
MX98713

1

1. INTRODUCTION

This application note provides a guideline on implementing the interconnection of the network interface card (NIC)
for MII, 100Base-TX and 10Base-T Fast Ethernet Network via the MX98713 PCI bus Media Access Controller (the
PMAC).

In details, this document presents hardware design and layout recommendations which can help you to quickly
implement all the network media interfaces mentioned. Meanwhile, we will discuss the methods on how to gain
access on the Boot PROM, EEPROM and NWay registers through software interface.

As you can find in the MX98713 driver diskette, MXIC already provided a complete set of drivers for easier and
more efficient way to interface with MX98713 on the most popular Network Operating Systems or environment.
Nevertheless, there are still some special applications or environment not covered in the attached driver diskette.
Driver developers, however, could still refer to the section of driver programming guide to accomplish the required
driver.

2. PRODUCT OVERVIEW

The MX98713 PMAC implements the MAC layer and NWay functions on a single chip in accordance with the IEEE
802.3u standard. The PMAC highly integrates with direct PCI bus interface, including PCI bus master capability.
Furthermore, the 10Base transceiver and low pass filter module are also supported. This is an advanced design
and fully supports standard MII, 100Base-TX and 10Base-T media. For detailed product specification information,
please refer to the MX98713 data sheet.

3. SYSTEM APPLICATION BLOCK DESCRIPTION

Figure 1 shows the completed functional block diagram of the MX98713. The provided external interconnection
interfaces include Symbol (SYM), Twisted-Pair (TP), Media Independent Interface (MII), EEPROM interface, Boot
ROM interface and PCI Bus interface. Based on these interfaces, we will describe the detailed implementation
consideration when designing a PCI bus NIC via the PMAC.

3.1 SYM INTERFACE WITH NWAY EXTERNAL CONNECTION

The one of advantage features of the MX98713 is the NWay auto-negotiation capability. Through a pair of single
RJ-45 connector and transformer, both 100Base and 10Base signals can share the same media. Figure 2 depicts
the external interconnection block diagram, showing the implementation of the SYM interface with the NWay
function, and Figure 3 is the corresponding recommended schematic circuits. The NWay allows NICs to
automatically establish the highest available protocol, including operating speed and duplex mode, as well as
media type for both transmission and reception.

It should be specially mentioned that, to lower total system cost, the PMAC has an embedded MCC/TP transceiver
which can provide a 10Base-T direct media interface and need not any

APPLICATION NOTE

PMAC
100/10BASE PCI MAC CONTROLLER

REV. 1.2, JUN.30, 1997P/N:PM0420

MX98713

2

SYM
Interface

TP
Interface

MII

EEPROM
Interface

Boot ROM
Interface

PCI Bus
Interface

external transceiver and low pass filter.

When you design the SYM interface with MX98713, a suggested component is the MX98704 that provides a
direct-couple interconnection. During transmission, the PMAC converts the 125MHz NRZI encoded bit stream to
5-bit symbols and, during reception, it converts 5-bit symbols into NRZI decoded bit stream at 125MHz,
accompanied with recovering the RX clock by using PLL circuit.

Figure 1. The MX98713 functional block diagram.

Figure 2. SYM interface with NWay function interconnection block diagram

PCS
PHYSICAL

LAYER
(MX98704)

EEPROM

100BASE
TRANSCEIVER

(MX98702)

MII
PHYSICAL

LAYER

100/10BASE
MAGNETICS

100Base-TX/
10Base-T

 PCI Bus

 BootROM

MX98713

3

TDAT0 TDAT0 TX+ TX+
TDAT1 TDAT1 TX- TX-

RJ-45
TDAT2 TDAT2 RX+ RX+
TDAT3 TDAT3 RX- RX-
TDAT4 TDAT4

RDAT0 RDAT0 Magnetics
RDAT1 RDAT1 PHY
RDAT2 RDAT2 Device
RDAT3 RDAT3

MX98713 RDAT4 RDAT4

TXCLK SYMCLK
RXCLK RXCLK
SIGDET SIGDET
LPBKB LPBKB 10/100

EN100B

TXP
TXM
RXIP
RXIM

3.1.1 LAYOUT RECOMMENDATION ABOUT MX98704

1. The length of data lines for both transmission (TXD0_4) and reception (RXD0_4) lines should be routed as short
as possible and should have similar routing characteristics.

