December 10, 2004

Multi-Port Memory Controller (MPMC)
R

MPMC Pipelined 8-Word Cache-Line Read Timing Diagram

Figure 3-15 is an example of two pipelined, 8-word cache-line read operations. The
peripheral asserts P0_AddrReq and holds the signal asserted until P0_AddrAck is
asserted. Because a second read is desired, the peripheral continues to assert P0_AddrReq
until P0_AddrAck is asserted a second time. Once the first request has been
acknowledged, P0_rd_fifo_busy is asserted until the memory has been accessed and the
data pushed into the read FIFOs. Because there is a second read pending, P0_rd_fifo_busy
is not deasserted until the data for the second read has been pushed into the FIFOs.
P0_rdDataRdy is asserted for each read operation and indicates that memory has pushed
the first word of the operation into the read FIFOs. At this point, the peripheral can start
popping the data out of the FIFOs using P0_rdDataAck_Pos and P0_rdDataAck_Neg.
P0_rdWdAddr_Pos and P0_rdWdAddr_Neg are asserted with the data acknowledge
signals and indicate which word of the operation the data corresponds to. Once the last
word of data for each operation has been popped out of the FIFOs, the peripheral asserts
P0_rdComp for one clock cycle. This signal can be asserted with the last data.

Figure 3-15: MPMC Pipelined 8-Word Cache-Line Read Timing Diagram

X535_21_113004

0ns 50ns 100ns 150ns 200ns 250ns

SYS_CLK
SYS_CLK90
P0_AddrReq
P0_AddrAck

P0_Addr
P0_RNW

P0_Size[1:0]
P0_rdDataRdy

P0_rdDataAck_Pos
P0_rdDataAck_Neg

P0_rdData_Pos[31:0]
P0_rdData_Neg[31:0]

P0_rdWdAddr_Pos[4:0]
P0_rdWdAddr_Neg[4:0]

P0_rdComp
P0_rd_rst

P0_rd_fifo_busy
DDR_Cke

DDR_Cs_n
DDR_Cas_n
DDR_Ras_n
DDR_We_n

DDR_A[12:0]
DDR_BA[1:0]
DDR_Dm[3:0]

DDR_Dq[31:0]
DDR_Dqs[3:0]

00 2 0

1111111111111111 99999999 23232323
2222222222222222 AAAAAAAA 34343434

0000 00 00 02 04 06 08 00 00 02 04 06 00
0101 01 01 03 05 07 09 01 01 03 05 07 01

04000400 0000 0004 0400 0000 0004 0400
00
ZZ

ZZZZZZZZZZZZZZZZ ZZZZZZZZ ZZZZZZZZ
ZZ 0 F 0 F0 F 0 F0 Z 0 F0 F 0 F0 F 0 Z

http://www.xilinx.com

58 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

MPMC Pipelined 8-Word Cache-Line Write Timing Diagram

Figure 3-16 is an example of two, pipelined 8-word cache-line write operations. The
peripheral asserts P0_AddrReq and holds the signal asserted until P0_AddrAck is
asserted. The peripheral continues to assert P0_AddrReq until P0_AddrAck is asserted a
second time because a second write is desired. Once the request has been acknowledged,
P0_wr_fifo_busy is asserted until the data has been popped into memory. There is a second
write pending, so P0_wr_fifo_busy is not deasserted until the data for the second write has
also been popped into memory. The peripheral can push data into the write FIFOs at any
time by asserting P0_wrDataAck_Pos or P0_wrDataAck_Neg. In this example, the data is
pushed into the FIFOs after each request. As soon as the last word has been pushed into
memory, the peripheral should assert P0_wrComp for one clock cycle.

Figure 3-16: MPMC Pipelined 8-Word Cache-Line Write Timing Diagram

X535_22_113004

0ns 50ns 100ns 150ns 200ns 250ns 300ns 350n

SYS_CLK
SYS_CLK90
P0_AddrReq
P0_AddrAck

P0_Addr
P0_RNW

P0_Size[1:0]
P0_wrDataAck_Pos
P0_wrDataAck_Neg

P0_wrData_Pos[31:0]
P0_wrData_Neg[31:0]

P0_wrComp
P0_wr_rst

P0_wr_fifo_busy
P0_wr_fifo_full_Pos
P0_wr_fifo_full_Neg

DDR_Cke
DDR_Cs_n

DDR_Cas_n
DDR_Ras_n
DDR_We_n

DDR_A[12:0]
DDR_BA[1:0]
DDR_Dm[3:0]

DDR_Dq[31:0]
DDR_Dqs[3:0]

00 2 0

0000000000000000 00000000 00000000
0000000000000000 00000000 00000000

04000400 0000 0004 0400 0000 0004 0400
00

ZZ 0 Z 0 Z
ZZZZZZZZZZZZZZZZ ZZZZZZZZ ZZZZZZZZ

ZZ 0 F0F0F0F 0 Z 0 F0F0F0F 0 Z

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 59
XAPP535 (v1.1) December 10, 2004

Multi-Port Memory Controller (MPMC)
R

Simulation and Verification
There are four testbenches associated with the MPMC: one for the address path; one for the
data path; one for the arbiter; and one top-level testbench that contains all four
components. These testbenches are very useful for regression testing.

Each testbench default has an associated shell script (in the mpmc<version>/test/bin
directory) that runs the test. If applicable, the scripts allow the user to specify a random
number seed and the number of cycles for the test to run. If an error occurs, the simulation
prints out an error message and pause.

The reference systems also contain a complete simulation environment so that C source
code can be compiled, and simulated in the system. Refer to Chapter 2, “Reference
Systems,” for more information on the provided reference systems, and their simulation
environment.

Address Path Testbench

On each clock cycle, the address path testbench sets the inputs to random values and
checks that the outputs are generated correctly.

Data Path Testbench

The data path testbench runs through a sequence of inputs and checks that the outputs are
generated correctly.

Arbiter Testbench

The arbiter testbench models how each of the inputs might be generated. The default
configuration provides random delays on the inputs.

Top-Level Testbench

The top-level testbench combines the address path, control path, data path, and arbiter. It
uses a DDR memory model and models the behavior of the ports through state machines.
As read instructions are issued, the data in the memory model is compared against the
expected results. The state machines default to provide random instructions for each port,
however they can be modified to provide a specific sequence of instructions.

Using the MPMC in a System
To use the MPMC in a real system, the user needs to interface to a DDR SDRAM and create
four port interfaces. The I/O’s are described in Table 3-3 through Table 3-5. Sample timing
diagrams are shown in Figure 3-7 through Figure 3-16. The ports are modeled after IBM’s
Core Connect PLB specification, however the optimizations detailed in this section need to
be handled by the peripheral or a personality model. The only operations that are
permitted are: single word, four-word cache-line, 8-word cache-line, and 32-word bursts.
See Table 3-1 for definitions of these operations. The bursts are required to be 32-word
address aligned. In all cases, byte enables are valid for each word. The peripheral is also
responsible for handling aborts. The peripheral has the option of pushing data into the
FIFOs early. This is accomplished by asserting the write data acknowledge signals before
the address request is issued.

The data interface is 64-bits wide, but is divided into two 32-bit wide buses. If the data bus
on the peripheral is also 64 bits, the first 32 bits are connected to the Pos data bus and the
second 32 bits are connected to the Neg data bus. The same is true of the byte enables and
the read word address. The data acknowledges should be tied together. If the peripheral is
32-bits wide, the first word of data should be connected to the Pos data bus, the second
word to the Neg data bus. In this case, the data acknowledges are separate.

http://www.xilinx.com

60 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

The Port Interface has some extra signals that allow the peripheral to be more efficient. The
arbiter sends signals to the peripheral indicating whether there is data in the FIFOs and
whether a channel is busy. The read and write resets can be used when a channel is not
busy. In the case of a read FIFO, after the read data ready signal is asserted, and there are no
requests in the queue, the user has the option of popping data out of the FIFO or resetting
the FIFO with the read reset. This could be useful to a user if the peripheral only does burst
transfers, but only the first word of the burst is needed. The reset eliminates the need for
the peripheral to pop the other 31 words out of the FIFOs before another transfer is
allowed. For writes, the user can push data into the FIFOs early. However, if the peripheral
decides that the data should not be written to memory, the peripheral can assert the write
reset once the channel is no longer busy.

Module Port Interface

Table 3-3: MPMC DDR SDRAM I/Os (per the Infineon DDR SDRAM Specification)

Signal I/O Description

DDR_Cke_O Output Clock Enable.

DDR_Cs_O Output Chip Select.

DDR_Cas_O Output
Command Input. (See the Infineon DDR
SDRAM specification.)

DDR_Ras_O Output
Command Input. (See the Infineon DDR
SDRAM specification.)

DDR_We_O Output
Command Input. (See the Infineon DDR
SDRAM specification.)

DDR_A[12:0] Output Address.

DDR_BA[1:0] Output Bank Address.

DDR_BE_I[3:0] Input Data mask input.

DDR_BE_O[3:0] Output Data mask output.

DDR_BE_T[3:0] Output Data mask three-state select.

DDR_Dq_I[31:0] Input Write data input.

DDR_Dq_O[31:0] Output Read data output.

DDR_Dq_T[31 :0] Output Data three-state select.

DDR_Dqs_I[3 :0] Input Write data strobe input.

DDR_Dqs_O[3:0] Output Read data strobe output.

DDR_Dqs_T[3 :0] Output Data strobe three-state select.

Table 3-4: MPMC System Signals

Signal I/O Description

SYS_CLK Input System Clock.

SYS_CLK90 Input System Clock, phase shifted by 90 degrees.

SYS_CLK180 Input System Clock, phase shifted by 180 degrees.

SYS_CLK270 Input System Clock, phase shifted by 270 degrees.

SYS_RST Input System Reset.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 61
XAPP535 (v1.1) December 10, 2004

Multi-Port Memory Controller (MPMC)
R

Table 3-5: MPMC Port Interface Signals (replicated for each of the four ports)

Signal I/O Description

Px_AddrReq Input
Address request. If there is no secondary request, must be deasserted the clock cycle
after the address acknowledge.

Px_Addr[31:0] Input Address. Valid during address request.

Px_RNW Input
Write==1’b0
Read==1’b1
Valid during Address Request.

Px_Size[1:0] Input

Word==2’b00
Cache Line 4==2’b01
Cache Line 8==2’b10
Burst==2’b11
Valid during Address Request.

Px_AddrAck Output Acknowledge for address request. Valid for one clock cycle.

Px_rdComp Input
Indicates all data has been popped out of the read FIFOs for a given address request.
Valid for one clock cycle.

Px_rdDataAck_Neg Input Read data acknowledge for Neg data bus. Valid for one clock cycle.

Px_rdDataAck_Pos Input Read data acknowledge for Pos data bus. Valid for one clock cycle.

Px_rdData_Neg[31:0] Output
Neg read data bus. Data is popped out of the read FIFO when negative clock phase
read data acknowledge is asserted.

Px_rdData_Pos[31 :0] Output
Pos read data bus. Data is popped out of the read FIFO when positive clock phase read
data acknowledge is asserted.

Px_rdData_Rdy Output
One cycle pulse indicates that data can be pulled out of the read FIFO for a given read
address request.

Px_rdWdAddr_Neg[4:0] Output Indicates word to which the Neg data bus read data acknowledge corresponds.

Px_rdWdAddr_Pos[4:0] Output Indicates word to which the Pos data bus read data acknowledge corresponds.

Px_wrComp Input
Indicates all data has been pushed into the write FIFOs for a given address request.
Valid for one clock cycle.

Px_wrData_Neg[31:0] Input
Neg write data bus. Data is pushed into the write FIFO when Neg write data
acknowledge is asserted.

Px_wrData_Pos[31:0] Input
Pos write data bus. Data is pushed into the write FIFO when Pos write data
acknowledge is asserted.

Px_wrDataAck_Neg Input Write data acknowledge for Neg data bus. Valid for one clock cycle.

Px_wrDataAck_Pos Input Write data acknowledge for Pos data bus. Valid for one clock cycle.

Px_wrDataBE_Neg[3:0] Input
Neg write data bus data masks. Data is pushed into FIFO when Neg write data
acknowledge is asserted.

Px_wrDataBE_Pos[3:0] Input
Pos write data bus data masks. Data is pushed into FIFO when Pos write data
acknowledge is asserted.

Px_rd_rst Input Read reset. Can only be asserted while read FIFOs are not busy.

Px_rd_fifo_busy Output Indicates data is being read from memory and pushed into the FIFOs.

Px_wr_rst Input Write reset. Can only be asserted while write FIFOs are not busy.

Px_wr_fifo_busy Output Indicates data is being popped out of the FIFOs and written to memory.

Px_wr_fifo_full_Neg Output Indicates a Neg write data acknowledge cannot be asserted on the next clock cycle.

Px_wr_fifo_full_Pos Output Indicates a Pos write data acknowledge cannot be asserted on the next clock cycle.

Arb_Sync Output
Indicates that the arbitration state machine is in the first clock cycle of time slot 1. See
the “MPMC Port Arbiter” section.

http://www.xilinx.com

62 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Communication Direct Memory Access Controller (CDMAC)

Overview
The CDMAC is designed to provide high-performance DMA for streaming data. Many
communication systems utilize point-to-point interconnections because the data is
unidirectional, and requires little protocol. The CDMAC provides two channels of receive
data and two channels of transmit data. This permits two full duplex communication
devices to have data movement via DMA. The CDMAC uses four LocalLink interfaces to
communicate with up to four devices. The back end of the CDMAC is designed to connect
to two ports of the MPMC. The MPMC interface is sufficiently generic that the CDMAC
could be used stand-alone for other applications. The CDMAC also uses the IBM
CoreConnect DCR bus for command and status control.

Features
• 128-Byte Bursts from memory for data get / put, 32-Byte Bursts for gathering DMA

descriptors

• Four Channels of DMA controlling four LocalLink interfaces, two for transmit, two
for receive

• Direct plug in to the Multi-Port MPMC

• Interruptible and stoppable DMA engines on per descriptor basis

• DMA engines broadcast application specific data across the LocalLink interfaces

• Intelligent engine arbitration built in

• Software error detection for DMA transactions

• Simple software use model

• Low FPGA device area overhead

• Designed to be extensible to eight engines without software change

Related Documents
The following documents provide additional information:

• LocalLink Specification

• IBM CoreConnect™ Device Control Register Bus: Architecture Specification

http://www.xilinx.com
http://www.xilinx.com/aurora

High Performance Multi-Port Memory Controller www.xilinx.com 63
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

High-Level Block Diagram
Figure 3-17 illustrates a high-level block diagram of how the CDMAC is built. The
CDMAC utilizes two MPMC Port Interfaces, four LocalLink interfaces, and a DCR
Interface (not shown). The two MPMC Port Interfaces connect the CDMAC into the
MPMC's personality module interface. The four LocalLink interfaces provide two full
duplex LocalLink devices access to the CDMAC. There are two Tx LocalLink interfaces
and two Rx LocalLink interfaces. The DCR Interface allows the CPU to interact with the
CDMAC for initiating DMA processes or status gathering.

The CDMAC is designed to greatly simplify the software requirements for DMA
operations. Many unique features have been provided to simplify the software device
driver, and to reduce the requirement of CPU interactions. While DMA itself relieves the
CPU of having to move data, and thus increase the effective CPU availability, the CDMAC
further streamlines this process by offering the CPU easy control and access to DMA
operations. The CDMAC has configurable options at instantiation time so that the system
designer can choose whether the DMA descriptors must be scrubbed by the CPU before
the CDMAC reuses it. Scrubbing of DMA descriptors is the process of updating the fields
of the descriptor so that they can be reused by the CDMAC. For example, the LocalLink
TFT controller is a continuously active repetitive device. It does not require that the CPU
service the DMA engine, once it has been set up. In contrast, the LocalLink GMAC
Peripheral requires that the CPU scrub the DMA descriptors before they are reused. By
providing control over these kinds of areas, the CDMAC is designed to maximize the
amount of CPU that is left over for processing elements other than the DMA engines. This
leads to a non-obvious substantial benefit in CPU performance.

The CDMAC is designed to connect to Communication devices. It is not intended to be a
generic DMA controller. As such, it does not provide nor need an address interface.
Instead, it uses a streaming data centric interface. This interface is typical of full duplex
communication systems. The GMAC peripheral is an example of a typical full duplex
communication system. The GMAC peripheral must be capable of simultaneous

Figure 3-17: CDMAC High-Level Block Diagram

X535_23_113004

TX0
LocalLink
Interface

RX0
LocalLink
Interface

TX1
LocalLink
Interface

RX1
LocalLink
Interface

TX
LocalLink
Interface

RX
LocalLink
Interface

TX
LocalLink
Interface

RX
LocalLink
Interface

To Multi Port Memory Controller (MPMC)

MPMC Port Interface MPMC Port Interface

CDMAC Engines and Control Logic

http://www.xilinx.com

64 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

transmission and reception of data. It uses a unidirectional streaming data bus from
GMAC peripheral to CDMAC for receive while using a unidirectional streaming data bus
in the opposite direction for transmit. They do not provide any form of address; they
simply provide data and a context of the data that allows the data to be properly framed.

One important advantage of the CDMAC architecture is that intelligent processing can be
added between the CDMAC and the LocalLink device. Consider the case where a core is
built that has various processing capabilities. These capabilities can be added via
LocalLink to LocalLink interfaces and inserted in an appropriate order between the
CDMAC and the final LocalLink device. This permits system designers to choose how
much area they were willing to pay in order to affect a specific level of performance. If
more performance is needed, more processing blocks can be instantiated. These blocks are
generic because they simply speak the LocalLink protocol.

Theory of Operation

Communication DMA

Modern communication systems typically rely upon unidirectional data transport
mechanisms. These unidirectional links allow for streaming data to be sent across
standardized interfaces. Typical systems have line cards, which are aggregated together to
form a large amount of streaming data. Often this data has to be contextually switched
between various points in order to route the data between its origin and its destination.
Between these route points, the data is often aggregated into very fast data streams. The
CDMAC is designed to directly assist in the movement of this type of data.

Communication DMA then is about moving large quantities of data between the
demarcation point and main system memory in a processor-based system. The
Communication DMA does not imply that the processor consumes the data. In fact, in
some systems, the processor never touches the data, but the data is consumed by another
DMA device instead. In high-data-bandwidth systems, the processor generally handles
only the administrative functions, such as set up and tear down, rather than be actively
involved with the data.

The CDMAC provides an interface between the MPMC and four independent channels of
DMA using LocalLink interface. Figure 3-17 shows the high-level diagram view of the
CDMAC, and illustrates the four LocalLink interfaces and two port interfaces to the
MPMC. The CDMAC provides two channels of transmit and two channels of receive. Each
channel uses the Xilinx DS230 LocalLink Interface specification. These four LocalLink
interfaces are on one side of the CDMAC, while two MPMC port interfaces are contained
on the other.

Two LocalLink interfaces are matched as a full duplex link per port. That is, each MPMC
port has attached a single transmit and single receive DMA engine with corresponding Rx
and TX LocalLink devices.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 65
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

Figure 3-18 introduces a simplified block diagram that illustrates the major functional
elements of the CDMAC. See the “CDMAC Architecture” section for more information on
the internals of the CDMAC.

The CDMAC offers a wide variety of features to augment communication style interfaces.
Communication style interfaces differ from classical DMA because they provide structural
control over the data. For example, a communication system typically needs to packetize
its data in order to allow for transmission and reception errors. In classical DMA there is no
need to packetize the data because the device being DMA'd to/from is directly consuming
the data and errors are effectively impossible. The CDMAC differs from classical DMA
controllers primarily because it supports the notion of packetized data. However, the
CDMAC also offers other important mechanisms that make communication systems easier
to implement.

The CDMAC provides for the ability to dynamically control the context of each engine
through the DMA descriptors. These descriptors do not just provide the buffer context.
They also provide control context by interrupts, halting the engine, and indication of
CDMAC status. Further, the descriptors offer the ability to transmit and receive
application unique data across the LocalLink interfaces and directly to and from the
descriptors. These features provide for substantially simpler software interfaces, and less
processor intervention to support the DMA transactions.

Figure 3-18: CDMAC Top Level Block Diagram

X535_24_113004

RX0
LL

TX0
LL

RX1
LL

TX1
LL

CDMAC Top

CDMAC
Wrapper

CPU

INT

DCR Interface

LocalLink
Peripherals

Port Interface / MPMC

Data Path Control Path DCR

Port 2 Port 3

http://www.xilinx.com

66 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

DMA Process

Figure 3-19 illustrates the way that DMA is handled by the CDMAC. There are three main
levels to the way that CDMAC handles movement of data. The highest level is known as
the DMA process. The DMA process can be thought of as the execution of an entire chain
of DMA descriptors to completion. DMA transfers in turn become individual MPMC
operations such as 8-word cache-line Reads, 128-byte burst reads, 128-byte burst writes, or
8-word cache-line writes.

Figure 3-19 illustrates the hierarchy of the DMA process and relates that to the operations
going on in the MPMC and LocalLink interface. The figure shows four descriptors and two
LocalLink frames for Rx and Tx.

The DMA process is demarcated from the instant where DMA operations are started (for
example, DCR write to the engine's CURRENT_DESCRIPTOR_POINTER) until a DMA
descriptor marked with the STOP_ON_END flag set in the CDMAC status field is reached.

Figure 3-19: The DMA Process

DMA PROCESS

DMA TRANSFER DMA TRANSFER

S
O

F

S
O

F

E
O

F

E
O

F

C
L

8
R

C
D

M
A

C

M
a

rk
s

S
O

P

C
L

8
R

C
L

8
W

S
O

P
/E

O
P

S
O

P

Payload

H
e

a
d

e
r

F
o

o
te

r

Payload

H
e

a
d

e
r

F
o

o
te

r

Rx LL

Tx LL

Payload

H
e

a
d

e
r

F
o

o
te

r

C
L

8
R

C
L

8
W

C
L

8
R

C
L

8
W

E
O

P

Payload

H
e

a
d

e
r

F
o

o
te

r

MPMC
1 Descriptor 1st Desc 2nd Desc 3rd Desc

DMA TRANSACTIONS

B
3

2

B
3

2

C
L

8
R

C
L

8
W

S
O

P
/E

O
P

MPMC
1 Descriptor

B
3

2

B
3

2

Rx Descriptor Setup

Tx Descriptor Setup

B
3

2

B
3

2

B
3

2

B
3

2

B
3

2

B
3

2

C
L

8
R

C
L

8
W

S
O

P

C
L

8
R

C
L

8
W

C
L

8
R

C
L

8
W

E
O

P

1st Desc 2nd Desc 3rd Desc

B
3

2

B
3

2

B
3

2

B
3

2

B
3

2

B
3

2

SOP | EOP

SOP | EOP

SOP | EOP

SOP | EOP
IOE | SOE

IOE | SOE

DMA PROCESS

DMA TRANSFER DMA TRANSFER

S
O

F

S
O

F

E
O

F

E
O

F

Rx

Tx
C

D
M

A
C

 M
a

rk
s

E
O

PC
L

8
W

C
D

M
A

C
 M

a
rk

s

S
O

P
/E

O
P

DMA TRANSACTIONS

C
P

U
 M

a
rk

s

S
O

P

C
P

U
 M

a
rk

s

S
O

P
/E

O
P

C
P

U

M
a

rk
s

E
O

P

X535_25_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 67
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

The DMA transfer is demarcated by the descriptor(s), which contain a
START_OF_PACKET and END_OF_PACKET, and thus represent one LocalLink Header,
Payload, and Footer. For Rx, the START_OF_PACKET and END_OF_PACKET come from
the LocalLink SOF, EOF signals and are written back into the descriptor(s) as the DMA
transactions complete. This is in contrast with Tx, where in START_OF_PACKET and
END_OF_PACKET are set by the CPU and control when the LocalLink interface issues the
SOF / EOF signals.

The DMA transactions are individual MPMC operations such as 8-word cache-line write
(CL8W), 8-word cache-line read (CL8R), 128-byte burst write (B32W) and 128-byte burst
read (B32R). When put together, these comprise the individual pieces of a DMA transfer.
DMA transactions are atomic units: once a DMA transaction begins on the MPMC, both
the MPMC and CDMAC are locked together until the MPMC completes the memory
operation.

Figure 3-19 shows how Rx and Tx differ in handling the LocalLink framing flags. During
Tx, the START_OF_PACKET and END_OF_PACKET flags in the descriptors are used to
send the SOF and EOF signals across the LocalLink interface. In contrast, during Rx
operations these flags are actually set by the LocalLink interface, and are written back into
the descriptor once the descriptor has been successfully processed. In the three descriptor
Rx case the START_OF_PACKET flag is set in the first descriptor during its CL8W
writeback while the END_OF_PACKET flag is set in the last (for example, third) descriptor
during its CL8W writeback. Rx descriptors must always have their START_OF_PACKET
and END_OF_PACKET flags cleared prior to the onset of DMA operations, or the CDMAC
responds improperly. This is one of the elements that must be addressed during CDMAC
scrubbing operations.

The conclusion of the DMA process is also shown in Figure 3-19. To end a DMA process,
the CDMAC engine must encounter a descriptor with the STOP_ON_END flag set. The
very last descriptors of both the Rx and Tx examples show this bit being set. The CDMAC
processes DMA descriptors continually until it reaches a descriptor with the
STOP_ON_END flag set. This descriptor executes to completion, and then the CDMAC
engine stops in an orderly fashion. In the example, the INT_ON_END flag is also set in the
descriptor. After the CDMAC engine has executed this descriptor to completion, it sets the
appropriate bit in the CDMAC Interrupt Status Register, and generates a CDMAC_INT, if
enabled.

Figure 3-20 shows a simple example of how a DMA process progresses for a Tx DMA
engine. DMA Process #1 is the entirety of all operations performed. In this case, three
separate descriptors are used for the DMA process. The first two descriptors demarcate the
first packet of data to be transmitted across the LocalLink interface. The third descriptor
demarcates an entire packet within a single descriptor. The first two descriptors make up
the first DMA transfer, and the last descriptor makes up the second DMA transfer. This
figure graphically shows that a DMA transfer is the movement of a packet of data across
the LocalLink interface, regardless of how many descriptors it takes to declare the packet.
Finally note that each box represents a separate DMA transactions. DMA transactions are
memory operations to the MPMC. In this example, three types of DMA transactions are
performed: 8-word reads, 32-word reads, and 8-word writes. Each time the MPMC must
do a memory operation, a DMA transaction is considered to have been performed. The
number of DMA transactions is always at least three for a DMA transfer. This is because
there is always a reading of the descriptor, at least one transfer of data, and a writing of the
descriptor. There can be many more DMA transactions as dictated by the buffer size field
of the descriptor modulo 128 bytes.

http://www.xilinx.com

68 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Figure 3-20: CDMAC Illustration of Tx Engine Flow

R
D

C

L
8

R

T
x

D

B
1

6
R

T
x

D

B
1

6
R

T
x

D

B
1

6
R

T
x

D

B
1

6
R

W
D

C

L
8

W

R
D

C

L
8

R

T
x

D

B
1

6
R

T
x

D

B
1

6
R

T
x

D

B
1

6
R

T
x

D

B
1

6
R

W
D

C

L
8

W

R
D

C

L
8

R

T
x

D

B
1

6
R

T
x

D

B
1

6
R

T
x

D

B
1

6
R

T
x

D

B
1

6
R

W
D

C

L
8

W

DMA DESCRIPTOR #1 DMA DESCRIPTOR #2 DMA DESCRIPTOR #3

S
O

P

E
O

P

S
O

P
 &

 E
O

P
 &

S
T

O
P

_
O

N
_

E
N

D

C
O

M
P

LE
T

E
D

C
O

M
P

LE
T

E
D

C
O

M
P

LE
T

E
D

DMA TRANSFER #1 DMA TRANSFER #2

DMA PROCESS #1

Where:
RD - Read Descriptor
TxD - Transmit Data
WD - Write Descriptor
CL8R - 8 word cache line read
CL8W - 8 word cache line write
B16R - 16 doubleword burst read

X535_26_113004

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

D
M

A
 T

ra
ns

ac
tio

n

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 69
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

DMA Descriptor Model

The CDMAC is controlled by DMA descriptors. The DMA descriptors are initialized by the
CPU prior to starting the DMA engine. The current implementation of the CDMAC
contains four independent engines that can be simultaneously processing four different
DMA descriptors or chains of DMA descriptors. Figure 3-21 illustrates the DMA
descriptor model. The software use model and register model for CDMAC are contained in
“CDMAC Software Model.”

The DMA descriptor must be 8-word aligned in its base address. This is required so that the
CDMAC does not have to be inordinately complex and large. Generally, this does not place
a large burden on software developers, so long as they are aware of the limitation up front.

The descriptor uses eight words. The first three are used exclusively by the CDMAC while
the forth word contains some CDMAC information. The final words are designed to be
used by the application that is using the particular CDMAC engine. The first word
contains a pointer to the next descriptor. This allows the CDMAC to continue to run until
the pointer is either NULL or the engine has otherwise been instructed to stop. The second
word in the descriptor contains a byte-aligned address, which points to the location of the
data buffer to be moved. The third word in the descriptor contains the number of bytes to
move. In the fourth word, the upper byte is used to house control and status information
for the CDMAC, see Figure 3-22. The last three bytes of the fourth word, and the last three
words are made available to the application, and are broadcast over the LocalLink
interface at appropriate times.

An important detail about the APPLICATION DEFINED fields: They are only broadcast
down the LocalLink interface during the first Tx Descriptor that sets the SOP bit on the
LocalLink interface. Subsequent descriptors in the same LocalLink payload do not have
the fields sent because they do not cause a LocalLink header operation. Similarly, for Rx,
the APPLICATION DEFINED fields are only written back to the last DMA descriptor that
was in process with the LocalLink interface encountered and EOP. If the Rx was made up
of several descriptors for that LocalLInk payload, only the last descriptor gets the fields
updated.

Figure 3-21: CDMAC DMA Descriptor Model

X535_27_113004

Application Defined

Application Defined

Application Defined

0 31

0x00

0x04

0x08

0x0C

0x10

0x14

0x18 Application Defined

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

0x1C

0

1

2

3

4

5

6

7

STATUS

Application Defined

DATA BUFFER

POINTER MUST BE
8 WORD ALIGNED!

32
-b

it
W

or
d

C
ou

nt

B
yt

e
O

ffs
et

M
S

B

LS
B

B
U

F
F

E
R

 L
E

N
G

T
H

http://www.xilinx.com

70 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

The descriptor's STATUS field is shown in Figure 3-22. This field contains two main parts:
the CDMAC STATUS field, and an APPLICATION DEFINED field. The STATUS field
provides the CDMAC with inputs during the read of the descriptor to know what to do.
Similarly, when the descriptor is written back to memory upon completion, certain bits are
updated. Not all bits are read during DMA transaction descriptor read, nor are all bits
updated during DMA transaction descriptor writes.

The two CDMAC_START_OF_PACKET and CDMAC_END_OF_PACKET bits are used to
help frame the LocalLink interface. There use differs from Rx to Tx. The bits are set by the
LocalLink interface when the descriptor is in use for Rx. The bits are set by the CPU during
Tx operations to control the LocalLink interface. The START_OF_PACKET is used to
indicate the LocalLink interface initiates a header for this transaction. Similarly, the
END_OF_PACKET bit is used to indicate the LocalLink interface initiates a footer for this
transaction. The bits can be mixed and matched. For example, in Tx, three descriptors
might be defined to communicate a full payload of data across the LocalLink interface. The
first descriptor would be marked START_OF_PACKET, the second neither, and the third
marked as END_OF_PACKET. This allows the chaining of non-contiguous data buffers
into an apparently contiguous data payload across the LocalLink interface.

When set in the descriptor, the CDMAC_INT_ON_END bit causes the CDMAC to
generate a CPU interrupt, and sets the appropriate interrupt flag in the INTERRUPT
register. The interrupt is sent to the CPU only if the MIE bit is set in the INTERRUPT
register, and the CDMAC has completed all the data move specified by the descriptor.

When set in the descriptor, the CDMAC_STOP_ON_END bit causes the CDMAC to stop
DMA operations upon the successful completion of the current descriptor. This stop allows
the CDMAC to be brought to an orderly halt and restarted by the CPU when appropriate.
The CDMAC_INT_ON_END and CDMAC_STOP_ON_END bits can be mixed and
matched together to effect the best operation that software can contextually require.

The CDMAC_COMPLETED bit is written back to the descriptor upon the successful
completion of the DMA transfer specified by that descriptor. This

Figure 3-22: CDMAC Descriptor, STATUS field

M
S

B

L
S

B

25 26 27 2821 22 23 2417 18 19 2013 14 15 1612 29 30 318 9 10 114 5 6 70 1 2 3

DESCRIPTOR_Base + 0x0C

APPLICATION DEFINED

C
D

M
A

C
_

IN
T

_
O

N
_

E
N

D

C
D

M
A

C
_

S
T

O
P

_
O

N
_

E
N

D

C
D

M
A

C
_

C
O

M
P

LE
T

E
D

C
D

M
A

C
_

S
T

A
R

T
_

O
F

_
P

A
C

K
E

T

C
D

M
A

C
_

E
N

D
_

O
F

_
P

A
C

K
E

T

C
D

M
A

C
_

E
N

G
IN

E
_

B
U

S
Y

R
E

S
E

R
V

E
D

C
D

M
A

C
_

E
R

R
O

R

CDMAC DESCRIPTOR STATUS FIELD

STATUS FIELD APPLICATION DEFINED FIELD
X535_28_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 71
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

Tx Descriptor Operations

To start Tx operations, the CPU writes a pointer to the first descriptor in the chain to the
CURRENT DESCRIPTOR POINTER register. The CDMAC begins by reading the
descriptor that is pointed at by its CURRENT DESCRIPTOR POINTER register. During the
read of the descriptor, the CDMAC memorizes the data in the first four words, and passes
all 8 words from the descriptor to the LocalLink interface, if the descriptor was marked
START_OF_PACKET. Only when the START_OF_PACKET is marked in the descriptor can
the CDMAC create a LocalLink header on the LocalLink interface.

Figure 3-24 shows an example of how the LocalLink interface works while Figure 3-23
shows an example of how Tx descriptors might be chained together. In the case of these
examples, the DMA descriptors are set such that a single descriptor corresponds to a single
LocalLink Payload transfer, including header, payload and footer.

The STATUS field and APPLICATION DEFINED fields are broadcast during the header
portion of the LocalLink transaction. These fields are placed on the LocalLink interface
only when the descriptor had the START_OF_PACKET set in the STATUS field.

Once the LocalLink header phase has completed, The CDMAC transfers the data pointed
to by the BUFFER ADDRESS from memory to the LocalLink interface as data during the
payload phase. The CDMAC continues to transfer data and count down the BUFFER
LENGTH field to zero, and then attempts to get the next descriptor. If the Next Descriptor
Pointer field is null (for example, 0x00000000), then the DMA engine stops. If it is non-zero,
and a STOP_ON_END has not been issued in the current descriptor, then the CDMAC
transfers the contents of the NEXT DESCRIPTOR POINTER register into the CURRENT
DESCRIPTOR POINTER register. The act of transfer reinitializes the CDMAC to go fetch
the descriptor pointed by CURRENT DESCRIPTOR POINTER. It can be thought of as the
CPU writing the CURRENT DESCRIPTOR POINTER again to initiate the CDMAC. The
DMA process continues until the CDMAC encounters a NULL pointer in the NEXT
DESCRIPTOR POINTER, or a STOP_ON_END in the STATUS field.

Rx Descriptor Operations

The Rx operation is very similar to the Tx. It begins by reading the descriptor pointed at by
the CURRENT DESCRIPTOR POINTER. During the read of the descriptor, the CDMAC
memorizes the data in the first four words, but does NOT send it down the LocalLink
interface during the header. This is because LocalLink is a unidirectional interface, and the
data is 'pointing' in the wrong direction. The CDMAC only receives data from the Rx
LocalLink device. While the header time is maintained across the LocalLink interface,
there is no valid data contained.

