MPC8260UM/D 4/1999 Rev. 0

MPC8260 PowerQUICC II[™] User's Manual

PowerPc[™]

PowerQUICC II, Mfax, and DigitalDNA are trademarks of Motorola, Inc.

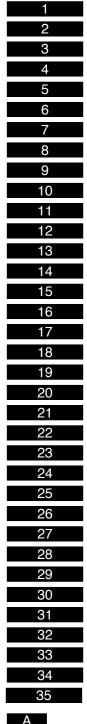
The PowerPC name, the PowerPC logotype, PowerPC 601, PowerPC 603, PowerPC 603e, PowerPC 604, PowerPC 604e, and RS/6000 are trademarks of International Business Machines Corporation used by Motorola under license from International Business Machines Corporation. I²C is a registered trademark of Philips Semiconductors

Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express or implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended for sustain life, or for any other application, buyer shall hability arising out of the applications, subject for any such unauthorized a publication, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Motorola Literature Distribution Centers:


USA/EUROPE: Motorola Literature Distribution; P.O. Box 5405; Denver, Colorado 80217; Tel.: 1-800-441-2447 or 1-303-675-2140 JAPAN: Nippon Motorola Ltd SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141, Japan Tel.: 81-3-5487-8488 ASIA/PACIFC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong; Tel.: 852-26629298

Mfax™: RMFAX0@email.sps.mot.com; TOUCHTONE 1-602-244-6609; US & Canada ONLY (800) 774-1848; World Wide Web Address: http://sps.motorola.com/mfax INTERNET: http://motorola.com/sps

Technical Information: Motorola Inc. SPS Customer Support Center; 1-800-521-6274; electronic mail address: crc@wmkmail.sps.mot.com. Document Comments: FAX (512) 895-2638, Attn: RISC Applications Engineering. World Wide Web Addresses: http://www.mot.com/PowerPC

http://www.mot.com/netcomm http://www.mot.com/HPESD

Overview PowerPC Processor Core Memory Map System Interface Unit (SIU) Reset **External Signals** 60x Signals The 60x Bus Clocks and Power Control Memory Controller Secondary (L2) Cache Support IEEE 1149.1 Test Access Port Communications Processor Module Overview Serial Interface with Time-Slot Assigner CPM Multiplexing **Baud-Rate Generators (BRGs)** Timers SDMA Channels and IDMA Emulation Serial Communications Controllers (SCCs) SCC UART Mode SCC HDLC Mode SCC BISYNC Mode SCC Transparent Mode SCC Ethernet Mode SCC AppleTalk Mode Serial Management Controllers (SMCs) Multi-Channel Controllers (MCCs) Fast Communications Controllers ATM Controller Fast Ethernet Controller FCC HDLC Controller FCC Transparent Controller Serial Peripheral Interface (SPI) I²C Controller Parallel I/O Ports **Register Quick Reference Guide** Glossary Index IND

GLO

Overview PowerPC Processor Core Memory Map System Interface Unit (SIU) Reset External Signals 60x Signals The 60x Bus **Clocks and Power Control** Memory Controller Secondary (L2) Cache Support IEEE 1149.1 Test Access Port **Communications Processor Module Overview** Serial Interface with Time-Slot Assigner CPM Multiplexing **Baud-Rate Generators (BRGs)** Timers SDMA Channels and IDMA Emulation Serial Communications Controllers (SCCs) SCC UART Mode SCC HDLC Mode SCC BISYNC Mode SCC Transparent Mode SCC Ethernet Mode SCC AppleTalk Mode Serial Management Controllers (SMCs) Multi-Channel Controllers (MCCs) Fast Communications Controllers **ATM Controller** Fast Ethernet Controller FCC HDLC Controller FCC Transparent Controller Serial Peripheral Interface (SPI) I²C Controller Parallel I/O Ports **Register Quick Reference Guide** А GLO Glossary IND Index

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Paragraph Number

Title

Page Number

About This Book

Before Using this Manual-Important Note	lv
Audience	lv
Organization	lvi
Suggested Reading	
MPC8xx Documentation	
PowerPC Documentation	lix
Conventions	lx
Acronyms and Abbreviations	lxi
PowerPC Architecture Terminology Conventions	

Chapter 1 Overview

1.1	Features	
1.2	MPC8260's Architecture Overview	
1.2.1	MPC603e Core	
1.2.2	System Interface Unit (SIU)	
1.2.3	Communications Processor Module (CPM)	
1.3	Software Compatibility Issues	1-7
1.3.1	Signals	1-7
1.4	Differences between MPC860 and MPC8260	1-9
1.5	Serial Protocol Table	1-9
1.6	MPC8260 Configurations	
1.6.1	Pin Configurations	
1.6.2	Serial Performance	
1.7	MPC8260 Application Examples	1-11
1.7.1	Examples of Communication Systems	
1.7.1.1	Remote Access Server	1-11
1.7.1.2	Regional Office Router	
1.7.1.3	LAN-to-WAN Bridge Router	
1.7.1.4	Cellular Base Station	1-14
1.7.1.5	Telecommunications Switch Controller	
1.7.1.6	SONET Transmission Controller	1-15

Paragraph Number	Title	Page Number
1.7.2	Bus Configurations	1-15
1.7.2.1	Basic System	1-15
1.7.2.2	High-Performance Communication	1-16
1.7.2.3	High-Performance System Microprocessor	1-17

Chapter 2 PowerPC Processor Core

2.1	Overview	2-1
2.2	PowerPC Processor Core Features	2-3
2.2.1	Instruction Unit	2-5
2.2.2	Instruction Queue and Dispatch Unit	2-5
2.2.3	Branch Processing Unit (BPU)	2-6
2.2.4	Independent Execution Units	2-6
2.2.4.1	Integer Unit (IU)	2-6
2.2.4.2	Load/Store Unit (LSU)	2-7
2.2.4.3	System Register Unit (SRU)	2-7
2.2.5	Completion Unit	2-7
2.2.6	Memory Subsystem Support	
2.2.6.1	Memory Management Units (MMUs)	2-8
2.2.6.2	Cache Units	2-8
2.3	Programming Model	2-8
2.3.1	Register Set	
2.3.1.1	PowerPC Register Set	2-9
2.3.1.2	MPC8260-Specific Registers	2-11
2.3.1.2.1	Hardware Implementation-Dependent Register 0 (HID0)	
2.3.1.2.2	Hardware Implementation-Dependent Register 1 (HID1)	2-14
2.3.1.2.3	Hardware Implementation-Dependent Register 2 (HID2)	2-15
2.3.1.2.4	Processor Version Register (PVR)	2-16
2.3.2	PowerPC Instruction Set and Addressing Modes	2-16
2.3.2.1	Calculating Effective Addresses	2-16
2.3.2.2	PowerPC Instruction Set	2-16
2.3.2.3	MPC8260 Implementation-Specific Instruction Set	2-18
2.4	Cache Implementation	
2.4.1	PowerPC Cache Model	2-18
2.4.2	MPC8260 Implementation-Specific Cache Implementation	2-19
2.4.2.1	Data Cache	2-19
2.4.2.2	Instruction Cache	2-21
2.4.2.3	Cache Locking	2-21
2.4.2.3.1	Entire Cache Locking	
2.4.2.3.2	Way Locking	
2.5	Exception Model	

Paragraph Number	Title	Page Number
2.5.1	PowerPC Exception Model	2-22
2.5.2	MPC8260 Implementation-Specific Exception Model	2-23
2.5.3	Exception Priorities	2-26
2.6	Memory Management	2-26
2.6.1	PowerPC MMU Model	
2.6.2	MPC8260 Implementation-Specific MMU Features	2-28
2.7	Instruction Timing	2-29
2.8	Differences between the MPC8260's Core and the PowerPC 603e	
	Microprocessor	2-30

Chapter 3 Memory Map

Chapter 4 System Interface Unit (SIU)

4.1	System Configuration and Protection	4-2
4.1.1	Bus Monitor	
4.1.2	Timers Clock	4-4
4.1.3	Time Counter (TMCNT)	4-4
4.1.4	Periodic Interrupt Timer (PIT)	4-5
4.1.5	Software Watchdog Timer	4-6
4.2	Interrupt Controller	4-7
4.2.1	Interrupt Configuration	4-8
4.2.2	Interrupt Source Priorities	4-9
4.2.2.1	SCC, FCC, and MCC Relative Priority	
4.2.2.2	PIT, TMCNT, and IRQ Relative Priority	
4.2.2.3	Highest Priority Interrupt	4-13
4.2.3	Masking Interrupt Sources	4-13
4.2.4	Interrupt Vector Generation and Calculation	4-14
4.2.4.1	Port C External Interrupts	4-16
4.3	Programming Model	4-17
4.3.1	Interrupt Controller Registers	4-17
4.3.1.1	SIU Interrupt Configuration Register (SICR)	4-17
4.3.1.2	SIU Interrupt Priority Register (SIPRR)	4-18
4.3.1.3	CPM Interrupt Priority Registers (SCPRR_H and SCPRR_L)	4-19
4.3.1.4	SIU Interrupt Pending Registers (SIPNR_H and SIPNR_L)	4-21
4.3.1.5	SIU Interrupt Mask Registers (SIMR_H and SIMR_L)	
4.3.1.6	SIU Interrupt Vector Register (SIVEC)	
4.3.1.7	SIU External Interrupt Control Register (SIEXR)	
4.3.2	System Configuration and Protection Registers	
4.3.2.1	Bus Configuration Register (BCR)	

Paragraph Number	Title Page Number
4.3.2.2	60x Bus Arbiter Configuration Register (PPC_ACR)4-28
4.3.2.3	60x Bus Arbitration-Level Registers (PPC_ALRH/PPC_ALRL)
4.3.2.4	Local Bus Arbiter Configuration Register (LCL_ACR)4-29
4.3.2.5	Local Bus Arbitration Level Registers (LCL_ALRH and LCL_ACRL)4-30
4.3.2.6	SIU Module Configuration Register (SIUMCR)4-31
4.3.2.7	Internal Memory Map Register (IMMR)4-34
4.3.2.8	System Protection Control Register (SYPCR)
4.3.2.9	Software Service Register (SWSR)4-36
4.3.2.10	60x Bus Transfer Error Status and Control Register 1 (TESCR1)4-36
4.3.2.11	60x Bus Transfer Error Status and Control Register 2 (TESCR2)4-37
4.3.2.12	Local Bus Transfer Error Status and Control Register 1 (L_TESCR1)4-38
4.3.2.13	Local Bus Transfer Error Status and Control Register 2 (L_TESCR2)4-39
4.3.2.14	Time Counter Status and Control Register (TMCNTSC)
4.3.2.15	Time Counter Register (TMCNT)
4.3.2.16	Time Counter Alarm Register (TMCNTAL)4-41
4.3.3	Periodic Interrupt Registers
4.3.3.1	Periodic Interrupt Status and Control Register (PISCR)
4.3.3.2	Periodic Interrupt Timer Count Register (PITC)
4.3.3.3	Periodic Interrupt Timer Register (PITR)4-44
4.4	SIU Pin Multiplexing4-44