MX98713

4

2. The transmitting and receiving clock should be carefully handled to avoid any noise. A popular method to
isolate possible noise from other signal line is ground line.

3. The PLL components and path lines should be placed as near as possible to the MX98704.

3.1.2 LAYOUT RECOMMENDATION ABOUT MX98702

After the MX98702 is connected with MX98704, the NIC could convert the 125MHz NRZI bit stream to three-level
(MLT-3) coding scheme. Since the signal speed between the MX98704 and the MX98702 is very high (125MHz)
and sensitive, care should be taken that the signal lines be terminated at the receiving ends, as depicted in Figure
3.

The detailed layout consideration about the MX98702 includes:

1. The line length of the line pairs SD+/-, RD+/- and TD+/- between the MX98704 and the MX98702 should be kept
as short as possible.

2. The space between each of the intra-line-pairs of SD+/-, RD+/- and TD+/- should be kept as near as possible
and should have similar routing characteristics.

3. Keep all the inter-line-pairs among SD+/-, RD+/-, TD+/-, RX+/- and TX+/- away from each other to avoid signal
crosstalk.

Both the MX98704 and the MX98702 provide the easy accessing loopback diagnostic function. Although it is not
necessary under normal operating environment, this function provides a very convenient way to debug the whole
NIC.

For isolating purpose, a magnetic component or transformer is placed between the MX98702 and the physical
media (Twisted Pair). The purpose of the transformer connected to RJ-45 phone jack is to reduce EMI and RF
noise.

Figure 3. The SYM mode connection with NWay function schematic circuit

MX98713

5

3.2 MII AND 100BASE-T4 NETWORK IMPLEMENTATION

3.2.1 MII PORT INTERCONNECTION

In setting the CSR6_PS = 1, CSR6_PCS = 0 of the MX98713, the MII port is selected instead of the SYM
interface. The MII port can be connected to any physical device with standard MII interface. Figure 4 shows the
standard interconnection between the MX98713 and the most typical device through MII signal.

MX98713 (PMAC) PHY Device

Figure 4. MII connection

Figure 5. 100Base T4 connection

TXD3_0

TXEN

TXCLK

RXD3_0

RXDV

RXCLK

RXERR

COL

CRS

MDC

MDIO

TXD3_0

TXEN

TXCLK

RXD3_0

RXDV

RXCLK

RXERR

COL

CRS

MDC

MDIO

MX98713

6

3.2.2 THE T4 NETWORK IMPLEMENTATION

MX98713

7

The 100Base-T4 can be implemented through the MII port also. Figure 5 depicts the complete 100Base-T4
interface interconnection. The BCM5000 is a typical component that performs all the physical layer interface
functions for both 100Base-T4 and 10Base-T. In T4 operation mode, the BCM5000 receives and transmits data on
network in the form of 8B6T and then decodes them back to MII interface or vice versa. It can also be programmed
to operate under 10Base-T through the MDC and MDIO signals. For more information about such application,
please refer to the BCM5000 specification. After BCM5000, a T4 magnetic component ,Valor SF6036 (a typical
component) is directly cascaded for isolating purposes.

Layout consideration about BCM5000:

1. The length of data lines TXD0_4 and RXD0_4 should be kept as short as possible and should have similar
routing characteristics.

2. The space between each of the intra-line-pair of 8B6T signal TDn+/- and RDn+/- should be kept as near as
possible and should have similar routing characteristics.

3. The space among the inter-line-pair of 8B6T signal TDn+/- and RDn+/- should be kept away from each others
to avoid crosstalk.

4. The 20MHz crystal and relative components should be placed closer to the BCM5000.

3.3 EEPROM INTERFACE IMPLEMENTATION

Since the MX98713 supports a direct serial EEPROM interface, a straightforward interconnecting scheme is
shown in Figure 6.

Figure 6. Scheme of EEPROM interface connection

In the following, a C-language module is listed completely to provide the EEPROM accessing routine through the
CSR9 register of the MX98713.