The CDMAC exits the header with the Rx LocalLink device issues a SOP signal. The
CDMAC then receives data from the LocalLink interface during the payload phase and
stores the data to memory at the addressed pointed to by the BUFFER ADDRESS. This
process continues until one of two things happens: An EOP is received indicating the end
of the payload, or the BUFFER LENGTH decrements to zero. If the BUFFER LENGTH
decrements to zero, an error has occurred and the CDMAC halts operations.

Once the EOP is received, the CDMAC begins to receive the footer. The footer contains the
APPLICATION DEFINED fields, which are then written back to the memory, along with
the current STATUS. It is very important to note that only the descriptor that has the
END_OF_PACKET bit marked has valid data in the APPLICATION DEFINED section of
the descriptor. It is also useful to note that the CDMAC does not overwrite the STATUS and
APPLICATION DEFINED sections of other descriptors that is not marked
END_OF_PACKET. This could be useful for internal device driver storage if it can be
guaranteed that the descriptor not get an EOP.

http://www.xilinx.com

72 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Figure 3-23: Example Chain of CDMAC Tx Descriptors

X535_29_113004

FRAME DATA
BUFFER

2

FRAME DATA
BUFFER

4
. . .

FRAME DATA
BUFFER

1

FRAME DATA
BUFFER

3

NOTE: Each descriptor shown has its START_OF_PACKET and
END_OF_PACKET bits set. This indicates that an entire
LocalLink Data Frame is contained in each buffer.

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

APPLICATION SPECIFIC

APPLICATION SPECIFIC

APPLICATION SPECIFIC

APP SPECIFIC

APPLICATION SPECIFIC

1 1

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

APPLICATION SPECIFIC

APPLICATION SPECIFIC

APPLICATION SPECIFIC

APP SPECIFIC

APPLICATION SPECIFIC

1 1

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

APPLICATION SPECIFIC

APPLICATION SPECIFIC

APPLICATION SPECIFIC

APP SPECIFIC

APPLICATION SPECIFIC

1 1

BUFFER LENGTH

BUFFER ADDRESS

NEXT DESCRIPTOR POINTER

APPLICATION SPECIFIC

APPLICATION SPECIFIC

APPLICATION SPECIFIC

APP SPECIFIC

APPLICATION SPECIFIC

1 1

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 73
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

LocalLink Interface Usage

The CDMAC has four DMA engines. Each DMA engine is associated with a LocalLink
interface. Two of the DMA engines are used for transmit, and two are used for receive. A
single transmit DMA engine is paired up with a single receive DMA engine to form a full
duplex communication channel. There are two full duplex communication channels in the
CDMAC. Each full duplex communication challenge occupies a single MPMC port. This is
why the current CDMAC uses two of the MPMC ports. See Figure 3-17 and Figure 3-18 for
simplified CDMAC structure diagrams.

Figure 3-25 shows an example of the CDMAC Tx DMA engine’s LocalLink Tx interface.
This interface provides read data from the CDMAC. One important aspect of the
communication style of DMA is that is depends upon the use of streaming data interfaces.
As such, it has no address context. The data simply is transferred across the interface when
both sides agree (via RDY signals) that it is time to do so.

The LocalLink interface provides for the ability to transmit encapsulated data. The data
itself is embedded in a 'package' that has a header and a footer. The START_OF_FRAME
signal initiates the header of the package. Between the time this signal starts, and the time
the START_OF_PAYLOAD signal occurs, the header of the package is being transmitted.
Between the START_OF_PAYLOAD and END_OF_PAYLOAD signal, the data of the
package is being transmitted. Finally, all information transmitted between the
END_OF_PAYLOAD and END_OF_FRAME signal delete constitutes a header. In this way,
the LocalLink interface permits the encapsulation of data content into a standardized
package.

Figure 3-24: CDMAC LocalLink Interface General Purpose Example

X535_30_113004

FIRST CDMAC DESCRIPTOR ...

...

...

...

...

...

...

...

...

...

DATADATA

... ...

LAST CDMAC DESCRIPTOR

CLK

EOF_N

EOP_N

DST_RDY_N

SRC_RDY_N

D[31 : 0]

SOP_N

SOF_N

REM[3: 0]

...

...

...

...

LocalLink Header LocalLink Payload LocalLink Footer

http://www.xilinx.com

74 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

The CDMAC uses this ‘package’ to communication extra control information. In the case of
the transmit DMA engine, the header is used to broadcast the first DMA Descriptor of the
DMA process to the device listening on the other end of the LocalLink interface. The DMA
Descriptor contains flag information that tells the CDMAC how to process the descriptor,
specifically the START_OF_PACKET and END_OF_PACKET bits within the CDMAC
status field. When the CDMAC encounters a TX descriptor with the START_OF_PACKET
bit set, it initiates a header transaction across the LocalLink interface. The CDMAC moves
the data according to that DMA descriptor. Since the CDMAC allows for a chain of DMA
descriptors on a per engine basis, the CDMAC can have some or all of its data contained
within that first descriptor. If it is all contained in the first descriptor, then the
END_OF_PACKET bit is also set with the descriptor's CDMAC Status field. However, if
there is more data to be transferred, perhaps using a different data buffer, the CDMAC
runs its Buffer Length to zero, and then get another DMA descriptor. Data continues to be
transferred across the LocalLink interface during this time, as it is moved from memory to
the interface by the CDMAC. Eventually, the CDMAC encounters a DMA descriptor
whose END_OF_PACKET bit is set. This causes the CDMAC to close down the LocalLink
interface by outputting the footer field. During CDMAC Tx operations, the footer field is
meaningless. This is because it is intended to be used during receiving only.

The situation is very similar for the Rx DMA engines. Figure 3-26 shows the CDMAC
LocalLink Rx interface. Whereas the Tx CDMAC engine transmits real information during
the header and bogus information during the footer, the Rx does the exact opposite. The
CDMAC Rx engine ignores information from the device during the header, but takes the
information broadcast from the footer and writes that to memory as part of the last DMA
descriptor for that Rx channel.

Figure 3-25: CDMAC LocalLink Tx Interface

X535_31_113004

CLK

EOF_N

EOP_N

DST_RDY_N

SRC_RDY_N

D[31 : 0]

SOP_N

SOF_N

REM[3: 0]

MSB

LSB

...

...

...

...

...

...

...

...

N
E

X
T

 D
E

S
C

R
IP

TO
R

P
O

IN
T

E
R

B
U

F
F

E
R

 A
D

D
R

E
S

S

B
U

F
F

E
R

 L
E

N
G

T
H

A
pp

lic
at

io
n

D
ep

en
de

nt

A
pp

lic
at

io
n

D
ep

en
de

nt

A
pp

lic
at

io
n

D
ep

en
de

nt

A
pp

lic
at

io
n

D
ep

en
de

nt

A
pp

lic
at

io
n

D
ep

en
de

nt

D
at

a

C
D

M
A

C
S

TA
T

U
S

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 75
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

The Tx and Rx engines use the DMA descriptors in slightly different ways. If there is a
chain of DMA descriptors for Tx, then only the first DMA descriptor in that chain is
broadcasted as header across the LocalLink interface until a DMA descriptor is
encountered which contains a END_OF_PACKET flag, wherein the process repeats. In
contrast, when there is a chain of Rx descriptors, the current DMA descriptor has its
application dependant data written from the information contained when a footer is
broadcasted. The Tx DMA engine controls when the Tx LocalLink interface sees headers
and footers by the START_OF_PACKET and END_OF PACKET flags. In contrast, the Rx
LocalLink interface controls when the Rx DMA engine marks these flags in the current
DMA descriptors it is processing. When the Rx Engine is told that an END_OF_PACKET
has occurred, it also updates the contents of the DMA descriptor with the footer
information into the application-defined areas.

Figure 3-26: CDMAC LocalLink Rx Interface

X535_32_113004

CLK

EOF_N

EOP_N

DST_RDY_N

SRC_RDY_N

D[31 : 0]

SOP_N

SOF_N

REM [3: 0]

MSB

LSB

...

...

...

...

...

...

...

...

D
AT

A

N
E

X
T

 D
E

S
C

R
IP

TO
R

P
O

IN
T

E
R

B
U

F
F

E
R

 A
D

D
R

E
S

S

B
U

F
F

E
R

 L
E

N
G

T
H

A
pp

lic
at

io
n

D
ep

en
de

nt

A
pp

lic
at

io
n

D
ep

en
de

nt

A
pp

lic
at

io
n

D
ep

en
de

nt

A
pp

lic
at

io
n

D
ep

en
de

nt

A
pp

lic
at

io
n

D
ep

en
de

nt

C
D

M
A

C
S

TA
T

U
S

http://www.xilinx.com

76 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Shared Resources

In order to conserve FPGA resources, the CDMAC uses an implementation technique to
share resources. The "registers" for the CDMAC from DCR base address 0x00 to 0x0F are
not real registers. Rather they are entries into a LUT RAM that is organized as 16 deep by
32 bits wide. This forms a register file as illustrated in Figure 3-27. The register file would
consume an enormous number of flip-flops unless implemented as LUT RAM. The whole
register file only consumes 16 LUTs. The problem with these kinds of structure is that the
LUT RAM cannot access every ‘register’ simultaneously.

The CDMAC logic gets around the problem of simultaneous access by temporally sharing
the outputs of the LUT RAM as needed. This arrangement is particularly favorable for the
CDMAC since actual usage of the register file is predictable. To accomplish this, a register
file arbiter (see Figure 3-46) was created that allows the CDMAC to determine which DMA
engine gains access to the reg file, and manages the contents of the two sets of Address and
Length counters. One set of counters is used by Rx0 and Tx0 engines while the other set of
counters is used by Rx1 and Tx1.

The CDMAC architecture allows for the extension of up to four more ports within the same
address space. To do this, one would need to add another reg file, two more sets of
counters, and modify the register file arbiter to accommodate the new sets of registers.

It should be noted that the CDMAC Status Registers, along with the CDMAC Interrupt
Register are implemented as regular flip-flop based registers. There is no way to use LUT
RAM for these because their bitwise contents are dynamically changeable, and must be
made simultaneously readable across the DCR bus at any time.

Figure 3-27: CDMAC Resource Sharing

Address
Counter

Length
Counter

Address
Counter

Length
Counter

TX0_RX0_Address

TX0_RX0_Length

TX1_RX1_Address

TX1_RX1_Length

Register File
RAM16X32S

RegFile
DataIn

RegFile
DataOut

0

1

2

3

0

1

RegFile
Arbiter

X535_33_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 77
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

Hardware

CDMAC Architecture

The CDMAC is designed in a modular fashion. It is designed to bolt between the MPMC
and LocalLink devices. Figure 3-28 illustrates the basic functional diagram of the CDMAC.
The CDMAC is composed of seven effective elements. The MPMC Port Interfaces are used
to connect to the MPMC. Similarly, LocalLink interfaces are used to connect the producers
and consumers of data to the CDMAC. The remaining block contains the main CDMAC
Engines and control logic. Because the CDMAC is a complex device, it is illustrated in a
variety of differing manners to assist in understanding its construction and modification.

Figure 3-29 shows the top-level module block diagram that illustrates how the source code
is constructed. This diagram assists in understanding the source code, and how it can be
modified to fit the individual needs of system designers.

Figure 3-28: CDMAC Functional Diagram

X535_34_113004

TX0
LocalLink
Interface

RX0
LocalLink
Interface

TX1
LocalLink
Interface

RX1
LocalLink
Interface

TX
LocalLink
Interface

RX
LocalLink
Interface

TX
LocalLink
Interface

RX
LocalLink
Interface

To Multi Port Memory Controller (MPMC)

MPMC Port Interface MPMC Port Interface

CDMAC Engines and Control Logic

http://www.xilinx.com

78 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

The CDMAC consists of four independent DMA engines that share a common set of
registers. The CDMAC is divided into two ports, wherein each port contains a Rx and Tx
DMA engine. The Rx and Tx DMA engines share a structure that permits each engine to
have fair and arbitrated access to its respective port. The Ports then in turn arbit no such
word in dictionaries for access to the MPMC via their individual port interfaces.

Each DMA engine is connected to a unidirectional LocalLink interface. The LocalLink
interface permits a streaming data device to be connected to the CDMAC. Where a device
requires full-duplex operation, it uses both the Rx and Tx LocalLink interfaces. Each
LocalLink interface is configured to allow for the transmission and reception of data from
the CDMAC descriptors for that DMA engine, though the Rx and Tx differ in how they do
this.

Top Level Functionality

Figure 3-30 illustrates the basic operational aspects of the CDMAC. One of the main
concepts of the CDMAC is to use the smallest FPGA area possible. The CDMAC does this
by not replicating the traditional counters that exist in most other DMA controllers.
Instead, the CDMAC shares a central register file with a smaller set of counters. This same
principle can be used to extend the CDMAC to add more engines.

Figure 3-29: CDMAC Top Level Module Block Diagram

cdmac_cntl.vcdmac_datapath.v
cdmac.v

X535_35_113004

RX0
LL

TX0
LL

TX1
LL

TX1
LL

CDMAC
Top Level

CPU

CDMAC_INT

LocalLink Devices

MPMC

C
P

U
 In

te
rf

ac
e

DCR I/F Data Path Control Path

Port 2 Port 3

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 79
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

Figure 3-30: CDMAC Basic Architecture, not including control

X535_36_113004

Sel_Data_src

DCR_WrDBus

P0_rdData_Pos

P0_rdData_Neg

P0_rdData_Pos

P0_wrData_Pos

P0_wrData_Neg

P1_wrData_Pos

P1_wrData_Neg

P0_rdData_Neg

Sel_P0_rdData_Pos

Sel_P0_rdData_Pos

Sel_AddrLen

Address 0

Length 0

Address 0

Address 1

Length 0

Length 1

DCR_RdDBus

TX0_Shifter_Out

TX0_Status

RX0_Status

Get_Status0

RX0_Shifter_In

TX1_Status

RX1_Status

Get_Status1

RX1_Shifter_In

TX1_Shifter_Out

Address 1

Length 1

2

2

2

4

4

0

1

2

3

0

1

2

3

0

1

2

3

0

2

3

0

2

3

0

1

0

10

1

Register
File

Address
Counter

Length
Counter

Length
Counter

Address
Counter

Status
Registers

TX0 Byte
Shifter

TX1 Byte
Shifter

RX1 Byte
Shifter

RX1 Byte
Shifter

Sel_Status_Reg

Sel_DCR_RdDBus

http://www.xilinx.com

80 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

State Machine Design

Figure 3-31 illustrates how the various state machines interrelate with each other. The
CDMAC consists of two MPMC Port interfaces. This figure illustrates that the two MPMC
Port Interfaces are copies of each other in large part, with a small amount of interaction
required between the differing ports. Each port contains a Rx and Tx DMA engine, which
are detailed in Figure 3-32, Figure 3-33 and Figure 3-34.

Figure 3-32 is a lower level diagram of Figure 3-31 and shows the major connections
between the various state machines for a single port.

Figure 3-31: CDMAC State Machine Conceptual Block Diagram

X535_37_113004

PORT_SM
TX/RX ARB

TX_SM

_RX SM

TX0RX0

REGFILE ARB

DCR
INTERFACE

INTERRUPT
REG

PORT_SMTX/RX ARB

TX_SM

_RX SM

TX1RX1

MPMC
Port 2

MPMC
Port 3

DCR
INTF

CDMAC
INT

SEE FIGURE 48

SEE FIGURE 52 SEE FIGURE 52 SEE FIGURE 49

SEE FIGURE 50

SEE FIGURE 51

SEE FIGURE 50

SEE FIGURE 51

SEE FIGURE 49

SEE FIGURE 59

SEE FIGURE 60

S
E

E
 F

IG
U

R
E

 5
4

S
E

E
 F

IG
U

R
E

 5
7

&
 5

8

R
X

_L
L

R
X

_B
yt

es
hi

fte
r

S
E

E
 F

IG
U

R
E

 5
3

S
E

E
 F

IG
U

R
E

 5
5

&
 5

6

T
X

_L
L

T
X

_B
yt

es
hi

fte
r

S
E

E
 F

IG
U

R
E

 5
4

S
E

E
 F

IG
U

R
E

 5
7

&
 5

8

R
X

_L
L

R
X

_B
yt

es
hi

fte
r

S
E

E
 F

IG
U

R
E

 5
3

S
E

E
 F

IG
U

R
E

 5
5

&
 5

6

T
X

_L
L

T
X

_B
yt

es
hi

fte
r

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 81
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

Figure 3-32: CDMAC Relationship of State Machines to each Other (per port)

TX SM

TX/RX ARB

TX LLTX BYTE SHIFTER RX LL

T
X

_
R

e
a

d
_

D
e

sc
_

D
o

n
e

RX SM

REGFILE ARB

PORT SM

DCR INTRFACE
D

M
A

_
C

o
n

ti
n

u
e

D
M

A
_

S
to

p

W
ri

te
_

C
u

rr
_

P
tr

_
T

x

T
x

_
R

e
q

_
T

y
p

e

R
x

_
R

e
q

_
T

y
p

e
[1

|2
&

In
_

P
a

y
lo

a
d

|3
]

R
X

_
R

e
q

d
_

D
e

sc
_

D
o

n
e

D
M

A
_

C
o

n
ti

n
u

e

D
M

A
_

S
to

p

W
ri

te
_

C
u

rr
_

P
tr

_
R

x
P

xR
_

R
e

q
u

e
st

P
x

R
_

G
ra

n
t

P
x

R
_

B
u

sy

P
x

W
_

R
e

q
u

e
s

t

P
xW

_
G

ra
n

t

P
x

W
_

B
u

s
y

Detect_Null_Ptr
Detect_StopOnEnd

Detect_Null_Ptr
Detect_StopOnEnd

AddrReq
AddrAck
Address

rdDataRdy
RNW
SIZE

rd/wrDataAck_Pos/Neg
rdData_BE_Pos/Neg

Rd/WrComp
Rd/WrRst

Fifo_Busy/Full
Address/Length

C
L

8
R

C
L

8
W

B
1

6
W

B
1

6
R

T
x

_
G

o

CS[RX]

CS[TX]

T
x

_
G

o

R
e

q
_

A
c

k

T
im

e
_

O
u

t

R
X

x
_

G
e

t_
S

ta
tu

s
R

X
x

_
F

o
o

te
r

R
X

x
_

P
a

y
lo

a
d

R
X

x
_

L
a

st
B

u
rs

t
R

X
x

_
F

ri
s

tB
u

rs
t

R
X

x
_

S
u

m
R

X
x

_
A

d
d

re
ss

R
X

x
_

C
L

8
C

o
m

p
R

X
x

_
C

L
8

S
ta

rt
R

X
x

_
B

1
6

C
o

m
p

R
X

x
_

B
1

6
S

ta
rt

R
X

x
_

L
L

S
ta

rt

D
a

ta
_

P
x

_
w

rD
a

ta
B

E
_

P
o

s_
N

e
g

D
a

ta
_

P
x_

w
rD

a
ta

A
ck

_
P

o
s_

N
e

g

C
E

_
P

o
s/

N
e

g

S
O

F
/S

O
P

/E
O

P
/E

O
F

/R
E

M

R
X

x_
D

st
_

R
d

y
R

X
x

_
S

rc
_

R
d

y

T
X

x
_

S
rc

_
R

d
y

T
X

x_
D

st
_

R
d

y

T
X

x
_

H
e

a
d

e
r

T
X

x
_

R
e

a
d

_
D

e
sc

_
D

o
n

e

T
X

x
_

S
ta

rt
_

O
f_

P
a

y
lo

a
d

T
X

x
_

S
ta

rt
_

O
f_

F
ra

m
e

T
X

x
_

E
n

d
O

fP
a

c
k

e
t

T
X

x
_

L
a

s
tB

u
rs

t

T
X

x
_

S
u

m

T
X

x
_

S
ta

rt

T
X

x
_

D
a

ta
D

o
n

e

T
X

x
_

A
d

d
r e

s
s

T
X

x
_

B
y

te
_

R
e

g
_

C
E

B
y

te
S

e
l0

/1
/2

/3

D
a

ta
_

P
x

_
rd

D
a

ta
A

c
t_

P
o

s
/N

e
g

S
O

F
/S

O
P

/E
O

P
/E

O
F

/R
E

M

T
X

x_
D

st
_

R
d

y

PLB
FIFO

MPMC

Counter
Datapath

P
L

B
F

IF
O

M
P

M
C

D
a

ta
p

a
th

B
y

te
s

h
if

t

D
a

ta
p

a
th

A
d

d
re

ss
C

o
u

n
te

r

P
L

B
F

IF
O

M
P

M
C

D
a

ta
p

a
th

B
y

te
s

h
if

t

DATA
PATH DATA

PATH

T
X

_
W

ri
te

_
D

e
sc

_
D

o
n

e

R
X

_
W

ri
te

_
D

e
sc

_
D

o
n

e

T
X

x
_

S
rc

_
R

d
y

T
X

x_
D

st
_

R
d

y

R
X

x_
D

st
_

R
d

y

R
X

x
_

S
rc

_
R

d
y

TXx_Trigger_EOP

Data_TXx_Src_Rdy

TX LL INTERFACE RX LL INTERFACE

ID
L

E
G

E
T

_
D

E
S

C

G
E

T
_

P
U

T
_

D
A

T
A

P
U

T
_

D
E

S
C

ID
L

E
G

E
T

_
D

E
S

C

G
E

T
_

P
U

T
_

D
A

T
A

P
U

T
_

D
E

S
C

SEE FIGURE 49 SEE FIGURE 50

SEE FIGURE 51

SEE FIGURE 52

SEE FIGURE 53 SEE FIGURE 54 & 57 & 58SEE FIGURE 55 & 56

SEE FIGURE 59

1/2 OF FIGURE 47 X535_38_113004

http://www.xilinx.com

82 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Overall Tx State Machine

The Tx State Machine, shown in Figure 3-33, controls whether a Tx port is idle (IDLE),
reading a descriptor from memory (GET_DESC), reading data from memory and sending
it to the LocalLink interface (GET_PUT_DATA), or writing the status back to memory
(PUT_DESC).

The state machine begins in the IDLE state. When the CPU issues a DCR Write to the TX
Current Descriptor Pointer, Detect_DCR_Write is asserted and the state machine
transitions to the GET_DESC state.

While in the GET_DESC state, an 8-word cache-line read (CL8R) request is issued to the
TX/RX Arbiter. Once the CL8R has completed, the Read_Desc_Done signal is asserted and
the state machine transitions to the GET_PUT_DATA state.

The GET_PUT_DATA state issues continuous 32-word burst read (B16R) requests to the
TX/RX Arbiter until all of the data specified by the descriptor has been collected from
memory and sent across the LocalLink interface. This is indicated by the assertion of the
Data_Done signal. When this signal is asserted, the state machine transitions into the
PUT_DESC state.

After transitioning to the PUT_DESC state, the Tx State Machine issues an 8-word cache-
line write (CL8W) request to the TX/RX Arbiter. After the CL8W has completed, either the
DMA_Continue or the DMA_Stop signal is asserted. If the Status register indicates that the
Next Descriptor Pointer is not a Null Pointer and the Stop On End bit is not set, then the
DMA_Continue signal is asserted and the state machine transitions to the GET_DESC
state. Otherwise, the DMA_Stop signal is asserted and the state machine transitions to the
IDLE state.

The CL8R, B16R, and CL8W signals are converted to a bus called Tx_Req_Type, as shown
in Figure 3-32.

Figure 3-33: CDMAC Tx_SM State Diagram

X535_39_113004

IDLE GET_DESC GET_PUT_DATA PUT_DESC
Detect_DCR_Write Read_Desc_Done Data_Done

DMA_Continue

DMA_Stop

IDLE CL8R B16R CL8W

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 83
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

Overall Rx State Machine

The Rx State Machine, shown in Figure 3-34, controls whether a Rx port is idle (IDLE),
reading a descriptor from memory (GET_DESC), collecting data from the LocalLink
interface and writing the data to memory (GET_PUT_DATA), or writing the status and
application defined data back to memory (PUT_DESC).

The state machine begins in the IDLE state. When the CPU issues a DCR Write to the RX
Current Descriptor Pointer, Detect_DCR_Write is asserted and the state machine
transitions to the GET_DESC state.

While in the GET_DESC state, an 8-word cache-line read (CL8R) request is issued to the
TX/RX Arbiter. Once the CL8R has completed, the Read_Desc_Done signal is asserted and
the state machine transitions to the GET_PUT_DATA state.

The GET_PUT_DATA state issues continuous 32-word burst write (B16W) requests to the
TX/RX Arbiter until all of the data specified by the descriptor has been collected from the
LocalLink interface and written to memory. This is indicated by the assertion of the
Data_Done signal. When this signal is asserted, the state machine transitions into the
PUT_DESC state.

After transitioning to the PUT_DESC state, the Rx State Machine issues an 8-word cache-
line write (CL8W) request to the TX/RX Arbiter. After the CL8W has completed, either the
DMA_Continue or the DMA_Stop signal is asserted. If the Status register indicates that the
Next Descriptor Pointer is not a Null Pointer and the Stop On End bit is not set, then the
DMA_Continue signal is asserted and the state machine transitions to the GET_DESC
state. Otherwise the DMA_Stop signal is asserted and the state machine transitions to the
IDLE state.

The CL8R, B16W, and CL8W signals are converted to a bus called Rx_Req_Type, as shown
in Figure 3-32.

Arbitration State Machine for Overall Rx and Tx State Machines

Figure 3-35 shows the logic for the Arbitration state machine for the Overall Rx and Tx
state machines (TX/RX ARB). The Overall Rx and Tx state machines assert request signals
to the arbiter through the Tx_Req and Rx_Req signals. These signals are the same signals as
Tx_Req_Type and Rx_Req_Type described in the Overall Tx State Machine and Overall Rx
State Machine sections.

Figure 3-34: CDMAC Rx_SM State Diagram

X535_40_113004

IDLE GET_DESC GET_PUT_DATA PUT_DESC
Detect_DCR_Write Read_Desc_Done Data_Done

DMA_Continue

DMA_Stop

IDLE CL8R B16R CL8W

http://www.xilinx.com

84 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

The arbitration algorithm can be thought of as two state machines: one for the Tx engine
and one for the Rx engine. The Tx arbitration state machine starts in the TX_NO_GO state.
If a Tx engine request is issued from the Overall Tx State Machine and the Rx arbitrations
state machine is in the RX_NO_GO state, the Tx arbitration state machine transitions to the
TX_GO state. Once the state machine is in the TX_GO state it stays in this state until the
request is acknowledged, then the state machine returns to the TX_NO_GO state.

If the Tx arbitration state machine is in the TX_NO_GO state and a Tx engine request is
issued while the Rx arbitration state machine is in the RX_GO state the Tx arbitration state
machine waits until the Rx Request is acknowledged, then it transitions into the TX_GO
state.

The Rx arbitration state machine behaves identically to the Tx arbitration state machine,
except that if both state machines are in the TX_NO_GO state and the RX_NO_GO state,
and the Tx_Req and the Rx_Req signals are asserted at the same time, the Tx arbitration
state machine has priority.

Figure 3-35: CDMAC Tx_Rx_Arb_SM State Diagram

TX_NO_GO
TX_Go = 0

TX_GO
TX_Go = 1

TX_GO_Trig

RX_Go

TX_Req

RX_Req

TX_Req
Req_Ack

TX_GO_Trig

TX_NO_GO_Trig

TX_NO_GO_Trig

RX_NO_GO
RX_Go = 0

RX_GO
RX_Go = 1

RX_GO_Trig

RX_NO_GO_Trig

RX_GO_Trig

RX_Req

TX_Req

Req_Ack
TX_Go

RX_NO_GO_Trig

X535_41_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 85
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

Port State Machine

The Port State Machine is the main control for the CDMAC and is shown in Figure 3-36.
The Port State Machine contains two state machines that closely interact with each other
due to resource sharing of the register file. The Read State Machine executes descriptor
read transactions and Tx burst read transactions. The Write State Machine executes
descriptor write transactions and Rx burst write transactions.

Read State Machine

The Read State Machine begins in the IDLE state. As soon as the TX/RX Arbiter issues an
8-word cache-line read (CL8R) request or a 32-word burst read (B16R) request, the Read
State Machine enters the REQ_SETUP state.

While the Read State Machine is in the REQ_SETUP state, the state machine requests
access to the register file to read the Buffer Address and Buffer Length registers. Once
access has been granted, the state machine transitions into the SETUP state.

The buffer address and buffer length counters are loaded from the register file while the
Read State Machine is in the SETUP state. If the buffer address is invalid, an error is
generated and the Read State Machine returns to the IDLE state. If there is no error once the
counters are loaded, the Read State Machine transitions to the WAIT_ADDRACK state.

The WAIT_ADDRACK state issues either a CL8R request or a B16R read request. Once the
request has been acknowledged, the Read State Machine transitions to one of two states.
The first state, WAIT_RDDATARDY_CL8R, is for CL8Rs and asserts control signals to read
a descriptor. The second state, REQ_STORE, is for B16Rs and asserts control signals to read
data from memory that are transmitted over the LocalLink interface.

Figure 3-36: CDMAC Port_SM State Diagram

IDLE REQ_SETUP SETUP WAIT_ADDRACK WAIT_RDDATARDY_CL8R REQ_READ_DESC

TX_PIPELINE_EMPTY TX_ACTIVE STORE REQ_STORE READ_DESCREAD_DESC_SR

READ_DESC_FINISHREAD_DESC_EMPTYIDLE

CL8R | B16R RegFile Grant TC
CL8R &
AddrAck

RdDataRdy

RegFile_Grant

TC & RdPop

RdPop

RdCompDst_Rdy

B16R &
AddrAck

RegFile_G
rantTC

Data_Done_Det
ect

Dst_Rdy

Detect_Addr_Err

IDLE RX_ACTIVE REQ_SETUP SETUP WAIT_ADDRACK REQ_STORE STORE

IDLEREQ_PRESETUP PRESETUP

WRITE_DESC

UPDATE_PNTR2UPDATE_PNTRREQ_UPDATE_PNTR

CL8W & ~(TXNRX |
~RX_Footer

RX_Data_Do
ne

RegFile_G
rant TC

B16W &
AddrAck

RegFile_G
rant

TC

CLK
RegFile_G
rant

CLK

TC
B16W &

RX_Payload

RegFile_G
rant

WRITE SM

READ SM

X535_42_113004

CL8W (TXNRX |
~RX_Footer

Detect_Addr_Err CL8W & AddrAck

WrComp

http://www.xilinx.com

86 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

If the Read State Machine is reading a descriptor, the state machine transitions out of the
WAIT_ADDRACK state and into the WAIT_RDDATARDY_CL8R state after the Port
interface has acknowledged the CL8R request.

Once the Read State Machine is in the WAIT_RDDATARDY_CL8R state, it waits until the
Port interface asserts the RdDataRdy signal. This signal indicates that data is available on
the Port interface and that the CDMAC can pop data out of the MPMC's Read FIFOs on
every clock cycle following the assertion of RdDataRdy. The state machine then transitions
into the REQ_READ_DESC state.

While in the REQ_READ_DESC state, the state machine requests access to the register file.
Once access has been granted, the state machine transitions into the READ_DESC state.

The READ_DESC state pops the Next Descriptor Pointer, the Buffer Address, and the
Buffer Length out of the MPMC's Read FIFOs. This data is placed into the register file and
the Read State Machine transitions to the READ_DESC_SR. The data is also sent across the
LocalLink interface as Header data.

The READ_DESC_SR state pops the Status register value out of the MPMC's Read FIFOs.
Once this data has been stored in the status register, the Read State machine transitions to
the READ_DESC_FINISH state.

Once in the READ_DESC_FINISH state, the last four words of data pop out of the MPMC's
Read FIFOs. This data is ignored. When the Port interface issues the RdComp signal, the
Read State Machine transitions to the READ_DESC_EMPTY state.

The READ_DESC_EMPTY state waits for the LocalLink interface to be ready to receive
data from the CDMAC. Once the Dst_Rdy signal is received from the LocalLink interface,
the Read State Machine transitions into the IDLE state.

If the Read State Machine is in the WAIT_ADDRACK state and is reading data to be
transmitted over the LocalLink interface, the state machine transitions out of the
WAIT_ADDRACK state and into the REQ_STORE state after the Port interface
acknowledges the B16R request.

While in the REQ_STORE state, the state machine requests access to the register file. Once
access has been granted, the state machine transitions into the STORE state.

Once in the STORE state, the Buffer Address and Buffer Length registers are updated with
the Buffer Address and the Buffer Length to be used in the next transaction. The Buffer
Address is incremented by the number of bytes that read from memory on this transaction.
The Buffer Length is decremented by the number of bytes that are read from memory on
this transaction. After these registers have been updated, the Read State Machine
transitions to the TX_ACTIVE state.

In the TX_ACTIVE state, data is read from memory and sent to the Tx Byteshifter. Once all
of the Data pops out of the MPMC's Read FIFOs or the MPMC's Read FIFOs have been
reset, the Read State Machine transitions to the TX_PIPELINE_EMPTY state.

The Read State Machine transitions from the TX_PIPELINE_EMPTY state to the IDLE state
once the last word of data has been acknowledged on the LocalLink interface.

Write State Machine

The Write State Machine is very similar to the read state machine. The Write State Machine
begins in the IDLE state. Depending on the type of request being issued from the TX/RX
Arbiter, the Write State Machine transitions into one of three states. If the TX/RX Arbiter is
issuing a CL8W request and either the request is for the TX engine or the RX LocalLink
interface is not in the Footer state, the state machine transitions into the WRITE_DESC
state. If the TX/RX Arbiter is issuing a CL8W request, and the request is for the RX engine,

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 87
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

and the RX engine is in the Footer state, the state machine transitions into the RX_ACTIVE
state. If the TX/RX Arbiter is issuing a B16W request and the RX engine is in the Payload
state, the state machine transitions to the REQ_PRESETUP state.

If the Write State Machine transitions from the IDLE state to the WRITE_DESC state, the
state machine waits for 8 words of descriptor data to be pushed into the MPMC's Write
FIFOs, then the state machine transitions into the REQ_SETUP state.

If the Write State Machine transitions from the IDLE state to the REQ_PRESETUP state, the
state machine requests access to the register file. Once access has been granted, the state
machine transitions into the PRESETUP state.

While in the PRESETUP state, the Buffer Address and the Buffer Length counters are
loaded with the contents of the register file. Once these counters are loaded, the Write State
Machine transitions to the RX_ACTIVE state.

If the Write State Machine transitions from the IDLE state or the PRESETUP state to the
RX_ACTIVE state, the state machine waits for Payload or Footer data from the Rx
LocalLink interface to be pushed into the MPMC's Write FIFOs, then the state machine
transitions into the REQ_SETUP state. If Footer data is being pushed into the MPMC's
Write FIFOs, the data or the byte enables are modified as specified in the “Rx LocalLink
and Byteshifter” section.

The REQ_SETUP staterequests access to the register files. Once access is granted, the Write
State Machine transitions into the SETUP state.

While in the SETUP state, the Status register is updated, then the Write State Machine
transitions into the WAIT_ADDRACK state.

A write request is issued on the Port interface when the Write State Machine is in the
WAIT_ADDRACK state. Once the request has been acknowledged, the state machine
transitions to one of two states. If the request was a B16W request, the state machine
transitions to the REQ_STORE state. If the request was a CL8 request, the state machine
transitions to the REQ_UPDATE_PNTR state.

If the Write State Machine transitioned from the WAIT_ADDRACK state into the
REQ_STORE state, the state machine requests access to the register file. Once access has
been granted, the state machinetransitions into the STORE state.

