

SysKonnect

SysKonnect a business unit of Schneider & Koch & Co. Datensysteme GmbH

> Siemensstraße 23 D-76275 Ettlingen Tel. 0 72 43 / 50 2100 Fax 0 72 43 / 50 29 89

> > November 6, 1998 Version 1.0

SK-NET GENESIS <x> Technical Manual

SK internal documentation

Revision History

Revision	Released at	Changes from Previous Release	Remarks
1.0	November 6, 1998		

Related Documentation

"PCI Local Bus Specification", Revision 2.1, June1, 1995

"PCI Local Bus Specification", Review Draft Revision 2.2, June 8, 1998

"PCI Bus Power Management Interface Specification", Review Draft Revision 1.1 May 4, 1998

"PCI Bus Hot Plug Specification" Review Draft Revision 1.0, June 15, 1997

"ISO/IEC 8802-3 : 1993 [ANSI/IEEE Std 802.3, 1993 Edition] Information technology - - Local and metropolitan area networks - Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications"

"IEEE 802.3z-1998 IEEE Supplement to ISO/IEC 8802-3 : 1996 Physical Layer, Repeater and Management Parameters for 1 000 Mb/s operation" Approved Draft (former IEEE 802.3z/D5)

"IEEE 802.3x&y-1997 Supplement to ISO/IEC 8802-3 : 1996 Specification for 802.3 Full Duplex Operation and Physical Layer Specification for 100 Mb/s Operation on Two Pairs of Category 3 or Better Balanced Twisted Pair Cable (100BASE-T2): Parts 1 and 2"

"IEEE Draft P802.3ab/D4.0 Supplement to Carrier Sense Multiple Access with Collision Detection (CS-MA/CD) Access Method & Physical Layer Specifications : Physical Layer specification for 1 000 Mbps operation on four pairs of Category 5 or better balanced twisted pair calbe (1 000 BASE-T)"

"XaQti XQ11800 FP 1 000 Mbps Gigabit Ethernet Controller" Data Sheet Order Number: 11800-0198-07 Applies to XQ11800FP chip revisions B.2 and earlier Rev. 7 February, 1998 and

"Differences between Rev. B2 & Rev. C XMAC II"

"Am79761 Physical Layer 10-Bit Transceiver for Gigabit Ethernet (GigaPHYTM-SD)" Preliminary Data Sheet from Advanced Micro Devices (AMD) Publication #21560

"HDMP 1636, HDMP 1646 Gigabit Ethernet Transceiver" Technical Data from Hewlett-Packard Co. 5966-0683E (9/97)

"MDX-19-4-2-X-X Optical Gigabit Ethernet Transceiver" OE8608-8140 from Method Electronics, Inc.

"AC/AC PECL (5V/3.3V) V23826-K15-C73/C373 Single Mode 1300 nm 1.3 Gigabit Ethernet 1x9 Transceiver" July 1998 Preliminary from Siemens Semiconductor Group

"LM80 Serial Interface ACPI-Compatible Microprocessor System Hardware Monitor" DS100040 from National Semiconductor Corporation

"LT1086 Series 1,5 A Low Dropout Positive Regulators, Adjustable and Fixed 2.85V, 3.3V, 3.6 V, 5V, 12V" from Linear Technology

Current Release

Approved by				
Hardware Engineer				
Software Engineer (if applicable)				
Technical Writer				

Document Conventions

Throughout this document tables will be used to present registers and memory maps They are used to list the usage and settings of registers, of single bits in registers, etc. To keep tables more compact some abbreviations, special notation will be used:

Register Descriptions			
Write:			
	ne	no effect	
	yes	writable	
	sh	special handling as described in the text or the table	
	exec	execution of this command - may refer to single bits - the command is executed if the corresponding bit is written as 1.	
Read:			
	aw	as written	
	value	as defined by itself	

Commands

Commands are executed, if the appropriate bit is set. Read value as defined.

Exclusive Commands (e.g. Start/Stop, ON/OFF (usually two bits)

Commands are executed, if appropriate bit is set to 1. Setting both commands to 1, has no effect. Status is readable: 0b01 or 0b10.

Especially in register-, signal-, or flag names the following abbreviations may be used:

SM:	state machine
RX:	receive
TX:	transmit
word:	16-bit word
dword:	32-bit word

qword:	64-bit word
EOF:	EndOfFrame
STF:	STartOfFrame
frame:	packet
packet:	frame (are used synonymously)

Table of Contents

Introductio	on	. 1
1.1 1.1.1 1.1.2 1.1.3 1.1.4	Product Highlights	2 2 3 3 3
Physical B	locks	. 4
2.1 2.1.1 2.2 2.2.1 2.2.2 2.2.3 2.2.4	Printed Circuit Board	6 8 9 9 . 10 . 10 . 11
Frogramm		12
3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.2.3 3.2.4 Data Path	Memory Space Basics	. 12 . 13 . 14 . 14 . 14 . 14 . 15 . 15 . 15
<u> </u>	Receive Queues - Transmit Queues	17
4.1.1 4.1.2 4.2 4.2.1 4.2.2 4.2.3 4.2.3 4.2.4 4.3 4.4 4.5 4.5.1 4.5.2 4.5.3 4.5.4 4.6 4.7 4.7.1	Frame Metadata - Internal Status	. 19 . 22 . 23 . 25 . 26 . 28 . 34 . 37 . 39 . 40 . 40 . 40 . 41 . 42 . 42 . 42 . 44 . 44

	4.7.2	RAMbuffer	5
	4.7.3	RAM Interface	7
	4.8	Transmit Arbitration	.8
	481	Rate Control 4	9
	1.0.1 1 Q	Packet Arbitration 5	3
	4.0 4.10		2
	4 10 1		1
	4.10.1		4
	4.10.2		0
	4.11		ð
	4.12		8
	4.13	XMACII	9
	4.13.1	Programming Interface	0
	4.13.2	Receive Queue Performance 6	0
	4.14	SERDES and Transceiver	1
Mor	re Reso	ources	2
	- /		_
	5.1	Flash EPROM	2
	5.1.1	Flash EPROM Loader	2
	5.2	Interrupts	4
	5.2.1	Interrupt Moderation	4
	5.3	Parity Generation/Check	5
	5.4	Reset Hierarchy	6
	5.5	Clock Distribution	6
	5.6	Timer	7
	5.7	LINK SYNC Counter	7
	5.8	LEDs	8
	5.8.1	NICLED	8
	582		8
	583	Receive LED 6	a
	581		:0
	5.0.4		3
	5.9		9
	5.10	remperature/voltage Sensor	9
Rur	nning th	ne NIC	0
	61	Initialization 7	'n
	6.2		1
	6.2.1		1
	0.2.1		ו רי
	0.2.2		2
	0.2.3		2
	6.2.4	Stop a Transmit Queue	2
Tes	ts	7	3
	71	Testing BMU State Machines 7	2
	7.1	State Machine State Sequence 7	2
	7.2	State Machine - State Sequence	5
	1.3		ю
Ext	ernal In	terfaces	7
	8 1	PCI 7	7
	0.1 Q 2	Cigobit Ethernet Interfacec	2
	0.2	Chort Woyclongth Loost Transcriver	2
	0.2.1	Short wavelength Laser Transceiver	2
	ö.Z.Z	Long vvavelengtn Laser Transcelver 8	2
Тес	hnical l	Data	3

Appendix A

PCI Config	guration Register File 8	87
10.1	Configuration Data Access	88
10.2	Overview/Address Map	88
10.3	Registers	89
10.3.1	Vendor ID Register	90
10.3.2	Device ID Register	90
10.3.3	Subsystem Vendor ID Register	90
10.3.4	Subsystem ID Register	91
10.3.5	Command Register	91
10.3.6	Status Register	92
10.3.7	Revision ID Register	94
10.3.8	Class Code Register	94
10.3.9	Cache Line Register	95
10.3.10	Latency Timer Register	95
10.3.11	Header Type Register	96
10.3.12	Built-in Self Test Register	96
10.3.13	Interrupt Line Register	97
10.3.14	Interrupt Pin Register	98
10.3.15	Min_Gnt Register	98
10.3.16	Max_Lat Register	98
10.3.17	Base Address Register (1st)	99
10.3.18	Base Address Register (2nd) 1	00
10.3.19	Expansion Rom Base Address Register 1	00
10.3.20	New Capabilities Pointer 1	01
10.4	Device Specific Region 1	02
10.4.1	Our Register 1, 2 1	02
10.4.2	Power Management Capability ID Register. 1	05
10.4.3	Power Management Capability ID Register. 1	06
10.4.4	Power Management Next Item Pointer 1	06
10.4.5	Power Management Capabilities Register 1	06
10.4.6	Power Management Control/Status Register 1	07
10.4.7	Power Management Data Register 1	80
10.4.8	Power Management Data Table 1	80
10.4.9	VPD Capability ID Register 1	10
10.4.10	VPD Next Item Pointer 1	10
10.4.11	VPD Address Register 1	10
10.4.12	VPD Data Register 1	11
10.5	VPD EEPROM 1	11

Appendix B

11.1	Overview/Address Map 114
Registers	141
12.1	BLock 0
12.1.1	Register Address Port (RAP) 141
12.1.2	LED Register
12.1.3	Control/Status Register 142
12.1.4	Interrupt Source Registers
12.1.5	Interrupt Mask Registers 147
12.1.6	Special Interrupt Source Register
12.1.7	Special Interrupt Mask Register 148
12.1.8	Interrupt Hardware Error Mask Register 148
12.1.9	Interrupt Moderation Mask Registers 148
12.1.10	IRQ Moderation Timer Registers 149
12.1.11	MAC-Address Registers 150
12.1.12	Interface Type Register 150
12.1.13	Flash EPROM Registers 152
12.1.14	EPROM Address Register/Counter 153
12.1.15	Timer Registers 154
12.1.16	Test Control Registers 155
12.1.17	General Purpose I/O Registers 156
12.1.18	I ² C (HW) Registers 157
12.1.19	I ² C (SW) Register 159
12.1.20	RAM Random Registers 160
12.1.21	RAM Interface Registers 160
12.1.22	Blink Source Registers 163
12.1.23	Link LED Register 164
12.1.24	Transmit Arbiter Registers 164
12.1.25	Packet Arbiter Registers 166
12.1.26	LINK_SYNC Registers 169
12.1.27	Rx LED Registers 170
12.1.28	Tx LED Registers 171
12.1.29	External Registers 172
12.1.30	PCI Configuration Registers 173
12.1.31	Descriptor Poll Timer Registers 173
12.1.32	BMU Registers 174
12.1.33	Receive RAMbuffer Registers 184
12.1.34	Receive MAC FIFOs Registers 190
12.1.35	Iransmit MAC FIFOs Registers 195
12.1.36	MAC Arbiter Registers 200
12.1.37	XMACII Registers 205

November 6, 1998 Version 1.0

SK-NET GENESIS <x>

Technical Manual

This manual describes the hardware of the network interface card "**SK-NET**¹ **GENESIS <x>**". It contains a complete description of the card's programming interface. This will enable the software engineer to develop driver and diagnosis software according to the specifications mentioned below.

1.0 Introduction

The "**SK-NET GENESIS <x>**" is a highly integrated Gigabit Ethernet adapter for PCI LOCAL BUS systems designed to address high-performance systems' requirements. The bus-master architecture with integrated buffer management provides high throughput besides low CPU and system bus load.

^{1.} SK, SK-NET are trademarks of Schneider & Koch & Co. Datensysteme GmbH and Sys-Konnect, Inc. All other brand or product names are trademarks or registered trademarks of their respective holders.

SK-NET GENESIS <x> is an interim name. In the market the NICs will be known as SK-<xxxx>, where <xxxx> is a four digit number.

1.1	Product Highligh	ts The "SK- ASIC from XaQti Co	The " SK-NET GENESIS <x></x> " is a Gigabit Ethernet adapter based on an ASIC from SysKonnect and an Gigabit Ethernet Controller (XMACII) from XaQti Corporation.		
		The ASIC the Gigal Gigabit E " SK-NET with one sion prov	The ASIC provides an interface between the PCI based host system at the Gigabit Ethernet controller with on-board buffer memory. The XMAC Gigabit Ethernet controller provides control and access to the networ " SK-NET GENESIS <x></x> " products will be available in different version with one XMAC ¹ (single link) or two XMACs (dual link). The dual link version sion provides data path redundancy and improved network availability.		
	1.1.1 AS		Compliant to PCI specification/Rev. 2.1 (2.0) and ECRs for Rev. 2.2 (Power Management, VPD, New Capabilities)		
			Universal I/O - 3.3V and 5V signals		
			64-bit bus master interface for data transfer, 32-bit bus tar- get interface for control/status		
			Supporting full transfer rate of 528MBytes/s between PCI local bus and FIFOs. Supporting advanced PCI protocol (Memory Write And In- validate, Memory Read Line and Multiple for cache line sizes up to 128 32-bit-words)		
			High performance bus master architecture with integrated Buffer Management Unit (BMU) for low CPU and bus utili- zation.		
			Individual 64-bit wide FIFOs for each receive and transmit queue, providing buffering between PCI local bus and buffer memory. The buffer memory supports bursts of maximum 199 \times 64-bit-words length at 66 MHz bus clock.		
			Supporting misaligned data transfers between system memory and FIFOs.		
			Support for byte reordering for descriptors in big endian systems. (Data is assumed to be little endian on the PCI bus)		
			Interrupt moderation (PacedPacketBatch)		
			Rate control on second ('synchronous') transmit queue		
			TCP/IP checksum generation/checking		
			Parity generating and checking at PCI local bus interface, internal data paths and external RAM data paths		
			Advanced power management, supporting power modes D0 and D3		
			Three independent queues for each link: receive, trans- mit/asynchronous and transmit/synchronous		

^{1.} MAC means Medium Access Controller in general. A MAC implements the Medium Access Control specification of a network protocol such as Ethernet or Gigabit Ethernet. XMACII is a product from XaQti Corporation implementing the Gigabit Ethernet MAC specification. Usually one speaks about the "single MAC" NIC and the "dual MAC" NIC.

1.1.2 XMAC	Supports Gigabit Ethernet IEEE 802.3z requirements and complies with IEEE 802.3x for frame-based flow control and full-duplex operation
	On-chip transmit/receive FIFOs and 8B/10B PCS Encod- er/Decoder
	On-chip CAM for address matching
	Full duplex / half duplex modes of operation
	Jumbo frame handling
	Link autonegotiation
	Virtual LAN support
	SNMP and RMON monitoring
1.1.3 Transceiver and SERDES	The Gigabit Ethernet transceivers are connected with an SERializer/DE- Serializer (SERDES) that translates the 10-bit wide data at the MAC interface to a serial data stream which is sent over the Gigabit Ethernet cabling either fiber optic or copper media via the transceiver.
	The " SK-NET GENESIS <x></x> " is designed to attach to several transmission media depending on the type of the mounted transceiver. The design intention is to make the NIC attachable to physical media specified for 1000Mbps operation in the IEEE 802.3 framework. Currently the NIC supports
	1000 Base-SX
	□ 1000 Base-LX
1.1.4 Network Interface Card	Below some characteristics of the "SK-NET GENESIS <x>" are listed that refer to the entire network interface card:</x>
	Manufacturing options for single link and/or dual link. A two-MAC version of the "SK-NET GENESIS <x>" may be programmed to provide FDDI-like dual homing for re- dundancy and increased reliability: The NIC may be at- tached to two different switches while only one connection is active. With this a redundant data path is available.</x>
	1 MByte buffer memory for receive and transmit queues (manufacturing option for smaller and larger buffer memo- rv)
	425 MB/s buffer memory bandwidth are provided to trans- fer frames to/from the network side and to/from the host system's PCI bus side simultaneously.
	PCB prepared for an industry standard 1x9 pinout pack- age for the optical transceivers, e.g. 850nm or 1300nm with Integral Duplex SC Connectors
	Temperature sensor and voltage sensors

2.0 Physical Blocks

This survey describes the structure of the "**SK-NET GENESIS** <**x>**" card and the functions of essential card elements. The block diagram displays

the controller's main physical devices. Most of it must be programmed or accessed to operate the card.

- □ Reprogrammable Flash EPROM (FPROM)
- □ Application Specific Integrated Circuit (ASIC)
- Buffer memory
- □ XMACII Gigabit Ethernet controller
- Gigabit Ethernet transceiver and SERDES

The ASIC interfaces the PCI system bus on one side and the XMACII Gigabit Ethernet controller(s) on the other side. Most of the NIC's registers to control the hardware are implemented in the ASIC, except control and operation register of the XMACII medium access controllers. The Flash EPROM holds reset/start values that are loaded into the registers to bring the NIC in a clearly defined state after start-up or reset. It may also hold bootcode.

The "**SK-NET GENESIS <x>**" also supports the optional Vital Product Data (VPD) as proposed in the PCI specification. Following the specification the VPD are read out from a dedicated I²C-attached EEPROM - they are not included in the Flash EPROM.

The main physical devices are involved in handling the payload data: the ASIC, the buffer memory, the XMAC, and the transceiver.

Some devices on the NIC are not listed above:

- ❑ The DC-transformer providing 3.3 V on-board power supply (the adapter is only connected to the 5V power line from the PCI bus not to 12V, nor to the 3.3V from the PCI slot however universal signalling, i.e. both 3.3V and 5V signals at the PCI slot are provided.)
- □ The temperature sensor the voltage sensors and the I²C bus.
- □ EEPROM containing the PCI VPD (Vital Product Data) according to PCI 2.1 ECR (Engineering Change Request)

The following figures show the arrangement of devices on the printed circuit board for two versions of the NIC as an example.

2.1 Printed Circuit Board

Physical Blocks

"SK-NET GENESIS <x>" single MAC

	Color (from left to right)	Intended Use		
	green	Link State	may be on / off / blinking or may forward the XMAC's /LINK_SYNC signal (the connection is switched via software setting)	
	yellow	Receive	on when receiving frames	
	yellow	Transmit	off when transmitting frames	
		Table 3: L	EDs - Intended Usage	
2.2 Functional Description	The following gives a short description of the block diagram's con- nents. A more detailed discussion of the logical units most of t implemented in the ASIC is subject of the following chapters. For detainformation about the XMACII Gigabit Ethernet Controller you should to the manuals and documentation from XaQti Corporation. Complet formation about XMACII beyond its external interfaces is out of the so of this manual.			
2.2.1 ASIC	The Application Specific Integrated Circuit (ASIC) directly interfaces the PCI Local Bus on one side and the Gigabit Ethernet controller on the oth er side. Besides this, it handles access to the memory buffer via an integrated MMU. The ASIC comprises the main control units of the net work interface card. The initialization values for the registers implemented in the ASIC are hardwired or can be overwritten by initialization value from the Flash EPROM. The ASIC contains the main logical units.			
Bus Interface Unit (BIU)	The Bus Interface Unit (BIU) provides the framework for interfacing the PCI Local Bus. It comprises several state machines running synchro- nously with the PCI bus CLK signal. Except the interrupt signal that is independent from the PCI bus CLK, all outputs are synchronously gener- ated with the rising edge of CLK. All inputs are synchronously sampled. The BIU handles			
	Access to the configuration data			
	Access to I/O resources and/or memory mapped resources			
	PCI bus master operation of the "SK-NET GENESIS <x>"</x>			
Buffer Management Unit (BMU)	The Buffer Management Units (BMU) are build upon the BIU services. At the PCI bus the ASIC provides 6 parallel data transfer queues, 2x2 transmit and 2x1 receive queues to optimize controlled data transfer between the card's buffer memory and the system RAM. Data is transferred by the " SK-NET GENESIS <x></x> " operating as PCI bus master. The BMUs, one BMU per queue, control bus master data transfer be-			

tween the buffer memory and the system RAM. For this, the BMU expects a preallocated and initiated buffer structure in the host system RAM. It's to the network driver to provide this structure for each BMU.

Data transfers over the PCI bus are 4 bytes or 8 bytes wide depending on the bus width (32 bit/64 bit). The transfer rate also depends on the bus clock (0-33 MHz / up to 66 MHz). The FIFO and buffer memory implementation of the "**SK-NET GENESIS** <**x>**" provides data rates and data space for PCI burst transfers with up to 512 bytes burst length without any need for the network interface card to insert wait states on the PCI bus.

Arbiters PCI access to the 6 independent concurrent queues is controlled by the PCI arbiter according to a rotating priority scheme. Transfer length is optimized for system dependent cache line sizes and best PCI command usage (descriptors and data).

There are additional arbiters controlling

- □ Priority between transmit queues (rate control)
- □ Access at the buffer memory <-> PCI FIFO interfaces
- □ Access at the buffer memory <-> XMAC(s) interface

Each arbiter operates independently on a per request base. (Though there's usually no direct interaction between arbiters, for example arbitration between transmit queues, which can be used for rate control, can influence the traffic pattern by giving precedence to one queue.)

2.2.2 Buffer Memory The "**SK-NET GENESIS <x>**" controller typically comes with a 1 MByte SRAM for frame buffering. The buffer memory is controlled by the ASIC. Various amounts of buffer memory were foreseen as hardware design option:

Memory Size	# RAM devices	RAM type
512 KBytes	2	64K x 36 bits
1 MByte	2	128K x 36 bits
2 MBytes	4	128K x 36 bits

Table 4: On-Board Memory Options

2.2.3 XMACII The XMACII from XaQti Corporation controls access to the transmission medium. This implementation complies with the IEEE 802.3z specification. The XMACII mounted on the "SK-NET GENESIS <x>" provides interfaces to various transmission media transceivers e.g. fiber optic transceivers and 1000BASE-T transceivers.

The "**SK-NET GENESIS <x>**" comes in two versions with one XMACII assembled (single MAC version) or with two XMACs assembled (dual MAC version). On dual MAC versions of the "**SK-NET GENESIS <x>**" the two XMACs are connected to the ASIC via a common data bus. The MAC ar-

		biter in the ASIC can switch the data bus between the XMACs. The common 32-bit wide data bus between ASIC and the XMAC(s) is operated at 53.12 MHz providing a total bandwidth of 1.7 Gbit/s.
2.2.4	Transceiver and SERDES	The SERializer and DESerializer (SERDES) and the transceiver are re- garded as a logical unit throughout this manual. The SERDES translates the 10-bit parallel data stream to the 1 Gbit/s serial stream and vice versa. One SERDES per XMACII is mounted on the back side of the printed cir- cuit board. The transceivers transform the serial signals from the SERDES to the op- tical/electrical signals as defined in the corresponding PMD (Physical Media Dependent) specification.
		The network interface card is designed to support different media speci- fied in the IEEE specification framework For the first NICs this will be
		 1000 BASE-SX 62.5 μm / 50 μm multimode fiber with shortwave lasers 1000 BASE-LX 62.5 μm / 50 μm multimode fiber with longwave lasers 10 μm singlemode fiber with longwave lasers
		Later on the copper cabling may be supported, too:
		1000 BASE-T UTP (Category 5) cabling with 100m cable length dis- tance.

3.0 Programming	The PCI specification provides three different information spaces and dif- ferent methods to access and control a NIC via the PCI bus:				
Internace	Configuration Space (Hardware access methods are Configuration Read and Configuration Write cycles)				
	The Memory Space (There are several hardware access Methods on the PCI bus e.g. Memory Read, Memory Read Multiple,)				
	I/O Space (translates to I/O Read, I/O Read Write cycles on the PCI bus)				
	The configuration space is treated in detail in Appendix A of this manual. The details how the "SK-NET GENESIS <x>"</x> has implemented configu- ration space access, listings of the PCI configuration registers, the usage of optional extensions by the "SK-NET GENESIS <x>"</x> network interface card can be found there.				
	While it is not recommended for normal use, for test and diagnosis soft- ware the PCI configuration space of the " SK-NET GENESIS <x></x> " is mapped into the control register file that can be accessed via I/O and memory accesses, too.				
3.1 I/O Space and Memory Space Basics	The " SK-NET GENESIS <x></x> " registers can be mapped in both I/O space and memory space. It depends on some initialization values in the config- uration space whether the network interface card uses I/O mapping, memory mapping or both				
	Depending on the BIOS settings/the operating system, the " SK-NET GENESIS <x></x> " is mapped into the I/O space only, mapped into the mem- ory space only, or mapped into both. The PCI specification "highly recommends" mapping into the memory space over mapping into the I/O space. The " SK-NET GENESIS <x></x> " supports any of these mapping combinations. The NIC claims				
	256 Bytes of 32-bit I/O space				
	and 16 KBytes of 32-bit memory space				
	A memory base address and an I/O base address are assigned to the NIC by the system software. The assigned base addresses are written to the configuration space header.				
	Thus, one can access the NIC's registers, e.g. control/status registers, timer, interrupt mask and source register, etc. either via I/O accesses or memory accesses.				
	All the registers of the " SK-NET GENESIS < x >" are comprised in the Control Register File . Additionally the configuration space registers are mapped in the control register file.				
	If the NIC is mapped into both, memory space and I/O space, the control register file can be accessed via I/O accesses and via memory accesses. With both types of access you operate on the same registers.				
	The control register file comprises all control information necessary to operate the NIC. For example some control functions:				

	Control of the various state machines realized in the ASIC
	Control of data transfer between the host memory and the on-board buffer memory.
	Control of the XMACII
	Interrupt sources and interrupt mask
	On-board timer
	D
	All you need to operate the card
	"Control of" the card's registers does not mean that driver software has to poll or access the registers continuously. The main task for drivers after initialization is interrupt handling. The great majority of registers must be accessed for initialization only or for control by diagnosis software.
3.1.1 I/O Mapping	The registers mapped in the I/O space have to be accessed with the min- imum data width, i.e. 8-bit, 16-bit, or 32-bit transfers as the registers are defined.
	The I/O space of the " SK-NET GENESIS <x> " is mapped in the host's I/O space. It spans 256 Bytes. To make all registers of the control register file available via I/O accesses a Register Address Port (RAP) is provided. The entire 16 KBytes address space of the control register file is divided in 128 \times 128 Bytes blocks. Giving the block number and the address relative to the begin of a block <0x80 0x00> enables to address any register in the 16 KBytes control register file.
	Block 0 is permanently mapped to the lower half - the lower 128 Bytes out of 256 Bytes I/O addresses. The block specified by the data in the Register Address Port (RAP) is mapped to the upper half - the upper 128 Bytes. The RAP is the first byte at the relative address 0x00 in block 0 of the control register file. Thus writing to the I/O base address specifies the RAP value.

Bit	Name	Description	Write	Read	Reset (SW)
318	Reserved		ne	0	
70	RAP	Specifies one out of block 0127, which is mapped to the upper half of the 256-Byte I/O range. 0=block 0,0x7f=block 127	yes	aw	0

Table 5: Register Address Port (RAP)

To address any register in the Control Register File via I/O access, write the block number to the I/O base address and access

<Register Address> = <I/O base address> + 0x80 +

<register address relative to the begin of the block>

(Adding 0x80 means switching to the upper half of the 256 Byte I/O space).

3.1.2 Memory	There are two accessible resources:
	 Memory mapped registers (Control Register File) Expansion ROM (Flash EPROM)
	The registers mapped in the memory space have to be accessed with the minimum data width, i.e. 8-bit, 16-bit, or 32-bit transfers as the registers are defined. The Expansion ROM can be accessed with 8-bit, 16-bit, or 32-bit transfers.
3.2 Bus Interface Unit (BIU)	The Bus Interface Unit (BIU) handles the basic protocol for accesses via the PCI bus. It is built of several state machines running synchronously to the PCI bus CLK signal. All inputs are synchronously sampled. All outputs are synchronously generated on the rising edge of CLK.
	The target section of the network interface card is a 32-bit device. It is mapped in the lower 4GB of the address space and therefore ignores all Dual Address Cycles.
	The master section of the network interface card is capable of addressing the whole 64-bit address space independent of the slot size it is mounted in. It uses Single Address Cycles for accesses to addresses below 4GB and Dual Address Cycles for accesses above 4GB. It uses 64 bits for data transfers to and from 64-bit targets, if mounted in a 64-bit slot, and 32 bits for data transfers to and from 32-bit targets or if mounted in a 32-bit slot.
	The master section of the BIU will be treated in more detail when data transfer over the PCI bus is discussed. For the actual programming interface it is not of interest since bus master operations are performed by the " SK-NET GENESIS < x> " hardware according to the preconfigured control registers.
3.2.1 Slave Access to Configuration Space	Slave access to the configuration space is also not of primary interest for the programming interface. However it may be valuable for troubleshoot- ing with PCI bus analyzers and exerciser tools. This bus operation is performed by the target sequencer state machine. Acceptance and termi- nation of a transaction are determined by a backend consisting of the configuration decoder and the configuration register file.
	The network interface card is responding to Type 0 configuration accesses (AD<10> = "00", IDSEL#). If the configuration space is targeted for a burst operation, it responds with a disconnect with the first data transfer.
	The configuration register file can be accessed with 8-bit, 16-bit or 32-bit transfers.
	Configuration transactions are not aborted (Target Initiated Termination). On read transactions all data is driven as defined for full 32-bit accesses independent of BE<30>#.
3.2.2 Slave Access to I/O-Resources	This bus operation is performed by the target sequencer state machine. Acceptance and termination of a transaction are determined by a back- end consisting of the control decoder and the control register file.

	The control registers have to be accessed with the minimum data width (8-bit, 16-bit or 32-bit) transfers as the registers are defined. If the I/O resources are targeted for a burst operation, it responds with a disconnect with the first data transfer. On read transactions all data is driven as defined for full 32-bit accesses independent of BE<30>#.
3.2.3 Slave Access to Memory Resources	I here are two accessible resources:
Resources	Memory Mapped I/O-Resources
	L Expansion ROM (Flash-EPROM)
	Accesses to memory mapped I/O-Resources are performed by the target sequencer state machine. Acceptance and termination of a transaction are determined by a backend consisting of the control decoder and the control register file.
	The control registers have to be accessed with the minimum data width (8-bit, 16-bit or 32-bit) transfers as the registers are defined.
	On read transactions all data is driven as defined for full 32-bit accesses independent of BE<30>#. If the memory resources are targeted for a burst operation, it responds with a disconnect with the first data transfer.
Expansion ROM	Accesses to Expansion RROM are performed by the target sequencer state machine. Acceptance and termination of a transaction are deter- mined by a backend consisting of the Flash EPROM Decoder and the Flash EPROM translation machine.
	The Expansion ROM can be accessed with 8-bit, 16-bit or 32-bit transfers. On read transactions all data is driven as defined for full 32-bit accesses independent of BE<30>#.
	Both cases:
	All PCI memory cycles are defaulted to simple memory read and memory write cycles.
3.2.4 Host Clock Related Resources	The " SK-NET GENESIS <x></x> " operates on several clock domains. For example write access to the register control file come synchronous with the PCI clock. On the network interface card they may cross the domain border and operate on registers that are run synchronously with the host clock (~ the NIC's operating clock). Crossing the domain border causes some delay for the PCI related target state machine to complete the access cycle on the PCI bus. Thus, all resources that are clocked with host clock are doing write posting to avoid violation of the 16 clocks rule for accesses to all PCI targets.
	Each resource, that is integrated in the ASIC (timer, IRQ moderation timer etc.), has its own set of posting registers, that hold subaddress, byte enables and write data.
	Also each external device (XMACII and optional external registers) has its own set of posting registers, but they are sharing the board's internal ad- dress and data bus.

While a posted write is in progress, all following accesses to this resource are terminated with a target retry until the posted write is completed. Accesses to resources sharing the same set of posting registers are terminated with a target retry, while a posted write through this set of registers is in progress. Accesses to resources, that don't share the busy set of posting registers are completed normally on the PCI bus without additional wait states.

The Flash EPROM doesn't implement write posting and delayed read transactions. For accesses to the Flash EPROM the posting registers are set to transparent mode. While an access to the Flash EPROM is in progress all accesses to the other resources sharing the internal address and data bus are terminated with a target retry. Accesses to the Flash EPROM are terminated with a target retry, if an access to another resource sharing the internal address and data bus is in progress.

Exception: While a posted write or a delayed read operation is in progress, all accesses to the Register Address Port (RAP) are terminated with a target retry to assure RAP consistency.

4.0	Data	a Path -
Overview	and	Details

4.1

The **"SK-NET GENESIS <x>"** Network Interface Card (NIC) reads data from the host system's RAM and puts it on the network and vice versa. For achieving high performance with minimum load on the system CPU(s) the main steps of this task are performed by the NIC hardware.

Once initiated, the network driver has to handle network data in the system RAM and to respond to interrupts from the network interface card. The driver may initiate transfers and control the hardware. However, time consuming or CPU intensive operations like moving the data to/from the system RAM are handled by the "**SK-NET GENESIS** <**x>**" hardware. Interrupt moderation and aggregation of data on the transmit data path may additionally reduce the load on the system CPU.

As seen from the NIC data transfer is splitted in two tasks:

- Moving data between the system memory and the NIC this is done by the ASIC.
- Putting data on the network / read data from the network this is done by the XMACII Gigabit Ethernet controller and the ASIC.

The on-board buffer memory, the FIFOs in the ASIC and in the XMACII provide some interim storage for frames. The FIFOs first task is to enable data flow -even for PCI burst transfers- across independently clocked devices and to provide a contiguous data stream over the clock domain borders. Another task of the FIFOs is data band width adaptation: The MAC FIFO for example translates from the 64-bit (+parity) data path within the ASIC to the 32-bit wide data port on the XMACII. The on-board buffer memory is for interim storage: congestion avoidance, preventing receive overflows, or for TCP/IP checksum insertion.

Operation and functions of the XMACII are described in detail in the XMACII datasheets from XaQti Corporation. Thus this manual will mainly refer to operation and control of the ASIC.

Accesses to control the "**SK-NET GENESIS <x>**" is handled by the "target state machine". As seen from the PCI bus the NIC is the target of accesses. E.g. the driver sets register values or clears interrupts on the NIC. Target accesses are 32-bit accesses. The "**SK-NET GENESIS <x>**" is operated as CPU slave. Transferring payload data in the slave mode is possible for test purposes.

However, to achieve maximum performance at minimum CPU load data transfer between the "**SK-NET GENESIS <x>**" and the system memory is done by the NIC operating as PCI bus master. Depending on the PCI slot data may be transferred over the PCI bus with 32-bit or 64-bit data width.

Receive Queues -
Transmit QueuesData is moved between the system RAM and the network by queueing
them on a data path - a receive or transmit queue. Receive queues are for
data frames coming from the Ethernet. Transmit queues are for putting
data from the host system onto the Ethernet network. The "SK-NET
GENESIS <x>" comes with a total of 6 data path or queues at the PCI
side and 2 data transfer queues at each XMAC.

For each of the 6 queues at the PCI side the driver software has to provide a "descriptor+buffer" chain that holds data frames or frame fragments together with control information that determines how the "**SK-NET GENESIS** <**x>**" hardware handles the frame and frame-related status in-

- 17 -

	The design idea is that the network driver provides several descrip- tor+buffer units per queue, a chain of descriptor and assigned buffers for each queue. Each descriptor+buffer unit contains information where to read/write data in the system RAM and where the BMU (Buffer Manage- ment Unit) will find the descriptor structure of the next unit. The driver software manages the data buffer and descriptor chain in the system memory while the BMUs read/write the units and transfers the data buff- ers according to the information encoded in the respective descriptor. The BMUs handle transfer along the PCI bus.
	A descriptor+buffer unit provides a data container for one frame or for a fragment of a frame. Or vice versa each frame requires at least one descriptor+buffer unit for transfer between the NIC and the sys- tem RAM. The STart of Frame (STF) flag and the End Of Frame (EOF) flag in the descriptor identify frame borders. The driver software provides the buffers and descriptor structures in the system RAM and may initiate the BMUs to perform data transfers. Once initiated the BMUs transfer a frame or subsequent frames over the PCI bus at maximum transfer rate without CPU load penalty. Data flow is con- trolled only through descriptors (except for error handling). All FIFOs (including the BMUs) are intended to run without any software interaction after initialization.
General Remarks	As shown in the figure there are lots of FIFOs involved in data transfer. Each FIFO has a write state machine and a read state machine running as independently as possible. A transfer at STart of Frame (STF) is initiat- ed by the data source. Data transfer is requested, if the source has data available and there's space left at the destination. End Of Frame (EOF) is tracked from the source and forwarded to the destination. All transfers are limited by timeout counters. The FIFOs, except the PCI FIFOs are accepting more than one packet. The PCI FIFOs are optimized that burst transfers are not broken at packet boundaries, but may be suspended for some clock cycles. (Under worst case load conditions, the system is driven to max length bursts for each participant.)
4.1.1 Frame Metadata - Internal Status	While in the host system's RAM the descriptor offers accompanying con- trol/status information for each frame, there's a similar concept when payload data is moved along their queues: the Internal Status . The inter- nal status comprises up to 4 64-bit words that accompany the payload data over the network interface card carrying the additional metadata about the payload and control information for each frame separately. The descriptor structure and contents will be shown in detail when start- ing a closer look at a frame's path from the host system to the network. Descriptors are clearly located, read and written in the system RAM, es- pecially from a driver point of view. The internal status however is a concept that will be mentioned at various points of a frame's data path over the network interface card. (The internal status is mostly invisible for

driver / test software it can only be read from the RAMbuffers. Nevertheless it's important for arbitration decisions since it contains frame border flags.)

Internal Status On the network interface card the first two 64-bit words of the internal status are inserted in the datastream. (They are removed before giving data to the XMAC.) The 3rd and 4th 64-bit word of the internal status are defined for frames on the transmit queues, i.e. frames send to the network, only. They are used for control purposes.

> The internal status words are passed along several stations on the network interface card together with the payload data. Stations may evaluate/set/modify the internal status. The complete internal status is validated by a flag **Internal Status Valid** by the creating/modifying state machine. The **Internal Status Valid** flag is cleared by the destination.