Chapter 5 Reset

5.1	Reset Causes	
5.1.1	Reset Actions	5-2
5.1.2	Power-On Reset Flow	5-2
5.1.3	HRESET Flow	5-3
5.1.4	SRESET Flow	5-3
5.2	Reset Status Register (RSR)	5-4
5.3	Reset Mode Register (RMR)	5-5
5.4	Reset Configuration	
5.4.1	Hard Reset Configuration Word	5-8
5.4.2	Hard Reset Configuration Examples	
5.4.2.1	Single MPC8260 with Default Configuration	
5.4.2.2	Single MPC8260 Configured from Boot EPROM	
5.4.2.3	Multiple MPC8260s Configured from Boot EPROM	
5.4.2.4	Multiple MPC8260s in a System with No EPROM	

Chapter 6

Paragraph Number	Title	Page Number
	External Cignals	

External Signals

6.1	Functional Pinout
6.2	Signal Descriptions

Chapter 7 60x Signals

7.1	Signal Configuration
7.2	Signal Descriptions
7.2.1	Address Bus Arbitration Signals7-3
7.2.1.1	Bus Request (BR)—Output7-3
7.2.1.1.1	Address Bus Request (BR)—Output7-3
7.2.1.1.2	Address Bus Request (BR)—Input7-4
7.2.1.2	Bus Grant (BG)
7.2.1.2.1	Bus Grant (BG)—Input7-4
7.2.1.2.2	Bus Grant (BG)—Output7-5
7.2.1.3	Address Bus Busy (ABB)7-5
7.2.1.3.1	Address Bus Busy (ABB)-Output7-5
7.2.1.3.2	Address Bus Busy (ABB)—Input7-6
7.2.2	Address Transfer Start Signal7-6
7.2.2.1	Transfer Start (TS)7-6
7.2.2.1.1	Transfer Start (TS)—Output7-6
7.2.2.2	Transfer Start (TS)—Input7-6
7.2.3	Address Transfer Signals7-7
7.2.3.1	Address Bus (A[0-31])7-7
7.2.3.1.1	Address Bus (A[0-31]) – Output
7.2.3.1.2	Address Bus (A[0-31])-Input7-7
7.2.4	Address Transfer Attribute Signals7-7
7.2.4.1	Transfer Type (TT[0–4])7-8
7.2.4.1.1	Transfer Type (TT[0–4])—Output7-8
7.2.4.1.2	Transfer Type (TT[0–4])—Input7-8
7.2.4.2	Transfer Size (TSIZ[0–3])
7.2.4.3	Transfer Burst (TBST)7-8
7.2.4.4	Global (GBL)7-9
7.2.4.4.1	Global (GBL)—Output7-9
7.2.4.4.2	Global (GBL)—Input7-9
7.2.4.5	Caching-Inhibited (CI)—Output7-9
7.2.4.6	Write-Through (WT)—Output7-9
7.2.5	Address Transfer Termination Signals7-10
7.2.5.1	Address Acknowledge (AACK)7-10
7.2.5.1.1	Address Acknowledge (AACK)-Output7-10
7.2.5.1.2	Address Acknowledge (AACK)—Input7-10

Paragraph Number	Title	Page Number
7.2.5.2	Address Retry (ARTRY)	7-11
7.2.5.2.1	Address Retry (ARTRY)—Output	
7.2.5.2.2	Address Retry (ARTRY)-Input	7-11
7.2.6	Data Bus Arbitration Signals	7-12
7.2.6.1	Data Bus Grant (DBG)	
7.2.6.1.1	Data Bus Grant (DBG)—Input	7-12
7.2.6.1.2	Data Bus Grant (DBG)—Output	7-12
7.2.6.2	Data Bus Busy (DBB)	7-13
7.2.6.2.1	Data Bus Busy (DBB)—Output	7-13
7.2.6.2.2	Data Bus Busy (DBB)—Input	7-13
7.2.7	Data Transfer Signals	7-13
7.2.7.1	Data Bus (D[0-63])	
7.2.7.1.1	Data Bus (D[0-63])—Output	7-14
7.2.7.1.2	Data Bus (D[0-63])—Input	7-14
7.2.7.2	Data Bus Parity (DP[0-7])	7-14
7.2.7.2.1	Data Bus Parity (DP[0-7])—Output	7-14
7.2.7.2.2	Data Bus Parity (DP[0-7])—Input	7-15
7.2.8	Data Transfer Termination Signals	
7.2.8.1	Transfer Acknowledge (TA)	7-15
7.2.8.1.1	Transfer Acknowledge (TA)—Input	
7.2.8.1.2	Transfer Acknowledge (TA)—Output	7-16
7.2.8.2	Transfer Error Acknowledge (TEA)	
7.2.8.2.1	Transfer Error Acknowledge (TEA)—Input	
7.2.8.2.2	Transfer Error Acknowledge (TEA)—Output	
7.2.8.3	Partial Data Valid Indication (PSDVAL)	
7.2.8.3.1	Partial Data Valid (PSDVAL)—Input	
7.2.8.3.2	Partial Data Valid (PSDVAL)—Output	7-18

Chapter 8 The 60x Bus

8.1	Terminology	8-1
8.2	Bus Configuration	8-2
8.2.1	Single MPC8260 Bus Mode	8-2
8.2.2	60x-Compatible Bus Mode	
8.3	60x Bus Protocol Overview	
8.3.1	Arbitration Phase	8-5
8.3.2	Address Pipelining and Split-Bus Transactions	8-7
8.4	Address Tenure Operations	8-7
8.4.1	Address Arbitration	
8.4.2	Address Pipelining	8-9
8.4.3	Address Transfer Attribute Signals	

Paragraph Number	Title	Page Number
8.4.3.1	Transfer Type Signal (TT[0-4]) Encoding	8-10
8.4.3.2	Transfer Code Signals TC[0–2]	8-13
8.4.3.3	TBST and TSIZ[0-3] Signals and Size of Transfer	
8.4.3.4	Burst Ordering During Data Transfers	8-14
8.4.3.5	Effect of Alignment on Data Transfers	
8.4.3.6	Effect of Port Size on Data Transfers	
8.4.3.7	60x-Compatible Bus Mode—Size Calculation	8-19
8.4.3.8	Extended Transfer Mode	8-20
8.4.4	Address Transfer Termination	8-23
8.4.4.1	Address Retried with ARTRY	8-23
8.4.4.2	Address Tenure Timing Configuration	8-25
8.4.5	Pipeline Control	8-26
8.5	Data Tenure Operations	8-26
8.5.1	Data Bus Arbitration	8-26
8.5.2	Data Streaming Mode	8-27
8.5.3	Data Bus Transfers and Normal Termination	8-27
8.5.4	Effect of ARTRY Assertion on Data Transfer and Arbitration	8-28
8.5.5	Port Size Data Bus Transfers and PSDVAL Termination	8-28
8.5.6	Data Bus Termination by Assertion of TEA	8-30
8.6	Memory Coherency-MEI Protocol	8-31
8.7	Processor State Signals	8-32
8.7.1	Support for the lwarx/stwcx. Instruction Pair	8-33
8.7.2	TLBISYNC Input	8-33
8.8	Little-Endian Mode	8-33

Chapter 9 Clocks and Power Control

9.1	Clock Unit	
9.2	Clock Configuration	
9.3	External Clock Inputs	
9.4	Main PLL	
9.4.1	PLL Block Diagram	
9.4.2	Skew Elimination	
9.5	Clock Dividers	
9.6	The MPC8260's Internal Clock Signals	
9.6.1	General System Clocks	
9.7	PLL Pins	

Paragraph Number	Title	Page Number
9.8	System Clock Control Register (SCCR)	9-8
9.9	System Clock Mode Register (SCMR)	
9.10	Basic Power Structure	

Chapter 10 Memory Controller

10.1	Features	10-3
10.2	Basic Architecture	10-5
10.2.1	Address and Address Space Checking	10-8
10.2.2	Page Hit Checking	10-9
10.2.3	Error Checking and Correction (ECC)	
10.2.4	Parity Generation and Checking	
10.2.5	Transfer Error Acknowledge (TEA) Generation	
10.2.6	Machine Check Interrupt (MCP) Generation	
10.2.7	Data Buffer Controls (BCTLx)	
10.2.8	Atomic Bus Operation	10-10
10.2.9	Data Pipelining	10-10
10.2.10	External Memory Controller Support	
10.2.11	External Address Latch Enable Signal (ALE)	
10.2.12	ECC/Parity Byte Select (PBSE)	10-11
10.2.13	Partial Data Valid Indication (PSDVAL)	
10.3	Register Descriptions	10-13
10.3.1	Base Registers (BRx)	10-14
10.3.2	Option Registers (ORx)	10-16
10.3.3	60x SDRAM Mode Register (PSDMR)	
10.3.4	Local Bus SDRAM Mode Register (LSDMR)	
10.3.5	Machine A/B/C Mode Registers (MxMR)	
10.3.6	Memory Data Register (MDR)	10-28
10.3.7	Memory Address Register (MAR)	
10.3.8	60x Bus-Assigned UPM Refresh Timer (PURT)	10-30
10.3.9	Local Bus-Assigned UPM Refresh Timer (LURT)	10-30
10.3.10	60x Bus-Assigned SDRAM Refresh Timer (PSRT)	10-31
10.3.11	Local Bus-Assigned SDRAM Refresh Timer (LSRT)	
10.3.12	Memory Refresh Timer Prescaler Register (MPTPR)	
10.3.13	60x Bus Error Status and Control Registers (TESCRx)	10-33
10.3.14	Local Bus Error Status and Control Registers (L_TESCRx)	10-33
10.4	SDRAM Machine	10-33
10.4.1	Supported SDRAM Configurations	10-35
10.4.2	SDRAM Power-On Initialization	10-35
10.4.3	JEDEC-Standard SDRAM Interface Commands	10-35
10.4.4	Page-Mode Support and Pipeline Accesses	