While in the STORE state, the Buffer Address and Buffer Length registers are updated with
the Buffer Address and Buffer Length to be used in the next transaction. After these
registers are updated, the Write State Machine transitions into the IDLE state.

If the Write State Machine transitioned from the WAIT_ADDRACK state into the
REQ_UPDATE_PNTR state, the state machine requests access to the register file. Once
access has been granted, the state machine transitions into the UPDATE_PNTR state.

While in the UPDATE_PNTR state, the Next Descriptor Pointer register is read from the
register file, then the Write State Machine transitions into the UPDATE_PNTR2 state.

In the UPDATE_PNTR2 state, the Next Descriptor Pointer is written to the Current
Descriptor Pointer register, then the Write State Machine transitions into the IDLE state.

http://www.xilinx.com

88 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Tx LocalLink and Byteshifter

The Tx LocalLink and Byteshifter Logic take data from the appropriate place in memory
and move the data across the LocalLink interface. This concept is shown in Figure 3-37. In
this example, the CDMAC reads the descriptor at address p to p+1C and sends it to the
LocalLink as the header. The payload is 136 bytes and starts at address m+79. The Tx
Byteshifter sends data acknowledges to the memory controller while keeping the Src_Rdy
signal to the LocalLink deasserted, because address m+79 is not 32-word aligned. Data
from address m to m+78 are discarded. Data is offset by 78 bytes, so the first byte of data
occurs on the second byte location on the posedge of the DDR SDRAM. The Tx Byteshifter
takes the posedge (x 0 1 2) and negedge (3 4 5 6), which are both present at the time,
recombines them to form a new, correctly shifted, word (0 1 2 3), and sends it over the
LocalLink as the payload. At the end of the first 32-word burst read (B16R), 3 bytes are left
over and kept in the Byteshifter. When the second burst occurs, those 3 bytes are combined
with the first byte of the second burst and sent over LocalLink. This happens again
between the second burst and third burst. On the last word of the payload the Rem signal
is set to indicate which bytes of the word are valid. Rem is 0x0 in this example to indicate
all 4 bytes are valid. After byte n+1 is sent, the FIFOs in MPMC, which hold all 32 words of
the burst, are reset to avoid extra data acknowledge. For Tx transfer, the footer is not used.
The status bits are written back to the descriptor's status field.

Tx Byteshifter Logic

The Tx Byteshifter Block Diagram is shown in Figure 3-38. It has two stages. In the first
stage two 32-bit data, one from the posedge of the DDR SDRAM (rdData_Pos) and one
from the negedge (rdData_Neg), are fed into fTWIST from the FIFOs in the MPMC.
fTWIST forms a new word Port_RdData by multiplexing each byte from either the
rdData_Pos or rdData_Neg, depending on the offset represented by StartOffset. fTWIST is
able to produce a new word every clock cycle because both rdData_Pos and rdData_Neg

Figure 3-37: CDMAC Tx Byteshift Example

X535_43_113004

Header
Payload

Footer
arbitrary length

(ignored)33 words + 2 bytes =
134 bytes

8 words

MSB

LSB

32 Word burst
8-word

cache line 32 Word burst 32 Word burst

M
em

or
y

S
pa

ce

4-
B

yt
es

p p+
1C

m
+

00

m
+

79S
tu

ff
da

ta
in

to
 F

IF
O

s

S
tu

ff
da

ta
in

to
 F

IF
O

s

Lo
ca

lL
in

k
D

at
a

fo
r

1
fr

am
e

0

0

1

1

2

2

3

3
m

+
80

m
+

7C
m

+
78

m
+

10
4

m
+

10
0

m
+

F
C

n+
1

n+
1

n

n

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 89
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

last 2 clock cycles. For example, if StartOffset is 1 when bytes 4-7 become present on
rdData_Neg, bytes 0-3 would have already been present on rdData_Pos for 1 cycle. At this
point Sel_Px_rdData_Pos becomes 0b0111. The pattern 0b0111 indicates that the first byte is
taken from the first byte from rdData_Neg and rest from rdData_Pos to form (4 1 2 3). One
clock later, rdData_Pos refreshes to the next value and Sel_Px_rdData_Pos becomes
0b1000. The pattern 0b1000 indicates that the first byte is taken from the first byte from
rdData_Pos and rest from rdData_Neg to form (8 5 6 7). In the second stage, the Byte_Selx
signals are produced to reorder the bytes in Port_RdData to form the final word.

In this example, the vector Byte_Sel[0-3] display values of 0 3 2 1 respectively. This
configuration of Byte_Sel vectors swap the first byte with the last 3 bytes to form (1 2 3 4)
and (5 6 7 8). Byte_Reg_CE clock enable the registers at the appropriate time. For the first
burst, Byte_Reg_CE is 0xF until the last word. For the last word, Byte_Reg_CE is used to
hold the left over bytes from the current burst in the registers by disabling clock(s) to the
register(s). For example, if StartOffset is 1 and rdData_Neg=0x4567 is the last word of the
burst, Byte_Reg_CE[3:0] is 0x0001. In this case the last 3 bytes (567) is held in the registers
until the next burst starts. On the second burst, the first byte is loaded into the register
enabled by Byte_Reg_CE[0], then Byte_Reg_CE returns to 0xF again until the last word of
that burst.

Figure 3-38: CDMAC Tx Byteshifter Block Diagram

LocalLink
RX DEVICE

MPMC DATA PATH

Port_RdData[31:24]

Byte_Sel0 2

0

1

2

3

Port_TX_Out[7:0]
D

CE

Q

Byte_Reg_CE[0]

Port_RdData[23:16]

Port_RdData[15:8]

Port_RdData[7:0]

Byte_Sel1 2

0

1

2

3

D

CE

Q

Byte_Reg_CE[1]

Byte_Sel2 2

0

1

2

3

Port_TX_Out[23:16]
D

CE

Q

Byte_Reg_CE[2]

Byte_Sel3 2

0

1

2

3

D

CE

Q

Byte_Reg_CE[3]

Port_TX_Out[15:8]

Port_TX_Out[31:24]

T
X

 B
y

te
sh

if
te

r
C

o
n

tr
o

l

SRL16 FIFO

SRL16 FIFO

SRL16 FIFO

SRL16 FIFO

SRL16 FIFO

SRL16 FIFO

SRL16 FIFO

SRL16 FIFO

Q1

Q2

INFF_DDR

Q1

Q2

INFF_DDR

Q1

Q2

INFF_DDR

Q1

Q2

INFF_DDR

D

CE

Q32

CDMAC TX BYTESHIFTER

32

32

rdData_Pos

rdData_Neg φTWIST

Sel_Px_rdData_Pos

4

φTWIST EXAMPLE

rdData_Pos

rdData_Neg

Port_RdData

StartOffset

StartOffset = 1

4567

B90A

0123 890A

85674123

BCDE

Each digit represents position of
1 byte of data

Byte Shifting

0 1 2 3

Data[31:0]Byte_Selx

0

1

2

3

0 1 2 3

0 1 2

0 1

0

3

2 3

1 2 3

Data_Out[31:0]

LSB MSB

LSB

MSB

LSB

MSB

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Port_TX_Out 56781234

X535_44_113004

http://www.xilinx.com

90 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Tx Byteshifter State Diagram

The Tx Byteshifter State Machine generates StartOffset, Byte_Reg_CE, Byte_Selx, Src_Rdy,
and RdDataPop signals to control the Tx Byteshifter Data Path, part of the LocalLink
signals, and rdDataAcks to the memory. StartOffset controls the number of bytes to be
shifted. It is set to the last 3 bits of the memory initially, but is changed at the end of every
burst to account for the left-over bytes. Byte_Reg_CE is a 4-bit clock enable to the registers
in the data path. It is multiplexed by the bytes being held in the byteshifter during a burst
transition, as shown in Figure 3-39. Byte_Selx control the multiplexers that are responsible
for reordering the bytes coming out of fTWIST, as shown in Figure 3-38. Src_Rdy indicates
to LocalLink that the data is valid. Src_Rdy is asserted during the burst but deasserted
while in the discard stage, the between descriptors stage, and the between bursts stage.
RdDataPop generates rdDataAck, which is used to acknowledge data read from memory.
rdDataAck_Pos and rdDataAck_Neg are asserted alternately. RdDataPop is asserted at the
same time as Src_Rdy. RdDataPop is also asserted in the discard stage to pop out invalid
data.

Tx Byteshifter State Machine starts in IDLE state. When a “Start” signal is given by the Port
State Machine, it goes into the discard stage and pops off data until it is at the current
address. Using the example in Figure 3-37, the first 30 words of the first burst is discarded.
The state machine then moves to the START state if there is at least one complete word left
in the burst or to the STARTFINISH state if not. In our example, it moves to the START
state since we have a complete word ([0 1 2 3]). From the START state, it can either go to the
PROCESS state or FINISH state depending on if there is at least one more word of data. In
our example, it goes to FINISH state directly since we don't have a second complete word
of data. In the STARTFINISH or FINISH state, it saves the left over bytes by setting
Byte_Reg_CE to disable clock(s) to the register(s) holding those bytes. From either
STARTFINISH or FINISH it can go to BTWN_BURST state or BTWN_DESC state or IDLE
state depending on whether there is another burst for the same descriptor or current
descriptor is finished and engine is moving on to the next descriptor in the chain or there
is no more bursts and no more descriptors, respectively. In all three states, counters are
reset. For our example, it goes to the BTWN_BURST state since we are still in the first
descriptor. If in BTWN_BURST, it goes to EXTRA to update BurstLengthCount, then go to
START state again. If in BTWN_DESC, it returns to DISCARD state.

Refer to Figure 3-39 for detailed information on each state and their inputs & outputs.

Figure 3-39: CDMAC Tx_Byte_Shifter_SM State Diagram

X535_45_113004

DISCARD START STARTFINISH FINISH

IDLE BTWN_DESC EXTRA BTWN_BURST

PROCESS
0
1
2
3

BytesHolding

1111
0111
0011
0001

DestReady

Byte_Reg_CE

See Table
Fig. 54

Byte_SelxStartOffset

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 91
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

Table 3-6: CDMAC Tx_Byte_Shifter_SM State Diagram Description

STATE
PREVIOUS

STATE
DESCRIPTION INPUT STIMULUS RESULTANT OUTPUT INTERNAL OPERATIONS

IDLE (C)

INITIAL

Initializes values

RST RdDataPop = 0
Src_Rdy = 0
StartOffset = 0
Used to generate Byte_Selx
BytesHolding = 0
Track bytes left over from previous
burst. Used to generate Byte_Reg_CE

BurstLengthCount =
128 - Address[1:0]
Total bytes need to be transferred
in this burst

START
FINISH EndOfPacket

from Port SM. No more
descriptors in the chainFINISH

DISCARD

IDLE
Pop off invalid
data from current
burst until
beginning of
address

Start
Port SM gives permission
for burst 16 read from
MPMC

@CLK
RdDataPop=1
Pop off invalid
data
Src_Rdy = 0
NOT Ready
signal to LL
DEVICE

StartOffset=
Address[2:0]
Control
Byteshifter
Multiplexers

DiscardDone =
(PopCount == Address[6:2]-1)
Signals end of discarding
@CLK BurstLengthCount -= 4
Update BurstLengthCount
@DiscardDone
BurstLengthCount
-= BytesNeeded
BytesNeeded = 4 –
Bytesholding Adjust for leftover
bytes from previous burst

BTWN_
DESC

StartOffset =
Address[2:0]-
BytesHolding
Adjust for
leftover bytes

START

DISCARD Leftover
data+current data
more than 1
word. Process 1st
word of data

Discard
Done

encounter 1st
valid and
complete
word of
current
descriptor

@DestReady RdDataPop=1
Pop off 1 word of data
Src_Rdy = 1
Ready signal to LocalLink DEVICE
BytesHolding=0
Reset BytesHolding

@CLK BurstLengthCount -= 4
Update BurstLengthCount

EXTRA CLK

START
FINISH

DISCARD

Leftover
data+current data
less than 1 word.
Save this data

Length0Start
Length0Start =
(BurstLengthCount
<= BytesNeeded)
Leftover data+current
data less than 1 word

@DestReady RdDataPop=1
Pop off 1 word of data
Src_Rdy = 1 (if
BurstLengthCount=0)
Ready signal to LocalLink DEVICE
BytesHolding = case(NextState):
IDLE: 0; BTWN_BURST: -
StartOffset;
BTWN_DESC: BurstLengthCount
Adjust BytesHolding according to
next state

Rem =
Case(BurstLengthCount):
0: 0b0000
1: 0b0111
2: 0b0011
3: 0b0001

EXTRA

PROCESS START Process data until
last word

~Length0Middle
Length0Middle =
(BurstLengthCount<=4)
More than 1 word of data
exist

@DestReady RdDataPop=1
Pop off data
Src_Rdy = 1
Ready signal to LocalLink DEVICE

BurstLengthCount
-=4 @CLK
Update BurstLengthCount

FINISH

START

Process last
complete word of
the burst if exists.
Save remaining
bytes to be
combined with
first few byte(s) of
next burst

Length0Middle
Have reached the last word
of the burst

@DestReady RdDataPop=1
Pop off last word of data
Src_Rdy = 1 (if
BurstLengthCount=0)
Ready signal to LocalLink DEVICE
BytesHolding = case(NextState):
IDLE: 0; BTWN_BURST: -
StartOffset;
BTWN_DESC: BurstLengthCount
Adjust BytesHolding according to
next state

Rem=case(BurstLengthCount
):
0: 0b0000
1: 0b0111
2: 0b0011
3: 0b0001

PROCESS

BTWN_
BURST (A)

START
FINISH

Still more data to
be transferred in
current
descriptor.
Prepare for
another burst.
Resetting
counters.

~LastBurst
Length0Middle =
(BurstLengthCount<=4)
More than 1 word of data
exist

RdDataPop = 0
Src_Rdy = 0

BurstLengthCount = 128
Reset BurstLengthCount

FINISH

EXTRA BTWN_
BURST

Update
BurstLengthCoun
t to combine with
left over data
from last burst

Start
Port SM gives permission
for burst 16 read from
MPMC

RdDataPop = 0
Src_Rdy = 0

BurstLengthCount -=
BytesNeeded
BytesNeeded = 4 –
Bytesholding Adjust for leftover
bytes from previous burst

BTWN_
DESC (B)

START
FINISH

More descriptors
to process.
resetting values.
Similar to IDLE

~EndOfPacket
Still more descriptors in
the chain

RdDataPop = 0
Src_Rdy = 0

BurstLengthCount = 128
address[1:0]
Total bytes need to be transferred
in this burstFINISH

http://www.xilinx.com

92 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

LocalLink Tx State Machine

The LocalLink Tx State Machine shown in Figure 3-40 represents the steps to transfer data
from the memory to the LocalLink as directed by the descriptor. From the IDLE state, the
Port State Machine instructs the LocalLink Tx interface to issue a Start of Frame. When the
Dst_Rdy signal is asserted by the LocalLink device the LL Tx State Machine goes into the
HEADER state to transfer a CacheLine-8 read of the descriptor to the LocalLink as the
header. When Port State Machine issues a Read_Desc_Done signal, LL Tx State goes in to
PAYLOADSTART and issue a Start of Payload signal. It immediately goes to either the
PAYLOAD state if there is more than one word of payload, or to PAYLOADEND if not.
From PAYLOAD state, when it reaches the last word, the Tx Byteshifter issues a
Trigger_EOP signal that brings it to the PAYLOADEND state. A End of Payload is issued
then it goes directly to the FRAMEEND state since there is no footer in Tx transfer. A End
of Frame is issue in the FRAMEEND state then it goes back to the IDLE state.

Figure 3-40: CDMAC Tx_LL_SM State Diagram

X535_46_113004

IDLE FRAMESTART HEADER PAYLOADSTART

PAYLOADPAYLOADENDFRAMEEND

Start_Of_Frame Payload_Start

Payload_Done

Payload_Done & Src_Rdy & Dst_Rdy

SOF SOP

EOPEOF

S

R

Q

Src_Rdy_i

Data_Src_Rdy

IDEL & Start_Of_Frame

HEADER & Read_Desc_Done

Src_Rdy

PAYLOADSTART | PAYLOAD | PAYLOADEND

0

1

FRAMEEND

Src_Rdy_i

Src_Rdy &
Dst_rdy

Src_Rdy &
Dst_rdy

Src_Rdy &
Dst_rdy

Src_Rdy &
Dst_rdy

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 93
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

Rx LocalLink and Byteshifter

The LocalLink and Byteshifter Rx Logic receive data from the LocalLink interface and
move the data to the appropriate place in memory. This concept is shown in Figure 3-41.
The CDMAC always ignores the Rx LocalLink Header. The Payload is processed by the Rx
Byteshifter and pushed into the MPMC’s Write FIFOs. In this example, the Payload is 147
bytes. The data is pushed into the FIFOs in bursts of 32-words (B16W). Data is stuffed into
the FIFOs from address m through address m+0x75 because the Payload is written to
address m+0x76, which is a not a 32-word aligned address. When these bytes are written to
memory, the byte enables are turned off. Ten bytes of Payload data are pushed into the
FIFOs after this data has been stuffed into the FIFOs. In the second B16W, all of the data is
valid. In the last B16W, only nine bytes need to be written to memory. This means that the
remaining 119 bytes need to be stuffed into the FIFOs at the end of the burst. After the
Payload has been processed, the Footer is processed and written to memory at address p.
The CDMAC changes the first three words' byte enables to prevent the Next Descriptor
Pointer, the Buffer Address, and the Buffer Length from being overwritten.

Figure 3-41: CDMAC Rx Byte Shift Example

X535_47_113004

Header Payload Footer

arbitrary length
(ignored)

37 words
147 bytes

8 words

Stuff data
into FIFOs

MSB

LSB

32 Word burst 32 Word burst
8-word

cache line

Stuff data
into FIFOs

m
Lo

ca
lL

in
k

D
at

a
fo

r
1

fr
am

e

p p+
1C

32 Word burst

M
em

or
y

S
pa

ce n+
1

n+
1

n+
2

n+
2

n

n

0

0

1

1

2

2

3

3

m
+

74

m
+

76

m
+

78
m

+
7c

m
+

80

m
+

F
C

m
+

10
0

m
+

10
4

m
+

10
8

http://www.xilinx.com

94 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Rx Byteshifter Logic

The Rx Byteshifter Data Path shown in Figure 3-42 is controlled by three signals: First_offset,
Pos_CE, and Neg_CE. The First_offset signal is 3-bits wide and represents the number of
bytes the LocalLink Data needs to be shifted by, and is used as select bits to the Rx
Byteshifter's Data Path Multiplexers. For example, if First_offset is set to 0x6, the first two
bytes of the LocalLink data is presented to the last two bytes of the WrDataBus_Pos register
and to the last two bytes of the WrDataBus_Neg register. The last two bytes of the LocalLink
Data is presented to the first two bytes of the WrDataBus_Pos register and to the first two
bytes of the WrDataBus_Neg register. If Pos_CE is asserted while First_offset is set to 0x6, the
clock enables on the last two bytes of the WrDataBus_Neg register and the first two bytes of
the WrDataBus_Pos register are asserted. Similarly, if Neg_CE is asserted while First_offset is
set to 0x6, the clock enables on the last two bytes of the WrDataBus_Pos register and the first
two bytes of the WrDataBus_Neg register are asserted.

Figure 3-42: CDMAC Rx Byte Shifter Block Diagram

X535_48_113004

Rx_DataIn[31:24]

WrDataBus_Pos[31:24]D

CE

Q

Rx_DataIn[23:16]

Rx_DataIn[15:8]

Rx_DataIn[7:0]

D

CE

Q

D

CE

Q

0

3

2

1

1

0

3

2

2

1

0

3

3

2

1

0

0

3

2

1

1

0

3

2

2

1

0

3

3

2

1

0

WrDataBus_Pos[23:16]

WrDataBus_Pos[15:8]

D

CE

Q WrDataBus_Pos[7:0]

D

CE

Q

D

CE

Q

D

CE

Q

D

CE

Q

First_offset

WrDataBus_Neg[31:24]

WrDataBus_Neg[23:16]

WrDataBus_Neg[15:8]

WrDataBus_Neg[7:0]

Combinational
Logic

RX
Byteshifter

Control
CE_Pos

CE_Neg wrdatabus_ce_pos

wrdatabus_ce_neg

4

4

[3]

[2]

[1]

[0]

[3]

[2]

[1]

[0]

3

Combinational Logic

0 1 2 3 4 5 6 7

WrDataBus_Pos WrDataBus_Neg
First_offset

[2:0]

0

1

2

3

4

5

6

7

wrdatabus_ce_pos

wrdatabus_ce_neg

D

CE

Q
32

LocalLink
RX DEVICE

SRL16FIFO

SRL16FIFO

SRL16FIFO

SRL16FIFO

SRL16FIFO

SRL16FIFO

SRL16FIFO

SRL16FIFO

D1

D2

OUTFF_DDR

DDR_DO[31:24]

D1

D2

OUTFF_DDR

DDR_DO[23:16]

D1

D2

OUTFF_DDR

DDR_DO[15:8]

D1

D2

OUTFF_DDR

DDR_DO[7:0]

MPMC DATA PATHCDMAC RX BYTESHIFTER

8

8

8

8

8

8

8

8

8

8

8

8

POS

POS

POS

POS

POS

POS

POS

P

P

POS

POS

NEG

NEG

NEG

N

N

NEG

NEG

NEG

NEG

NEG

NEG

NEG

POS

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 95
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

To use this data path efficiently, First_offset should be held constant while Pos_CE and
Neg_CE are asserted on opposite clock cycles.

Using the example in Figure 3-41 where the address offset is 0x76 and the length is set to
0d147: (This implies that First_offset is set to 0x6)

• Stuff 28 words of data into the MPMC's Write FIFOs by asserting WrDataAck_Pos and
WrDataAck_Neg on alternating clock cycles. WrDataBE_Pos and WrDataBE_Neg
should be set to 0b1111.

• In clock cycle N+1, the WrDataAck_Pos signal to the MPMC should be asserted with
WrDataBE_Pos set to 0b1111. Pos_CE should be asserted. Two bytes of data are clock
enabled into WrDataBus_Neg and two bytes of data are clock enabled into
WrDataBus_Pos.

• In clock cycle N+2, the WrDataAck_Neg signal should be asserted with
WrDataBE_Neg set to 0b1100. The last two bytes of WrDataBus_Neg are valid from
clock cycle N+1. At the same time, Neg_CE should be asserted to clock enable two
bytes into WrDataBus_Pos and two bytes into WrDataBus_Neg.

• In clock cycle N+3, the WrDataAck_Pos signal should be asserted with
WrDataBE_Pos set to 0b0000. The first two bytes of WrDaBus_Pos is valid from clock
cycle N+1 and the last two bytes of data are valid from clock cycle N+2. Pos_CE
should also be asserted in this clock cycle to continue collecting data from the
LocalLink interface.

• This should continue until there is no more data, or until First_offset needs to change.

• In clock cycle M, the WrDataAck_Neg signal should be asserted with WrDataBE_Neg
set to 0b0000. Neg_CE does not need to be asserted, as all data has been collected from
the LocalLink interface.

• In clock cycle M+1, the WrDataAck_Pos signal should be asserted with
WrDataBE_Pos set to 0b0111. Pos_CE does not need to be asserted.

• Stuff 29 words of data into the MPMC's Write FIFOs by asserting WrDataAck_Neg
and WrDataAck_Pos on alternating clock cycles. WrDataBE_Pos and WrDataBE_Neg
should be set to 0b1111.

Rx Byteshifter State Diagram

In the case of the CDMAC, the First_offset signal is a 3-bit number representing the
number of bytes that the LocalLink Data needs to be shifted by before it is pushed into the
MPMC's Write FIFOs. This value is simply the three least significant bytes (LSBs) in the
descriptor's Buffer Address. The First_offset signal must be valid when the Port State
Machine issues a B16W request or an CL8W request.

Pos_CE is used to push even words from the Rx LocalLink interface into the Rx Byteshifter.
The First_offset signal is used as select bits to the Rx Byteshifter's Data Path Multiplexers.
Combinational logic is used to clock enable the correct registers so that the data from the
Rx LocalLink interface is placed into the correct location in memory. Similarly, Neg_CE is
used to push odd words from the Rx LocalLink interface into the Rx Byteshifter. The word
numbering starts at 0, which is the first word of the Payload, and is reset to 0 again at the
first word of the Footer. Pos_CE and Neg_CE are asserted for every Payload and Footer
word that is received from the LocalLink interface. The Rx Byteshifter Control State
Machine represents the way Pos_CE and Neg_CE are generated and is shown in
Figure 3-43.

http://www.xilinx.com

96 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Initially, the Rx Byteshifter Control State Machine starts in the “IDLE” state. When the
CDMAC is ready to push Payload data into the MPMC, the Port State Machine instructs
the Rx Byteshifter Control Logic to transition to the “In Header” state and to start pushing
data from the LocalLink interface through the Rx Byteshifter. Each time Src_Rdy and
Dst_Rdy are asserted together, data is pushed into the Rx Byteshifter and the Rx
Byteshifter Control State Machine toggles between the “Shift Pos Data” state and the “Shift
Neg Data state”. All 32-word burst transfers to the MPMC must be 32-word address
aligned, so data can be stuffed into the MPMC's Write FIFOs with the byte enables
deasserted. This only needs to occur at the beginning of the Payload or at the end of the
Payload. See Figure 3-41. If data needs to be stuffed into the FIFOs, data is processed by the
Rx Byteshifter, which also causes the Rx Byteshifter State Machine to toggle between the
“Shift Pos Data” state and the “Shift Neg Data” state. Once the descriptor’s Buffer Length
has reached 0 bytes and the last word has been pushed into the MPMC's Write FIFOs, the
Byteshifter Control State Machine transitions back to the “IDLE” state.

Two exceptions to the above description occur when the Port State Machine instructs the
Rx Byteshifter Control Logic to push Footer data into the FIFOs instead of the Payload data
described above. First, because the address is always aligned, data never needs to be
stuffed into the FIFOs. Second, exactly eight words of data are pushed into the FIFOs.

The Write Control Logic going to the MPMC parallels the Rx Byteshifter Logic. There are
four signals that go to the MPMC: WrDataAck_Pos, WrDataAck_Neg, WrDataBE_Pos, and

Figure 3-43: CDMAC LocalLink and Byteshifter Diagram

X535_49_113004

IDLE
writeback_descriptor or first_burst_of_descriptor Shift Pos

Data
Shift Neg

Data

[(In Payload or In Footer) and (SrcRdy and DstRdy) or stuff_fifos)]

Last word and [(In Payload or In Footer) and (SrcRdy and DstRdy) or stuff_fifos)]

[(In Payload or In Footer) and (SrcRdy and DstRdy) or stuff_fifos)]

Table 3-7: CDMAC LocalLink and Byteshifter Diagram Description

STATE
PREVIOUS

STATE
DESCRIPTION INPUT STIMULUS RESULTANT OUTPUT

IDLE
Initial Wait’s for 32-word burst

write request or for 8-word
cache-line write request.

Pos_CE = 0
Neg_CE = 0Shift Neg Data

Shift Pos Data

IDLE
Instructs even words from
the LocalLink interface to

be pushed into the RX Byte
Shifters.

byte_shift_ce_pos

byte_shift_ce_pos =

Even Word Data Valid on the
LocalLink interface and (In Header or

In Footer)

Pos_CE = byte_shift_ce_pos
Neg_CE = 0Shift Neg Data

Shift Neg Data Shift Pos Data

Instructs odd words from
the LocalLink interface to

be pushed into the RX Byte
Shifters.

byte_shift_ce_neg

byte_shift_ce_neg =

Even Word Data Valid on the
LocalLink interface and (In Header or

In Footer)

Pos_CE = 0
Neg_CE = byte_shift_ce_neg

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 97
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

WrDataBE_Neg. The WrDataAck Logic is shown in Figure 3-44. As Payload or Footer data
comes across the Rx LocalLink interface or as data is stuffed into the MPMC's Write FIFOs,
WrDataAcks are asserted to match the data coming out of the Rx Byteshifter Data Path. The
WrDataBEs are also asserted to match the data coming out of the Rx Byteshifter Data Path.
For example, in Figure 3-41, to write to memory location m+0x74 WrDataAck_Neg would
need to be asserted at the appropriate time with WrDataBE_Neg holding the value 0b1100.
WrDataAck_Pos would need to be asserted at the appropriate time with WrDataBE_Pos
holding the value 0b0000 to write to memory location m+0x78. WrDataAck_Pos would
need to be asserted at the appropriate time with WrDataBE_Pos holding the value 0b0111
to write to memory location m+0x108. See the example in the Rx Byteshifter Logic section.

LocalLink Rx State Machine

The LocalLink Rx State Machine represents the steps to process the LocalLink data and
transfer it into memory. From the “IDLE” state, the Port State Machine instructs the
LocalLink Rx interface to start processing the Header data by asserting the LL_Start signal.
The CDMAC ignores the Header data and the Dst_Rdy signal is asserted until SOP is
asserted. At this point the LocalLink interface is presenting the first word of Payload data
and the LocalLink Rx State Machine stays in the “In Payload IDLE” state until the Port
State Machine assets B16_Start, indicating that 32-words of data can be pushed into the
MPMC's Write FIFOs. The LocalLink Rx State Machine transitions to the “In Payload” state
when the B16_Start signal is asserted. The State Machine stays in this state until 32 words
have been pushed into the MPMC's FIFOs. Using the example in Figure 3-45, 118 bytes are
stuffed into the MPMC's Write FIFOs, then Dst_Rdy is asserted until 3 words have been
processed by the Rx Byteshifter. The State Machine transitions back to the “In Payload
IDLE” state until the Port State Machine asserts B16_Start again. This time, while in the “In
Payload” state, the Rx Byteshifter processes 32 more words, then the State Machine
transitions back into the “In Payload Idle” state. The Port State Machine issues the
B16_Start signal once more and while the LocalLink Rx State Machine is in the "In Payload"
state, the Rx Byteshifter processes two more words, and then 119 bytes are stuffed into the
MPMC's Write FIFOs. The State Machine transitions back to the In Payload IDLE state. The
Port State Machine transitions to the “In Payload IDLE” state. Because all of the Payload
data has been received (the EOP has been acknowledged by Src_Rdy and Dst_Rdy) and
there are no bytes left to send to the MPMC's Write FIFOs, the Port State Machine asserts
CL8_Start when it is ready to write back the descriptor. The LocalLink Rx State Machine
transitions to the “In Footer” state and processes the Footer and send the data to the
MPMC's Write FIFOs. The CDMAC overrides the byte enables on the first three words to
prevent the Next Descriptor Pointer, the Buffer Address, and the Buffer Length from being
overwritten.

Figure 3-44: CDMAC Rx WrDataAck Logic to MPMC

D Q
WrDataAck_Pos

WrDataAck_Neg

CDMAC

Data valid on
LocalLink

Stuff data into
FIFOs

FIFO is full

push
Pos Write

FIFO

push
Neg Write

FIFO

MPMC

In Payload or in
Footer

SOF

SOP

EOP

EOF

Src_Rdy

Dst_Rdy

RX
LocalLink
Interface

X535_50_113004

D Q

http://www.xilinx.com

98 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Regfile Arbiter State Machine
The register file can be accessed by the DCR interface and each of the four engines. The
DCR interface issues DCR requests and the Port State Machine issues requests for TX0,
RX0, TX1, and RX1. The Regfile Arbiter grants 1 of the 5 at a given time. The state diagram
shown in Figure 3-46 represents a conceptual overview of the Regfile Arbiter Logic.
The DCR interface always has priority access to the register file because the duration of
DCR access is relatively short. If only one request is issued, it is granted as soon as Regfile
is not busy. If DCR and the Port State Machine both issue requests, DCR is granted access
when Regfile is not busy. If only Port State Machine issues requests, one of the engines is
granted access based on which engine was granted last time.

In the case when DCR is not issuing a request, Regfile Arbiter arbitrates between the four
engines as shown in the four interlocked circles in Figure 3-46. “Prev” holds the value of
the last grant, defaulted to P1W at reset. The four engines have circular priority in the order
[P0R, P1R, P0W, P1W]. For example, if P1W was granted last time (default), then for the
next grant, P0R has priority over P1R, P1R over P0W, and P0W over P1W. If P0R was
granted last time, then the new priority queue becomes [P1R, P0W, P1W, P0R].
In the case when DCR does issue a request, DCR has priority over all four engines and is
granted access. However, the previous grant is still in effect, which means that when DCR
finishes and does not issue a new request, the arbiter returns to arbitration of the four
engines based on the last engine granted. For example, if P1R was the last grant and all
four engines issue requests plus the DCR, DCR gets the next grant, followed by P0W since
the priority queue at this time is [P0W, P1W, P0R, P1R].

Figure 3-45: CDMAC Rx LocalLink State Machine & Dst_Rdy Logic

CDMAC Rx Engine

Neg FIFO Full

LL_SOF_n

LL_SOP_n

LL_EOP_n
LL_EOF_n

LL_Src_Rdy_n

LL_Dst_Rdy_n

LocalLink
Rx Device

Pos FIFO Full

MPMC

LL_D

Pos Word Needed
and Pos FIFOs not full

Neg Word Needed
and Neg FIFOs not full

32 word burst or 8-
word cache-line xfer
has been requested

In Header

Stuffing FIFOs

Dst_Rdy_n

IDLE In Header
In Payload

IDLE
In Payload

In Footer
In Footer

IDLE

LL_Start SOP
B16_Start

B16_Comp

EOFrecieved & BytesLeftover == 0

CL8_Start

EOF & Src_Rdy_n &

Dst_Rdy_n

X535_51_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 99
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

Figure 3-46: CDMAC Regfile_Arb_SM State Diagram

X535_52_113004

DCR_Request

Regfile_Busy
Free_for_Ports

S

R
Q

DCR_Request

Regfile_Busy

RST

DCR_Grant

Q
D

CE

4
P0R_Grant

P0W_Grant

P1R_Grant

P1W_Grant

Prev
4

MSB

LSB

P1W
Grant

P0R
Grant

P1R
Grant

P0W
Grant

P0R_Request

P0W_Request

P0R_Request &
~(P1R_Request|P0W_Request)

P1R_Request &
~(P1W_Request|P0R_Request)

Regfile_Busy = DCR_Busy | P0R_Busy | P0W_Busy | P1R_Busy | P1W_Busy |
DCR_Grant | P0R_Grant | P0W_Grant | P1R_Grant | P1W_Grant

DCR
Grant

DCR_Request

~DCR_Request

P
1W

_R
eq

ue
st

P
1R

_R
eq

ue
st

P
0W

_R
eq

ue
st

 &
(P

O
R

_R
eq

ue
st

 |
P

1R
_R

eq
ue

st
)

P
0R

_R
eq

ue
st

 &
(P

O
w

_R
eq

ue
st

 |
P

1W
_R

eq
ue

st
)

P0R
_R

eq
ue

st
& ~

P1W
_R

eq
ue

st

P0W
_R

eq
ue

st
& ~

P1R
_R

eq
ue

st

P1R_Request & ~P0W
_Request

PIW
_R

eq
ue

st
& ~

POW
_R

eq
ue

st

http://www.xilinx.com

100 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Status Register Logic

The CDMAC Status Register uses bits 0 through 6 to configure the CDMAC Engine and
send status information. Bit 7 is reserved, and the other 24 bits are used for application-
defined data. The logic to generate the Status Register bits is shown in Figure 3-47.

The ERROR bit is set whenever one or more of the error conditions occur. It can only be
reset by a system or channel reset. Refer to the list of known issues. The error conditions are
as follows:

• The CPU issues a DCR Write to the Current Descriptor Pointer while the BUSY bit is
set.

• The Current Descriptor Pointer points to an invalid location in memory.

• The Next Descriptor Pointer points to an invalid location in memory.