/**
* Read all content from EEPROM (93C46)
**/
eeprom_read()

 MX98713

(78) EECK

(79) EECS
(77)

EEDI
 (76) EEDO

 EEPROM

 CLK

 CS

 DI

 DO

MX98713

8

{
unsigned int i,address,eeval;
char bit;
for (address=0;address<64;address++){

NIC_write_reg(&csr9,(unsigned long)0x04800);
eeprom_serial_in(0);
eeprom_serial_in(1); // command
eeprom_serial_in(1);
eeprom_serial_in(0);

for(i=0;i<6;i++){ // address serial in
bit= ((address>>(5-i)) & 0x01) ? 1 :0 ;
eeprom_serial_in(bit);

}
eeval=0;
for(i=0;i<16;i++){ // data serial out

NIC_write_reg(&csr9,(unsigned long)0x04803);
NIC_read_reg(&csr9);
eeval += (((unsigned long)0x008 & csr9.value)>>3)<<(15-i);
NIC_write_reg(&csr9,(unsigned long)0x04801);

}
NIC_write_reg(&csr9,(unsigned long)0x04800);

c46[address*2]= eeval&0x0ff;
c46[address*2+1]= (eeval>>8)&0x0ff;

}
}

/**
* Write a word to EEPROM
**/
eeprom_write(unsigned int address,unsigned int data)
{

unsigned int i;
char bit;
eeprom_wen();
NIC_write_reg(&csr9,(unsigned long)0x04800);
eeprom_serial_in(0);

eeprom_serial_in(1); // command
eeprom_serial_in(0);
eeprom_serial_in(1);

for(i=0;i<6;i++){ // address serial in
bit= ((address>>(5-i)) & 0x01) ? 1 :0 ;
eeprom_serial_in(bit);

}
for(i=0;i<16;i++){ // data serial in

bit= ((data>>(15-i)) & 0x01) ? 1 :0 ;
eeprom_serial_in(bit);

}
NIC_write_reg(&csr9,(unsigned long)0x04800);
NIC_write_reg(&csr9,(unsigned long)0x04801);
i=0;

MX98713

9

do{
i++;
NIC_read_reg(&csr9);

} while((!(csr9.value&0x08)) && (i<10000));
NIC_write_reg(&csr9,(unsigned long)0x04800);
if(i==10000) prstring (" Writing EEPROM error !!", 24, 10, Attr_N);
eeprom_wds();

}

eeprom_wen()
{

NIC_write_reg(&csr9,(unsigned long)0x04800);
eeprom_serial_in(0);
eeprom_serial_in(1);
eeprom_serial_in(0);
eeprom_serial_in(0);
eeprom_serial_in(1);
eeprom_serial_in(1);
eeprom_serial_in(0); // X
eeprom_serial_in(0); // X
eeprom_serial_in(0); // X
eeprom_serial_in(0); // X
NIC_write_reg(&csr9,(unsigned long)0x04800);

}

eeprom_wds()
{

NIC_write_reg(&csr9,(unsigned long)0x04800);
eeprom_serial_in(0);
eeprom_serial_in(1);
eeprom_serial_in(0);
eeprom_serial_in(0);
eeprom_serial_in(0);
eeprom_serial_in(0);
eeprom_serial_in(0); // X
eeprom_serial_in(0); // X
eeprom_serial_in(0); // X
eeprom_serial_in(0); // X
NIC_write_reg(&csr9,(unsigned long)0x04800);

}

/**
* Serial inject a bit to EEPROM
**/
eeprom_serial_in(unsigned int bit2)
{

NIC_write_reg(&csr9,(unsigned long)0x04801+ 4*bit2);
NIC_write_reg(&csr9,(unsigned long)0x04803+ 4*bit2); // x
NIC_write_reg(&csr9,(unsigned long)0x04801+ 4*bit2);

}

MX98713

10

3.4 EEPROM FORMAT

The EEPROM format is described in detailed as below:

Offset(Hex) Descriptions
20~6f Reserved.

70 Network ID index to indicates the starting address of Network ID in length of
continuous 6 bytes. The content of this field could be in range of 00h~1ah.