Internal Status Register/Receive (64-bit word 1 & 2)		Valid at STF	Valid at EOF	Default	
al Status Word 1 (lo	wer address when read from RAMbuffer)				
Reserved					
	Internal address of the frame end		<i>\</i>		
Addr Frame End	Addr Frame End is individual for each FIFO and set to ZERO, if forwarded to other FIFOs		•		
Frame Length	Frame length in bytes (defined by the XMACII interface)				
Reserved					
Time Stamp Valid	Set, if timestamp appended by XMAC				
RX Status Valid	Set, if Receive Status appended by XMACII (Receive Overflow)				
Internal Status word 2 (upper word when read from RAMbuffer)					
Timo Stamp	Timestamp as defined by XMAC.		\checkmark		
rime Stamp	Set to ZERO, if not appended by XMAC				
	Receive status as defined by XMAC.		\checkmark		
RX Status	Set to ZERO, if not appended by XMACII (Receive Overflow)				
	Internal Statu al Status Word 1 (lov Reserved Addr Frame End Frame Length Reserved Time Stamp Valid RX Status Valid Internal S Time Stamp RX Status	Internal Status Register/Receive (64-bit word 1 & 2)al Status Word 1 (lower address when read from RAMbuffer)ReservedAddr Frame EndInternal address of the frame end Addr Frame End is individual for each FIFO and set to ZERO, if forwarded to other FIFOsFrame LengthFrame length in bytes (defined by the XMACII interface)ReservedInternal Status ValidSet, if timestamp appended by XMACRX Status ValidSet, if Receive Status appended by XMACII (Receive Overflow)Internal Status word 2 (upper word when read from R Time Stamp XIACTime StampTimestamp as defined by XMAC. Set to ZERO, if not appended by XMACRX StatusReceive status as defined by XMAC. Set to ZERO, if not appended by XMAC. Set to ZERO, if not appended by XMACII (Receive Overflow)	Valid at STFValid at STFal Status Word 1 (Iower address when read from RAMbuffer)ReservedInternal address of the frame end Addr Frame End is individual for each FIFO and set to ZERO, if forwarded to other FIFOsFrame LengthFrame length in bytes (defined by the XMACII interface)ReservedSet, if timestamp appended by XMACRX Status ValidSet, if Receive Status appended by XMACII (Receive Overflow)Time Stamp XaltaTimestamp as defined by XMAC. Set to ZERO, if not appended by XMACRX StatusReceive status as defined by XMAC. Set to ZERO, if not appended by XMACII (Receive Overflow)	Internal Status Register/Receive (64-bit word 1 & 2)Valid at STFValid at EOFal Status Word 1 (lower address when read from RAMbuffer)Image: Constraint of the status word 1 (lower address when read from RAMbuffer)Image: Constraint of the status word 1 (lower address when read from RAMbuffer)ReservedInternal address of the frame end Addr Frame End is individual for each FIFO and set to ZERO, if forwarded to other FIFOsImage: Constraint of the status word 2 (lower address)Frame LengthFrame length in bytes (defined by the XMACII interface)Image: Constraint of the status appended by XMACReservedImage: Constraint of the status appended by XMACImage: Constraint of the status word 2 (upper word when read from RAMbuffer)Internal Status word 2 (upper word when read from RAMbuffer)Image: Constraint of the status address of the	

Receive Queues:

Table 6: Internal Status - Receive Queues

Transmit Queues

	Internal Status Register/Transmit (64-bit word 1 & 2)		Valid at STF	Valid at EOF	Default
Inter	Internal Status word 1 (lower word when read from RAMbuffer)				
63:52	Reserved				
		Internal address of the frame end		\checkmark	
51:32	Addr Frame End	Addr Frame End is individual for each FIFO and set to ZERO, if forwarded to other FIFOs			
31:16	Frame Length	Frame length in bytes (defined by BMU)		\checkmark	
15:3	Reserved				
2	Insert Check- sum	Insert Checksum as defined by the trans- mit descriptor with STF set			
1	Dis CRC	Dis CRC as defined by the transmit descriptor			
0	Reserved				
Inter	Internal Status word 2 (upper word when read from RAMbuffer)				
63:32	Reserved				
31:0	TX Status	Transmit Status as defined by transmit descriptor.			

Table 7: Internal Status - Transmit Queues

	Internal Status Register/Transmit (Qword 3 & 4)		Valid at STF	Valid at EOF	default
		Internal Status Word 3			
63:17	Reserved				
16	St&Fwd	Store and Forward Prevents to start reading from RAMbuffer be- fore complete frame is available (including written checksum and status)			

Table 8: Internal Status Word 3 & 4 - Transmit Queues

15:0	TCP Sum Write	TC de	P Sum Write as defined by the transmit scriptor.				
		Int	ernal Status Word 4				
63:0	Check Sum	Checksum packed in the 64-bit, which has to be replaced					
			Table 8: Internal Status Word	3 & 4 - Tra	ansmit Que	eues	
STF, EOF			boundaries. They are used by several arbiters and state machines. The STF and EOF bits are required since a frame may be fragmented into several non-contiguous buffers in the host memory. To transmit this splitted frame each fragment requires its own descriptor. Additionally, the end of the frame transfer can be indicated by an interrupt.				
4.1.2 TCP/IP Checksum Calculation The TCP/IP checksum calculation is a feature of the "SK-NET G <x>" to reduce CPU load by handling the most part of it in the NIC ware. Depending on the descriptor's OPCode settings it can be disabled. It also depends on the software, especially the network stack implementation, whether and how effectively this feature CPU load and improves the overall performance.</x>				GENESIS NIC's hard- be used or ork protocol ure reduces			
			The TCP/IP hardware checksum is a 16- as defined in RFC 793 "Transmission C GENESIS <x></x> " hardware calculates che et starting at an offset defined in the rece Of Frame ¹ . The result of the checksum metadata and is contained in the descr respectively.	bit one's o Control Pr cksums a eive/transr calculatio iptors and	complemen rotocol". Th long an Eth mit descript on belongs t d internal st	t checksum e " SK-NET ernet pack- or until End to a frame's tatus words	
			On the receive queues the hardware write the last descriptor that belongs to a frame "1" in the descriptor. The driver software of checksum to compare it with the checksum validity checks. On the transmit queues the hardware re- RAM, writes the entire frame into the or On is set). Then the calculated checksum over the frame at the checksum write po	tes the ca e, i.e. the can use the minclude eceives a h-board bu h is added sition. The	Iculated che End Of Fra he hardware d in the fran frame from uffer memor to an offset e offset and	ecksum into me is set to ecalculated ne for frame the system ry (St&Fwd and written the check-	
			sum write position are defined in the first Addition of offset and calculated check complement arithmetic. On transmit queues the " SK-NET GENE sum starting at a frame position defined receive queues always two checksums	transmit of sum is do ESIS <x>" in the fran are comp</x>	descriptor o one accordi ' computes ne's first de outed. The	f the frame. ng to one's one check- scriptor. On receive de-	
			1. End Of Frame, Start Of Frame flags of the "Sk (MAC) frames not to IP, TCP, UDP or other protoco	(-NET GEN ol frames.	ESIS <x>" ref</x>	er to Ethernet	

scriptor holds the start position for checksum computing. It's to the driver software to set appropriate start positions when initializing the receive descriptors.

Example:

The TCP/IP checksum calculation can be used to calculate the TCP/IP checksum over the most part of a TCP/IP or UDP/IP frame. E.g. when transmitting an entire TCP/IP frame within an Ethernet packet, driver software can calculate the IP checksum which is a checksum over the IP header only and set the transmit descriptor to calculate the checksum over the IP data (= TCP frame). (Driver software computes the checksum of the Pseudo Header - not the hardware.) For the receive queues the TCP/IP checksum calculation can be used to calculate e.g. one checksum starting with the IP header until EOF the second checksum starting with IP data (= TCP frame) until EOF. Since the "real" IP header checksum refers to the IP header only, the IP data checksum must be subtracted from the first calculated checksum appropriately. Depending on the driver interface and the implementation of the TCP/IP protocol stack, the hardware calculated checksum for received frames can also be used for IP frames that exceed the Ethernet frame size and are received within several Ethernet frames. However, checksum calculation over several Ethernet frames is not possible for the transmit queues. The checksum calculated by the hardware needs some modification F before or after sending or receiving a packet to or from the network, respectively. Thus, it is important to understand the Internet checksum algorithm in detail and how to implement the code to modify the checksum.1 The descriptors provide address information for the BMUs. The descriptor 4.2 System RAM holds an address for an assigned data buffer, a container for the data **Descriptors and Buffers** frame or frame fragments to be sent/received. Besides this descriptors also carry control and status information, e.g. the frame status word and timestamps for further processing by the network driver. When sending frames, i.e. for the transmit queues, the descriptor enables/disables the hardware TCP checksum computing on the "SK-NET GENESIS <x>" network interface card. Usually the driver software provides a chain of descriptor+buffer units at driver initialization time: one chain per queue. Descriptors of transmit queues are different from the descriptors of the receive queues. Receive queue descriptors contain status information about the received Ethernet frame while the transmit descriptors provide information for the hardware how to handle the frame - frame metadata. Thus, for each of the six queues a chain of descriptors should be build during driver initialization. It's also possible (not necessary) to chain the descriptors in a descriptor ring as sketched in the figure.

^{1.} The following RFCs refer to TCP/IP checksum computing: RFC 791 "Internet Protocol" RFC 793 "Transmission Control Protocol"

RFC 1071 "Computing the Internet Checksum"

RFC 1624 "Computation of the Internet Checksum via Incremental Update"

Chained Descriptors for Receive Queue 1 address of next address of next address of next descriptor descriptor descriptor Closing the chain of descriptors is optional. **Chained Descriptors for Asynchronous Transmit Queue 1** address of next address of next address of next descriptor descriptor descriptor Closing the chain of descriptors is optional. **Chained Descriptors for Synchronous Transmit Queue 1** address of next address of next address of next descriptor descriptor descriptor

Chained Descriptors for Receive Queue 2

Closing the chain of descriptors is optional.

Chained Descriptors for Asynchronous Transmit Queue 2

Chained Descriptors for Synchronous Transmit Queue 2

Descriptor Chains

The number of descriptors for a queue is theoretically unlimited. The size of a descriptor is 8×32 -bits.

	The descriptors have to be located on 8-byte boundaries i.e. fitting for 64-bit accesses by the BMU (even if the NIC is installed in a 32-bit slot).
	All descriptors of a queue must be within a 4 GBytes address range (the address is specified in the descriptor by the lower 32-bit in 64-bit address space). The upper 32-bit in the 64-bit address space that specify the 4 GBytes range are configured once for each queue at driver initialization. The buffer addresses however can start at any byte address. The buffer address, a full 64-bit address, is defined for each buffer in the defining descriptor separately. I.e. the buffers containing the payload data can spread over the entire 64-bit address space. A hardware multiplexer cares that data frames on the network interface card are contiguous without any gaps or padding bytes due to byte alignment. The multiplexer can be accessed, read out for test and diagnosis purposes.
	The hardware details: buffer management is implemented for each queue separately, i.e. there are six independent BMUs. The BMUs are structured similar. The BMUs for the receive queues are identical in detail and the BMUs for the transmit queues are identical in detail.
4.2.1 Little Endian - Big End	Jian Data and descriptors moved from/to the receive/transmit queues are expected to be little endian ordered.
	The byte order in the transferred data (64-bit) words is assumed to be little endian by the host bridge in big and little endian systems. The data path for the receive/transmit descriptor words (32-bit) may be switched to big endian using Rev_Bytes_Desc setting in the control register file.
	Remark: In the known systems it is not necessary to change the byte or- der for the data or the descriptors, except for AIX systems, which may gain performance, if the descriptors are byte-reordered using Rev_Bytes_Desc .
	The table below shows the effect of Rev_Bytes_Desc where byte 0 is the least significant byte, byte 7 is the most significant byte of a 64-bit word.

Rev_Byte_Desc	64-bit Word Byte Lane 7-6-5-4-3-2-1-0	32-bit 1st 32-bit Word Byte Lane 3-2-1-0	32-bit 2nd 32-bit Word Byte Lane 3-2-1-0	Application
0	7-6-5-4-3-2-1-0	3-2-1-0	7-6-5-4	little endian System
1	4-5-6-7-0-1-2-3	0-1-2-3	4-5-6-7	big endian System with little endian ad- justment for data: read just descriptor words

Table 9: Little Endian vs. Big Endian

- 25 -

4.2.2 Own Bit For each queue at least one descriptor structure is required in the host memory. The descriptor structure provides at least the following informations to the BMU:

- An Own bit indicating whether the host (driver software) or the BMU (the NIC hardware) owns the current descriptor
- □ Buffer address (address of data to be transferred)
- □ Buffer length (number of bytes to be transferred)
- Address of next descriptor in the chain.

Since a descriptor is read/written from two instances, the driver/diagnosis software and the BMU hardware (Buffer Management Unit), some rules are needed to avoid conflicts. Access is controlled via the descriptor's **Own** bit. The **Own** bit indicates ownership i.e. the right to change the descriptor contents.

Value	Meaning
0	Host is owner of the descriptor After writing/updating the descriptor the host relin- quishes the descriptor to the BMU by setting the Own bit to "1".
1	BMU is owner of the descriptor After writing/updating the descriptor the BMU relin- quishes the descriptor to the host by setting the Own bit to "0".

Table 10: Descriptor's Own bit

After building and initializing the descriptor chains, receive queue descriptors should be owned by the BMU, transmit queue descriptors should be owned by the host. The BMU Control/Status registers of each queue should contain the address of a descriptor, the "current descriptor". Later on the BMU reads descriptor addresses and updates the informa-

tion in the control register file - together with additional information and control bits to handle the BMU mechanism.

Other than the **Own** bit, some bits of the descriptor are set only by the host (while he is the owner) some bits are set only by the BMU owning the descriptor.

Usually¹ the BMU is not polling descriptors for ownership. A descriptor read is initiated by the driver/diagnosis software setting the command **Start xxx** for the transmit queues or if an additional descriptor for receive

^{1.} As this sentence says software should initiate the data transfer process. However as seen from previous similar BMUs a Start xxx command may get "lost" in some environments due to CPU <-> cache related interim storage problems under certain conditions. The event was observed to happen on a several minute time scale. Thus the polling mechanism should be used to send a Start xxx to initiate transfer of ready descriptors regularly.
data is needed. The BMU is reading the descriptor entry of a queue pointed to by the queue's **Current Descriptor Address**, if the host is setting the command **START xxx** for the related queue.

It is supposed, but not mandatory, that the host is building the structures once at initialization time. The **Descriptor Base Address Register High** has to be loaded with the upper 32 bits of the 4GB block the descriptors are located and the **Current Descriptor Address** registers of each queue has to be loaded with the 32-bit offset address of the first descriptor entry of a queue within this 4GB block, before a command **START xxx** is set.

The next descriptor entry is read by the BMU, if the ownership of the current descriptor entry is relinquished to the host. If the descriptor entry is not owned by the network interface card, no further reading of this descriptor is performed. Rereading is initiated by the host setting the command **START xxx**.

The **START xxx** and the complementary **STOP xxx** command act upon the "supervisor state machine" which is one state machine in the BMU's state machine set. **START xxx** or the end of handling a descriptor causes the supervisor state machine to request the next descriptor read. It's to the driver/diagnosis software to provide enough receive descriptor+buffer units to avoid congestion on the receive paths. Received frames will be queued in the buffer memory. Later on the XMACII may send Pause frames as defined in the Gigabit Ethernet specification to its neighbor port.

4.2.3 Receive Descriptor The receive descriptors have the same structure for each of the two receive queues

Bit	Name	Description	Addr ess	Defined by
	Rec	RBCTRL eive Buffer Control		
31	Own	Own indicates that the descriptor is owned by the host (Own = 0) or the network inter- face card (Own = 1). The host sets Own for relinquishing the buffer. The BMU clears Own after filling the buffer pointed to by the descriptor entry and com- pletion of its descriptor entries. Once the BMU or the host has relinquished the ownership of a descriptor, it must not change any field in the descriptor.	base	host network inter- face card
30	STF (Start of FRAME)	 Start of Frame is coming with two functions: Defined by the host: If set, the BMU is allowed to use this descriptor for the start of a received frame. If a descriptor for the start of a received frame is needed, subsequent descriptors (owned by the BMU) are read by the BMU until finding one STF having set. Released descriptors are written back with correct information (e.g. OWN is cleared). Defined by the BMU: Start of Frame is set, if the descriptor is holding the start of a received frame. Valid, if Own is cleared by the BMU. 		host network inter- face card
29	EOF (End of Frame)	End of Frame indicates that this is the last descriptor used by the BMU for this frame. If En IRQ EOF and EOF are set, an inter- rupt IRQ EOF is generated after relinquish- ing this descriptor. Valid, if Own is cleared by the BMU. True, if = 1		network inter- face card

Table 11: Receive Descriptor

Bit	Name	Description	Addr ess	Defined by
28	En IRQ EOB (Enable Interrupt on End Of Buffer)	If En IRQ EOB is set, an interrupt IRQ EOB Rx is generated after relinquishing this descriptor. True, if = 1		host
27	En IRQ EOF (Enable Interrupt on End Of Frame)	Enable IRQ EOF , see EOF . True, if = 1		host
26	Dev 0	Don't transfer to system memory. True, if = 1		host
25	Status Valid	Indicates if the Receive Frame Status Word (one of the following 32-bit words) is valid. RFSW is not valid, if this packet is short- ened by a receive overflow. Status Valid is valid, if Own is cleared by the BMU and EOF is set. True, if = 1 A receive frame mast be treated as cor- rupted, if one of both Status Valid or Time Stamp Valid are not set.		network inter- face card
24	Time Stamp Valid	Receive Frame timestamp valid. Time Stamp is not valid, if timestamp is not appended by XMAC Valid, if Own is cleared by the BMU and EOF is set. True, if = 1 A receive frame mast be treated as cor- rupted, if one of both Status Valid or Time Stamp Valid are not set.		network inter- face card

Table 11: Receive Descriptor

Name	Description	Addr ess	Defined by	
CHECK/Opcod	 If the BMU is reading a descriptor owned by the BMU with an invalid CHECK/Opcode, an interrupt IRQ CHECK Rx is generated and no further descriptors are read (Supervisor state machine defaults to Idle state). Opcodes: 0x55: Default descriptor 0x56: Descriptor with TCP/IP checksum extension 		host	
RBBC (Receive Buffer Byte Count)	 Receive Buffer Byte Count The host is defining the length of the buffer in bytes. The network interface card is rewriting this counter with the real number of bytes written to the buffer (valid, if Own is cleared) In some cases of error handling (e.g. receive overflow of XMAC's FIFO), RBBC may come back set to Zero. In such cases, Status Valid and/or Time Stamp Valid are not set furthermore. 		host, network inter- face card	
31:0 NRDADR	Next Receive Descriptor Address, lower 32-bit Receive descriptors must be 8-byte aligned, i.e. fitting for 64-bit reads by the BMU	base + 0x4	host	
	Name CHECK/Opcode RBBC (Receive Buffer Byte Count)	NameDescriptionIf the BMU is reading a descriptor owned by the BMU with an invalid CHECK/Opcode, an interrupt IRQ CHECK Rx is generated and no further descriptors are read (Super- visor state machine defaults to Idle state).CHECK/OpcodeOpcodes: 0x55: Default descriptor0x56: Descriptor with TCP/IP checksum extensionRBBC (Receive Buffer Byte Count)RBBC (Receive Buffer Byte Count)NRDADRNext Receive Descriptor Address, lower 32-bit Receive descriptors must be 8-byte aligned, i.e. fitting for 64-bit reads by the BMU	NameDescriptionAddr essIf the BMU is reading a descriptor owned by the BMU with an invalid CHECK/Opcode, an interrupt IRQ CHECK Rx is generated and no further descriptors are read (Super- visor state machine defaults to Idle state).CHECK/OpcodeOpcodes: 0x55: Default descriptor0x56: Descriptor with TCP/IP checksum extensionRBBC (Receive Buffer Byte Count)Receive Buffer Byte Count The host is defining the length of the buffer in bytes. 	

Bit	Name	Description	Addr ess	Defined by
		(The upper 32-bit of the descriptor address are set once at initialization time for each queue in the control register file i.e. receive descriptors are restricted to be in a joint 4 GByte address space, which means no se- vere restriction since the 4 GByte descriptor address space can be anywhere in the 64-bit address space. Receive buffers however can be addressed anywhere in the 64-bit address space on a per descriptor base. Both the lower 32 bit and the upper 32-bit address is specified in the descriptor as shown below. I.e. data can be distributed over the entire 64-bit address space wherever the driver wants to have them.)		
31:0	RBADR LO	Receive Buffer Address, Lower 32-bit	base + 0x8	host
31:0	RBADR HI	Receive Buffer Address, Upper 32-bit	base + 0xc	host
31:0	RFSW	Receive Frame Status Word as defined by XMACII (including length). Valid, if Own is cleared by the BMU and EOF (End of Frame) is set. If not valid, the BMU is writing back, what it got at that place.	base + 0x10	network inter- face card
31:0	Time Stamp	Receive timestamp as defined by XMAC, if XMACII is configured for appending times- tamp. If not, Time Stamp = 0. Valid, if Own is cleared by the BMU and EOF (End of Frame) is set. If not valid, the BMU is writing back, what it got at that place.	base + 0x14	network inter- face card
TCP/IP checksum extension				

Table 11: Receive Descriptor

Bit	Name	9	Description	Addr ess	Defined by
A descriptor with TCP/IP checksum extension is enabling TCP/IP checksum calculation.					
TCP/IP checksums 1 & 2 (16 bit) are calculated from TCP Sum Start 1 & 2 up to the end of the packet. The checksums are written to TCP Sum 1 & 2 . Note: An FCS appended to the frame by the XMACII is also added to the checksum.					
If the calcuis seen as	Ilation is not e 0.	ending 1	6-bit-aligned at the end of the packet, the missir	ng byte	
Registers I TCP Sum	holding these 1 & 2)	values	are updated only, if STF (Start of Frame) is set (except	
31:16	TCP Su	m 2	Checksum 2 Valid, if Own is cleared by the BMU and EOF is set.	base + 0x18	network inter- face card_if
15:0	TCP Sum 1		Checksum 1 Valid, if Own is cleared by the BMU and EOF is set.		EOF is set
31:16	TCP Sum Start 2		Checksum 2, start position for calculation in bytes (16-bit aligned) counted from zero (first byte = 0)	base + 0x1c	host, if STF is set
15:0	TCP Sum S	Start 1	Checksum 1, start position for calculation in bytes (16-bit aligned) counted from zero (first byte = 0)		
			Table 11: Receive Descriptor		
STF, EOF When to the fragme new fr only r STF= read. ers in contig		When to the fragme new fr only r STF= ⁶ read. ⁷ ers in contig	receiving frames, i.e. transferring a frame from host memory, the STF, EOF bits are used to gue ent of a frame is written to a new contiguous hos ames or fragments containing the start of a fram eceive descriptors with STF set to "1". Recei '0" are relinquished to the host and the next re The design idea was to enable driver software to the memory areas where appropriate e.g. uous buffers.	the buff arantee t st memori le, the BN ve descrive d co write fi to the st	er memory hat the first ry area. For MU accepts riptors with escriptor is rame head- tart of new
EN_IRQ_EOB		i he de ware provid	esign idea for the EN_IRQ_EOB interrupt was to control over fragments from received frames les only small buffers for the frame headers only	give the s e.g. th y. The BI	driver soft- e software MU reads a

receive descriptor with the STF set to "1" pointing to a small buffer area in

the host memory. The first fragment, the frame buffer, is transferred, and the BMU reads the next descriptor. However, this descriptor is still owned by the host. Thus no more frame fragments are transferred. Driver software meanwhile interprets the frame header. Then the driver software sets up the receive descriptors, starting with the one just read by the BMU. With knowledge about the frame header, driver software can provide space for the rest of the frame as appropriate. Then driver software relinquishes the descriptor(s) to the BMU and gives a Start <xxx> command to the involved BMU. This causes the BMU to transfer the rest of the frame.

- DEV_0 The receive descriptor's DEV_0 bit is used to have the BMU reading this descriptor performing all the operations but without actually transferring data to the host memory. Setting the DEV_0 flag prevents that data is on the PCI bus, however the entire BMU mechanism is handled as usual, e.g. depending on the interrupt mask, an interrupt may occur.
 - Check The check bits are provided to control the integrity of the descriptors and the BMU transfer mechanism. Depending on the setting TCP/IP hardware checksumming is enabled or disabled.

The following is important for driver software:

Take care to write the 32 bit containing the Own bit at last in a single action thus relinquishing ownership to the BMU. All other settings in a descriptor must be written before relinquishing ownership.

The hardware behavior:

On descriptor reads, RBCTRL, which is holding **Own**, is read first. If **EOF** is set, **RFSW** and **TCP Sum 1 & 2** are written before and a dummy read is inserted (if enabled by **En Dummy Read** in **Our Register 2**).

Note: Writing RBCTRL, data, which are defined by the host logically, are written back with their original values.

4.2.4 Transmit Descriptor The transmit descriptors have the same structure for each of the four transmit queues:

Bit	Name	Description	Addr ess	Defined by
	Tran	TBCTRL smit Buffer Control		
31	Own	Own indicates that the descriptor is owned by the host (Own = 0) or the network inter- face card (Own = 1). The host sets Own for relinquishing the descriptor. The network interface card clears Own after reading the buffer pointed to by the descrip- tor entry. Once the network interface card or the host has relinquished the ownership of a descrip- tor, it must not change any field in the descriptor.	base	host network inter- face card
30	STF (Start Of Frame)	Start of Frame indicates that this is the first descriptor used by the network interface card for this frame. True, if = 1		host
29	EOF (End Of Frame)	End of Frame indicates that this is the last descriptor used by the network interface card for this frame. If En IRQ EOF and EOF are set, an inter- rupt IRQ EOF is generated after relinquish- ing this descriptor. True, if = 1		host
28	En IRQ EOB (Enable Interrupt on End Of Buffer)	If En IRQ EOB is set, an interrupt IRQ EOB Rx is initiated after relinquishing this descriptor. True, if = 1		host
27	En IRQ EOF (Enable Interrupt on End Of Frame)	enable IRQ EOF , see EOF . True, if = 1		host
26	St&Fwd On (Store and For- ward On/OFF)	A frame is forwarded from RAMbuffer only, if the complete frame is in RAMbuffer. On, if = 1 Updated only, if STF is set.		host, if STF is set

Table 12: Transmit Descriptor

Bit	Name	Description	Addr ess	Defined by
25	Dis CRC (Disable CRC)	Dis CRC is forwarded as TxCRCDisable to the XMAC: XMACII is not appending CRC to this packet. Updated only, if STF is set.		host, if STF is set
24	SW<0> (Software <0>)	May be used for software purposes. No effect on hardware		host
23:16	CHECK/Opcode	If the BMU is reading a descriptor owned by the BMU with an invalid CHECK/Opcode , an interrupt IRQ CHECK TX is generated and no further descriptors are read (supervi- sor state machine defaults to Idle). Opcodes: 0x55: Default descriptor 0x56: Descriptor with TCP/IP checksum extension		host
15:0	TBBC (Transmit Buffer Byte Count)	Transmit Buffer Byte Count. The host is defining the number of data to read from host memory. The BMU is writing back the number of effectively transferred data. There should be no difference except at EOF.		host network inter- face card
31:0	NTDADR (Next Transmit Descriptor Address)	Next Transmit Descriptor Address, lower 32-bit Transmit descriptors must be 8-byte aligned enabling 64-bit access by the BMUs	base + 0x4	host

Table 12: Transmit Descriptor

Bit	Name	Description	Addr ess	Defined by
		(The upper 32-bit of the descriptor address are set once at initialization time for each queue in the control register file i.e. transmit descriptors are restricted to be in a joint 4 GByte address space, which means no se- vere restriction since the 4 GByte descriptor address space can be anywhere in the 64-bit address space. Transmit buffers however can be addressed anywhere in the 64-bit address space on a per descriptor base. Both the lower 32 bit and the upper 32-bit address is specified in the descriptor as shown below. I.e. data can be distributed over the entire 64-bit address space wherever the driver wants to have them.)		
31:0	TBADR LO	Transmit Buffer Address, lower 32-bit	base + 0x8	host
31:0	TBADR HI	Transmit Buffer Address, upper 32-bit	base + 0xc	host
31:0	TFSW	Transmit Frame Status Word as defined by the MAC. Appended to transmit data of this buffer, if EOF is set. This is a placeholder, because XMACII is not expecting a Transmit Frame Status Word. Default value should be 0. In loopback mode Transmit Frame Status Word has to be set to the expected Receive Frame Status Word from XMAC.	base + 0x10	host, if EOF is set

Table 12: Transmit Descriptor

Bit	Name	9	Description	Addr ess	Defined by
			TCP/IP checksum extension		
A descriptor with TCP/IP checksum extension is enabling TCP/IP checksum calcula- tion and insertion.					
St&Fwd On (Transmit Rambuffer Control Register) overwrites St&Fwd On on a per packet base. I.e if St&Fwd On is set in the transmit RAMbuffer control register the set- ting in the descriptor is ignored. To switch St&Fwd On for each descriptor separately, St&Fwd On in the transmit RAMbuffer control register must be disabled.					
TCP/IP ch packet. TC	ecksum(16 b P Sum Offs	it) is cal et is ado	culated from TCP Sum Start up to the end of t ded, the checksum is written to TCP Sum Write	he e.	
If the calculation is not ending 16-bit-aligned at the end of the packet, the missing byte is seen as 0.					
Registers holding these values are updated only, if STF is set.					
31:16	Reserv	ed	Value = 0	base + 0x14	host, if STF is
15:0	TCP Sum	Offset	Checksum, start value		301
				1	
31:16	TCP Sum	Start	Checksum, start position for calculation in bytes (16-bit-aligned) counted from zero (first byte = 0)	base + 0x18	host, if STF is set
15:0	TCP Sum	Write	Checksum, write position for checksum in bytes (16-bit-aligned) counted from zero (first byte = 0)		
31:0	Reserv	ed	Value = 0	base +	host
0.10				0x1c	
Table 12: Transmit Descriptor					

On descriptor reads, **TBCTRL**, which is holding **Own**, is read first. If the BMU is relinquishing the descriptor, **TBCTRL** is written as 32-bit word.

Note: Writing **TBCTRL**, data, which are defined by the host logically, are written back with their original values.

4.3 Data on the PCI Local Bus Data transfer over the PCI bus is controlled by the BMUs which are build upon the Bus Interface Unit (BIU). The BIU comprises the target interface as described within section 3.0 *Programming Interface* and the bus master interface. The PCI transfer types implemented in the "SK-NET GENESIS <x>" are described below.

Though this manual is primarily for software development, the following kind of information may be usefull for diagnosis software, for troubleshouting using PCI bus analyzers and exercisers.

Burst Transfer The default transfer bus master transfer type of the "**SK-NET GENESIS <x>**" is burst transfer, unless disabled by **Disable Burst**. The maximum burst size on the PCI bus is defined by the watermarks. Watermarks indicate the filling level of the PCI FIFOs. They can be configured for each FIFO independently in the control register file. The watermarks should be higher than two cache line sizes with a maximum of 1536 bytes (192 64-bit words).

64-Bit If installed in a 64-bit slot and **UseData64** is set to 1, the state machine tries to perform full 64-bit accesses (Bit2:0 of the address forced to 0). If the target is a 32-bit device, the upper 32 bits are transferred on the second data phase, and all following data phases use only the lower 32 bits of the bus. If a 32-bit target issues a target disconnect with data after the first data phase (which may not have contained valid bytes for a misaligned access), the state machine restarts on the upper 32-bit word address with a 32-bit access.

If installed in a 32-bit slot or **UseData64** is set to 0 the state machine performs 32-bit accesses (Bit1:0 of the address forced to 0).

Usage of the 64-bit extension can be disabled generally by setting UseData64 in the control register file (Our Register 2) to 0 at initialization time. The assertion of REQ64# by the network interface card is then disabled and bus transactions are performed as if mounted in a 32-bit slot.

The rising edge of **RST#** latches **REQ64#** for slot size recognition and status bit **Slot Size**. If **Slot Size** is 0 (network interface card installed in a 32-bit slot), all signals of the 64-bit extension of the PCI bus are driven to a stable logic level by the network interface card.

The network interface card defaults to 64-bit data width and 64-bit addressing. 64-bit addressing (Dual Address Cycle) is used only, if the upper 32 bit of the address isn't zero.

64-bit data width is disabled dynamically, when performing accesses to a 32-bit data width target and when performing put descriptor operations.

- 66 MHz Operation The network interface card is able to perform all bus operations with 66MHz. Therefore the network interface card does not drive pin **M66EN** on the PCI bus. (As manufacturing option 66MHz operation can be disabled by connecting **M66EN** to GND. In this case the bit **66MHZCAP** in the Configuration **Status Register** must be reloaded with 0 from the Flash EPROM.)
 - Data TransfersThe transfer of a longer, misaligned frame may typically look like this:The first transfer from any address is a burst with default read/write commands up to the next cache line size boundary. All following transfers are
running between cache line size boundaries with optimized commands.
The last transfer of the frame to any address is a burst with default
read/write commands.

Normally each transfer is as long as the number of cache line sizes fitting	J
into the watermark.	

Access to the PCI bus is reallocated if a transfer is finished. Transfers are finished generally after moving the number of data given by the watermark or below in some exceptional cases (end/start of frame or buffer - latency counter expired).

The ownership of the bus is released with several reasons:

- Number of bytes to transfer is zero
- Cache line size boundary is reached and number of bytes to be transferred is below cache line size (exceptions: EOF,STF)
- Latency counter expired

The master sequencer state machine is controlled by giving address, guaranteed number of bytes to be transferred (plus minor additional informations) on a per cycle base from one of the queues. The number of transferred bytes is reported on a per cycle base. Support-Transfer Cycles ed commands are Memory Write, Memory Write And Invalidate, Memory Read, Memory Read Line and Memory Read Multiple. Memory Write And Invalidate is used instead of Memory Write, if the guaranteed number of bytes to be transferred is higher than Cache Line Size. Memory Read Line is used instead of Memory Read, if the guaranteed number of bytes to be transferred is higher than one Cache Line Size. If the guaranteed number of bytes to be transferred is higher than two Cache Line Sizes at least, Memory Read Multiple is used instead of Memory Read Line. The commands Memory Write And Invalidate, Memory Read Line and Memory Read Multiple may be disabled individually by setting the appropriate bits in **Our Register 1** (Configuration Register File). If a cycle is terminated by Target or Master Abort, this is reported to RT-ABORT or RMABORT (Status Register), Interrupt IRQ MASTER and **IRQ STATUS** are set and the master sequencer state machine is locked. This has to be solved by resetting the state machine (Reset Master). A target retry is serviced by retrying the terminated cycle. There is a specific mode of master accesses preventing transfers of un-Test wanted frames to the system memory. This is signaled by **DEV_0** of the currently serviced descriptor to the BIU. In this mode, no real access to the PCI bus is requested, but the interface to the master backend is simulating 'normal' bus accesses. The PCI Arbiter handles concurrent requests from the transmit and re-4.4 PCI Arbiter ceive queues for PCI bus acccess. For data transfer the "SK-NET GENESIS <x>" operates as bus master i.e. data transfer over the PCI bus is always initiated by the network interface card for both the transmit and the receive queues. While it is obvious for receive queues that a frame is transferred over the PCI bus immediately after receipt, the NIC's bus mas-

	ter state machine -the BMU- must be triggered by the driver to look for transmit data/descriptors ready to send ¹ . However after initialization of a transfer the sending/receiving of a frame is done without further software interaction. All actions on the NIC are descriptor controlled (exception: error handling)
	The PCI arbiter grants access to the various queues following toggling pri- ority rules:
	1. Access is granted to Transmit / Receive queues alternately
	 Access is granted to Asynchronous / Synchronous alter- nately
	3. Access is granted queues of MAC 1/ MAC 2 alternately
	The PCI Arbiter is organized as an binary tree where for each decision the path is toggled.
4.5 Buffer Management Unit (BMU)	The BMU operates on the "descriptor+buffer" chains in the host system RAM. It comprises four interacting state machines:
(Supervisor state machine
	Descriptor read state machine
	Descriptor write state machine
	Transfer state machine
	Each state machine may be forced to idle individually by setting Reset xxx SM (SM is used as an abbreviation for "State Machine").
4.5.1 Supervisor State Machine	The supervisor state machine is issuing requests to the descriptor read and write state machines and to the transfer state machines. These state machines are reporting the execution of their transaction to the supervisor.
	The supervisor is requesting a descriptor read, if the command Start xxx is given. This may be done either by driver/diagnosis software or by the Start xxx polling mechanism. If the Descriptor Poll Timer is enabled, a descriptor read is initiated periodically as defined by the Descriptor Poll Timer Init Value .
	The supervisor state machine automatically requests the next descriptor after servicing the current descriptor is finished. With that the supervisor state machine provides a continuous data transfer with minimum CPU load on the host system as long as "descriptor+buffer" units are ready for transfer.
	 There's also a poll mechanism that looks for frames ready to transmit. However, the design intention is that the driver prepares the transmit descriptor(s) then triggers the network interface card to do the transfer actually. (The polling mechanism is to avoid problems due to loss of the transfer trigger - this was observed in some environments with previous similar BMUs - adding the poll mechanism proved to be a reliable fix for this.)

		If the descriptor read gives the ownership of the buffer to the network in- terface card, the request for transferring data is issued to the tranfer state machine. If the transfer from/to the buffer is closed, a descriptor write is requested to relinquish the descriptor to the host system by setting the de- scriptor's Own bit.
4.5.2	Descriptor Read State Machine	The descriptor read state machine initiates a bus master access to read the current descriptor. For this the descriptor read state machine is load- ing the 64-bit address counter with Descriptor Base Address Register upper:Current Descriptor Address , sets the number of bytes to be transferred to 32 and issues a request to the master backend state ma- chine.
		counter, transfer is done, if the byte counter reaches zero.
		Note: the 32-bit word holding the Own bit is read first.
4.5.3	Descriptor Write State Machine	The descriptor write state machine is running up to three different types of bus master transfers over the PCI bus. In any case the last action of the descriptor write state machine is to relinquish the descriptor back to the host i.e. to driver/diagnosis software control by writing the 32-bit word that holds the Own bit.
		Writing the 32-bit word holding the Own bit:
		The descriptor write state machine is loading the 64-bit address counter with Descriptor Base Address Register upper:Current Descriptor Address , sets the number of bytes to be transferred to 4 and issues a request to the master backend.
		The reported number of transferred bytes is counting down the byte counter, transfer is done, if the byte counter reaches zero.
		On EOF write the Receive Status Word then the 32-bit word holding the Own bit with a second transfer:
		Only if EOF in a receive descriptor is set, the Receive Status Word is written first before writing the 32-bit word holding the Own bit The descriptor write state machine is loading the 64-bit address counter with Descriptor Base Address Register upper:Current Descriptor Address + 16 , sets the number of bytes to be transferred to 16 and issues a request to the master backend. The reported number of transferred bytes is counting down the byte counter, transfer of the Receive Status Word is done, if the byte counter reaches zero.
		If additionally En Dummy Read in Our Register 2 is set, after writing the Receive Status Word a dummy read to the same location is performed before writing the 32-bit word holding the Own bit. En Dummy Read is intended to avoid problems due to caching of PCI transfer data within caching PCI bridges. The additional read request should cause the bridge to actually perform the previous request.
		Finally Current Descriptor Address is loaded with Next Descriptor Ad- dress . Control is given back to the supervisor state machine.

4.5.4 Transfer State Machine	The transfer state machine operates on the actual data, the frames or frame fragments. The transfer state machine is loading the 64-bit address counter with the Current Buffer Address upper:Current Buffer Address lower , setting the number of bytes to be transferred to Buffer Byte Count and issues a request to the master backend state machine. Transfer is done, if, while counting the reported number of transferred bytes, the byte counter reaches zero or the FIFO is reporting EOF (in the case of the receive queues).
Testing the State Machines	Each state machine may be stepped by the software through its states. If set to testmode, state decisions and transitions are invoked by setting the command SM Step .
4.6 PCI Transmit/Receive FIFOs	The PCI FIFOs synchronize the dataflow between the PCI clock and the NIC's clock domain. To handle even burst transfers, the FIFOs are organized with a depth of 199 64-bit words and a width of 72 bits (64 data bits + 8 parity bits).
	Each PCI FIFO interacts with its BMU (and the PCI arbiter) on the PCI buffer side and the RAMbuffer interface (and the RAMbuffer arbiter) on the other side.
	Accesses at the PCI side may be executed at any byte boundary. Accesses at the other side, the RAMbuffer, are 64-bit aligned. An hardware multiplexer cares that chunks of data frames are still contiguous after passing the PCI FIFO area.
	For each FIFO a separate watermark may be defined. All flags are syn- chronized to the Host Clock as well to the PCI Clock. They are providing bus requests and length information to the master backends. Each FIFO may be cleared by its individual Reset FIFO .
Receive FIFO	The receive FIFO, i.e. each FIFO of the two receive queues, is providing flags:
	Almost Full, based on 64-bit words
	EOF , if tag bit in FIFO
	Watermark, if watermark (in bytes) is reached
	The Almost Full and the Watermark flag can be configured in the control register file.
	PCI Side
	The receive FIFO is requesting transfers, if it is filled with data from the network so that watermark is reached or if EOF is set, i.e. the FIFO contains the end of a frame. In these cases the receive FIFO initiates data transfer over the PCI bus from the BMU.
	The guaranteed number of available bytes is signaled to the BMU's mas- ter backend state machine. Once initiated, this number is decreased with each transferred byte. The initial value is the watermark in bytes or the real content of the FIFO, if EOF is set. If a transfer over the PCI bus is bro- ken, the transfer may only be requested again, if the conditions above are given.