• The Engine attempts to read or write from an invalid location in memory.

• Completed error checking is enabled and the COMPLETED bit is set in the descriptor
that is being read.

Figure 3-47: CDMAC Status Register

X535_53_113004

S

R

Q

Detect_Busy_Wr
Detect_Curr_Ptr_Err
Detect_Nxt_Ptr_Err
Detect_Addr_Err
Detect_Completed_Err

RST

CHANNEL_RST_o

ERROR

Q
D

CE R

DI[1] / DI[2]
INT_ON_END /
STOP_ON_END

DCR_CE

Mem_CE

RST

S

R
Q

D

CE

DI[3] / DI[4] / DI[5]

DCR_CE

Mem_CE

RST

COMPLETED /
START_OF_PACKET /
END_OF_PACKET

Set_Completed / Set_Start_Of_Packet / Set_End_Of_Packet

S

R

Q
RST
CHANNEL_RST
ERROR
Detect_Stop
Detect_Null_Ptr

CHANNEL_BUSY

Write_Curr_Ptr

DI[0:31]

Bit Position 0 31

MSB LSB
DI from CDMAC CONTROLPATH

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 101
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

The INT_ON_END (Interrupt On End) bit is clock enabled into the status register during a
DCR Write to the status register or while the CDMAC is reading the status register of the
descriptor from memory.

The STOP_ON_END bit is clock enabled into the status register during a DCR Write to the
status register or while the CDMAC is reading the status register of the descriptor from
memory.

The COMPLETED bit is set whenever all of the data for the descriptor has been processed.
This occurs before the descriptor is written back to memory. The COMPLETED bit is clock
enabled into the status register during a DCR Write to the status register or while the
CDMAC is reading the status register of the descriptor from memory.

On an RX Engine, the START_OF_PACKET bit is set whenever the LocalLink interface
receives the Start Of Payload (SOP) signal. The START_OF_PACKET bit is clock enabled
into the status register during a DCR Write to the status register or while the CDMAC is
reading the status register of the descriptor from memory for both TX and RX Engines.

On an RX Engine, the END_OF_PACKET bit is set whenever the LocalLink interface
receives the End Of Payload (EOP) signal. The END_OF_PACKET bit is clock enabled into
the status register during a DCR Write to the status register or while the CDMAC is
reading the status register of the descriptor from memory for both TX and RX Engines.

The CHANNEL_BUSY bit is set whenever the CPU issues a DCR Write to the Current
Descriptor Pointer. The CHANNEL_RST bit is reset under the following conditions:

• System or Channel Reset. Refer to the list of known issues in root directory of ZIP file.

• The ERROR bit is set.

• The descriptor has been processed and the STOP_ON_END bit is set.

• The descriptor has been processed and the Next Descriptor Pointer contains the Null
Pointer.

http://www.xilinx.com

102 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Interrupt Register Logic

The interrupt register controls the interrupts to the CPU. The logic is shown in Figure 3-48.
The MSB, bit 0, is the master interrupt enable. If this bit is asserted, interrupts become
visible to the CPU. The four least significant bits (LSBs), bits 28-31, are set by the CDMAC
to indicate that an interrupt should be handled by the CPU. RX1_Int_Detect,
TX1_Int_Detect, RX0_Int_Detect, and TX0_Int_Detect represent these bits.

The master interrupt enable is set or reset through DCR Writes to the Interrupt register.

The interrupt detect signal is controlled by an up/down counter that counts up as
interrupts are received from the CDMAC and counts down as the CPU processes each
interrupt. The interrupt detect signal remains asserted as long as the counter is greater than
zero. This method is one way to verify that the CPU is keeping up with the CDMAC.

Figure 3-48: CDMAC Interrupt Register Logic

X535_54_113004

+

-
CNTR

R

TX0_Write_Desc_Done

TX0_IntOn_End

DCR_Int_Reg_WE

DCR_WrDBus[31]

RST

TX0_ChannelRST

> 0 TX0_Int_Detect

+

-
CNTR

R

RX0_Write_Desc_Done

RX0_IntOn_End

DCR_Int_Reg_WE

DCR_WrDBus[30]

RST

RX0_ChannelRST

> 0 RX0_Int_Detect

+

-
CNTR

R

TX1_Write_Desc_Done

TX1_IntOn_End

DCR_Int_Reg_WE

DCR_WrDBus[29]

RST

TX1_ChannelRST

> 0 TX1_Int_Detect

+

-
CNTR

R

RX1_Write_Desc_Done

RX1_IntOn_End

DCR_Int_Reg_WE

DCR_WrDBus[28]

RST

RX1_ChannelRST

> 0 RX1_Int_Detect

Q
D

CER

DCR_WrDBus[0]

DCR_Int_Reg_WE

RST

CDMAC_INT

MIE

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 103
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

The CDMAC issues an interrupt if an engine has written back a descriptor and the
descriptor's INT_ON_END bit was asserted. If this happens on the TX0 Engine, bit 31 of
the Interrupt Register is set. The CPU acknowledges the interrupt on the TX0 engine by
issuing a DCR Write to the Interrupt register, writing a logical '1' to bit 31.

Timing Diagrams
The timing diagrams in this section illustrate essential CDMAC functionality. Together
these timing diagrams demonstrate DCR Writes, Port Read and Writes for bursts and
cache-lines, and Tx and Rx Byteshifter operation. The first timing diagram shows a DMA
Process. The following two timing diagrams break the process down into individual DMA
transfers. The following two diagrams show Tx and Rx Byteshifting. The final diagram
shows the way that descriptors are written back in the case of a two-descriptor chain.

CDMAC TX0 DMA Process Timing Diagram

Figure 3-49 is an example of a TX0 DMA process.

Figure 3-49: CDMAC TX0 DMA Process Timing Diagram

0ns 100ns 800ns 90 8.2us 8.3us 8.6us 8.7us 8.8us

DCR_Write

DCR_Ack

DCR_ABus[9:0]

DCR_DBusIn[31:0]

TX0_Busy

TX0_Completed

TX0_INT

P0_AddrReq

P0_AddrAck

P0_Addr[31:0]

P0_Size[1:0]

P0_RNW

P0_wrDataAck_Pos

P0_wrDataAck_Neg

P0_rdDataAck_Pos

P0_rdDataAck_Neg

003003 001 002 020 000 003 02F

00000100 00000000 80000001

0000000000000000 00000180 00001080 00001400 00000000

22 3 2 2

DCR write to clear interruptWrite current descriptor pointer to start engine

TX0 current descriptor pointer is at DCR address 3

Descriptor address in memory

Read descriptor

At address 100

Start B16 transfer

B16 read at address 1000

3 = B16 Request

Engine is busy

Interrupt

Completed processing data

Write back status to descriptor

Write RequestRead Request

X535_55_113004

http://www.xilinx.com

104 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

The CPU issues a DCR_Write to address 0x003, which is the TX0 Current Descriptor
Pointer register. This starts the CDMAC's TX0 Engine and sets the TX0_Busy bit. The
CDMAC then reads the descriptor from memory using an 8-word cache-line read (CL8R)
request on the Port Interface. Once the descriptor is read, the CDMAC reads the data to be
transmitted on the LocalLink interface by issuing 32-word burst read (B16R) requests on
the Port Interface. After all of the data has been read, the CDMAC sets the TX0_Completed
bit, and writes the status back to the descriptor using an 8-word cache-line write (CL8W)
request. Once the status has been written back to memory, if the status contains an asserted
Interrupt On End bit, the CDMAC generates an interrupt to the CPU. The CPU then clears
the interrupt by issuing a DCR_Write to address 0x02F. The P0_wrDataAck signals are
asserted before the P0_AddrReq is asserted. This pushes the data into the MPMC's Write
FIFOs and allows the MPMC to have arbitration that is more efficient.

TX0 Transfer Timing Diagram

Figure 3-50 is an example of a TX0 Transfer. The CDMAC issues an 8-word cache-line read
(CL8R) request to the Port Interface. The descriptor data is passed through to the LocalLink
interface as Header data because this is the first descriptor of a process or the first
descriptor following a descriptor with the End Of Packet bit set. After the descriptor has
been processed, the CDMAC begins issuing 32-word burst read (B16R) requests. The data
is passed to the LocalLink interface as Payload data. The CDMAC continues to issue B16Rs
until the Buffer Length register reaches zero. The End Of Packet bit is set in the status
register, so the CDMAC asserts the TX_EOP and the TX0_EOF signal. Next, the CDMAC
issues an 8-word cache-line write (CL8W) request to the Port Interface to write back the
status register.

Note: The P0_wrDataAck signals are asserted before the P0_AddrReq is asserted. This pushes
the data into the MPMC's Write FIFOs and allows the MPMC to have arbitration that is more efficient.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 105
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

RX0 Transfer Timing Diagram

Figure 3-51 is an example of a RX0 Transfer. The CDMAC issues an 8-word cache-line read
(CL8R) request to the Port Interface. After the descriptor has been read and the RX
LocalLink interface is in the Payload state, the CDMAC instructs the RX LocalLink
interface to begin collecting Payload data from the RX LocalLink interface and writing it to
memory. If the RX0_SOP signal is asserted, the Start Of Packet bit is set in the status
register. If the RX0_EOP signal is asserted, the End Of Packet bit is set in the status register.
To process the Payload data, the CDMAC issues 32-word burst write (B16W) requests until
all Payload data has been written to memory, or until the Buffer Length register reaches 0.
In this example all of the Payload data has been received, as indicated by RX0_EOP.

Figure 3-50: TX0 Transfer Timing Diagram

0ns 600ns 700ns 1.8us 8.0us 8.1us 8.2us 8.3us

P0_AddrReq

P0_AddrAck

P0_Addr[31:0]

P0_Size[1:0]

P0_RNW

P0_wrDataAck_Pos

P0_wrDataAck_Neg

P0_wrDataBE_Pos[3:0]

P0_wrDataBE_Neg[3:0]

P0_wrData_Pos[31:0]

P0_wrData_Neg[31:0]

P0_rdDataAck_Pos

P0_rdDataAck_Neg

P0_rdData_Pos[31:0]

P0_rdData_Neg[31:0]

TX0_SOF

TX0_SOP

TX0_EOP

TX0_EOF

TX0_Src_Rdy

TX0_Dst_Rdy

TX0_D[31:0]

TX0_Rem[3:0]

00000100 00000180 00001080 00001400 00000000

22 3 2 2

F

FF 7 F

XXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXX

0000000000000000 00000000 00000140 00010203 000000F9 00000101

0000000000000000 00001000 00000000 00001004 04050607 000000FA 00000102

0000000000000000 0000000000000140 00010203 00000101

0

Request CL8 read of request Request B16R for payload Clear interrupt

Header data acks

Header data

Start of Frame

Valid header data (active low) Valid payload data

End of Payload

End of Frame

Start of Payload

Byte enable for status byte

Write back footer data

X535_56_113004

http://www.xilinx.com

106 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Because there is no more Payload data to process, the CDMAC instructs the RX LocalLink
interface to collect Footer data and write the status and the application data back to
memory using an 8-word cache-line write (CL8W) request to the Port Interface. The
P0_wrDataAck signals are asserted before the P0_AddrReq is asserted. This pushes the
data into the MPMC's Write FIFOs and allows the MPMC to have arbitration that is more
efficient.

Figure 3-51: RX0 Transfer Timing Diagram

0ns 100ns 1.0us 1.1us 1. 13.2us 13.3us 13.4us 13.5us 13.6us 13.7us 13.8us

P0_AddrReq

P0_AddrAck

P0_Addr[31:0]

P0_Size[1:0]

P0_RNW

P0_wrDataAck_Pos

P0_wrDataAck_Neg

P0_wrDataBE_Pos[3:0]

P0_wrDataBE_Neg[3:0]

P0_wrData_Pos[31:0]

P0_wrData_Neg[31:0]

P0_rdDataAck_Pos

P0_rdDataAck_Neg

P0_rdData_Pos[31:0]

P0_rdData_Neg[31:0]

RX0_SOF

RX0_SOP

RX0_EOP

RX0_EOF

RX0_Src_Rdy

RX0_Dst_Rdy

RX0_D[31:0]

RX0_Rem[3:0]

00000580 00001000 00003B2A 00003BAA 00000000

22 3 3 2

FF 0 F 0 3 F 8 0 F

FF 0 F 0 3 F 0 F

XXXXXXXXXXXXXXXX F87CFAF0 00000000

XXXXXXXXXXXXXXXX A050FAA8 F078FAF8 00000A00

0000000000000000 00000000 00000000

0000000000000000 00001000 000031A7 000032F1

FA000000FA000000 00000000 FA000000

0

Request CL8 read of descriptor

Byte enable (diable) to RAM

Start of Frame

Start of Payload

End of Payload

End of Frame

Write back footer data

Clear INT

Footer BE

X535_57_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 107
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

TX0 Byteshifter Timing Diagram

Figure 3-52 is an example of the TX0 Byteshifter. A descriptor has already been read by the
CDMAC. The Buffer Address register was set to 0x1079. This sets the 3-bit StartOffset
signal to 0x1. In this diagram,0 the first and second 32-word burst read (B16R) transactions
are shown. The first 120 bytes are ignored on P0_rdData_Pos and P0_rdData_Neg. The
cycle that the 122nd byte is valid on P0_rdData_Pos, the last 3 bytes of P0_rdData_Pos is
placed in the last 3 bytes of Port_RdData, as indicated by Set_Px_rdData_Pos. All 4 bytes of
Port_RdData are clock enabled into Port_TX_Out by asserting all 4 bytes of Byte_Reg_CE.
The Byte_Sel signals move the Port_RdData bytes into the correct location. On the cycle
that the 125th byte is valid, the first byte of P0_rdDataNeg is placed in the first byte of
Port_RdData. Again, all 4 bytes are clock enabled into Port_TX_Out by asserting
Byte_Reg_CE. Port_TX_Out now contains the last 3 bytes of P0_rdData_Pos and the first
byte of P0_rdData_Neg in the correct order: 0x01020304. Port_TX_Out is passed on to the
LocalLink interface by asserting the TX0_Src_Rdy signal. The leftover 3 bytes from
P0_rdDataNeg are stored by clock enabling them into Port_TX_Out and deasseting the last
3 bytes of Byte_Reg_CE. These bits are deasserted until the P0_rdDataAck_Pos is asserted
for second B16R. The 3 left-over bytes from the first B16R and the first byte from the second
B16R are passed on to the LocalLink interface by asserting the TX0_Src_Rdy Signal. The
Byte_Reg_CE begins clock enabling all four bytes of Port_RdData as it becomes available.
This data is passed on to the LocalLink interface.

http://www.xilinx.com

108 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Figure 3-52: TX0 Byteshifter Timing Diagram

0ns 20ns 40n 1.06us 1.08u 1.36us 1.38us 1.40us 1.86us 1.88us 1.90us

P0_AddrReq

P0_AddrAck

P0_Addr[31:0]

P0_Size[1:0]

P0_RNW

P0_wrDataAck_Pos

P0_wrDataAck_Neg

P0_wrDataBE_Pos[3:0]

P0_wrDataBE_Neg[3:0]

P0_wrData_Pos[31:0]

P0_wrData_Neg[31:0]

P0_rdDataAck_Pos

P0_rdDataAck_Neg

P0_rdData_Pos[31:0]

P0_rdData_Neg[31:0]

Port_RdData[31:0]

Port_TX_Out[31:0]

Byte_Sel0[1:0]

Byte_Sel1[1:0]

Byte_Sel2[1:0]

Byte_Sel3[1:0]

Byte_Reg_CE[3:0]

CS[3:0]

StartOffset[2:0]

TX0_SOF

TX0_SOP

TX0_EOP

TX0_EOF

TX0_Src_Rdy

TX0_Dst_Rdy

TX0_D[31:0]

TX0_Rem[3:0]

0000018000000180 00001000 000010F9 00001179

22 3 2 2

F

FF

XXXXXXXX

XXXXXXXXXXXXXXXX

0000014000000140 00010203 08090A0B 00010203 08090A0B 10111213

0000100400001004 04050607 0C0D0E0F 0000001E 04050607 0C0D0E0F 14151617

0000014000000140 00010203 04010203 08090A0B 080D0E0F

0000014000000140 00010203 00001D00 01020304 05060708

33 0

22 3

11 2

00 1

FF F F 0 F 1 F

00 1 2 4 5 7 2 3

00 1

0000014000000140 00010203 00001D00 01020304 05060708

0

B16R request

Start of Payload

1st valid word 2nd valid word

2nd B16R1st B16R

Discarding first 0x78 bytes

Data NOT valid in discard stage

Bytes [0 1 2 3] on posedge of DDR RAM

Bytes [4 5 6 7] on negedge of DDR RAM

Recombine data from posedge and negedge to form [4 1 2 3]

Indicates valid bytes

Offset of 1: starting at second byte

Reorder byte positions to form final word [1 2 3 4]

Byte_Selx control muxes for byte reordering

1st burst ends, waiting for 2nd burst

X535_58_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 109
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

RX0 Byteshifter Timing Diagram

Figure 3-53 is an example of the RX0 Byteshifter. A descriptor has already been read by the
CDMAC. The buffer address was set to 0x3076. This sets the 3-bit First_offset signal to 0x6.
In this diagram, the first and part of the second 32-word burst write (B16W) transactions
are shown. The CDMAC stuffs 112 bytes of data into the MPMC's FIFOs by asserting
P0_wrDataAck_Pos and P0_wrDataAck_Neg with the byte enables (P0_wrDataBE_Pos
and P0_wrDataBE_Neg) deasserted.

Four bytes of LocalLink Payload data is collected and shifted by six bytes by asserting
CE_Pos. Because the offset is by six bytes, P0_wrDataAck_Pos is asserted with the byte
enable signals deasserted. P0_wrDataAck_Neg is asserted with the last two byte-enable
signals asserted. From this point on, all byte enables are asserted until the LocalLink
interface indicates that there is no more Payload data, as specified by RX0_EOP, or until the
number of bytes specified by Buffer Length register have been written to memory. The
LocalLink interface stalls between B16W requests by deasserting RX0_Dst_Rdy. When the
CDMAC instructs the Byteshifter to execute a B16W, the data is pushed into the MPMC's
Write FIFOs before the P0_AddrReq is asserted.

http://www.xilinx.com

110 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Figure 3-53: RX0 Byteshifter Timing Diagram

0ns 1.00us 1.30us 1.35us 1.60us 1.65us

P0_AddrReq

P0_AddrAck

P0_Addr[31:0]

P0_Size[1:0]

P0_RNW

P0_wrDataAck_Pos

P0_wrDataAck_Neg

P0_wrDataBE_Pos[3:0]

P0_wrDataBE_Neg[3:0]

P0_wrData_Pos[31:0]

P0_wrData_Neg[31:0]

P0_rdDataAck_Pos

P0_rdDataAck_Neg

P0_rdData_Pos[31:0]

P0_rdData_Neg[31:0]

WrDataBus_Pos[31:0]

WrDataBus_Neg[31:0]

Rx_DataIn[31:0]

wrdatabus_ce_pos[3:0]

wrdatabus_ce_neg[3:0]

CE_Pos

CE_Neg

First_offset[2:0]

RX0_SOF

RX0_SOP

RX0_EOP

RX0_EOF

RX0_Src_Rdy

RX0_Dst_Rdy

RX0_D[31:0]

RX0_Rem[3:0]

0000058000000580 00003076 00003000 000030F6

22 3

FF C 0 F 0

FF C 0 F 0

XXXXXXXXXXXXXXXX 0000FA08 0000FA18 0000FA28

XXXXXXXXXXXXXXXX 0000FA10 0000FA20

0000000000000000 00000540

0000307600003076 00003076

XXXXXXXXXXXXXXXX 0000FA08 0000FA18 0000FA28

XXXXXXXXXXXXXXXX 0000FA10 0000FA20 0000FA30

FA000000FA000000 FA180000

00 0 0 C 3 C 0 3 C 3 C 3 C

00 0 3 C 3 0 C 3 C 3 C 3

00 6

FA000000FA000000 FA180000

0

Start of Frame

Start of Payload

1st valid word

Data ack invalid data into FIFO

Byte disable invalid data

Ack 1st partially valid word

Indicates the last 2 bytes valid

1st partially valid word

1st B16W to RAM when FIFO is full

2nd valid word

Indicates all bytes valid for 2nd word

1st partially valid word

2nd valid word

Clock enable for byteshifter registers

Ack 4th valid word

4th valid word

4th valid word

Offset of 6: 1st byte starts on 3rd word of negedge

X535_59_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 111
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

RX0 Descriptor Write Back for a 2-Descriptor Chain Timing Diagram

Figure 3-54 is an example of how RX Descriptor Write Back works for a 2-Descriptor Chain.

Figure 3-54: RX0 Descriptor Write Back for a 2-Descriptor Chain

0ns 100ns 200ns 300ns 400ns 500 7.0us 7.1us 7.2us

P0_Address[0:31]

P0_Length[0:31]

P0_AddrReq

P0_AddrAck

P0_Addr[31:0]

P0_Size[1:0]

P0_RNW

P0_wrDataAck_Pos

P0_wrDataAck_Neg

P0_wrDataBE_Pos[3:0]

P0_wrDataBE_Neg[3:0]

P0_wrData_Pos[31:0]

P0_wrData_Neg[31:0]

P0_rdDataAck_Pos

P0_rdDataAck_Neg

P0_rdData_Pos[31:0]

P0_rdData_Neg[31:0]

Status_Out_RX0[0:31]

CDMAC_INT

RX0_Completed

RX0_Busy

RX0_SOF

RX0_SOP

RX0_EOP

RX0_EOF

RX0_Src_Rdy

RX0_Dst_Rdy

RX0_D[31:0]

RX0_Rem[3:0]

0000350000003500 00000500 00000580 00000520 000005A0 00004500 00000520 00000000

0000000000000000 000004A0 00000500 00000520 000004A0 00000500 00000000 00000520

0000350000003500 00000500 00000580 00000520 000005A0 00004500 00000520 00000000

33 2 3 2

FF F 8 0 F

FF 7 F F 0 F

FA78F000FA78F000 FAF0F078 00000000

FA7CF800FA7CF800 FA7CF800 FAF8F87C 00000A00

0000000000000000 00000000

0000400000004000 0000355C

1A0000001A000000 76000000 74000000

FA000000FA000000 00000000 FA000000

0

0x187CF800

Only 1st byte (0x18) is written back to status flied of descriptor

Data ack for status write back

CL8W of descriptor

At 1st desc. address of 0x500

Address counter updated for next descriptor

CL8R of next descriptor

Byte-enable for status and footer

Write back status and footer

End of Frame

Write back payload length

CL8W of descriptor

At 2nd desc. addr

0xA00: length of payload

Address counter updated for current descriptor

0x74000000

X535_60_113004

http://www.xilinx.com

112 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

The first descriptor was set up with the Buffer Address register set to 0x3000 and the Buffer
Length register set to 0x500. The P0_Address bus contains the address in memory that the
CDMAC accesses next. The P0_Length bus contains the number of bytes left to read or
write. In the beginning of this diagram, P0_Length has decremented until it reached 0
bytes. Because there is still more LocalLink Payload data to write to memory and the Stop
On End bit is not set in the status register, the status is written back to memory issuing an
8-word cache-line write (CL8W). The only byte enables that are asserted are for the status.
The Start Of Payload bit is asserted in the status register because the LocalLink interface
asserted RX0_SOP while processing this descriptor. After this descriptor is written back to
memory, the P0_Address is updated for the next descriptor. The CDMAC then reads the
descriptor from this location in memory and process the descriptor in the normal fashion.
The LocalLink Payload length is 0xA00 bytes, of which 500 bytes were processed by the
first descriptor. The second descriptor has the Buffer Address register set to 0x4000 and the
length set to 0xA00. This means that 0x500 bytes are processed by the second descriptor
before the LocalLink interface issues the RX0_EOP signal. This sets the End Of Packet bit in
the status register. The CDMAC then stops the transfer, collect the footer data from the
LocalLink interface, and use this to write the descriptor back to memory. The byte enables
for the status register and the application-defined data is asserted. As the Interrupt On End
bit is set, an interrupt is generated and sent to the CPU.

Simulation and Verification
Two testbenches are provided for the CDMAC. The first tests the data path and the second
is a top-level testbench that tests the entire CDMAC. All of the source code and testbenches
are located in the /gsrd/edk_libs/gsrd_lib/pcores/cdmac_v1_00_a directory.

CDMAC Data Path Module Testbench

The data path testbench verifies the basic operation of the CDMAC data path module. To
run the data path tests, execute the following instructions:

prompt% cd cdmac_v1_00_a/test/bin
prompt% run_data_path_test <random_seed>
<number_of_random_instructions> <number_of_iterations>

The run_data_path_test script runs through a set of basic tests, then runs a set of randomly
generated instructions. The number_of_random_instructions parameter specifies the
number of random instructions to be generated for each iteration of the test. The
number_of_iterations parameter specifies the number of times the test should be run. The
random_seed parameter specifies the random number seed for the test and is incremented
by 1 after each iteration.

CDMAC Top-Level Testbench

The top_level testbench executes four tests. For each test the LocalLink Data Generator
produces all of the data received on the LocalLink interface. Each testbench specifies a set
of stimulus, which is read into the testbench. While running each test, the testbench
produces a set of output files, which are compared against a set of golden files. Please take
the list of known issues into account when running or modifying these tests.

run_top_test_patterns

The first test is called run_top_test_patterns. This test checks the basic functionality of the
CDMAC in the following ways.

• Tests Buffer Lengths of 8 bytes through 263 bytes for the TX0 engine.

• Tests Buffer Lengths of 8 bytes through 263 bytes for the TX1 engine.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 113
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

• Test Buffer Addresses with offsets of 0 bytes through 256 bytes for the TX0 engine.

• Test Buffer Addresses with offsets of 0 bytes through 256 bytes for the TX1 engine.

• Tests Buffer Addresses with offsets of 0 bytes through 256 bytes and Buffer Lengths of
0xA00, 0xA01, or 0xAFF for the RX0 engine.

• Tests Buffer Addresses with offsets of 0 bytes through 256 bytes and Buffer Lengths of
0xA00, 0xA01, or 0xAFF for the RX1 engine.

To run this test, execute the following instructions:

prompt% cd cdmac_v1_00_a/test/bin

prompt% run_top_test_patterns

run_top_test

The second test, run_top_test, generates a set of random instructions as stimulus.

To run this test, execute the following instructions:

prompt% cd cdmac_v1_00_a/test/bin
prompt% run_top_test test <random_seed>
<number_of_random_instructions_tx0>
<number_of_random_instructions_tx1>
<number_of_random_instructions_rx0>
<number_of_random_instructions_rx1> <number_of_iterations>

The run_top_test script tests a set of randomly generated instructions.

The number_of_random_instructions parameters specify the number of random
instructions to be generated on each engine for each iteration of the test.

The number_of_iterations parameter specifies the number of times the test should be run.

The random_seed parameter specifies the random number seed for the test and is
incremented by 1 after each iteration.

run_top_test_byte

The third test, run_top_test_byte, is similar to run_top_test. Instead of randomly
generating a set of instructions as stimulus, this test allows exact instructions to be
specified.

To run this test, edit cdmac_v1_00_a/test/bin/top_mem_byte.txt to specify descriptor and
memory contents, then edit cdmac_v1_00_a/test/bin/top_TX0_inst_byte.txt to specify the
instructions, and execute the following instructions:

prompt% cd cdmac_v1_00_a/test/bin
prompt% run_top_test test_byte

run_top_test_timer

The fourth test, run_top_test_timer, is similar to run_top_test. Instead of randomly
generating a set of instructions as stimulus, this test allows the exact stimulus to be
specified at every clock cycle.

To run this test, edit cdmac_v1_00_a/hdl/verilog/testbench_CDMAC_timer.v with the
desired instructions, and execute the following instructions:

prompt% cd cdmac_v1_00_a/test/bin
prompt% run_top_test test_timer

http://www.xilinx.com

114 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Directory Structure
data

o cdmac_v2_1_0.mpd
o cdmac_v2_1_0.pao

hdl
o verilog

cdmac.v
cdmac_cntl.v
cdmac_datapath.v

test
o bin

data_path_check_file.txt
gen_color_bar_tx_check.pl
gen_data_path_inst.pl
gen_data_path_stimulus.pl
gen_data_path_stimuls_check.pl
gen_top_inst.pl
gen_top_stimulus.pl
gen_top_test_patterns.pl
gen_top_test_patterns_rx_mem_check.pl
gen_top_tx_check.pl
gen_top_tx_stimulus.pl
process_data_path_check_files.pl
process_top_mem_files.pl
process_top_test_patterns_mem_files.pl
process_top_tx_check_files.pl
run_color_bar_tx_check
run_data_path_test
run_top_test
run_top_test_atomic
run_top_test_byte
run_top_test_patterns
run_top_test_timer
top_mem.txt
top_payload2.txt
data_path_sim

func_sim
o compile_ver.f
o func_sim_defs.v
o mti_sim.do

top_atomic_sim
func_sim

o compile_ver.f
o func_sim_defs.v
o mti_sim.do

top_byte_sim
func_sim

o compile_ver.f
o func_sim_defs.v
o mti_sim.do

top_patterns_sim
func_sim

o compile_ver.f
o func_sim_defs.v
o mti_sim.do

top_sim
func_sim

o compile_ver.f

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 115
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

o func_sim_defs.v
o mti_sim.do

top_timer_sim
func_sim

o compile_ver.f
o func_sim_defs.v
o mti_sim.do

o func_sim
wave_data_path.do
wave_top.do

o hdl
verilog

ll_data_gen.v
mpmc_fifo_4.v
mpmc_fifo_32.v
mpmc_fifo_32_be.v
mpmc_fifo_32_rdcntr.v
mpmc_fifo_rdcntr.v
testbench_CDMAC_data_path.v
testbench_CDMAC_timer.v
testbench_CDMAC_top.v

Using the CDMAC in a System
The CDMAC is normally instanciated along with the MPMC. The reference systems
provided with this application note show how it is connected and used. By examining the
contents of the hardware source files, simulation, and test software that is provided, one
can better understand the functionality of the CDMAC and how it is used.

There are many methods of use for the CDMAC. Each method depends upon what the
CDMAC is connected to, and what the data rate requirements are. The provided reference
systems show a typical example of a video application wherein the CDMAC is connected
to a set of video devices that are streaming in data. In XAPP536, “Gigabit System Reference
Design,” the CDMAC illustrates a typical Ethernet communication system.

The DMA engines contained in the CDMAC are independent of one another. This allows
the software that is manipulating the DMA descriptors to not have to know about other
channels. This is a very important facility for device driver development. The features
currently provided in the CDMAC are designed to help further offload the CPUs required
load to manage DMA traffic. The preferred methods of operation (as the CDMAC is
currently implemented) are best observed when analyzing the stand-alone software
applications that are provided with this application note. These are documented in
Chapter 5, “Software Applications Contained in the GSRD.”

Software
See the “CDMAC Software Model” for Programmer's Model and Register usage of the
CDMAC.

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp536.pdf

116 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Module Port Interface

Table 3-8: CDMAC Parameters

Parameter Default Value Description

DCR_UPPER_ADDRESS [0:3] 0000 Upper 4 bits of the base address for the DCR registers.

P0_UPPER_ADDRESS [4:0] 0_0000 Upper 5 bits of the Port 0 memory address space.

P1_UPPER_ADDRESS [4:0] 0_0000 Upper 5 bits of the Port 1 memory address space.

COMPLETED_ERR_TX0 1

0 = Disables completed bit error checking
1 = Enables completed bit error checking
If the completed bit in the status register is set while reading the
TX0 descriptor, an error is generated.

COMPLETED_ERR_RX0 1

0 = Disables completed bit error checking
1 = Enables completed bit error checking
If the completed bit in the status register is set while reading the
RX0 descriptor, an error is generated.

COMPLETED_ERR_TX1 1

0 = Disables completed bit error checking
1 = Enables completed bit error checking
If the completed bit in the status register is set while reading the
TX1 descriptor, an error is generated.

COMPLETED_ERR_RX1 1

0 = Disables completed bit error checking
1 = Enables completed bit error checking
If the completed bit in the status register is set while reading the
RX1 descriptor, an error is generated.

INSTANTIATE_TIMER_TX0 1

0 = Disables the interrupt timeout counter
1 = Disables the interrupt timeout counter
If the value in the TX0 Interrupt Timeout Register is reached, a
timeout occurs.

INSTANTIATE_TIMER_RX0 1

0 = Disables the interrupt timeout counter
1 = Disables the interrupt timeout counter
If the value in the RX0 Interrupt Timeout Register is reached, a
timeout occurs.

INSTANTIATE_TIMER_TX1 1

0 = Disables the interrupt timeout counter
1 = Disables the interrupt timeout counter
If the value in the TX1 Interrupt Timeout Register is reached, a
timeout occurs.

INSTANTIATE_TIMER_RX1 1

0 = Disables the interrupt timeout counter
1 = Disables the interrupt timeout counter
If the value in the RX1 Interrupt Timeout Register is reached, a
timeout occurs.

PRESCALAR [7:0] 0110_0100
Scales the Interrupt Timeout Register values by the
PRESCALAR value.

Table 3-9: CDMAC System Signals

Signal I/O Description

CLK Input System Clock.

RST Input System Reset.

CDMAC_INT Output CDMAC Interrupt

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 117
XAPP535 (v1.1) December 10, 2004

Communication Direct Memory Access Controller (CDMAC)
R

Table 3-10: CDMAC DCR Signals

Signal I/O Description

DCR_ABus [0:9] Input Address bus

DCR_DBusIn [0 :31] Input Write data bus

DCR_Write Input Write request

DCR_Read Input Read request

DCR_Ack Output Write/Read acknowledge

DCR_DBusOut [0:31] Output Read data bus

Table 3-11: CDMAC Port Interface Signals

Signal I/O Description

Px_AddrReq Output Port X Address Request

Px_AddrAck Input
Port X Address Acknowledge

Valid for one clock cycle

Px_Addr [31:0] Output
Port X Address

Valid during Address Request

Px_RNW Output

0 = Port X Write

1 = Port X Read

Valid during Address Request

Px_Size [1:0] Output

00 = Port X Single-Word Transfer

01 = Port X 4-Word Cache-Line Transfer

10 = Port X 8-Word Cache-Line Transfer

11 = Port X 32-Word Burst Transfer

Px_rdData_Rdy Input
Indicates that data for a particular request on Port X is ready. Valid for one
clock cycle.

Px_rdData_Pos [31:0] Input Port X Read Data (first word out of memory)

Px_rdData_Neg [31:0] Input Port X Read Data (second word out of memory)

Px_rdWdAddr_Pos [4:0] Input
Px_Address + Px_rdWdAddr_Pos = Address for Px_rdData_Pos. Only
valid during single-word and cache-line transfers.

Px_rdWdAddr_Neg[4:0] Input
Px_Address + Px_rdWdAddr_Neg = Address for Px_rdData_Neg. Only
valid during single-word and cache-line transfers.

Px_rdDataAck_Pos Output
Indicates CDMAC has consumed Px_rdData_Pos and that the connecting
device should output the next word of data. Valid for one clock cycle.

Px_rdDataAck_Neg Output
Indicates CDMAC has consumed Px_rdData_Neg and that the connecting
device should output the next word of data. Valid for one clock cycle.

Px_rdComp Output
Indicates that all data for a particular request on Port X has been consumed
by the CDMAC.

Px_rd_fifo_busy Input Indicates that the CDMAC is not allowed to assert Px_rd_rst.

Px_rd_rst Output
Can be asserted when Px_rd_fifo_busy is not asserted and the CDMAC
does not need more data from a particular transfer.

http://www.xilinx.com

118 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Px_wrData_Pos [31:0] Output Port X Write Data (first word out of memory)

Px_wrData_Neg [31:0] Output Port X Write Data (second word out of memory)

Px_wrDataBE_Pos [3:0] Output Byte Enables for Px_wrData_Pos. Active Low.