Paragraph Number	Title	Page Number
10.4.5	Bank Interleaving	10-36
10.4.5.1	SDRAM Address Multiplexing (SDAM and BSMA)	
10.4.6	SDRAM Device-Specific Parameters	10-38
10.4.6.1	Precharge-to-Activate Interval	
10.4.6.2	Activate to Read/Write Interval	
10.4.6.3	Column Address to First Data Out-CAS Latency	10-40
10.4.6.4	Last Data Out to Precharge	
10.4.6.5	Last Data In to Precharge—Write Recovery	10-41
10.4.6.6	Refresh Recovery Interval (RFRC)	
10.4.6.7	External Address Multiplexing Signal	10-41
10.4.6.8	External Address and Command Buffers (BUFCMD)	10-42
10.4.7	SDRAM Interface Timing	10-42
10.4.8	SDRAM Read/Write Transactions	10-46
10.4.9	SDRAM Mode-Set Command Timing	10-46
10.4.10	SDRAM Refresh	10-47
10.4.11	SDRAM Refresh Timing	10-47
10.4.12	SDRAM Configuration Examples	10-48
10.4.12.1	SDRAM Configuration Example (Page-Based Interleaving)	10-48
10.4.13	SDRAM Configuration Example (Bank-Based Interleaving)	
10.5	General-Purpose Chip-Select Machine (GPCM)	10-51
10.5.1	Timing Configuration	
10.5.1.1	Chip-Select Assertion Timing	10-53
10.5.1.2	Chip-Select and Write Enable Deassertion Timing	10-54
10.5.1.3	Relaxed Timing	
10.5.1.4	Output Enable (OE) Timing	10-57
10.5.1.5	Programmable Wait State Configuration	10-57
10.5.1.6	Extended Hold Time on Read Accesses	10-57
10.5.2	External Access Termination	10-60
10.5.3	Boot Chip-Select Operation	10-61
10.5.4	Differences between MPC8xx's GPCM and MPC8260's GPCM	
10.6	User-Programmable Machines (UPMs)	
10.6.1	Requests	
10.6.1.1	Memory Access Requests	10-65
10.6.1.2	UPM Refresh Timer Requests	10-65
10.6.1.3	Software Requests-run Command	10-66
10.6.1.4	Exception Requests	10-66
10.6.2	Programming the UPMs	10-66
10.6.3	Clock Timing	10-67
10.6.4	The RAM Array	10-69
10.6.4.1	RAM Words	
10.6.4.1.1	Chip-Select Signals (CxTx)	10-74
10.6.4.1.2	Byte-Select Signals (BxTx)	
10.6.4.1.3	General-Purpose Signals (GxTx, GOx)	10-76

Paragraph Number	Title	Page Number
10.6.4.1.4	Loop Control	
10.6.4.1.5	Repeat Execution of Current RAM Word (REDO)	10-76
10.6.4.2	Address Multiplexing	
10.6.4.3	Data Valid and Data Sample Control	
10.6.4.4	Signals Negation	
10.6.4.5	The Wait Mechanism	
10.6.4.6	Extended Hold Time on Read Accesses	
10.6.5	UPM DRAM Configuration Example	
10.6.6	Differences between MPC8xx UPM and MPC8260 UPM	
10.7	Memory System Interface Example Using UPM	
10.7.0.1	EDO Interface Example	
10.8	Handling Devices with Slow or Variable Access Times	
10.8.1	Hierarchical Bus Interface Example	
10.8.2	Slow Devices Example	
10.9	External Master Support (60x-Compatible Mode)	
10.9.1	60x-Compatible External Masters	
10.9.2	MPC8260-Type External Masters	
10.9.3	Extended Controls in 60x-Compatible Mode	
10.9.4	Using BNKSEL SIgnals in Single-MPC8260 Bus Mode	
10.9.5	Address Incrementing for External Bursting Masters	
10.9.6	External Masters Timing	
10.9.6.1	Example of External Master Using the SDRAM Machine	

Chapter 11 Secondary (L2) Cache Support

11.1	L2 Cache Configurations	11-1
11.1.1	Copy-Back Mode	
11.1.2	Write-Through Mode	
11.1.3	ECC/Parity Mode	
11.2	L2 Cache Interface Parameters	
11.3	System Requirements When Using the L2 Cache Interface	11-7
11.4	L2 Cache Operation	11-7
11.5	Timing Example	

Chapter 12 IEEE 1149.1 Test Access Port

12.1	Overview	
12.2	TAP Controller	
12.3	Boundary Scan Register	
12.4	Instruction Register	
	e	

Paragraph Number	Title	Page Number
12.5	MPC8260 Restrictions	
12.6	Nonscan Chain Operation	

Chapter 13 Communications Processor Module Overview

13.1	Features	13-1
13.2	MPC8260 Serial Configurations	13-3
13.3	Communications Processor (CP)	13-4
13.3.1	Features	13-4
13.3.2	CP Block Diagram	13-4
13.3.3	PowerPC Core Interface	13-6
13.3.4	Peripheral Interface	13-6
13.3.5	Execution from RAM	13-7
13.3.6	RISC Controller Configuration Register (RCCR)	13-7
13.3.7	RISC Time-Stamp Control Register (RTSCR)	13-9
13.3.8	RISC Time-Stamp Register (RTSR)	
13.3.9	RISC Microcode Revision Number	13-10
13.4	Command Set	
13.4.1	CP Command Register (CPCR)	13-11
13.4.1.1	CP Commands	
13.4.2	Command Register Example	13-15
13.4.3	Command Execution Latency	13-15
13.5	Dual-Port RAM	13-15
13.5.1	Buffer Descriptors (BDs)	13-17
13.5.2	Parameter RAM	13-17
13.6	RISC Timer Tables	13-18
13.6.1	RISC Timer Table Parameter RAM	13-19
13.6.2	RISC Timer Command Register (TM_CMD)	13-20
13.6.3	RISC Timer Table Entries	13-21
13.6.4	RISC Timer Event Register (RTER)/Mask Register (RTMR)	13-21
13.6.5	set timer Command	13-22
13.6.6	RISC Timer Initialization Sequence	13-22
13.6.7	RISC Timer Initialization Example	13-22
13.6.8	RISC Timer Interrupt Handling	13-23
13.6.9	RISC Timer Table Scan Algorithm	13-23
13.6.10	Using the RISC Timers to Track CP Loading	13-24

Paragraph Number

Title

Page Number

Chapter 14 Serial Interface with Time-Slot Assigner

14.1	Features	14-3
14.2	Overview	14-4
14.3	Enabling Connections to TSA	14-7
14.4	Serial Interface RAM	14-8
14.4.1	One Multiplexed Channel with Static Frames	14-9
14.4.2	One Multiplexed Channel with Dynamic Frames	14-9
14.4.3	Programming SIx RAM Entries	14-10
14.4.4	SIx RAM Programming Example	14-13
14.4.5	Static and Dynamic Routing	14-14
14.5	Serial Interface Registers	14-17
14.5.1	SI Global Mode Registers (SIxGMR)	
14.5.2	SI Mode Registers (SIxMR)	14-17
14.5.3	SIx RAM Shadow Address Registers (SIxRSR)	
14.5.4	SI Command Register (SIxCMDR)	14-24
14.5.5	SI Status Registers (SIxSTR)	14-25
14.6	Serial Interface IDL Interface Support	
14.6.1	IDL Interface Example	14-26
14.6.2	IDL Interface Programming	
14.7	Serial Interface GCI Support	14-31
14.7.1	SI GCI Activation/Deactivation Procedure	
14.7.2	Serial Interface GCI Programming	14-33
14.7.2.1	Normal Mode GCI Programming	
14.7.2.2	SCIT Programming	

Chapter 15 CPM Multiplexing

15.1	Features	15-2
15.2	Enabling Connections to TSA or NMSI	15-3
15.3	NMSI Configuration	15-4
15.4	CMX Registers	15-6
15.4.1	CMX UTOPIA Address Register (CMXUAR)	15-7
15.4.2	CMX SI1 Clock Route Register (CMXSI1CR)	15-10
15.4.3	CMX SI2 Clock Route Register (CMXSI2CR)	15-11
15.4.4	CMX FCC Clock Route Register (CMXFCR)	15-12
15.4.5	CMX SCC Clock Route Register (CMXSCR)	15-14
15.4.6	CMX SMC Clock Route Register (CMXSMR)	15-17

Paragraph
Number

Title

Page Number

Chapter 16 Baud-Rate Generators (BRGs)

16.1	BRG Configuration Registers 1–8 (BRGCx)	
16.2	Autobaud Operation on a UART	
16.3	UART Baud Rate Examples	

Chapter 17 Timers

17.1	Features	
17.2	General-Purpose Timer Units	
17.2.1	Cascaded Mode	
17.2.2	Timer Global Configuration Registers (TGCR1 and TGCR2)	
17.2.3	Timer Mode Registers (TMR1-TMR4)	
17.2.4	Timer Reference Registers (TRR1-TRR4)	
17.2.5	Timer Capture Registers (TCR1-TCR4)	
17.2.6	Timer Counters (TCN1–TCN4)	
17.2.7	Timer Event Registers (TER1-TER4)	

Chapter 18 SDMA Channels and IDMA Emulation

18.1 SDMA Bus Arbitration and Bus Transfers	
18.2 SDMA Registers	
18.2.1 SDMA Status Register (SDSR)	
18.2.2 SDMA Mask Register (SDMR)	18-4
18.2.3 SDMA Transfer Error Address Registers (PDTEA and LDTEA)	18-4
18.2.4 SDMA Transfer Error MSNUM Registers (PDTEM and LDTEM)	18-4
18.3 IDMA Emulation	
18.4 IDMA Features	
18.5 IDMA Transfers	18-6
18.5.1 Memory-to-Memory Transfers	18-6
18.5.1.1 External Request Mode	18-8
18.5.1.2 Normal Mode	18-9
18.5.2 Memory to/from Peripheral Transfers	18-9
18.5.2.1 Dual-Address Transfers	18-10
18.5.2.1.1 Peripheral to Memory	18-10
18.5.2.1.2 Memory to Peripheral	18-10
18.5.2.2 Single Address (Fly-By) Transfers	18-11
18.5.2.2.1 Peripheral-to-Memory Fly-By Transfers	18-11
18.5.2.2.2 Memory-to-Peripheral Fly-By Transfers	18-11

Paragraph Number	Title Page Number
18.5.3	Controlling 60x Bus Bandwidth
18.6	IDMA Priorities
18.7	IDMA Interface Signals
18.7.1	DREQx and DACKx
18.7.1.1	Level-Sensitive Mode
18.7.1.2	Edge-Sensitive Mode
18.7.2	DONEx
18.8	IDMA Operation18-14
18.8.1	Auto Buffer and Buffer Chaining18-15
18.8.2	IDMAx Parameter RAM18-16
18.8.2.1	DMA Channel Mode (DCM)18-18
18.8.2.2	Data Transfer Types as Programmed in DCM18-20
18.8.2.3	Programming DTS and STS18-20
18.8.3	IDMA Performance
18.8.4	IDMA Event Register (IDSR) and Mask Register (IDMR)18-22
18.8.5	IDMA BDs
18.9	IDMA Commands
18.9.1	start_idma Command18-26
18.9.2	stop_idma Command18-26
18.10	IDMA Bus Exceptions
18.10.1	Externally Recognizing IDMA Operand Transfers
18.11	Programming the Parallel I/O Registers
18.12	IDMA Programming Examples
18.12.1	Peripheral-to-Memory Mode (60x Bus to Local Bus)-IDMA218-29
18.12.2	Memory-to-Peripheral Fly-By Mode (Both on 60x Bus)-IDMA318-30