This limits the length of a transfer out of the receive queue to a maximum given by the watermark and forces the master frontend to lock on cache line size boundaries (if watermark greater than a cache line size).

The receive FIFO is tracking the start and the end of a frame. The messages **STF** and **EOF** are written to the bit fields in the descriptor, if the first or last byte is clocked out of the FIFO.

If the last byte of a frame is clocked out of the FIFO, the receive status word is written to the descriptor and the end of frame is reported to the BMU's master backend.

RAMbuffer side

The receive FIFO signals to the RAMbuffer's read state machine, that it is ready to receive data. It is ready, if there's space left in the FIFO (**Almost Full**) and no **EOF** is in the FIFO.

Almost Full is a cycle based signal and derived from the request pointer. The request pointer is incremented, if the RAMbuffer interface is acknowledging a request by the read state machine.

Data is written to the FIFO and the write pointer is incremented, if the RAMbuffer interface is acknowledging the transfer.

The RAMbuffer's read state machine signals an **EOF** after the last word is written to the FIFO. At **EOF** it is expected, that the receive status is valid. The receive FIFO is requesting no further transfers, as long as **EOF** is in the FIFO. The receive status is bypassing the FIFO.

The receive FIFO signals to the read state machine, that it took over the receive status (after **EOF** left the FIFO).

Transmit FIFO The Transmit FIFO is providing flags:

- **Empty**, based on qwords
- **EOF**, if End of Frame in FIFO
- **Watermark**, if watermark (in bytes) is reached

PCI Side

A transmit FIFO is requesting transfers, if space is remaining. The threshold is set by the watermark. The guaranteed number of free bytes is signaled to the master backend. Once initiated, this number is decreased with each transferred byte.

The initial value is the watermark in bytes. If a transfer is broken, the transfer may only be requested again, if the conditions above are given.

This limits the length of a transfer to one of the transmit queues to a maximum given by the watermark and forces the master frontend to lock on cache line size boundaries (if watermark greater than a cache line size).

The transmit FIFOs are tracking the start and the end of a frame.

While **EOF** is in the FIFO, no further data is clocked into the FIFO. More generally: only one frame can be in the FIFO.

RAMbuffer side

The transmit FIFO signals to the RAMbuffer's write state machine, if data is available (**Empty**). **Empty** is a cycle based signal and derived from the read pointer. The read pointer is decremented, if the RAMbuffer interface is acknowledging a request from the write state machine.

The transmit FIFO signals an **EOF** after the last word is written to the FIFO. With **EOF** the transmit status is valid. The transmit status is bypassing the FIFO.

The transmit status is held until the write state machine acknowledges, that it took over the transmit status (after **EOF** left the FIFO).

A part of the transmit status is expected to be valid with the first data written to the FIFO: **Insert Checksum**, **Dis CRC**, **St&Fwd**.

Throughout this manual the expression RAMbuffer is used for preallocat-4.7 RAMbuffer and RAM ed contiguous areas in an external¹ buffer memory. RAMbuffer also Interface means the control logic building a FIFO for each queue in the external buffer memory. Thus a maximum of 6 RAMbuffers may be allocated at driver initialization. The RAMbuffers build an interim storage that helps to avoid congestion, preventing receive overflows, or that is used for TCP/IP checksum insertion. The receive RAMbuffer serves as buffer for packet bursts, if the PCI bandwidth is too low. If the PCI bandwidth is too low permanently, flow control (according to IEEE 802.3x implemented in the XMACII) has to prevent receive overflows. The transmit RAMbuffer serves as a buffer for keeping at least one max packet, if the TCP/IP checksum has to be inserted or if the Transmit Queue is switched to Store & Forward (recommended for all but high performance PCI systems only such systems may outperform the NICs hardware).

RAMbuffers are operated as FIFOs, and when looking at the data flow they can be thought of as configurable-depth FIFOs inserted between the PCI FIFOs and the MAC FIFOs.

However, there is some control logic required for access to these FIFOs build in the external memory: the **RAM interface**. The RAM interface is running read/write cycles from/to the external memoy controlled by an instance arbitrating the pending requests. Dataflow is controlled by the filling level of the FIFO and the availability of data/space at the adjacent PCI FIFO and the adjacent MAC FIFO.

The RAM interface operates as arbiter for read / write requests from the PCI FIFO on one side and the MAC FIFOs (via Packet Arbiter + Transmit Arbiter) on the other side.

4.7.1 External Memory The external memory consists of 2 or 4 synchronous SRAMs, either "flow through" or "pipelined" ones, with a data width of 32 bit plus 4 bit parity cascaded for a datawidth of 64-bit.

64k x 36 or 128k x 36 parts may be used (giving up to 2MB).

1. external means here "outside the ASIC"

The actual memory size can be read out from the Eprom Register <0>.
One of the configurations requires an offset different from 0x0 when
addressing the external memory.

(For future parts, addressing is extended by one bit thus doubling the amount of addressable memory. However, this option is not foreseen on the PCBs of the current versions. The internal address width is 19 bit, the highest address bit is converted to CE1/CE2 to the external memory.)

The SRAMs are clocked with host clock. The SRAMs are controlled by **CS**^{*} and **WE**^{*}.

The RAM interface is running read/write cycles from/to the external buffer memory controlled by an instance arbitrating the pending requests.

Requests are served cycle based, subsequent reads and subsequent writes are executed with one access on each cycle (even with random addresses). On changes from read to write, a turnaround cycle is inserted.

The number of delay cycles for read data depending on the type of the SRAMs is controlled by pin strapping through the pin **FT MODE***.

Access to the external memory is controlled and executed by the RAM Interface. The max burst length of memory accesses is limited by timeout counters for each participant individually. Per default the same burst length should be used.

4.7.2 RAMbuffer RAMbuffers cover multiples of contiguous 8 kB areas. Thus a RAMbuffer may hold several Ethernet frames. Each frame in the RAMbuffer is preceded by the first two 64-bit words of its **Internal Status** transporting the XMACII Statusword and a pointer to EOF in the FIFO.

Depending on the settings of **St&Fwd** in the RAMbuffer control registers, a RAMbuffer may be operated in Store and Forward mode or Flow Through mode. Store and forward mode means each frame is written completely into a RAMbuffer and only after EOF has been received, the frame is forwarded. Store and forward is needed e.g. when the TCP/IP checksum on a transmit queue should be computed. For this the entire frame must be read first -this happens while writing into the RAMbuffer-then the computed checksum is inserted into the frame.

If no TCP/IP checksum is computed, the RAMbuffer may be operated in "flow through" mode . Then the packet manager is bypassing the internal status.

The write/read state machines are tracking STF/EOF, reading/writing data from/to the external memory and reading/writing status from/to the external memory and from/to the adjacent PCI/MAC FIFOs.

Read/Write accesses from/to the external memory are requested from the RAM Interface.

Address Generation/Flags The RAMbuffer's memory location is defined by the **RAMbuffer Start** and **End Address.**

The **Buffer Write Pointer** is incremented, if data is written. The **Buffer Read Pointer** is incremented, if data is read. If they are reaching the **End Address**, they wrap to **Start Address**. Thus a frame may start near the **RAMbuffer End Address** and while writing the **Write Pointer** wraps around to the **RAMbuffer Start Address** so that EOF is near the **Start Address**.

The "**SK-NET GENESIS <x>**" hardware cares that the **Write Pointer** never overruns the **Read Pointer**. This makes sure that there's no data overwritten in the RAMbuffer.

The **Read/Write Pointer** and **Start/End Address** have to be set by software at initialization in Non Operational Mode (but with cleared **Reset**).

A RAMbuffer MUST NOT be switched to operational mode with inconsistent pointers/addresses.

On each read/write of data **Level** is updated. **Level** gives the actual number of data in multiples of 8 bytes in this queue (including 16 bytes status word per packet). **Level** is the base for the flags **Empty** and **Almost Full**.

Receive Queues only:

If **Level** reaches the value of **Upper Threshold/Pause** configured in the control register file, the signal **XmtPausePkt** of the related XMACII is asserted (if **EnPause** is set). **XmtPausePkt** stays asserted, until **Level** is falling below **Lower Threshold/Pause**.

Thus the level of the RAMbuffer is used to reduce the receive data stream by the XMACII sending PAUSE frames to the connected Gigabit Ethernet device.

If **Level** reaches **Upper Threshold/High Priority**, highest priority for this receive queue is requested from the transmit arbiter (synchronizing on EOF of transmit packets). If granted, requests for memory accesses are placed with highest priority.

This request is staying as long as **Level** is above **Lower Threshold/High Priority**.

Write Statemachine The write state machine is writing data to the FIFO, if there's space left and if the adjacent PCI/MAC FIFO signals to have data.

First incoming data after EOF or initialization are interpreted as STF. The write state machine initiates incrementing of the **Write Pointer** by two as a placeholder for the internal status. The packet manager keeps the start address of the packet.

Data is written to the FIFO until the adjacent PCI/MAC FIFO signals **EOF/Internal Status** available.

The internal status (end address of the packet) is written to the start address of the packet. If STF is already read by the read state machine, the internal status is bypassed through the packet manager. If the status arrived, the **Packet Counter** is incremented. EOF is acknowledged to the adjacent PCI/MAC FIFO.

	The write state machine of a transmit queue additionally writes the TCP/IP checksum to the memory at EOF. The write position is calculated from the packet length given by the internal status and the start address of the packet. The checksum is packed into a complete 64-bit word and also given by the source in the internal status.
Read Statemachine	The read state machine is reading data from the FIFO, if there are data available and if the adjacent PCI/MAC FIFO signals to have space.
	The first data after EOF or initialization is interpreted as STF. The read state machine initiates reading the status, if available. The status (end address of the packet) is forwarded to the packet manager.
	If St&Fwd (Rambuffer Control or Internal Status /transmit queue) is set. reading at STF is delayed until status is available.
	Data is read from the FIFO until the Read Pointer reaches the end address of the packet. Note: The end address is available from the status read at STF or bypassed by the packet manager.
	If status is available and the read accesses of the last 64-bit word is exe- cuted, EOF/Internal Status is forwarded to the adjacent PCI/MAC FIFO and the packet counter is decremented.
	Further reading is suspended until the adjacent PCI/MAC FIFO acknowl- edges EOF.
Packet Manager	A packet manager ¹ is observing the dataflow to/from the FIFOs on packet level. It is observing the transfer of the internal status metadata from/to the adjacent PCI/MAC FIFOs.
	The packet manager holds the Packet Counter and registers for storing the Internal Status temporarily. The Packet Counter is counting the packet ends available in the FIFO.
4.7.3 RAM Interface	The RAM interface handles access to the RAMbuffers for the requesting FIFOs, the PCI FIFOs and the MAC FIFOs.
Arbiter	Each requestor, i.e. each of the attached FIFOs, has a dedicated request and ID line, the acknowledgement is broadcasted to all requestors/partic- ipants by the RAM interface arbiter. A requestor/participant is identifying the acknowledgment by its ID, which is also broadcasted. For more spe- cific identifying needs, the address of the executed access is also broadcasted. After an arbitration each acknowledged access is queued-in. The execu- tion including read data is broadcasted to all requestors/participants. A queued-in request is served as long it keeps staying. This is limited by the programmable Timeout Counter . Rearbitration takes place, if a request is withdrawn or counted out by the Timeout Counter .

^{1.} There are several packet managers on the "**SK-NET GENESIS <x>**" NIC. There are separate packet managers for each RAMbuffer FIFO and each XMACII FIFO. Packet Managers for RAMbuffer FIFOs and for XMACII FIFOs are slightly different.

Requests are acknowledged in the same cycle as controlled by the arbitration rules. On changes from read to write there is a delay of 2/3 cycles, on changes from write to read there is a delay of 1 cycle.

Arbitration Rules:

The default arbitration is following a rotating priority scheme.

Requestors: Receive queue 1 write state machine Receive queue 1 read state machine Synchronous transmit queue 1 write state machine Synchronous transmit queue 1 read state machine Asynchronous transmit queue 1 write state machine Asynchronous transmit queue 1 read state machine Receive queue 2 write state machine Receive queue 2 read state machine Synchronous transmit queue 2 write state machine Synchronous transmit queue 2 read state machine Asynchronous transmit queue 2 write state machine Asynchronous transmit queue 2 read state machine **RAM Random Access** The priority scheme may be modified temporarily by the packet arbiter. The RAM Random Access is foreseen for testability. Similar to the RAMbuffer configuration, diagnosis software may configure an memory area for RAM Random Access to check RAM, read out frames, internal status word 1 and 2. Parity: Write data is checked for parity, if parity is missing parity is generated. Read data is checked for parity. Transmit Arbitration Transmit arbitration, i.e. rate control, operates on the transmit queues only. If configured, transmit arbitration can be used to give the synchronous transmit queue precedence over the asynchronous transmit queue. Transmit arbitration is located before the MAC FIFOs and the associated packet arbiter. Here at the MAC FIFOs the two queues, the synchronous and the asynchronous queue of each XMAC, flow into one transmit FIFO. The rules of the transmit arbiter determine precedence. There is a transmit arbiter for each transmit MAC FIFO.

The transmit arbiter is controlling the access to the transmit MAC FIFO on a per packet base.

The transmit arbiter controlls the following:

4.8

	 No packet mismatch in the transmit MAC FIFO - synchronous and asynchronous transmit packets keep strictly separated though flowing into a joint data path now. Rate control: the synchronous transmit queue can be assigned precedence over the asynchronous transmit queue for a limited number of transfers. Prevents transmit underruns: if there are reads from the RAMbuffer the related write to the MAC FIFO has the highest priority.
	The read state machines are requesting transfers from the transmit arbi- ter, if there are transmit data available in the RAMbuffer (or a complete packet, if switched to Store & Forward mode) and if there's space left in the MAC transmit FIFO. The read state machines are providing additional information e.g. Start of Frame (STF) and Complete Packet Available. The transmit arbiter is changing grants only. if there is no transfer running
	or with the End Of Frame (EOF) of a running transfer.
	The read state machines are requesting RAMbuffer accesses only, if they got a grant from the transmit arbiter.
4.8.1 Rate Control	Rate control can give precedence to the synchronous transmit queue over the asynchronous queue for a configurable fraction of transfer cycles. This means that data in the synchronous queue has a guaranteed available transmit bandwidth on the network interface card. Data on the synchro- nous queue will be transferred continuously though the NICs transmit bandwitdh may be exhausted by an overfilled asynchronous transmit queue. This may be used by running applications characterized by high burstiness on the network over to the asynchronous queue while applica- tions that require a steady network data flow transmit over the synchronous transmit queue. Strictly speaking, rate control is directly ef- fective on the network interface card only. The traffic shaping effect of rate control may spread until an attached switch. Then the network configura- tion and the attached devices determine how effective rate control influences end to end data throughput and traffic characteristics.

The rate control of the "**SK-NET GENESIS** <**x**>" is determined by the settings of three register values: **Rate Control Start/Stop, EN/DIS Alloc** (EN = Enable, DIS = Disable, Alloc means Allocation), and **Force Sync ON/OFF.**

Force Sync ON/OFF	Rate Control	EN Alloc / DIS Alloc	
off	stop	dis	Only the asynchronous transmit queue is forwarding data.
off	stop	en	Data on the asynchronous queue has precedence. However if there are no asynchronous requests pend- ing, the synchronous queue is served.
off	start	dis	Data on the synchronous queue has precedence de- pending on the value of the limit counter. If the limit counter reached Zero and no asynchronous request is pending, synchronous requests are served only when the limit counter is reinitialised.
off	start	en	Data on the synchronous queue has precedence de- pending on the value of the limit counter. If the limit counter reached Zero and no asynchronous request is pending, synchronous requests are served.
on	stop	dis	
on	stop	en	Data on the synchronous queue has precedence.
on	start	dis	ing, the asynchronous queue is served.
on	start	en	

Table 13: Rate Control

(The figure gives some examples for the settings highlighted in the table above.)

For configurable rate control the transmit arbiter is holding an interval timer and a limit counter giving a maximum number of synchronous transmit cycles per time interval. The ratio of the limit counter versus the interval timer determines precedence of the synchronous queue over the asynchronous queue. The interval timer and the limit are programmable in the control register file. Both are downcounters that are restarted by the interval timer reaching zero.

The interval timer provides a periodically repeating time interval. The configured bandwith ratio is assigned for each interval. The limit counter counts synchronous transfer cycles from the configured initialization value down to Zero. When reaching Zero the limit counter stops. The counter is restarted with its initialization value each time the interval timer wraps around from Zero to the timer's initialization value. The idea is that the limit counter reserves a fraction of the available transfer time per time interval

	to priorize the synchronous data traffic. As long as the limit counter does not reach Zero the synchronous queue is given precedence over the asynchronous queue.
	Requests of the low priority read state machine are granted only, if there is no request from the high priority read-state machine and if it's allowed to allocate free bandwidth. This is allowed for the asynchronous read state machine per default, for the synchronous read state machine it must be enabled explicitly by En Alloc in the control register file.
	However the most important rule at this arbitration point: Running transfers are not interrupted. Each request has to wait for a running transfer to reach EOF.
	The figure illustrating the rate control behavior gives some examples for the rules that determine rate control. It may also give an idea that the time interval and the limit counter should be large compared with the transmit frame length. If the limit counter or worse the time interval are comparable with the maximum transmit frame length it becomes more and more diffi- cult to predict the exact rate control behavior.
	Note: because transfer cycles are counted, the limitation works on absolute numbers (bytes per interval). This means, if the throughput on the MAC FIFO is lower than the theoretical maximum of 106.25 MB/s, the percentage of transfers of the synchronous RAMbuffer increases.
	For contiguous frame flow the transmit arbiter interacts with the RAM in- terface. For example it causes the related RAM interface write state machine to be set to the highest priority (prevent transmit underrun). The HP async and En Alloc flags are also forwarded to the RAM Interface in order to control the write state machines. The transmit arbiter is furthermore synchronizing requests of a receive
	RAMbuffer for higher priority at frame level (see Receive Rambuffer Lower/Upper Threshold/High Priority).
Interval Timer, Limit Counter	The Interval Timer is a programmable downcounter with a resolution of 18.825 ns (derived from host clock).
	The Limit Counter is a programmable downcounter. It's counting the number of synchronous transfer cycles to the dedicated MAC FIFO.
	The command Rate Ctrl Start loads Interval Timer and the Limit Coun- ter with their Init Value and starts counting. Reaching ZERO the Limit Counter stops. If the Interval Timer is reaching ZERO or is loaded with ZERO the Interval Timer and the Limit Counter are reloaded with their Init Value .
	The Interval Timer and the Limit Counter may be stopped by the com- mand Rate Ctrl STOP.
Test	Test mode is switched on/off by the commands xxx Test On/Off . In test mode, clock pulses may be generated by software the commands xxx Step .

- ① An asynchronous frame is transferred completely priority for synchronous queue is exhausted
- ② A synchronous frame request is pending interval timer reached ZERO and was restarted with its initialization value the limit counter was loaded with its initialization value too. -> priority for synchronous queues went to ON nevertheless the pending synchronous transfer has to wait for termination of the running asynchronous transfer.
- ③ Asynchronous transfer terminated the pending synchronous transfer is granted precedence and the limit counter is decremented - another short synchronous frame is transferred immediately while the priority for synchronous queues is on.
- ④ An asynchronous transfer request has to wait for the running synchronous frame transfer since there's no pending synchronous request it can start immediately after the running synchronous transfer terminates.
- ⑤ A synchronous transfer is pending waiting for the running asynchronous transfer to terminate then the synchronous transfer starts immediately - limit counter is decremented
- ⑥ The limit counter reaches ZERO --> priority goes to OFF until the interval timer wraps around the running synchronous transfer keeps running until EOF
- ⑦ A synchronous request can start only when priority is on i.e. when the interval timer wraps around and the limit counter is reloaded with the initialization value. (With **EN Alloc** set, the synchronous transfer would have started immediately since there was no concurrent asynchronous transfer.)
- A synchronous transfer can start immediatley priority is ON when the interval timer wraps around the limit counter is reloaded - the running transfer decrements the reloaded limit counter.

4.9 Pa	acket Arbitration	The packet arbiter is controlling the data flow between RAMbuffers and the MAC FIFOs on a per frame base. The packet arbiter is limiting the number of packets being transferred in parallel to 2.
		Requests for receive packets have the highest priority. A request for a transmit packet is granted, if there is not running more than one transfer already and if there is no concurrent request for a receive packet.
		There are timeout counters for each MAC FIFO (Receive queue MAC 1, transmit queue MAC 1, receive queue MAC 2, transmit queue MAC 2).
		They are started, if enabled (En Timeout Tx1 On) and a transfer to/from the dedicated FIFO is started. If they are reaching Zero , they stop and generate an IRQ Pkt Tout xxx .
		There are no further grants for that FIFO until IRQ Pkt Tout xxx is cleared (However granting max 2 packets to other FIFOs continues). IRQ Pkt Tout xxx is cleared by the command Cir IRQ Pkt Tout xxx . If IRQ Pkt Tout xxx is set, there may be more than 2 packets on the way shortly. The timeout counters are counting Host Clock cycles (18.825 ns). Max timeout is 1.233696375 ms or 150.6 kB on a Gigabit Ethernet line.
		Potential reasons for a timeout on receive are:
		A broken link
		receive RAMbuffer full (PCI/descriptors stuck)
		Potential reasons for a timeout on transmit are:
		A broken link
		XMACII is transmitting Pause packets for flow control on receive
	C B	If the timeouts are not enabled, such a blocked transfer is also block- ing the allocated bandwidth.
	Test	Test mode is switched on/off by the commands Timeout Timer xxx Test On/Off . In test mode, clock pulses may be generated by software the command Timeout Timer xxx Step .
4	.10 MAC FIFOs	The MAC FIFOs are implemented in the ASIC by dual-ported RAMs op- erated as FIFOs. For each XMACII a dedicated pair of Receive/Transmit MAC FIFOs is implemented. The MAC FIFOs pipe the dataflow between the RAMbuffers and the XMACII II from XaQti. The XMACII II itself pro- vides FIFOs for data exchange. The MAC FIFOs and the XMACII FIFOs are operated synchronously. The MAC FIFOs are used to translate data from 64-bit width at the RAMbuffer side in the ASIC to the 32-bit XMACII data interface.
		Dataflow is controlled by the filling level of the MAC FIFO and the avail- ability of data/space at the adjacent RAMbuffer or XMAC.

	Each frame in the FIFO holds the first 2 64-bit words of the internal sta- tus transporting the XMACII statusword and a pointer to EOF in the FIFO. The FIFO's packet manager is bypassing the internal status, if a STF is read from a FIFO before EOF is written: status not available at read time. The MAC FIFOs are running in flow through mode, which means, the first data may be forwarded before EOF is in the FIFO. The FIFOs are accept- ing more than one packet or fragments of more than one packet.
4.10.1 Receive	sources. Most of them are accessible for testing/initialization purposes only. Only the Clear IRQ No Status/Timestamp are intended to be ac- cessed on an operational Receive MAC FIFO .
Address Generation/Flags	The FIFO's depth is defined by the FIFO End Address (Start Address is Zero implicitly). The maximum end address is 0x3F. The Buffer Write Pointer is incremented, if data is written. The Buffer Read Pointer is incremented, if data is read. If they are reaching the End Address , they wrap to Zero . The Read/Write Pointer (and Shadow Pointers) and End Address have to be set by software at initialization in Non Operational Mode (but with cleared Reset).
- E	A MAC FIFO MUST NOT be switched to operational mode with incon- sistent pointers/addresses. On each read/write of data Level is updated. Level gives the actual num- ber of data in multiples of 8 bytes in this queue (including 16 bytes status word per packet). Level is the base for the flags Empty and Almost Full.
Packet Manager	The packet manager is observing the dataflow to the FIFO on packet level and the transfer of the internal status to the receive RAMbuffer. It's holding the Packet Counter and registers for storing the internal sta- tus temporarily. The Packet Counter is counting the packet ends available in the FIFO.
Write Statemachine	The write state machine is writing data to the FIFO, if there's space left and if the XMACII signals to have data. The first incoming data after EOF or initialization is interpreted as STF. The write state machine initiates incrementing of the Write Pointer by two as a placeholder for the 2 x 64-bit internal status. The packet manager keeps the start address of the packet. Data is written to the FIFO until the XMACII signals EOF/Receive Status available. Then the internal status (the end address of the packet) is writ- ten to the previously reserved start of the packet. This way the 2 x 64-bit of the internal status followed by the actual frame can be found in the MAC FIFO. (Remember it's not a real FIFO but an dual ported RAM operated as FIFO.) However if the frame just flows through the MAC FIFO, i.e if STF is already read by the read state machine and forwarded to the corresponding RAM-

	buffer, the internal status is bypassed through the packet manager. If the internal status arrived, the Packet Counter is incremented. EOF is signaled to the read state machine.
	The Write SM is interfacing with the XMACII through XMACII signals Rcv-Valid , RxPktValid , RcvStatusValid and HostRcvRdy . It is controlling a 64-bit input register converting incoming 32-bit data to 64-bit.
	Frame metadata, the length of a frame, XMACII receive status and time- stamp are stored in the internal status. Capturing the XMACII timestamp may be switched ON/OFF (Time Stamp On/OFF). However, this must be consistent with the XMAC's settings.
	The XMACII is not delivering a receive status/timestamp on a receive overflow. Capturing the receive status/timestamp is timeout controlled by Rx Status Timeout/Rx Timestamp Timeout . On these timeouts undefined receive status/timestamp data is generated, Rx Status Valid / Time Stamp Valid flags in the internal status are not set. Interrupt(s) IRQ No Status / IRQ No Timestamp are generated.
	A receive frame mast be treated as corrupted, if one of both Status Valid or Time Stamp Valid are not set.
(B)	Such a timeout event may generate some subsequent artificial re- ceive packets with a length of 0 byte and Status Valid/Time Stamp Valid not set.
Read Statemachine	The read state machine signals to the receive RAMbuffer, if there is data available. Data transfers are initiated by the receive RAMbuffer, if ready. The first data after EOF or initialization is interpreted as STF. The read state machine initiates reading the internal status, if available.
	Data is read from the FIFO until the Read Pointer reaches the end address of the packet. Note: The end address is available either from the 2 x 64-bit internal status read at STF or it is bypassed by the packet manager.
	If the internal status is available and the read accesses of the last 64-bit word is executed, EOF / internal status is forwarded to the receive RAM- buffer and the packet counter is decremented. Further reading is suspended until the receive RAMbuffer acknowledges EOF.
XMACII Patches	RxRdy Patch On/Off and RxValid Timing Patch On/Off are intended to adapt to Rev. B2 or Rev. C of the XMAC.For details see Receive MAC FIFO Registers in the control register file.
Pause Frames	The XMACII may be switched to automatic pause frame generation de- pending on the level of its receive FIFO.
	Considering jumbo packets one can figure out scenarios where a receive overflow can not be prevented because the receive FIFO isn't deep enough. Pause frames may be additionally generated using Upper/Low- er Threshold/Pause Packets (Receive Rambuffer Registers). If the receive RAMbuffer is filled up to Upper Threshold , signal XmtPausePkt of the related MAC is asserted (if En Pause is set). Signal XmtPausePkt

	is deasserted, if the number of bytes is falling below Lower Threshold . The XMACII must be set to generating one Pause Packet only at each change of Signal XmtPausePkt .
	This mechanism and the XMAC's automatic pause frame generation may be switched on in parallel.
Error Handling	The error handling is controlling the signal flow between the XMACII and the write state machine for error events.
	Rx Status Timeout / Rx Timestamp Timeout and a receive overflow of the XMAC's receive FIFO is signaled by RxFIFOError. On a receive overflow the XMAC's receive FIFO is flushed by asserting FlushRxFIFO, if En Flush/Rx is set to "ON".
	If there is a transfer of a frame in progress, this error event is treated like the end of a frame.
	Rx Status Valid and Time Stamp Valid are not set in the internal status and interrupt(s) IRQ No Status/IRQ No Timestamp are generated. After completion FlushRxFIFO to XMACII is deasserted.
Parity Generation	For write data to the FIFO parity is generated and written to the FIFO.
4.10.2 Transmit	The Transmit MAC FIFO Registers are giving access to nearly all re- sources. Most of them are accessible for testing/initialization purposes only. None of them is intended to be accessed on an operational transmit MAC FIFO.
Address Generation/Flags	The FIFO's depth is defined by the FIFO End Address (Start Address is Zero implicitly). The maximum end address is 0x3F.
	The Buffer Write Pointer is incremented, if data is written. The Buffer Read Pointer is incremented, if data is read. If they are reaching the End Address , they wrap to Zero .
	The Read/Write Pointer (and Shadow Pointers) and End Address have to be set by software at initialization in Non Operational Mode (but with cleared Reset).
	A MAC FIFO MUST NOT be switched to operational mode with incon- sistent pointers/addresses.
	On each read/write of data Level is updated. Level gives the actual number of data in multiples of 8 bytes in this queue (including 16 bytes statusword per packet). Level is the base for the flags Empty and Almost Full .
Packet Manager	The packet manager is observing the dataflow to the FIFO on packet level and the transfer of the internal status from the transmit RAMbuffer. It's holding the Packet Counter and registers for storing the internal status temporarily. The Packet Counter is counting the packet ends available in the FIFO.

Write Statemachine	The write state machine signals to the transmit RAMbuffer, if there's space left in the FIFO.
	data is written to the FIFO if read from the transmit RAMbuffer. The first incoming data after EOF or initialization is interpreted as STF. The write state machime initiates incrementing of the Write Pointer by two as a placeholder for the 2 x 64-bit internal status. The packet manager keeps the start address of the frame.
	Data is written to the FIFO until the transmit RAMbuffer signals EOF/ in- ternal status available. The internal status (The end address of the frame) is written to the previously reserved start address of the frame. However if the frame is just flowing through the MAC FIFO, i.e. if STF is already read by the read state machine, the internal status is bypassed through the packet manager. After the internal status arrived, the Packet Counter is incremented. EOF is signalled to the read state machine.
Read Statemachine	The first data after EOF or initialization is interpreted as STF. The write state machine initiates reading the internal status or of it's place holder.
	Data is read from the FIFO until the Read Pointer reaches the end ad- dress of the frame. Note: The end address is available either from the internal status read at STF or it is bypassed by the packet manager.
	If the internal status is available and the read accesses of the last 64-bit word is executed, EOF is forwarded to the XMACII and the packet counter is decremented.
	The read state machine is interfacing with the XMACII through the signals XmtrRdy , TxValid , TxPktValid and TxCRCDisable . It is controlling a 32-bit output register converting the internal 64-bit data to outgoing 32-bit data. Dis CRC (Transmit Descriptor / internal status) is forwarded to the XMACII as signal TxCRCDisable with the same timing than TxPktValid .
XMACII Patches	En Flush/Tx On/Off, En Wait 4 Empty On/Off, Use AlmostFull On/Off, TxRdy Timing Patch On/Off, En Packet Recovery On/OFF and Wait after Flush are intended to adapt to Rev. B2 or Rev. C of the XMAC.For details see Transmit MAC FIFO Registers in the control register file.
Error Handling	The error handling is controlling the signal flow between the XMACII and the read state machine on error events.
	A transmit error at the XMAC's transmit side is signaled by XmtPktError . This causes FlushTxFIFO to XMACII becoming asserted. If there is a transfer of a frame in progress, transfer is completed normally by the XMACII Interface, but no data is transferred to the XMAC. After comple- tion FlushTxFIFO to XMACII is deasserted.
Parity Checking	The parity of read data from the FIFO is checked. On an error, IRQ Parity Error is set. IRQ Parity Error may be cleared by the command Clear IRQ Parity Error .

4.11	Internal Loopback	Each pair of MAC transmit and receive FIFOs may be switched to loop- back mode (Transmit MAC Control register in the contol register file). This can be used for measuring the PCI throughput or for testing the ASIC's internal data path.
		In loopback mode transmit data from the MAC transmit FIFO are looped back to the MAC receive FIFO. No external control signals are generated, signals from the related XMACII are ignored.
		The throughput at this point is 212.5 MBytes/s. This generates an maxi- mum throughput of 425 MBytes/s on the PCI bus achieved by running concurrent master read and master write bursts.
		Only one pair of MAC transmit and receive FIFOs may be switched to loopback mode. All devices, which are not needed for this loopback, must be inactive (resetted, non operational). All patch modes for any XMACII deviations must be switched off (Transmit/Receive MAC FIFO Registers).
		Transmit descriptors should hold a transmit status. At the loopback point this is forwarded to the MAC receive FIFO as receive status, which means, it should reflect the expected receive status. There is no effect on any controlling logic related to the content of that status. If forwarding timestamp is enabled (Receive MAC Control), the inverted receive status is forwarded as timestamp.
	4.12 MAC Arbiter	The MAC arbiter is controlling the datapath between the MAC FIFOs in the ASIC and the XMACs receive and transmit FIFOs. This datapath is 32-bit wide. It is clocked with host clock, wich means a theoretical throughput of 212.5 MBytes/s can be achieved.
		Two pairs of MAC Receive/Transmit FIFOs are requesting access to that datapath. Requests are arbitrated on a rotating priority scheme. After arbitration, a request is served as long as it keeps staying. This is limited by a Timeout Counter for each FIFO. Rearbitration takes place, if a request is withdrawn or counted out by the Timeout Counter . Due to the timing requirements of the output drivers of the ASIC and of the XMACII rearbitration needs some time. Switching the datapath from a MAC transmit FIFO to a MAC receive FIFO takes 5 clock cycles without any data transfer. Switching the datapath from a MAC receive FIFO to a MAC transmit FIFO takes 4 clock cycles without any data transfer. If the Timeout Init Values are set to 63, the theoretical maximum throughput of 2 x 106.25 MB/s is reduced by 7% to 2 x 98.8 MB/s. The Timeout Init Values of 63 is adapted to the depth of the synchronizing FIFOs of the XMAC. (If a future version of the XMACII with faster output enable timings is available, the switching time may be reduced to 4/3 potentially using Fast OE On/Off.) All timeout counters of the MAC Arbiter are programmable. This gives the chance to tune/prioritize the burst length for the receive/transmit FIFOs. Per default the same burst length should be used.

For fixing XMACII Rev. B2 ringing problems there is a **Recovery Timer** for each FIFO. The **Recovery Timer** is started after a transfer of the dedicated FIFO. The FIFO doesn't get another frame until the **Recovery Timer** has been running down. The **Recovery Timers** may be switched on/off individually by the commands **En Rec xxx On/Off**.

4.13 XMACII

The host processor interface of the ASIC connects directly to the host TX/RX interface of the XMAC. This interface is running with host clock. For the XMACs a detailed documentation from XaQti Corporation exists, listing the main features, its operation and test features. The following lists the used pins of the XMACII:

Used Pins of the XMACII				
HOST TX Data (31:0)	TxByteEn(3:0)	TXpkt Valid		
TxCRCDisable	TxFIFOAlmostEmpty	TxFIFOAlmostFull		
FlushTxFIFO	XmtPausePkt	XmtPktError		
XmtrRdy	TxValid	HostRxData(31:0)		
RxByteEn(3:0)	RcvValid	RxPktValid		
HostRcvRdy	RxFIFOAlmostEmpty	RxFIFOAlmostFull		
RxFIFOError	RxOutDisable	FlushRxFIFO		
NPData (15:0)	NPAddr (8:0)	NPR/W		
NPCS	NPRDY	/NPINT		
HOST_CLK	REF_CLK	NP_CLK		
/RESET				
PODAT(9:0)	GTX_CLK	EN_COM_DET		
PHY_LP_EN	PIDAT(9:0)	RBCLK,RBCLK_N		
COM_DET	/LINK_SYNC ¹	GPInput ²		
V _{DD} (3.3V)	V _{CC} (5V)	V _{SS} (Ground)		

Table 14: XMACII - Used Pins

1. /LINK_SYNC is connected to the GPINPUT signal - see XMACII Errata #2 March 1998 - the Errata sheet contains also detailed instructions for initialization and interrupt handling.

2. see previous footnote

XMACII Errata #2 gives instructions for hard- and software to avoid an inappropriate state which the XMACII may enter after receiving non-Idles over a period of time (not during normal packet reception) or when the XMACII is operated in manual mode (autonegotiation is disabled). The "**SK-NET GENESIS <x>**" hardware is designed following this rules. The driver and diagnosis software has to follow the related instructions for initialization and interrupt handling.

Not used pins are not applicable in the design of the "**SK-NET GENESIS <x>**" NIC e.g. (NPData(31:16)), they are for XMACII test purposes (TEST (2:0) or are not used for other reasons. Not used pins are usually bound to an approriate signal level and are available on the printed circuit board as hardware test points for diagnosis with hardware tools.

The node processor interface i.e. the interface to read/write the XMACs internal register is realized with 16-bit data width. Some of the XMACs special features that go beyond the IEEE specification are not used in the **"SK-NET GENESIS <x>"**: e.g. FlushLastPkt, Transparent Mode are not supported.

4.13.1 Programming Interface All 447 registers of each XMACII are mapped into the control register file. PCI bus accesses are translated to the XMACs using their node processor interface is set to 16-bit mode. Each half of the 32-bit registers is mapped to one 32-bit word on PCI.

The interrupt line /NPINT of each XMACII is routed to the **Interrupt Source Register**. The reset line /RESET of each XMACII is controlled by **XMACII Reset**.

Data transfers from/to the MAC FIFOs of the ASIC to/from the transmit and receive FIFOs of the XMACs are running on the XMACs' host processor interface. All host processor interfaces of the XMACs are connected to one 32-bit bus. This bus is clocked with 53.12 MHz (HOST CLK) giving a maximum data rate of 212.5 MBytes/s.

There are some specific settings/options of the XMAC, which are mandatory, because the "**SK-NET GENESIS <x>**" is not supporting all of the XMACII options.

- □ GmiiMode (Hardware Configuration Register, bit 0) must be set to 0, because the "**SK-NET GENESIS** <**x**>" comes with a FC-0 interface for the PHY.
- SigStatChk (Hardware Configuration Register, bit 2) must be set to 0.
- EnableBigEndian (Mode Register, bit 2) must be set to 0. The ASIC's FIFO interface is not supporting big endian dataflow.