Px_wrDataBE_Neg[3:0] Output Byte Enables for Px_wrData_Neg. Active Low.

Px_wrDataAck_Pos Output
Indicates CDMAC has valid data on Px_wrData_Pos. Can be asserted only
while Px_wr_fifo_full_Pos is not asserted. Valid for one clock cycle.

Px_wrDataAck_Neg Output
Indicates CDMAC has valid data on Px_wrData_Neg. Can be asserted only
while Px_wr_fifo_full_Neg is not asserted. Valid for one clock cycle.

Px_wrComp Output
Indicates that all data for a particular request on Port X has been sent out
of the CDMAC.

Px_wr_fifo_busy Input Indicates that the CDMAC is not allowed to assert Px_wr_rst

Px_wr_fifo_full_Pos Input Indicates that Px_wrDataAck_Pos is not allowed to be asserted.

Px_wr_fifo_full_Neg Input Indicates that Px_wrDataAck_Neg is not allowed to be asserted.

Px_wr_rst Output
If the CDMAC asserts Px_wrDataAck’s early (before issuing a request), the
CDMAC can assert Px_wr_rst to clear the data so that it is not written to
memory. This can only be asserted while Px_wr_fifo_busy is not asserted.

Table 3-11: CDMAC Port Interface Signals (Continued)

Signal I/O Description

Table 3-12: CDMAC LocalLink Signals

Signal I/O Description

TXn_D[31:0] Output TXn Data bus. Valid while TXn_Src_Rdy and TXn_Dst_Rdy are asserted.

TXn_Rem[3:0] Output TXn remainder. Data mask for last word of header, payload, or footer.

TXn_SOF Output TXn start of frame. Active low.

TXn_EOF Output TXn end of frame. Active low.

TXn_SOP Output TXn start of payload. Active low.

TXn_EOP Output TXn end of payload. Active low.

TXn_Src_Rdy Output
TXn source ready. Active low. Indicates CDMAC has valid data on the TXn
LocalLink outputs.

TXn_Dst_Rdy Input
TXn Destination ready. Active low. Indicates connecting device is ready to
receive data.

RXn_D[31:0] Input RXn Data bus. Valid while RXn_Src_Rdy and RXn_Dst_Rdy are asserted.

RXn_Rem[3:0] Input RXn remainder. Data mask for last word of header, payload, or footer.

RXn_SOF Input RXn start of frame. Active low.

RXn_EOF Input RXn end of frame. Active low.

RXn_SOP Input RXn start of payload. Active low.

RXn_EOP Input RXn end of payload. Active low.

RXn_Src_Rdy Input
RXn source ready. Active low. Indicates connecting device has valid data on the
RXn LocalLink outputs.

RXn_Dst_Rdy Output RXn Destination ready. Active low. Indicates CDMAC is ready to receive data.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 119
XAPP535 (v1.1) December 10, 2004

PLB to MPMC Personality Module
R

PLB to MPMC Personality Module

Overview
The PLB to MPMC Personality Module is designed to connect a standard CoreConnect
PLB Master device to the MPMC’s Port Interface. It implements the necessary slave PLB
logic and buffering to support the subset of PLB transactions commonly used by PLB
masters. The PLB to MPMC Personality Module is designed for high-performance
applications where low latency and high throughput are desired.

Features
• 64-bit PLB master interface

• Supports single data beat or cacheline PLB data transfers (4 or 8 words)

• Supports pipelined read transactions for improved performance of back-to-back reads

Related Documents
The IBM CoreConnect™ 64-Bit Processor Local Bus: Architecture Specification provides
additional information.

High-Level Block Diagram
Figure 3-55 shows the high-level block diagram for the PLB to MPMC Personality Module.
This module translates PLB Master requests into MPMC Port Interface requests.

Hardware

Architecture

Figure 3-55 shows a high-level block diagram of the design. Pipeline registers buffer
address, read data, and write data paths between the PLB and MPMC Ports. The pipeline
registers add an additional latency cycle but help to allow for higher throughputs. The
control logic contains simple logic, a FIFO, and counters for managing the flow of data,
reporting errors, and generating the necessary sequence of signal handshaking. The design
assumes that the MPMC and PLB interfaces run off the same system clock.

The MPMC PLB Interface is designed to translate standard PLB memory transactions into
equivalent MPMC transactions. The PLB transactions supported are 4 and 8 word
cacheline transfers and single data beat (non-burst) transfers. These transactions are
supported by a number of PLB masters including the PPC405. Transfer qualifiers other
than Mn_RNW and Mn_size are ignored (for example: Mn_compress, Mn_guarded,
Mn_Ordered).

PLB transactions are immediately acknowledged by the control logic unless it is busy
processing a previous transaction. Once a transaction is acknowledged on the PLB side, the
address (Port_Addr), read /write flag (Port_RNW) and size (Port_Size) information are
pipelined and presented to the MPMC along with the Port_AddrReq signal asserted. The
signal latch_plb_xfer_qual controls this pipeline register. Once the MPMC responds with
Port_AddrAck, the control logic issues the necessary sequence of control signals to
perform the corresponding data transfer. Since PLB transactions are immediately
acknowledged and then forwarded to the MPMC, the Mn_abort signal has a limited

http://www.xilinx.com

120 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

window in which the PLB master can assert it before the transaction is accepted. This
reduces the ability of the PLB master to cancel unneeded transactions late into a data
transfer, but allows the MPMC to operate more efficiently and at higher clock rates since
combinatorial bypass paths associated with abort handling logic can be removed.

Since the MPMC contains FIFOs to hold write data and write byte enables, the PLB MPMC
interface supports posted write (for example “fire and forget”) transactions. This allows
write transactions to be buffered and completed on the PLB side before the data has been
written to memory. The advantage of posted writes is that the PLB master is then free to
begin the next transaction, thus reducing latency. The control logic contains counters that
help generate the necessary sequence of PLB_MnWrDAck, Port_wrDataAck, and
Port_wrComp signals to pipeline the write data and byte enables into the MPMC. Pipeline
registers also handle the process of splitting the 64 bit PLB write data into two 32-bit buses
with requisite positive and negative edge clocking.

The 32-bit positive and negative edge clocked read data from the MPMC is pipelined and
reassembled into the single 64-bit PLB data path. Once the MPMC signals that read data is
available by asserting Port_rdDataRdy, counters in the control logic handle the sequencing
of Port_rdDataAck, Port_rdComp, and PLB_MnRdDAck signals to pull data out of the

Figure 3-55: PLB to MPMC Personality Module High-Level Block Diagram

X535_61_113004

CE

Mn_size[0:1]
Mn_RNW
Mn_Abus[0:31]

Port_Size[1:0]
Port_RNW

Port_Addr[31:0]

Control Logic

la
tc

h_
pl

b_
xf

er
_q

ua
l

Mn_abort
Mn_request

PL B_MnAddrAck
PLB_MnWrDAck

Port_AddrReq
Port_AddrAck

Port_wrDataAck_Pos/Neg

Port_wrComp

Port_wrDataBE_Pos[3:0]

Mn_BE[0:7]

0xFF

0x00

Port_wrDataBE_Neg[3:0]

Port_wrData_Pos[31:0]

Port_wrData_Neg[31:0]

CE
Mn_wrDBus[0:63]

Port_rdData_Pos/Neg[31:0]PLB_Mn_rdDBus[0:63]
Port_rdWdAddr_Pos/Neg[3:0]PL B_Mn_rdWdAddr[0:3]

PL B_MnRdDAck

Port_rdDataAck_Pos/Neg

Port_rdComp

Port_rdDataRdy

PL B_MnBusy
PLB_MnErr

PLB
Port

MPMC
Port

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 121
XAPP535 (v1.1) December 10, 2004

PLB to MPMC Personality Module
R

MPMC's FIFOs and send them to the PLB master. In order to better support transaction
pipelining of back to back read transfers, FIFOs in the control logic can queue up to two
outstanding PLB read transactions. This FIFO is unwound as the MPMC signals
Port_rdDataRdy to begin completion of each of the queued read transactions. The effect of
pipelined read transactions is to reduce their effective latency and free up the PLB master
to issue subsequent transactions. Target-word-first PLB cacheline reads are also supported.

The PLB MPMC interface has the ability to signal address errors in case the PLB master
issues a request to an address not serviced by the MPMC. In the case of an address error,
the transaction is completed using a "dummy" or placeholder transaction to the MPMC but
with the PLB_MnErr flag being asserted. This allows the normal control logic to be used to
generate the correct number of read or write data acknowledges thus reducing the amount
of additional error handling logic. The only difference is that PLB_MnErr is asserted as
well. Since reads from the MPMC have no side effects, the use of a dummy read transaction
does not effect data in memory. For writes causing address errors, all byte enables are
disabled so that the dummy write has no effect on memory. Address errors are detected
using an address comparator configured via the module's parameters.

Simulation and Verification
A stand-alone testbench is provided with the design to demonstrate the functionality of
the PLB MPMC interface in a small test environment. The testbench executes a number of
PLB side read/write transactions while behavioral logic in the testbench emulates the
expected behavior of the MPMC at its Port Interface.

After writing data on PLB, it is read back and compared against what was written. Any
data comparison errors are reported. The PLB master that performs reads and writes
comes from the CoreConnect Toolkit and is controlled by a script file. Refer to the
README.txt file located in the design files under the test directory.

Module Port Interface

Table 3-13: PLB to MPMC Interface Parameters

Name Default Description

C_BASE_ADDR 0x00000000
32-bit PLB base address, must be aligned on an address
boundary equal to the decoder size specified below.

C_ADDR_MASK 0xF8000000

Address Decoder Mask Bits:

0x0000_0000 => 4GB 0x8000_0000 => 2GB

C000_0000 => 1GB

E000_0000 => 512MB

F000_0000 => 256MB F800_0000 => 128MB

…

Table 3-14: PLB to MPMC Global Signals

Name Direction Description

CLK Input System Clock

RESET Input System Reset

http://www.xilinx.com

122 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Table 3-15: PLB to MPMC Port Interface Signals

Name Direction Description

Port_Addr [31:0] Output Address

Port_AddrAck Input Address Acknowledge

Port_AddrReq Output Address Request

Port_rdComp Output Read Complete

Port_rdData_Neg [31:0] Input Read Data, Negative Clock Edge

Port_rdData_Pos [31:0] Input Read Data, Positive Clock Edge

Port_rdDataAck_Neg Output Read Data Acknowledge, Negative Clock Edge

Port_rdDataAck_Pos Output Read Data Acknowledge, Positive Clock Edge

Port_rdDataRdy Input Read Data Ready

Port_rdWdAddr_Neg[4:0] Input Read Word Address, Negative Clock Edge

Port_rdWdAddr_Pos[4:0] Input Read Word Address, Positive Clock Edge

Port_RNW Output Read/Not Write

Port_Size[1:0] Output Size

Port_wrComp Output Write Complete

Port_wrData_Neg[31:0] Output Write Data, Negative Clock Edge

Port_wrData_Pos[31:0] Output Write Data, Positive Clock Edge

Port_wrDataAck_Neg Output Write Data Acknowledge, Negative Clock Edge

Port_wrDataAck_Pos Output Write Data Acknowledge, Positive Clock Edge

Port_wrDataBE_Neg[3:0] Output Write Data Byte Enables, Negative Clock Edge

Port_wrDataBE_Pos[3:0] Output Write Data Byte Enables, Positive Clock Edge

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 123
XAPP535 (v1.1) December 10, 2004

PLB to MPMC Personality Module
R

Table 3-16: PLB to MPMC, PLB Interface Signals

Name Direction Description

 Mn_abort Input Master abort bus request indicator

 Mn_ABus [0:31] Input Master address bus

 Mn_BE [0:7] Input Master byte enables

 Mn_busLock Input Master bus lock*

 Mn_compress Input Master compressed data transfer indicator*

 Mn_guarded Input Master guarded transfer indicator*

 Mn_lockErr Input Master lock error indicator*

 Mn_msize [0:1] Input Master data bus size*

 Mn_ordered Input Master synchronize transfer indicator*

 Mn_priority [0:1] Input Master bus request priority*

 Mn_rdBurst Input Master burst read transfer indicator*

 Mn_request Input Master bus request

 Mn_RNW Input Master read/not write

 Mn_size[0:3] Input Master transfer size

 Mn_type [0:2] Input Master transfer type*

 Mn_wrBurst Input Master burst write transfer indicator*

 Mn_wrDBus [0:63] Input Master write data bus

 PLB_MnAddrAck Output PLB master address acknowledge

 PLB_MnBusy Output PLB master slave busy indicator

 PLB_MnErr Output PLB master slave error indicator

 PLB_MnRdBTerm Output PLB master terminate read burst indicator*

 PLB_MnRdDAck Output PLB master read data acknowledge

 PLB_MnRdDBus [0:63] Output PLB master read data bus

 PLB_MnRdWdAddr[0:3] Output PLB master read word address

 PLB_MnRearbitrate Output PLB master bus rearbitrate indicator*

 PLB_Mnssize [0:1] Output PLB slave data bus size*

 PLB_MnWrBTerm Output PLB master terminate write burst indicator*

 PLB_MnWrDAck Output PLB master write data acknowledge

Notes:
1. * Denotes PLB port signal defined in the PLB Specification, but is either unused or tied to a constant inside this module.

http://www.xilinx.com

124 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

DCR to OPB Bridge

Overview
The DCR to OPB Interface translates DCR transactions to OPB transactions. It allows
simple OPB devices to be easily connected to the DCR interface of the PPC405 or other
DCR master thus eliminating the need for more complex full-featured bus bridges. This
document describes a "Lite" or simplified implementation of this design that only supports
basic OPB devices that conform to various transaction restrictions. In particular, only 32-
bit, fixed latency OPB transactions are supported. Many commonly used OPB devices such
as UARTs, GPIOs, and Interrupt Controllers are compatible with the DCR to OPB Interface
module.

Features
• 32-bit DCR slave interface

• Direct connection to a 32-bit OPB slave without an OPB arbiter

• Configurable address decode and address offset

Related Documents
The following documents provide additional information

• IBM CoreConnect™ 64-Bit On-Chip Peripheral Bus: Architecture Specifications

• IBM CoreConnect™ 32-Bit Device Control Register Bus: Architecture Specifications

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 125
XAPP535 (v1.1) December 10, 2004

DCR to OPB Bridge
R

High-Level Block Diagram
Figure 3-56 shows the high-level block diagram for the DCR to OPB bridge. This module
translates the DCR bus into an OPB master so that OPB slave peripherals can be easily
hooked up. The DCR to OPB Bridge is used in the reference systems to connect the OPB
UART Lite and OPB GPIO peripherals. It is also possible to simply build native DCR based
peripherals, rather than use this bridge. However the use of the bridge allows connection
of commonly available OPB peripherals. The bridge itself consumes very little FPGA area
(~40 slices).

Figure 3-56: DCR to OPB Bridge High-Level Block Diagram

X535_62_113004

Control
Logic

DCR Side OPB Side

DCR_DBusOut

Sl_DBus

M_DBus

M_Select

Sl_retry

Sl_xferAck

Sl_errAck

Address
Comparator

DCR_Ack

DCR_Write

DCR_DBusIn

M_RNWDCR_Read

M_ABusDCR_ABus

DCR to OPB
Address Offset

http://www.xilinx.com

126 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Hardware

Architecture

Figure 3-56 shows a high-level block diagram of the design. Pipeline registers buffer
address, read data, and write data paths between the DCR and OPB Interface Ports. The
pipeline registers add an additional latency cycle in each direction but help to allow for
higher throughputs and improved timing. The control logic contains simple logic for
managing the flow of data and generating the necessary sequence of signal handshaking.
The design assumes that the DCR and OPB interfaces run off the same system clock.

The DCR to OPB Interface is designed to translate standard DCR transactions into
equivalent OPB transactions. The control logic decodes the DCR address during the rising
edge of DCR_Read or DCR_Write and initiates the OPB transaction if there is an address
comparator match. Once an OPB transaction is acknowledged, the DCR transaction is then
acknowledged and any necessary data is returned. In the transaction is destined for
another DCR device (address comparator miss) a multiplexer on the DCR_DBusOut path
allows DCR data to be bypassed through to the other device. In order to keep the logic
simple and to account for feature differences between the two buses, there are some
restrictions on the behavior of the attached OPB device that are described below.

The DCR specification permits only 32-bit data transfers with no provisions for byte
enables. Therefore, only full words can be read or written to the OPB slave device. OPB
slaves requiring 1, 2, or 3 byte transfers are not supported.

A DCR master initiating a DCR transaction must receive a response within 16 DCR clock
cycles (or 64 CPU clock cycles for the PPC405). This requires that the OPB slave be able to
acknowledge the OPB transaction within a window of time sufficient to take into account
two cycles of pipeline delay through the bridge in additional to any pipeline delays present
in the DCR chain itself. OPB slave devices that use the OPB timeout suppress signal or
have long acknowledge delays are not compatible.

The concept of retry or bus error is not part of the DCR specification. Therefore, an OPB
slave device response of Sl_retry or Sl_errAck is be communicated back to the DCR master
as such. These signals are treated the same as the normal transaction acknowledge with
Sl_xferAck.

A parameterizeable interface allows the user to specify the range of DCR addresses to be
decoded and acknowledged by the DCR to OPB Interface. The DCR address decoder must
be a power of 2 in size with the address aligned on that power of 2 boundary. In addition
to the DCR address decode, a two's complement offset value can be specified to translate
the DCR address to an OPB address. Since the DCR address space is limited to 1024 words,
the user should be careful to use relatively small addressing windows for the OPB devices.

Generally, a separate DCR to OPB Bridge should be used for each OPB slave device to be
attached to the DCR chain. This arrangement provides the most flexibility for setting up
narrow addressing windows and different OPB address offsets. However, if multiple OPB
slaves occupy a small enough range of addresses, it is possible for the OPB slaves to share
a single DCR to OPB Interface. To do so, simply OR together the "sl_*" signals from the
OPB slaves and connect the output of the OR logic to the corresponding signals of the DCR
to OPB Interface.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 127
XAPP535 (v1.1) December 10, 2004

DCR to OPB Bridge
R

Module Port Interface

Table 3-17: DCR to OPB Bridge Parameters

Name Default Description

C_DCR_BASE_ADDR[0:9] 0x000
10-bit DCR base address, must be aligned on an address
boundary equal to the decoder size specified below.

C_DCR_ADDR_MASK[0:9] 0x3F8

DCR Address Decoder Mask Bits:
0x000 => 1K Words (4 KB)
0x200 => 512 Words (2 KB)
…
0x3F8 => 8 Words (32 Bytes)
0x3FC => 4 Words (16 Bytes)
0x3FE => 2 Words (8 Bytes)
0x3FF => 1 Word (4 Bytes)

C_OFFSET[0:31] 0x00000000
Twos complement address offset to translate from DCR
address to OPB address.

Table 3-18: DCR to OPB Bridge Global Signals

Name Direction Description

RST Input System Reset

SYS_dcrClk Input DCR Clock

Table 3-19: DCR to OPB Bridge DCR Interface Signals

Name Direction Description

DCR_ABus[0:9] Input DCR Address Bus

DCR_Ack Output DCR Acknowledge

DCR_DbusIn[0:31] Input DCR Data Bus In

DCR_DBusOut[0:31] Output DCR Data Bus Out

DCR_Read Input DCR Read Strobe

DCR_Write Input DCR Write Strobe

Table 3-20: DCR to OPB Bridge, OPB Interface Signals

Name Direction Description

M_ABus [0:31] Output Master address bus

M_BE [0:3] Output Master byte enables (Tied off to constant 0xF)

M_DBus [0:31] Output Master write data bus

M_RNW Output Master read not write

M_select Output Master bus request

M_seqAddr Output Master sequential address (Tied off to constant 0)

Sl_DBus [0:31] Input Slave read data bus

Sl_errAck Input Slave error acknowledge

Sl_retry Input Slave bus cycle retry

Sl_xferAck Input Slave transfer acknowledge

http://www.xilinx.com

128 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

LocalLink TFT Controller

Overview
The LocalLink TFT LCD Controller is a hardware display controller for a 640x480
resolution VGA screen. It is capable of showing up to 256K colors and is designed for the
NEC TFT Color LCD Module NL6448BC20-08 that is mounted on the Xilinx ML300 board.
The design contains a LocalLink interface that receives data from the Communications
Direct Memory Access Controller (CDMAC) and displays the data onto the TFT screen.
The design also contains a Device Control Register (DCR) interface used for configuring
the controller.

Features
• 32-bit DCR slave interface for control registers

• 32-bit LocalLink interface for receiving pixel data

• Support for asynchronous LocalLink and TFT clocks

Related Documents
The following documents provide additional information:

• LocalLink Specification

• NEC TFT Color LCD Module: NL6448BC20-08

High-Level Block Diagram
Figure 3-57 illustrates the high-level block diagram for the LocalLink TFT Controller. The
LocalLink TFT Controller has three main elements: A LocalLink Rx Interface, a 1-kbit x18-
bit FIFO, and a Back End TFT Interface Logic block. These three items together allow the
CDMAC to output Video data onto the TFT screen of an ML300 Evaluation Platform.

Figure 3-57: LocalLink TFT Controller High-Level Block Diagram

X535_63_113004

Green Data

TFT Clock Domain PLB Clock Domain

6

Local Li nk
Interface

Logic

6 Blue Data

6 Red Data
1 kB

x
18 bit

FIFO

Back End
TFT

Interface
Logic

Green Data6

6 Blue Data

6 Red Data

FIFO ReadVideo
Signals

to
TFT

Display

FIFO Write

Local
Li nk
Pixel
Data

FIFO FULL

http://www.xilinx.com
http://www.nec-lcd.com/english/pdf/en0442ej.pdf
http://www.xilinx.com/ml300/
http://www.xilinx.com/ml300/
http://www.xilinx.com/aurora

High Performance Multi-Port Memory Controller www.xilinx.com 129
XAPP535 (v1.1) December 10, 2004

LocalLink TFT Controller
R

Hardware

Architecture

Figure 3-57 shows a high-level block diagram of the design. The LocalLink TFT LCD
Controller has a LocalLink interface that receives pixel data from an external data source.
The pixel data is stored in an internal FIFO buffer and then sent out to the TFT display with
the necessary timing to correctly display the image. The video memory is arranged so that
each RGB pixel is represented by a 32-bit word in memory (See “Video Memory” section).
As each line interval begins, data is fetched from the FIFO, pipelined, and then displayed.
This process repeats continuously over every line and frame to be displayed on the
640x480 VGA TFT screen.

The back-end logic driving the TFT display operates in the same clock domain as the video
clock. It reads out data from the FIFO and transmits the pixel data to the TFT. The back-end
logic automatically handles the timing of all the video synchronization signals including
back porch and front porch blanking. See Figure 3-58 and Figure 3-59 for more information
on the video timing.

The LocalLink TFT LCD Controller allows for the LocalLink clock and TFT video clocks to
be asynchronous to each other. Special logic allows control signals to be passed between
asynchronous LocalLink and TFT clock domains. A dual port BRAM is used in the FIFO to
pass video data between the two clock domains.

It is important to design the system so that there is sufficient bandwidth between the
LocalLink TFT LCD Controller and the CDMAC to meet the video bandwidth
requirements of the TFT. Furthermore, there must be enough available bandwidth left over
for the rest of the system. If more bandwidth is needed for the rest of the system, the TFT
clock frequency can be reduced. However, reducing the TFT clock frequency also lowers
the refresh rate of the screen. This can lead to a noticeable flicker on the screen if the TFT
clock is too slow.

The LocalLink interface logic accepts any available LocalLink data presented to it. Any
non-payload data is discarded. The TFT Controller should only be sent a full 32-bit word of
data at a time. It is not designed to accept 1 to 3 byte data transfers. If the FIFO feeding data
to the backend logic becomes full, the LocalLink signal DST_RDY_N is asserted to throttle
the flow of data.

A DCR interface allows the display to be rotated by 180 degrees, turned off, or reset under
software control. When the display is turned off, a black screen is displayed and the back
end logic does not read any data from the FIFO. However, LocalLink data can be written
into the FIFO when the display is off. By default, on power-on or system reset the TFT
display starts out in the off setting. The TFT should not be turned on until there is sufficient
data sent to it that the FIFO would not run empty. The display becomes misaligned if the
FIFO becomes empty.

http://www.xilinx.com

130 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Simulation and Verification
A stand-alone testbench is provided with the design to demonstrate the functionality of
LocalLink TFT LCD Controller in a small test environment. The testbench emulates a
LocalLink source sending an incrementing binary data pattern to the TFT Controller. The
testbench also generates DCR commands to start up the TFT. It then checks that the data
sent to the external TFT display matches the data it received from LocalLink. Refer to the
README.txt file located in the design files under the test directory.

Figure 3-58: LocalLink TFT Controller Video Horizontal Timing Diagram

D (0,Y)

thp = 96 TFT Clocks
thb = 48 TFT Clocks
DE = 640 TFT Clocks
thf = 16 TFT Clocks

thp

1 12

thb thf640CLK (Fixed)

1CLK

Invalid Invalid

Hsync

CLK

DE
R0 to R5
G0 to G5
B0 to B5

D (1,Y) D (639,Y)

th = 800 TFT Clocks (Horizontal)

Hsync

thp = 96 TFT Clocks

th

thp

X535_64_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 131
XAPP535 (v1.1) December 10, 2004

LocalLink TFT Controller
R

Figure 3-59: LocalLink TFT Controller Video Vertical Timing Diagram

D(0,Y)

tvp = 2 h_syncs
tvb = 31 h_syncs
DE = 640 TFT Clocks
tvf = 12 h_syncs

tvp

1

D(X,Y)D(X,0) D(X,479)

12 3

tvb tvf480H (Fixed)

1H

Invalid Invalid

Invalid Invalid

Note: X = 0 to 639

Vsync

DE
R0 to R5
G0 to G5
B0 to B5

R0 to R5
G0 to G5
B0 to B5

Hsync

D(1,Y) D(639,Y)D(638,Y)D(X,Y)

DE

Display period is 480 h_syncs

tvp = 2 h_syncs
tv = 525 h_syncs (Vertical)

Vsync

Display period is 480 h_syncs

tv

tvp

X535_65_113004

http://www.xilinx.com

132 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

LocalLink TFT Controller Pixel Organization

Video Memory

Each 32-bit word of pixel data is encoded according to the following table. Data should be
sent to the TFT controller in order from leftmost pixel to rightmost pixel for each line. The
lines should be sent from top to bottom.

Table 3-21: LocalLink TFT Controller Pixel Color Encoding

M
SB

LS
B

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- RED - GREEN - BLUE -

Table 3-22: LocalLink TFT Controller

Bit Description

[31:24] Undefined: Read as 0x0000

[23:18] RED: Red Pixel Data

0b000000 = darkest

0b111111 = brightest

access: read/write

default value: undefined

[17:16] Undefined: Read as 0

[15:10] GREEN: Green Pixel Data

0b000000 = darkest

0b111111 = brightest

access: read/write

default value: undefined

[9:8] Undefined: Read as 0

[7:2] BLUE: Blue Pixel Data

0b000000 = darkest

0b111111 = brightest

access: read/write

default value: undefined

[1:0] Undefined: Read as 0

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 133
XAPP535 (v1.1) December 10, 2004

LocalLink TFT Controller
R

TFT DCR Registers

The TFT Controller has two DCR registers. Only one is used at this time. The register
interface is shown below.

TFT Reserved DCR Register (DCR Base Address + 0)

Undefined - Reserved

Figure 3-60: LocalLink TFT Controller DCR Programming Model

X535_66_113004

RESERVED0x0

CONTROL0x1

0 31D
C

R
 O

ffs
et

M
S

B

LS
B

http://www.xilinx.com

134 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

TFT Control Register (DCR Base Address + 1)

* The intention of the reset bit is to allow the CDMAC to be stopped and restarted or to allow the TFT to recover
from a misaligned state due to the FIFO becoming empty. During soft reset, the TFT enable bit should be
turned off before releasing the soft reset. Pixel Data can then be sent to pre-fill the data FIFO before enabling
the TFT and starting up the backend logic. The process resynchronizes the Pixel data to the correct screen
location and resume normal operation.

Table 3-23: LocalLink TFT Controller

D
C

R
 O

ffs
et

M
SB

L
SB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

R
ST RESERVED

D
P

S

E
N

Table 3-24: Control Register Definition

Bit Description

DCR Base Address +1

[0] RST: TFT Reset*

0 = Normal running operation

1 = TFT Controller soft reset

When set, the data FIFO is cleared and all logic is held in reset. This bit must be written back to 0 by software to leave the reset
state.

Note: this reset bit does not affect the other control bits

access: read/write

default value: 0

[1:29] RESERVED: Read as 0

30 DPS: Display scan direction

0 = Sets the display to use normal scan direction

1 = Sets the display to use a reverse scan direction

access: read/write

default value: 0 (Normal scan direction)

[15:10] EN: TFT Enable

0 = Disable TFT Display

1 = Normal Operation

NOTE: When disabled, a black is displayed and LocalLink read xfers are disabled.

access: read/write

default value: 0 (TFT Disabled)

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 135
XAPP535 (v1.1) December 10, 2004

LocalLink TFT Controller
R

Module Port Interface

Table 3-25: LocalLink TFT Controller Parameters

Name Default Description

C_DCR_BASEADDR N/A
Base address of DCR control registers. Must be aligned on
an even DCR address boundary (least significant bit = 0)

C_DCR_HIGHADDR N/A
Upper address boundary, must be set to value of
C_DCR_BASEADDR + 1

C_DPS_INIT 1

Initial Reset State of DPS control bit:

0 = DPS output bit resets to 0.

This initializes the display to use a normal scan direction.

1 = DPS output bit resets to 1.

This initializes the display to use a reverse scan direction
(rotates screen 180 degrees).

Table 3-26: LocalLink TFT Controller Global Signals

Name Direction Description

SYS_dcrClk Input DCR System Clock

SYS_tftClk Input TFT Video Clock

CLK Input LocalLink Clock

RESET Input System Reset

Table 3-27: LocalLink TFT Controller External I/Os

Name Direction Description

TFT_LCD_HSYNC Output Horizontal Sync (Negative Polarity)

TFT_LCD_VSYNC Output Vertical Sync (Negative Polarity)

TFT_LCD_DE Output Data Enable

TFT_LCD_CLK Output Video Clock

TFT_LCD_DPS Output Selection of Scan Direction

TFT_LCD_R[5:0] Output Red Pixel Data

TFT_LCD_G[5:0] Output Green Pixel Data

TFT_LCD_B[5:0] Output Blue Pixel Data

http://www.xilinx.com

136 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Table 3-28: LocalLink TFT Controler, LocalLink interface Signals

Name Direction Description

DIN [31:0] Input Data

REM [3:0] Input Remainder

SOF_N Input Start of Frame

SOP_N Input Start of Payload

EOP_N Input End of Payload

EOF_N Input End of Frame

SRC_RDY_N Input Source Ready

DST_RDY_N Output Destination Ready

Table 3-29: LocalLink TFT Controller DCR Slave Signals

Name Direction Description

DCR_ABus[0:9] Input DCR Address Bus

DCR_DBusIn[0:31] Input DCR Data Bus In

DCR_Read Input DCR Read Strobe

DCR_Write Input DCR Write Strobe

DCR_Ack Output DCR Acknowledge

DCR_DbusOut[0:31] Output DCR Data Bus Out

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 137
XAPP535 (v1.1) December 10, 2004

LocalLink Data Generator
R

LocalLink Data Generator

Overview
The LocalLink Data Generator is a module developed to send known data to the receive
portion of the CDMAC via an Rx LocalLink interface. The CDMAC receives the data and
places it in the memory specified by the DMA descriptor(s). The data generated is a
colorbar pattern for a VGA (640x480) sized TFT video display. The default pattern is shown
in Figure 3-62. The upper half of the TFT displays 20 patterns of vertical bars of various
colors that gradient from black to a particular color. The lower half of the TFT then switches
the gradient from the particular color to black. Figure 3-61 shows the top-level block
diagram for the LocalLink Data Generator.

Features
• 32-bit DCR slave interface for control registers
• 32-bit LocalLink interface for sending generated data

Related Documents
The following documents provide additional information:
• IBM CoreConnect™ 32-Bit Device Control Register Bus: Architecture Specification

• LocalLink Specification

High-Level Block Diagram
Figure 3-61 illustrates the high-level block diagram for the LocalLink Data Generator. The
Data Generator logic block generates pixels according to the settings of the DCR Color
Registers. The default pattern is shown in Figure 3-62. Once the data has been generated, it
is sent across the LocalLink interface. The optional DCR Interface allows the CPU to
configure color patterns, and control over the speed of the LocalLink interface. This is
useful for generating system level performance metrics by slowing down the data rate
across the LocalLink interface to emulate slower speed devices.

Figure 3-61: LocalLink Data Generator High-Level Block Diagram

X535_67_113004

CLK

DCR_Write
DCR_Read

DCR_ABus
DCR_DBusIn

DCR_Ack

DCR_DBusOut

LL_Src_Rdy_n

LL_SOF_n
LL_SOP_n
LL_EOP_n
LL_EOF_n

LL_Data
LL_Rem

LL_Dst_Rdy_n

RESET

Data Generator
Logic

DCR Interface
Logic

LocalLink Data Generator

LocalLink Interface
Logic

http://www.xilinx.com
http://www.xilinx.com/aurora

138 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Hardware

Introduction

The LocalLink Data Generator is designed to output data to the CDMAC attached to the
other end of the LocalLink interface. Figure 3-61 shows a block diagram of LocalLink Data
Generator internals. There are three main elements: Data Generator Logic, DCR Interface
Logic, and LocalLink interface Logic. These are further described in the following sections.

Figure 3-62 shows the default pattern that the LocalLink Data Generator produces. This is
a 640 pixel x 480 line at 32-bits per pixel.

The Data Generator Logic is the heart of the module and produces the pattern of data. The
data it generates is sent across the LocalLink interface so that it can be received by the
CDMAC. The Data Generator Logic produces a VGA screen worth of data, or 640 pixels by
480 lines of 32-bit pixels. The form of the data across the 32-bit LocalLink interface is as
0xAARRGGBB, where AA is a constant 0xAA, RR is the 8 bit red color value, GG is the 8 bit
green color value, and BB is the 8 bit blue color value. The ML300 VGA display only uses
the upper six bits of each colors data. The actual data patterns produced by the Data
Generator Logic are controllable in software via the DCR Interface.

The DCR Interface Logic provides a programmatic way to alter LocalLink Data Generator
behavior. It has two main purposes: the alteration of color data and control of the
LocalLink data rate. The first is used to allow the CPU to modify the colorbar patterns
generated, and therefore see differing frames of data. The latter is used to set up
performance metrics for the entire MPMC / CDMAC system. For example, the CPU can

Figure 3-62: LocalLink Data Generator Default Color Bar Pattern

X535_68_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 139
XAPP535 (v1.1) December 10, 2004

LocalLink Data Generator
R

set up specific or variable numbers of clocks that the LocalLink interface waits between
sending data.

The LocalLink interface logic provides the connection to the CDMAC. The LocalLink
interface initiates a single frame of LocalLink data per line of video data, including the
LocalLink Header, Payload, and Footer. It communicates to the Data Generator Logic to
get the data, and is controlled by the DCR Interface Logic for data transmission speed
control. The Data Generator for each video field sends 480 LocalLink frames of data.

Figure 4-1 through Table 4-20 in Chapter 4, “Software Models for Elements Contained in
the GSRD” describes the DCR registers that control the generation of colorbar data as well
as the performance of the system. Table 3-30 describes the parameters of the system, while
Table 3-31 through Table 3-33 describe the LocalLink Data Generator's port interfaces.