Chapter 19 Serial Communications Controllers (SCCs)

19.1	Features	19-2
19.1.1	The General SCC Mode Registers (GSMR1-GSMR4)	19-3
19.1.2	Protocol-Specific Mode Register (PSMR)	19-9
19.1.3	Data Synchronization Register (DSR)	19-9
19.1.4	Transmit-on-Demand Register (TODR)	19-9
19.2	SCC Buffer Descriptors (BDs)	19-10
19.3	SCC Parameter RAM	19-13
19.3.1	SCC Base Addresses	19-15
19.3.2	Function Code Registers (RFCR and TFCR)	19-15
19.3.3	Handling SCC Interrupts	19-16
19.3.4	Initializing the SCCs	19-17
19.3.5	Controlling SCC Timing with RTS, CTS, and CD	
19.3.5.1	Synchronous Protocols	

Paragraph Number	Title	Page Number
19.3.5.2	Asynchronous Protocols	
19.3.6	Digital Phase-Locked Loop (DPLL) Operation	
19.3.6.1	Encoding Data with a DPLL	
19.3.7	Clock Glitch Detection	19-26
19.3.8	Reconfiguring the SCCs	19-26
19.3.8.1	General Reconfiguration Sequence for an SCC Transmitter	19-26
19.3.8.2	Reset Sequence for an SCC Transmitter	19-27
19.3.8.3	General Reconfiguration Sequence for an SCC Receiver	
19.3.8.4	Reset Sequence for an SCC Receiver	19-27
19.3.8.5	Switching Protocols	19-27
19.3.9	Saving Power	

Chapter 20 SCC UART Mode

20.1	Features	
20.2	Normal Asynchronous Mode	
20.3	Synchronous Mode	
20.4	SCC UART Parameter RAM	
20.5	Data-Handling Methods: Character- or Message-Based	
20.6	Error and Status Reporting	
20.7	SCC UART Commands	
20.8	Multidrop Systems and Address Recognition	
20.9	Receiving Control Characters	
20.10	Hunt Mode (Receiver)	
20.11	Inserting Control Characters into the Transmit Data Stream	
20.12	Sending a Break (Transmitter)	
20.13	Sending a Preamble (Transmitter)	
20.14	Fractional Stop Bits (Transmitter)	
20.15	Handling Errors in the SCC UART Controller	
20.16	UART Mode Register (PSMR)	
20.17	SCC UART Receive Buffer Descriptor (RxBD)	
20.18	SCC UART Transmit Buffer Descriptor (TxBD)	
20.19	SCC UART Event Register (SCCE) and Mask Register (SCCM)	
20.20	SCC UART Status Register (SCCS)	
20.21	SCC UART Programming Example	
20.22	S-Records Loader Application	

Paragraph Number

Title

Page Number

Chapter 21 SCC HDLC Mode

21.1	SCC HDLC Features	21-2
21.2	SCC HDLC Channel Frame Transmission	
21.3	SCC HDLC Channel Frame Reception	
21.4	SCC HDLC Parameter RAM	
21.5	Programming the SCC in HDLC Mode	
21.6	SCC HDLC Commands	21-5
21.7	Handling Errors in the SCC HDLC Controller	21-6
21.8	HDLC Mode Register (PSMR)	21-7
21.9	SCC HDLC Receive Buffer Descriptor (RxBD)	21-8
21.10	SCC HDLC Transmit Buffer Descriptor (TxBD)	21-11
21.11	HDLC Event Register (SCCE)/HDLC Mask Register (SCCM)	21-12
21.12	SCC HDLC Status Register (SCCS)	
21.13	SCC HDLC Programming Examples	21-14
21.13.1	SCC HDLC Programming Example #1	21-15
21.13.2	SCC HDLC Programming Example #2	
21.14	HDLC Bus Mode with Collision Detection	21-17
21.14.1	HDLC Bus Features	21-19
21.14.2	Accessing the HDLC Bus	21-19
21.14.3	Increasing Performance	
21.14.4	Delayed RTS Mode	21-21
21.14.5	Using the Time-Slot Assigner (TSA)	
21.14.6	HDLC Bus Protocol Programming	
21.14.6.1	Programming GSMR and PSMR for the HDLC Bus Protocol	
21.14.6.2	HDLC Bus Controller Programming Example	

Chapter 22 SCC BISYNC Mode

22.1	Features	
22.2	SCC BISYNC Channel Frame Transmission	
22.3	SCC BISYNC Channel Frame Reception	
22.4	SCC BISYNC Parameter RAM	
22.5	SCC BISYNC Commands	
22.6	SCC BISYNC Control Character Recognition	
22.7	BISYNC SYNC Register (BSYNC)	
22.8	SCC BISYNC DLE Register (BDLE)	
22.9	Sending and Receiving the Synchronization Sequence	
22.10	Handling Errors in the SCC BISYNC	
22.11	BISYNC Mode Register (PSMR)	

Paragraph Number	Title	Page Number
22.12	SCC BISYNC Receive BD (RxBD)	
22.13	SCC BISYNC Transmit BD (TxBD)	22-14
22.14	BISYNC Event Register (SCCE)/BISYNC Mask Register (SCCM)	
22.15	SCC Status Registers (SCCS)	
22.16	Programming the SCC BISYNC Controller	
22.17	SCC BISYNC Programming Example	

Chapter 23 SCC Transparent Mode

23.1	Features	23-1
23.2	SCC Transparent Channel Frame Transmission Process	
23.3	SCC Transparent Channel Frame Reception Process	23-2
23.4	Achieving Synchronization in Transparent Mode	23-3
23.4.1	Synchronization in NMSI Mode	23-3
23.4.1.1	In-Line Synchronization Pattern	23-3
23.4.1.2	External Synchronization Signals	23-4
23.4.1.2.1	External Synchronization Example	23-4
23.4.1.3	Transparent Mode without Explicit Synchronization	23-5
23.4.2	Synchronization and the TSA	23-5
23.4.2.1	Inline Synchronization Pattern	
23.4.2.2	Inherent Synchronization	23-6
23.4.3	End of Frame Detection	
23.5	CRC Calculation in Transparent Mode	
23.6	SCC Transparent Parameter RAM	
23.7	SCC Transparent Commands	23-7
23.8	Handling Errors in the Transparent Controller	
23.9	Transparent Mode and the PSMR	
23.10	SCC Transparent Receive Buffer Descriptor (RxBD)	23-9
23.11	SCC Transparent Transmit Buffer Descriptor (TxBD)	
23.12	SCC Transparent Event Register (SCCE)/Mask Register (SCCM)	23-12
23.13	SCC Status Register in Transparent Mode (SCCS)	23-13
23.14	SCC2 Transparent Programming Example	

Chapter 24 SCC Ethernet Mode

24.1	Ethernet on the MPC8260	.24-2
24.2	Features	.24-3
24.3	Connecting the MPC8260 to Ethernet	.24-4
24.4	SCC Ethernet Channel Frame Transmission	
24.5	SCC Ethernet Channel Frame Reception	.24-6

Paragraph Number	Title	Page Number
24.6	The Content-Addressable Memory (CAM) Interface	24-7
24.7	SCC Ethernet Parameter RAM	24-8
24.8	Programming the Ethernet Controller	24-10
24.9	SCC Ethernet Commands	
24.10	SCC Ethernet Address Recognition	24-11
24.11	Hash Table Algorithm	
24.12	Interpacket Gap Time	
24.13	Handling Collisions	
24.14	Internal and External Loopback	
24.15	Full-Duplex Ethernet Support	
24.16	Handling Errors in the Ethernet Controller	
24.17	Ethernet Mode Register (PSMR)	24-15
24.18	SCC Ethernet Receive BD	
24.19	SCC Ethernet Transmit Buffer Descriptor	24-19
24.20	SCC Ethernet Event Register (SCCE)/Mask Register (SCCM)	
24.21	SCC Ethernet Programming Example	

Chapter 25 SCC AppleTalk Mode

25.1	Operating the LocalTalk Bus	
25.2	Features	
25.3	Connecting to AppleTalk	
25.4	Programming the SCC in AppleTalk Mode	
25.4.1	Programming the GSMR	
25.4.2	Programming the PSMR	
25.4.3	Programming the TODR	
25.4.4	SCC AppleTalk Programming Example	25-4

Chapter 26 Serial Management Controllers (SMCs)

26.1	Features	
26.2	Common SMC Settings and Configurations	
26.2.1	SMC Mode Registers (SMCMR1/SMCMR2)	
26.2.2	SMC Buffer Descriptor Operation	
26.2.3	SMC Parameter RAM	
26.2.3.1	SMC Function Code Registers (RFCR/TFCR)	
26.2.4	Disabling SMCs On-the-Fly	
26.2.4.1	SMC Transmitter Full Sequence	
26.2.4.2	SMC Transmitter Shortcut Sequence	
26.2.4.3	SMC Receiver Full Sequence.	