4.13.2 Receive Queue Performance Receive data may be transferred through the MAC receive FIFO and through the receive RAMbuffer to the PCI receive FIFO, if XMAC's RxReqThreshold is reached or a complete frame has been received.

They are transferred to system memory, if the network interface card is the owner of the descriptor for the receive queue and the watermark in the PCI FIFO is reached.

The setting of RxReqThreshold is a trade-off between the acceptable delay on the receive path and the suppression of transfers of corrupted packets. **4.14 SERDES and Transceiver** Finally the the "**SK-NET GENESIS <x>**" is attached to the Gigabit Ethernet network via 802.3 z compatible transceivers. The 10-bit data stream from the XMACII is reduced to a serial 1-bit stream by the SERializer/DESserializer (SERDES).

5.0	Mor	e Resources	While the previous chapter was organized along the data path from the host system RAM to the Gigabit Ethernet network this chapter deals with the resources of the " SK-NET GENESIS < x >" that are not directly related to the data stream.	
	5.1	Flash EPROM	The 128KByte Flash EPROM may be mapped in the memory address space with sizes of 16 KByte, 32 KByte, 64 KByte or128 KByte. The page size is defined by the Page Size<20> bits hold by Our_Register1 in the configuration space.	
			Default is mapping of the full 128KByte Flash EPROM.	
			Mapping of the Flash EPROM is controlled by the EN_FPROM flag in Our_Register 1. If this flag is not set, the ROM Base Address Register is not presented to the configuration register file and the Flash EPROM may be not mapped into the memory address space. Memory accesses to the Flash EPROM are read only. Write operations are completed normally on the bus and the data discarded.	
			If mapped, the base address is defined in the Expansion ROM Base Address Register. The Expansion ROM Base Address Register is also holding the page size and the ROMEN flag which controls enabling of the Expansion ROM. The mapped page is selected by setting PAGE<20> in Our_Register 1.	
			The Flash EPROM loader provides another mechanism than memory mapping to read data, especially configuration data from the Flash EPROM.	
			The Flash EPROM may contain boot code or whatever but the last 16KByte sector is holding data for initialization of the NIC after power_on or RST# .	
			For programming of the Flash EPROM no additional 12V power supply and switching of the programming voltage is required. However	
			The Flash EPROM must be programmed carefully, according to the manufacturer's algorithms ¹ . Any deviation may cause failure of or damage to the Flash EPROM.	
			As Flash EPROM AMD's AM29F010 initially is used.	
5.1.1	Flas	h EPROM Loader	The Flash EPROM loader is supporting:	
			Loading of data after RST# from the Flash Eprom into the Configuration and Control Register File (where needed).	
			Translation of the datawidth of 8-bit data width of the Flash EPROM to multiple byte/ 32-bit word memory read access- es from the bus.	
			Programming interface using Eprom Programming Reg- isters	

^{1.} If the AM29F010 Flash EPROM is mounted on the board, detailed information can be found in: "Flash Memory Products : 1992/1993 Data Book/Handbook" by Advanced Micro Devices (AMD).
The loader is capable of accessing potentially all registers in the **Control Register File** space. Register address and data is stored in 8-byte entries in the Flash EPROM.

The registers may be written with 32-bit, 16-bit, or 8-bit accesses. The 8-byte entries are located on 8-byte boundaries from the end of the last 16k-sector of the Flash EPROM in decreasing order. Each entry is marked with a key.

If started, the loader is reading subsequent entries starting with the initial value of the **Eprom Address Counter** as long as a valid key is found. Loading is started by deassertion of **RST#** or the command **Load Eprom**. While loading, accesses to any resource of the network interface card are terminated by Target Retry Cycles.

The command **Load Eprom** is intended for testing purposes only. It is not recommended to reload the **Configuration Register File** using this command.

31:24	23	:16	15:8	7:0	Address
key = 0x55	reserved	BE<3:0>	Address/upper	Address/lower	0x 1fffc
Data<3>	Data	a<2>	Data<1>	Data<0>	0x1ffff8

Table 15: FRPOM Contents - Data Structure

Set to **Loader Test Mode**, the **Eprom Address Register** may decremented with the command **Loader Test Step**.

boot code:

32-bit read data is moved through byte registers and multiplexers from the 8-bit port of the Flash EPROM. Two, three or four byte accesses to the bus are serviced by subsequent byte accesses from the Flash EPROM storing the bytes in registers. There is no caching mechanism. This means, each read access invokes the related byte accesses from the Flash EPROM. The max. number of inserted wait cycles is 20 for an 32-bit word read access (CLK = 33MHz).

programming:

For programming purposes, defined read/write byte accesses to all Flash EPROM locations may be executed over the **Eprom Programming Registers** (control register file). These accesses are executable independent of the **Expansion Rom Base Address Register**, page size and page register.

Accessing the **Eprom Programming Data Register**, one byte is transferred from/to the Flash EPROM location defined by the **Eprom Programming Address Register.**

	5.2	Interrupts	The Interrupt Source Register is holding the interrupts of all resources. Each interrupt is maskable by the Interrupt Mask Registers . All un- masked interrupts are or'ed and propagated to the bus interrupt line. An interrupt from a masked source can still be read from the Interrupt Source Register .
			Interrupt generated by hardware checks are readable from the Interrupt Hardware Error Source Register. All unmasked interrupts are or'ed and propagated to the Interrupt Source Register as Interrupt Hardware Error.
			An interrupt is cleared and/or disabled as stated in the description of the related interrupt resource.
			There's a Special Interrupt Source Register that is mirroring the Inter- rupt Source Register with special functionality adapted to typical software handling. Use of this register is recommended for driver software.
			If the interrupt line INTA# is asserted, the read value is the same as in the Interrupt Source Register . If the interrupt line INTA# is NOT asserted, the read value is 0.
			If the interrupt line INTA# is asserted, reading the Special Interrupt Source Register clears the Interrupt Mask Register (NOT the Interrupt HW Error Mask Register). As a result the interrupt line INTA# is deasserted.
5.2.1	Interrup	ot Moderation	The design idea behind interrupt moderation is to reduce interrupts by queueing non-critical interrupts. The interrupt queue is controlled by an timer that enables interrupts to be forwarded on the NIC's interrupt line periodically. All interrupts can be moderated by the IRQ Moderation Timer . Moderation is controllable individually for each interrupt by the Interrupt Moderation Mask Registers .
			The IRQ Moderation Timer is a programmable 32-bit downcounter with a resolution of 18.825 ns (derived from host clock, Tmax = 80.85 s) for the usage as timebase for IRQ moderation.
			The command Interrupt Moderation Timer Start loads Interrupt Moderation Timer with Interrupt Moderation Timer Init Value and starts counting.
			Reaching ZERO or loaded with ZERO the Interrupt Moderation Timer is reloaded with Interrupt Moderation Timer Init Value.
			The Interrupt Moderation Timer controls the assertion of the PCI bus line INTA# by gating the interrupts as defined by the Interrupt Modera- tion Mask Registers. If the Interrupt Moderation Timer is stopped or reaches ZERO, the gate opens and allows the masked interrupts to prop- agate to the bus. The assertion of INTA# caused by one of the masked interrupts is therefore delayed until the Interrupt Moderation Timer reaches ZERO. INTA# is kept asserted until the appropriate operation to clear the interrupt request is completed. The deassertion of INTA# is not affected.

	More Resources
	The Interrupt Moderation Timer may be stopped by the command Inter- rupt Moderation Timer STOP.
	While HW Reset or SW Reset asserted, the Interrupt Moderation Timer is stopped and the gate is closed. After releasing SW Reset the gate is initially open until the Interrupt Moderation Timer is loaded with a value other than ZERO and started.
Test	Test mode is switched on/off by the command Interrupt Moderation Tim- er Test On/Off.
	In test mode, clock pulses may be generated by software via the com- mand Interrupt Moderation Timer Step.
5.3 Parity Generation/Check	Parity is checked/generated on datapaths of receive/transmit data enter- ing/leaving the ASIC. This includes the PCI Interface, the XMACII receive/transmit interface and the RAM interface.
	On PCI parity checking/generating follows PCI specification for even par- ity on 32-bit words. All further parity checking/generating does even parity on bytes.
Internal byte based parity checking/generating	Byte based parity is generated on data entering the PCI transmit FIFOs and on data entering the MAC receive FIFOs. For internal status words written to the RAMbuffers, parity is generated by the RAM interface.
	Byte based parity is checked on data leaving the PCI receive FIFOs and on data leaving the MAC transmit FIFOs. Parity is also checked on data read from the RAM.
	Each parity checker is generating an interrupt. All parity interrupts are routed to the Interrupt HW Error Source Register . Note: Even if an Interrupt Parity Error is generated, running operations are continued.
Parity checking/generating on PCI as target	Read data parity is generated for read accesses to adapter resources in the ASIC.
	Write data parity is checked for write accesses to adapter resources in the ASIC.
	Address parity is checked for all address phases running on the bus.
	If a write data parity error is detected, Parity Error is set. Bus signal PERR# is asserted, if Parity Report Response Enable is set.
	If an address parity error is detected, Parity Error is set. Bus signal SERR# is asserted and Signaled Error is set, if SERR# enable and Parity Report Response Enable are set
Parity checking/generating on PCI as master	Write data parity is generated for all write accesses to system memory. Read data parity is checked for all read accesses from system memory. Address parity is generated for all address phases generated on the bus.
	If a read data parity error is detected, Parity Error is set. Bus signal PERR# is asserted and Data Parity Error detected is set, if Parity Report Response Enable is set.

	More Resources
	If on a write access PERR# is sampled asserted, Parity Error is set. Data Parity Error detected is set, if enabled by Parity Report Response Enable .
	If Data Parity Error detected is set, interrupt IRQ Master Error is set.
	If Parity Error is set, interrupt IRQ Status is set (see also Interrupt Register).
5.4 Reset Hierarchy	The power on reset RST# is setting SW Reset . SW Reset is setting Master Reset , all the device specific reset lines, statemachines, registers etc. (for details refer to the configuration register file) and the XMACII Resets (1 & 2).
	Master Reset is resetting/releasing the queue arbiter and the switch logic and is synchronous input to the master sequencer state machine.
	On a running network interface card Master Reset (and SW Reset) should be set only after a Master Stop/Done .
	XMACII Resets (1 & 2) are propagated to the external XMACs.
E Company	If SW Reset is set, only the Control Register may be accessed. SW Reset must be cleared, before clearing all device specific Resets (even Master Reset in the Control Register).
	The Resets in the BMU Control/Status Registers are intended to be cleared/released in one step (they are split for testing purposes only).
	Some devices are coming with an operational mode. They are set to operational mode OFF by their individual Resets .
	The non operational mode is intended for initialization of all settings (pointers, switches etc.) of such a device. All these settings are not allowed to be modified in operational mode.
(F)	If switched to operational mode all settings must be consistent.
5.5 Clock Distribution	All clocks are derived from the PCI clock and an oscillator (106.25 MHz) by the ASIC. Clock distribution is done by the ASIC (exception: SERDES clocks are driven by the related XMACII).
	The GE (Gigabit Ethernet) clock of each XMACII is the individually buff- ered version of the incoming 106.25 MHz clock. All further XMACII clocks are derived from the incoming 106.25 MHz by divisions, each clock is dis- tributed by an individual buffer/signal line.
	The ASIC is running with two clock domains:
	PCI Clock for all PCI operations which must or may be syn- chronous to the PCI clock (including external I ² C interfac- es, Flash EPROM and the External Register).
	Host clock (53.12 MHz) for all operations with a fixed time base and all operations interfacing to the external XMACs and the external memory.

	More Resources
	The PCI Clock is provided on an output pad for any patching purposes and may be switched ON/OFF (Dis PCI Clock in Our Register 1).
	The skew of the buffered PCI clock is defined by Skew/PCI<3:0> in Our Register 1
	On the initial version Dis PCI Clock is switched OFF by overwriting from the EPROM Loader. All operations not running with PCI Clock are synchronous to host clock.
	The skew of the clocks of the XMAC's FIFO interface is controlled by Skew/Host<3:0> in Our Register 1 .
5.6 Timer	The Timer is a programmable 32-bit downcounter with a resolution of 18.825 ns (derived from Host Clock, Tmax = 80s) for the usage as a fixed timebase.
	The command Timer Start loads Timer with Timer Init Value and starts counting. Reaching ZERO or loaded with ZERO the Timer generates an interrupt IRQ Timer and is reloaded with Timer Init Value .
	IRQ Timer is cleared by the command Timer Clear IRQ . Command Timer Clear IRQ is overwriting a concurrent internal interrupt (guaranteeing IRQ edges).
	Note: In order to prevent IRQ pulses, command Timer Clear IRQ should only be issued, if IRQ Timer is pending or if the Timer is stopped.
	The Timer may be stopped by the command Timer STOP .
Test	Test mode is switched on/off by the command Timer Test On/Off . In test mode, clock pulses may be generated by software via the command Timer Step .
5.7 LINK_SYNC Counter	The LINK_SYNC Counter is a programmable 32-bit downcounter. It's counting the assertions of the signal /LINK_SYNC of the dedicated XMAC. It may be used to confirm a working connection with the neighbor port.
	The command LINK_SYNC Counter Start loads the LINK_SYNC Coun- ter with LINK_SYNC Counter Init Value and starts counting.
	Reaching ZERO or loaded with ZERO the LINK_SYNC Counter gener- ates an interrupt IRQ LINK_SYNC Counter and is reloaded with LINK_SYNC Counter Init Value. IRQ LINK_SYNC Counter is cleared by the command LINK_SYNC Counter Clear IRQ.
	The command LINK_SYNC Counter Clear IRQ is overwriting a concurrent internal interrupt (guaranteeing IRQ edges).
	Note: In order to prevent IRQ pulses, command LINK_SYNC Counter Clear IRQ should only be set, if IRQ LINK_SYNC Counter is pending or if the LINK_SYNC Counter is stopped.
	The LINK_SYNC Counter may be stopped by the command LINK_SYNC Counter STOP.

Test	Test mode is switched on/off by the command LINK_SYNC Counter Test On/Off. In test mode, clock pulses may be generated by software the command LINK_SYNC Counter Step.
5.8 LEDs	The network interface card is providing 1 NIC LED and 3 port LEDs at each port. The intended use and the position is shown in section 2.1.1 <i>LEDs</i>
	The usage is software / driver controlled. This section deals with program- ming the LEDs.
	Besides switched on/off, some LEDs may be set to blinking. All blinking LEDs are using the same blink source.
Blink Source	The Blink Source Counter is a programmable 32-bit downcounter with a resolution of 18.825 ns (derived from host clock, Tmax = 80s) for the usage as fixed timebase for Blink Source intended to be used as gating signal for LEDs, which are switched to blinking.
	The command Blink Source Counter Start loads Blink Source Counter with Blink Source Counter Init Value and starts counting. Reaching ZERO or loaded with ZERO the Blink Source Counter toggles Blink Source and is reloaded with Blink Source Counter Init Value .
	The Blink Source Counter may be stopped by the command Blink Source Counter STOP .
Test	Test mode is switched on/off by the command Blink Source Counter Test On/Off .
	In test mode, clock pulses may be generated by software via the com- mand Blink Source Counter Step .
5.8.1 NIC LED	This LED is intended to indicate that a driver is loaded. It can be switch- end on/off by setting LED<0>* (LED Register).
5.8.2 Link LED	The behavior of the Link LED is controllable by software through the Link LED Control Register.
	It may be set to Off, On, blinking, forwarding /LINK_SYNC of the dedicated XMACII w/o blinking.

On/Off	Forward	Blink	LED is
0	x	х	off
1	0	0	on

Table 16: Link LED

		_			
		On/Off	Forward	Blink	LED is
		1	0	1	blinking
		1	1	0	forwarding /LINK_SYNC
		1	1	1	forwarding /LINK_SYNC
				I	while blinking
			٦	Table 16:	Link LED
		The blink frequ	uency is cont	rollable thro	ough the Blink Source Counter.
	5.8.3 Receive LED	The Rx LED (On any start o Rx LED Court LED Counter While Rx LED counter is a pro- ns (derived fro	receive LED) of an incomin nter Init Valu stops countin Counter is ogrammable m host clock	is indicatin g packet, R Je and star ng. running, Rx 32-bit down , Tmax = 80	g, that there are packets received. x LED Counter is (re)loaded with ts counting. Reaching ZERO, Rx LED is switched on. The Rx LED counter with a resolution of 18.825 0 s)
		Triggering Rx I Rx LED Coun	LED Counter ter Start/Sto	r and switch >p.	ing Rx LED is enabled/disabled by
	Test	Test mode is On/Off . In test command Rx	switched on/ mode, clock LED Counte	off by the of pulses may r Step .	command Rx LED Counter Test y be generated by software via the
	5.8.4 Tx LED	The transmit L LED on transn	ED (Tx LED) has the sa s using the	ame behavior as described for Rx Tx LED register/counter set.
	5.9 I ² C Interface	The I ² C interfa Register or by Register . If ha Register must 0).	ace is contro hardware th ardware cont be set to ina	lled either b rough the l2 trolled l ² C a active value	by software through the Interface C Control Register and I2C Data accesses are used, the Interface s (Clock = 1, Direction = 0, Data =
		The hardware The size of the address bytes, er with the add the I2C interfa bytes. Invalid of plete, can be hardware cont	controlled in target device /bits to be use ress to the 12 ce runs 4 by or erroneous stopped by rolled I ² C ac	terface can e of the I ² C ed) and its c C Control I te bursts in HW contro writing a 1 cess an inte	be parameterized in several ways. access (and implicit the number of devsel byte must be written togeth- Register . If the I2C Burst bit is set, page mode, assuming pages of 8 lled I ² C accesses, that don't com- to I2C Stop . On completion of a errupt IRQ I2C Ready is asserted.
5.10	Temperature/Voltage Sensor	As a manufact bled. Its intern the Interface Register.	uring option al registers r Register o	a temperatu nay be acc r the I2C (ure/voltage sensor may be assem- essed through the I ² C interface in Control Register and I2C Data

			More Resources
			The I ² C address of the sensor is 0b0101_000. As sensor National's LM80 is used initially
			The sensor's IRQ line (INT#) is connected to the ASIC's input IRQ EREG *.
			Port IN<0> is measuring VCC (5V)
			Port IN<1> is measuring VIO (PCI
			Port IN<2> is measuring VDD (3.3 V -> ASIC, XMACs)
			□ Port IN<3> is measuring PLC 3V3 (SERDES)
			5 - <u>-</u>
			Voltage:
			The voltage range is 0 - 5,61V (8bit, resolution = $22mV$) The tolerance is 1 LSB +/- 1,1%.
			Temperature:
			The sensor is placed near the PC bracket, such not giving the highest PCB temperature. A correction parameter has to be defined after some measurement.
6.0	Runr	ning the NIC	This chapter summarizes the sequence of events that are necessary to operate the "SK-NET GENESIS <x>"</x> network interface card.
	6.1	Initialization	Correct initialization is crucial for operation of the network interface card. The device is in reset state after power on. The following Reset sequence is mandatory.
			Release SW Reset
			Release Master Reset
			Release XMACII 1 / XMACII 2 Reset
			Now configure all devices, the following sequence may be varied. However if a device has an individual Reset, this Reset must be released at first. After releasing the Reset, all registers are set to their required values.
			If a device has an operational mode, it may be set to operational only after setting all registers.
		Ē	Register settings are not allowed to be modified in operational mode.
		A	Any commands (e.g. Start xxx) are allowed only, if a device is con- figured completely.
		Solution	Refer to the XMACII datasheet and Errata for proper initialization of the XMACII.

	 Configure Timer Configure Blink Source Counter Configure Link_Sync Counter Configure Rx LED Counter Configure Tx LED Counter Configure Descriptor Poll Timer
	 Configure Descriptor For Times Configure I²C Registers Configure MAC Arbiter There are settings, which must be consistent to settings of the XMACII (see receive/transmit MAC FIFO registers)
	 Configure 4 MAC-FIFOs There are settings, which must be consistent to settings of the XMACII (see Receive/Transmit MAC FIFO registers)
	 Configure Packet Arbiter Configure 2 Transmit Arbiters Configure 6 RAMbuffer Configure RAM Interface Configure 6 BMUs Initialize descriptor mechanism (BMU) Setup descriptors in system memory (at least for queues, which are intended to be used, one descriptor minimum). Release the resets of all components of the queues, which are intended to be used. Set Current Descriptor Address Upper/Lower to first descriptor in system memory. Configure (2) XMACs Start the timers and counters Start the BMUs Enable the XMACII's transmit and receive state machines (MMU reg) when the link is synchronized
6.2 Data transfers	
6.2.1 Receive	 One way to manage receive frames may look as follows: The network interface card is not owner of the current descriptor. Software is releasing the current descriptor to the network interface card and issuing Start xxx to the receive queue The subsequent descriptors are not relinquished to the network interface card. Start xxx is initiating reading the current descriptor with the Own bit set to the network interface card.

6.2.2 Transmit	 The first data received are moved to this buffer. If the buffer is filled or EOF is reached, interrupt EOB is set after relinquishing the descriptor. After controlling the header of the received frame, software defines the destination for further data of this frame by defining and releasing the subsequent descriptor(s). data is transferred, until EOF is reached or no further descriptor is released to the network interface card. Transfer of an unwanted frame may be prevented by setting Dev 0. The network interface card is handling this like 'normal' transfers, except that the data is not transferred really to system memory in order to prevent waste of PCI bandwidth. Transmit data may be transferred from system memory, if space is remaining in the PCI transmit EIEO. Transmit data is forwarded through the
	 maining in the PCI transmit FIFO. Transmit data is forwarded through the transmit RAMbuffer and the MAC transmit FIFO to the XMACII's transmit FIFO. The XMACII is initiating transmitting, if data in the XMACIIs transmit FIFO reach TxReqTreshold or a complete packet is in its transmit FIFO. The typical way to manage transmit frames may look as follows: The network interface card is not owner of the current descriptor. Software is releasing the transmit descriptor(s) to the network interface card and issuing Start xxx to the transmit queue. Start xxx is initiating reading the current descriptor with
	 the Own bit set to the network interface card. While space is remaining in the transmit queue, data is moved from system memory on a per descriptor base. If a buffer is emptied or EOF is reached, interrupt EOB is set after relinquishing the descriptor. Data is transferred, until EOF is reached or no further descriptor is released to the network interface card.
6.2.3 Stop a Receive Queue	 To stop a receive queue the following sequence is proposed: Stop XMACII's receive state machine (MMU Register) Wait for MAC FIFO empty (Level) Wait for Receive RAMbuffer got empty (Level) Wait for PCI FIFO empty (Level) Stop releasing descriptors or get back unused descriptors
6.2.4 Stop a Transmit Queue	 Note: There's a risk, that the last packet comes with Status invalid To stop a transmit queue the following sequence is proposed: Stop releasing descriptors or get back unused descriptors

- □ Wait for PCI FIFO empty (Level)
- U Wait for transmit RAMbuffer empty (Level)
- U Wait for MAC FIFO empty (Level)
- General Stop XMACII's transmit state machine (MMU Register)

7.0 Tests The "SK-NET GENESIS <x>" comes with many registers and flags that are not needed for actual operation of the NIC but are made accessable for test and control purposes. Besides the signals and registers required internally that are made available for test / diagnosis software, some flags and registers are provided for testability. E.g. the Random RAM access that can be used by the software to verify contents of the RAMbuffers for tracing data frames and frame metadata. This chapter lists some of the test features of the "SK-NET GENESIS <x>" that were not mentioned yet e.g. the internal loopback path between the MAC FIFOS in the ASIC, etc.

7.1 Testing BMU State Machines

7.2 State Machine - State

Sequence

Each of the 6 queues at the PCI side comes with three test registers. The test registers may be used to

- □ Stepping through the states of BMU state machines
- Decrement the byte counter
- U Verify operation of the hardware multiplexer

The register descriptions in the control register file give some information how to step to a BMU state machine. (Set test mode ON). The following lists the sequence of states that a state machine reaches when steping through:

State	Q<3:0>
Superv	isor SM
Idle	0b0000
Res_Start	0b1000
Get_Desc	0b1011
Check	0b1001
Wait_Data	0b1101
Set_Pkt_Xfer	0b1111
Move_Data	0b0111
Put_Desc	0b0011
Res_Stop	0b0001
Set_Irq	0b1100

Table 17: States of Receive State Machine

State	Q<3:0>	
Read Descriptor		
Idle 0b0000		
Load	0b0001	
Wait_TC	0b0011	
Reset_EOF	0b0110	
Wait_Done	0b0010	
Transfe	er Data	
ldle	0b0000	
Load	0b0001	
Wait_TC	0b0010	
Wait_Done	0b0100	
Write Descriptor		
Idle 0b0000		
Act_Buf_Length	0b0001	
Wait_EOF	0b0011	
Load_Stat_A	0b0010	
Wait_Stat_TC	0b0110	
Load_Dumr_A	0b1110	
Wait_Dumr_TC	0b1111.	
Load_Desc_A	0b0111	
Wait_Desc_TC	0b0101	
Load_Ndsc_A	0b0100	
Wait_Done	0b1100	

Table 17: States of Receive State Machine

Table 18: States of Transmit State Machines

State	Q<3:0>		
Supervisor SM			
Idle	0b0000		
Res_Start	0b1000		
Get_Desc	0b1011		
Check	0b1001		
Wait_Data	0b1101		
Set_Pkt_Xfer	0b1111		
Move_Data	0b0111		
Put_Desc	0b0011		
Res_Stop	0b0001		
Set_lrq	0b1100		
Read De	escriptor		
ldle	0b0000		
Load	0b0001		
Wait_TC	0b0011		
Wait_Done	0b0100		
Transfe	Transfer Data		
ldle	0b0000		
Load	0b0011		
Wait_TC	0b0010		
Wait_Done	0b0100		
Write De	escriptor		
Idle	060000		
Act_Buf_Length	0b0001		
Res_OWN	0b0010		

State	Q<3:0>
Load_Desc_A	0b0110
Wait_Desc_TC	0b0111
Load_Ndsc_A	0b1000
Wait_Done	0b1001

Table 18: States of Transmit State Machines

7.3 Hardware Multiplexer

For each queue there's a hardware multiplexer controlling the data flow into the PCI FIFOs. The multiplexer position is calculated on a per descriptor base.

A modulo-8 calculation is sufficient for determining one out of eight positions.

If a descriptor with the **Own** bit set to the network interface card is read, the new position is:

Mux<2:0> = Buffer start address - Virtual RAMbuffer address

The virtual RAMbuffer address (**VRam**) is updated to the current length of the transferred frame, if the descriptor is released:

VRam<2:0>:= VRam<2:0> + Buffer length

VRam is initialized to zero on reset or after transferring a buffer holding **EOF**.

For testing/controlling purposes, **VRam<2:0>** may be written, **Mux<2:0>** is only readable. If **VRam<2:0>** is modified, **Mux<2:0>** should follow depending on the current buffer start address.

8.0 External Interfaces This chapter gives some information about the NICs external interfaces:

- The PCI bus
- The Gigabit Ethernet transceivers
- 8.1 PCI The system interface of the network interface card is fully compliant with the PCI Specification Rev. 2.1. It supports 32-bit or 64-bit bus master and 32-bit target transfers on the PCI with the 33 MHz or the 66 MHz bus timing modes.

PCI Signals

The following table shows the used PCI signals:

Group	Signal	I/O	Function
Addross	AD[31:00]	t/s	Multiplexed data and address lines
& Data	C/BE[3:0]#	t/s	Bus command and byte enable lines
JZ DIL FAIL	PAR	t/s	Even parity over AD[31:0] and C/BE[3:0]
Addross	AD[63:32]	t/s	Multiplexed data and address lines
& Data	C/BE[7:4]#	t/s	Bus command and byte enable lines
Extension	PAR64	t/s	Even parity over AD[63:32] and C/BE[7:4]

Group	Signal	I/O	Function
	FRAME#	s/t/s	Cycle frame
	TRDY#	s/t/s	Target ready
	IRDY#	s/t/s	Initiator ready
	STOP#	s/t/s	Target STOP request, used by the net- work interface card only for target dis- connect with/without data.
Interface Control	DEVSEL#	s/t/s	Device select, asserted by the network interface card with medium DEVSEL# timing
	IDSEL	in	Initialization device select
	LOCK#	s/t/s	not used by the network interface card
	REQ64#	s/t/s	Request 64-bit transfer signal driven by the current bus master.
	ACK64#	s/t/s	Acknowledge 64-bit transfer signal driven by the current bus target.
Error	PERR#	s/t/s	Parity error, is asserted by the network interface card for all data parity errors detected, if enabled
Reporting	SERR#	o/d	System error signal is asserted by the network interface card for all address parity errors detected, if enabled
Arbitration	REQ#	t/s	Bus request, asserted by the network interface card to gain bus ownership, kept asserted until second last data phase of a transaction
	GNT#	t/s	Bus grant
System	CLK	in	PCI bus clock. The network interface card is working at any frequency from 0 - 66 MHz. The network is operable at any fre- quency from 25 - 66 MHz.
	RST#	in	Reset signal, brings the network inter- face card into a consistent state. All local resources on the network inter- face card are reset.

Group	Signal	I/O	Function
Interrupt	INTA#	o/d	The interrupt signal indicates an inter- rupt request from the network interface card to the system. The assertion and deassertion of INTA# is asynchronous to CLK . A pending request is cleared by the interrupt service of the device driver.
Additional Signals	PRSNT[1:2]#		The present signals indicate to the motherboard whenever the network interface card board is present and if it is present, the total power requirements of the network interface card. The default setting of PRSNT[1:2]# is 0b00 (7.5 W max).
JTAG	TDI	in	Test data In for JTAG boundary scan test path. The TDI pin is routed to the TDO pin on the network interface card. No further scan test functions are supported by the network interface card.
	тро	out	Test data OUT for JTAG boundary scan test path. On the network interface card the TDO pin is routed from the TDI pin.

	Used I/O pin description:	in out t/s	Input Output Tri-State
		s/t/s (activ pull-up	Sustained Iri-State e low Tri-State with external resistor on the motherboard)
		o/d	Open Drain
Target Transactions	If the network interface card DEVSEL# is asserted by the net	is the t twork in	target of a PCI bus operation, terface card with medium timing.
	If the network interface card is the operation is terminated with dis asserted) in the first data phase	he targe sconnec e.	t of a PCI bus burst operation, the at with data (TRDY# and STOP#

	If the network interface card is the target of a PCI bus operation in the re- set or initialization phase of the network interface card, it responds with a target retry (STOP# asserted TRDY# deasserted)
	On read operations all data lines AD[31:0] are driven independent from the C/BE[3:0]# lines.
	Write operations to reserved registers in the configuration space or con- trol register file are treated normally on the bus with data discarded. A read operation to a reserved register is serviced normal with data value of 0 returned.
Slave Configuration Read/Write	The PCI configuration space of the network interface card is readable and writable by an external PCI bus master via configuration read and write accesses.
	A configuration access to the network interface card is indicated by the appropriate command on the C/BE[3:0]# lines (0b1010 for read, 0b1011 for write), IDSEL asserted and A[1:0] set to 0b00 (Type 0 configuration cycle) during the address phase. In the data phase the byte enable signals on the C/BE[3:0]# lines indicate, which bytes of the transfer are valid.
	Accesses to the configuration space are allowed with 8-bit, 16-bit and 32-bit transfers.
	The register layout and the functions of the PCI configuration space reg- isters is described in chapter " Configuration Register File ".
Slave I/O Read/Write	The control register file of the network interface card can be mapped into the 32-bit I/O space enabled by En IO Mapping in the Our Register . Than, the base address of the control register file is determined by the contents of the Base Address Register (2nd) in the configuration space.
	An I/O access to the network interface card is indicated by the appropriate command on the C/BE[3:0]# lines (0b0010 for read, 0b0011 for write) and the I/O Address on AD[31:0] lines during the address phase. In the data phase the byte enable signals on the C/BE[3:0]# lines indicate, which bytes of the transfer are valid. The network interface card doesn't check for inconsistent AD[31:0] / C/BE[3:0]# combinations.
	The Control Registers have to be accessed with the appropriate data width (8-bit, 16-bit or 32-bit) as the register is defined.
Slave Memory Read/Write	The memory mapped I/O resources of the network interface card and, if selected with En Eprom in Our Register 1 and ROMEN in the Expansion Rom Base Address Register , the Expansion ROM (Flash EPROM) can be accessed via memory read or write cycles. The memory base address for the memory mapped I/O resources is determined by the contents of the Base Address Register (1st). The memory base address of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the contents of the Expansion ROM is determined by the content is determined by the content is determined by the c

	A memory access to the network interface card is indicated by the appropriate command on the C/BE[3:0]# lines (0b0110, 0b1100 or 0b1110 for read, 0b0111 or 0b1111 for write) and the memory address on AD[31:0] lines during the address phase. In the data phase the byte enable signals on the C/BE[3:0]# lines indicate, which bytes of the transfer are valid.
	Memory Read Line/Multiple are aliased to Memory Read, Memory Write and Invalidate is aliased to Memory Write by the target section of the net- work interface card.
	The control registers have to be accessed with the appropriate data width (8-bit, 16-bit or 32-bit) as the register is defined.
Bus Acquisition	With REQ# asserted the network interface card requests the PCI bus from the system arbiter and waits for GNT# asserted on the bus. When it detects GNT# asserted and the PCI bus in idle state it starts with master bus cycles under control of the Buffer Management Unit (BMU).
	REQ# is kept asserted until the begin of the second last data phase for burst operations.
	REQ# is kept asserted until the begin of the data phase for single cycles.
Bus Master DMA Transfers	The network interface card uses the full set of PCI memory transaction commands for Bus Master DMA Transfers. It always uses the appropriate command according to the amount of data to be transferred. That is:
	Memory Read/Write (Single/Burst) for misaligned data up to the next cache line boundary and incomplete cache lines.
	Memory Read
	Memory Read Multiple
	Memory Write and Invalidate for 1 and more complete cache lines.
Target Initiated Termination	If the network interface card while transferring data as bus master re-
	ceives a target retry , it deasserts REQ# for at least 2 PCICLK periods and repeats the transaction immediately afterwards.
	ceives a target retry , it deasserts REQ# for at least 2 PCICLK periods and repeats the transaction immediately afterwards. If the network interface card while transferring data as bus master re- ceives a target abort (STOP# asserted, DEVSEL# deasserted), it terminates this cycle with FRAME# deasserted and IRDY# deasserted one clock later and sets the RTABORT bit in the Config Status Register . If not masked, an interrupt is generated on the PCI bus with the IRQ sta- tus bits IRQ Master Error and IRQ Status set.
	ceives a target retry , it deasserts REQ# for at least 2 PCICLK periods and repeats the transaction immediately afterwards. If the network interface card while transferring data as bus master re- ceives a target abort (STOP# asserted, DEVSEL# deasserted), it terminates this cycle with FRAME# deasserted and IRDY# deasserted one clock later and sets the RTABORT bit in the Config Status Register . If not masked, an interrupt is generated on the PCI bus with the IRQ sta- tus bits IRQ Master Error and IRQ Status set. After a master or target abort condition, the busmaster state machine is forced in idle state until the RMABORT and the RTABORT bits in the Config Status Register are cleared.
Master Initiated Termination	 ceives a target retry, it deasserts REQ# for at least 2 PCICLK periods and repeats the transaction immediately afterwards. If the network interface card while transferring data as bus master receives a target abort (STOP# asserted, DEVSEL# deasserted), it terminates this cycle with FRAME# deasserted and IRDY# deasserted one clock later and sets the RTABORT bit in the Config Status Register. If not masked, an interrupt is generated on the PCI bus with the IRQ status bits IRQ Master Error and IRQ Status set. After a master or target abort condition, the busmaster state machine is forced in idle state until the RMABORT and the RTABORT bits in the Config Status Register are cleared. If the network interface card tries to access to a PCI target and there is no response (DEVSEL# remains deasserted) after the Devsel Timeout has expired the master must assume that the slave does not respond. The master terminates this cycle with FRAME# deasserted and IRDY# deasserted and IRDY# deasserted the master terminates this cycle with FRAME# deasserted and IRDY# deasserted and the master terminates this cycle with FRAME# deasserted and IRDY# deasserted and IRDY# deasserted the master must assume that the slave does not respond. The master terminates this cycle with FRAME# deasserted and IRDY# deasserted and IRDY#

I

	serted one clock later and sets the RMABORT bit in the Config Status Register . If not masked, an interrupt is generated on the PCI bus with the IRQ status bits IRQ Master and IRQ Status set.
	After a master or target abort condition, the busmaster state machine is forced in idle state until the RMABORT and the RTABORT bits in the Config Status Register are cleared.
	A normal Master transaction is terminated by the network interface card when the intended data has been transferred or when the Latency Timer has expired and the GNT# is deasserted.
	The commands Memory Write and Invalidate, Memory Read Line and Memory Read Multiple ignore the Latency Timer until a cacheline bound- ary is reached.
8.2 Gigabit Ethernet Interfaces	The initial realization of the network interface card adapter card offers two type of optical transceivers; short wavelength laser transceiver and long wavelength laser transceiver.
	Both transceivers are in an industry standard 1x9 pinout package.
8.2.1 Short Wavelength Laser Transceiver	 Duplex SC connectors fully compliant with IEEE 802.3z. Fully compliant with 1000BASE-SX. Supports 50 μm and 62,5 μm multimode fiber Laser class 1 eye safety compliant with 21 CFR(J) and EN60825-1 (+A11). 760 nm (min) to 860 nm (max) wavelength. -9.5 dBm (min) to -3 dBm (max) average launche power. -17 dBm receive sensitivity. 0 dBm (max) average receive power.
8.2.2 Long Wavelength Laser Transceiver	 Duplex SC connectors fully compliant with IEEE 802.3.z Full compliant with1000BASE-LX Supports 50μm and 62,5μm multimode fiber and 10 μm single mode fiber Laser class 1 eye safety compliant to 21 CFR(J) and EN60825-1 (+A11) 1270 nm (min) to 1355 nm (max) wavelength -11.5dBm (min. MMF) / -11.0 dBm (min. SMF) to -3 dBm (max) average launche power. -19 dBm receive sensitivity. -3 dBm (max) average receive power.

9.0 Technical Data The table below lists some important technical data describing the "**SK-NET GENESIS <x>**" network interface card.