Data Generator Logic

Figure 3-63 illustrates a VGA screen of data and how the data is constructed by the Data
Generator. For example, the screen is split into two sections of 240 lines each. The top
section has its patterns start at black and then gradiate to a maximum color. The bottom
section has its patterns start at the maximum color and then gradiate to black. Each pattern
has its own gradient, which runs between black and a maximum color in 32 steps. The
maximum color for each pattern can be specified using the Colorbar Pattern Control
Registers shown in Figure 4-3. Each gradient step represents a single pixel, and therefore
each gradient change corresponds to a single pixel of video data. Each pixel of video data
is broadcast across the LocalLink interface.

Figure 3-63: LocalLink Data Generator, Complete Pattern Generation Diagram

P
A

T
T

E
R

N
_

0
0

P
A

T
T

E
R

N
_

0
1

P
A

T
T

E
R

N
_

0
2

P
A

T
T

E
R

N
_

0
3

P
A

T
T

E
R

N
_

0
4

P
A

T
T

E
R

N
_

0
5

P
A

T
T

E
R

N
_

0
6

P
A

T
T

E
R

N
_

0
7

P
A

T
T

E
R

N
_

0
8

P
A

T
T

E
R

N
_

0
9

P
A

T
T

E
R

N
_

1
0

P
A

T
T

E
R

N
_

1
1

P
A

T
T

E
R

N
_

1
2

P
A

T
T

E
R

N
_

1
3

P
A

T
T

E
R

N
_

1
4

P
A

T
T

E
R

N
_

1
5

P
A

T
T

E
R

N
_

1
6

P
A

T
T

E
R

N
_

1
7

P
A

T
T

E
R

N
_

1
8

P
A

T
T

E
R

N
_

1
9

BIT
31

BIT
30

BIT
29

BIT
28

BIT
27

BIT
26

BIT
25

BIT
24

BIT
23

BIT
22

BIT
21

BIT
20

BIT
19

BIT
18

BIT
17

BIT
16

BIT
15

BIT
14

BIT
13

BIT
12

PIXEL
0

PIXEL
240

PIXEL
639

LINE 0

LINE 240

b
la

c
k

m
a

x
P

A
T

T
E

R
N

_
0

0

P
A

T
T

E
R

N
_

0
1

P
A

T
T

E
R

N
_

0
2

P
A

T
T

E
R

N
_

0
3

P
A

T
T

E
R

N
_

0
4

P
A

T
T

E
R

N
_

0
5

P
A

T
T

E
R

N
_

0
6

P
A

T
T

E
R

N
_

0
7

P
A

T
T

E
R

N
_

0
8

P
A

T
T

E
R

N
_

0
9

P
A

T
T

E
R

N
_

1
0

P
A

T
T

E
R

N
_

1
1

P
A

T
T

E
R

N
_

1
2

P
A

T
T

E
R

N
_

1
3

P
A

T
T

E
R

N
_

1
4

P
A

T
T

E
R

N
_

1
5

P
A

T
T

E
R

N
_

1
6

P
A

T
T

E
R

N
_

1
7

P
A

T
T

E
R

N
_

1
8

P
A

T
T

E
R

N
_

1
9

BIT
31

BIT
30

BIT
29

BIT
28

BIT
27

BIT
26

BIT
25

BIT
24

BIT
23

BIT
22

BIT
21

BIT
20

BIT
19

BIT
18

BIT
17

BIT
16

BIT
15

BIT
14

BIT
13

BIT
12

LINE 479

b
la

c
k

m
a

x

X535_69_113004

http://www.xilinx.com

140 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Note in Figure 3-62 and Figure 3-63 that the top half and bottom half are mirror images of
each other with respect to the pattern. That is within any given pattern, the top half of the
data goes from black on the left to maximum color on the right whereas the bottom half
goes from maximum color on the left to black on the right. The data content is identical for
both top and bottom half of the data frame, but simply flipped on end. This results in the
pleasing picture shown in Figure 3-62.

Figure 3-64 shows how the Data Generation Logic works. A 5-bit counter generates a 32-
pattern incrementing or decrementing number. This 5-bit value, called word_cnt is fed into
a shifter that generates an 8-bit output from the incoming 5-bit count value. The position of
the 5-bit word_cnt within the 8-bit output is controlled by shift_by_xxx signals. Each color
replicates this shifter and produces an 8-bit output that is eventually merged into a 32-bit
LocalLink data word, with the prior described format.

The 32 values of word_cnt ultimately produce one of the patterns illustrated above in
Figure 3-63. To produce all 20 patterns, a RAM is used to store the value of the
shift_by_xxx. See Figure 3-64 and Figure 3-65 for illustration of how the pixel data is
generated. Currently, the design stores two bits per color to allow for up to four possible
shifts of word_cnt to produce the pixel data. This allows the brightness of any given color
to vary from black to black, 25%, 50% or 100%. There is a need to have a black output from
the Red, Green or Blue outputs so that colors can be made which do not require one or
more of the primary colors. For example, cyan contains Green and Blue, but no Red.

The upper bits of col_cnt are used to address the RAM and read out the shift_by_xxx
values. The upper five bits of col_cnt act as the pattern 'address' to indicate which pattern
the Data Generator is on currently. By walking through 32 pixels using word_cnt, each
pattern can be sent across the LocalLink interface. An entire payload for the LocalLink
interface is comprised of 20 patterns, or a single line of video data.

The Data Generator Logic also monitors the number of payloads that are being sent. Every
240 LocalLink frames (240 video lines) the Data Generator switches word_cnt from
incrementing to decrementing. When the Data Generator starts, word_cnt runs from black
to maximum color (incrementing), but when 240 payloads go by, word_cnt switches to
decrementing and the video data runs from maximum color to black. Thus, the images
shown in Figure 3-62 and Figure 3-63 are visible.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 141
XAPP535 (v1.1) December 10, 2004

LocalLink Data Generator
R

Figure 3-65 further illustrates how the LocalLink (pixel) data is created for two patterns.
This diagram can be used in concert with Figure 3-64 to understand how the Data
Generator Logic performs its task.

Figure 3-64: LocalLink Data Generator, Data Generation Logic Block Diagram

27F

D Q

D Q

D
C

R
_

B
a

s
e

+
1

R
E

D
 0

RAM16Sx2

DI0

DI1

DO1

DO0

WE

D Q

CE
red_busy

shift_by

D

Q
8

… … …

19

0

D Q

D Q

D
C

R
_

B
a

s
e

+
2

R
E

D
 1

… … …

19

0

A

CE

 Q

CE R

 Q

CE R

row_cnt

[9:5]

upper_half_display

last_col

upper_half_display
? EF

last_row

col_cnt

last_col

Src_Rdy
Dst_Rdy

payload

[4:0]

LL_D[23:16]

1 0

word_cnt

9
5

5

5

[9:5]

5

red_cnt

2

UP/DWN

D Q

D Q

D
C

R
_

B
a

s
e

+
3

G
R

E
E

N
 0

RAM16Sx2

DI0

DI1

DO1

DO0

WE

D Q

CE
green_busy

shift_by

D

Q

8

… … …

19

0

D Q

D Q

D
C

R
_

B
as

e
+

4
G

R
E

E
N

 1

… … …

19

0

A

[4:0]

LL_D[15:8]

1 0

5

5

[9:5]

5

green_cnt

2

D Q

D Q

D
C

R
_

B
a

s
e

+
5

B
L

U
E

 0

RAM16Sx2

DI0

DI1

DO1

DO0

WE

D Q

CE
blue_busy

shift_by

D

Q
8

… … …

19

0

D Q

D Q

D
C

R
_

B
a

s
e

+
6

B
L

U
E

 1

… … …

19

0

A

[4:0]

LL_D[7:0]

1 0

5

5

[9:5]

5

blue_cnt

2

W
h

er
e

 C
n

 =
 W

o
rd

_
C

n
t

M
S

B

3 07 6 5 4LL_D[N+7:N]

3 2 1 05 4

 BRIGHTNESS VALUE
USED BY TFT

L
S

B

L
S

B

0 0 0 0 0 0 0 0

0 0 C4 C3 C2 C1 C0 0

00 C4 C3 C2 C1 C0 0

0 0C4 C3 C2 C1 C0 0

Pixel Data Broadcast Across LocalLink

S
H

I
F

T
_

B
Y

2'b00

2'b01

2'b10

2'b11

0% Brightness

25% Brightness

50% Brightness

100% Brightness

2 1

M
S

B

RED

GREEN

BLUE

1DF

X535_70_113004

http://www.xilinx.com

142 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

The LocalLink Data Generator contains preloaded values for the max color of each of the
twenty patterns. These values are stored in the Data Generator Color Pattern Control
Registers (see Figure 4-3). Two bits are used for each color, and these bits become the
shift_by_xxx. The six registers and the RAM are all initialized to the values contained in
Figure 3-64, though these initial values can be set by the parameters defined in Table 3-30.

The other part of Figure 3-64 describes how the CPU can update each patternby writing to
the Colorbar Pattern Control Registers. The act of writing to these DCR registers initiates
an update to the RAM. Each color has two independent Colorbar Pattern Control
Registers. There are also independent RAMs for each color. A simple arbiter prevents
LocalLink access while the DCR update is in progress. The DCR write to any of the six
registers results in a “go” signal for the appropriate color to start a counter that counts from
0 to 19. The counter connects to a multiplexer that pulls the appropriate bit from the

Figure 3-65: LocalLink Data Generator Pixel Data Creation

W
h

e
re

 C
n

 =
 W

o
rd

_
C

n
t

M
S

B

19 1623 22 21 20LL_D[]

3 2 1 05 4

 BRIGHTNESS VALUE
USED BY TFT

L
S

B

L
S

B

0 0 0 0 0 0 0 0

0 0 C4 C3 C2 C1 C0 0

00 C4 C3 C2 C1 C0 0

0 0C4 C3 C2 C1 C0 0

Pixel Data Broadcast Across LocalLink

S
H

I
F

T
_

B
Y

_
R

E
D

2'b00

2'b01

2'b10

2'b11

0% Brightness

25% Brightness

50% Brightness

100% Brightness

18 17

M
S

B

M
S

B

11 815 14 13 12

3 2 1 05 4

L
S

B

0 0 0 0 0 0 0 0

0 0 C4 C3 C2 C1 C0 0

00 C4 C3 C2 C1 C0 0

0 0C4 C3 C2 C1 C0 0

S
H

I
F

T
_

B
Y

_
G

R
N

2'b00

2'b01

2'b10

2'b11

10 9

M
S

B

3 07 6 5 4

3 2 1 05 4

L
S

B

0 0 0 0 0 0 0 0

0 0 C4 C3 C2 C1 C0 0

00 C4 C3 C2 C1 C0 0

0 0C4 C3 C2 C1 C0 0

S
H

I
F

T
_

B
Y

_
B

L
U

2'b00

2'b01

2'b10

2'b11

2 1

L
S

B

Pixel Data Broadcast Across LocalLink

M
S

B

L
S

B

Pixel Data Broadcast Across LocalLink

M
S

B

SHIFT_BY_RED for PATTERN_nn

SHIFT_BY_GRN for PATTERN_nn

SHIFT_BY_BLU for PATTERN_nn

0
x

A
A

re
d

g
rn

b
lu

MSB (31)

LSB(0)

L
o

c
a

lL
in

k
 D

A
T

A

C0

C1

C2

C3

C4

W
O

R
D

_
C

N
T

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

S
H

I
F

T
_

B
Y SHIFT_BY_RED for PATTERN_nn+1

SHIFT_BY_GRN for PATTERN_nn+1

SHIFT_BY_BLU for PATTERN_nn+1

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

0
x

A
A

re
d

g
rn

b
lu

BLUE PIXEL VALUES

25262728 21222324 17181920 13141516 12293031 891011 4567 0123

USEFUL BLU VALUES

GREEN PIXEL VALUES

USEFUL GRN VALUES

RED PIXEL VALUES

USEFUL RED VALUES

STATIC VALUE = 0xAA

N
+

0
0

N
+

0
1

N
+

0
2

N
+

0
3

N
+

0
4

N
+

0
5

N
+

0
6

N
+

0
7

N
+

0
8

N
+

0
9

N
+

1
0

N
+

1
1

N
+

1
2

N
+

1
3

N
+

1
4

N
+

1
5

N
+

1
6

N
+

1
7

N
+

1
8

N
+

1
9

N
+

2
0

N
+

2
1

N
+

2
2

N
+

2
3

N
+

2
4

N
+

2
5

N
+

2
6

N
+

2
7

N
+

2
8

N
+

2
9

N
+

3
0

N
+

3
1

N
+

3
2

N
+

3
3

N
+

3
4

N
+

3
5

N
+

3
6

N
+

3
7

N
+

3
8

N
+

3
9

N
+

4
0

N
+

4
1

N
+

4
2

N
+

4
3

N
+

4
4

N
+

4
5

N
+

4
6

N
+

4
7

N
+

4
8

N
+

4
9

N
+

5
0

N
+

5
1

N
+

5
2

N
+

5
3

N
+

5
4

N
+

5
5

N
+

5
6

N
+

5
7

N
+

5
8

N
+

5
9

N
+

6
0

N
+

6
1

N
+

6
2

N
+

6
3

PIXEL DATA BROADCAST ACROSS LocalLink

PER PIXEL LocalLink DATA

X535_71_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 143
XAPP535 (v1.1) December 10, 2004

LocalLink Data Generator
R

Colorbar Pattern Control Register and sends it to the DIx of the RAM. Simultaneously, the
multiplexer in front of the address of the RAM takes the count value for its address. Since
the CE to the counter is used for the WE to the RAM, all 20 locations in the RAM can be
updated by the 20 entries in the Colorbar Pattern Control Registers. Only one color is
updated at a time, where each DCR write initiates a rewrite to the appropriate color RAM.

Figure 3-66 is a logic diagram for data generation. This shows the actual logic illustrated in
the block diagram of Figure 3-64. Both figures show the three main counters. The row
counter counts the number of video lines and is reset once 480 lines have been sent through
the LocalLink interface. The column counter counts the number of pixels in a line and is
reset after 640 words have been sent. The word counter counts the number of pixels for the
width of each pattern and is reset after 32 words (pixels) have been sent.

Figure 3-66: LocalLink Data Generator, Color Generation Logic Diagram

D Q

LD

Up/Down

CE

C
R

Src_Rdy

Dst_Rdy

Src_Rdy

Dst_Rdy

EOF

5

word_cntr

11_sm==Payload

5'h1F

= = 0

= = 5'h1F

shift
left

shift
left

shift
right

word_cnt5

5

5

5

5

sys_rst

color_bar_rst EOF

Src_Rdy

Dst_Rdy

red_out
8

grn_out
8

blu_out
8

shift_by_red

shift_by_blu

shift_by_grn

Q

CE

D

C
R

= = 10'h27F

sys_rst

color_bar_rst

col_cnt

col_cntr
10

Q

CE

D

C
R = =9'h1DF

sys_rst

color_bar_rst

row_cnt

row_cntr
9

<= 9'hEF

= =9'hEF
9

9

9

D Q

LD

Up/Down

CE

C
R

Src_Rdy

Dst_Rdy

Src_Rdy

Dst_Rdy

EOF

5

word_cntr

11_sm==Payload

5'h1F

= = 0

= = 5'h1F

shift
left

shift
left

shift
right

word_cnt5

5

5

5

5

sys_rst

color_bar_rst EOF

Src_Rdy

Dst_Rdy

X535_72_113004

red_out
8

grn_out
8

blu_out
8

shift_by_red

shift_by_blu

shift_by_grn

Q

CE

D

C
R

= = 10'h27F

sys_rst

color_bar_rst

col_cnt

col_cntr
10

Q

CE

D

C
R = =9'h1DF

sys_rst

color_bar_rst

row_cnt

row_cntr
9

<= 9'hEF

= =9'hEF
9

9

9

http://www.xilinx.com

144 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

The word counter produces the gradient for each color bar. If the row counter is less than
240, the counter starts at 0 and counts to 31. If the row counter is greater than or equal to
240, the counter starts at 31 and counts down to 0. The upper bits of the column counter
address the RAMs to produce a shift value for each color. If the shift value is zero, the color
is set to 0, otherwise the word count value is be shifted by the amount indicated by the
RAM's output.

Whenever the color registers are written, RAMs are updated with the color register values.
When these RAMs are addressed, a shift value is produced to result in maximum value for
a particular color. The maximum value for the color is either off, 25% on, 50% on, or 100%
on. For example, the defaults for Color Bar Pattern 17 are dcr_red1[14]==0,
dcr_red0[14]==1, dcr_grn1[14]==1, dcr_grn0[14]==1, dcr_blu1[14]==1, dcr_blu0[14]==0.
This implies that the 5-bit counter value for the red portion is shifted to the left by 1 (25%
on), the green counter value is shifted to the left by 3 (100% on), and the blue counter value
is shifted to the left by 2 (50% on). See the tables contained in Figure 3-64 and Figure 3-65
for more detail.

DCR Interface Logic

The DCR interface allows the user to provide configuration parameters and to observe
status registers. Figure 3-67 shows a block diagram of the DCR Interface Logic. Figure 3-68
shows a more detailed logic diagram of the DCR interface including the LocalLink src_rdy
delay logic. Figure 3-69 illustrates how the reset circuitry and one-third of the Data
Generator Color Pattern Control Registers (red in this example) operate.

DRC Logic Block Diagram

The DCR registers bitmaps are described in Table 4-10 through Table 4-20.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 145
XAPP535 (v1.1) December 10, 2004

LocalLink Data Generator
R

Figure 3-67: LocalLink Data Generator, DCR Logic Block Diagram

D Q

CE

D Q

CE

DCR_D1

DCR_write

DCR_ABus

15

20

32

32

32 DCR_DO

DCR_READ

DCR_WRITE

DCR_ABus
DCR_ACK

D Q

CE

20

D Q

CE

20

D Q

CE

20

D Q

CE

20

D Q

CE

20

D Q

CE

32

D Q

CE

32

0

1

2

3

4

5

6

7

8

D Q

CE

2
9

32

10

D Q

CE

Control 0

[0:2,16:23,28:31]

Data Gen
Red 0

[12:31]

Data Gen
Red 1

[12:31]

Data Gen
Green 0

[12:31]

Data Gen
Green 1

[12:31]

Data Gen
Blue 0

[12:31]

Data Gen
Blue 1

[12:31]

DCR_TIMER_MAX

[0:31]

[0:31]

DCR_TIMER_MIS
S

[30:31]

Control 1

X535_73_113004

http://www.xilinx.com

146 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

DCR Logic - Registers, DCR_TIMER_MISS and DCR_TIMER_MAX

Figure 3-68: LocalLink Data Generator, DCR Interface Logic

D Q

C R

D Q

C R

D Q

C R

DCR_DBusIn

decode

D

CE

Q

C R

dcr_ce

sys_rst

color_bar_rst

[DCR_Registers]

dcr_pn
dcr_red0
dcr_red1
dcr_grn0
dcr_grn1
dcr_blu0
dcr_blu1
dcr_timer_max

Logic is replicated
for the following
registers:

D Q

C R

DCR_Write

DCR_ABus

DCR_DBusIn

{1'h1,color_bar_rst2,30'h3FFFFFFF}
dcr_status

0

1

dcr_ce

D Q

C

D

CE

LD
Q

C R

dcr_timer_miss
dcr_ce

sys_rst

color_bar_rst

line_finished

==dcr_timer_maxD

CE

Q

C R

==32'hFFFFFFFF

timer_rst

timer_cntr

>=dcr_timer_max

D Q
C R

S

D Q

C R

S

EOF

Src_Rdy

Dst_Rdy

timer_done

sys_rst

color_bar_rst

timer_rst

pn_on_timer
line_finished

timer_rst

D Q

C

0

1

dcr_pn

dcr_red0

dcr_red1

dcr_grn0

dcr_grn1

dcr_blu0

dcr_blu1

dcr_timer_max

dcr_timer_miss

dcr_status

D Q

C
DCR_ABus[6:9]

dcr_valid

DCR_DBusIn

DCR_DBus_Out

D Q

C

DCR_Read

D Q

C

DCR_ABus

D Q

C

DCR_Write

D Q

C

D Q

C

DCR_Read

DCR_Ack

decode
D Q

C

0

1

2

3

4

5

6

7

8

9

X535_74_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 147
XAPP535 (v1.1) December 10, 2004

LocalLink Data Generator
R

DCR Color Pattern Control Writing Logic

DCR Control 0 Register

DCR Register 0 controls the source ready signal (Src_Rdy) across the LocalLink interface. If
the length select and the pattern select are off, Src_Rdy is asserted every cycle after the
engine is turned on. This means that data is transferred from the LocalLink Data Generator
until the CDMAC Dst_Rdy signal goes invalid.

DCR Control 0 gives two enable bits that affect the Src_Rdy signal. The two enables are
DG_LENGTH_ENBL and DG_PATTERN_ENBL. Only one of the enables should be turned on
at a time, or the system can behave unpredictably.

If the length select (DG_LENGTH_ENBL) is turned on, the four-bit length field (DG_LENGTH)
is used to determine the percentage of time Src_Rdy should be asserted. Src_Rdy is never
asserted if DG_LENGTH is set to 0. An LFSR is used to generate four bit pseudo-random
numbers. Whenever the number is less than DG_LENGTH, Src_Rdy is asserted.

The pattern select (DG_PATTERN_ENBL) turns on the eight-bit pattern ID (DG_PATTERN).
Currently there is only one pattern supported. If DG_PATTERN is set to 0x00000001,
Src_Rdy is asserted every other clock cycle. If any other pattern is selected, Src_Rdy is
asserted every clock cycle.

Figure 3-69: LocalLink Data Generator, Reset and DCR Color Register Write Logic

sys_rst

DCR_Write

DCR_ABus

ll_sm==Idle

dcr_status[30]

color_bar_rst2

red_go

red_go

red_cnt

cntr

red_busy

Q

C
R

S

Q

C
R

S

sys_rst

color_bar_rst

QD

C

QD

C

decode
R

Q

C

S

sys_rst
color_bar_rst

R

Q

C

S

sys_rst
color_bar_rst

R

QD

C

CE

sys_rst
color_bar_rst

== 5'h1F

Note:
This design is typical for
red (red), green (grn), and blue (blu).

X535_75_113004

http://www.xilinx.com

148 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

DCR Control 0 also enables the ability to monitor the amount of time the LocalLink
interfaces spends in a frame. If the line timer select (DG_LINE_TIMER_ENBL) is on, the
system monitors the number of clock cycles it takes to output one line (640 pixels) of data.
If the amount of time exceeds the value contained in the Data Generator DCR Timer Max
Register, DCR register 7, the Data Generator DCR Timer Miss Register, and DCR register 8
is increased by one.

DCR Colorbar Pattern Control Registers

The Colorbar Pattern Control Registers are described in greater detail in the “Data
Generator Logic,” and “DCR Colorbar Pattern Control Registers” sections.

DCR Timer Max and Timer Miss Registers

The LocalLink Data Generator has a built-in performance metric function that allows the
system designer to specify a time period within which the Data Generator has to output a
frame of data (for example, 640 pixels). There are three components, an enable bit, a
register to set the detection limit, and a counter to count how many times the time period
has been exceeded. The enable bit is contained in Control 0, as the DG_LINE_TIMER_ENBL
bit. The DCR Timer Max register contains a 32-bit value that is compared against the
number of clocks since the frame began sending. The DCR Timer Miss register counts the
number of times that the number of clocks since the frame began exceeds the value of the
DCR Timer Max register.

The performance metric is used primarily to identify if the CDMAC has not been able to
keep up with the data demands of the LocalLink Data Generator. This is a subjective
measurement because the Max value can be set to anything. For example, if the max value
is set at 32, the DCR Timer Miss register always increments. A realistic bare minimum is to
assume that the CPU wants the ISPLB and DSPLB ports to MPMC, and that the other port
attached to the MPMC is also in full use by the CDMAC. This means that the remaining
MPMC port for the LocalLink Data Generator can have access all the time during its time
slot. See “Multi-Port Memory Controller (MPMC)” for more information. If the Rx
CDMAC engine is the only engine for this port, then a specific maximum data rate can be
established. Setting the DCR Timer Max register below that value results in errant counts
in the DCR Timer Miss register.

DCR Control 1 Register

DCR Register 9 is the Control 1 register. DATA_GEN_ENBL is the on/off switch for the Data
Generator. A one written to this bit causes the Data Generator to begin outputting data.
Once DATA_GEN_ENBL is written as a zero, the engine finishes the current line in progress,
and then go into the idle state until the engine is turned on again.

DATA_GEN_RST, when set to a one, resets the LocalLink Data Generator. As in the case of
turning off the Data Generator, the line in progress completes, and then the Data Generator
resets. DATA_GEN_RST is negated after the reset has been executed. The reset logic is
shown in Figure 3-69.

LocalLink Interface Logic

The LocalLink interface Logic is shown in Figure 3-70. The LocalLink Data Generator
displays 480 lines of data where each line has a header, payload, and footer. The header is
a one-clock cycle placeholder. The payload is 640 words of data, where each word has the
format: 0xAARRGGBB. 0xAA is an eight-bit parameter into the LocalLink Data Generator
(C_upper_byte). The user can find this value useful for debugging purposes. 0xRR
represents the red color bits, 0xGG represents the green color bits, and 0xBB represents the
blue color bits. The footer is eight words, where the first 7 words are set to 0 and the last

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 149
XAPP535 (v1.1) December 10, 2004

LocalLink Data Generator
R

word contains the number of words in the payload. These values are described further in
“Data Generator Logic.”

Src_Rdy is asserted according to how it was configured by the Data Generator Control 0
register. Src_Rdy is held off by the Data Generator whenever the Colorbar Pattern Control
Registers are written to by DCR, and remains inactive until the RAM has been updated.

Note: A full colorbar pattern update requires six DCR writes, and prolongs the amount of time that
Src_Rdy is deasserted, if done one right after the other.

Figure 3-70: LocalLink Data Generator, LocalLink interface Logic

QD

C

0

1

0

1

Src_Rdy

sys_rst

color_bar_rst

red_busy

grn_busy

blu_busy

line_finished

pn_pattern==8'h1

pn_pattern_on

src_rdy_rn<pn_length

pn_on_length

sys_rst

color_bar_rst

color_bar_on

ll_sm==Idle

Src_Rdy

Dst_Rdy

SOF

sys_rst

color_bar_rst

ll_sm==Payload

col_cnt==10'h0

SOP

sys_rst

color_bar_rst

ll_sm==Payload

col_cnt==10'h27F

EOP

sys_rst

color_bar_rst

ll_sm==Footer

footer_cnt==3'h7

EOF

0

1

0

1

 {C_upper_byte,red_out,grn_out,blu_out}

footer_cnt==3'h7

payload_cnt
ll_sm==Footer

D Rem

Idle Header

Footer Payload

sys_rst
color_bar_on & Src_Rdy

S
rc_R

dy &
 D

st_R
dy

Src_Rdy & Dst_Rdy & col_cnt==10'h27F

&
 S

rc
_R

dy
 &

 D
st

_R
dy

co
lor

_b
ar

_o
n

& fo
ot

er
_c

nt
==

3'h
7

& S
rc

_R
dy

 &
 D

st_
Rdy

& Dst_Rdy

co
lo

r_
ba

r_
on

 &
 fo

ot
er

_c
nt

=
=

3'
h7

Q
D

C

CE

R

Src_Rdy

Dst_Rdy

ll_sm==payload

sys_rst

color_bar_rst

SOF

payload_cnt

Q
D

C

CE

R

Src_Rdy

Dst_Rdy

ll_sm==Footer

footer_cnt

sys_rst

color_bar_rst

X535_76_113004

http://www.xilinx.com

150 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

Simulation and Verification
The testbench for the Data Generator provides stimulus for the LocalLink interface and the
DCR Interface.

For the LocalLink interface, the testbench randomly asserts Dst_Rdy.

A Perl script generates a text file with a series of read and write requests to the DCR
Interface. The testbench iterates through these instructions, placing a random amount of
delay between each instruction.

As the testbench runs, data is written to a text file. Whenever data is transmitted across the
LocalLink interface, a tag is printed on whether the data is header data (H), payload data
(P), or footer data (F). This tag is followed by the data in hexadecimal format. Whenever a
DCR Write occurs, the tag D is printed to the text file, followed by the DCR Address in
hexadecimal format, and then by the data in binary format. After the testbench has
completed, a Perl script processes the text file to verify that the correct data was sent to the
LocalLink interfaceinterface.

A shell script (run_ll_data_gen_test) is used to run the testbench and verify operation.

Directory Structure
Data

o ll_gata_gen_v2_1_0.mpd
o ll_data_gen_v2_1_0.pao

hdl
o verilog

ll_data_gen.v
test

o bin
flow_ll_data_gen.cfg
gen_dcr_stimulus.pl
gen_ll_data_gen_check.pl
run_ll_data_gen_test

o func_sim
testbench.do
wave_ll_data_gen.do

o hdl
verilog
testbench.v

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 151
XAPP535 (v1.1) December 10, 2004

LocalLink Data Generator
R

Using the LocalLink Data Generator
To use the LocalLink Data Generator, the user needs to connect the module to a DCR Bus
and a Rx LocalLink interface. Table 3-30 describes the parameters, while Table 3-31
through Table 3-33 gives a description of the I/Os of the LocalLink Data Generator, and
Table 4-10 through Table 4-20 gives a description of the DCR Registers. The DCR Bus can
be tied off if the user does not want to change the colors or the performance of the engine.
Upon power on, the LocalLink Data Generator defaults to on. The LocalLink interface is
described in the “LocalLink Interface Logic.” The user can write to the DCR registers to
change the colors and performance of the engine, as described in “DCR Interface Logic.”

Module Port Interface

Table 3-30: LocalLink Data Generator Parameters

Parameter Name
Width

(In Bits)
Default Value Description

C_upper_byte 8 1111_1010

Color is represented in 24-bit
RRGGBB format, but stored in
a 32-bit register. C_upper_byte
is the upper 8 bits.

C_dcr_base_addr 6 00_0000 Base address for DCR registers

C_color_pattern_red0 32 0000_0000_0000_1001_1110_0111_1101_1001
Upper bits of color bar pattern
for red. (Default value for DCR
register 1.)

C_color_pattern_red1 32 0000_0000_0000_1110_0110_0001_1101_1001
Lower bits of color bar pattern
for red. (Default value for DCR
register 2.)

C_color_pattern_grn0 32 0000_0000_0000_1110_1011_1010_1110_1010
Upper bits of color bar pattern
for green. (Default value for
DCR register 3.)

C_color_pattern_grn1 32 0000_0000_0000_1011_1100_1010_0110_1010
Lower bits of color bar pattern
for green. (Default value for
DCR register 4.)

C_color_pattern_blu0 32 0000_0000_0000_1111_0101_1101_0111_0100
Upper bits of color bar pattern
for blue. (Default value for
DCR register 5.)

C_color_pattern_blu1 32 0000_0000_0000_0101_1011_0100_0111_0100
Lower bits of color bar pattern
for blue. (Default value for
DCR register 6.)

Table 3-31: LocalLink Data Generator System Signals

Signal I/O Description

CLK Input System Clock.

RST Input System Reset.

http://www.xilinx.com

152 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 3: Hardware Data Sheets for Elements Used in the GSRD
R

EDK Cores
The following cores are shipped as part of the standard Xilinx Embedded Development
Kit. Refer to the documentation provided with EDK for information on these cores:

• PPC405

• isocm

• isbram_if_cntlr

• bram_block

• dsocm

• dsbram_if_cntlr

• dcr_intc

• uartlite

Table 3-32: LocalLink Data Generator DCR Signals

Signal I/O Description

DCR_ABus[0:9] Input Address bus.

DCR_DBusIn[0 :31] Input Write data bus.

DCR_Write Input Write request.

DCR_Read Input Read request.

DCR_Ack Output Write/Read acknowledge.

DCR_DBusOut[0:31] Output Read data bus.

Table 3-33: Summary of LocalLink Data Generator LocalLink I/Os

Signal I/O Description

D[31:0] Output
Data bus. Valid while Src_Rdy and Dst_Rdy are
asserted.

Rem[3:0] Output
Remainder. Data mask for last word of header,
payload, or footer. In this system, Rem = 0b0000.

SOF Output Start of frame. Active low.

EOF Output End of frame. Active low.

SOP Output Start of payload. Active low.

EOP Output End of payload. Active low.

Src_Rdy Output
Source ready. Active low. Indicates data generator
has valid data on the LocalLink outputs.

Dst_Rdy Input
Destination ready. Active low. Indicates connecting
device is ready to receive data.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 153
XAPP535 (v1.1) December 10, 2004

R

Chapter 4

Software Models for Elements
Contained in the GSRD

This chapter discusses the following software models for elements contained in the GSRD:

• CDMAC

• LocalLink Data Generator

A third software model, GMAC, is described in the Linux Device Driver chapter of
XAPP536, “Gigabit System Reference Design.”

CDMAC Software Model
The following sections detail the CDMAC software model, including the overall
programming model, as well as register definitions.

CDMAC DMA Descriptor Model
See the “DMA Descriptor Model” in the “Communication Direct Memory Access
Controller (CDMAC)” section for a detailed description of the way DMA decriptors are
used.

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp536.pdf

154 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 4: Software Models for Elements Contained in the GSRD
R

CDMAC Programming Model
The CDMAC is designed in a modular fashion. It is designed to bolt between the MPMC
and LocalLink devices. Figure 4-1 illustrates the high-level architecture of the CDMAC.

Figure 4-1: CDMAC Programmer Model

X535_77_113004

TX0 ENGINE

RX ENGINE

TX1 ENGINE

RX1 E NGINE

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

0x10

0x1F

0x20

0x21

0x22

0x23

0x24

0x2E

0x2F

D
C

T
 o

ffs
et

M
S

B

LS
B

0 31

. .
 .

. .
 .

NEXT DESCRIPTOR POINTER

CURRENT BUFFER ADDRESS

CURRENT BUFFER LENGTH

CURRENT DESCRIPTOR POINTER

NEXT DESCRIPTOR POINTER

CURRENT BUFFER ADDRESS

CURRENT BUFFER LENGTH

CURRENT DESCRIPTOR POINTER

NEXT DESCRIPTOR POINTER

CURRENT BUFFER ADDRESS

CURRENT BUFFER LENGTH

CURRENT DESCRIPTOR POINTER

NEXT DESCRIPTOR POINTER

CURRENT BUFFER ADDRESS

CURRENT BUFFER LENGTH

CURRENT DESCRIPTOR POINTER

CDMAC INTERRUPT REGISTER

CDMAC TX0 STATUS

CDMAC RX0 STATUS

CDMAC TX1 STATUS

CDMAC RX1 STATUS

RESERVED

RESERVED

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 155
XAPP535 (v1.1) December 10, 2004

CDMAC Software Model
R

CDMAC Register Definitions
The following pages detail the bitmaps of each register. There are four total DMA engines,
and each has the same register set. The only exception is the Interrupt Register that all four
DMA engines share.

CDMAC Next Descriptor Pointer Register

The NEXT_DESCRIPTOR_POINTER_REGISTER is loaded from the value contained in the
NEXT_DESCRIPTOR_POINTER field in the currently pointed to descriptor. This value is
kept in the respective CDMAC register until the CDMAC has completed all DMA
transactions within the DMA transfer (reference Figure 3-19). After all DMA transactions
are complete, the current descriptor is complete, and the CDMAC_COMPLETED bit is set
in the STATUS_REGISTER. The current descriptor is then written to update the STATUS
field within the descriptor. After this, the CDMAC evaluates the address contained in the
NEXT_DESCRIPTOR_POINTER_REGISTER.

• If a Null (0x00000000) is contained in the NEXT_DESCRIPTOR_POINTER_REG then
CDMAC engine stops processing descriptors

• If the address contained in the NEXT_DESCRIPTOR_POINTER_REGISTER is not 8-
word aligned, or reaches beyond the range of available memory, the CDMAC halts
processing and sets the CDMAC_ERROR bit in the STATUS_REGISTER.