Paragraph Number	Title	Page Number
26.2.4.4	SMC Receiver Shortcut Sequence	
26.2.4.5	Switching Protocols	
26.2.5	Saving Power	
26.2.6	Handling Interrupts in the SMC	
26.3	SMC in UART Mode	
26.3.1	Features	
26.3.2	SMC UART Channel Transmission Process	
26.3.3	SMC UART Channel Reception Process	
26.3.4	Programming the SMC UART Controller	
26.3.5	SMC UART Transmit and Receive Commands	
26.3.6	Sending a Break	
26.3.7	Sending a Preamble	
26.3.8	Handling Errors in the SMC UART Controller	
26.3.9	SMC UART RxBD	
26.3.10	SMC UART TxBD	
26.3.11	SMC UART Event Register (SMCE)/Mask Register (SMCM)	
26.3.12	SMC UART Controller Programming Example	
26.4	SMC in Transparent Mode	
26.4.1	Features	
26.4.2	SMC Transparent Channel Transmission Process	
26.4.3	SMC Transparent Channel Reception Process	
26.4.4	Using SMSYN for Synchronization	
26.4.5	Using the Time-Slot Assigner (TSA) for Synchronization	
26.4.6	SMC Transparent Commands	
26.4.7	Handling Errors in the SMC Transparent Controller	
26.4.8	SMC Transparent RxBD	
26.4.9	SMC Transparent TxBD	
26.4.10	SMC Transparent Event Register (SMCE)/Mask Register (SMCM).	
26.4.11	SMC Transparent NMSI Programming Example	
26.5	The SMC in GCI Mode	
26.5.1	SMC GCI Parameter RAM	
26.5.2	Handling the GCI Monitor Channel	
26.5.2.1	SMC GCI Monitor Channel Transmission Process	
26.5.2.2	SMC GCI Monitor Channel Reception Process	
26.5.3	Handling the GCI C/I Channel.	
26.5.3.1	SMC GCI C/I Channel Transmission Process	
26.5.3.2	SMC GCI C/I Channel Reception Process	
26.5.4	SMC GCI Commands	
26.5.5	SMC GCI Monitor Channel RxBD	
26.5.6	SMC GCI Monitor Channel TxBD	
26.5.7	SMC GCI C/I Channel RxBD	
26.5.8	SMC GCI C/I Channel TxBD	
26.5.9	SMC GCI Event Register (SMCE)/Mask Register (SMCM)	
20.0.0		

Paragraph Number

Title

Page Number

Chapter 27 Multi-Channel Controllers (MCCs)

27.1	Features	27-1
27.2	MCC Data Structure Organization	
27.3	Global MCC Parameters	
27.4	Channel Extra Parameters	
27.5	Super-Channel Table	
27.6	Channel-Specific HDLC Parameters	
27.6.1	Internal Transmitter State (TSTATE)	27-9
27.6.2	Interrupt Mask (INTMSK)	27-9
27.6.3	Channel Mode Register (CHAMR)	27-10
27.6.4	Internal Receiver State (RSTATE)	27-11
27.7	Channel-Specific Transparent Parameters	27-12
27.7.1	Channel Mode Register (CHAMR)-Transparent Mode	27-13
27.8	MCC Configuration Registers (MCCFx)	27-15
27.9	MCC Commands	
27.10	MCC Exceptions	27-17
27.10.1	MCC Event Register (MCCE)/Mask Register (MCCM)	27-18
27.10.1.1	Interrupt Table Entry	27-19
27.11	MCC Buffer Descriptors	27-21
27.11.1	Receive Buffer Descriptor (RxBD)	27-21
27.11.2	Transmit Buffer Descriptor (TxBD)	27-23
27.12	MCC Initialization and Start/Stop Sequence	27-24
27.12.1	Single-Channel Initialization	27-25
27.12.2	Super Channel Initialization	27-26
27.13	MCC Latency and Performance	27-26

Chapter 28 Fast Communications Controllers (FCCs)

28.1	Overview	
28.2	General FCC Mode Registers (GFMRx)	
28.3	FCC Protocol-Specific Mode Registers (FPSMRx)	
28.4	FCC Data Synchronization Registers (FDSRx)	
28.5	FCC Transmit-on-Demand Registers (FTODRx)	
28.6	FCC Buffer Descriptors	
28.7	FCC Parameter RAM	
28.7.1	FCC Function Code Registers (FCRx)	
28.8	Interrupts from the FCCs	
28.8.1	FCC Event Registers (FCCEx)	
28.8.2	FCC Mask Registers (FCCMx)	
	-	

Paragraph Number	Title	Page Number
28.8.3	FCC Status Registers (FCCSx)	
28.9	FCC Initialization	
28.10	FCC Interrupt Handling	
28.11	FCC Timing Control	
28.12	Disabling the FCCs On-the-Fly	
28.12.1	FCC Transmitter Full Sequence	
28.12.2	FCC Transmitter Shortcut Sequence	
28.12.3	FCC Receiver Full Sequence	
28.12.4	FCC Receiver Shortcut Sequence	
28.12.5	Switching Protocols	
28.13	Saving Power	

Chapter 29 ATM Controller

29.1	Features	
29.2	ATM Controller Overview	
29.2.1	Transmitter Overview	
29.2.1.1	AAL5 Transmitter Overview	
29.2.1.2	AAL1 Transmitter Overview	
29.2.1.3	AAL0 Transmitter Overview	
29.2.1.4	Transmit External Rate and Internal Rate Modes	
29.2.2	Receiver Overview	
29.2.2.1	AAL5 Receiver Overview	29-7
29.2.2.2	AAL1 Receiver Overview	
29.2.2.3	AAL0 Receiver Overview	
29.2.3	Performance Monitoring	
29.2.4	ABR Flow Control	
29.3	ATM Pace Control (APC) Unit	
29.3.1	APC Modes and ATM Service Types	
29.3.2	APC Unit Scheduling Mechanism	
29.3.3	Determining the Scheduling Table Size	
29.3.3.1	Determining the Cells Per Slot (CPS) in a Scheduling Table	
29.3.3.2	Determining the Number of Slots in a Scheduling Table	
29.3.4	Determining the Time-Slot Scheduling Rate of a Channel	
29.3.5	ATM Traffic Type	
29.3.5.1	Peak Cell Rate Traffic Type	
29.3.5.2	Determining the PCR Traffic Type Parameters	
29.3.5.3	Peak and Sustain Traffic Type (VBR)	29-12
29.3.5.3.1	Example for Using VBR Traffic Parameters	
29.3.5.3.2	Handling the Cell Loss Priority (CLP)-VBR Type 1 and 2	
29.3.5.4	Peak and Minimum Cell Rate Traffic Type (UBR+)	

Paragraph Number	Title	Page Number
29.3.6	Determining the Priority of an ATM Channel	
29.4	VCI/VPI Address Lookup Mechanism	
29.4.1	External CAM Lookup	
29.4.2	Address Compression	
29.4.2.1	VP-Level Address Compression Table (VPLT)	
29.4.2.2	VC-Level Address Compression Tables (VCLTs)	
29.4.3	Misinserted Cells	
29.4.4	Receive Raw Cell Queue	
29.5	Available Bit Rate (ABR) Flow Control	
29.5.1	The ABR Model	
29.5.1.1	ABR Flow Control Source End-System Behavior	
29.5.1.2	ABR Flow Control Destination End-System Behavior	
29.5.1.3	ABR Flowcharts	
29.5.2	RM Cell Structure	
29.5.2.1	RM Cell Rate Representation	
29.5.3	ABR Flow Control Setup	
29.6	OAM Support	
29.6.1	ATM-Layer OAM Definitions	
29.6.2	Virtual Path (F4) Flow Mechanism	
29.6.3	Virtual Channel (F5) Flow Mechanism	
29.6.4	Receiving OAM F4 or F5 Cells	
29.6.5	Transmitting OAM F4 or F5 Cells	
29.6.6	Performance Monitoring	
29.6.6.1	Running a Performance Block Test	
29.6.6.2	PM Block Monitoring	
29.6.6.3	PM Block Generation	
29.6.6.4	BRC Performance Calculations	
29.7	User-Defined Cells (UDC)	
29.7.1	UDC Extended Address Mode (UEAD)	
29.8	ATM Layer Statistics	
29.9	ATM-to-TDM Interworking	
29.9.1	Automatic Data Forwarding	
29.9.2	Using Interrupts in Automatic Data Forwarding	
29.9.3	Timing Issues	
29.9.4	Clock Synchronization (SRTS and Adaptive FIFOs)	
29.9.5	Mapping TDM Time Slots to VCs	
29.9.6	CAS Support	
29.9.7	Trunk Condition	
29.9.8	ATM-to-ATM Data Forwarding	
29.10	ATM Memory Structure	
29.10.1	Parameter RAM	
29.10.1	Determining UEAD_OFFSET (UEAD Mode Only)	
29.10.1.1	VCI Filtering (VCIF)	
27.10.1.2		

Paragraph Number	Title	Page Number
29.10.1.3	Global Mode Entry (GMODE)	
29.10.2	Connection Tables (RCT, TCT, and TCTE)	
29.10.2.1	ATM Channel Code	
29.10.2.2	Receive Connection Table (RCT)	
29.10.2.2.1	AAL5 Protocol-Specific RCT	
29.10.2.2.2	AAL5-ABR Protocol-Specific RCT	
29.10.2.2.3	AAL1 Protocol-Specific RCT	
29.10.2.2.4	AAL0 Protocol-Specific RCT	
29.10.2.3	Transmit Connection Table (TCT)	
29.10.2.3.1	AAL5 Protocol-Specific TCT	
29.10.2.3.2	AAL1 Protocol-Specific TCT	29-54
29.10.2.3.3	AAL0 Protocol-Specific TCT	
29.10.2.3.4	VBR Protocol-Specific TCTE	
29.10.2.3.5	UBR+ Protocol-Specific TCTE	
29.10.2.3.6	ABR Protocol-Specific TCTE	
29.10.3	OAM Performance Monitoring Tables	
29.10.4	APC Data Structure	
29.10.4.1	APC Parameter Tables	
29.10.4.2	APC Priority Table	
29.10.4.3	APC Scheduling Tables	
29.10.5	ATM Controller Buffer Descriptors (BDs)	
29.10.5.1	Transmit Buffer Operations	
29.10.5.2	Receive Buffers Operation	
29.10.5.2.1	Static Buffer Allocation	
29.10.5.2.2	Global Buffer Allocation	
29.10.5.2.3	Free Buffer Pools	
29.10.5.2.4	Free Buffer Pool Parameter Tables	
29.10.5.3	ATM Controller Buffers	
29.10.5.4	AAL5 RxBD	
29.10.5.5	AAL1 RxBD	
29.10.5.6	AAL0 RxBD	
29.10.5.7	AAL5, AAL1 User-Defined Cell-RxBD Extension	
29.10.5.8	AAL5 TxBDs	29-74
29.10.5.9	AAL1 TxBDs	
29.10.5.10	AAL0 TxBDs	
29.10.5.11	AAL5, AAL1 User-Defined Cell—TxBD Extension	
29.10.6	AAL1 Sequence Number (SN) Protection Table (AAL1 Only)	
29.10.7	UNI Statistics Table	
29.11	ATM Exceptions	
29.11.1	Interrupt Queues	
29.11.2	Interrupt Queue Entry	
29.11.3	Interrupt Queue Parameter Tables	
29.12	The UTOPIA Interface	