Bus Interface	64 bit - 66 MHz PCI Local Bus interface achieving a max. transfer rate of 528MByte/s Can also be operated in 32 bit / 33 MHz slots and in combinations e.g. 64 bit / 33 MHz slots. Burst capable bus master Universal I/O (3.3 and 5V) Power Supply 5 V PCI Hot-Plug
Network Interface	Compatible with IEEE 802.3z VLAN -capable Full- /halfduplex operation - auto-negotiation Option: fault tolerant Dual Mac Version
LAN Controller	XMACII from XaQti Corporation
RAM	512 KBytes / 1 MByte / 2 MBytes synchronous SRAMs
FLASH Memory	128 KBytes (Expansion Boot ROM)
EEPROM	512 Bytes for PCI VPD Data
Shared Memory Mapping	16KBytes, including all programmable resources
I/O Address Mapping	256 Bytes Block offers access to the 16 KBytes I/O space via Register Address Port (RAP)
Interrupts	INTA# (on-board interrupt moderation)
Timer	Programmable timer 18.825 nsec resolution
Interrupt Moderation Timer	Programmable timer 18.825 nsec resolution
TCP checksum	On-board generation/checking
Parity	Multiple parity checking/generation points on data path
Power Management	Advanced Power Management supporting D0 and D3 modes
Tał	ole 19 [.] Technical Data

Power Dissipation	single MAC: @5V max. 2.6 A (1.6 A typical) dual MAC: @5V max. 3.4 A (2.5 A typical)
Sensors	Temperature sensor and voltage sensor at an I ² C bus
Dimensions	Dimensions are those of a PCI full length add-in board. Including bracket dimensions and retainer: Dual MAC: 12.7 cm \times 35.2 cm 5.0 inch \times 13.7 inch Single MAC: 12.7 cm \times 18.9cm 5.0 inch \times 7.4 inch
MTBF	> 500,000 h

Table 19: Technical Data

Operation	10° C — 40° C dry bulb temperature 10 % - 80 % relative humidity max. 27° C wet bulb temperature
Power Off	10° C — 52° C dry bulb temperature 10 % - 80 % relative humidity max. 27° C wet bulb temperature
Storage	1° C — 60° C dry bulb temperature 10 % - 80 % relative humidity max. 29° C wet bulb temperature
Shipment	-20° C — 60° C dry bulb temperature 10 % - 80 % relative humidity max. 29° C wet bulb temperature
Altitude 0 - 3000 feet	10° C — 35° air temperature
Altitude 3000 - 5000 feet	10° C — 32° air temperature

Table 20: Environment Conditions

9.1 Standards Compliance For functionality "**SK-NET GENESIS <x>**" complies with the international/industry standards — e.g. the IEEE 802.3 standards - ISO standards, and the PCI Local Bus specifications series. Detailed references are listed within this manual or in the corresponding manuals of e.g. the chipset manufacturers.

Additionally, the "**SK-NET GENESIS** <**x>**" network interface card is designed to meet the following standards and specifications for safety, Electro-Magnetic Compatibility (EMC), ...

Safety
EN60950 - IEC 60950 - VDE 0805
UL 1950
CSA C22.2
CB Certification
EMC:
EN 55022
IEC - CISPR-22 Class B
(for the fiber versions)
EN 50082-1
EN61000-4-2
EN61000-4-3
EN61000-4-4
EN61000-4-5
EN61000-4-6
EN61000-4-8
EN61000-4-11
FCC Class B

Table 21: EMC, Safety - Standards Compliance

Note: The ultimate reference for EMC and safety compliance is the CE Declaration of Conformity.

Technical Data

Appendix A PCI Configuration Register File and Vital Product Data

10.0 PCI Configuration Register File

Providing configuration information and supporting access to configuration information is mandatory for any PCI adapter. These data is available in the PCI configuration register file. The Vital Product Data (VPD) implemented in the "**SK-NET GENESIS <x>**" are an optional PCI extension attached to the configuration register file. The implementation follows an Engineering Change Request (ECR) to the PCI specification version 2.1. Together with PCI Power Management information Vital Product Data are the PCI "New Capabilities" implemented on this adapter.

The PCI configuration register file holds information about the PCI adapter card for seamless integration into the PCI bus system. The file holds data to identify the PCI adapter, about the I/O and memory requirements and about other system resources needed, e.g. interrupt lines, maximum power consumption, etc.

For read / write accesses the configuration space is physically located in the ASIC. Its default /start values are loaded from the Flash EPROM by the Flash EPROM Loader during startup. There's one exception: the Vital Product Data VPD are located in an I²C EEPROM as required by the PCI ECR. They are read via an Register Address Port (RAP) in the PCI configuration register file.

The configuration registers are set to their default values by **RST#**. Reloading out of the Flash EPROM is initiated with the de-assertion of **RST#** (see Flash EPROM Loader in xxxx).

The **"SK-NET GENESIS <x>"** supports the 256-byte configuration space as defined by the PCI specification revision 2.1.

10.1 Configuration Data Access

The configuration space of a PCI adapter is usually accessed using BIOS routines as described in the PCI BIOS specification. The configuration space of e.g. a network interface card is addressed by selecting the ID-SEL (detected by reading the unique DeviceID) + an address in the 256 bytes configuration space address range. This translates to Configuration Read / Configuration Write cycles executed on the PCI bus hardware level.

The "**SK-NET GENESIS <x>**" is responding to type 0 configuration accesses, i.e. AD<1..0> = "00", IDSEL# asserted.

The configuration register file can be accessed with 8-bit, 16-bit or 32-bit transfers. On read transactions all data is driven as defined for full 32-bit accesses independent of BE<3:0>#. All multi-byte numeric fields follow **little-endian** order, if accessed by PCI configuration cycles.

Write operations to reserved or not implemented registers are completed normally on the bus and the data discarded. If the configuration space is targeted for a burst operation, it responds with a disconnect with the first data transfer.

Configuration transactions are not aborted (Target Initiated Termination). Read operations to reserved or not implemented registers are completed normally on the bus and a data value of 0 is returned.

The configuration space of the "**SK-NET GENESIS** <**x**>" can be accessed also via I/O or memory accesses. For this the configuration register file is mapped into the control register file. This mapping is for test and diagnosis purposes only - it is not recommended for access by driver software.

Each register or portion of a register, which has no fixed value, may be written in test mode (**EN Config Write** is set) with accesses to the **Control Register File** (even, if it is not writeable in the configuration space).

10.2 Overview/Address Map The table below depicts the layout of the configuration space. Besides the mandatory configuration information in the configuration space header, the "SK-NET GENESIS <x>" provides access to two 32-bit registers called "Our_Register 1" and "Our_Register 2" in the device dependent region of the NIC's configuration space. These registers contain information that is important for initialization and not for the "run-time" driver tasks. The following table shows the address map of the configuration space in a 32-bit (maximum access width for configuration data) register representation. PM is an abbreviation for Power Management.

Header Portion					
Devie	ce ID	Vend	lor ID	0x00	
Sta	tus	Com	mand	0x04	
	Class Code		Revision ID	0x08	
BIST	Header Type	Latency Timer	Cache Line Size	0x0c	
	Base Add	ress (1st)		0x10	
	Base Add	ress (2nd)		0x14	
	Rese	erved		0x18	
	0x1c				
	0x20				
	0x24				
	0x28				
Subsys	0x2c				
	Expansion Ron	n Base Address		0x30	
	Reserved		Capabilities Ptr	0x34	
	Rese	erved		0x38	
Max_Lat	Min_Gnt	Interrupt Pin	Interrupt Line	0x3c	
	Devi	ce Dependent Regi	on		
	Our_Re	gister 1		0x40	
	Our_Re	gister 2		0x44	
РМ Сар	abilities	Next Item Ptr	PM Cap_ID	0x48	
PM Data Reg	Reserved	PM Cont	rol/Status	0x4c	
VPD Addres	ss Register	Next Item Ptr	VPD Cap_ID	0x50	
	VPD Data	Register		0x54	
	Rese	erved		0x58 0xfc	

10.3 Registers

The following tables show the registers in detail on a bit level, list the default values and mentions peculiarities. As stated above configuration space registers are accessed with 8-bit, 16-bit, or 32-bit accesses.

10.3.1 Vendor ID Register The Vendor ID register comprises 16 bits at address 0x01, 0x00

Bit	Name	Description	Write	Read	Reset value
	Vendor ID Register				
150		Identifies SysKonnect as manufacturer of the network interface card.	ne	0x1148	0x1148

The PCI SIG has allocated 0x1148 to SysKonnect as a unique identifier. This value can be reloaded out of the Flash EPROM.

10.3.2 Device ID Register The Device ID register comprises 16 bits at address 0x03,0x02 that uniquely identifies the network interface card within SysKonnect's product line.

It is reloadable out of the Flash EPROM.

Bit	Name	Description	Write	Read	Reset value
	Device ID Register				
150	Identifies the network interface card within SysKonnect's product line.		ne	0x4300	0x4300

10.3.3 Subsystem Vendor ID
RegisterThe Subsystem Vendor ID register comprises 16 bits at address 0x2D,
0x2C. It may be used for customizing OEM versions. The unique Vendor
ID of the OEM allocated by the PCI SIG may be provided here.

It is reloadable out of the Flash EPROM.

Bit	Name	Description	Write	Read	Reset value
	Subsystem Vendor ID Register				
150		Identifies the subsystem vendor. Must be a valid non-zero value.	ne	0x1148	0x1148

10.3.4 Subsystem ID RegisterThe Subsystem ID register comprises 16 bits at address 0x2F, 0x2E. It
may be used for customizing OEM versions.
It is reloadable out of the Flash EPROM.

Bit	Name	Description	Write	Read	Reset value
150		Identifies the subsystem. Must be a valid non-zero value.	ne	0x4300	0x4300

For SysKonnect NICs (not necessarily for OEM versions) the subsytem ID register is foreseen to distinguish various manufacturing options.

10.3.5 Command RegisterThe command register comprises 16 bits at addresses 0x05,0x04. It is used to control the overall functionality of the network interface card. It controls the network interface card's ability to generate and response to PCI bus cycles.

To disconnect the network interface card logically from all PCI bus cycles except configuration cycles, a value of ZERO should be written to this register.

All bits are reloadable out of the Flash EPROM, except for fixed value bits.

Bit	Name	Description	Write	Read	Reset value
	Sul	Subsystem Vendor ID Register			
1510	Reserved				
9	FBTEN	Fast Back-to-Back enable. If =1, fast back-to-back transactions to differ- ent agents are allowed (network interface card as master is running fast back-to-back write cycles) If =0, fast back-to-back transactions are only allowed to the same agent (network interface card as master is not running fast back-to-back write cycles)	yes	aw	0
8	SERREN	SERR# enable, controls the assertion of SERR# pin. If =1, SERR# is enabled If =0, SERR# is disabled	yes	aw	0

Bit	Name	Description	Write	Read	Reset value
7	ADSTEP	Address/data stepping. Fixed value. The " SK-NET GENESIS <x></x> " does not use address/data stepping.	ne	0	
6	PERREN	Parity Report Response Enable. If =1, Parity error reporting is enabled	yes	aw	0
5	VGASNOOP	VGA palette snoop. Fixed value.	ne	0	
4	MWIEN	Memory Write and Invalidate Cycle enable If = 1, Memory Write and Invalidate Cycle is enabled, if = 0, Memory Write must be used instead.	yes	aw	0
3	SCYCEN	Special Cycle enable. Fixed value. " SK-NET GENESIS <x></x> " ignores all special Cycle operations.	ne	0	
2	BMEN	Bus Master enable If = 1, bus master accesses are enabled, if = 0, bus master accesses are disabled.	yes	aw	0
1	MEMEN	Memory Space access enable If = 1, memory accesses are responded, if = 0, memory accesses are not responded.	yes	aw	0
0	IOEN	I/O Space access enable If = 1, I/O accesses are responded, if = 0, I/O accesses are not responded.	yes	aw	0

10.3.6 Status Register

The Status Register comprises 16 bits at addresses 0x07, 0x06. It contains status information for the PCI bus related events.

Reads to this register behave normally, writes are slightly different in that bits can be reset, but not set. A bit is reset whenever the register is written, and the data in the corresponding bit location is a ONE. This behavior is marked with ('sh' = special handling) in the table below.

All bits are reloadable out of the Flash EPROM, except for fixed value bits.

Bit	Name	Description	Write	Read	Reset value
		Status Register			
15	PERR	Parity Error. Is set whenever a parity error is detected (data or address), even if parity error han- dling is disabled (PERREN).	sh	value	0
14	SERR	Signaled SERR# . Is set whenever an address parity error is de- tected and both, SERREN and PERREN are enabled.	sh	value	0
13	RMABORT	Received Master Abort. Is set when a master transaction is terminat- ed with a master abort sequence.	sh	value	0
12	RTABORT	Received Target Abort. Is set when a network interface card's mas- ter transaction is terminated with a Target Abort sequence.	sh	value	0
11	Reserved				
109	DEVSEL	DEVSEL# Timing. Fixed value = 01b (medium), DEVSEL# is asserted two CLK periods after FRAME# is asserted.	ne	01b	
8	DATAPERR	Data Parity Error detected. Set, if a data parity error is detected running master cycles and PERREN is set.	sh	value	0
7	FB2BCAP	Fast Back-to-Back Capable Fixed value = 1, target is capable of accept- ing fast back-to-back transactions.	ne	1	
6	UDF	UDF supported	ne	0	0
5	66MHZCAP	66 MHz PCI bus clock capable (see Section 66 MHz Operation xxx)	ne	1	1
4	NEWCAP	New capabilities bit = 1 new capabilities list implemented	ne	1	1
30	Reserved				

10.3.7 Revision ID Register The Revision ID Register comprises 8-bit at address 0x08. It is reloadable out of the Flash EPROM

Bit	Name	Description	Write	Read	Reset value
	Revision ID Register				
70		Specifies the network interface card revision number/Rev. 1.0.	ne	0x10	0x10

10.3.8 Class Code Register The class code register comprises 24 bits at addresses 0x0B, 0x0A, 0x09. This register is used to identify the generic function of the network interface card. The register is broken in three byte-size fields. One of these fields, the Subclass Register, is reloadable out of the Flash EPROM.

Bit	Name	Description	Write	Read	Reset value
	Programming Interface Register, Lower Byte				
70		Specifies the programming interface. Fixed Value = 0	ne	0	0

Bit	Name	Description	Write	Read	Reset value
	Sub-Class Register, Middle Byte				
70		Identifies the network controller as an "Ether- net Controller".	ne	0x00	0x00

Bit	Name	Description	Write	Read	Reset value
	Base-Class Register, Upper Byte				
70		Broadly classifies the function of this PCI de- vice as network controller. Fixed Value = 0x02	ne	0x02	0x02

10.3.9 Cache Line Register The Cache Lin

The Cache Line Register comprises 8 bits at address 0x0C. The register is reloadable out of the Flash EPROM (not recommended).

Bit	Name	Description	Write	Read	Reset value
		Cache Line Size Register			
		Specifies the system cache line in units of 32-bit words.	yes	aw	0
		The " SK-NET GENESIS <x></x> " supports cache line sizes of 2, 4, 8, 16, 32, 64 or 128 32-bit words.			
70		The cache line size is restricted to be a pow- er of 2. The most significant 1 in this register is used to set the cache line size. Any other 1's are ignored.			
		A PCI device operated as bus master uses this field as criteria for starting of transfers from/to complete cache lines with the Mem- ory Write and Invalidate, Read Line and Read Multiple commands and to know when to disconnect burst accesses at cache line boundaries.			

10.3.10 Latency Timer Register

The Latency Timer Register comprises 8 bits at address 0x0D. It is reloadable out of the Flash EPROM (not recommended).

Bit	Name	Description	Write	Read	Reset value
		Latency Timer Register			
		Specifies the maximum time the network in- terface card can continue with bus master transfers after the system arbiter has re- moved GNT# . The time is specified in units of PCI bus clocks.	yes	aw	0
70		The working copy of the timer will start counting down when the network interface card asserts FRAME# for the first time dur- ing a bus mastership period. The timer will freeze at ZERO. When the timer is ZERO and GNT# is de-asserted by the system ar- biter, the network interface card will finish the current data phase and then immediately re- lease the bus.			

10.3.11 Header Type Register The header type register comprises 8 bits at address 0x0E. This regsiter describes the format of the PCI Configuration space locations 0x10 to 0x3c and states whether the PCI device is a single function or multi function device.

Bit	Name	Description	Write	Read	Reset value
	Base-Class Register				
7		Single function/multi function device.	ne	0	
		Fixed value = 0, the network interface card is a single function device.			
60		PCI configuration space layout.	ne	0	
		Fixed value = 0, the layout of the PCI configuration space locations $0x10$ to $0x3c$ is as shown in the table above.			

10.3.12	Built-in Self Test	The optional Built-in Self Test Register comprises 8 bits at address 0x0F.
	Register	

Bit	Name	Description	Write	Read	Reset value
	Built-in Self Test Register				
70		BIST is not supported. Fixed value = 0.	ne	0	

10.3.13 Interrupt Line Register The Interrupt Line Register comprises 8 bits at address 0x3C.

Bit	Name	Description	Write	Read	Reset value
		Interrupt Line Register			
70		The Interrupt Line Register is used to com- municate interrupt line routing information. POST software writes the routing informa- tion into this register as it initializes and configures the system.	yes	aw	0
		The value in this register tells which input of the system interrupt controller(s) the devic- es's interrupt pin is connected to. Device drivers and operating systems can use this information to determine priority and vector information.			
		The interrupt line register is not modified by the network interface card. It has no effect on the operation of the device.			

10.3.14 Interrupt Pin Register The Interrupt Pin register comprises 8 bits at address 0x3D.

Bit	Name	Description	Write	Read	Reset value
		Interrupt Pin Register			
70		Fixed value, the network interface card is using the interrupt pin INTA# . Fixed value.	ne	0x01	

10.3.15 Min_Gnt Register The Min_GNT register comprises 8 bits at address 0x3E. It is reloadable out of the Flash EPROM.

Bit	Name	Description	Write	Read	Reset value
		Min_Gnt Register			
70		This read-only register specifies the network interface card's desired settings for value of the Latency Timer.	ne	0x08	0x08
		The value specifies in units of 1/4 microsec- onds the burst period needed by the network interface card assuming a clock rate of 33MHz.			
		(64 x 64-bit words x 30ns) = 1.92μs 1.92us/0.25μs = 8			

10.3.16	Max_Lat Register	The Max_Lat register comprises 8 bits at address 0x3F. It is reloadable
		out of the Flash EPROM.

Bit	Name	Description	Write	Read	Reset value
	Max_Lat Register				
70		This read-only register specifies the's de- sired settings for Latency Timer value.	ne	0x08	0x08
		The value specifies in units of 1/4 microsec- onds how often the network interface card needs to gain access to the PCI bus assum- ing a clock rate of 33MHz.			
		(64 x 64-bit words x 8)/250MB/s = 2μs 2us/0.25μs = 8			
10.3.17 Base Address Register (1st)

The 1st Base Address Register is a 32-bit register starting at address 0x10. The register determines the location of the network interface card in memory space, if memory mapping is used.

The base address register is reloadable out of the Flash EPROM

Bit	Name	Description	Write	Read	Reset value
	Base A	ddress Register (1st)			
3114	MEMBASE	Memory base address most significant 18 bits.	yes	aw	0
134	MEMSIZE	Memory size requirements. Fixed value, indicates memory space requirement of 16384 bytes.	ne	0	
3	PREFEN	Prefetchable. Fixed value, indicates that prefetching is not allowed. (Memory Write Byte Merging is not tolerable for this PCI device.)	ne	0	
21	Memory Type	Memory type. Indicates, that base register is 32 bits wide, and mapping can be done anywhere in the 32-bit memory space. Memory Type may be reloaded from the Flash EPROM (further memory types).	ne	0	0
0	MEMSPACE	Memory space indicator. Fixed value, indicates, that this Base Address Register describes a memory base address.	ne	0	

10.3.18Base Address RegisterThe
(2nd)0x1

The 2nd Base Address Register is a 32 bit register starting at address 0x14. The register determines the location of the network interface card in all of I/O space.

The register is reloadable out of the Flash EPROM. If **EN IO Mapping** is disabled, this location is treated like **reserved** locations.

Bit	Name	Description	Write	Read	Reset value
	Ba	ase Address Register (2nd)			
318	IOBASE	I/O base address most significant 24 bits.	yes	aw	0
72	IOSIZE	I/O size requirements. Fixed value. Reading back a value of "0" in bits 72 indi- cates I/O space requirement of 256 bytes.	ne	0	
1	Reserved				
0	IOSPACE	I/O space indicator. Indicating that this Base Address Register describes an I/O base address.	ne	1	1

10.3.19 Expansion Rom Base Address Register

The Expansion Rom Base Address register is a 32-bit register starting at address 0x30 that determines the base address and size information of the Expansion Rom. The Expansion ROM Base Address register is reloadable out of the Flash EPROM.

If EN EPROM is disabled, this location is treated like reserved locations.

Bit	Name	Description	Write	Read	Reset value
Expansion Rom Base Address Register					
3117	ROMbase	ROM base address significant 15 bits.	yes	aw	0
1614	ROMbase/size	Treated as ROMBASE or ROMSIZE depending on settings of Pagesize .	yes ne	aw 0	0

Bit	Name	Description	Write	Read	Reset value
1311	ROMsize	ROM size requirements. Fixed value. Reading back a value of "0" indicates mem- ory space requirement of 16k bytes or higher.	ne	0	
101	Reserved				
0	ROMEN	Address decode enable. Read/write accessible. If ROMEN = 0, the devices Expansion ROM address space is disabled. If ROMEN = 1 and MEMEN =1 (Command Register), the devices Expansion ROM address space is enabled.	yes	aw	0

10.3.20 New Capabilities Pointer
 The New Capabilities Pointer Register is a 8-bit register at address 0x34 that points to the New Capabilities List.

 This pointer register is reloadable out of the Elash EPROM

This pointer register is reloadable out of the Flash EFROM.

Bit	Name	Description	Write	Read	Reset value
New Capabilities Pointer Register					
70	New Capabilities Pointer	Points to the New Capabilities list	ne	0x48	0x48

10.4	Device Specific Region	Our registers are the first two used locations in the "device specific region" of the 256-byte configuration space. Because there is no reliable procedure for setting these registers at power-on, the default values are chosen for the most common environments.
		Modifications may be handled as manufacturing option, driver options, dedicated configuration software (SK, reprogramming the Flash EPROM) or the UDF mechanism, where available ('User Definable Features' using a PCI Configuration File (PCF) as introduced, but not required by PCI Specification/Rev. 2.1).
		This may be used as manufacturing option, if it seems practically support- ing the network interface card with a PCI Configuration File (PCF) for configuring Our Register 1 and 2 (PCI Specification/Rev. 2.1).
10.4.1	Our Register 1 , 2	Our Register 1 is a 32-bit register at address 0x40. Our Register 2 is a 32-bit register at address 0x44. Both are reloadable out of the Flash EPROM.
		Most of the switches in Our Register 1 and 2 are not intended for use at run time. Manufactured adapters may come up with different settings than defined as Reset value (if reloaded out of the Flash EPROM).
		The fields marked in column write with "ne" are writeable only in test- mode. The fields marked with "yes" are writeable in configuration space and with normal accesses to the Control Register File .

Bit	Name	Description	Write	Read	Reset value
		Our Register 1			
3126	Reserved				
25	VIO	Voltage for PCI I/O buffers. 0 = 3.3V 1 = 5.0V	ne	value	
24	EN Boot	Boot enable, for software purposes only if EN_BOOT = 0, boot with expansion ROM code if EN Boot = 1, don't boot with expansion ROM code.	yes	aw	0
23	EN IO Mapping	Controls mapping of the Control Register File to the I/O space (manufacturing option). If disabled (EN IO Mapping = 0), any address decoding for I/O accesses is dis- abled (see also Base Address Register (2nd)).		1	1
22	EN EPROM	Controls mapping of the Flash EPROM to the memory space. If disabled (EN EPROM = 0), any address decoding for memory accesses is disabled (see also ROM Base Address Register).	ne	1	1

Bit	Name	Description	Write	Read	Reset value
2120	Pagesize<10>	Pagesize/Flash EPROM Defines the size, which is mapped to the system (see ROMsize/ROMbase). 3 = 128k 2 = 64k 1 = 32k 0 = 16k	ne	3	3
19	Reserved				
1816	Page Reg<20>	Page Register Selects the page of the Flash EPROM space, which is mapped to the system, if Pagesize is lower than 128k. 0 = page 0, 1 = page 1 7 = page 7 May be undefined on booting without hardware reset.	yes	aw	0
15	No Tar	No turnaround cycle on external RAMs 0 = default: turnaround cycle	yes	aw	0
14	Force_BE	Assert all BE<70># on Master-Reads	yes	aw	0
13	Dis MRL	Disable command Memory Read Line	yes	aw	0
12	Dis MRM	Disable command Memory Read Multiple	yes	aw	0
11	Dis MWI	Disable command Memory Write and Invalidate	yes	aw	0
10	Disconnect at CLS	Disconnect at Cache Line Size Boundary (command Memory Write And Invalidate)	yes	aw	0
9	Burst Disable	Burst disable. Disables bursting on master transfers as a patch for systems not supporting burst transfers.	yes	aw	0
8	Dis PCI Clock	Disable driving the PCI clock onto the board 1= disable 0= enable (Default MUST be "enable" guaranteeing clock at POWER ON RESET)	ne	value	0
74	Skew/PCI<30>	Skew Control, PCI clock on board	ne	value	to be deter- mined by simula- tion

Bit	Name	Description	Write	Read	Reset value
30	Skew/Host<30>	Skew Control, internal host clock tree	ne	value	to be deter- mined by simula- tion
	Our	Register 2 (0x44)			
3124	VPD Write Thr	Defines the first address of the writeable VPD area in steps of 128 Bytes. Default value is 128 Bytes = address 0x80. For manufacturing programming of the VPD EEPROM it must be set to 0 in testmode.	ne	0x01	0x01
2317	VPD Devsel	Defines the Device Select Byte for the serial EEPROM used for VPD storage. Default value is 0b1010000.	ne	0x50	0x50
1614	VPD ROM Size	Defines the size of the assembled serial EEPROM in Bytes. 0 = 256 Bytes 1 = 512 Bytes 2 = 1024 Bytes 3 = 2048 Bytes 4 = 4096 Bytes 5 = 8192 Bytes 6 = 16384 Bytes 7 = 32768 Bytes Default value is 256 Bytes. If any other size is used, this field must be reprogrammed out of the Flash EPROM.	ne	0x00	0x00
1312	Reserved				
118	Patch Dir<30>	Defines the type of the pins External Patchs. 1 = output 0 = input	yes	aw	0
74	Ext Patchs<30>	These bits are routed to the ASIC's pins for future external configuration options.	yes	aw	0
3	En Dummy Read	Enable dummy read for put descriptor oper- ations: If En Dummy Read = 1, a dummy read cycle is inserted before writing Receive/Transmit Buffer Control (OWN), if there was a descriptor write before	yes	aw	1

Bit	Name	Description	Write	Read	Reset value
2	Rev_Bytes_Desc	Revert byte order in any descriptor's words. Changes byte ordering for descriptor words for use in big endian systems f Rev_Bytes_Desc = 0, AD<3124 AD<2316> / AD<158> / AD<70> stored in Bit3124 / Bit2316 / Bit15 Bit70 of the Descriptor Registers. f Rev_Bytes_Desc = 1, AD<3124 AD<2316> / AD<158> / AD<70> stored in Bit70 / Bit158 / Bit2316 Bit3124 of the descriptor registers.	s 32-bit yes or 64-bit s. 4> / > are 58 / 4> / > are 5/	aw	0
1	Reserved				
0	UseData64	Controls usage of the 64-bit data bu sion in Bus master mode: f UseData64 =0, the REQ64# line is asserted by the network interface ca f UseData64 =1, the REQ64# line is asserted by the network interface ca busmaster transfers, except for all de operations.	Is exten-yes s never ard. s Ird for all escriptor	aw	1
	Skew B	The Skew/Host<30> and the rect skew problems at crit Skew/Host<30> adds a delay nsec/bit. The Skew/Host<30> able in the adapter's clock distr is not used on the current vo Skew/Host<30> has no effect Skew/PCI<30> controlls a o XMACII Gigabit Ethernet Contr Skew/PCI<30> is design deperysis for the " SK-NET GENESIS Skew bits are critical for cor card. They must be defined b changed.	Skew/PCI<30> w ical points in the of 0.5 nsec/bit, Ske were foreseen to sl ribution tree. Howev ersion of the "SK- clock delay betwe roller. The setting of endent and has bee S <x>".</x>	vere introdu e clock dis ew/PCI<30 hift the PCI er, since the NET GEN en the ASI Skew/Host n found by t the networ ners and m	iced to cor- stribution.)> adds 0.2 clock avail- e PCI clock ESIS <x>" IC and the t<30> and timing anal- k interface hust not be</x>
10.4.2	2 Power Manageme Capability ID Regist	 The Power Management Capal Power Management is the first The New Capabilites pointer at for the first entry in the New Ca dress 0x49 holds the address of For the "SK-NET GENESIS <x< li=""> Capability ID. The attached New GENESIS <x>" indicating the e</x> The New Capabilities linked list </x<>	bilty ID comprises 8 "New Capability" in t address 0x34 cont apabilities list. The N of the next entry in t >" this is the Vital P xt Item Pointer holds and of the New Cap st uses New Capab	bits at add the New Ca ains the ad lext Item Po the New Ca product Data s a 0x0 in th abilities list. ility IDs for	Iress 0x48 . apability list. Idress 0x48 binter at ad- pability list. a VPD New be " SK-NET the unique

identification of the capability. New Capability IDs are assigned by the PCI SIG. The structure of New Capability information is also specified by the PCI SIG. E.g. Power Management has a New Capability ID of 0x01. The structure of the related information is specified in the PCI Power Management Interface Specification. The ID for VPD is 0x03. The structure of New Capability information is defined in the ECR to PCI specification 2.1 and will probably be integrated in later specification versions.

10.4.3 Power Management Capability ID Register The Power Management New Capability ID comprises 8 bit at 0x48. It is reloadable out of the Flash EPROM.

Bit	Name	Description	Write	Read	Reset value
	Power Ma				
70	Cap_ID	Power Management Capabilities ID	ne	0x01	0x01

10.4.4 Power Management Next
Item PointerThe Power Management Next Item Pointer comprises 8 bits at address
0x49. It is reloadable out of the Flash EPROM.

Bit	Name Description		Write	Read	Reset value
	Power Management Next Item Pointer				
70	Next Item Ptr Pointer to the next item in the capabilities list		ne	0x50	0x50

10.4.5 Power Management Capabilities Register dresses 0x4B, 0x4A. It is reloadable out of the Flash EPROM.

Bit	Name	Description	Write	Read	Reset value
	Power M				
1511	PME_SupportPower Management Event Support: Specifies in which power state the Signal PME# may be asserted. The "SK-NET GENESIS <x>" doesn't support PME#.</x>		ne	0x00	0x00
10	D2_Support	D2 Support: The " SK-NET GENESIS <x></x> " doesn't support D2 Power Management State.	ne	0	0
9	D1_Support	D1 Support: The " SK-NET GENESIS <x></x> " doesn't support D1 Power Management State.	ne	0	0

Bit	Name	Description	Write	Read	Reset value
86	Reserved	Reserved, but reloadable out of the Flash EPROM for changes in the PCI Specification.	ne	0x00	0x00
5	DSI	Device specific initialization: The " SK-NET GENESIS <x></x> " requires device specific initialization	ne	1	1
4	APS	Auxiliary Power Source: The " SK-NET GEN-ESIS <x></x> " requires no auxiliary power source, as it doesn't support PME#	ne	0	0
3	PME Clock	Power Management Event Clock: The " SK-NET GENESIS <x></x> " doesn't need PCI clock, as it doesn't support PME#	ne	0	0
2:0	Version	The " SK-NET GENESIS <x></x> " complies with Revision 1.0 of the PCI Power Management Interface Specification	ne	0x01	0x01

10.4.6 Power Management Control/Status Register The Power Management Control/Status register comprises 16 bit at addresses 0x4C. It is reloadable out of the Flash EPROM.

Bit	Name	Description	Write	Read	Reset value
	Power Ma	nagement Control/Status Register			
15	PME_Status	The " SK-NET GENESIS <x></x> " doesn't sup- port PME#	ne	0	0
1413	Data_Scale	Indicates the scaling factor to be used when interpreting the value of the Data Register. The read value depends on the setting of the Data_Select field.	ne	value	0b01
129	Data_Select	This 4-bit field is used to select which data is to be reported through the Data Register and Data_Scale field.	yes	aw	0

Bit	t	Name		Description	Write	Read	Reset value
8		PME_En	The por	e " SK-NET GENESIS <x></x> " doesn't sup- rt PME# generation from D3 cold.	ne	0	0
72	2	Reserved					
1:0)	Power State	Co the uns ope but cha	introls the Power Management State of e network interface card. If written with an supported value $(1 = D1, 2 = D2)$, the write eration is completed normally on the bus, t the write data is discarded and no state ange occurs.	yes, only values 0 and 3	aw	0
				The 16 2-bit Data_Scale fields and the that can be selected by the Data_Selec Flash EPROM by writing complete 32- Data_Scale , Data) to the Power Manage Register .	e 16 8-bi t field, are bit wide s ement Co	t Data regis e reloadable sets of (Da ntrol/Statu	ster values, e out of the ta_Select, s and Data
CET -			F	Warning: To modify the contents of ar Data_Select field MUST always be Data_Select value in the same 32-bit a	y Data_S e writter ccess!	cale or Da with th	ta field the e desired
10.4.7 Power Management Data Register		ata ter	The Power Management Data register construction of the Flash EPROM	omprises :	8 bits at ado	dress 0x4F.	
Bit Name			Description	Write	Read	Reset	

	ы	Name		Description	write	Redu	value	
		Powe	er Ma	anagement Data Register				
	70	Data	Thi sta Da is Da	This read-only register is used to report the state dependent data requested by the Data_Select field. The value of this register s scaled by the value reported by the Data_Scale field.		value	0x19	
1	10.4.8 Power Management Data Table		ita ble	Data and Data_Scale are hidden registe Management Registers.	er accessi	ble through	the Power	
				Data_Scale is writeable by the Flush EPROM loader by writing to Power Management Control/Status Register.				
				Data is writeable by the Flush EPROM nagement Data Register.	loader by	writing to	Power Ma-	
				Data and Data_Scale are reloaded fron matching the manufacturing option. See	n the Flas "Flash EF	h EPROM PROM Reloa	with values ads".	
			The two version of the " SK-NET GENES consumption. A separate Power manage signed to each version separately.	IS ≺x> " m gement D	ay differ in ata Table n	their power rust be as-		
				1				

Value in Data_Select	Meaning	Data (8 bit) Reset Value	Data_Scale (2 bit) Reset Value	[Watt]
0	D0 Power consumed	0x90	0b01	14.4
1	D1 Power consumed	0	0	na
2	D2 Power consumed	0	0	na
3	D3 Power consumed	0x3D	0b01	6.1
4	D0 Power dissipated	0x90	0b01	14.4
5	D1 Power dissipated	0	0	na
6	D2 Power dissipated	0	0	na
7	D3 Power dissipated	0x3D	0b01	6.1
815	For multifunction devices only	0	0	0

Single MAC version:

Dual MAC version:

Value in Data_Select	Meaning	Data (8 bit) Reset Value	Data_Scale (2 bit) Reset Value	[Watt]
0	D0 Power consumed	0xBC	0b01	18.8
1	D1 Power consumed	0	0	na
2	D2 Power consumed	0	0	na
3	D3 Power consumed	0x5F	0b01	9.5
4	D0 Power dissipated	0xBC	0b01	18.8
5	D1 Power dissipated	0	0	na
6	D2 Power dissipated	0	0	na
7	7 D3 Power dissipated 0x5F 0b0		0b01	9.5
815	For multifunction devices only	0	0	0

10.4.9 VPD Capability ID Register Register The VPD Capability ID register comprises 8 bits at address 0x50. The register is reloadable out of the Flash EPROM. It contains the New Capability ID for Vital Product Data (VPD) as specified by the PCI SIG.

Bit	Name	Description	Write	Read	Reset value
	v	VPD Capability ID Register			
70	Cap_ID	Cap_ID VPD Capabilities ID		0x03	0x03

10.4.10 VPD Next Item Pointer

The VPD Next Iterm Pointer comprises 8 bits at address 0x51. It is reloadable out of the Flash EPROM.

Bit	Name Description		Write	Read	Reset value
		VPD Next Item Pointer			
70	Next Item Ptr Pointer to the next item in the capabilities list			0x00	0x00

10.4.11 VPD Address RegisterThe VPD Address Register comprises 16 bits at address 0x52. It is reloadable out of the Flash EPROM. The VPD address register is also writeable in I/O space.The VPD Address & Data Registers are controlling an I²C interface, which is running a 100 kHz protocol to an external I²C EEPROM.The interface signals are routed through the pins VPD_CLOCK and VPD DATA.

The I²C clock and data port pins are pulled high by a pull up resistor to VCC of the I²C device.

Bit	Name	Write	Read	Reset value	
		Starts the VPD data transfers, determines its direction and signals its completion by being toggled by H/W.	exec	value	0
15	Flag	If written 1, a VPD write is started, will be set to 0 after completion.			
		If written 0, a VPD read is started, will be set to 1 after completion.			
140	VPD Address	Address of the VPD contents to be written / read.	yes	aw	0x00

10.4.12 VPD Data Register

The VPD data register is a 32-bit register at address 0x54. It is reloadable out of the Flash EPROM and is also writeable in I/O space.

Bit	Name		Description	Write	Read	Reset value
		VPD Data Register				
31:0	VPD Data	Mu ter aft	ust be written before VPD Address Regis- for VPD write. Contains VPD read Data er completion of VPD read.	yes	aw	0x00
10	D.5 VPD EEPRO	M	The network interface card implement (03/28/97). It is stored in a serial EEPRO the VPD Address Register and VPD Date mapped writeable both in configuration at The serial I ² C protocol is handled by the <i>J</i> of the serial EEPROM for VPD is 101000 As serial EEPROM Atmel's AT24C02 or The size of the serial EEPROM, the arm the Device Select Byte used for VPD I ² C read only fields VPD ROM Size, VPD Wit Select in Our Register 2. These fields of EPROM, if another device is used. For manufacturing programming of the Write Threshold must be set to 0 in Te Then the whole serial EEPROM is write the VPD Write Threshold will be on it's area will be write protected.	ts VPD a M and ma ta Regist and I/O ad ASIC hard O0. equivalen ount of w accesses rite Thres can be re read only stmode (I able. Afte default se	as suggesta y be access er. These re dress space lware. The I t is initially of riteable VPI are determ chold and V loaded from part of VPI Enable Cor r the next p tting and th	ed in ECR sed through egisters are e. ² C address used. D area and ined by the 'PD Device n the Flash D, the VPD nfig Write). ower cycle e read only

PCI Configuration Register File

Appendix B Register Overview Control Register File

11.0 Control Register File

The control register file comprises all registers accessible to the host, independent of their specific physical location. This includes the registers in the ASIC but also the XMACII registers and the PCI configuration register file. FPROM data and VPD data are accessible through Register Address Ports (RAP) implemented in the control register file.

The control register file may be mapped in the 32-bit I/O space as well as in the 32-bit memory space depending on **Base Address Register (1st)** and **Base Address Register (2nd).**

If the control register file is mapped into the memory space, it covers a memory range of 16 Kbytes. All registers may be accessed directly. If the Control Register File is mapped into the I/O space, it's covering an I/O range of 256 bytes. The 16 K range of the control register file is segmented into 128 x 128-byte blocks.

Block 0 is mapped <u>permanently</u> to the lower half of the 256 byte I/O range. (Block 0 holds for example the main control register where the Reset signals are switched and the information which block is mapped to the upper half of the 256 bytes.)

Block 0 - 127 are mapped to the upper half of the 256byte I/O range as defined by the Register Address Port (RAP) in Block 0.1^{1}

Write operations to reserved or not implemented registers are completed normally on the bus and the data are discarded.

Read operations to reserved or not implemented registers are completed normally on the bus, read data are undefined.

If **SW Reset** is set, it is not recommended to access the **Control Register File** except for accessing the main **Control Register** (all internal or external devices are in reset state).