71 Reserved.
72 Operating mode selection; 0: PCS mode, else: MII mode’s physical address
73 IC revision ID; 0:revision E and before, 1:revision G and after

74~79 Reserved, all bits should be set to 0
7a LSB of Device ID
7b MSB of Device ID
7c LSB of Vendor ID
7d MSB of Vendor ID

7e~7f Check sum

3.4.1 THE CONTENTS OF EEPROM

The dumped EEPROM contents is listed as below:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 aa bb cc 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
14 00 00 01 00 00 00 00 00 00 12 05 d9 10 0e de

For the example mentioned above, the parameters of a typical adapter card will be:
Vendor ID : 0x10d9
Device ID : 0x0512
Network ID : Offset = 0x14 (then the ID address is: 00 00 00 aa bb cc)
checksum : 0x0ede
operating mode : 0 (Symbol mode)
IC revision ID : 1 (revision G and after)

3.4.2 THE OPTIONS FOR VENDOR ID AND DEVICE ID:

Since you could choose the driver provided by MXIC or developed by yourself. Meanwhile, although the MX98713
has built-in the intelligent Nway function, you could bypass it and adapt external Nway through MII interface. The
possible options are summarized in the following:

combination vender ID device ID S/M value
MXIC driver + MX98713 with Nway 10d9 0512 0

MXIC driver + MX98713 + external Nway 10d9 0512 MII address
vendor driver + MX98713 with Nway vendor‘s own ID vendor‘s own ID 0

MX98713

11

vendor driver + MX98713 + external Nway vendor‘s own ID vendor‘s own ID MII address

3.5 PCI BUS CONNECTION

Figure 7 shows the interconnection between the MX98713 and host system through PCI bus. The MX98713 has a
complete set of host system connections to achieve direct interfacing with the PCI bus control and address/data
signals. The length of each connection should be limited to under 1.5 inches.

3.6 BOOT PROM CONNECTION

Figure 8 shows the interconnection between PMAC and boot PROM. The boot PROM size may be 8K, 16K, 32K
or 64K, and default size is set to be 16K bytes. Boot PROM base address is defined in PCI bus‘ configuration
memory at offset 33h-30h. For detailed information, please refer to the MX98713 PMAC product specification.

MX98713

12

Figure 7. PCI Interface

Figure 8. MX98713 Power, Boot PROM, PCI Bus, LED connection

MX98713

13

MX98713

14

4. ABOUT THE DRIVER

4.1 DRIVER OVERVIEW

As you can find in the released driver diskette, there is the “release.txt” file in root directory describing the released
driver contents, revision and date. Meanwhile, we have prepared the “readme.txt” file to demonstrate the
installation procedure and consideration in root directory as well as each subdirectory that contains various family
of drivers. In general, you may find the required information from these text files.

4.2 DRIVER PROGRAMMING GUIDE

In this section, three most important C-language source code modules are completely listed. As you can find in the
attached driver diskette, MXIC already presented a full set of high performance drivers for the most popular
network operating systems. If you, however, still want to develop driver for special applications or environment,
the following Initialization, Transmission and Reception modules should become your kernel code.

4.2.0 UNDOCUMENTED REGISTERS FOR DEVELOPING YOUR OWN DRIVER

Before you follow the programming guide to write your own driver code, there are registers located
beyond offset 78h of MX98713’s IO space that are not documented in data sheet but reserved for new
features and test purposes. At offset 80h in IO space is CSR16 which must be set to “0x0F37xxxx” to
bring the chip into normal operation mode before any initialization process can be started by driver.
These undocumented registers are reserved for test and new feature like Magic Packet Detection in the
future. Here is a list of all registers in this reserved IO area :

offset 80h CSR16 Magic Packet/Test mode register (default “0x0F37xxxx”)
offset 88h CSR17 Reserved
offset 90h CSR18 Reserved
offset 98h CSR19 Reserved
offset A0h CSR20 Reserved
offset A8h CSR21 Reserved
offset B0h CSR22 Reserved

4.2.1 INITIALIZATION

InitializeTheTransmitRing()
{

unsigned int i, j;
unsigned long physicaladdress;

for(i=0 ; i<NumTXBuffers ; i++){
/* memory allocation for tx descriptor_buffer (allign 4) */

 tx_resource[i]=(struct TX_RESOURCE *)((((unsigned int)tx_temp[i])+4)& 0xfffc);
}

for(i=0 ; i<NumTXBuffers ; i++){
/* initialize the own bit to host tdes0 */
tx_resource[i]->ownership=0x00;
tx_resource[i]->tstatus=0x0000;

MX98713

15

tx_resource[i]->tdes0_unused=0x00;