Paragraph Number	Title	Page Number
29.12.1	UTOPIA Interface Master Mode	
29.12.1.1	UTOPIA Master Multiple PHY Operation	
29.12.2	UTOPIA Interface Slave Mode	
29.12.2.1	UTOPIA Slave Multiple PHY Operation	
29.12.2.2	UTOPIA Clocking Modes	
29.12.2.3	UTOPIA Loop-Back Modes	
29.13	ATM Registers	
29.13.1	General FCC Mode Register (GFMR)	
29.13.2	FCC Protocol-Specific Mode Register (FPSMR)	
29.13.3	ATM Event Register (FCCE)/Mask Register (FCCM)	
29.13.4	FCC Transmit Internal Rate Registers (FTIRRx)	
29.14	ATM Transmit Command	
29.15	SRTS Generation and Clock Recovery Using External Logic	
29.16	Configuring the ATM Controller for Maximum CPM Performance	
29.16.1	Using Transmit Internal Rate Mode	
29.16.2	APC Configuration	
29.16.3	Buffer Configuration	

Chapter 30 Fast Ethernet Controller

30.1	Fast Ethernet on the MPC8260	
30.2	Features	
30.3	Connecting the MPC8260 to Fast Ethernet	
30.4	Ethernet Channel Frame Transmission	
30.5	Ethernet Channel Frame Reception	
30.6	Flow Control	
30.7	CAM Interface	
30.8	Ethernet Parameter RAM	
30.9	Programming Model	
30.10	Ethernet Command Set	
30.11	RMON Support	
30.12	Ethernet Address Recognition	
30.13	Hash Table Algorithm	
30.14	Interpacket Gap Time	
30.15	Handling Collisions	
30.16	Internal and External Loopback	
30.17	Ethernet Error-Handling Procedure	
30.18	Fast Ethernet Registers	
30.18.1	FCC Ethernet Mode Register (FPSMR)	
30.18.2	Ethernet Event Register (FCCE)/Mask Register (FCCM)	

Paragraph Number	Title	Page Number
30.19	Ethernet RxBDs	
30.20	Ethernet TxBDs	

Chapter 31 FCC HDLC Controller

31.1	Key Features	31-2
31.2	HDLC Channel Frame Transmission Processing	31-2
31.3	HDLC Channel Frame Reception Processing	31-3
31.4	HDLC Parameter RAM	31-4
31.5	Programming Model	31-5
31.5.1	HDLC Command Set	31-5
31.5.2	HDLC Error Handling	31-6
31.6	HDLC Mode Register (FPSMR)	31-7
31.7	HDLC Receive Buffer Descriptor (RxBD)	31-9
31.8	HDLC Transmit Buffer Descriptor (TxBD)	.31-12
31.9	HDLC Event Register (FCCE)/Mask Register (FCCM)	.31-14
31.10	FCC Status Register (FCCS)	.31-16

Chapter 32 FCC Transparent Controller

Features	
Transparent Channel Operation	
Achieving Synchronization in Transparent Mode	
In-Line Synchronization Pattern	
External Synchronization Signals	
Transparent Synchronization Example	
	Transparent Channel Operation Achieving Synchronization in Transparent Mode In-Line Synchronization Pattern External Synchronization Signals

Chapter 33 Serial Peripheral Interface (SPI)

33.1	Features	
33.2	SPI Clocking and Signal Functions	
33.3	Configuring the SPI Controller	
33.3.1	The SPI as a Master Device	
33.3.2	The SPI as a Slave Device	
33.3.3	The SPI in Multimaster Operation	
33.4	Programming the SPI Registers	
33.4.1	SPI Mode Register (SPMODE)	
33.4.1.1	SPI Examples with Different SPMODE[LEN] Values	
33.4.2	SPI Event/Mask Registers (SPIE/SPIM)	

Paragraph Number	Title	Page Number
33.4.3	SPI Command Register (SPCOM)	
33.5	SPI Parameter RAM	
33.5.1	Receive/Transmit Function Code Registers (RFCR/TFCR)	
33.6	SPI Commands	
33.7	The SPI Buffer Descriptor (BD) Table	
33.7.1	SPI Buffer Descriptors (BDs)	
33.7.1.1	SPI Receive BD (RxBD)	
33.7.1.2	SPI Transmit BD (TxBD)	
33.8	SPI Master Programming Example	
33.9	SPI Slave Programming Example	
33.10	Handling Interrupts in the SPI	

Chapter 34 I²C Controller

34.1	Features	
34.2	I ² C Controller Clocking and Signal Functions	
34.3	I ² C Controller Transfers	
34.3.1	I ² C Master Write (Slave Read)	
34.3.2	I ² C Loopback Testing	
34.3.3	I ² C Master Read (Slave Write)	
34.3.4	I ² C Multi-Master Considerations	
34.4	I ² C Registers	
34.4.1	I ² C Mode Register (I2MOD)	
34.4.2	I ² C Address Register (I2ADD)	
34.4.3	I ² C Baud Rate Generator Register (I2BRG)	
34.4.4	I ² C Event/Mask Registers (I2CER/I2CMR)	
34.4.5	I ² C Command Register (I2COM)	
34.5	I ² C Parameter RAM	
34.6	I ² C Commands	
34.7	The I ² C Buffer Descriptor (BD) Table	
34.7.1	I ² C Buffer Descriptors (BDs)	
34.7.1.1	I ² C Receive Buffer Descriptor (RxBD)	
34.7.1.2	I ² C Transmit Buffer Descriptor (TxBD)	

Chapter 35 Parallel I/O Ports

35.1	Features	
35.2	Port Registers	
35.2.1	Port Open-Drain Registers (PODRA-PODRD)	
35.2.2	Port Data Registers (PDATA-PDATD)	
	8	

Paragraph Number	Title	Page Number
35.2.3	Port Data Direction Registers (PDIRA-PDIRD)	
35.2.4	Port Pin Assignment Register (PPAR)	
35.2.5	Port Special Options Registers A-D (PSORA-PSORD)	
35.3	Port Block Diagram	
35.4	Port Pins Functions	
35.4.1	General Purpose I/O Pins	
35.4.2	Dedicated Pins	
35.5	Ports Tables	
35.6	Interrupts from Port C	

Appendix A Register Quick Reference Guide

A.1	PowerPC Registers – User Registers	\-1
A.2	PowerPC Registers—Supervisor RegistersA	\- 2
A.3	MPC8260-Specific SPRsA	\- 3

Glossary

Index

Paragraph Number

Title

Page Number

Figure Number

Title

Page Number

1 1	NDC00(0 D1 1 D) 1 5
1-1	MPC8260 Block Diagram
1-2	MPC8260 External Signals
1-3	Remote Access Server Configuration
1-4	Regional Office Router Configuration
1-5	LAN-to-WAN Bridge Router Configuration
1-6	Cellular Base Station Configuration
1-7	Telecommunications Switch Controller Configuration
1-8	SONET Transmission Controller Configuration
1-9	Basic System Configuration
1-10	High-Performance Communication1-16
1-11	High-Performance System Microprocessor Configuration 1-17
2-1	MPC8260 Integrated Processor Core Block Diagram2-2
2-2	MPC8260 Programming Model—Registers
2-3	Hardware Implementation Register 0 (HID0)
2-4	Hardware Implementation Register 1 (HID1)
2-5	Hardware Implementation-Dependent Register 2 (HID2)
2-6	Data Cache Organization
4-1	.SIU Block Diagram
4-2	System Configuration and Protection Logic
4-3	Timers Clock Generation
4-4	TMCNT Block Diagram
4-5	PIT Block Diagram
4-6	Software Watchdog Timer Service State Diagram
4-7	Software Watchdog Timer Block Diagram
4-8	MPC8260 Interrupt Structure
4-9	Interrupt Request Masking
4-10	SIU Interrupt Configuration Register (SICR)
4-11	SIU Interrupt Priority Register (SIPRR)
4-12	CPM High Interrupt Priority Register (SCPRR_H)
4-13	CPM Low Interrupt Priority Register (SCPRR_L)
4-14	SIPNR H Fields
4-15	SIPNR L Fields
4-16	SIMR H Register
4-17	SIMR L Register
4-18	SIU Interrupt Vector Register (SIVEC)
4-19	Interrupt Table Handling Example
. 17	merrupt fuele finiteling Example

Figure Number	Title	Page Number
4-20	SIU External Interrupt Control Register (SIEXR)	
4-21	Bus Configuration Register (BCR)	4-26
4-22	PPC_ACR	
4-23	PPC_ALRH	4-29
4-24	PPC_AALRL	
4-25	LCL_ACR	
4-26	LCL_ALRH	
4-27	LCL_ALRL	
4-28	SIU Model Configuration Register (SIUMCR)	
4-29	Internal Memory Map Register (IMMR)	
4-30	System Protection Control Register (SYPCCR)	4-35
4-31	The 60x Bus Transfer Error Status and Control Register 1 (TESCR1)	
4-32	60x Bus Transfer Error Status and Control Register 2 (TESCR2)	
4-33	Local Bus Transfer Error Status and Control Register 1 (L_TESCR1)	
4-34	Local Bus Transfer Error Status and Control Register 2 (L_TESCR2)	
4-35	Time Counter Status and Control Register (TMCNTSC)	
4-36	Time Counter Register (TCMCNT)	
4-37	Time Counter Alarm Register (TMCNTAL)	
4-38	Periodic Interrupt Status and Control Register (PISCR)	
4-39	Periodic interrupt Timer Count Register (PITC)	
4-40	Periodic Interrupt Timer Register (PITR)	
5-1	Reset Status Register (RSR)	
5-2	Reset Mode Register (RMR)	
5-3	Hard Reset Configuration Word	
5-4	Single Chip with Default Configuration	
5-5	Configuring a Single Chip from EPROM	
5-6	Configuring Multiple Chips	
6-1	MPC8260 External Signals	
7-1	PowerPC Signal Groupings	
8-1	Single MPC8260 Bus Mode	
8-2	60x-Compatible Bus Mode	
8-3	Basic Transfer Protocol	
8-4	Address Bus Arbitration with External Bus Master Address Pipelining	
8-5	Address Pipelining Interface to Different Port Size Devices	
8-6		
8-7	Retry Cycle Single-Beat and Burst Data Transfers	
8-8 8-9	128-Bit Extended Transfer to 32-Bit Port Size	
8-10 8-11	Burst Transfer to 32-Bit Port Size Data Tenure Terminated by Assertion of TEA	
8-11 8-12	MEI Cache Coherency Protocol—State Diagram (WIM = 001)	
0-12 9-1	System PLL Block Diagram	
9-1 9-2	PLL Filtering Circuit	
<i>J-L</i>	TEE Throng Choun	