On **SW Reset** write operations are completed normally on the bus and the data discarded. Read operations are completed normally on the bus and a data value of 0 returned.

In order to prevent setup and hold time violations, all signals and/or events routed through read registers are synchronized to the PCI bus **CLK** signal. All signals and/or events routed through **INTA#** are glitch free and, except for those directly related to **CLK** (PCI) they are independent from **CLK** (PCI).

11.1 Overview/Address Map The following table depicts the layout of the control register file. The contents of individual registers down to bit level will be shown in the following sections.

^{1.} Note: As a side effect, register addressing with the RAP may also be used, if the control register file is mapped into the memory space

Column 'STI' in the following table is marking registers residing behind the Same Target Interface.

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
Reserved	Reserved	Reserved	Register Address Port (RAP)	0x0000		
Reserved	LED Register	Control/Sta	tus Register	0x0004		
	Interrupt Source Register					
	Interrupt Ma	isk Register		0x000c		
	Interrupt Hardware E	rror Source Register		0x0010		
	Interrupt Hardware	Error Mask Register		0x0014		
	Special Interrupt	Source Register		0x0018		
	Rese	erved		0x001c		
Reserved	Reserved	XMACII 1: Interru	pt Mask Register	0x0020		
Reserved	Reserved	Rese	erved	0x0024		0
Reserved	Reserved	XMACII 1: Interru	ot Status Register	0x0028		
Reserved	Reserved	Rese	erved	0x002c		
Reserved	Reserved	XMACII 1: PHY A	ddress Register	0x0030		
Reserved	Reserved	XMACII 1: PHY	' Data Register	0x0034		
Reserved	Reserved	Rese	erved	0x0038		
Reserved	Reserved	Rese	erved	0x003c		
Reserved	Reserved	XMACII 2: Interru	pt Mask Register	0x0040		
Reserved	Reserved	Rese	erved	0x0044		
Reserved	Reserved	XMACII 2: Interrupt Status Register		0x0048		
Reserved	Reserved	Rese	erved	0x004c		

- 115 -

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
Reserved	Reserved	XMACII 2: PHY A	Address Register	0x0050		
Reserved	Reserved	XMACII 2: PHY	' Data Register	0x0054		
Reserved	Reserved	Rese	erved	0x0058		
Reserved	Reserved	Rese	erved	0x005c		
BM	0x0060					
BMU Control/Status Register (Receive Queue 2)						
BMU C	Control/Status Registe	er (Sync. Transmit Qı	ieue 1)	0x0068		
BMU C	ontrol/Status Registe	r (Async. Transmit Q	ueue 1)	0x006c		
BMU C	Control/Status Registe	er (Sync. Transmit Qı	ieue 2)	0x0070		
BMU C	ontrol/Status Registe	r (Async. Transmit Q	ueue 2)	0x0074		
	Rese	erved		0x0078		
	Rese	erved		0x007c		
				1		
Block Window Register <31:0> 0				0x0080		1

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
MAC Addr_1<3>	MAC Addr_1<2>	MAC Addr_1<1>	MAC Addr_1<0>	0x0100		
Reserved	Reserved	MAC Addr_1<5>	MAC Addr_1<4>	0x0104		
MAC Addr_2<3>	MAC Addr_2<2>	MAC Addr_2<1>	MAC Addr_2<0>	0x0108		
Reserved	Reserved	MAC Addr_2<5>	MAC Addr_2<4>	0x010c		
		-				
MAC Addr_3<3>	MAC Addr_3<2>	MAC Addr_3<1>	MAC Addr_3<0>	0x0110		
Reserved	Reserved	MAC Addr_3<5>	MAC Addr_3<4>	0x0114		
Chip Revision	Configuration	PMD Type	Connector Type	0x0118		
Eprom<3>	Eprom<2>	Eprom<1>	Eprom<0>	0x011c		
						2
	EPROM Address	Register/Counter		0x0120		
Reserved	Reserved	Reserved	EPROM Data Port	0x0124		
Reserved	Reserved	Loader Test	Loader Control	0x0128		
	Rese	erved		0x012c		
	Timer Ir	nit Value		0x0130		
	Tir	ner		0x0134		
Reserved	Reserved	Timer Test	Timer Control	0x0138		
	Reserved					
	IRQ Moderation	Timer Init Value		0x0140		
	IRQ Moder	ation Timer		0x0144		

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
Reserved	Reserved	IRQ Moderation Timer Test	IRQ Moderation Timer Control	0x0148		
	Interrupt Moderat	ion Mask Register		0x014c		
Inter	Interrupt Hardware Error Moderation Mask Register					
	Reserved					
Rese	Reserved Test Control Reg 2 Test Control Reg 1					
	General Purpose I/O Register					
						2
	I2C (HW) Cor	ntrol Register		0x0160		
	I2C (HW) Da	ata Register		0x0164		
	I2C(HW) IR	Q Register		0x0168		
	I2C (SW)	Register		0x016c		
	Blink Source Co	ounter Init Value		0x0170		
	Blink Sour	ce Counter		0x0174		
Blink Source	Blink Source Counter TestBlink Source Counter StatusBlink Source Counter Control					
Reserved 0				0x017c		

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	l/O RAP Block
RAM Random Registers						
Ram Address 0x0180						
	Ram Data Port/lower dword 0x0184					
Ram Data Port/upper dword 0x0188						
Reserved 0x018c						

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block	
	RAMI	nterface Registers					
Timeout Init Value 3 (Read SM Rx1)	Timeout Init Value 2 (Write SM Tx/s1)	Timeout Init Value 1 (Write SM Tx/a1)	Timeout Init Value 0 (Write SM Rx1)	0x0190			
Timeout Init Value 7 (Write SM Tx/a2)	Timeout Init Value 6 (Write SM Rx2)	Timeout Init Value 5 (Read SM Tx/s1)	Timeout Init Value 4 (Read SM Tx/a1)	0x0194			
Timeout Init Value 11 (Read SM Tx/s2)	Timeout Init Value 10 (Read SM Tx/a2)	Timeout Init Value 9 (Read SM Rx2)	Timeout Init Value 8 (Write SM Tx/s2)	0x0198			
	Reserved Timeout Timer						
Reserved	Timer Test	Ram Interfa	ace Control	0x01a0			
	Rese	erved		0x01a4			
	Reserved						
	Rese	erved		0x01ac		2	
MAC Arbiter Registers							
Timeout Init Value Tx2	Timeout Init Value Tx1	Timeout Init Value Rx2	Timeout Init Value Rx1	0x01b0			
Timeout Timer Tx2	Timeout Timer Tx1	Timeout Timer Rx2	Timeout Timer Rx1	0x01b4			
Time	r Test	MAC Arbit	er Control	0x01b8			
	Rese	erved		0x01bc			
Recovery Init Value Tx2	Recovery Init Value Tx1	Recovery Init Value Rx2	Recovery Init Value Rx1	0x01c0			
Recovery Timer Tx2	Recovery Timer Tx1	Recovery Timer Rx2	Recovery Timer Rx1	0x01c4			
Time	Timer Test Recovery Control						
	Reserved 0x						

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
	Packe	t Arbiter Registers				
Rese	erved	Timeout Ini	t Value Rx1	0x01d0		
Rese	erved	Timeout Ini	t Value Rx2	0x01d4		
Rese	erved	Timeout Ini	it Value Tx1	0x01d8		
Rese	erved	Timeout Ini	it Value Tx2	0x01dc		
Rese	erved	Timeo	ut Rx1	0x01e0		3
Rese	erved	Timeo	ut Rx2	0x01e4		5
Rese	erved	Timeo	ut Tx1	0x01e8		
Rese	Reserved Timeout Tx2		0x01ec			
Time	r Test	Packet Arb	0x01f0			
	Poor	arved		0x01f4		
	Rese	erved		0x01fc		
	Trans	mit Arbiter MAC 1				
	Interval Tim	er Init Value		0x0200		
	Interva	l Timer		0x0204		
	Limit Count	er Init Value		0x0208		
	Limit C	Counter		0x020c		1
Reserved	Timer/ Counter Status	Timer/ Counter Test	Timer/ Counter Control	0x0210		-
	Rese	arved		0x0214		
	i teselveu					
Reserved 0x0220						
0x027c						

- 121 -

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block	
	Transmit Arbiter MAC 2						
	Interval Timer Init Value 03						
	Interval Timer						
	Limit Counter Init Value						
	Limit Counter					5	
Reserved	Timer/ Counter Status	Timer/ Counter Test	Timer/ Counter Control	0x0290	-		
	Decented						
	Reserved						
	Rese	arved		0x02a0			
				0x02fc			
		External Reg	gister <0x00>	0x0300			
Reserved	Reserved	External Reg	gister <0x1f>	0x037c		6	
				1	1	1	
	Ox0380						

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
	Re	ceive Queue 1				
	Current	Receive Descriptor				
Receive Bu	Receive Buffer ControlReceive Buffer Byte Count0x0400					
Next Receive Descriptor Address, lower dword 0x0404						
Receive Buffer Address, lower dword 0x0408						
Receive Buffer Address, upper dword0x040c						
Receive Frame Status Word 0x0410						
		0x0414				
Check	Checksum 2 Checksum 1			0x0418		
Start position	, Checksum 2	Start position	, Checksum 1	0x041c		
				ŀ		Q
Cur	rent Receive Descript	tor Address, lower dw	vord	0x0420		0
Curren	nt/Next Receive Descr	iptor Address, upper	dword	0x0424		
	Current Address Co	ounter, lower dword		0x0428		
	Current Address Co	ounter, upper dword		0x042c		
	Current By	te Counter		0x0430		
	BMU Control/S	Status Register		0x0434		
Fla	ag Register including	FIFO Address Counter	ers	0x0438		
	Test Re	gister 1		0x043c		
Test Register 2 0x0-						
	Test Register 3 0x0444					
	Rese	erved		0x0448		
	Reserved : 0x047c					

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
	Re	eceive Queue 2				
	Current	Receive Descriptor				
Receive Bu	ffer Control	Receive Buff	er Byte Count	0x0480		-
Νε	ext Receive Descripto	r Address, lower dwo	ord	0x0484		
	Receive Buffer Address, lower dword0x0488					
	Receive Buffer Address, upper dword0x048c					
	Receive Frame Status Word 0x0490					
Time Stamp						
	TCP/IP checksum extension					
Check	Checksum 2 Checksum 1			0x0498		
Start position	Start position, Checksum 2 Start position, Checksum 1			0x049c		
						0
Cur	rent Receive Descript	tor Address, lower dv	vord	0x04a0		9
Curren	nt/Next Receive Descr	iptor Address, upper	dword	0x04a4		
	Current Address Co	ounter, lower dword		0x04a8		
	Current Address Co	ounter, upper dword		0x04ac		
	Current By	rte Counter		0x04b0		
	BMU Control/S	Status Register		0x04b4		
Fla	ag Register including	FIFO Address Count	ers	0x04b8		
	Test Re	gister 1		0x04bc		
	Test Re	gister 2		0x04c0		
	Test Re	gister 3		0x04c4		
	Deer			0x04c8		
	Reserved : 0x04fc					
					1	1
				0x0500		10
Reserved	Reserved	Rese	erved	: 0x05fc		: 11

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
	Sync.	Transmit Queue 1				
	Current	Transmit Descriptor				
Transmit Bu	uffer Control	Transmit Buff	er Byte Count	0x0600		
Ne	ext Transmit Descripto	r Address, lower dwo	ord	0x0604		
Transmit Buffer Address, lower dword 0x0608						
Transmit Buffer Address, upper dword 0x060c						
Transmit Frame Status Word 0x0610						
	TCP/IP checks	sum extension				
Rese	Reserved Start value			0x0614		
Start p	Start position Write position			0x0618		
	Rese	rved		0x061c]
Curr	rent Transmit Descrip	tor Address, lower dv	word	0x0620		12
Curren	t/Next Transmit Desci	iptor Address, upper	dword	0x0624		
	Current Address Co	ounter, lower dword		0x0628		
	Current Address Co	unter, upper dword		0x062c		
	Current By	te Counter		0x0630		
	BMU Control/S	tatus Register		0x0634		
Fla	ag Register including	FIFO Address Counter	ers	0x0638		
	Test Re	gister 1		0x063c		
Test Register 2						
Test Register 3 0x0644						
Reserved 0x0648 : 0x067c						

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
	Async.	Transmit Queue 1				
	Current	Transmit Descriptor				
Transmit Bu	Transmit Buffer Control Transmit Buffer Byte Count 0x0680					
Next Transmit Descriptor Address, lower dword 0x0684						
Transmit Buffer Address, lower dword 0x0688						
Transmit Buffer Address, upper dword0x068c						
Transmit Frame Status Word 03						
	TCP/IP checks	sum extension				
Reserved Start value			value	0x0694		
Start position Write position			osition	0x0698		
Reserved 0x069c						
				•		
Curr	rent Transmit Descrip	tor Address, lower dv	vord	0x06a0		13
Curren	t/Next Transmit Desci	riptor Address, upper	dword	0x06a4		
	Current Address Co	ounter, lower dword		0x06a8		
	Current Address Co	ounter, upper dword		0x06ac		
	Current By	te Counter		0x06b0		
	BMU Control/S	tatus Register		0x06b4		
Fla	ag Register including	FIFO Address Counte	ers	0x06b8		
	Test Re	gister 1		0x06bc		
Test Register 2 0x06c0						
	Test Re	gister 3		0x06c4		
	-			0x06c8		
	Rese	rved		: 0x06fc		

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
	Sync.	Transmit Queue 2				
	Current	Transmit Descriptor				
Transmit Buffer Control Transmit Buffer Byte Count 0x070						
Ne	Next Transmit Descriptor Address, lower dword 0x0704					
	Transmit Buffer Ad	dress, lower dword		0x0708		
	Transmit Buffer Ade	dress, upper dword		0x070c		
	Transmit Fram	e Status Word		0x0710		
	TCP/IP checks	sum extension				
Rese	erved	Start	value	0x0714		
Start p	osition	Write p	osition	0x0718		
Reserved 0x071c						
Curi	rent Transmit Descrip	tor Address, lower dv	vord	0x0720		14
Curren	t/Next Transmit Desci	riptor Address, upper	dword	0x0724		
	Current Address Co	ounter, lower dword		0x0728		
	Current Address Co	ounter, upper dword		0x072c		
	Current By	te Counter		0x0730		
	BMU Control/S	tatus Register		0x0734		
Fla	Flag Register including FIFO Address Counters					
	Test Register 1			0x073c		
	Test Register 2					
	Test Register 30x0744					
	Rese	rved		0x0748 : 0x077c		

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
	Async.	Transmit Queue 2				
	Current Trans	mit Descriptor				
Transmit Bu	Iffer Control	Transmit Buff	er Byte Count	0x0780		
Next Transmit Descriptor Address, lower dword						
	Transmit Buffer Ad	dress, lower dword		0x0788		
	Transmit Buffer Ade	dress, upper dword		0x078c		
	Transmit Fram	e Status Word		0x0790		
	TCP/IP checks	sum extension				
Rese	erved	Start	value	0x0794		
Start p	Start position Write position					
Reserved 0x079c						
Curr	rent Transmit Descrip	tor Address, lower dv	vord	0x07a0		15
Curren	t/Next Transmit Desci	riptor Address, upper	dword	0x07a4		
	Current Address Co	ounter, lower dword		0x07a8		
	Current Address Co	ounter, upper dword		0x07ac		
	Current By	te Counter		0x07b0		
	BMU Control/S	tatus Register		0x07b4		
Fla	ag Register including	FIFO Address Counte	ers	0x07b8		
Test Register 1				0x07bc		
Test Register 2				0x07c0		
	Test Register 3 0x07					
	-			0x07c8		
	Kese	erved		: 0x07fc		

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
	Receive RAMbuffer 1					
Receive Rambuffer Start Address0x0800						
Receive Rambuffer End Address						
	Receive Buffer Write Pointer					
	Receive Buffer Read Pointer					
Receive Rambuffer Upper Threshold/Pause Packets						
Receive Rambuffer Lower Threshold/Pause Packets 0x						
Receive Rambuffer Upper Threshold/High Priority 0x0						16
Rec	Receive Rambuffer Lower Threshold/High Priority			0x081c		
	Receive Rambuffer Packet Counter			0x0820		
	Receive Rambuffer Level			0x0824		
Receive Rambuffer Control/Test				0x0828		
	0x082c					
				0x087c		

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
	Receive RAMbuffer 2					
	Receive Rambuffer Start Address0x0880					
Receive Rambuffer End Address 0x0884						
	Receive Buffer Write Pointer					
	Receive Buffer Read Pointer					
Rece	Receive Rambuffer Upper Threshold/Pause Packets					
Receive Rambuffer Lower Threshold/Pause Packets 0x				0x0894		
Receive Rambuffer Upper Threshold/High Priority 0x0898					17	
Receive Rambuffer Lower Threshold/High Priority 0x089c						
Receive Rambuffer Packet Counter 0x08a0						
	Receive Rambuffer Level					
	Receive Rambuffer Control/Test			0x08a8		
	Roor	arved		0x08ac		
Reserved : 0x08fc						
Poserved	Reserved	Poor	arved	0x0900		18
Neselveu	Neselveu	Rese		0x09fc		19

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
	Sync. Transmit RAMbuffer 1					
Transmit Rambuffer Start Address0x0a00						
	Transmit Rambuffer End Address					
	Transmit Buffer Write Pointer					
	Transmit Buffe	r Read Pointer		0x0a0c		
	Reserved					
Reserved						20
Reserved						
Reserved						
	Transmit Rambuffer Packet Counter					
Transmit Rambuffer Level				0x0a24		
	0x0a28					
Reserved 0x0						
						1

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
	Async. Transmit RAMbuffer 1					
Transmit Rambuffer Start Address						
	Transmit Rambuffer End Address					
	Transmit Buffer Write Pointer					
	Transmit Buffer Read Pointer					
	Reserved					
Reserved						
Reserved						21
Reserved						
	Transmit Rambuffer Packet Counter					
	Transmit Rambuffer Level					
Transmit Rambuffer Control/Test				0x0aa8		
Reserved						
				I	1	

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
	Sync. Transmit RAMbuffer 2					
Transmit Rambuffer Start Address 0x08						
	Transmit Rambuffer End Address					
	Transmit Buffer Write Pointer					
	Transmit Buffer Read Pointer					
	Reserved					
Reserved						22
	Reserved					
Reserved						
	Transmit Rambuffer Packet Counter					
Transmit Rambuffer Level				0x0b24	-	
	0x0b28					
Reserved						
				1	1	

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block	
	Async. Transmit RAMbuffer 2						
Transmit Rambuffer Start Address							
	Transmit Rambuffer End Address						
	Transmit Buffer Write Pointer						
	Transmit Buffer Read Pointer						
	Reserved						
Reserved							
Reserved				0x0b98		23	
Reserved							
	Transmit Rambuffer Packet Counter						
Transmit Rambuffer Level				0x0ba4			
Transmit Rambuffer Control/Test				0x0ba8			
	0x0bac : 0x0bfc						
					1		
Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block	
---	--	----------------	---------	-------------------	-----	---------------------	--
	Receive MAC FIFO 1						
	Receive MAC FI	FO End Address		0x0c00			
Receive MAC FIFO Write Pointer 0x0c0							
Reserved 0x0c							
Receive MAC FIFO Read Pointer 0x							
	Receive MAC FIFO Packet Counter 0x00						
	Receive MA	C FIFO Level		0x0c14			
	Receive M	AC Control		0x0c18			
Receive MAC FIFO Control/Test							
RX LED Counter Init Value 0x0c2							
RX LED Counter						24	
ReservedRX LED Counter TestRX LED Counter Control							
Reserved							
LINK_SYNC Counter Init Value 0x0c30							
LINK_SYNC Counter							
ReservedLINK_SYNCLINK_SYNCReservedCounter TestCounter Control							
Reserved Reserved Reserved Link LED Reg.							
· · · · · · · · · · · · · · · · · · ·]		
0x0c40							
Reserved : 0x0c7							

Receive MAC FIFO 2 Receive MAC FIFO End Address 0x0c80 Receive MAC FIFO Write Pointer 0x0c84 Receive MAC FIFO Read Pointer 0x0c80 Receive MAC FIFO Read Pointer 0x0c80 Receive MAC FIFO Read Pointer 0x0c90 Receive MAC FIFO Level 0x0c90 Receive MAC FIFO Control/Test 0x0c90 RX LED Counter 0x0c90 Reserved Reserved RX LED Counter 0x0c80 LINK_SYNC Counter 0x0cb0 LINK_SYNC Counter Test 0x0cb0 <	Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block	
Receive MAC FIFO End Address 0x0c80 Receive MAC FIFO Write Pointer 0x0c84 Reseive MAC FIFO Read Pointer 0x0c80 Receive MAC FIFO Packet Counter 0x0c80 Receive MAC FIFO Packet Counter 0x0c90 Receive MAC FIFO Level 0x0c90 Receive MAC FIFO Control 0x0c90 Receive MAC FIFO Control/Test 0x0c90 Receive MAC FIFO Control 0x0c90 Reserved Reserved LINK_SYNC Counter Test 0x0c90 Reserved Reserved LINK_SYNC 0x0cb0		Receive MAC FIFO 2						
Receive MAC FIFO Write Pointer 0x0c84 Receive MAC FIFO Read Pointer 0x0c86 Receive MAC FIFO Read Pointer 0x0c90 Receive MAC FIFO Packet Counter 0x0c90 Receive MAC FIFO Level 0x0c90 Receive MAC FIFO Control 0x0c90 Receive MAC FIFO Control/Test 0x0c90 RX LED Counter Init Value 0x0ca0 RX LED Counter Test 0x0ca0 Reserved Reserved R Reserved R RX LED Counter Test 0x0cb0 LINK_SYNC Counter Init Value 0x0cb0 LINK_SYNC Counter Test 0x0cb0 <th colspan="</td> <td></td> <td colspan="7">Receive MAC FIFO End Address 0x0c80</td>		Receive MAC FIFO End Address 0x0c80						
Reserved 0x0c88 Receive MAC FIFO Read Pointer 0x0c8c Receive MAC FIFO Packet Counter 0x0c90 Receive MAC FIFO Level 0x0c90 Receive MAC FIFO Level 0x0c90 Receive MAC Control 0x0c90 Receive MAC FIFO Control/Test 0x0c90 RX LED Counter Init Value 0x0c30 REserved REserved RX LED Counter Test 0x0ca Reserved RLINK_SYNC Counter Test 0x0cb0 LINK_SYNC Counter Init Value 0x0cb1 LINK_SYNC Counter Test 0x0cb4 Reserved LINK_SYNC Counter Test 0x0cb4		0x0c84	-					
Receive MAC FIFO Read Pointer 0x0c8c Receive MAC FIFO Packet Counter 0x0c90 Receive MAC FIFO Level 0x0c94 Receive MAC Control 0x0c93 Receive MAC FIFO Control/Test 0x0c94 Receive MAC FIFO Control/Test 0x0c93 Receive MAC FIFO Control/Test 0x0c94 RX LED Counter Init Value 0x0ca4 Reserved Reserved Rx LED Counter Test 0x0ca5 Control 0x0cb0 LINK_SYNC Counter Init Value 0x0cb0 LINK_SYNC Counter Init Value 0x0cb4 Reserved Reserved LINK_SYNC 0x0cb4 Reserved Reserved Reserved Reserved 0x0cb6	Reserved							
Receive MAC FIFO Packet Counter 0x0c90 Receive MAC FIFO Level 0x0c94 Receive MAC Control 0x0c98 Receive MAC FIFO Control/Test 0x0c90 Receive MAC FIFO Control/Test 0x0ca0 RX LED Counter Init Value 0x0ca0 Reserved Reserved RX LED Counter Test 0x0ca8 Reserved Reserved RX LED Counter Init Value 0x0cb0 LINK_SYNC Counter Init Value 0x0cb0 LINK_SYNC Counter Control 0x0cb4 Reserved Reserved LINK_SYNC Counter Test 0x0cb8 Reserved Reserved Reserved LINK_SYNC Counter Test 0x0cb6	Receive MAC FIFO Read Pointer							
Receive MAC FIFO Level 0x0c94 Receive MAC Control 0x0c98 Receive MAC FIFO Control/Test 0x0c92 RX LED counter Init Value 0x0ca0 Reserved Reserved RX LED Counter Test 0x0ca8 Reserved Reserved Reserved 0x0cb0 LINK_SYNC Counter Init Value 0x0cb0 LINK_SYNC Counter Init Value 0x0cb0 Reserved Reserved Reserved 0x0cb0 LINK_SYNC Counter Test 0x0cb0 LINK_SYNC Counter Test 0x0cb0 LINK_SYNC Counter Test 0x0cb0 Reserved Reserved Reserved 0x0cb0 Reserved Reserved 0x0cb0		Receive MAC FIF	O Packet Counter		0x0c90			
Receive MAC Control 0x0c98 Receive MAC FIFO Control/Test 0x0c9c Receive MAC FIFO Control/Test 0x0c9c RX LED Counter Init Value 0x0ca0 RX LED Counter Init Value 0x0ca4 Reserved Reserved 0x0ca4 Reserved R X LED Counter Test 0x0ca8 Ox0ca2 Reserved R X LED Counter Test 0x0ca8 Ox0ca2 LINK_SYNC Counter Init Value Ox0cb0 UINK_SYNC Counter Init Value Ox0cb0 LINK_SYNC Counter Init Value Ox0cb0 LINK_SYNC Counter Test Ox0cb0 Reserved LINK_SYNC Counter Control Ox0cb8 Reserved LINK_SYNC Counter Test Ox0cb8 Reserved LINK_SYNC Counter Control Ox0cb8 Reserved Reserved LINK_SYNC Counter Control <th c<="" td=""><td></td><th>Receive MAC</th><td>C FIFO Level</td><td></td><td>0x0c94</td><td></td><td></td></th>	<td></td> <th>Receive MAC</th> <td>C FIFO Level</td> <td></td> <td>0x0c94</td> <td></td> <td></td>		Receive MAC	C FIFO Level		0x0c94		
Receive MAC FIFO Control/Test 0x0c9c RECEIVE MAC FIFO Control/Test 0x0c9c RX LED Counter Init Value 0x0ca0 RX LED Counter 0x0ca0 Reserved RX LED Counter Test 0x0ca0 Reserved RX LED Counter Test 0x0ca0 Reserved RX LED Counter Test 0x0ca0 Control 0x0cb0 LINK_SYNC Counter Init Value 0x0cb0 Counter Test 0x0cb1 Reserved Reserved Ncob1 Counter Test 0x0cb2 Counter Test 0x0cb3 Counter Control 0x0cb3 Reserved Reserved Reserved LINK_SYNC 0x0cb4 0x0cb4 0x0cb4 0x0cb4 0x0cb4 0x0cb4 0x0cb4 <td></td> <th>Receive M</th> <td>AC Control</td> <td></td> <td>0x0c98</td> <td></td> <td></td>		Receive M	AC Control		0x0c98			
RX LED Counter Init Value 0x0ca0 RX LED Counter 0x0ca4 Reserved Reserved RX LED Counter Test 0x0ca8 Reserved Reserved RX LED Counter Test 0x0ca6 LINK_SYNC Counter Init Value 0x0cb0 0x0cb4 Reserved LINK_SYNC Counter Test 0x0cb4 Reserved Reserved LINK_SYNC Counter Test 0x0cb4 Reserved Reserved LINK_SYNC Counter Test 0x0cb4 Reserved Reserved LINK_SYNC Counter Test 0x0cb7 Reserved Reserved Reserved LINK_SYNC Counter Control		Receive MAC FIFO Control/Test						
RX LED Counter Init Value0x0ca0RX LED Counter0x0ca4ReservedRX LED Counter Test0x0ca8ReservedReservedRX LED Counter Control0x0ca8Ox0cacLINK_SYNC Counter Init Value0x0cb0Ox0cb0LINK_SYNC Counter0x0cb0ReservedReservedLINK_SYNC Counter Test0x0cb8ReservedReservedReservedLink LED Reg.0x0cb7								
RX LED Counter0x0ca4ReservedRX LED Counter TestRX LED Counter Control0x0ca8CReservedReserved0x0cacLINK_SYNC Counter Init Value0x0cb00x0cb0LINK_SYNC Counter0x0cb40x0cb4ReservedReservedLINK_SYNC Counter Test0x0cb8ReservedReservedReservedLink LED Reg.ReservedReservedReservedLink LED Reg.		0x0ca0						
ReservedRX LED Counter TestRX LED Counter Control0x0ca8Reserved0x0cacLINK_SYNC Counter Init Value0x0cb0LINK_SYNC Counter Init Value0x0cb0LINK_SYNC Counter0x0cb4ReservedLINK_SYNC Counter Test0x0cb8ReservedReservedReservedLink LED Reg.0x0cb8	RX LED Counter						25	
Reserved 0x0cac LINK_SYNC Counter Init Value 0x0cb0 LINK_SYNC Counter Init Value 0x0cb0 LINK_SYNC Counter 0x0cb0 Reserved LINK_SYNC Counter 0x0cb4 Reserved LINK_SYNC Counter Test Ox0cb8 Reserved Reserved LINK_SYNC Counter Control 0x0cb8 Reserved Reserved LINK LED Reg. 0x0cb8	Reserved	0x0ca8						
LINK_SYNC Counter Init Value 0x0cb0 LINK_SYNC Counter 0x0cb4 Reserved Reserved LINK_SYNC Counter Test LINK_SYNC Counter Control 0x0cb8 Reserved Reserved Reserved Reserved Link LED Reg. 0x0cbc	Reserved							
LINK_SYNC Counter Init Value 0x0cb0 LINK_SYNC Counter 0x0cb4 Reserved Reserved LINK_SYNC Counter Test LINK_SYNC Counter Control 0x0cb8 Reserved Reserved Reserved Reserved Link LED Reg. 0x0cbc	· · · · · · · · · · · · · · · · · · ·							
LINK_SYNC Counter 0x0cb4 Reserved Reserved LINK_SYNC Counter Test LINK_SYNC Counter Control 0x0cb8 Reserved Reserved Reserved Link LED Reg. 0x0cbc	LINK_SYNC Counter Init Value 0x0cb0							
ReservedLINK_SYNC Counter TestLINK_SYNC Counter Control0x0cb8ReservedReservedReservedLink LED Reg.0x0cbc	LINK_SYNC Counter					-		
Reserved Reserved Link LED Reg. 0x0cbc	Reserved	0x0cb8						
	Reserved	0x0cbc						
Reserved 0x0c9c0 : 0x0cfc	Reserved 0x0c9c0 : 0x0cfc							

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block
Transmit MAC FIFO 1						
Transmit MAC FIFO End Address 0x0d00						
Transmit MAC FIFO Write Pointer 0x0d04						
Transmit MAC FIFO Write Shadow Pointer 0x0d08						
Transmit MAC FIFO Read Pointer 0x00						
	0x0d10					
	0x0d14					
	0x0d18	-				
	Transmit MAC F	IFO Control/Test		0x0d1c	-	26
TX LED Counter Init Value 0x0d20						
	TX LED Counter					
Reserved	Reserved	TX LED Counter Test	TX LED Counter Control	0x0d28		
	Reserved					
0x0d30						
Keservea : 0x0d7c						

- 137 -

Byte<3>	Byte<3> Byte<2> Byte<1> Byte<0>						
	Transmit MAC FIFO 2						
	Transmit MAC FIFO End Address 0x0d80						
	Transmit MAC FIFO Write Pointer 0x0d84						
Transmit MAC FIFO Write Shadow Pointer0x0d88							
Transmit MAC FIFO Read Pointer 0x0d8c							
	0x0d90						
	0x0d94						
Transmit MAC Control							
	Transmit MAC FIFO Control/Test 0x0d9c						
TX LED Counter Init Value0x0da0							
TX LED Counter 0x0d							
Reserved	0x0da8						
	Reserved						
0x0db0							
Reserved : 0x0dfc							

Byte<3>	Byte<2>	Byte<1>	Byte<0>	Memory Address	STI	I/O RAP Block	
	Des	criptor Poll Timer	1				
Reserved		Timer Init Value		0x0e00			
Reserved		Timer		0x0e04			
Reserved	Timer Test	Reserved	Timer Control	0x0e08			
	Rese	erved		0x0e0c		28	
				1		-	
	0x0e10						
	Keservea : 0x0e8c						
		-					
Reserved	Reserved Reserved Reserved		0x0e90		29		
i leseiveu	i leseiveu	i leseiveu		0x0ffc		31	
Deserved	Deserved	Desc		0x1000		0x20	
Reserved	Reserved	Reserved		: 0x1ffc		: 0x3f	
		XMACII 1 Re	gister <0x00>				
Percerved	Percerved		nictor 20x2ff>	0x2000		0x40	
Reserved	Reserved	AMACII I Re	gister <0x311>	0x27fc		0x4f	
		addresses 0x00:0 data	x3ff follow XMACII sheet				
Descried	Descried	Dee	anvad	0x2800		0x50	
Keserveu	Keserveu	Reserved C				0x5f	

- 139 -

Byte<3>	Byte<2>	Byte<1>	Memory Address	STI	I/O RAP Block	
Reserved	Reserved	XMACII 2 Register <0x00> XMACII 2 Register <0x3ff> addresses 0x00:0x3ff follow XMACII datasheet		0x3000 : 0x37fc		0x60 : 0x6f
Reserved	Reserved	Reserved		0x3800 : 0x3ffc		0x70 0x7f

12.0 Registers	This section lists the registers and their usage down to bit level.
12.1 BLock 0	Block 0 is I/O mapped into the lower half of the 256 bytes I/O space per- manently. It may be mapped into the upper half too by setting the Register Address Port (RAP) to 0.
12.1.1 Register Address Port (RAP)	The RAP controls the mapping of the upper 128 bytes in I/O space. The RAP itself is contained in block 0 wich is mapped to the lower 128 bytes in I/O space permanently.

Bit	Name	Description	Write	Read	Reset (SW)
	R	egister Address Port			
31:7	Reserved				
6:0	RAP	Specifies one out of block 0 - 127, which is mapped to the upper half of the 256byte I/O range. 0=block 0,,0x7f=block 127	yes	aw	0

12.1.2 LED Register

Bit	Name	Description	Write	Read	Reset (SW)
	·	LED Registers			
7:2	Reserved				
1	LED<0>On			0b10	0
0	LED<0> Off	LED (middle, green) On/ Off	exec	0b01	1

12.1.3 Control/Status Register

Bit	Name	Description	Write	Read	Reset
	Control/Status Register				
	Status				
15:10	Reserved				
		Bus Clock is the M66EN Pin of the PCI Bus used as input	ne	value	
9	Bus Clock	0 = clock speed 33MHz or lower			
		1 = clock speed between 33MHz and 66MHz			
		Slot Size is REQ64 # latched with the rising edge of RST# and inverted.	ne	value	
8	Slot Size	0 = network interface card installed in 32-bit slot			
7		1 = network interface card installed in 64-bit slot			
		Commands			
	Set IRQ SW	Sets and clears Interrupt Request from SW	01/00	0b10	0
6	Clear IRQ SW		exec	0b01	1
5	Stop Master Done	As soon as the master statemachine is in the idle state after Stop Master is set, Stop Master Done is asserted. Stop Master Done is reset to 0 by resetting Stop Master .	ne	value	0
4	Stop Master	If Stop Master is set, all requests from the BMUs except for the one being serviced at the moment, are masked. The master state- machine will reach the idle state after the current request is serviced. Stop Master has to be reset by the software after the BMUs are reset. If the BMUs aren't reset, the network interface card will resume master action at the point, where it was interrupted by Stop Master .	yes	aw	0 (HW)

Bit	Name	Description	Write	Read	Reset
3	Master Reset Clear	If Master Reset is set, all devices related to the master interface (BMUs, FIFOs, State		0b10	0
		machines) are in their reset state.	exec	0b01	1
2	Master Reset Set	Set/Clear Master Reset. executed, if appropriate bit is set to 1.			(SW)
1	SW Reset Clear	Set/Clear SW Reset.		0b10	0
		executed, if appropriate bit is set to 1.		0501	1
0	SW Reset Set		exec	1000	(HW)
		If SW Reset is set, all internal and external devices are in their reset state.			

12.1.4 Interrupt Source Registers If set to ONE, interrupt is pending.

Bit	Name	Description	Write	Read	Reset (SW)
	Inte	errupt Source Register			
	IRQ HW Error	Interrupt Hardware Error	ne	value	0
31		see Interrupt HW Error Source Register			
30	Reserved		ne	value	0
29	IRQ Pkt Tout Rx1	Interrupt Packet Timeout (receive queue 1) Transfer from XMACII is hanging	ne	value	0
28	IRQ Pkt Tout Rx2	Interrupt Packet Timeout (receive queue 2) Transfer from XMACII is hanging	ne	value	0
27	IRQ Pkt Tout Tx1	Interrupt Packet Timeout (transmit queue 1) Transfer from XMACII is hanging	ne	value	0
26	IRQ Pkt Tout Tx2	Interrupt Packet Timeout (transmit queue 2) Transfer from XMACII is hanging	ne	value	0
25	IRQ I2C Ready	Interrupt on completion of I ² C transfer	ne	value	0

- 143 -

Bit	Name	Description	Write	Read	Reset (SW)
24	IRQ SW	Interrupt set by SW in control register	ne	value	0
	IRQ External Reg.	Interrupt from external register	ne	value	0
23		This external interrupt line is connected to the interrupt out put of the voltage/tempera- ture sensor			
22	IRQ Timer	Interrupt timer	ne	value	0
21	IRQ MAC 1	Interrupt from MAC 1	ne	value	0
20	IRQ LINK_SYNC Counter MAC 1	Interrupt LINK_SYNC counter wrapped (MAC 1)	ne	value	0
19	IRQ MAC 2	Interrupt from MAC 2	ne	value	0
18	IRQ LINK_SYNC Counter MAC 2	Interrupt LINK_SYNC counter wrapped (MAC 2)	ne	value	0
17	IRQ EOB Rx 1	Interrupt End Of Buffer (receive queue 1)	ne	value	0
16	IRQ EOF Rx 1	Interrupt End Of Frame (receive queue 1)	ne	value	0
15	IRQ CHCK Rx 1	Interrupt coding error of descriptor (receive queue 1)	ne	value	0
14	IRQ EOB Rx 2	Interrupt End Of Buffer (receive queue 2)	ne	value	0
13	IRQ EOF Rx 2	Interrupt End Of Frame (receive queue 2)	ne	value	0
10	IRQ CHCK Rx 2	Interrupt coding error of descriptor	ne	value	0
١Z		(receive queue 2)			
11	IRQ EOB s. TX 1	Interrupt End Of Buffer (synchronous trans- mit queue 1)	ne	value	0
10	IRQ EOF s. TX 1	Interrupt End Of Frame (synchronous trans- mit queue 1)	ne	value	0

Bit	Name	Description	Write	Read	Reset (SW)
0	IRQ CHCK s. TX 1	Interrupt coding error of descriptor	ne	value	0
9		(synchronous transmit queue 1)			
8	IRQ EOB as. TX 1	Interrupt End Of Buffer (asynchronous trans- mit queue 1)	ne	value	0
7	IRQ EOF as. TX 1	Interrupt End Of Frame (asynchronous transmit queue 1)	ne	value	0
6	IRQ CHCK as. TX 1	Interrupt coding error of descriptor	ne	value	0
0		(asynchronous transmit queue 1)			
5	IRQ EOB s. TX 2	Interrupt End Of Buffer (synchronous trans- mit queue 2)	ne	value	0
4	IRQ EOF s. TX 2	Interrupt End Of Frame (synchronous trans- mit queue 2)	ne	value	0
з	IRQ CHCK s. TX 2	Interrupt coding error of descriptor	ne	value	0
5		(synchronous transmit queue 2)			
2	IRQ EOB as. TX 2	Interrupt End Of Buffer (asynchronous trans- mit queue 2)	ne	value	0
1	IRQ EOF as. TX 2	Interrupt End Of Frame (asynchronous transmit queue 2)	ne	value	0
0	IRQ CHCK as. TX 2	Interrupt coding error of descriptor (asynchronous transmit queue 2)	ne	value	0

Bit	Name	Description	Write	Read	Reset (SW)
	Interrup	t HW Error Source Register			
31:12	Reserved				
11	IRQ Master Error	Interrupt master error detected on master accesses	ne	value	0
		Set, if DATAPERR , RTABORT or RM- ABORT are set.			
	IRQ Status	Interrupt status exception	ne	value	0
10		Set, if PERR, RMABORT, RTABORT or DATAPERR are set.			
	IRQ No Status MAC 1	Interrupt No receive Status from MAC 1	ne	value	0
9		Set, if Status Valid is not set (see receive descriptor)			
	IRQ No Status MAC 2	Interrupt No receive Status from MAC 2	ne	value	0
8		Set, if Status Valid is not set (see receive descriptor)			
	IRQ No Timestamp	Interrupt No receive Status from MAC 1	ne	value	0
7	MAC 1	Set, if Time Stamp Valid is not set (see receive descriptor)			
	IRQ No Timestamp	Interrupt No receive Status from MAC 2	ne	value	0
6	MAC 2	Set, if Time Stamp Valid is not set (see Receive descriptor)			
F	IRQ PAR Rd Ram	Interrupt Parity error/RAM Interface, on Read	ne	value	0
5		This interrupt is intended to indicate a panic event (hardware fault)			
Α	IRQ PAR Wr Ram	Interrupt Parity error/RAM Interface, on Write	ne	value	0
4		This interrupt is intended to indicate a panic event (hardware fault)			
	IRQ Par MAC 1	Interrupt Parity error/MAC 1	ne	value	0
3		This interrupt is intended to indicate a panic event (hardware fault)			

Bit	Name	Description	Write	Read	Reset (SW)
_	IRQ Par MAC 2	Interrupt Parity error/MAC 2	ne	value	0
2		This interrupt is intended to indicate a panic event (hardware fault)			
	IRQ PAR Rx 1	Interrupt Parity error (receive queue 1)	ne	value	0
1		This interrupt is intended to indicate a panic event (hardware fault)			
0	IRQ PAR Rx 2	Interrupt Parity Error (receive queue 2)	ne	value	0
		This interrupt is intended to indicate a panic event (hardware fault)			

12.1.5 Interrupt Mask Registers Each bit position defines whether the dedicated interrupt is propagated to the interrupt line INTA#.