/* fill buffer_1_address tdes2*/
get_ea((void far *)(tx_resource[i]->tx_buffer_data),&physicaladdress);
tx_resource[i]->buff_1_addr=physicaladdress;

/* fill buffer_2_address tdes3*/
if(i==NumTXBuffers-1) j=0;
else j=i+1;
get_ea((void far *)tx_resource[j],&physicaladdress);
tx_resource[i]->buff_2_addr=physicaladdress;

}
}

InitializeTheReceiveRing()
{

unsigned int i, j;
unsigned long physicaladdress;
for(i=0 ; i<NumRXBuffers ; i++){

/* memory allocation for tx descriptor_buffer (allign 4) */
rx_resource[i]=(struct RX_RESOURCE *)((((unsigned int)rx_temp[i])+4) & 0xfffc);

}
for(i=0 ; i<NumRXBuffers ; i++){

/* set own bit to chip rdes0 */
rx_resource[i]->frame_length=RDES0_OWN_BIT;
rx_resource[i]->rstatus=0x0000;

/* fill rdes1 */
rx_resource[i]->command=RDES1_BUFF-RX_BUFFER_SIZE+rxpkt_size[i];

/* fill buffer_1_address rdes2 */
get_ea((void far *)(rx_resource[i]->rx_buffer_data),&physicaladdress);
rx_resource[i]->buff_1_addr=physicaladdress;

/* fill buffer_2_address rdes3 */
if(i==NumRXBuffers-1) j=0;
else j=i+1;
get_ea((void far *)rx_resource[j],&physicaladdress);
rx_resource[i]->buff_2_addr=physicaladdress;

}
}

initialize()
{

unsigned long physicaladdress;
unsigned int i;

InitializeTheTransmitRing ();
InitializeTheReceiveRing ();
NIC_write_reg(&csr0,CSR0_L_SWR); // Clear Status Register
for(i=0;i<6;i++) perfect[i]=sa[i];
setup_frame(TDES1_SETUP_LAST,perfect);
delay(50);
NIC_write_reg(&csr0,csr0shadow);

MX98713

16

 NIC_write_reg(&csr16,(unsigned long)0x0f37fec8); //set IC to normal mode
get_ea((void far *)rx_resource[0],&physicaladdress);
NIC_write_reg(&csr3,physicaladdress);
get_ea((void far *)tx_resource[0],&physicaladdress);
NIC_write_reg(&csr4,physicaladdress);
NIC_write_reg(&csr6,csr6shadow);
NIC_write_reg(&csr5,(unsigned long)0xffffffff); //Clear status register

}

4.2.2 TRANSMISSION MODULE

bmtx()
{

unsigned char editmode, j;
struct TX_RESOURCE *tx_pointer;

initialize();
fill_pattern(6); // fill pattern
NIC_write_reg(&csr6,csr6.value&(~CSR6_ST)); // stop
NIC_read_reg(&csr6);
NIC_write_reg(&csr6,csr6.value|CSR6_SF); // store and forward
NIC_read_reg(&csr0);
NIC_write_reg(&csr0,csr0.value|0x020000); // TAP=01

tx_pointer= tx_resource[0];
j=0;
editmode=1;

while (editmode) {
if((tx_pointer->ownership & 0x80)==0) {

j++;
j %= tx_pkt_num;
if (tx_pointer->command & TDES1_LS_BIT)
tx_error_detect(tx_pointer->tstatus);
tx_pointer->ownership |= 0x80 ;
tx_pointer= tx_resource[j];

}

if (kbhit()) {
keycode_get();
if (M_code!=0) {

switch (M_code) {
case 0x1b : /*** ESC ***/

editmode=0;
cll(0,0,79,24);
break;

case 0x20 :
NIC_read_reg(&csr6); // CSR6_ST

 NIC_write_reg(&csr6,csr6.value^CSR6_ST);
break;

default :
break;

MX98713

17

}
}

}
}

}

4.2.3 RECEPTION MODULE

bmrx()
{

unsigned char editmode,i,j;
unsigned long physicaladdress;
struct RX_RESOURCE *rcv_pointer;
initialize();
rcv_pointer= rx_resource[0];
j=0;
editmode=1;
while (editmode) {

/* if data received */
if((rcv_pointer->frame_length & 0x8000)==0) {

j++;
j %= 6;
if(rcv_pointer->rstatus & RDES0_LS)
rx_error_detect(rcv_pointer->rstatus);
rcv_pointer->frame_length|=0x8000;
rcv_pointer= rx_resource[j];

}
if (kbhit()) {

keycode_get();
if (M_code!=0) {

switch (M_code) {
case 0x1b : /*** ESC ***/

editmode=0;
cll(0,0,79,24);
break;

default : break;
}

}
}

}
}

5. ABOUT THE LOOPBACK AND DIAGNOSTICS

The loopback mode allows in-circuit testing or debugging of the NIC using the MX98713.