Figure Number	Title	Page Number
9-3	System Clock Control Register (SCCR)	
9-4	System Clock Mode Register (SCMR)	9-9
9-5	Relationships of SCMR Parameters	
10-1	Dual-Bus Architecture	10-3
10-2	Memory Controller Machine Selection	
10-3	Simple System Configuration	
10-4	Basic Memory Controller Operation	
10-5	Partial Data Valid for 32-Bit Port Size Memory, Double-Word Transfer	10-13
10-6	Base Registers (BRx)	
10-7	Option Registers (ORx)-SDRAM Mode	
10-8	OR x – GPCM Mode	10-18
10-9	OR x -UPM Mode	
10-10	60x/Local SDRAM Mode Register (PSDMR/LSDMR)	
10-11	Machine x Mode Registers (MxMR)	
10-12	Memory Data Register (MDR)	10-29
10-13	Memory Address Register (MAR)	10-29
10-14	60x Bus-Assigned UPM Refresh Timer (PURT)	
10-15	Local Bus-Assigned UPM Refresh Timer (LURT)	
10-16	60x Bus-Assigned SDRAM Refresh Timer (PSRT)	
10-17	Local Bus-Assigned SDRAM Refresh Timer (LSRT)	10-32
10-18	Memory Refresh Timer Prescaler Register (MPTPR)	
10-19	128-Mbyte SDRAM (Eight-Bank Configuration, Banks 1 and 8 Shown)	
10-20	PRETOACT = 2 (2 Clock Cycles)	
10-21	ACTTORW = 2 (2 Clock Cycles)	10-39
10-22	CL = 2 (2 Clock Cycles)	
10-23	LDOTOPRE = 2 (-2 Clock Cycles)	
10-24	WRC = 2 (2 Clock Cycles)	
10-25	RFRC = 4 (6 Clock Cycles)	
10-26	EAMUX = 1	10-42
10-27	BUFCMD = 1	
10-28	SDRAM Single-Beat Read, Page Closed, CL = 3	
10-29	SDRAM Single-Beat Read, Page Hit, CL = 3	10-43
10-30	SDRAM Two-Beat Burst Read, Page Closed, CL = 3	
10-31	SDRAM Four-Beat Burst Read, Page Miss, CL = 3	10-44
10-32	SDRAM Single-Beat Write, Page Hit	
10-33	SDRAM Three-Beat Burst Write, Page Closed	10-44
10-34	SDRAM Read-after-Read Pipeline, Page Hit, CL = 3	10-45
10-35	SDRAM Write-after-Write Pipelined, Page Hit	10-45
10-36	SDRAM Read-after-Write Pipelined, Page Hit	10-45
10-37	SDRAM Mode-Set Command Timing	10-46
10-38	Mode Data Bit Settings	
10-39	SDRAM Bank-Staggered CBR Refresh Timing	
10-40	GPCM-to-SRAM Configuration	10-52

Figure Number	Title Page Number
10-41	GPCM Peripheral Device Interface 10-53
10-42	GPCM Peripheral Device Basic Timing (ACS = 1x and TRLX = 0) 10-53
10-43	GPCM Memory Device Interface 10-54
10-44	GPCM Memory Device Basic Timing (ACS = 00, CSNT = 1, TRLX = 0) 10-54
10-45	GPCM Memory Device Basic Timing (ACS ≠ 00, CSNT = 1, TRLX = 0) 10-55
10-46	GPCM Relaxed Timing Read (ACS = 1x, SCY = 1, CSNT = 0, TRLX = 1) 10-55
10-47	GPCM Relaxed-Timing Write (ACS = 1x, SCY = 0, CSNT = 0, TRLX = 1) 10-56
10-48	GPCM Relaxed-Timing Write (ACS = 10, SCY = 0, CSNT = 1, TRLX = 1) 10-56
10-49	GPCM Relaxed-Timing Write (ACS = 00, SCY = 0, CSNT = 1, TRLX = 1) 10-57
10-50	GPCM Read Followed by Read (ORx[29–30] = 0x, Fastest Timing) 10-58
10-51	GPCM Read Followed by Read (ORx[29–30] = 01) 10-59
10-52	GPCM Read Followed by Write (ORx[29–30] = 01) 10-59
10-53	GPCM Read Followed by Read (ORx[29–30] = 10) 10-60
10-54	External Termination of GPCM Access 10-61
10-55	User-Programmable Machine Block Diagram 10-63
10-56	RAM Array Indexing
10-57	Memory Refresh Timer Request Block Diagram
10-58	Memory Controller UPM Clock Scheme for Integer Clock Ratios 10-67
10-59	Memory Controller UPM Clock Scheme for Non-Integer (2.5:1/3.5:1) Clock Ratios
10-60	UPM Signals Timing Example 10-69
10-61	RAM Array and Signal Generation 10-70
10-62	The RAM Word
10-63	CS Signal Selection
10-64	BS Signal Selection
10-65	UPM Read Access Data Sampling 10-78
10-66	Wait Mechanism Timing for Internal and External Synchronous Masters 10-79
10-67	DRAM Interface Connection to the 60x Bus (64-Bit Port Size) 10-82
10-68	Single-Beat Read Access to FPM DRAM 10-83
10-69	Single-Beat Write Access to FPM DRAM 10-84
10-70	Burst Read Access to FPM DRAM (No LOOP) 10-85
10-71	Burst Read Access to FPM DRAM (LOOP) 10-86
10-72	Burst Write Access to FPM DRAM (No LOOP) 10-87
10-73	Refresh Cycle (CBR) to FPM DRAM 10-88
10-74	Exception Cycle
10-75	FPM DRAM Burst Read Access (Data Sampling on Falling Edge of CLKIN) 10-91
10-76	MPC8260/EDO Interface Connection to the 60x Bus 10-92
10-77	Single-Beat Read Access to EDO DRAM 10-93
10-78	Single-Beat Write Access to EDO DRAM 10-94
10-79	Single-Beat Write Access to EDO DRAM Using REDO to Insert Three Wait States
10-80	Burst Read Access to EDO DRAM
10-81	Burst Write Access to EDO DRAM

Figure Number	Title	Page Number
10-82	Refresh Cycle (CBR) to EDO DRAM	10-98
10-83	Exception Cycle For EDO DRAM	
10-84	Pipelined Bus Operation and Memory Access in 60x-Compatible Mode	
10-85	External Master Access (GPCM)	10-104
10-86	External Master Configuration with SDRAM Device	
11-1	L2 Cache in Copy-Back Mode	
11-2	External L2 Cache in Write-Through Mode	
11-3	External L2 Cache in ECC/Parity Mode	
11-4	Read Access with L2 Cache	
12-1	Test Logic Block Diagram	
12-2	TAP Controller State Machine	
12-3	Output Pin Cell (O.Pin)	
12-4	Observe-Only Input Pin Cell (I.Obs)	
12-5	Output Control Cell (IO.CTL)	
12-6	General Arrangement of Bidirectional Pin Cells	
13-1	MPC8260 CPM Block Diagram	
13-2	Communications Processor (CP) Block Diagram	
13-3	RISC Controller Configuration Register (RCCR)	
13-4	RISC Time-Stamp Control Register (RTSCR)	
13-5	RISC Time-Stamp Register (RTSR)	
13-6	CP Command Register (CPCR)	
13-7	Dual-Port RAM Block Diagram	
13-8	Dual-Port RAM Memory Map	
13-9	RISC Timer Table RAM Usage	
13-10 13-11	RISC Timer Command Register (TM_CMD)	
13-11	TM_CMD Field Descriptions RISC Timer Event Register (RTER)/Mask Register (RTMR)	
13-12	SI Block Diagram	
14-1	Various Configurations of a Single TDM Channel	
14-2	Dual TDM Channel Example	
14-3	Enabling Connections to the TSA	
14-4	One TDM Channel with Static Frames and Independent Rx and Tx Route	
14-5	One TDM Channel with Static Pranes and Independent KX and TX Route One TDM Channel with Shadow RAM for Dynamic Route Change	
14-0	SIx RAM Entry Fields	
14-8	Using the SWTR Feature	
14-0	Example: SIx RAM Dynamic Changes, TDMa and b, Same SIx RAM Siz	
14-10	SI Global Mode Registers (SIxGMR)	
14-11	SI Mode Registers (SIXMR)	
14-12	One-Clock Delay from Sync to Data (xFSD = 01)	
14-13	No Delay from Sync to Data ($xFSD = 00$)	
14-14	Falling Edge (FE) Effect When $CE = 1$ and $xFSD = 01$	
14-15	Falling Edge (FE) Effect When $CE = 0$ and $xFSD = 01$	
14-16	Falling Edge (FE) Effect When $CE = 1$ and $xFSD = 00$	

Figure Number	Title	Page Number
14-17	Falling Edge (FE) Effect When CE = 0 and xFSD = 00	
14-18	SIx RAM Shadow Address Registers (SIxRSR)	
14-19	SI Command Register (SIxCMDR)	
14-20	SI Status Registers (SIxSTR)	
14-21	Dual IDL Bus Application Example	
14-22	IDL Terminal Adaptor	
14-23	IDL Bus Signals	
14-24	GCI Bus Signals	
15-1	CPM Multiplexing Logic (CMX) Block Diagram	
15-2	Enabling Connections to the TSA	
15-3	Bank of Clocks	
15-4	CMX UTOPIA Address Register (CMXUAR)	
15-5	Connection of the Master Address	
15-6	Connection of the Slave Address	
15-7	Multi-PHY Receive Address Multiplexing	
15-8	CMX SI1 Clock Route Register (CMXSI1CR)	
15-9	CMX SI2 Clock Route Register (CMXSI2CR)	
15-10	CMX FCC Clock Route Register (CMXFCR)	
15-11	CMX SCC Clock Route Register (CMXSCR)	
15-12	CMX SMC Clock Route Register (CMXSMR)	
16-1	Baud-Rate Generator (BRG) Block Diagram	
16-2	Baud-Rate Generator Configuration Registers (BRGCx)	
17-1	Timer Block Diagram	
17-2	Timer Cascaded Mode Block Diagram	
17-3	Timer Global Configuration Register 1 (TGCR1)	
17-4	Timer Global Configuration Register 2 (TGCR2)	
17-5	Timer Mode Registers (TMR1–TMR4)	
17-6	Timer Reference Registers (TRR1–TRR4)	
17-7	Timer Capture Registers (TCR1–TCR4)	
17-8	Timer Counter Registers (TCN1–TCN4)	
17-9	Timer Event Registers (TER1–TER4)	
18-1	SDMA Data Paths	
18-2	SDMA Bus Arbitration (Transaction Steal)	
18-3 18-4	SDMA Status Register (SDSR) SDMA Transfer Error MSNUM Registers (PDTEM/LDTEM)	
18-4	IDMA Transfer Buffer in the Dual-Port RAM	
18-5	Example IDMA Transfer Buffer States for a Memory-to-Memory Trans	
18-0	(Size = 128 Bytes)	
18-7	IDMAx Channel's BD Table	
18-8	DCM Parameters	
18-9	IDMA Event/Mask Registers (IDSR/IDMR)	
18-10	IDMA BD Structure	
19-1	SCC Block Diagram	