The enable bits have the same bit positions as in the $\ensuremath{\text{Interrupt Source}}$ Registers.

If set to ONE, interrupt is enabled.

See also "Special Interrupt Source Register ".

Bit	Name	Description	Write	Read	Reset (SW)
	In	Interrupt Mask Register			
31:0	En IRQ xxx	Enable Interrupt xxx	yes	aw	0

12.1.6	Special Interrupt Source Register	This register is mirroring the Interrupt Source Register with special func- tionality adapted to typical software handling.
		If the interrupt line INTA# is asserted, the read value is the same as in the Interrupt Source Register . If the interrupt line INTA# is NOT asserted, the read value is 0. If the interrupt line INTA# is asserted, reading the Special Interrupt Source Register clears the Interrupt Mask Register (NOT the Interrupt HW Error Mask Register). As a result the interrupt line INTA# is deasserted.
		Bit positions are the same as in the Interrupt Source Register.

12.1.7 Special Interrupt Mask Register

	Regiotor				
Bit	Name	Description	Write	Read	Reset (SW)
	Special Interrupt Mask Register				
31:0	IRQ xxx	Interrupt xxx Read clears the Interrupt Mask Register (NOT the Interrupt HW Error Mask Regis- ter). As a result the interrupt line INTA# is deasserted.	ne	value or 0	0

12.1.8 Interrupt Hardware Error Mask Register

Name	Description	Write	Read	Reset (SW)
Interrupt Hardware Error Mask Register				
En IRQ xxx	Enable Hardware Interrupt xxx	yes	aw	0
	Name Interrupt En IRQ xxx	Name Description Interrupt Hardware Error Mask Register En IRQ xxx Enable Hardware Interrupt xxx	NameDescriptionWriteInterrupt Hardware Error Mask RegisterEn IRQ xxxEnable Hardware Interrupt xxxyes	NameDescriptionWriteReadInterrupt Hardware Error Mask RegisterInterrupt Ardware Error Mask RegisterInterrupt Ardware Interrupt Ardware Interrupt ArdwareInterrupt Ardware Interrupt ArdwareEn IRQ xxxEnable Hardware Interrupt XXXYesaw

12.1.9 Interrupt Moderation Mask Registers

Each bit position defines, if the dedicated interrupt is moderated or propagated directly to the interrupt line INTA#. The enable bits have the same bit positions as in the Interrupt Source Registers.

If set to ONE , interrupt is moderated.

If set to ZERO, interrupt is propagated directly to the interrupt line INTA#.

Bit	Name	Description	Write	Read	Reset (SW)
	Interrup	Interrupt Moderation Mask Register			
31:0	En Mod IRQ xxx	Enable moderation interrupt xxx	yes	aw	0

Bit	Name	Description	Write	Read	Reset (SW)
	Interrupt Hardware Error Moderation Mask Register				
31:0	En Mod IRQ xxx	Enable Moderation Hardware Interrupt xxx	yes	aw	0

12.1.10 IRQ Moderation Timer (IM is an abbreviation for Interrupt Moderation) Registers

Bit	Name	Description	Write	Read	Reset (SW)
31:0	IRQ M	oderation Timer Init Value	yes	aw	0
31:0	I	RQ Moderation Timer	yes	value	0
	IRQ Moderation Timer Control/Test				
31:16	Reserved				
		Test			
15:11	Reserved				
10	IM Timer Test On		exec	0b10	0
9	IM Timer Test Off		exec	0b01	1
8	IM Timer Step	Timer decrement	exec	0	
		Control			
7:3	Reserved				
2	IM Timer Start	Start/Stap Timer	ovoc	0b10	0
1	IM Timer Stop		EXEC	0b01	1
0	Reserved				

The IRQ moderation timer implements write posting and retries the following accesses to the interrupt moderation timer while a posted write is in progress. Target reads are retried until the addressed register is synchronized to PCI Clock.

12.1.11 MAC-Address Registers | These registers are holding the MAC Address.

They are loaded at POWER ON RESET from the Flash EPROM. They may be written in testmode.

Bit	Name	Description	Write	Read	Reset (HW)
MAC-Address Registers					
31:16	Reserved				
15:8	MAC<5>	Mac-Address, Byte 5	ne	value	0
7:0	MAC<4>	Mac-Address, Byte 4	ne	value	0
31:24	MAC<3>	Mac-Address, Byte 3	ne	value	0
23:16	MAC<2>	Mac-Address, Byte 2	ne	value	0
15:8	MAC<1>	Mac-Address, Byte 1	ne	value	0
7:0	MAC<0>	Mac-Address, Byte 0	ne	value	0

12.1.12 Interface Type Register

This register is holding the type of interface.

It is loaded at POWER ON RESET from the Flash EPROM. They may be written in testmode.

Bit	Name	Description	Write	Read	Reset (HW)
Interface Type Register					
31:24	Chip Revision	Initial Revision is 0x0a Fixed Value	ne	0x0a	
	Configuration				
23:18	Reserved				

Bit	Name	Description	Write	Read	Reset (HW)
		Disable clocks for 2nd MAC	ne	value	0
		1= disable			
17	Dis DL Clocks	0= enable			
		(Default MUST be "enable" guaranteeing clocks at POWER ON RESET)			
		MAC configuration flag	ne	value	0
		1= no 2nd MAC available			
16	Single MAC	0= 2nd MAC available			
		Single MAC is for software purposes only			
15:8	PMD	PMD Type	ne	value	0
7:0	Connector	Connector Type	ne	value	0

The following values for PMD type encoding are defined by SysKonnect. Not all types PMDs are available for the current version of the "**SK-NET GENESIS** <**x**>" network interface card)

PMD type	Code letter	ASCII	Description
1000Base-LX	L	0x4c	long wavelength laser
1000Base-SX	S	0x53	short wavelength laser
1000Base-CX	C	0x43	short copper jumpers
1000Base-T	Т	0x54	4-pair UTP Cat.5
undefined (SK proprietar	ry)	0x00	not specified

•

:The various connector types are encoded as shown in the following table. (Not all these connector types are in use with the **"SK-NET GENESIS <x>"** network interface card):

Connector type	Code letter	ASCII	Short Name
Duplex SC type MIC	С	0x43	Duplex-SC
Shielded D-Sub MIC	D	0x44	D-Sub
Shielded ANSI Fiber Channel connector style 2	F	0x46	FC S2
UTP MIC	J	0x4a	UTP
undefined / all others (SK proprietary)		0x00	unknown

12.1.13 Flash EPROM Registers

These registers are holding optional information. They are loaded at PO-WER ON RESET from the Flash EPROM. They may be written in testmode

Bit	Name	Description	Write	Read	Reset (HW)
EPROM Registers					
31:24	Eprom<3>	EPROM, Byte 3	ne	value	0
23:16	Eprom<2>	EPROM, Byte 2	ne	value	0
15:8	Eprom<1>	EPROM, Byte 1	ne	value	0
7:0	Eprom<0>	EPROM, Byte 0	ne	value	0

Flash EPROM Register <0> EPROM <0> is used for the encoding of the mounted external buffer memory. The following values are assigned:

Value	External Memory	Offset ¹ for RAMbuffer Addressing	Mount Options			
EPROM Register <0>						
0x01	512 KBytes	0x0	64KBytes SRAMs			

Value	External Memory	Offset ¹ for RAMbuffer Addressing	Mount Options
0x02	1024 KBytes	0x0	128KBytes SRAMs
0x03	1024 KBytes	0x80000	64KBytes SRAMs
0x04	2048 KBytes	0x0	128KBytes SRAMs

1. Offset is counted in multiples of bytes

12.1.14 EPROM Address Register/Counter

Bit	Name	Description	Write	Read	Reset (HW)
	EPROM Address Register/Counter				
31:17	Reserved				
16:0	Address Regis- ter/Counter	Defines 17-bit Flash EPROM address	yes	aw	0x1ffff
	EPRO	M Data Register			
31:24	Reserved				
23:16	Reserved				
15:8	Reserved				
7:0	Data Port	Programming EPROM data port	exec	value	0
	EPROM Loa	ader Control Register			
31:16	Reserved				
		Test			
15:12	Reserved				
11	Loader Test On	Testmode On/Off	exec	0b10	0
10	Loader Test Off			0b01	1
9	Loader Step	Decrement EPROM Address Counter.	exec	0	0
8	Loader Start	Starts loading of Flash EPROM at the loca- tion defined by the Address Register .	exec	0	0

- 153 -

Bit	Name	Description	Write	Read	Reset (HW)
	· · · · · · · · · · · · · · · · · · ·				
		Control			
7:0	Reserved				

12.1.15 Timer Registers

Bit	Name	Description	Write	Read	Reset (SW)
31:0		Timer Init Value	yes	aw	0
31:0	Timer		yes (for tests only)	value	0
	Timer Control/Test				
31:16	Reserved				
		Test			
15:11	Reserved				
10	Timer Test On		exec	0b10	0
9	Timer Test Off		exec	0b01	1
8	Timer Step	Timer decrement	exec	0	
		Control			
7:3	Reserved				
2	Timer Start	Start/Stop timer	oxoc	0b10	0
1	Timer Stop	Start/Stop timer exe	exec	0b01	1
0	Timer Clear IRQ	Clear timer interrupt	exec	0	

The timer implements write posting and retries the following accesses to the timer while a posted write is in progress. Target reads are retried until the addressed register is synchronized to PCI Clock.

12.1.16 Test Control Registers

Bit	Name	Description	Write	Read	Reset (SW)
	Test Control Register 1 / Commands				
7	Force DataPERR Master Read	Simulate data parity error on PAR on next master read access	exec	0	0
6	Force DataPERR Master Write	Generate data parity error on PAR on next master write access	exec	0	0
5	Force DataPERR Target Read	Generate data parity error on PAR on next target read access	exec	0	0
4	Force DataPERR Target Write	Simulate data parity error on PAR on this target write access	exec	0	0
3	Force AddrPERR Master	Generate address parity error on PAR on first address phase of next master access	exec	0	0
2	Force AddrPERR Target	Simulate address parity error on next target access	exec	0	0
1	En Config Write On	Enables write accesses to the Configura-	exec	0b10	0
0	En Config Write Off	File.		0b01	1

Bit	Name	Description	Write	Read	Reset (SW)
Test Control Register 2 / Commands					
7:4	Reserved				
3	Force DataPERR Master Read 64	Simulate data parity error on PAR64 on next master read access	exec	0	0

Bit	Name	Description	Write	Read	Reset (SW)		
2	Force DataPERR Master Write 64	Generate data parity error on PAR64 on next master write access	exec	0	0		
1	Force AddrPERR Master 64	Generate address parity error on PAR64 on first address phase of next master Dual Address Cycle	exec	0	0		
0	Force AddrPERR Master 2nd	Generate address parity error on PAR on second address phase of next master Dual Address Cycle	exec	0	0		
The commands for forcing parity errors are executed once on the same of next access. Status bits are set and interrupts are generated as defined by PCI and/or the related description in this document. Any output parity errors generated by the network interface card (master address, master write data, target read data) can cause reactions from the target (SERR#, PERR#), which may cause the system to halt. diag nostic software has to keep this in mind. Any input parity errors detected by the network interface card (target ad dress, master read data, target write data) will cause the assertion of PERR# or SERR#, if enabled, and the setting of the appropriate bits in the Config Status Register by the network interface card. To avoid all unnecessary system hang, the assertion of PERR# and SERR# by the network interface card is suppressed, when executing one of these commands. The maintain system integrity the diagnostic software must reset the correct sponding config status bits after each simulated parity error. Handle with care.							
12.1.17	General Purpose I/O Registers	For further extension the General Purpose I/O Pins are routed to the General Purpose Registers. These I/Os are programmable as inputs or outputs					

Bit	Name	Description	Write	Read	Reset value
31:26	Reserved				

Bit	Name	Description	Write	Read	Reset value
25:16	GPIO Dir<9:0>	Defines the type of the General Purpose I/O Pins. 1 = output 0 = input	yes	aw	0
15:10	Reserved				
9:0	GPIO<9:0>	These bits are routed to the ASIC's pins for future external options. As output they are synchronous to PCI CLK, As input they are synchronized to PCI CLK.	yes	aw	0

12.1.18 I²C (HW) Registers

Bit	Name	Description	Write	Read	Reset value
		² C (HW) Control Register			
		Starts the I ² C data transfers, determines its direction and signals its completion by being toggled by HW.	exec	value	0
31	Flag	If written 1, a I ² C write is started, will be set to 0 after completion.			
		If written 0, a I ² C read is started, will be set to 1 after completion.			
		Generates an interrupt on completion.			
30:16	I2C Address	Address of the I ² C device register to be written / read.	yes	aw	0x00
15:9	I2C Devsel	Devsel Byte of the I ² C device to be written / read.	yes	aw	0x00
8:5	Reserved				
		0 = single Byte transfers	yes	aw	0
4	I2C Burst	1 = 4 Byte Page Mode write transfers with fixed page size of 8 Bytes assumed			

Bit	Name	Description	Write	Read	Reset value
3:1	I2C Device Size	Defines the size of the addressed I^2C Device in Bytes. 0 = 256 Bytes and smaller 1 = 512 Bytes 2 = 1024 Bytes 3 = 2048 Bytes 4 = 4096 Bytes 5 = 8192 Bytes 6 = 16384 Bytes 7 = 32768 Bytes Default value is 256 Bytes.	yes	aw	0x00
0	I2C Stop	If written 1, interrupts the current I^2C transfer at the next byte boundary with a stop condi- tion and signals end of I^2C transfer by toggling Flag .	exec	0	0
		I2C (HW) Data Register			
31:0	I2C Data	Must be written before I^2C Address Register for I^2C write. Contains I^2C read Data after completion of I^2C read.	yes	aw	0x00
	I2C (HW) IRQ Register				
31:1	Reserved				
0	Clear IRQ I2C	Clears Interrupt Request from I ² C HW interface	exec	0	0

This registers are implementing a serial standard I^2C interface to the optional temperature/voltage sensor. HW runs the 100kHz serial I^2C protocol to obtain data.

The HW controlled I²C interface and the SW controlled I²C interface are connected to the same I²C bus (Pins VPD_DATA and VPD_Clock). They **MUST NOT** be used in parallel.

If the SW controlled I^2C interface is used, the **I2C (SW) Register** has to be set to inactive values (Reset values).

If the HW controlled I^2C interface is used, the SW controlled I^2C interface MUST NOT be started (**FLAG/I2C (SW) Register**).

The I²C clock and data port pins are pulled high by a pull up resistor to VCC of the I²C device.

12.1.19 I²C (SW) Register

Bit	Name	Description	Write	Read	Reset (SW)
I ² C (SW) Register					
31:3	Reserved				
2	I2C Data Dir	Defines direction of I ² C Data Port: 0 = Input 1 = Output set to	yes	aw	0
1	I2C Data	I ² C Interface Data Port	yes	dir=0: value dir=1: aw	0
0	I2C Clock	I ² C Interface clock	yes	aw	1

This register implements a serial standard I²C interface to the optional temperature/voltage sensor. Software has to run the serial I²C protocol to obtain data.

As output, the **Data Port** must simulate an open collector output in order to obtain a 0.7Vcc signal level at the I^2C device (if supplied with 5V).

Driving to low level:	I2C Data = 0
	I2C Data Dir = 1
Floating to high level:	I2C Data = x
	I2C Data Dir = 0

The hardware controlled I^2C interface and the software controlled I^2C interface are connected to the same I^2C bus (Pins I2C DATA and I2C Clock). They **MUST NOT** be used in parallel.

If the software controlled I²C interface is used, the **I2C (SW) Register** has to be set to inactive values (Reset values).

If the Hardware controlled I^2C interface is used, the software controlled I^2C interface MUST NOT be started (**FLAG/I2C (SW) Register**).

The I²C clock and data port pins are pulled high by a pull up resistor to VCC of the I²C device.

Note: The VPD-Interface come's with another dedicated I²C interface.

12.1.20 RAM Random Registers
 The RAM random register is provided for test purposes. Test-, diagnosis software may use the RAM random register to access data in the external memory.

 Depending on the mounted SRAMs an offset different from 0x00 must be added to the RAM address. See section Flash EPROM Register <0> on page 152.

	Bit	Name	Description	Write	Read	Reset (SW)
			RAM Address			
	31:19	Reserved				
	18:0	Ram Address	Defines RAM address in 64-bit words.	yes	aw	0
		1	1	1		
		Data Port/lower dword	Dataport/lower 32-bit word for exchange of read/write data.	yes	value exec	0
	31:0		On a PCI read access, reading from RAM to the data ports is initiated.			
			The initiating PCI access and subsequent accesses are retried on PCI while reading from RAM			
		Data Port/upper dword	Dataport/upper 32-bit word for exchange of read/write data.	yes exec	value	0
	31:0		On a PCI write access, writing to RAM from the data ports is initiated.			
			Subsequent PCI accesses are retried on PCI while writing to RAM			
12	.1.21 RA	M Interface Registers	The timeout values are limiting the burst length	n of data	transfers	s for each
			Default values must be used.			

Bit	Name	Description	Write	Read	Reset (pri- vate)
	T				
31:24	Timeout Init Value 3	Read state machine receive queue1	yes	aw	32
23:16	Timeout Init Value 2	Write state machine synchronous transmit queue 1	yes	aw	32
15:8	Timeout Init Value 1	Write state machine asynchronous transmit queue1	yes	aw	32
7:0	Timeout Init Value 0	Write state machine receive queue1	yes	aw	32
	Т	meout init Values 4 - 7			
31:24	Timeout Init Value 7	Write state machine asynchronous transmit queue 2	yes	aw	32
23:16	Timeout Init Value 6	Write state machine receive queue2	yes	aw	32
15:8	Timeout Init Value 5	Read state machine synchronous transmit queues1	yes	aw	32
7:0	Timeout Init Value 4	Read state machine asynchronous transmit queue 1	yes	aw	32
	Tiı				
31:24	Timeout Init Value 11	Read state machine synchronous transmit queue 2	yes	aw	32
23:16	Timeout Init Value 10	Read state machine asynchronous transmit queue 2	yes	aw	32
15:8	Timeout Init Value 9	Read state machine receive queue 2	yes	aw	32
7:0	Timeout Init Value 8	Write state machine synchronous transmit queue 2	yes	aw	32
		Timeout Timer			
31:8	Reserved				
7:0	Timeout Timer		yes (for tests only)	value	0
	RAM	Interface Control/Test			

- 161 -

Bit	Name	Description	Write	Read	Reset (pri- vate)
		Test			
31:20	Reserved				
19	Timeout	= 1, if Timeout timer = 0	ne	value	1
18	Timeout Timer Test On	Tostmodo ON/OEE	0.000	0b10	0
17	Timeout Timer Test Off		exec	0b01	1
16	Timeout Timer Step	Timer decrement	exec	0	
		Control			
15:10	Reserved				
9	Clear IRQ PAR Rd Ram	Clear Parity error on read interrupt	exec	0	
8	Clear IRQ PAR Wr Ram	Clear Parity error on write interrupt	exec	0	
7:2	Reserved				
1	Reset Clear	Set/Clear Reset.		0b10	0
		executed, if appropriate bit is set to 1.		0b01	1 (SW)
0	Depart Set	and registers are in their reset state.	exec		
	Reset Set	Reset is forwarded to the RAM Random Access Device in order to avoid a hangup on a target access while the RAM interface is resetted.			

Bit	Name	Description	Write	Read	Reset (SW)
31:0	Blink Source Counter Init Value			aw	0x1dc d650 = 500 ms
31:0	Blink Source Counter			value	0
	Blink Source	ce Counter Control/Status//Test			
		Test			
31:19	Reserved				
18	Blink Source Coun- ter Test On	Taatmada ON/OEE	01/00	0b10	0
17	Blink Source Coun- ter Test Off		exec	0b01	1
16	Blink Source Coun- ter Step	Blink Source Counter decrement	exec	0	
		Status			
15:9	Reserved				
8	Blink Source		ne	value	0
		Control			
7:2	Reserved				
1	Blink Source Coun- ter Start	Start/Stop Blink Source Counter	0200	0b10	0
0	Blink Source Coun- ter Stop		EXEC	0b01	1

The Blink Source implements write posting and retries the following accesses to the Blink Source while a posted write is in progress.

Target reads are retried until the addressed register is synchronized to PCI Clock.

12.1.23 Link LED Register

Bit	Name	Description	Write	Read	Reset (SW)
Link LED Register					
7:6	Reserved				
5	Blinking On		exec	0b10	0
4	Blinking Off			0b01	1
3	LINK_SYNC On			0b10	0
2	LINK_SYNC Off	Controls the mode of the Link LED	exec	0b01	1
1	LED On	(Truthtable see "LEDs")		0b10	0
0	LED Off	-	exec	0b01	1

12.1.24 Transmit Arbiter Registers

Bit	Name	Description	Write	Read	Reset (SW)
	I				
31:24	Reserved				
23:0	Interval Timer Init Value	Number of clock cycles as time interval for rate control.	yes	aw	0
		Interval Timer			
31:24	Reserved				
23:0	Interval Timer		yes	aw	0
	Li	mit Counter Init Value			
31:24	Reserved				

Bit	Name	Description	Write	Read	Reset (SW)
23:0	Limit Counter Init Value	Number of transfer cycles to MAC FIFO in time interval	yes	aw	0
		Limit Counter			
31:24	Reserved				
23:0	Limit Counter		yes	aw	0
	Timer/C	Counter Control/Status/Test			
		Status			
31:17	Reserved				
16	Priority/Sync. Ram- buffer	Set, as long as limit counter is not ZERO or if Force Sync On is set	ne	value	0
		Test			
15:14	Reserved				
13	Interval Timer Test On	Testmode ON/OFF		0b10	0
12	Interval Timer Test Off		exec	0b01	1
11	Interval Timer Step	Timer decrement	exec	0	
10	Limit Counter Test On			0b10	0
9	Limit Counter Test Off	lestmode ON/OFF	exec	0b01	1
8	Limit Counter Step	Counter decrement	exec	0	
		Control			
7	Force Sync On	If On, the Sync RAMbuffer gets highest pri-	exec	0b10	0
6	Force Sync Off	ority ignoring the timer and counter	ENEC	0b01	1
5	En Alloc	Enable/disable allocation of free bandwidth		0b10	0
4	Dis Alloc		exec	0b01	1

Bit	Name	Description	Write	Read	Reset (SW)
3	Rate Control Start	Starts/stops rate control (running timer and	evec	0b10	0
2	Rate Control Stop	counter)	exec	0b01	1
1	Arbiter Operational On	Operational mode ON/OFF		0b10	0
0	Arbiter Operational Off	Has to be set to OFF until all other devices are initialized	exec	0b01	1

12.1.25 Packet Arbiter Registers

Name	Description	Write	Read	Reset (pri- vate)
Ti	meout Values			
1	Fimeout Init Value Rx1			
Reserved				
Timeout Init Value		yes	aw	0
٦	Fimeout Init Value Rx2			
Reserved				
Timeout Init Value		yes	aw	0
٦	Fimeout Init Value Tx1			
Reserved				
Timeout Init Value		yes	aw	0
٦	Fimeout Init Value Tx2			
Reserved				
Timeout Init Value		yes	aw	0
Ti	meout Timers			
	Timeout Timer Rx1			
Reserved				
	Name	NameDescriptionImeout ValuesImeout Init Value Rx1ReservedImeout Init Value Rx2ReservedImeout Init Value Rx2ReservedImeout Init Value Rx2ReservedImeout Init Value Tx1ReservedImeout Init Value Tx1ReservedImeout Init Value Tx2ReservedImeout Imer TimersReservedImeout Imer Rx1ReservedImeout Imer Rx1	NameDescriptionWriteTimeout ValuesTimeout Init Value Rx1ReservedyesTimeout Init ValueyesReservedTimeout Init ValueyesReservedyesTimeout Init ValueyesTimeout Init ValueyesReservedyesTimeout Init ValueyesReservedyesTimeout Init Value Tx1yesReservedyesTimeout Init ValueyesTimeout Init ValueyesReservedyesTimeout Init ValueyesReservedyesTimeout Init Value Tx2yesReservedyesTimeout Init ValueyesTimeout Init ValueyesReservedyesTimeout Init ValueyesReservedyesTimeout TimersyesReservedyesTimeout Timer Rx1YesReservedyesTimeout Init ValueyesTimeout Init ValueyesTimeout Timer Rx1YesReservedYesTimeout Init ValueYesTimeout Init ValueYesTimeout Init YesYesTimeout Init Yes	NameDescriptionWriteReadTimeout Values///////////////////////////////

Bit	Name	Description	Write	Read	Reset (pri- vate)
15:0	Timeout Timer		yes (for tests only)	value	0
		Timeout Timer Rx2			
31:16	Reserved				
15:0	Timeout Timer		yes (for tests only)	value	0
		Timeout Timer Tx1			
31:16	Reserved				
15:0	Timeout Timer		yes (for tests only)	value	0
		Timeout Timer Tx2			
31:16	Reserved				
15:0	Timeout Timer		yes (for tests only)	value	0
	Pac	ket Arbiter Control/Test			
		Test			
31	Reserved		ne	value	1
30	Timeout Timer Tx2 Test On	Testmode ON/OEE	0200	0b10	0
29	Timeout Timer Tx2 Test Off		EXEC	0b01	1
28	Timeout Timer Tx2 Step	Timer decrement	exec	0	
27	Reserved		ne	value	1

Bit	Name	Description	Write	Read	Reset (pri- vate)
26	Timeout Timer Tx1 Test On	Testmode ON/OFF	0.400	0b10	0
25	Timeout Timer Tx1 Test Off		exec	0b01	1
24	Timeout Timer Tx1 Step	Timer decrement	exec	0	
23	Reserved		ne	value	1
22	Timeout Timer Rx2 Test On			0b10	0
21	Timeout Timer Rx2 Test Off		exec	0b01	1
20	Timeout Timer Rx2 Step	Timer decrement	exec	0	
19	Reserved		ne	value	1
18	Timeout Timer Rx1 Test On	Testmode ON/OFF	0,400	0b10	0
17	Timeout Timer Rx1 Test Off		exec	0b01	1
16	Timeout Timer Rx1 Step	Timer decrement	exec	0	
		Control			
15:14	Reserved				
13	Cir IRQ Pkt Tout Tx2	Clear Interrupt Packet Timeout transmit queue 2	exec	0	0
12	Clr IRQ Pkt Tout Tx1	Clear Interrupt Packet Timeout transmit queue 1	exec	0	0
11	Clr IRQ Pkt Tout Rx2	Clear Interrupt Packet Timeout receive queue 2	exec	0	0
10	Cir IRQ Pkt Tout Rx1	Clear Interrupt Packet Timeout receive queue 1	exec	0	0

Bit	Name	Description	Write	Read	Reset (pri- vate)
9	En Timeout Tx2 On	Enable Timeout Timer transmit queue 2	01/00	0b10	0
8	En Timeout Tx2 Off	executed, if appropriate bit is set to 1.	exec	0b01	1
7	En Timeout Tx1 On	Enable Timeout Timer transmit queue 1		0b10	0
6	En Timeout Tx1 Off	executed, if appropriate bit is set to 1.	exec	0b01	1
5	En Timeout Rx2 On	Enable Timeout Timer receive queue 2	01/00	0b10	0
4	En Timeout Rx2 Off	executed, if appropriate bit is set to 1.	exec	0b01	1
3	En Timeout Rx1 On	Enable Timeout Timer receive queue 1	01/00	0b10	0
2	En Timeout Rx1 Off	executed, if appropriate bit is set to 1	exec	0b01	1
1	Reset Clear	Set/Clear Reset.		0b10	0
0	Reset Set	 executed, if appropriate bit is set to 1. If Reset is set, all MAC Arbiter functions and registers are in their reset state. 	exec	0b01	1 (SW)

12.1.26 LINK_SYNC Registers

Bit	Name	Description	Write	Read	Reset (SW)
31:0	LINK	SYNC Counter Init Value	yes	aw	0
31:0		LINK_SYNC Counter	yes (for tests only)	value	0
	LII	NK_SYNC Counter/Test			

- 169 -

Bit	Name	Description	Write	Read	Reset (SW)
31:16	Reserved				
		Test			
15:11	Reserved				
10	LINK_SYNC Counter Test On	Tostmodo ON/OEE	0200	0b10	0
9	LINK_SYNC Counter Off		0b01	1	
8	LINK_SYNC Counter Step	Counter decrement	exec	0	
		Control			
7:3	Reserved				
2	LINK_SYNC Counter Start	Start/Stan Countar	0,400	0b10	0
1	LINK_SYNC Counter Stop		exec	0b01	1
0	LINK_SYNC Counter Clear IRQ	Clear Counter Interrupt	exec	0	

12.1.27 Rx LED Registers

Bit	Name	Description	Write	Read	Reset (SW)
31:0	Rx	LED Counter Init Value	yes	aw	0x2faf 08 = 50ms
31:0		Rx LED Counter	yes (for tests only)	value	0
		Rx LED Counter/Test			
31:16	Reserved				
Bit	Name	Description	Write	Read	Reset (SW)
-------	---------------------------	--------------------	-------	-------	---------------
		Test			
15:11	Reserved				
10	Rx LED Counter Test On	Testmode ON/OFF	exec	0b10	0
9	Rx LED Counter Off			0b01	1
8	Rx LED Counter Step	Counter decrement	exec	0	
		Control			
7:3	Reserved				
2	Rx LED Counter Start	Start/Stop Counter	exec	0b10	0
1	Rx LED Counter Stop			0b01	1
0	Rx LED	=1, if switched on	ne	value	0

12.1.28 Tx LED Registers

Bit	Name	Description	Write	Read	Reset (SW)
31:0	Tx LED Counter Init Value		yes	aw	0x2faf 08 = 50ms
31:0	Tx LED Counter		yes (for tests only)	value	0
	Tx LED Counter/Test				
31:16	Reserved				
		Test			
15:11	Reserved				

- 171 -

Bit	Name	Description	Write	Read	Reset (SW)
10	Tx LED Counter Test On	Testmode ON/OFF ex	exec	0b10	0
9	Tx LED Counter Off			0b01	1
8	Tx LED Counter Step	Counter decrement	exec	0	
		Control			
7:3	Reserved				
2	Tx LED Counter Start	Start/Stop Counter	exec	0b10	0
1	Tx LED Counter Stop			0b01	1
0	Tx LED	=1, if switched on	ne	value	0

12.1.29 External Registers	For use in other applications where a second external device has to be accessed, an external Chip Select*/Ready*/IRQ* interface is implemented. This device may be an 8-bit or 16-bit device. 32 16-bit Register locations are mapped in a subsequent range on 32-bit word boundaries.
	The External Registers interface implements write posting. Target reads are retried until the addressed register is synchronized to PCI Clock.
	For resetting the external device it may be connected to one of the XMACII Reset*'s .
	Read data has to be valid before Ready * is asserted, write data has to be sampled before Ready * is asserted.
	The external registers can be accessed with any width at 32-bit word boundaries. On the PCI side all accesses to the external device are com- pleted normally. Accesses without any byte enables asserted or only to the upper 16 bit (neither CBE<1># nor CBE<0># asserted) are treated like accesses to reserved locations (not forwarded to the External Regis- ters). Note that no byte enables are forwarded to the external registers. There- fore for all write cycles to the external registers all 16 bits are written.

Bit	Name	Description	Write	Read	Reset (SW)
		External Registers	ne, if not avail- able	0xffff, if not avail- able	
	Exampl	e External Register			
31:16	Reserved				
15:0	External Register <x></x>	External Register 16-bit location <x></x>	Exte	ernal dev datashee	rice's et
			ne, if not avail- able	0xffff, if not avail- able	
12.1.30 PCI Configuration Registers The configuration register file is mapped additionally into the control ister file. 11.1.30 PCI Configuration Registers The configuration register file is mapped additionally into the control ister file. 11.1.30 PCI Configuration Registers The configuration register file is mapped additionally into the control ister file. 11.1.30 PCI Configuration Registers It is read only with some exceptions: Our Register 1 and 2 and VPE dress and VPD Data Register may be written. Write operations are completed normally on the bus and the discarded. For testing purposes, the configuration register file may be set writate En Config Write. 12.1.31 Descriptor Poll Timer Registers The Poll Timer generates a periodical trigger signal for all BMUs set START xxx such initiating a descriptor read. This may be enabled for each BMU individually through En Polling i BMU's Control/Status Registers. BMU's Control/Status Registers.					ntrol reg- VPD Ad- the data ritable by Js setting ing in the

- 173 -

Bit	Name	Description	Write	Read	Reset (SW)
	Desc	riptor Poll Timer Init Value			
31:24	Reserved				
23:0		Init Value	yes	aw	0
		Descriptor Poll Timer			
31:24	Reserved				
23:0	Timer	Multiples of 18.825 ns Max = 315.83 ms	yes (for tests only)	value	0
	Timer Control/Test				
		Test			
31:19	Reserved				
18	Timer Test On		exec	0b10	0
17	Timer Test Off		exec	0b01	1
16	Timer Step	Timer decrement	exec	0	
15:8	Reserved				
		Control			
7:2	Reserved				
1	Timer Start	Start/Stop Timer	oxoc	0b10	0
0	Timer Stop	Start/Stop Limer	EXEC	0b01	1

The timer implements write posting and retries the following accesses to the timer while a posted write is in progress.

Target reads are retried until the addressed register is synchronized to PCI Clock.

12.1.32	BMU Registers	Each BMU is represented with a nearly identical set of registers.
		These registers are intended to be used for testing and diagnostic purpos- es, except the Control/Status Registers and Next/Current Receive Descriptor Address and Watermark for initialization.

Manipulating the content of these registers under 'normal' running conditions is not recommended and may lead to undefined results.

If the default values are acceptable, the **Watermark** should not be written (for future backward compatibility, if watermarks/FIFO depth are adapted).

The Watermark of the transmit queues MUST NOT BE SET to zero.