5.1 INTERNAL LOOPBACK

There are two kinds of internal loopback modes provided and mentioned below:

MX98713

18

100Mbps loopback: Set the NWay command register as 0.13=1, 0.12= 0, 0.14=0 and set CSR6_LOM=01 to
enter internal loopback mode . This loopback mode is performed on 5B signal layer.

10Mbps loopback : Set the NWay command register as 0.13=0 , 0.12=0, 0.14=1 and set CSR6_LOM=10 to enter
external loopback mode. The loopback mode is performed on embedded MCC layer.

Both the two loopback operation modes provide a self-diagnosis capability on the MX98713 itself. For detailed
information about the loopback operation, please refer to the portions of CSR6 and NWay register of the MX98713
PMAC product specification.

5.2 100MBPS EXTERNAL LOOPBACK

There are two kinds of 100Mbps external loopback modes provided and mentioned below:

External loopback through FCG: Set the MX98713 CSR6_LOM=10 and set the NWay command register as
0.13=1, 0.12= 0, 0.14=0 as well as set the MX98704 /LB to low to enter external loopback mode. The MX98704 will
then disconnect all the signals behind it and loop the transmit data path back into the receive path. This operation
provides a diagnosis on the circuit between the MX98704 and the MX98713.

External loopback through Transceiver: The MX98713 could be forced to be in the external loopback mode by
setting both the LBEN of the MX98704 and the MX98702 to high. Under such setting mode, the signal pair of
TXO+/- will loop back to signal pair of RXI+/-. This operation mode provides a diagnosis on the circuit between the
MX98713 and the MX98702.

5.3 MII EXTERNAL LOOPBACK CONNECTION

The MII interface external loopback operation depends on the selection of transceiver and it is for the MX98713
MII interface verification purpose only. The loopback interconnection is provided as shown in Figure 9. Such
connection mode provides a direct way to verify the MII interface function.

 INVERTER

 TXD0_3

 RXD0_3

 RXC

 RXDV

 TXC

 TXEN

MX98713

19

 MX98713 (PMAC)

Figure 9. MII external loopback connection

6. ABOUT THE NWAY REGISTER ACCESS

The MII management is under control by MDC and MDIO pins of the MX98713 and will generate the read or write
command to the internal register of the MX98713. All the commands should have the frame structure:

<PRE><ST><OP><PHYAD><REGAD><TA><DATA><IDLE>

The complete C-language routines are provided to gain access to the NWay internal registers as mentioned
below. For detailed information on how to manage the NWay function, please refer to the MX98713 PMAC product
specification.

/***
* read MII register
* phyad -> physical address
* regad -> register address
** */
unsigned int mii_read(phyad,regad)
unsigned char phyad,regad;
{

unsigned int i,value;
unsigned int bit;
mii_pre_st(); // PRE+ST
mii_serial_in(1); // OP
mii_serial_in(0);

for (i=0;i<5;i++) { // PHYAD
bit= ((phyad>>(4-i)) & 0x01) ? 1 :0 ;
mii_serial_in(bit);

}

for (i=0;i<5;i++) { // REGAD
bit= ((regad>>(4-i)) & 0x01) ? 1 :0 ;
mii_serial_in(bit);

}
mii_serial_out(); // TA_Z
if((bit=mii_serial_out()) !=0) // TA_0

MX98713

20

return(FAIL);

value=0;
for (i=0;i<16;i++) { // READ DATA

bit=mii_serial_out();
value += bit<<15-i ;

}
mii_serial_in(0); // dumy clock
mii_serial_in(0); // dumy clock
return(value);