• If the NEXT_DESCRIPTOR_POINTER_REGISTER contains a valid address, then the
contents are moved to the CURRENT_DESCRIPTOR_REGISTER. This movement
causes the CDMAC to begin another DMA transaction.

CDMAC Current Address Register

The CURRENT_ADDRESS_REGISTER maintains the contents of the address in memory
where the DMA operation is conducted next. This value is originally loaded into the
CDMAC when the descriptor is read by the CDMAC. Once set by the current descriptor,
the CDMAC then occasionally transfers this value to an internal Address Counter that

Table 4-1: Next Descriptor Pointer Register (DCR_Base + 0x00, 0x04, 0x08, 0x0C)

M
SB

L
SB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ADDRESS

Table 4-2: CDMAC Next Descriptor Pointer Register Bitmap

Bit Description

[0:31]
Address: 8 word aligned pointer to the next descriptor in the chain.

If Null (0x0), DMA engine stops processing descriptors

Table 4-3: Current Address Register (DCR_Base + 0x01, 0x05, 0x09, 0x0D)

M
SB

L
SB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ADDRESS

http://www.xilinx.com

156 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 4: Software Models for Elements Contained in the GSRD
R

then updates the value for each DMA transaction completed. Upon termination of the
transaction, the CDMAC overwrites the value of the CURRENT_ADDRESS_REGISTER
with the last value of the Address Counter. This process continues repeatedly until the
CDMAC has completed the current descriptor. The reason for this mechanism is so the
CDMAC can maintain multiple temporal channels of DMA at a substantially reduced
hardware cost. Software can find this mechanism useful for identifying where in a DMA
operation the CDMAC is, however t is not recommended that software use the
CURRENT_ADDRESS_REGISTER for this purpose as it dynamically changes.

CDMAC Current Length Register

The CURRENT_LENGTH_REGISTER maintains the contents of the remaining length of
the data to be transferred by the CDMAC. The value is originally loaded into the CDMAC
when the descriptor is read by the CDMAC. Once set by the current descriptor, the
CDMAC then occasionally transfers this value to an internal Length Counter, which then
updates the value for each DMA transaction completed. Upon termination of the
transaction, the DMAC overwrites the value of the CURRENT_LENGTH_REGISTER with
the last value of the internal Length Counter. This process continues repeatedly until the
CDMAC has completed the current descriptor. The reason for this mechanism is so the
CDMAC can maintain multiple temporal channels of DMA at a substantially reduced
hardware cost. However, software can find this mechanism useful for identifying where in
a DMA operation the CDMAC is. It is not recommended that software avail itself of this.

CDMAC Current Descriptor Pointer Register

The CURRENT_DESCRIPTOR_POINTER_REGISTER maintains the pointer to the
descriptor that is currently being processed. The value was set either by the CPU when it
first initiated a DMA operation, or is copied from the
NEXT_DESCRIPTOR_POINTER_REGISTER upon completion of the prior descriptor. This
value is maintained by the CDMAC as a pointer so that the CDMAC can update the
descriptor's STATUS and APPLICATION_DEPENDENT fields once the descriptor has
been fully processed.

Table 4-4: Current Length Register (DCR_Base + 0x02, 0x06, 0x0A, 0x0E)

M
SB

LS
B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RESERVED 24-BIT LENGTH

Table 4-5: Current Descriptor Pointer Register (DCR_Base + 0x03, 0x07, 0x0B, 0x0F)

M
SB

LS
B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ADDRESS

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 157
XAPP535 (v1.1) December 10, 2004

CDMAC Software Model
R

CDMAC Status Register

Table 4-6: CDMAC Status Registers (DCR_Base + 0x20, 0x21, 0x22, 0x23)

M
SB

LS
B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C
D

M
A

C
_E

R
R

O
R

C
D

M
A

C
_I

N
T

_O
N

_E
N

D

C
D

M
A

C
_S

T
O

P
_O

N
_E

N
D

C
D

M
A

C
_C

O
M

P
L

E
T

E
D

C
D

M
A

C
_S

TA
R

T
_O

F_
PA

C
K

E
T

C
D

M
A

C
_E

N
D

_O
F_

PA
C

K
E

T

C
D

M
A

C
_E

N
G

IN
E

_B
U

SY

RESERVED

Table 4-7: CDMAC Status Register Bitmap

Bit Description

[0]

CDMAC_ERROR: When set (e.g. = 1) indicates the CDMAC encountered an error.
The CDMAC sets this bit in the STATUS field of the descriptor. This bit, when set, indicates one of five possible
errors, all of which are caused by SW issues. They are: Completed Error - CDMAC encountered a descriptor where
the completed bit was already set prior to use; Buffer Address Error - CDMAC buffer address was not in range of
memory; Next Descriptor Pointer Error - CDMAC found that the Next Descriptor Pointer was not 8 byte aligned;
Current Descriptor Pointer Error - CDMAC found that the Current Descriptor Pointer was not 8 byte aligned; Busy
Write Error - The CPU attempted to write to the Current Descriptor Pointer register when the CDMAC was busy. In
all cases, an error results in halting the CDMAC channel and setting the interrupt for that channel. If the CDMAC
Interrupt Register has the Master Interrupt Enable bit set, the CPU receives an interrupt when an error is
encountered.

[1]

CDMAC_INT_ON_END: When set (e.g. = 1) forces the CDMAC to interrupt the CPU when the descriptor is
completed.
The CPU sets this bit in the STATUS field of the descriptor. The bit is then read into the
CDMAC_STATUS_REGISTER as each descriptor is processed. If the bit is set in any given descriptor, the CDMAC
generates an interrupt to the CPU. Note that CDMAC_STOP_ON_END and CDMAC_INT_ON_END are
independent of each other. As such the CDMAC can be made to do any of four possible operations: Halt upon
completion of current descriptor without interrupt, halt upon completion of current descriptor with interrupt,
Interrupt upon completion of current descriptor while beginning to process the next descriptor (if there is one), or
simply begin to process the next descriptor (if there is one).

[2]

CDMAC_STOP_ON_END: When set (e.g. = 1) forces the CDMAC to halt operations when the descriptor is
completed.
The CPU sets this bit in the STATUS field of the descriptor. The bit is then read into the
CDMAC_STATUS_REGISTER as each descriptor is processed. If the bit is set in any given descriptor, the CDMAC
halts processing any further descriptors for that channel. It will NOT generate an interrupt to the CPU unless
explicitly told to do so by the CDMAC_INT_ON_END bit being set in the same descriptor. Note that
CDMAC_STOP_ON_END and CDMAC_INT_ON_END are independent of each other. As such, the CDMAC can
be made to do any of four possible operations: Halt upon completion of current descriptor without interrupt, halt
upon completion of current descriptor with interrupt, interrupt upon completion of the current descriptor while
beginning to process the next descriptor (if there is one), or simply begin to process the next descriptor (if there is
one).

http://www.xilinx.com

158 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 4: Software Models for Elements Contained in the GSRD
R

[3]

CDMAC_COMPLETED: When set (e.g. = 1) indicates that the CDMAC has transferred all data defined by the
current descriptor.
The CDMAC sets this bit upon completing the transaction associated with the descriptor. In the case of a transmit
operation from memory (for example, READs), the CDMAC transfers data until the length field specified in the
descriptor is zero, and then set this bit. In the case of a receive operation to memory (for example, WRITEs), the
CDMAC sets this bit upon transferring data in the descriptor until the length is zero, OR, when it receives an
END_OF_PACKET indicated from the CDMAC interface. Note that since the receive buffers are typically larger
than the size of received data, the length field in the descriptor will NOT specify how much data was actually
received. Please see the CDMAC interface specification for more details on how length is established.

NOTE: For software to properly utilize the CDMAC_COMPLETED feature, it must clear the bit in the descriptor
prior to initiating CDMAC transactions based upon this descriptor. The CDMAC only sets this bit. It resets only
upon hardware reset.

[4]

CDMAC_START_OF_PACKET: When set (e.g. = 1) indicates that the current descriptor is the start of the packet.
The CDMAC sets this bit upon completing the transaction associated with this descriptor. In the case of a transmit
operation from memory (for example, READs). Therefore CDMAC_START_OF_PACKET is set by the CPU in the
descriptor to indicate to the CDMAC that this is the first descriptor of the packet to be transmitted.
CDMAC RX0 and RX1 Engines perform receive operations to memory (for example, WRITEs). Therefore
CDMAC_START_OF_PACKET is set by the CDMAC in the descriptor to indicate to the CPU that this is the first
descriptor of the packet being received.

[5]

CDMAC_END_OF_PACKET: When set (e.g. = 1) indicates that the current descriptor is the final one of the packet.
CDMAC TX0 and TX1 Engines perform transmit operations from memory (for example, READs). Therefore
CDMAC_END_OF_PACKET is set by the CPU in the descriptor to indicate to the CDMAC that this is the last
descriptor of the packet being transmitted.
CDMAC RX0 and RX1 Engines perform receive operations to memory (for example, WRITEs). Therefore
CDMAC_END_OF_PACKET is set by the CDMAC in the descriptor to indicate to the CPU that this is the last
descriptor of the packet being received.

[6]

CDMAC_CHANNEL_BUSY: When set (e.g. = 1) indicates that the CDMAC channel is busy processing DMA
operations.
The CDMAC_CHANNEL_BUSY bits tell software when the CDMAC is busy with the appropriate channel. In
general, software should not disturb the CDMAC when the busy bit is set. It is permissible for software to read the
status registers when the CDMAC is busy, but it is unwise to write to any of the channels registers while that channel
is busy. The CDMAC Interrupt register can be read at any time while any or all channels are busy. Note that
CDMAC_CHANNEL_BUSY does NOT tell the software where the CDMAC is in processing the current descriptor.
That information can be obtained by reading the CURRENT_LENGTH register for the appropriate channel.

[7:31] RESERVED:

Table 4-7: CDMAC Status Register Bitmap (Continued)

Bit Description

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 159
XAPP535 (v1.1) December 10, 2004

CDMAC Software Model
R

CDMAC Interrupt Register

Table 4-8: CDMAC Interrupt Register (DCR_Base + 0x2F)

M
SB

LS
B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M
IE

RESERVED

R
X

1_
IN

T

T
X

1_
IN

T

R
X

0_
IN

T

T
X

0_
IN

T

Table 4-9: CDMAC Interrupt Register Bitmap

Bit Description

[0]

Master Interrupt Enable: When set (e.g. = 1) indicates that the CDMAC is enabled to generate interrupts to the CPU.
The Master Interrupt Enable (MIE) is used to enable and disable the CDMACs interrupt pin. If the MIE is set to a
1, then the CDMAC generates a HIGH level (1) on the INT pin whenever any of the interrupt sources have a valid
interrupt. If the MIE is cleared to a 0, the CDMAC always leaves the INT pin set at a LOW level (0), regardless of
any pending internal interrupts. Note that the MIE permits software to choose between polled mode of operation
and interrupt driven.

[1:27] Reserved:

[28]

RX1_INT: When set (e.g. = 1) indicates that the CDMAC channel is requesting interrupt service from the CPU.
This bit reflects the RX1 channel's request for service. This channel independently requests access to the CPU. The
4 channel interrupt bits are OR'd together and then AND'd with the Master Interrupt Enable (MIE) to produce the
INT pin. If the MIE is disabled, each of these bits can still be read from this register in polled mode.
This bit is a set/reset Flip-flop. Acknowledging an interrupt on the RX1 channel is accomplished by writing a 1 to
this bit. Note that this mechanism assures that interrups cannot be lost, and permits multiple channels to be
simultaneously acknowledged, if desired.

[29]

TX1_INT: When set (e.g. = 1) indicates that the CDMAC channel is requesting interrupt service from the CPU.
This bit reflects the TX1 channel's request for service. This channel independently requests access to the CPU. The
4 channel interrupt bits are OR'd together and then AND'd with the Master Interrupt Enable (MIE) to produce the
INT pin. If the MIE is disabled, each of these bits can still be read from this register in polled mode.
This bit is a set/reset Flip-flop. Acknowledging an interrupt on the TX1 channel is accomplished by writing a 1 to
this bit. Note that this mechanism assures that interrups cannot be lost, and permits multiple channels to be
simultaneously acknowledged, if desired.

[30]

RX0_INT: When set (e.g. = 1) indicates that the CDMAC channel is requesting interrupt service from the CPU.
This bit reflects the RX0 channel's request for service. This channel independently requests access to the CPU. The
4 channel interrupt bits are OR'd together and then AND'd with the Master Interrupt Enable (MIE) to produce the
INT pin. If the MIE is disabled, each of these bits can still be read from this register in polled mode.
This bit is a set/reset Flip-flop. Acknowledging an interrupt on the RX0 channel is accomplished by writing a 1 to
this bit. Note that this mechanism assures that interrups cannot be lost, and permits multiple channels to be
simultaneously acknowledged, if desired.

[31]

TX0_INT: When set (e.g. = 1) indicates that the CDMAC channel is requesting interrupt service from the CPU.
This bit reflects the TX0 channel's request for service. This channel independently requests access to the CPU. The
4 channel interrupt bits are OR'd together and then AND'd with the Master Interrupt Enable (MIE) to produce the
INT pin. If the MIE is disabled, each of these bits can still be read from this register in polled mode.
This bit is a set/reset Flip-flop. Acknowledging an interrupt on the TX0 channel is accomplished by writing a 1 to
this bit. Note that this mechanism assures that interrups cannot be lost, and permits multiple channels to be
simultaneously acknowledged, if desired.

http://www.xilinx.com

160 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 4: Software Models for Elements Contained in the GSRD
R

LocalLink Data Generator Software Model
The following sections detail the LocalLink Data Generator software model, including the
overall programming model, as well as register definitions.

LocalLink Data Generator Programming Model
The LocalLink Data Generator defines 16 DCR register locations. Only 10 are used at this
time. Figure 4-2 shows the register interface.

LocalLink Data Generator Register Definitions
The following sections detail the definitions of registers in the LocalLink Data Generator.
These registers are provided for access to the Data Generator to control the color of
patterns being generated as well as alter how the LocalLink interface performs. The use of
these registers is optional. The default values of the registers guarantee a color bar pattern,
as shown in Figure 3-62, and the fastest possible LocalLink interface.

Figure 4-2: LocalLink Data Generator Programming Model

RESERVED

COLORBAR PATTERN CONTROL GREEN 0

COLORBAR PATTERN CONTOL RED 1

CONTROL 0

0 31

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

D
C

R
 O

ff
s

e
t

M
S

B

L
S

B

COLORBAR PATERN CONTROL RED 0 SET
RED

SET

GRN

DCR_TIMER_MAX

COLORBAR PATTERN CONTROL BLUE 1

COLORBAR PATTERN CONTROL GREEN 1

COLORBAR PATTERN CONTROL BLUE 0

DCR_TIMER_MISS

CONTROL 1

SET
BLUE

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

X535_78_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 161
XAPP535 (v1.1) December 10, 2004

LocalLink Data Generator Software Model
R

LocalLink Data Generator Control 0 Register

Table 4-10: LocalLink Data Generator Control 0 Register (DCR_Base + 0x00)

M
SB

LS
B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

D
G

-L
E

N
G

T
H

_E
N

B
L

D
G

_P
A

T
T

E
R

N
_E

N
B

L

D
G

_L
IN

E
_T

IM
E

R
_E

N
B

L

RESERVED DG_PATTERN_VALUE

R
E

SE
R

V
E

D

D
G

_S
R

C
_R

D
Y

_L
E

N
G

T
H

Table 4-11: LocalLink Data Generator Control 0 Register Bitmap

Bit Description

[0]

DG_LENGTH_ENBL:

1 = Enable random assertion of Src_Rdy

0 = Disable random assertion of Src_Rdy

When set, the DG_SRC_RDY_LENGTH field is used to determine the percentage of time Src_Rdy is
asserted.

[1]

DG_PATTERN_ENBL:

1 = Enable Src_Rdy to be asserted in a specified pattern

0 = Disable Src_Rdy to be asserted in a specified pattern

When set, the DG_PATTERN_VALUE field is used to determine how Src_Rdy is asserted.

[2]

DG_LINE_TIMER_ENBL:

1 = Enable Data Generator DCR_TIMER_MAX register

0 = Disable Data Generator DCR_TIMER_MAX register

When set, the Data Generator DCR_TIMER_MAX register is enabled.

[3:15] RESERVED:

[16:23]

DG_PATTERN_VALUE:

This field specifies a pattern for Src_Rdy.

 Pattern 0x01: Src_Rdy is asserted every other clock cycle.

All other pattern values assert Src_Rdy on every clock cycle.

[24:27] RESERVED:

[28:31]

DG_SRC_RDY_LENGTH:

This field specifies the percentage of time Src_Rdy should be asserted.

0xF indicates that Src_Rdy is asserted 100% of the time.

http://www.xilinx.com

162 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 4: Software Models for Elements Contained in the GSRD
R

LocalLink Data Generator Colorbar Pattern Control Registers

These six registers control how data is generated by the LocalLink Data Generator. The
default value for each register is shown in Table 4-13. The six registers control 20 patterns.
Each pattern is 32 pixels across. PATTERN_00 is the leftmost pattern of 32 pixels, and
PATTERN_19 is the rightmost pattern. Figure 3-63 illustrates the way the Data Generator
creates its frames of data. The frame of data fits on a VGA display (640 pixels by 480 lines).
A color picture of the default output is shown in Figure 3-62.

Figure 4-3: Data Generator Colorbar Pattern Control Registers

25 26 27 2821 22 23 2417 18 19 2013 14 15 1612 29 30 318 9 10 114 5 6 70 1 2 3

RESERVED

RESERVED

DCR _ Base

+ 0x 01

+ 0x 02

RESERVED

RESERVED

+ 0x 01

+ 0x 02

RESERVED

RESERVED

+ 0x 01

+ 0x 02

Data Generator Colorbar Pattern Control Registers
DCR_Base + 0x01, 0x02, 0x03, 0x04, 0x05, 0x06

X535_79_113004

M
S

B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

M
S

B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

LS
B

RED

GRN

BLUE

P
A

T
T

E
R

N
_1

9

P
A

T
T

E
R

N
_1

8

P
A

T
T

E
R

N
_1

7

P
A

T
T

E
R

N
_1

6

P
A

T
T

E
R

N
_1

5

P
A

T
T

E
R

N
_1

4

P
A

T
T

E
R

N
_1

3

P
A

T
T

E
R

N
_1

2

P
A

T
T

E
R

N
_1

1

P
A

T
T

E
R

N
_1

0

P
A

T
T

E
R

N
_0

9

P
A

T
T

E
R

N
_0

8

P
A

T
T

E
R

N
_0

7

P
A

T
T

E
R

N
_0

6

P
A

T
T

E
R

N
_0

5

P
A

T
T

E
R

N
_0

4

P
A

T
T

E
R

N
_0

3

P
A

T
T

E
R

N
_0

2

P
A

T
T

E
R

N
_0

1

P
A

T
T

E
R

N
_0

0

Table 4-12: Data Generator Colorbar Pattern Control Registers Bitmaps

Bit Description

[0:11] RESERVED:

[12:31]

PATTERN_nn:

Twenty patterns are represented by these six registers. They are organized vertically across the registers
such that a single bit position in any given register represents a specific pattern number across the six
registers. Note that the first two registers make up the RED portion, the next two the GREEN portion,
and the last two the BLUE portion.

Table 4-13: LocalLink Data Generator Color Pattern Register Default Values

DCR_Base Default Value

+ 0x01 0x000E61D9

+ 0x02 0x0009E7D9

+ 0x03 0x000BCA6A

+ 0x04 0x000EBAEA

+ 0x05 0x0005B474

+ 0x06 0x000F5D74

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 163
XAPP535 (v1.1) December 10, 2004

LocalLink Data Generator Software Model
R

Since this mechanism is used for each primary color, (Red, Green and Blue), it is possible to
have six bits worth of color, or 32 unique "max" colors.

Each bit position specifies a particular pattern. Each pattern decodes into a 32-bit number
represented by 0xAARRGGBB, where 0xAA is set as a hardware default, 0xRR is the red
portion of a color, 0xGG is the green portion of a color, and 0xBB is the blue portion of a
color. DCR_Base + 0x01 and DCR_Base + 0x02 specify 0xRR, DCR_Base + 0x03 and
DCR_Base + 0x04 specify 0xGG, and DCR_Base + 0x05 and DCR_Base + 0x06 specify 0xBB.
The decode of a particular color bar bit pattern to 0xRR is shown in Table 4-14. The decode
values for 0xGG and 0xBB are identical to 0xRR.

Each color bar bit pattern is used to generate 32 words of data. One LocalLink frame is
generated by 640 words of data, or 20 patterns. In the first 240 frames, the first word of each
color bar is 0xAA000000. In each successive word, the data gradients to 0xAARRGGBB,
incrementing each word by the increment value listed in Table 4-14. In the second set of 240
frames, the first word of each color bar is 0xAARRGGBB. In each successive word, the data
gradients to 0xAA000000, decrementing each word by the increment value listed in
Table 4-14.

Table 4-14: LocalLink Data Generator Decode of a Particular Color Bar Bit Pattern
to 0xRR

DCR_Base + 0x02 DCR_Base + 0x01 0xRR Increment Value

0 0 0x00 0x00

0 1 0x3E 0x02

1 0 0x7C 0x04

1 1 0xF8 0x08

http://www.xilinx.com

164 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 4: Software Models for Elements Contained in the GSRD
R

LocalLink Data Generator DCR Timer Max

LocalLink Data Generator DCR Timer Miss

LocalLink Data Generator Control 1 Register

Table 4-15: LocalLink Data Generator DCR Timer Max Register (DCR_Base + 0x07)

M
SB

L
SB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

TIMER VALUE (Defaults to 1736 integer)

Table 4-16: LocalLink Data Generator DCR Timer Max Register Bitmaps

Bit Description

[0:31]
Address: 8 word aligned pointer to the next descriptor in the chain.

If Null (0x0), DMA engine stops processing descriptors

Table 4-17: LocalLink Data Generator DCR Timer Miss (DCR_Base + 0x08)

M
SB

L
SB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OF TIMES DCR_TIMER HAS MISSED (DEFAULT = 0X0)

Table 4-18: LocalLink Data Generator DCR Timer Miss Register Bitmap

Bit Description

[0:31]
Address: 8 word aligned pointer to the next descriptor in the chain.

If Null (0x0), DMA engine stops processing descriptors

Table 4-19: LocalLink Data Generator Control 1 Register (DCR_Base +0x09)

M
SB

L
SB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RESERVED

D
A

TA
_G

E
N

_R
ST

D
A

TA
_G

E
N

_E
N

B
L

Table 4-20: LocalLink Data Generator Control 1 Register Bitmap

Bit Description Default Value

[0:31]
Address: 8 word aligned pointer to the next descriptor in the chain.

If Null (0x0), DMA engine stops processing descriptors

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 165
XAPP535 (v1.1) December 10, 2004

R

Chapter 5

Software Applications Contained in the
GSRD

Stand-Alone Software

Overview
The following applications are designed to test and demonstrate the functionality of the
GSRD and all of its components. These tests are implemented with stand-alone, low-level
software running on the embedded PowerPC™ 405 (PPC405). The tests use all three of the
provided reference systems: GSRD, Dual TFT, and Loopback. All three reference systems
are included in the zip file for this application note. The Dual TFT Reference System
instantiates two LocalLink Data Generators and two LocalLink TFT Controller peripherals.
This reference system is used with the “Data Generator TFT Tests,” and the “CDMAC
Verification Tests.” The GSRD reference system instantiates a LocalLink TFT Controller
peripheral, a LocalLink Data Generator, and a LocalLink GMAC Peripheral. This reference
system is used for the “GSRD Verification Test.” The Loopback Reference System contains
a simple LocalLink Loopback module that talks to all four CDMAC LocalLink ports. This
reference system is used by the “Loopback Reference System Verification Tests.” For
additional information about the Dual TFT and Loopback reference systems, see Chapter 2,
“Reference Systems.” For additional information about the GSRD reference system, see
XAPP536, “Gigabit System Reference Design.”

Data Generator TFT Tests
The Data Generator / TFT Tests are designed to illustrate basic hardware and software
functionality using the Dual TFT reference system. This reference system contains two
LocalLink data generators and two LocalLink TFT controllers. These tests allow the system
designer to see the CDMAC moving data between each data generator and the TFT display
on an ML300 Evaluation Platform. Through the push of a single button, the user can switch
between which LocalLink TFT controller is driving the TFT display.

There are two styles of tests included with this application note. The first style is for
hardware, and uses a single descriptor per line of TFT. Each CDMAC engine uses 480
descriptors, since there are 480 lines of display in the VGA TFT contained on ML300. The
second style of test is for simulation. This style uses a single descriptor per CDMAC
engine. Using a single descriptor, the simulation time to try out differing combinations
becomes much more reasonable. While simulation can be performed using either style of
code, the single descriptor per engine is much more simulation friendly.

Two main classes of devices can be connected to the CDMAC. One class of devices runs a
continual data stream through the CDMAC, typically at a fixed rate. This is typical of the
LocalLink TFT Controller or LocalLink Data Generator. These devices require a constant

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp536.pdf

166 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 5: Software Applications Contained in the GSRD
R

stream of data over a specified amount of time. The other class of device emits data in a
non-deterministic way, such as the LocalLink Gigabit Ethernet MAC Peripheral that gets
or sends data when data is available.

The class of device attached to the CDMAC is important because it affects how software
has to handle the device. Consider the LocalLink TFT Controller, for example. This device
pulls a VGA size video frame (640x480x32bits) of data 60 times a second. It does this
repeatedly until the TFT display is no longer required. The CDMAC can be set up via
descriptors to build any organization of frame buffer for the TFT that the software engineer
desires. In the examples presented here, the descriptors are typically set up one per TFT
line, therefore 480 descriptors are used. In most systems, the CDMAC would move data
contained in a descriptor, and then mark that descriptor completed. This allows the CPU to
know that the CDMAC has successfully executed the data move contained in the
descriptor. The CPU can mark any descriptor so an interrupt to the CPU is generated when
the CDMAC has completed that descriptor. This is important so that the CPU can 'scrub'
the descriptor(s) and reuse them. TFT class device descriptors are setup once by the CPU,
and the CPU never touches them again. There is no real reason to change the descriptors
because the TFT uses a circular buffer, and thus there is no need to generate any interrupts.
If there is no interrupt overhead, the CPU is free to execute other tasks.

Other devices can require the descriptors to be 'scrubbed'. There are several things that
might have to happen in each descriptor depending upon what the CPU intends to do. For
example, in the simplest cases, the CPU only reads the descriptor's STATUS field to verify
the DMA transfer completed, then unmarks the COMPLETED bit so it is ready for use by
the CDMAC again. In the case of Rx CDMAC devices, the CPU might have to read the
descriptor's status field to identify the packet using the START_OF_PACKET and
END_OF_PACKET bits. The scrubbing in this case likely involves clearing these bits, along
with the COMPLETED bit in the descriptor's STATUS field. In some instances, the CPU can
choose to alter the descriptor's buffer address and length fields as well. Any of these
processes are referred to as scrubbing the descriptor. Scrubbing a descriptor is best done
during an interrupt. Generally, it is best to accumulate a few completed descriptors before
scrubbing. For example, in the 480-descriptor-per-engine tests listed below, and illustrated
in Figure 5-1, the INT_ON_END bit is set in the 240th and 480th descriptors. This allows
the CPU to scrub one half of the descriptors while the CDMAC is processing the other half.

The CDMAC normally error checks to verify that a descriptor already used by the
CDMAC is not reused unless the CPU has marked the descriptor's COMPLETED bit back
to a '0'. This ensures synchronization between the CPU and CDMAC so that wrong data is
not sent or collected. The CDMAC hardware can bet set on a per-LocalLink-DMA-engine
basis to ignore the COMPLETED bit in the current descriptor in memory, and continue. For
devices like the LocalLink TFT Controller, it makes sense to ignore the COMPLETED bit so
no CPU interrupt overhead is wasted. In contrast, the LocalLink Gigabit Ethernet MAC
needs to check for this to avoid any software synchronization errors.

The Data Generator / TFT Tests have two differing modes that they can be run in: with or
without CDMAC descriptor scrubbing. Once the LocalLink TFT Controller and LocalLink
Data Generator peripherals have started, they cannot wait for the CPU to scrub
descriptors. They 'lose' data if this happens, and funny artifacts can show up on the TFT
screen on ML300. Both peripherals are designed to work with a ring of descriptors that
continuously loops over the same memory buffer, so scrubbing their status field is not
required if the error-on-completed-bit feature is disabled (COMPLETED_ERR_TXn = 0
and/or COMPLETED_ERR_RXn = 0). See the “Completed Bit Errors” section. Scrubbing
can be enabled to create a system that performs similar to what a real system would have
to. See the “LocalLink TFT Controller” and “LocalLink Data Generator” sections for
additional information.

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 167
XAPP535 (v1.1) December 10, 2004

Stand-Alone Software
R

The mode is selected by uncommenting the #define NOSCRUBS 1 from the main.c file.

When NOSCRUBS is defined:

• The handler is called but it does not scrub the descriptor that caused the interrupt

• A Scrubs counter is incremented

• The invoked interrupt is cleared

When NOSCRUBS is NOT defined:

• The interrupt handler scrubs the proper descriptor by setting "stop on end" and "int
on end" in the correct CDMAC Status register

Both Data Generator tests for multiple descriptors displays a meter on the front GPIO2
LEDs. This meter is a visual indication of how much time is being spent outside of the
interrupt handler. The LEDs are an accumulation of the time spent in 'main' and out of the
interrupt handler. The higher the number of LEDs lit, the better performance the CPU has.
Software Engineers are encouraged to rebuild the code with both options in order to
visualize the effect that scrubbing has on overall CPU performance.

480 Descriptors / Engine - Dual TFTs Reference System

(All four Engines in use, hardware only)

This test uses a single descriptor per line of TFT data. Since the ML300 TFT display is VGA
resolution, it consists of 640 pixels by 480 lines. Each pixel is 32 bits, though only 18 bits are
used. See Table 3-21 and Table 3-22 for more details on the organization of the data for the
TFT display. Since each pixel is 4 bytes, and there are 640 pixels in a line, there is a total of
2560 bytes in one TFT line. This test thus consists of 480 descriptors of 2560 bytes each.
Since there are four 'video' devices, (two LocalLink TFT Controller and two LocalLink Data
Generators), this test use 480 * 4 or 1920 descriptors, 480 per each DMA engine.

This test is for use only with hardware, since it takes a very long time to simulate the C
code which generates the descriptors for each engine. The code sets up each Rx and Tx
engine with 480 descriptors, where each descriptor describes the size of one TFT line - 2560
bytes. Each TFT screen is a combination of different colors sent by the LocalLink Data
Generator. GPIO buttons allow the user to change the method that is used to display
colorbar data. INT_ON_END is set halfway through the descriptor chain and again at the
last descriptor as illustrated in Figure 5-1.

http://www.xilinx.com

168 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 5: Software Applications Contained in the GSRD
R

The top GPIO buttons (SW6 for TFT1, and SW13 for TFT2) enable color bar scrolling based on
a PIT timer interval. The PIT timer is set to occur two times a second. The screen continues
scrolling to the right until SW9 or SW16 is pressed, which resets TFT1 and TFT2 to their
original configuration. Buttons SW8 and SW15 manually advance the color bar pattern.
When scrubbing is enabled, the descriptors for half of the screen are scrubbed by the
handler when an interrupt occurs. The processing by all engines should never catch up to
the CPU scrubbing. If the scrubber ever comes across a descriptor that has not been
completed, it prints a message to the UART with the status of the engine; for example:

ERROR: Tx0 descriptor not completed! Tx0 status: 0x1234567

By default, a performance LED meter is enabled. As mentioned above, select this feature
by setting the constant PERFORMANCE_LED_METER. The meter is a simple counter that
counts the length of time between interrupts, using the time base register. (See time base
driver information in the EDK OS and Libraries Reference Guide, available online at
http://www.xilinx.com/ise/embedded/edk_libs_ref_guide.pdf.) The length and
intensity of the resulting string of LEDs gives a relative measurement of how often
interrupts are occurring and how much of the CPU's time is being used.

A message can be sent to the UART, which displays the number of clock cycles spent in the
interrupt handler as well as the number of cycles spent outside the interrupt handler. This
is helpful in generating the performance data below in the Performance Metrics section,
this feature is selected by setting the constant PERFORMANCE_MESSAGE. An example
of a performance message:

625273 CPU Clock Cycles
312390 Interrupt Handler Clock Cycles

Figure 5-1: Descriptor Organization for Dual TFT Stand-alone Software

Tx Descriptors

2560 Bytes | SOP/EOP 0

239

479

2560 Bytes | SOP/EOP

...

2560 Bytes | SOP/EOP/INT

2560 Bytes | SOP/EOP/INT

Data Buffer 0

Data Buffer 479

...

Rx Descriptors

2560 Bytes0

239

479

2560 Bytes

...

2560 Bytes | INT

2560 Bytes | INT

...

Memory

X535_80_113004

http://www.xilinx.com
http://www.xilinx.com/ise/embedded/edk_libs_ref_guide.pdf

High Performance Multi-Port Memory Controller www.xilinx.com 169
XAPP535 (v1.1) December 10, 2004

Stand-Alone Software
R

1 Descriptor / Engine (Simulation & Hardware)

This test is similar to the 480 descriptor test described above, but uses a single statically
declared descriptor per CDMAC engine: Tx0, Rx0, Tx1, and Rx1. Thus, four statically
declared descriptors are used in this program. Each descriptor points to a data buffer
which is the size of one TFT line - 2560 bytes. Having a small number of statically declared
descriptors in the program allows for quicker simulation, since the C code is no longer
creating 1920 descriptors as in the 480 descriptor tests.

This test is designed to run on the Dual TFT reference system with the error-on-completed-
bit feature disabled (COMPLETED_ERR_TXn = 0 and/or COMPLETED_ERR_RXn = 0). It
also runs on the GSRD reference system, but only one of the TFT controllers is available to
display results. The test can also be run on the Loopback reference systems, with the
results only visible in simulation.

In this test Tx0 and Rx0 write to and read from one data buffer, while Tx1 and Rx1
communicate with a different data buffer. The result in both cases is a solid color bar
pattern on both TFT peripherals.

CDMAC Verification Tests
The tests in this section verify the functionality of the CDMAC when errors or incorrect
operation occurs. Many of the errors being tested for could be common mistakes made by
software when setting up and modifying descriptors or activating the CDMAC engines. In
each test, a specific invalid situation is being created to generate different types of errors.
These tests are important to verify the functionality of the CDMAC and to illustrate usage
of tools that are available to help the software developer troubleshoot and debug the
behavior of the CDMAC.

Figure 5-2: Single CDMAC Descriptor Tests

Tx Descriptors

Next Descriptor Pointer

Buffer Address

Length: 2560 Bytes

SOP/EOP Application Dependent

Application Dependent

Application Dependent

Application Dependent

Application Dependent

Next Descriptor Pointer

Buffer Address

Length: 2560 Bytes

0x00 Application Dependent

Application Dependent

Application Dependent

Application Dependent

Application Dependent

Rx Descriptors

Memory

X535_81_113004

http://www.xilinx.com

170 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 5: Software Applications Contained in the GSRD
R

All of the CDMAC Verification Tests should run properly on all of the included Reference
Designs, except for a few cases that are listed in known issues. In addition, the Completed
Bit error test only runs properly when a given engine has the error_on_completed_bit
feature enabled. For example, the GSRD reference system includes a LocalLink Data
Generator and LocalLink TFT Controller which both have the error_on_completed_bit
feature disabled, as well as a LocalLink GMAC Peripheral which has the
error_on_completed_bit enabled. Therefore, the LEDs corresponding to the GMAC
Peripheral will light (Tx1, Rx1) and the LEDs for the TFT and Data Generator will not (Tx0,
Rx0).