Bit	Name	Description	Write	Read	Reset (SW)	
	!	Receive Queue Registers				
31:0	Cur	rent Receive Descriptor		value		
31:0	-					
31:0			yes			
31:0			for			
31:0			tests			
31:0			only			
31:0						
31:0						
	-	Current Addresses and Counters				
31:0	Current Receiv	e Descriptor Address, lower dword	yes	value	0	
31:0	Next/Current Receive Descriptor Address, upper dword Upper 32 bits for all receive descriptor addresses in 64-bit addressing mode Should be set once at initialization time			value	0	
	<u> </u>					
31:0	Current Address Counter, lower dword Incrementing address for bus accesses			value	0	
31:0	Current Address Counter, upper dword Incrementing address for bus accesses		yes for tests	value	0	
	Current Byte Counter		only			
31:16	Reserved					
15:0	Byte Counter	Decrementing byte count for bus accesses		value	0	
Receive Queue Control/Status Register						

- 175 -

Bit	Name	Description	Write	Read	Reset (SW)
		Commands			
31:25	Reserved				
24	Supervisor Idle	Supervisor SM is in Idle state (see STOP)	ne	value	1
23:22	Reserved				
21	Reset Desc. Clear	Set/Clear Reset for Descriptors		0b10	0
20	Reset Desc. Set		exec	0b01	1
19	Reset FIFO Clear	Set/Clear Reset for FIFOs	01/00	0b10	0
18	Reset FIFO Set		exec	0b01	1
17	Run PFI SM	Reset SM to Idle/Release SM		0b10	0
16	Reset PFI SM		exec	0b01	1
15	Run Supervisor SM	Reset SM to Idle/Release SM		0b10	0
14	Reset Supervisor SM		exec	0b01	1
13	Run Desc. Read SM	Reset SM to Idle/Release SM		0b10	0
12	Reset Desc. Read SM		exec	0b01	1
11	Run Desc. Write SM	Reset SM to Idle/Release SM	0/00	0b10	0
10	Reset Desc. Write SM		exec	0b01	1
9	Run Transfer SM	Deast CM to July /Delagas AM		0b10	0
8	Reset Transfer SM	Reset SIM to Idle/Release AIM	exec	0b01	1
7	En Polling On	Enable/Disable polling of descriptors.		0b10	0
6	En Polling Off	If enabled, the periodically generated trigger pulse of the Descriptor Poll Timer starts the transfer of this Receive Queue (same as Start Rx). NOTE: After initialization or a successfully completed command Stop Rx , polling is started with the next command Start Rx .	exec	0b01	1

Bit	Name	Description	Write	Read	Reset (SW)		
	Stop Rx	Stop Transfer of Receive Queue	exec	0/1	0		
		Stops further reading of descriptors and transferring of data from the Receive Queue (clears internal flag Start RX and forces the Supervisor SM to Idle State).					
		An already running transfer of a receive frame is completed normally until EOF (in- cluding writing back the descriptor(s)), even if more than one descriptor/buffer are consumed.					
5		The read value is = 1 until stopping is completed.					
		NOTE : If there are not enough descriptors available for transferring until EOF, Stop Rx becomes not de-asserted.					
		This may be recognized be having Stop Rx set while the BMU is running out of descriptors before giving back EOF					
		or having both Stop Rx and Supervisor Idle					
		The only way to get out of this, is to re-issue further descriptors.					
4	Start Rx	Start Transfer of Receive Queue	exec	0	0		
3	Cir IRQ PAR	Clear Interrupt Parity	exec	0	0		
2	CIr IRQ EOB	Clear Interrupt EOB	exec	0	0		
1	Cir IRQ EOF	Clear Interrupt EOF	exec	0	0		
0	CIr IRQ ERR	Clear Interrupt ERR	exec	0	0		
		Receive Queue Flag Register		•			
31:28	Reserved						
27	Almost full	FIFO almost full	ne	value			
26	EOF in FIFO	Tag bit in FIFO	ne	value			
25	Watermark Reached	Watermark reached in FIFO	ne	value			
24	Reserved						
23:16	FIFO Level	Number of 64-bit words used in FIFO	ne	value			
	Receive Queue Watermark Register						

Bit	Name	Description	Write	Read	Reset (SW)
15:9	Reserved				
10:0	Watermark	Level for requesting data transfer in bytes	yes	aw	0x100
•		Receive Queue Test Register 1			•
		Supervisor SM			
31:28	Q<3:0>	States	:4	value	0
27	Load	Load States Q<3:0> if = 1, Q<3:0> are loaded to SM	Load	0	0
26	Test On		01/00	0b10	0
25	Test Off		exec	0b01	1
24	SM Step	Step SM	exec	0	
		Read Descriptor SM			
23:20	Q<3:0>	States	.,	value	0
19	Load	Load States Q<3:0> if = 1, Q<3:0> are loaded to SM	Load	0	0
18	Test On		exec	0b10	0
17	Test Off			0b01	1
16	SM Step	Step SM	exec	0	
		Write Descriptor SM			
15:12	Q<3:0>	States		value	0
11	Load	Load States Q<3:0> if = 1, Q<3:0> are loaded to SM	Load	0	0
10	Test On			0b10	0
9	Test Off		exec	0b01	1
8	SM Step	Step SM	exec	0	
		Transfer SM			
7:4	Q<3:0>	States	:4	value	0
3	Load	Load States Q<3:0> if = 1, Q<3:0> are loaded to SM	Load	0	0
2	Test On	Tastmada ON/OFF	exec	0b10	0
1	Test Off		exec	0b01	1

Bit	Name	Description	Write	Read	Reset (SW)
0	SM Step	Step SM	exec	0	
		Receive Queue Test Register 2			
31:8	Reserved				
7	Add. Counter Test On	Testmode On/Off	exec	0b10	0
6	Add. Counter Test Off			0b01	1
5	Byte Counter Test On	Testmode On/Off	exec	0b10	0
4	Byte Counter Test Off			0b01	1
3:0	Counter Step	Decrement Current Byte Counter and Cur- rent Address Counter by value represented by Counter Step<3:0>.	exec	0	0
		Receive Queue Test Register 3			
31:8	Reserved				
7	Reserved				
6:4	Mux<2:0>	Mux position	no	value	0
3	Reserved				
2:0	VRam<2:0>	Virtual RAM buffer address	yes	value	0

Bit	Name	Description	Write	Read	Reset (SW)					
Transmit Queue Registers										
31:0	Cur	rent Transmit Descriptor		value	0					
31:0										
31:0			yes							
31:0			for							
31:0			tests only							
31:0										
31:0										
		Current Addresses and Counters								

Bit	Name	Description	Write	Read	Reset (SW)
31:0	Current Transm	it Descriptor Address, lower dword	yes	value	0
31:0	Next/Current Trans Upper 32 bits for all trans mode Should be set once at ini	smit Descriptor Address, upper dword smit descriptor addresses in 64-bit addressing itialization time	yes	value	0
31:0	Current A Incremen	ddress Counter, lower dword ting address for bus accesses		value	0
31:0	Current A Incremen	ddress Counter, upper dword ting address for bus accesses	for		
	c	Current Byte Counter	tests only		
31:16	Reserved				
15:0	Byte Counter	Decrementing byte counter for bus accesses		value	0
	Tra	nsmit Queue Control/Status Register			
		Commands			
31:25	Reserved				
24	Supervisor Idle	Supervisor SM is in Idle state (see STOP)	ne	value	1
23:22	Reserved				
21	Reset Desc. Clear	Set/Clear Reset for Descriptors	ovoc	0b10	0
20	Reset Desc. Set		exec	0b01	1
19	Reset FIFO Clear	Set/Clear Reset for FIFOs	evec	0b10	0
18	Reset FIFO Set		enec	0b01	1
17	Run PFI SM	Reset SM to Idle/Release SM	ovoc	0b10	0
16	Reset PFI SM		exec	0b01	1
15	Run Supervisor SM	Poset SM to Idle/Polease SM	ovoc	0b10	0
14	Reset Supervisor SM	Reset Sivi to Idie/Release Sivi	exec	0b01	1
13	Run Desc. Read SM	Reset SM to Idle/Release SM	exec	0b10	0
12	Reset Desc. Read SM		ENEC	0b01	1
11	Run Desc. Write SM	Reset SM to Idle/Release SM	evec	0b10	0
10	Reset Desc. Write SM		CACC	0b01	1
9	Run Transfer SM	Poset SM to Idle/Polesso	exec	0b10	0
8	Reset Transfer SM		CAGU	0b01	1

Bit	Name	Description	Write	Read	Reset (SW)
7	En Polling On	Enable/Disable polling of descriptors.		0b10	0
6	En Polling Off	If enabled, the periodically generated trigger pulse of the Descriptor Poll Timer starts the transfer of this Transmit Queue (same as Start Tx). NOTE: After initialization or a successfully completed command Stop Tx , polling is started with the next command Start Tx .	exec	0b01	1
	Stop Tx	Stop Transfer of transmit queue	exec	0/1	0
		Stops further reading of descriptors and transferring of data to the Transmit Queue (clears internal Flag Start TX and forces the Supervisor SM to Idle State). An already running transfer of a transmit frame is completed normally until EOF (in- cluding writing back the descriptor(s)), even if more than one descriptor/buffer are consumed. The read value is = 1 until stopping is			
5		completed. NOTE : If there are not enough descriptors available for transferring until EOF, Stop Tx becomes not deasserted.			
		This may be recognized be having Stop Tx set while the BMU is running out of descriptors before giving back EOF			
		or having both Stop Tx and Supervisor Idle set.			
		The only way to get out of this, is to re-issue further descriptors.			
		In case of a transmit queue this MUST be avoided by launching complete transmit frames only because of the risk of a transmit underrun.			
4	Start Tx	Start Transfer of transmit queue	exec	0	0
3	Reserved				
2	Cir IRQ EOB	Clear Interrupt EOB	exec	0	0

Bit	Name	Description	Write	Read	Reset (SW)			
1	CIr IRQ EOF	Clear Interrupt EOF	exec	0	0			
0	CIr IRQ ERR	Clear Interrupt ERR	exec	0	0			
	Transmit Queue Flag Register							
31:28	Reserved							
27	Empty	FIFO empty	ne	value				
26	EOF in FIFO	EOF Flag in FIFO	ne	value				
25	Watermark reached	Watermark reached in FIFO	ne	value				
24	Reserved							
23:16	FIFO Level	Number of 64-bit words used in FIFO	ne	value				
	ſ	ransmit Queue Watermark Register						
15:9	Reserved							
10:0	Watermark	Level for requesting data transfer in bytes: Request, if space for n bytes in FIFO.	yes	aw	0x600			
		Transmit Queue Test Register 1						
		Supervisor SM						
31:28	Q<3:0>	States		value	0			
27	Load	Load States Q<3:0> if = 1, Q<3:0> are loaded to SM	Load	0	0			
26	Test On			0b10	0			
25	Test Off		exec	0b01	1			
24	SM Step	Step SM	exec	0				
		Read Descriptor SM						
23:20	Q<3:0>	States		value	0			
19	Load	Load States Q<3:0> if = 1, Q<3:0> are loaded to SM	Load	0	0			
18	Test On	Testmode ON/OFF	0.00	0b10	0			
17	Test Off		exec	0b01	1			
16	SM Step	Step SM	exec	0				
		Write Descriptor SM						

Bit	Name	Description	Write	Read	Reset (SW)
15:12	Q<3:0>	States		value	0
11	Load	Load States Q<3:0> if = 1, Q<3:0> are loaded to SM	Load	0	0
10	Test On	Tostmodo ON/OEE	0200	0b10	0
9	Test Off		exec	0b01	1
8	SM Step	Step SM	exec	0	
		Transfer SM			
7:4	Q<3:0>	States	:4	value	0
3	Load	Load States Q<3:0> if = 1, Q<3:0> are loaded to SM	Load	0	0
2	Test On	Testmode ON/OEE	ovoc	0b10	0
1	Test Off		exec	0b01	1
0	SM Step	Step SM	exec	0	
		Transmit Queue Test Register 2			
31:8	Reserved				
7	Add. Counter Test On	Testmode On/Off	exec	0b10	0
6	Add. Counter Test Off			0b01	1
5	Byte Counter Test On	Testmode On/Off	exec	0b10	0
4	Byte Counter Test Off			0b01	1
3:0	Counter Step	Decrement Current Byte Counter and Cur- rent Address Counter by value represented by Counter Step<3:0>.	exec	0	0
		Transmit Queue Test Register 3	•		
31:8	Reserved				
7	Reserved				
6:4	Mux<2:0>	Mux position	no	value	0
3	Reserved				
2:0	VRam<2:0>	Virtual RAM buffer address	yes	value	0

	Registers	set state.			
Bit	Name	Description	Write	Read	Reset (pri- vate)
	Receiv	e RAMbuffer Start Address			
31:19	Reserved				
18:0	Start Address	Start Address in 64-bit words of this queue in external memory. Bit [9:0] are replaced by Zero s internally, which means, that the address is limited to multiples of 8kB.	yes (for init/ tests only)	aw	0
		Has to be defined after each Reset.			
	Receiv	ve RAMbuffer End Address			
31:19	Reserved				
18:0	End Address	End Address in 64-bit words of this queue in external memory. Bit [9:0] are replaced by One s internally, which means, that the address is limited to multiples of 8kB.	yes (for init/ tests only)	aw	0
		Has to be defined after each Reset.			
	Rec	eive Buffer Write Pointer			
31:19	Reserved				
18:0	Write Pointer	Write Pointer in 64-bit words. Has to be set to Receive Rambuffer Start Address after each Reset.	yes (for init/ tests only)	value	0
	Recei	ve RAMbuffer Read Pointer			
31:19	Reserved				
18:0	Read Pointer	Read Pointer in 64-bit words Has to be set to Receive Rambuffer Start Address after each Reset.	yes (for init/ tests only)	value	0
	Receive RAMbu	ffer Upper Threshold/Pause Packets			

12.1.33 Receive RAMbuffer Initialization or re-arrangement of a RAMbuffer should ever start from re-**Registers** set state.

Bit	Name	Description	Write	Read	Reset (pri- vate)
31:19	Reserved				
18:0	Upper Threshold/ Pause Packets	If this queue is filled up to this Threshold, sig- nal XmtPausePkt of the related MAC is asserted (if En Pause is set). Multiples of 8 bytes. No effect, if set to ZERO.	yes (for init/ tests only)	aw	0
	Receive RAMbu	ffer Lower Threshold/Pause Packets			
31:19	Reserved				
18:0	Lower Threshold/ Pause Packets	Signal XmtPausePkt of the related MAC is deasserted, if the number of bytes is falling below Lower Threshold. Multiples of 8 bytes.	yes (for init/ tests only)	aw	0
	Receive RAMb	uffer Upper Threshold/High Priority			
31:19	Reserved				
18:0	Upper Thresh- old/High Priority	If this queue is filled up to this Threshold, all arbiters are granting highest priority to the requests of this queue. Multiples of 8 bytes. No effect, if set to ZERO.	yes (for init/ tests only)	aw	0
	Receive RAMb	uffer Lower Threshold/High Priority			
31:19	Reserved				
18:0	Lower Thresh- old/High Priority	All arbiters are granting normal priority to the requests of this queue, if the number of bytes is falling below Lower Threshold. Multiples of 8 bytes.	yes (for init/ tests only)	aw	0
	Receive	RAMbuffer Packet Counter			
31:19	Reserved				
18:0	Packet Counter	Packet Counter gives the actual number of packets in this queue.	yes (for tests only)	value	0
	Re	ceive RAMbuffer Level			
			1		

Bit	Name	Description	Write	Read	Reset (pri- vate)
31:19	Reserved				
18:0	Level	Level gives the actual number of data in mul- tiples of 8 bytes in this queue (including 16 bytes Statusword per packet).	ne	value	0
	Rece	ive RAMbuffer Control/Test			
		Test			
31:20	Reserved				
19	Packet Counter Step Down	Packet Counter decrement	exec	0	
18	Packet Counter Test On	Testmode ON/OFF	ovoc	0b10	0
17	Packet Counter Test Off		exec	0b01	1
16	Packet Counter Step Up	Packet Counter increment	exec	0	
15	Reserved				
14	Write Pointer Test On	Testmode ON/OFF		0b10	0
13	Write Pointer Test Off	For Testmode ON this RAMbuffer queue MUST be set to NON Operational	exec	0b01	1
12	Write Pointer Step	Write Pointer increment	exec	0	
11	Reserved				
10	Read Pointer Test On	Testmode ON/OFF		0b10	0
9	Read Pointer Test Off	For Testmode ON this RAMbuffer queue MUST be set to NON Operational	exec	0b01	1
8	Read Pointer Step	Read Pointer decrement	exec	0	
		Control/Status			
7:6	Reserved				

Bit	Name	Description	Write	Read	Reset (pri- vate)
5	St&Fwd On	Store and Forward On/Off		0b10	0
4	St&Fwd Off	If On, a frame is forwarded from RAMbuffer only, if the complete frame is in RAMbuffer.	exec	0b01	1
3	Operational On	Operational mode ON/OFF		0b10	0
2	Operational Off	OFF is resetting all activities of this RAM- buffer queue for initialization of the pointers and registers	exec	0b01	1
1	Reset Clear	Set/Clear Reset. executed, if appropriate bit is set to 1.		0b10	0 (SW)
0	Reset Set	If Reset is set, all Receive RAMbuffer func- tions and registers are in their reset state.	exec	0b01	1 (SW)

Transmit RAMbuffer Registers

Initialization or re-arrangement of a RAMbuffer should ever start from reset state.

Bit	Name	Description	Write	Read	Reset (pri- vate)
	Transmit RAMbuffer Start Address				
31:19	Reserved				
18:0	Start Address	Start Address in 64-bit words of this queue in external memory. Bit [9:0] are replaced by Zero s internally, which means, that the address is limited to multiples of 8kB. Has to be defined after each Reset.	yes (for init/ tests only)	aw	0
	Transmit RAMbuffer End Address				
31:19	Reserved				

- 187 -

Bit	Name	Description	Write	Read	Reset (pri- vate)
18:0	End Address	 End Address in 64-bit words of this queue in external memory. Bit [9:0] are replaced by Ones internally, which means, that the address is limited to multiples of 8kB. Has to be defined after each Reset. 	yes (for init/ tests only)	aw	0
	Trans	mit RAMbuffer Write Pointer			
31:19	Reserved				
18:0	Write Pointer	Write Pointer in 64-bit words. Has to be set to Transmit Rambuffer Start Address after each Reset.	yes (for init/ tests only)	value	0
	Trans	mit RAMbuffer Read Pointer			
31:19	Reserved				
18:0	Read Pointer	Read Pointer in 64-bit words. Has to be set to Transmit Rambuffer Start Address after each Reset.	yes (for init/ tests only)	value	0
		Packet Counter			
31:19	Reserved				
18:0	Packet Counter	Packet Counter gives the actual number of packets in this queue.	yes (for tests only)	value	0
	Tr	ansmit RAMbuffer Level			
31:19	Reserved				
18:0	Level	Level gives the actual number of data in mul- tiples of 8 bytes in this queue (including 16 bytes Statusword per packet).	ne	value	0
		RAMbuffer Control/Test			
		Test			
31:20	Reserved				

Bit	Name	Description	Write	Read	Reset (pri- vate)
19	Packet Counter Step Down	Packet Counter decrement	exec	0	
18	Packet Counter Test On	Testmode ON/OFF	0,400	0b10	0
17	Packet Counter Test Off		exec	0b01	1
16	Packet Counter Step Up	Packet Counter increment	exec	0	
15	Reserved				
14	Write Pointer Test On	Testmode ON/OFF		0b10	0
13	Write Pointer Test Off	For Testmode ON this RAMbuffer queue MUST be set to NON Operational	exec	0b01	1
12	Write Pointer Step	Write Pointer increment	exec	0	
11	Reserved				
10	Read Pointer Test On	Testmode ON/OFF		0b10	0
9	Read Pointer Test Off	For Testmode ON this RAMbuffer queue MUST be set to NON Operational	exec	0b01	1
8	Read Pointer Step	Read Pointer decrement	exec	0	
		Control/Status			
7	Reserved				
6	Reserved				

Bit	Name	Description	Write	Read	Reset (pri- vate)
5	St&Fwd On	Store and Forward On/Off		0b10	0
		If On, a frame is forwarded from RAMbuffer only, if the complete frame is in RAMbuffer.		0b01	1
Л	St&Fwd Off	If On, this is overwriting the control on a per frame base as defined by the transmit descriptor.	exec		
		Because most PCI systems are not provid- ing Gigabit Ethernet bandwidth,			
		St&Fwd should be switched On for the Transmit Rambuffer(s).			
3	Operational On	Operational mode ON/OFF		0b10	0
2	Operational Off	OFF is resetting all activities of this RAM- buffer queue for initialization of the pointers and registers	exec	0b01	1
1	Reset Clear	Set/Clear Reset. executed, if appropriate bit is set to 1.		0b10	0 (SW)
0	Reset Set	If Reset is set, all Transmit RAMbuffer func- tions and registers are in their reset state.	exec	0b01	1 (SW)

12.1.34Receive MAC FIFOs
RegistersInitialization or re-arrangement of a MAC FIFO should ever start from re-
set state.

Bit	Name	Description	Write	Read	Reset (pri- vate)
	MAC FIFO End Address				
31:6	Reserved				
5:0	End Address	End Address in 64-bit words of this queue in internal dual ported memory. Max = reset value, min = 0x04 Reset value should be used.	yes (for init/ tests only)	aw	0x3f
	N	MAC FIFO Write Pointer			

Bit	Name	Description	Write	Read	Reset (pri- vate)
31:6	Reserved				
5:0	Write Pointer	Write Pointer in 64-bit words of this queue in internal dual ported memory.	yes (for tests only)	value	0
	Μ	AC FIFO Read Pointer			
31:6	Reserved				
5:0	Read Pointer	Read Pointer in 64-bit words of this queue in internal dual ported memory.	yes (for tests only)	value	0
	MAC FIFO Packet Counter				
31:6	Reserved				
5:0	Packet Counter	Packet Counter gives the actual number of packets in this FIFO.	yes (for tests only)	value	0
		MAC FIFO Level			
31:14	Reserved				
13:8	Shadow Level	Shadow Level gives the actual number of data in multiples of 8 bytes in this queue (in- cluding 16 bytes Statusword per packet).	yes (for tests only)	value	0
7:6	Reserved				
5:0	Level	Level gives the actual number of data in mul- tiples of 8 bytes in this queue (including 16 bytes Statusword per packet).	yes (for tests only)	value	0
	F	Receive MAC Control			

- 191 -

Bit	Name	Description	Write	Read	Reset (pri- vate)
		Timeout of Receive Timestamp after receiv- ing Status.	yes	value	8
		Rx Timestamp Timeout is active only, if Time Stamp is On.			
31.24	Rx Timestamp Time-	Settings for XMACII MUST be consistent.			
31.24	out	Timeout time is Rx Timestamp Timeout Host Clock cycles.			
		On Timeout, an IRQ No Timestamp is generated.			
		Reset value should be used.			
		Timeout of Receive Status after RxPktValid deasserted.	yes	value	7
23:16	Rx Status Timeout	Timeout time is Rx Status Timeout + 1 Host Clock cycles.			
		On Timeout, an IRQ No Status is generated			
		Reset value should be used.			
15:14	Reserved				
13	RxRdy Patch On	If enabled, RxRdy is asserted, if the XMACII is banging with an invalid signaling (RcyValid		0b10	0
		& ~RcvStatusValid & ~RxPktValid)		0b01	1
		This fixes XMACII's (Rev. B2) errata #26.	exec		
12	RxRdy Patch Off				
		Must be switched OFF in loopback mode.			
		Must be switched OFF for XMACII/Rev. C			
11	RxValid Timing Patch On	If enabled, RxRdy is delayed by one Host Clock cycle.		0b10	0
		This fixes XMACII's (Rev. B2) timing		0b01	1
		requirements.	exec		
10	RxValid Timing Patch	Must be switched OFF in loopback mode			
	- Oli	Must be switched ON for XMACII/Rev. C also.			

Bit	Name	Description	Write	Read	Reset (pri- vate)
9	En Afull On	Enable forwarding of the related XMACII's signal RyEIEOAlmostEull to the signal Xmt-		0b10	0
		PausePkt to XMACII.		0b01	1
8	En Afull Off	Must be switched OFF in loopback mode.	exec		
		Settings for XMACII MUST be consistent.			
		Reset value should be used.			
7	En Pause On	Enable forwarding of the signal XmtPauseP- kt to XMACII		0b10	0
		see also Receive Rambuffer Upper/Lower Threshold/Pause Packets	0700	0b01	1
6	En Pause Off		exec		
		Must be switched OFF in loopback mode.			
		Settings for XMACII MUST be consistent.			
5	En Flush/Rx On	Enable flushing of XMACII's receive FIFO		0b10	0
		to be transferred to the Receive RAMbuffer.		0b01	1
		This is caused by the XMACII asserting RxFIFOError.			
		FlushRxFIFO to XMACII is asserted.			
		If there is a transfer of a frame in progress, this event is treated like the end of a frame:			
		RX Status is set to Zero, RX Status Invalid			
1	En Eluch/Px Off	is set.	exec		
+		After completion FlushRxFIFO to XMACII is deasserted.			
		Must be switched OFF in loopback mode.			
		Must be set ON for XMACII/Rev. B2.			
		Must be set ON for XMACII/Rev. C, if it's in- tended to receive packets larger than XMACII's Receive FIFO.			

Bit	Name	Description	Write	Read	Reset (pri- vate)
3	Time Stamp On	XMACII is configured for appending Time		0b10	0
				0b01	1
2	Time Stamp Off	Must be switched Off with XMACII, Rev. B2	exec		
		Must be switched Off in loopback mode.			
		Settings for XMACII MUST be consistent.			
1	Clear IRQ No Timestamp	Clear No Timestamp on Receive Interrupt	exec	0	
0	Clear IRQ No Status	Clear No Status on Receive Interrupt	exec	0	
	R	eceive MAC FIFO Test			
		Test			
31:20	Reserved				
19	Packet Counter Step/Down	Packet Counter decrement	exec	0	
18	Packet Counter Test On	Testmode ON/OFF	0.400	0b10	0
17	Packet Counter Test Off		exec	0b01	1
16	Packet Counter Step/Up	Packet Counter increment	exec	0	
15	Reserved				
14	Write Pointer Test On	Testmode ON/OFF	ovoc	0b10	0
13	Write Pointer Test Off		exec	0b01	1
12	Write Pointer Step	Write Pointer increment	exec	0	
11	Reserved				
10	Read Pointer Test On	Testmode ON/OFF	0,400	0b10	0
9	Read Pointer Test Off		exec	0b01	1

Bit	Name	Description	Write	Read	Reset (pri- vate)
8	Read Pointer Step	Read Pointer increment	exec	0	
	Re	ceive MAC FIFO Control			
7:4	Reserved				
3	Operational On	Operational mode ON/OFF		0b10	0
2	Operational Off	OFF is resetting all activities of this FIFO for initialization of the pointers and registers	exec	0b01	1
1	MAC FIFO Reset Clear	Set/Clear MAC FIFO Reset. executed, if appropriate bit is set to 1.		0b10	0 (SW)
0	MAC FIFO Reset Set	If MAC FIFO Reset is set, all FIFO functions and Registers are in their reset state.	exec	0b01	1 (SW)

12.1.35 Transmit MAC FIFOs Registers

Bit	Name	Description	Write	Read	Reset (SW)
	N	AC FIFO End Address			
31:6	Reserved				
5:0	End Address	End Address in 64-bit words of this queue in dual ported memory. Max = reset value, min = 0x05 Reset value should be used	yes (for init/ tests only)	aw	0x3f
	Ν	AC FIFO Write Pointer			
31:6	Reserved				
5:0	Write Pointer	Write Pointer in 64-bit words of this queue in internal dual ported memory.	yes (for tests only)	value	0
	MAC FIFO Write Shadow Pointer				
31:6	Reserved				

Bit	Name	Description	Write	Read	Reset (SW)
5:0	Write Shadow Pointer	Write Shadow Pointer in 64-bit words of this queue in internal dual ported memory.	yes (for tests only)	value	0
	M	AC FIFO Read Pointer			
31:6	Reserved				
5:0	Read Pointer	Read Pointer in 64-bit words of this queue in internal dual ported memory.	yes (for tests only)	value	0
	MA	C FIFO Packet Counter			
31:6	Reserved				
5:0	Packet Counter	Packet Counter gives the actual number of packets in this FIFO. Has to be set to 0 after each Reset.	yes (for tests only)	value	0
		MAC FIFO Level			
31:14	Reserved				
13:8	Shadow Level	Shadow Level gives the actual number of data in multiples of 8 bytes in this queue (in- cluding 16 bytes Statusword per packet). For checking the FIFO's level both Level and	yes (for tests only)	value	0
		Shadow Level must be checked.			
7:6	Reserved				
5:0	Level	Level gives the actual number of data in mul- tiples of 8 bytes in this queue (including 16 bytes Statusword per packet). For checking the FIFO's level both Level and Shadow Level must be checked.	yes (for tests only)	value	0
	Т	ransmit MAC Control			
31:21	Reserved				
20:16	Wait after Flush	Delay for asserting TxPktValid after flushing of the XMACII's Transmit FIFO. The delay is Wait after Flush + 1 Host Clock cycles. Reset value should be used.	yes	value	4

Bit	Name	Description	Write	Read	Reset (SW)
15	Clear IRQ Parity Error	Clear Parity Error Interrupt	exec	0	
14	Reserved				
13	En Packet Recovery On	If enabled, recovery time between packets transferred out of the transmit FIFO is increased by 4 Host Clock cycles.		0b10	0
			exec	0b01	1
12	En Packet Recovery Off	Must be switched OFF in loopback mode. This may fix a potential XMACII problem			
11	TxRdy Timing Patch On	If enabled, TxValid is delayed by one Host Clock cycle.		0b10	0
		This fixes XMACII's (Rev. B2) timing requirements.	exec	0b01	1
10	TxRdy Timing Patch Off	Must be switched OFF in loopback mode.			
		also.			
9	Use AlmostFull On	If enabled, transferring a 32-bit word to XMACII's FIFO is started only if it's not al-		0b10	0
		most full.		0b01	1
		This fixes XMACII's errata #18 (Rev. B2).			
8	Use AlmostFull Off	mark (afull) has to be set to 3k7 bytes.	exec		
		Must be switched OFF in loopback mode.			
		Must be switched OFF for XMACII/Rev. C			
7	En Wait 4 Empty On	If enabled, transferring a transmit frame to XMACII's FIFO is started only. if it's empty.		0b10	0
		This fixes XMACII's errata #28 (Rev. B2) but reduces the transmit rate.		0b01	1
6	En Wait 4 Empty Off	XMACII's (Rev. B2) Transmit Low Watermark has to be set to 0.	exec		
		Must be switched OFF in loopback mode.			
		Must be switched OFF for XMACII/Rev. C			

Bit	Name	Description	Write	Read	Reset (SW)
5	En Flush/Tx On	Enable flushing of XMACII's transmit FIFO and a frame which is in progress to be trans- ferred from the Transmit RAMbuffer.		0b10 0b01	0
		This is caused by the XMACII asserting XmtPktError.			
4	En Flush/Tx Off	If there is a transfer of a frame in progress, transfer is completed normally by the XMACII Interface, but no data are transferred to XMACII.	exec		
		After completion FlushTxFIFO to XMACII is deasserted.			
		Must be switched OFF in loopback mode. Must be switched ON.			
3	Loopback On	The XMACII Interface may be set to loop- back mode for testing purposes.		0b10	0
2	Loopback Off	Transmit data are looped to receive data through the I/O pads. This allows to control the dataflow with an LA There is no activity at the related XMACII control signals.	exec	0b01	1
		The Transmit Status (descriptors) MUST be set to the expected Receive Status (descriptors).			
1	XMACII Reset Clear	Set/Clear XMACII Reset.		0b10	0
	XMACII Reset Set	If XMACII Reset is set, the external XMACII and the XMACII Interface are in their reset state.		0b01	1
0		In order to guarantee a minimum pulse width of 31 HOST CLK cycles, clearing XMACII Reset is suppressed within 31 HOST CLK cycles after XMACII Reset Set . Write cycles to XMACII Reset Clear within the 31 HOST CLK recovery time, are terminated with a Target Retry (no impact on software).	exec		
		MAC FIFO Control/Test			
		Test			

Bit	Name	Description	Write	Read	Reset (SW)
31:23	Reserved				
22	Write Shadow Pointer Test On	Testmode ON/OFF	01/00	0b10	0
21	Write Shadow Pointer Test Off		exec	0b01	1
20	Write Shadow Pointer Step	Pointer increment	exec	0	
19	Packet Counter Step Down	Packet Counter decrement	exec	0	
18	Packet Counter Test On	Testmode ON/OFF	exec	0b10	0
17	Packet Counter Test Off			0b01	1
16	Packet Counter Step Up	Packet Counter increment	exec	0	
15	Reserved				
14	Write Pointer Test On	Testmode ON/OFF	oxoc	0b10	0
13	Write Pointer Test Off		EVEC	0b01	1
12	Write Pointer Step	Pointer increment	exec	0	
11	Reserved				
10	Read Pointer Test On	Testmode ON/OFF		0b10	0
9	Read Pointer Test Off		exec	0b01	1
8	Read Pointer Step	Read Pointer decrement	exec	0	
		Control			
7:4	Reserved				

Bit	Name	Description	Write	Read	Reset (SW)
3	Operational On	Operational mode ON/OFF		0b10	0
2	Operational Off	OFF is resetting all activities of this FIFO for initialization of the pointers and registers	exec	0b01	1
1	MAC FIFO Reset Clear	Set/Clear MAC FIFO Reset. executed, if appropriate bit is set to 1.		0b10	0 (SW)
0	MAC FIFO Reset Set	If MAC FIFO Reset is set, all FIFO functions and registers are in their reset state.	exec	0b01	1 (SW)

12.1.36 MAC Arbiter Registers

Bit	Name	Description	Write	Read	Reset (SW)
		Timeout Init Values			
31:24	Timeout Init Value Tx2	Transmit Fifo of XMACII 2 Max = 255, min = 2 Use reset value for XMACII/Rev. B2 Has to be set to 63 after each Reset for XMACII/Rev. C	yes	aw	54
23:16	Timeout Init Value Tx1	Transmit Fifo of XMACII 1 Max = 255, min = 2 Use reset value for XMACII/Rev. B2 Has to be set to 63 after each Reset for XMACII/Rev. C	yes	aw	54
15:8	Timeout Init Value Rx2	Receive Fifo of XMACII 2 Max = 255, min = 2 Use reset value for XMACII/Rev. B2 Has to be set to 63 after each Reset for XMACII/Rev. C	yes	aw	54

Bit	Name	Description	Write	Read	Reset (SW)
7:0	Timeout Init Value Rx1	Receive Fifo of XMACII 1 Max = 255, min = 2 Use reset value for XMACII/Rev. B2 Has to be set to 63 after each Reset for XMACII/Rev. C	yes	aw	54
		Timeout Timers			
31:24		Timeout Timer Tx2	yes (for tests only)	value	0
23:16	Timeout Timer Tx1			value	0
15:8	Timeout Timer Rx2			value	0
7:0	Timeout Timer Rx1			value	0
	M	AC Arbiter Control/Test			
		Test			
31	Timeout Tx2	= 1, if Timeout Timer = 0	ne	value	1
30	Timeout Timer Tx2 Test On	Testmode ON/OFF	evec	0b10	0
29	Timeout Timer Tx2 Test Off		GVGC	0b01	1
28	Timeout Timer Tx2 Step	Timer decrement	exec	0	
27	Timeout Tx1	= 1, if Timeout Timer = 0	ne	value	1

Bit	Name	Description	Write	Read	Reset (SW)
26	Timeout Timer Tx1 Test On	Tastmada ON/OEE	0.400	0b10	0
25	Timeout Timer Tx1 Test Off		exec	0b01	1
24	Timeout Timer Tx1 Step	Timer decrement	exec	0	
23	Timeout Rx2	= 1, if Timeout Timer = 0	ne	value	1
22	Timeout Timer Rx2 Test On			0b10	0
21	Timeout Timer Rx2 Test Off	Iestmode ON/OFF	exec	0b01	1
20	Timeout Timer Rx2 Step	Timer decrement	exec	0	
19	Timeout Rx1	= 1, if Timeout Timer = 0	ne	value	1
18	Timeout Timer Rx1 Test On	Testmade ON/OFF	0.400	0b10	0
17	Timeout Timer Rx1 Test Off		exec	0b01	1
16	Timeout Timer Rx1 Step	Timer decrement	exec	0	
		Control			
15:4	Reserved				
3	Fast OE On	Enable Fast Output Enable of XMACII		0b10	0
		For future versions of XMACII (if its Output Enable Time becomes faster)	exec	0b01	1
2	Fast OE Off	executed, if appropriate bit is set to 1. Use reset value until allowed at this place.			
1	Reset Clear	Set/Clear Reset. executed, if appropriate bit is set to 1.		0b10	0 (SW)
0	Reset Set	If Reset is set, all MAC Arbiter functions and registers are in their reset state.	exec	0b01	1 (SW)

Bit	Name	Description	Write	Read	Reset (SW)
		Recovery Init Values			
		Recovery time in # of Host Clock cycles be- tween transfers to XMACII's transmit FIFO.	yes	aw	54
31:24	Tx2	Use reset value for XMACII/Rev. B2			
		Must be set to 0 after each Reset for XMACII/Rev. C			
		Recovery time in # of Host Clock cycles be- tween transfers to XMACII's transmit FIFO.	yes	aw	54
23:16	Recovery Init Value Tx1	Use reset value for XMACII/Rev. B2			
		Must be set to 0 after each Reset for XMACII/Rev. C			
		Recovery time in # of Host Clock cycles be- tween transfers from XMACII's receive FIFO.	yes	aw	54
15:8	Recovery Init Value				
	T AZ	Use reset value for XMACII/Rev. B2 Must be set to 0 after each Reset for			
		XMACII/Rev. C			
		Recovery time in # of Host Clock cycles be- tween transfers from XMACII's receive FIFO.	yes	aw	54
7:0	Recovery Init Value				
7.0	Rx1	Use reset value for XMACII/Rev. B2			
		Must be set to 0 after each Reset for XMACII/Rev. C			
		Recovery Timers			
31:24		Recovery Timer Tx2	yes (for tests only)	value	0
23:16		Recovery Timer Tx1	yes (for tests only)	value	0

Bit	Name	Description	Write	Read	Reset (SW)
15:8	Recovery Timer Rx2			value	0
7:0	Recovery Timer Rx1			value	0
	M	AC Arbiter Control/Test			
		Test			
31	Recovery Tx2	= 1, if Recovery Timer = 0	ne	value	1
30	Recovery Timer Tx2 Test On	Testmode ON/OFF	0700	0b10	0
29	Recovery Timer Tx2 Test Off		exec	0b01	1
28	Recovery Timer Tx2 Step	Timer decrement	exec	0	
27	Recovery Tx1	= 1, if Recovery Timer = 0	ne	value	1
26	Recovery Timer Tx1 Test On	Tostmodo ON/OEE	exec	0b10	0
25	Recovery Timer Tx1 Test Off		exec	0b01	1
24	Recovery Timer Tx1 Step	Timer decrement	exec	0	
23	Recovery Rx2	= 1, if Recovery Timer = 0	ne	value	1
22	Recovery Timer Rx2 Test On	Toetmode ON/OFF	0700	0b10	0
21	Recovery Timer Rx2 Test Off	Iestmode UN/UFF	EXEC	0b01	1
20	Recovery Timer Rx2 Step	Timer decrement	exec	0	
19	Recovery Rx1	= 1, if Recovery Timer = 0	ne	value	1

Bit	Name	Description	Write	Read	Reset (SW)
18	Recovery Timer Rx1 Test On	Tastmada ON/OFF	ovoc	0b10	0
17	Recovery Timer Rx1 Test Off		exec	0b01	1
16	Recovery Timer Rx1 Step	Timer decrement	exec	0	
		Control			
15:8	Reserved				
7	En Rec Tx2 On	Enable Recovery Timer xxx		0b10	0
6	En Rec Tx2 Off	executed, if appropriate bit is set to 1.	exec	0b01	1
5	En Rec Tx1 On	Must be set to On for XMACII/Rev. B2		0b10	0
4	En Rec Tx1 Off	Use reset value for XMACII/Rev. C	exec	0b01	1
3	En Rec Rx2 On			0b10	0
2	En Rec Rx2 Off		exec	0b01	1
1	En Rec Rx1 On			0b10	0
0	En Rec Rx1 Off		exec	0b01	1

12.1.37	XMACII Registers	All XMACII Registers are mapped in a subsequent range on 32-bit word boundaries. The XMACII interface implements write posting and delayed transactions on read accesses. Target reads are retried until the ad- dressed register is synchronized to PCI Clock.
		The XMACII's Node Processor Interface is running in 16bit mode.
		The offset of the register addresses in the PCI address space are calculated by multiplying the 16-bit XMACII register addresses by 2.
		The XMACII Registers can be accessed with any width at 32-bit word boundaries. On the PCI side all accesses to the XMACII are completed normally. Accesses without any Byte Enables asserted or only to the up- per 16 bit (neither CBE<1># nor CBE<0># asserted) are treated like accesses to reserved locations (not forwarded to the XMACII). Note that no byte enables are forwarded to the XMACII. Therefore for all write cy- cles to the XMACII all 16 bits are written.

Bit	Name	Description	Write	Read	Reset (SW)
	Examp				
31:16	Reserved				
15:0	XMACII <x></x>	XMACII Register <x></x>	XMACII datasheet		