}

/**
* Write MII register
* phyad -> physical address
* regad -> register address
* value -> value to be write
*** */
mii_write(phyad,regad,value)
unsigned char phyad,regad;
unsigned int value;

{
unsigned int i;
char bit;
mii_pre_st(); // PRE+ST
mii_serial_in(0); // OP
mii_serial_in(1);

for (i=0;i<5;i++) { // PHYAD
bit= ((phyad>>(4-i)) & 0x01) ? 1 :0 ;
mii_serial_in(bit);

}

for (i=0;i<5;i++) { // REGAD
bit= ((regad>>(4-i)) & 0x01) ? 1 :0 ;
mii_serial_in(bit);

}

mii_serial_in(1); // TA_1
mii_serial_in(0); // TA_0

for (i=0;i<16;i++) { // OUT DATA
bit= ((value>>(15-i)) & 0x01) ? 1 : 0 ;
mii_serial_in(bit);

}
mii_serial_in(0); // dumy clock
mii_serial_in(0); // dumy clock

}

/***************************************
* preamble + ST
***************************************/

MX98713

21

mii_pre_st()
{

unsigned char i;
NIC_write_reg(&csr9,(unsigned long)0x02000); // SWO+~SSR
for(i=0;i<32;i++) // PREAMBLE

mii_serial_in(1);
mii_serial_in(0); // ST
mii_serial_in(1);

}

/* **
* Inject a bit to NWay register through CSR9_MDC,MDIO
***/
mii_serial_in(char bit_MDO) // inject data into mii PHY
{

if(bit_MDO){
 NIC_write_reg(&csr9,(unsigned long)0xfff02000 | CSR9_MDO);// SWO

NIC_write_reg(&csr9,(unsigned long)0xfff12000 | CSR9_MDO);// MDC+SWO
NIC_write_reg(&csr9,(unsigned long)0xfff02000 | CSR9_MDO);// SWO

}
else{

NIC_write_reg(&csr9,(unsigned long)0xfff02000);// SWO
NIC_write_reg(&csr9,(unsigned long)0xfff12000);// MDC+SWO
NIC_write_reg(&csr9,(unsigned long)0xfff02000);// SWO

}
}

/**
* read a bit from NWay register through CSR9_MDC,MDIO
***/
mii_serial_out() // read data from mii PHY
{

unsigned int bit_MDI;
NIC_write_reg(&csr9,CSR9_MMD|CSR9_SRO); // MMD+SRO
NIC_read_reg (&csr9);
NIC_write_reg(&csr9,CSR9_MMD|CSR9_SRO|CSR9_MDC); // MD+MDC+SRO
NIC_write_reg(&csr9,CSR9_MMD|CSR9_SRO); // MMD+SRO
bit_MDI = (csr9.value & CSR9_MDI) ? 1 : 0 ;
return(bit_MDI);

}

7. RECOMMENDATION OF POWER SUPPLY CONNECTION

The recommended power supply schematic is shown in Figure 8. The GND indicates a direct connection to the
ground plane. The VCC indicates a direct connection to the power plane.

MX98713

22

MACRONIX INTERNATIONAL CO., LTD.
HEADQUARTERS:
No. 3, Creation Road III, Science-Based Industrial Park, Hsin Chu, Taiwan, R.O.C.
TEL:+886-3-578-8888
FAX:+886-3-578-8887

TAIPEI OFFICE:
12F, No. 4, Min-Chuan E.Rd., Sec 3, Taipei, Taiwan, R.O.C.
TEL:+886-3-509-3300
FAX:+886-3-509-2200

EUROPE OFFICE:
Koningin Astridlaan 59, Bus 1, 1780 Wemmel, Belgium
TEL:+32-2-456-8020
FAX:+32-2-456-8021

SINGAPORE OFFICE:
5 Jalan Masjid Kembangan Court #01-12 Singapore 418924
TEL:+65-747-2309
FAX:+65-748-4090

MACRONIX AMERICA, INC.
1338 Ridder Park Drive, San Jose, CA95131 U.S.A.
TEL:+1-408-453-8088
FAX:+1-408-453-8488

JAPAN OFFICE:
NFK Kawasaki Building, 8F, 1-2 Higashida-cho, Kawasaki-ku
Kawasaki-shi, Kawasaki-ken 210, Japan
TEL:+81-44-246-9100
FAX:+81-44-246-9105

MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.