The ML300 LEDs specified in Table 5-1 and Table 5-2 indicate errors.

Table 5-1: GPIO2 / TEST Green LEDs on ML300 Board, Below TFT Display

M
SB

L
SB

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UNUSED

R
X

1

T
X

1

R
X

0

T
X

0

Table 5-2: ML300 LEDs & Register Bit Positions

Bit Description

[31:4] Unused: LEDs remain OFF

3

RX1: Error LED

OFF = Error has not occurred for Rx1

ON = Error has occurred for Rx1

default value: OFF

2

TX1: Error LED

OFF = Error has not occurred for Tx1

ON = Error has occurred for Tx1

default value: OFF

1

RX0: Error LED

OFF = Error has not occurred for Rx0

ON = Error has occurred for Rx0

default value: OFF

0

TX0: Error LED

OFF = Error has not occurred for Tx0

ON = Error has occurred for Tx0

default value: OFF

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 171
XAPP535 (v1.1) December 10, 2004

Stand-Alone Software
R

The CDMAC Status register provides some additional information about any errors that
occur. The five extra bits in the status register, bits 27-31, illustrated in Figure 5-3, are used
by the CDMAC Verification Tests in order to check that an error has actually occurred, and
that the correct type occurred.

Address Byte Shifting

This test verifies the correct functionality of the byte shifting logic in the CDMAC. The
code sets up one static descriptor per engine. For more information on how the byte shifter
logic is implemented in the CDMAC see “Tx LocalLink and Byteshifter.”

The Address Byte Shifting Test works by sending 2560 byte packets to differing addresses.
If the buffer address pointed to by the descriptor is incremented by one for each pass, then
all combinations of addresses can be verified. Because transfers for DMA are done 32
words at a time, up to 128 'start' addresses are possible for the data or 27 combinations.
There are some artifacts in the CDMAC because of the shared infrastructure that can affect
how the byte shifters work. It is therefore necessary to precess the start addresses of the Tx
engine against the start address of the Rx engine. This results in 214 combinations for
testing a single pair of DMA engines. Figure 5-3 illustrates the working of this. If all
combinations of engine interactions are successfully tested in this manner, byte shifting is
working properly.

In this case, Tx0 is tested with Rx0 while Tx1 is tested with Rx1. There should be no
variation or glitches on the color bars while the test is running. When finished, all of the
GPIO2 LEDs on the front of the ML300 will light. However, one cannot fully verify the
integrity of the data since it is visually displayed. In order to fully verify the byte shifter
and address shift combinations, the Loopback reference system must be used. The
Loopback reference system modifies the length as well as the address position, then
compares the resulting receive buffer to the transmit buffer. Since the results are compared
numerically, engines can be verified automatically without visual inspection. The
Loopback reference system also checks cross-port combinations by connecting Rx0 to Tx1
and Rx1 to Tx0.

Table 5-3: CDMAC Status Register Error Bits

M
SB

L
SB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

E
R

R
O

R

IN
T

_O
N

_E
N

D

ST
O

P
_O

N
_E

N
D

C
O

M
P

L
E

T
E

D

ST
A

R
T

_O
F_

PA
C

K
E

T

E
N

D
_O

F_
PA

C
K

E
T

E
N

G
IN

E
_B

U
SY

C
O

M
P

L
E

T
E

D
_E

R
R

B
U

FF
_A

D
D

R
_E

R
R

N
E

X
T

_P
T

R
_E

R
R

C
U

R
R

E
N

T
_P

T
R

_E
R

R

B
U

SY
_W

R
_E

R
R

http://www.xilinx.com

172 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 5: Software Applications Contained in the GSRD
R

Out of Address Range Errors - Direct

If the Buffer Address field in a descriptor is ever set to an invalid memory location, the
CDMAC engine stops processing and generates a Buffer Address Error on its
corresponding status register. With one descriptor per engine, this code sets each
descriptor's buffer address to a value that is out of range, see Table 5-3. Each of the four
LEDs listed in Table 5-1 and Table 5-2 should light when its corresponding engine displays
a Buffer Address Error.

Figure 5-3: Address Shifting Example

RX0

214 = 16384
Combinations

214 = 16384
Combinations

TX1 RX1TX0

Buffer Address Buffer Address + 1 Buffer Address + 2 Buffer Address + 128

...

X535_82_113004

Figure 5-4: Buffer Address Error when Buffer Address Out of Range

Error: Invalid Address

Memory

Buffer Address:
Invalid Address

Next Descriptor Pointer

Buffer Length

DMA Descriptor

CDMAC
Status Application Dependent

Application Dependent

Application Dependent

Application Dependent

Application Dependent

X535_83_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 173
XAPP535 (v1.1) December 10, 2004

Stand-Alone Software
R

Out of Address Range Errors - Buffer Length is Too Large
If the Buffer Length field is long enough to cause a CDMAC engine to process data outside
of valid memory space, the CDMAC engine stops processing and generates a Buffer
Address Error on its corresponding status register. With one descriptor per engine, this
code sets each descriptor's buffer address to a proper value near the end of memory space,
but sets the length field such that when the engine processes a descriptor it runs out of
valid memory space, see Figure 5-5. Each of the four LEDs listed in Table 5-1 and Table 5-2
should light when its corresponding engine displays a Buffer Address Error.

Completed Bit Errors

A Completed Bit Error occurs when a CDMAC engine encounters a descriptor that has
already been marked as completed. If a set of descriptors is being processed by a CDMAC
engine and the completed bit is detected, as in Figure 5-6, it stops processing and generates
a Completed Bit Error on its corresponding status register. For each engine the code points
a single descriptor to itself and does not set interrupt or stop bits, so the engine loops
forever on that one descriptor. If interrupts do not occur and a handler is not scrubbing the
status bits each engine shows a Completed Bit Error and stops as soon the descriptor has
been processed once. Each of the four LEDs listed in Table 5-1 and Table 5-2 should light
when its corresponding engine displays a Completed Bit Error.

Figure 5-5: Buffer Address Error When Buffer Address Increments Out of Range

Error: Invalid Address

Memory

Buffer Address:
Valid Address

Next Descriptor Pointer

Buffer Length: Too Large

DMA Descriptor

CDMAC
Status Application Dependent

Application Dependent

Application Dependent

Application Dependent

Application Dependent

X535_84_113004

Figure 5-6: CDMAC Completed Bit Errors

SOP/EOP

SOP/EOP

SOP/EOP/Complete

SOP/EOP/Complete

SOP/EOP/INT/Complete

Error: Descriptor already
marked as complete when
DMA engine reads descriptor.

DMA Descriptors

...
...

X535_85_113004

http://www.xilinx.com

174 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 5: Software Applications Contained in the GSRD
R

Next Pointer Errors
If the Next Descriptor Pointer field in a descriptor is ever set to an invalid memory
location, the CDMAC engine stops processing and generates a Next Pointer Error on its
corresponding status register. This test sets up one static descriptor for each engine. Then
sets the Next Descriptor pointer for each engine to an invalid memory addresses, as in
Figure 5-7. This stops each engine and generates next pointer errors that shows up on their
respective LEDs shown in Table 5-1 and Table 5-2.

Current Pointer Errors

The Current Descriptor Pointer is used to start a CDMAC engine, as well as display where
the engine stopped processing data. If the Current Descriptor Pointer field in a CDMAC
DCR register is ever set to an invalid memory location, the CDMAC engine stops
processing and generates a Current Pointer Error on its corresponding status register. This
test sets up one static descriptor for each engine. Then sets the Current Descriptor Pointer
for each engine to an invalid memory addresses, shown in Figure 5-8. This stops each
engine and generates current pointer errors that show up on their respective LEDs shown
in Table 5-1 and Table 5-2.

Figure 5-7: CDMAC Next Pointer Errors

Error: Invalid Pointer

Memory

Buffer Address

Buffer Length

Invalid Next Descriptor Pointer

DMA Descriptor

CDMAC
Status Application Dependent

Application Dependent

Application Dependent

Application Dependent

Application Dependent

X535_86_113004

Figure 5-8: CDMAC Current Pointer Errors

CDMAC DCR Register
per DMA Engine

Error: Invalid Pointer

Memory

Next Descriptor Pointer

Current Buffer Address

Current Buffer Length

Current Descriptor Pointer

X535_87_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 175
XAPP535 (v1.1) December 10, 2004

Stand-Alone Software
R

Writing to Current Descriptor Pointer While Busy Error

The Engine Busy bit in each DCR Status register indicates that an engine is processing data.
The Current Descriptor Pointer must not be written when the Busy bit is asserted. The best
way to assure that an engine has finished processing is to set a flag in the interrupt handler.
An engine causes an interrupt only when it has finished processing a descriptor that has
INT_ON_END set.

This test sets up a correctly working, continuous descriptor chain without INT_ON_END
or STOP_ON_END status bits, which should always display the Busy status bit. Then it
writes to the current descriptor register for each engine, in an attempt to start each engine,
as in Figure 5-9. Any value written into the Current Descriptor Pointer while the Busy bit
is asserted causes a Busy Write error. Each engine stops and generates busy write errors
that show up on their respective LEDs shown in Table 5-1 and Table 5-2.

Figure 5-9: CDMAC Writing to Current Descriptor Pointer While Busy Errors

X535_88_113004

0 1 2 3 4 5 6 27 28 29 30 31

E
R

R
O

R

IN
T

_O
N

_E
N

D

S
TO

P
_O

N
_E

N
D

C
O

M
P

LE
T

E
D

S
TA

R
T

_O
F

_P
A

C
K

E
T

E
N

D
_O

F
_P

A
C

K
E

T

E
N

G
IN

E
_B

U
S

Y
=

1

C
O

M
P

LE
T

E
D

_E
R

R

B
U

F
F

_A
D

D
R

_E
R

R

N
E

X
T

_P
T

R
_E

R
R

C
U

R
R

E
N

T
_P

T
R

_E
R

R

B
U

S
Y

_W
R

_E
R

R
LS

B

M
S

B

LS
B

M
S

B

. . .

. . .
AND

0 31

NEXT DESCRIPTOR POINTER

CURRENT BUFFER ADDRESS

CURRENT BUFFER LENGTH

CURRENT DESCRIPTOR POINTER

http://www.xilinx.com

176 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 5: Software Applications Contained in the GSRD
R

GSRD Verification Test
This software application uses all four CDMAC engines to transfer lines of TFT data from
the Data Generator through the GMAC Peripheral and Fiber-Optic loopback connector to
the TFT display. This model is a better representation of usage of the GMAC Peripheral in
a real life embedded system. Reads and writes occur simultaneously on all four engines
and all the peripherals are continuously working.

As illustrated in Figure 5-10, the CDMAC engines transfer a color bar pattern:

1. from the Data Generator (full TFT lines of pixels, 2560 bytes per packet)

2. to a memory buffer

3. to the Tx GMAC (half TFT lines of pixels, 1280 bytes per packet)

4. to a fiber loopback terminator

5. to the Rx GMAC (half TFT lines of pixels, 1280 bytes per packet)

6. to a second memory buffer

7. to the TFT (half TFT lines of pixels, 1280 bytes per packet)

Rx0 uses 480 descriptors, while Tx0 and Rx1 engines use 960 descriptors. Tx1 uses 960
header descriptors and 960 payload descriptors. Each engine has a set of descriptors
configured to define its functionality, as shown in Figure 5-11. Each set of descriptors is set
up in a ring, the last descriptor points to the first.

Figure 5-10: GSRD Verification Test Software Block Diagram

RX0 TX1 RX1 TX0

Buffer
TX

Buffer
RX

Data
Generator

TFT

GMAC
Peripheral RXTX

Fiber

X535_89_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 177
XAPP535 (v1.1) December 10, 2004

Stand-Alone Software
R

Engine Rx0

This engine reads data from the LocalLink Data generator and places it into a DDR buffer,
Buffer TX. Each packet received is 2560 bytes long, which corresponds to a line of 640
pixels on the TFT screen. Every descriptor has START_OF_PACKET and
END_OF_PACKET set to specify one packet per descriptor. INT_ON_END is set at the
halfway point of the descriptor chain, and at the last descriptor

Engine Tx1

This engine takes data from the same buffer used by Rx0, Buffer TX, and writes it to the
GMAC. Two sets of descriptors are used, header descriptors and payload descriptors.
Each packet consists of one header and one payload descriptor. Each header descriptor is
14 bytes long and points to a buffer of Ethernet header data. Every header descriptor has
the START_OF_PACKET status bit set. Each payload descriptor is 1280 bytes long, exactly
half of the size of a full TFT line. Every payload descriptor has END_OF_PACKET set to
terminate the packet. INT_ON_END is set on the payload descriptor at the halfway point
of the descriptor chain, and at the last descriptor. STOP_ON_END is set for the last
descriptor in the payload chain. The engine stops at the end of every frame transferred and
is re-started when the interrupt handler finishes scrubbing the status bits for the second
half of the header and payload descriptors. The engine is re-started using a semaphore
mechanism implemented inside an infinite while loop in the main function.

Engine Rx1

This engine reads data received from the GMAC and places it into a DDR buffer, Buffer
RX. Each packet received is 1294 bytes long, which corresponds to a half line of pixels on
the TFT screen plus a 14 byte Ethernet header. Every descriptor has START_OF_PACKET
and END_OF_PACKET set to specify one packet per descriptor. INT_ON_END is set at
the halfway point of the descriptor chain, and at the last descriptor. STOP_ON_END is set
for the last descriptor in the payload chain. The engine stops at the end of every frame
received and is re-started when the interrupt handler finishes scrubbing the status bits for
the second half of the descriptors. The engine is re-started using a semaphore mechanism
implemented inside an infinite while loop in the main function.

Figure 5-11: GSRD Verification Test CDMAC Descriptor Setup

Rx0 Descriptors

2560 Bytes | SOP/EOP

...

2560 Bytes | SOP/EOP/IOE

2560 Bytes | SOP/EOP

2560 Bytes | SOP/EOP/IOE

...

0 0

959

480

479 479

Tx1 Header Descriptors

14 Bytes | SOP

14 Bytes | SOP

...

Tx1 Payload Descriptors

1280 Bytes | EOP

...
...

1280 Bytes | EOP/IOE

1280 Bytes | EOP/IOE/SOE

1280 Bytes | EOP

1294 Bytes | SOP/EOP

...
...

1294 Bytes | EOP/IOE

1294 | SOP/EOP/IOE/SOE

1294 Bytes | EOP

Rx1 Descriptors Tx0 Descriptors

1280 Bytes | SOP/EOP

...
...

1280 Bytes | SOP/EOP/IOE

1280 Bytes | SOP/EOP/IOE

1280 Bytes | SOP/EOP

X535_90_113004

http://www.xilinx.com

178 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 5: Software Applications Contained in the GSRD
R

Engine Tx0

This engine takes data from the same buffer used by Rx1, Buffer RX, and writes it to the
TFT. The descriptors are set up so that the 14 byte header data are skipped when data is
transferred to the TFT. This means each packet received is 1280 bytes long, which
corresponds to a half line of pixels on the TFT screen. Every descriptor has
START_OF_PACKET and END_OF_PACKET set to specify one packet per descriptor.
INT_ON_END is set at the halfway point of the descriptor chain, and at the last descriptor.

Pseudo Code for Interrupt Handler

The following is pseudo code for the operation of the descriptor scrubbing interrupt
handler. This handler is called every time the CDMAC reaches an INT_ON_END.

Handler {
 ReadInterruptRegister();
 if (No Interrupts Pending)
 Error-and-Return;
 if (Tx0 Interrupt)
 {
 ReadCDMACStatus();
 if (CDMAC Error)
 Error and Return;
 ClearTx0Interrupt();
 while(Not at end of Half Frame)
 {
 if (CDMAC_COMPLETED}
 {
 if (not INT_ON_END)
 {
 Set Engine status to (SOP + EOP);
 Flush descriptor from cache();
 Advance to the next descriptor();
 }
 else
 {
 if (STOP_ON_END)
 Set Engine status to (SOP + EOP + IOE + SOE);
 else
 Set Engine status to (SOP + EOP + IOE);
 Flush descriptor from cache();
 Advance to the next descriptor();
 }
 }
 else
 Error-and-Return;
 }
 }
 if (Rx0 Interrupt)
 {…}
 if (Rx1 Interrupt)
 {…}
 if (Tx1 Interrupt)
 {…}

 return;
}

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 179
XAPP535 (v1.1) December 10, 2004

Stand-Alone Software
R

First, an error check is performed to confirm that a pending interrupt exists for a CDMAC
engine. The pending engine interrupts are then serviced by their respective If blocks.

Inside the If blocks another error check occurs to verify that the CDMAC engine is not
reporting an error. Then the pending interrupt is immediately cleared. The If block
continues inside of a while loop until the entire half screen of descriptors has been
scrubbed. Tx engines are scrubbed by writing START_OF_PACKET and
END_OF_PACKET to the CDMAC status register. The exceptions to that rule occur when
the current packet has STOP_ON_END or INT_ON_END set, in which case those bits
would also be set. When the descriptors are written to, they must be immediately flushed
from data cache using the XCache_FlushDCacheLine() function from xcache_l.h. The
current pointer advances to the next descriptor following each status scrub.

The omitted engines use essentially the same algorithm with the following exceptions:

• Rx0 and Rx1 do not have START_OF_PACKET and END_OF_PACKET set

• Rx1 and Tx1 set a semaphore flag within the STOP_ON_END If statement.

• Tx1 has an extra If statement to differentiate between header and payload descriptors

Figure 5-12 is a flow chart of the main loop. Figure 5-13 shows the flow chart for the entire
interrupt handler routine.

The results should be a solid color bar pattern on the TFT. The row of LEDs below the TFT
also displays a value that is a relative measurement of the amount of time spent inside the

Figure 5-12: GSRD Verification Test Software Flow Chart

Initialize Globals
Initialize Caches
Create Static Descriptors

If Tx1 Flag
is Set

Initialize Buffers
Initialize Headers

Turn On Rx0

Turn On Rx1

Turn On Tx1

Turn On Tx0

Turn On TFT on Tx0

Initialize LEDs
Initialize Interrupts
Set Up MDIO, PCS in GMAC

Restart Tx1
Reset Tx1 Flag

If Rx1 Flag
is Set

Restart Rx1
Reset Rx1 Flag

X535_91_113004

http://www.xilinx.com

180 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 5: Software Applications Contained in the GSRD
R

main loop between interrupts. The number of LEDs lit reflects a counter that increments by
one each time the main while loop repeats. The value is displayed at the very top of the
interrupt handler and reset at the very bottom of the interrupt handler. If results differ,
check the Known Issues section in the release for information regarding this application.

Figure 5-13: GSRD Verification Test Software Interrupt Handler Routine Flow Chart

Clear Rx1
Interrupt

If Status
Completed

False

If Not
INT_ON_END

Scrub Status=0
Flush Cache

True

False

True
Scrub SOE/IOE

Scrub IOE

Flush Cache
If Status

STOP_ON_END

Read Interrupt Register

If No Pending
Interrupt

If Tx0 Interrupt

If Rx0 Interrupt

If Rx1 Interrupt

If Tx1 Interrupt

If Status
Completed

If Not
INT_ON_END

If Status ErrorClear Tx0 Interrupt

Scrub SPP/EOP
Flush Cache

Clear Rx0
Interrupt

Scrub SPP/EOP/IOE
Flush Cache

Return

True

True

Return

TrueTrue

If Status
Completed

False

False

False

False

True

True

If Not
INT_ON_END

Scrub Status=0
Flush Cache

True

False

False

True

If Status Error

Return

Return

True

False

If Status Error

Return

True

If Status Error

Scrub SOE/IOE

Scrub IOE

Flush Cache
If Status

STOP_ON_END

True

Clear Tx1
Interrupt

If Not
INT_ON_END

If Status
Completed

If Status
STOP_ON_END

Flush Cache

Scrub SOP

Scrub SOP

Scrub EOP

Scrub
EOP/IOE/SOE

Scrub SOP

Scrub EOP/IOE

If Status
SOP

True

False

If Status
SOP

True

False

If Status
SOP

True

False

X535_92_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 181
XAPP535 (v1.1) December 10, 2004

Stand-Alone Software
R

Loopback Reference System Verification Tests
The Gigabit Loopback Reference System connects CDMAC Tx engines to CDMAC Rx
engines to allow complete verification of the byte shifter. The error_on_completed_bit
feature is enabled for all engines in this design so descriptors must always be scrubbed
before they are processed.

CDMAC Loopback Verification Test

There are 128 possible byte organizations when transferring data in a 32 word burst
format. Position the first byte anywhere within the burst 32 (128 bytes), and the last byte
anywhere after the first byte within the burst 32. The positioning of the first byte depends
on the "Buffer Address" field in any given descriptor and the last byte depends on a
combination of the "Buffer Address" and the "Buffer Length" field. By assigning 7 bits to
each field (for 128 positions) we can use a 14 bit number to represent a combination of
"Buffer Address" and "Buffer Length". By testing all combinations of this number with
descriptors, all the possible byte positions and lengths are tested in a given engine. It is
important to verify that the Byte Shifters and CDMAC logic are 100% tested for all
combinations of possible address and lengths.

This test generates an array with all possible combinations of the address and length
offsets. This array contains all 214 = 16384 combinations. The top 7 bits (MSB) are the
address offset and the bottom 7 bits (LSB) are the length offset. Figure 5-14 illustrates this
organization. Each CDMAC engine is assigned a unique array. Each array is randomly
shuffled so that each array appears random relative to the other arrays. It is important to
verify that no dependencies exist within the CDMAC address, length, and byte shift logic.
This kind of testing is often overlooked during DMA engine development. Errors of this
kind in hardware can lead to bugs that are very difficult to identify.

Once the random arrays of address and length offsets are generated, the test iterates
through the array by generating CDMAC descriptors based on the offset values. The
CDMAC engines are started, and each Tx engine transmits its data to a corresponding Rx
engine. When a Rx engine completes, it sets an 'end' flag that tells the software to begin
comparing the receive data to the expected transmitted data. The test then compares the
payload that was sent to the payload that was received. If an error is found, an error is
printed on UART1 of ML300, and the program exits with an error code of 1. (UART1 is set
for 38400/8/n/1).

When the comparison is complete, the software checks to see if it has reached the final
entry in the array. If not, it increments the index to the arrays, generates new descriptors,
and restarts the CDMAC engines. The code then clears the 'end' flag so that the process can
continue until all elements in the array have been processed. When all elements in the
array have been processed, the software sets a 'complete' flag. It is important to know
when all four CDMAC engines have completed all possible combinations. There are two
'complete' flags, one for the Tx0-Rx0 pair, and another for the Tx1-Rx1 pair. When both
'complete' flags are set, the software reshuffles the arrays into differing random patterns.
The CDMAC engines are restarted, and the entire process repeats. A pass counter is

Figure 5-14: CDMAC Loopback Offset Buffer Organization

Address Offset Length

MSB
7 bits = 0-127 7 bits = 0-127

LSB

X535_93_113004

http://www.xilinx.com

182 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 5: Software Applications Contained in the GSRD
R

displayed on the top yellow GPIO1 LEDs of ML300 and output to UART1. See Figure 5-15
for arrangement of ML300 resources including LED locations.

Figure 5-16 illustrates the operation of the Loopback Verification Test.

Figure 5-15: ML300 Evaluation Platform LED Layout for Loopback Verification Test

Pass Counter LEDs

TFT

Yellow (LSB)(MSB) 815

Port 0 Iteration
Counter LEDs

Port 1 Iteration
Counter LEDs

(LSB)(MSB) 015

Green

1631

X535_94_113004

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 183
XAPP535 (v1.1) December 10, 2004

Stand-Alone Software
R

CDMAC One Descriptor Loopback Verification Test

With one descriptor per channel, this test simply transfers a data buffer from the Tx
engines to the Rx engines, then compares the resulting buffer with the original buffer. The
test does not change the address or lengths, nor does it have any loops. The simplicity of
this test makes it easy to simulate. If the comparison ever fails, an error message prints to
the UART.

An example message:

Rx0 Rata is not correct at 0x12345678, should be: 0xFFFFFFFF, received: 0xFFFFFFFA

Upon successful completion of data transfer for each Rx engine, as noted by the
comparison "good" flags, a success message prints to the UART. After the message is
printed, the "good" flags are reset and the CDMAC engines are restarted.

Figure 5-16: Loopback Verification Test Software Flow Chart

False

True

Good

Randomize
Offset Arrays

Generate Descriptors
from Randomized
Arrays. Separate Port 1
and Port 0 calls.

Randomize Offset Arrays

Reset Complete Flags

Generate Descriptors
from Randomized Arrays.
Separate Port 0 and
Port 1 calls.

Start CDMAC Engines

Rx0
End Flag

Compare
Data Buf

Increment Offset
Counter. Generate
Descriptors for Port 0.
Display on left half LEDs

Start Port 0
CDMAC Engines

Print Error Return 1 Set Rx0 Complete Flag

Reset Rx0 End Flag

At end of
Offset Buf

Print UART Pass Results
Reset Complete Flags
and Descriptor Indexes

Increment Pass
Counter. Display on top
LEDs

False

Bad True

False

False

True

True

Good

Rx1
End Flag

Rx0 and
Rx1 Complete

Flags

Compare
Data Buf

Increment Offset
Counter. Generate
Descriptors for Port 1.
Display on right half LEDs

Start Port 1
CDMAC Engines

Print Error Return 1 Set Rx1 Complete Flag

Reset Rx1 End Flag

At end of
Offset Buf

False

Bad True

Start CDMAC Engines

X535_95_113004

http://www.xilinx.com

184 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 5: Software Applications Contained in the GSRD
R

Performance Metrics
Using the xtime library and a few counters within the interrupt handler and other code, the
GSRD Verification Test is able to measure the amount of time spent in the interrupt routine,
the amount of time spent in the main loop, and the number of interrupts serviced per
CDMAC engine. The counters provide information to know how many times each
CDMAC engine has scrubbed its descriptors. Since it is known how long the program ran,
and how much data each engine has moved, it is possible to measure the performance of
the entire GSRD reference system.

CPU Performance Measurement

The XTime_GetTime() function in the xtime_l.h library returns the total number of processor
cycles that have occurred up until that function call. The value returned reflects the 64-bit
time base counter inside the PowerPC core. (See the EDK OS and Libraries Reference Guide,
available online at http://www.xilinx.com/ise/embedded/edk_libs_ref_guide.pdf..)

XTime_GetTime is called upon entry and exit to the interrupt handler. The difference is
calculated to achieve the time spent in the interrupt handler vs. time spent in the main while
loop. Two variables are used to communicate the total time: Time_CPU_Only and
Time_INT_Only. These two variables added together represent the total time spent in the
code (in CPU clock ticks). The ratio of these two variables allows the measurement of CPU
time available versus CPU time spent processing interrupts for the CDMAC.

Remaining CPU Time Available = Time spent in main loop / Total duration of execution

As the number of INT_ON_END instances within each set of descriptors increases, or
coalesces, the percentage of time available to the processor outside of the interrupt handler
changes as illustrated in Figure 5-17.

Table 5-4: Example CPU Availability Over a 120 Second Test

Time_CPU_Only 25,055,441,967

Tme_INT_Only 11,043,249,478

% CPU Time Available 69%

% of CPU spent for CDMAC 31%

http://www.xilinx.com
http://www.xilinx.com/ise/embedded/edk_libs_ref_guide.pdf

High Performance Multi-Port Memory Controller www.xilinx.com 185
XAPP535 (v1.1) December 10, 2004

Stand-Alone Software
R

CDMAC Performance Measurement

A counter is incremented each time a half screen worth of descriptors is successfully
scrubbed. Each engine has one counter associated with it. Since the amount of data sent per
half screen is a known value, the rate at which each CDMAC engine transfers data can be
calculated.

bytes per frame = x pixels * y pixels * bytes per pixel

data bytes transferred = bytes per frame * number of frames

descriptor bytes transferred = number of descriptors * 32 bytes per descriptor * 2
descriptors per transaction * number of interrupts per measured time

Bytes per second = (Data bytes transferred + Descriptor bytes transferred) / measured time

Figure 5-17: CPU Performance vs Interrupts

X535_96_113004

% of CPU Av ailabilit y v s. Interrupts per Descr ip tor Set

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 6 8 10 12 14 16

Interr upts per Descriptor Set

%
 o

f
C

P
U

 T
im

e
A

v
ai

la
b

le

120 Second Run

Table 5-5: Example of a 120-second test where all four engines are being scrubbed

TX0 Bytes per second 80,672,768

RX0 Bytes per second 89,284,608

TX1 Bytes per second 122,635,776

TX1 Bytes per second 114,757,632

TOTAL BYTES / SEC 407,350,784

Bits per second 3,258,806,272

http://www.xilinx.com

186 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 5: Software Applications Contained in the GSRD
R

Testing Result Example From the GSRD

Table 5-6 lists the resultant data from a 120-second run of the GMAC verification test.

Table 5-6: Performance Metric Testing Results From the GSRD

Comment Scrub all ports

Design GSRD

SW gmac_echo_int_tft

INPUTS

OSC Freq (Hz) 100000000

Measured Time (sec) 120

TX0 (TFT) Scrubs* 14324

RX0 (DG) Scrubs* 16608

TX1 (GigE TX or TFT2) Scrubs* 20376

RX1 (GigE Rx or DG2) Scrubs* 20376

Time_CPU_Only 25,055,441,967

Tme_INT_Only 11,043,249,478

TX0 Descriptors 960

RX0 Descriptors 480

TX1 Descriptors 1920

RX1 Descriptors 960

TOTALS

INTS

TX0 Interrupts per second 119.3666667

RX0 Interrupts per second 138.4

TX1 Interrupts per second 169.8

RX1 Interrupts per second 169.8

TOTAL INTERRUPTS / SEC 597.3666667

DATA

TX0 Bytes per second 80,672,768

RX0 Bytes per second 89,284,608

TX1 Bytes per second 122,635,776

TX1 Bytes per second 114,757,632

TOTAL BYTES / SEC 407,350,784

Bits per second 3,258,806,272

% CPU Time Available 69%

% of CPU spent for CDMAC 31%

http://www.xilinx.com

High Performance Multi-Port Memory Controller www.xilinx.com 187
XAPP535 (v1.1) December 10, 2004

Stand-Alone Software
R

Data Calculations

TFT CALCS

x pixels 640

y pixels 480

bytes/pixel 4

bytes/frame 1228800

frames/sec 55.55555556

of Ints 14324

of Ints / Sec 119.3666667

 # Frames 7162

Calc frames / sec 59.68333333

Bytes moved in descriptors 880066560

Bytes moved in Data 8800665600

Total # bytes moved by CDMAC 9680732160

TX0 Bytes per second 80672768

DATA GENERATOR CALCS

x pixels 640

y pixels 480

bytes / pixel 4

bytes / frame 1228800

of Ints 16608

of Ints / Sec 138.4

 # frames 8304

Calc Frames / sec 69.2

Bytes moved in descriptors 510197760

Bytes moved in Data 10203955200

Total # bytes moved by CDMAC 10714152960

RX0 Bytes per second 89284608

GigE TX Calcs

of Ints 20376

of Ints / Sec 169.8

Bytes moved in descriptors 2040791040

Data Bytes / Descriptor 1280

Eth Header Bytes / Descriptor 16

Bytes moved in Data 12675502080

Table 5-6: Performance Metric Testing Results From the GSRD (Continued)

http://www.xilinx.com

188 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 5: Software Applications Contained in the GSRD
R

Linux Device Driver
See the chapter covering the Linux Device Driver in XAPP536, “Gigabit System Reference
Design.”

LwIP
See the chapter covering LwIP in XAPP536, “Gigabit System Reference Design.”

Total # bytes moved by CDMAC 14716293120

TX1 Bytes per second 122635776

gbit / sec 981086208

GigE RX Calcs

of Ints 20376

of Ints / Sec 169.8

Bytes moved in descriptors 1251901440

Data Bytes / Descriptor 1280

Eth Header Bytes / Descriptor 0

Bytes moved in Data 12519014400

Total # bytes moved by CDMAC 13770915840

TX1 Bytes per second 114757632

gbit / sec 918061056

Table 5-6: Performance Metric Testing Results From the GSRD (Continued)

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp536.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp536.pdf

High Performance Multi-Port Memory Controller www.xilinx.com 189
XAPP535 (v1.1) December 10, 2004

R

Chapter 6

Building the GSRD Under EDK

Supported Features
The GSRD (without alteration) supports only some EDK features for specific EDA tools
and hardware platforms.

The edk_instructions.pdf file contained in the zip file contains instructions for building the
GSRD under EDK.

Table 6-1: Supported features

Feature Supported Limitations

Behavioral Simulation Yes ModelSim only

Structural Simulation Yes ModelSim only

Timing Simulation No

FPGA Implementation Yes ML300

Download Yes ML300

ACE File Generation Yes ML300

http://www.xilinx.com

190 www.xilinx.com High Performance Multi-Port Memory Controller
XAPP535 (v1.1) December 10, 2004

Chapter 6: Building the GSRD Under EDK
R

http://www.xilinx.com

	High Performance Multi-Port Memory Controller
	Table of Contents
	About This Document
	Document Contents
	Additional Resources
	Typographical Conventions

	Introduction
	Overview
	Performance Levels

	Reference Systems
	Gigabit Loopback Reference System
	Introduction
	Hardware
	IP Version and Source
	Simulation and Verification
	Synthesis and Implementation
	Design Flow Environment
	Memory Map
	ML300 Specific Registers

	GSRD Dual TFT Reference System
	Introduction
	Hardware
	IP Version and Source
	Simulation and Verification
	Synthesis and Implementation
	Design Flow Environment
	Memory Map
	ML300-Specific Registers

	Hardware Data Sheets for Elements Used in the GSRD
	Multi-Port Memory Controller (MPMC)
	Overview
	Features
	Related Documentation
	High-Level Block Diagram
	Hardware
	Timing Diagrams
	Simulation and Verification
	Using the MPMC in a System
	Module Port Interface

	Communication Direct Memory Access Controller (CDMAC)
	Overview
	Features
	Related Documents
	High-Level Block Diagram
	Theory of Operation
	Hardware
	Timing Diagrams
	Simulation and Verification
	Directory Structure
	Using the CDMAC in a System
	Software
	Module Port Interface

	PLB to MPMC Personality Module
	Overview
	Features
	Related Documents
	High-Level Block Diagram
	Hardware
	Simulation and Verification
	Module Port Interface

	DCR to OPB Bridge
	Overview
	Features
	Related Documents
	High-Level Block Diagram
	Hardware
	Module Port Interface

	LocalLink TFT Controller
	Overview
	Features
	Related Documents
	High-Level Block Diagram
	Hardware
	Simulation and Verification
	LocalLink TFT Controller Pixel Organization
	Module Port Interface

	LocalLink Data Generator
	Overview
	Features
	Related Documents
	High-Level Block Diagram
	Hardware
	Simulation and Verification
	Directory Structure
	Using the LocalLink Data Generator
	Module Port Interface
	EDK Cores

	Software Models for Elements Contained in the GSRD
	CDMAC Software Model
	CDMAC DMA Descriptor Model
	CDMAC Programming Model
	CDMAC Register Definitions

	LocalLink Data Generator Software Model
	LocalLink Data Generator Programming Model
	LocalLink Data Generator Register Definitions

	Software Applications Contained in the GSRD
	Stand-Alone Software
	Overview
	Data Generator TFT Tests
	CDMAC Verification Tests
	GSRD Verification Test
	Loopback Reference System Verification Tests
	Performance Metrics

	Linux Device Driver
	LwIP

	Building the GSRD Under EDK
	Supported Features

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200033002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