Figure Number	Title	Page Number
19-2	GSMR_H-General SCC Mode Register (High Order)	
19-3	GSMR_L-General SCC Mode Register (Low Order)	
19-4	Data Synchronization Register (DSR)	
19-5	Transmit-on-Demand Register (TODR)	
19-6	SCC Buffer Descriptors (BDs)	
19-7	SCC BD and Buffer Memory Structure	
19-8	Function Code Registers (RFCR and TFCR)	
19-9	Output Delay from RTS Asserted for Synchronous Protocols	
19-10	Output Delay from CTS Asserted for Synchronous Protocols	19-19
19-11	CTS Lost in Synchronous Protocols	
19-12	Using CD to Control Synchronous Protocol Reception	
19-13	DPLL Receiver Block Diagram	
19-14	DPLL Transmitter Block Diagram	
19-15	DPLL Encoding Examples	
20-1	UART Character Format	
20-2	Two UART Multidrop Configurations	
20-3	Control Character Table	
20-4	Transmit Out-of-Sequence Register (TOSEQ)	
20-5	Asynchronous UART Transmitter	
20-6	Protocol-Specific Mode Register for UART (PSMR)	
20-7	SCC UART Receiving using RxBDs	
20-8	SCC UART Receive Buffer Descriptor (RxBD)	
20-9	SCC UART Transmit Buffer Descriptor (TxBD)	
20-10	SCC UART Interrupt Event Example	
20-11	SCC UART Event Register (SCCE) and Mask Register (SCCM)	
20-12	SCC Status Register for UART Mode (SCCS)	
21-1	HDLC Framing Structure	
21-2	HDLC Address Recognition	
21-3	HDLC Mode Register (PSMR)	
21-4	SCC HDLC Receive Buffer Descriptor (RxBD)	
21-5	SCC HDLC Receiving Using RxBDs	
21-6	SCC HDLC Transmit Buffer Descriptor (TxBD)	
21-7	HDLC Event Register (SCCE)/HDLC Mask Register (SCCM)	
21-8	SCC HDLC Interrupt Event Example	
21-9	SCC HDLC Status Register (SCCS)	
21-10	Typical HDLC Bus Multimaster Configuration	
21-11	Typical HDLC Bus Single-Master Configuration	
21-12	Detecting an HDLC Bus Collision	
21-13	Nonsymmetrical Tx Clock Duty Cycle for Increased Performance	
21-14	HDLC Bus Transmission Line Configuration	
21-15	Delayed RTS Mode	
21-16	HDLC Bus TDM Transmission Line Configuration	
22-1	Classes of BISYNC Frames	

Figure Number	Title	Page Number
22-2	Control Character Table and RCCM	
22-3	BISYNC SYNC (BSYNC)	
22-4	BISYNC DLE (BDLE)	
22-5	Protocol-Specific Mode Register for BISYNC (PSMR)	
22-6	SCC BISYNC RxBD	
22-7	SCC BISYNC Transmit BD (TxBD)	
22-8	BISYNC Event Register (SCCE)/BISYNC Mask Register (SCCM)	
22-9	SCC Status Registers (SCCS)	
23-1	Sending Transparent Frames between MPC8260s	
23-2	SCC Transparent Receive Buffer Descriptor (RxBD)	
23-3	SCC Transparent Transmit Buffer Descriptor (TxBD)	
23-4	SCC Transparent Event Register (SCCE)/Mask Register (SCCM)	
23-5	SCC Status Register in Transparent Mode (SCCS)	
24-1	Ethernet Frame Structure	
24-2	Ethernet Block Diagram	
24-3	Connecting the MPC8260 to Ethernet	
24-4	Ethernet Address Recognition Flowchart	
24-5	Ethernet Mode Register (PSMR)	
24-6	SCC Ethernet Receive RxBD	
24-7	Ethernet Receiving using RxBDs	
24-8	SCC Ethernet TxBD	
24-9	SCC Ethernet Event Register (SCCE)/Mask Register (SCCM)	
24-10	Ethernet Interrupt Events Example	
25-1	LocalTalk Frame Format	
25-2	Connecting the MPC8260 to LocalTalk	
26-1	SMC Block Diagram	
26-2	SMC Mode Registers (SMCMR1/SMCMR2)	
26-3	SMC Memory Structure	
26-4	SMC Function Code Registers (RFCR/TFCR)	
26-5	SMC UART Frame Format	
26-6	SMC UART RxBD	
26-7	RxBD Example	
26-8	SMC UART TxBD	
26-9	SMC UART Event Register (SMCE)/Mask Register (SMCM)	
26-10	SMC UART Interrupts Example	
26-11	Synchronization with SMSYNx	
26-12	Synchronization with the TSA	
26-13	SMC Transparent RxBD	
26-14	SMC Transparent Event Register (SMCE)/Mask Register (SMCM)	
26-15	SMC Monitor Channel RxBD	
26-16	SMC Monitor Channel TxBD	
26-17	SMC C/I Channel RxBD	
26-18	SMC C/I Channel TxBD	

Figure Number	Title	Page Number
26-19	SMC GCI Event Register (SMCE)/Mask Register (SMCM)	
27-1	BD Structure for One MCC	
27-2	Super Channel Table Entry	
27-3	Transmitter Super Channel Example	
27-4	Receiver Super Channel with Slot Synchronization Example	
27-5	Receiver Super Channel without Slot Synchronization Example	
27-6	TSTATE High Byte	
27-7	INTMSK Mask Bits	
27-8	Channel Mode Register (CHAMR)	
27-9	Rx Internal State (RSTATE) High Byte	
27-10	Channel Mode Register (CHAMR)-Transparent Mode	
27-11	SI MCC Configuration Register (MCCF)	
27-12	Interrupt Circular Table	
27-13	MCC Event Register (MCCE)/Mask Register (MCCM)	
27-14	Interrupt Circular Table Entry	
27-15	MCC Receive Buffer Descriptor (RxBD)	
27-16	MCC Transmit Buffer Descriptor (TxBD)	
28-1	FCC Block Diagram	
28-2	General FCC Mode Register (GFMR)	
28-3	FCC Memory Structure	
28-4	Buffer Descriptor Format	
28-5	Function Code Register (FCRx)	
28-6	Output Delay from RTS Asserted	
28-7	Output Delay from CTS Asserted	
28-8	CTS Lost	
28-9	Using CD to Control Reception	
29-1	APC Scheduling Table Mechanism	
29-2	VBR Pacing Using the GCRA (Leaky Bucket Algorithm)	
29-3	External CAM Data Input Fields	
29-4	External CAM Output Fields	
29-5	Address Compression Mechanism	
29-6	General VCOFFSET Formula for Contiguous VCLTs	
29-7	VP Pointer Address Compression	
29-8	VC Pointer Address Compression	
29-9	ATM Address Recognition Flowchart	
29-10	MPC8260's ABR Basic Model	
29-11	ABR Transmit Flow	
29-12	ABR Transmit Flow (Continued)	
29-13	ABR Transmit Flow (Continued)	
29-14	ABR Receive Flow	
29-15	Rate Format for RM Cells	
29-16	Rate Formula for RM Cells	
29-17	Performance Monitoring Cell Structure (FMCs and BRCs)	

Figure Number	Title	Page Number
29-18	FMC, BRC Insertion	
29-19	Format of User-Defined Cells	
29-20	External CAM Address in UDC Extended Address Mode	29-33
29-21	ATM-to-TDM Interworking	
29-22	VCI Filtering Enable Bits	
29-23	Global Mode Entry (GMODE)	
29-24	Example of a 1024-Entry Receive Connection Table	
29-25	Receive Connection Table (RCT) Entry	
29-26	AAL5 Protocol-Specific RCT	
29-27	AAL5-ABR Protocol-Specific RCT	
29-28	AAL1 Protocol-Specific RCT	
29-29	AAL0 Protocol-Specific RCT	
29-30	Transmit Connection Table (TCT) Entry	
29-31	AAL5 Protocol-Specific TCT	
29-32	AAL1 Protocol-Specific TCT	
29-33	AAL0 Protocol-Specific TCT	
29-34	Transmit Connection Table Extension (TCTE)-VBR Protocol-Specific	
29-35	UBR+ Protocol-Specific TCTE	
29-36	ABR Protocol-Specific TCTE	
29-37	OAM Performance Monitoring Table	
29-38	ATM Pace Control Data Structure	
29-39	The APC Scheduling Table Structure	
29-40	Control Slot	
29-41	Transmit Buffers and BD Table Example	
29-42	Receive Static Buffer Allocation Example	
29-43	Receive Global Buffer Allocation Example	
29-44	Free Buffer Pool Structure	
29-45	Free Buffer Pool Entry	
29-46	AAL5 RxBD	
29-47	AAL1 RxBD	
29-48	AAL0 RxBD	
29-49	User-Defined Cell-RxBD Extension	
29-50	AAL5 TxBD	
29-51	AAL1 TxBD	
29-52	AAL0 TxBDs	
29-53	User-Defined Cell—TxBD Extension	
29-54	AAL1 Sequence Number (SN) Protection Table	29-78
29-55	Interrupt Queue Structure	
29-56	Interrupt Queue Entry	
29-57	UTOPIA Master Mode Signals	
29-58	UTOPIA Slave Mode Signals	
29-59	FCC ATM Mode Register (FPSMR)	
29-60	ATM Event Register (FCCE)/FCC Mask Register (FCCM)	

Figure Number	Title	Page Number
29-62	FCC Transmit Internal Rate Clocking	
29-61	FCC Transmit Internal Rate Registers (FTIRRx)	
29-63	COMM_INFO Field	
29-64	AAL1 SRTS Generation Using External Logic	
29-65	AAL1 SRTS Clock Recovery Using External Logic	
30-1	Ethernet Frame Structure	
30-2	Ethernet Block Diagram	
30-3	Connecting the MPC8260 to Ethernet	
30-4	Ethernet Address Recognition Flowchart	
30-5	FCC Ethernet Mode Registers (FPSMR)	
30-6	Ethernet Event Register (FCCE)/Mask Register (FCCM)	
30-7	Ethernet Interrupt Events Example	
30-8	Fast Ethernet Receive Buffer (RxBD)	
30-9	Ethernet Receiving Using RxBDs	
30-10	Fast Ethernet Transmit Buffer (TxBD)	
31-1	HDLC Framing Structure	
31-2	HDLC Address Recognition Example	
31-3	HDLC Mode Register (FPSMR)	
31-4	FCC HDLC Receiving Using RxBDs	
31-5	FCC HDLC Receive Buffer Descriptor (RxBD)	
31-6	FCC HDLC Transmit Buffer Descriptor (TxBD)	
31-7	HDLC Event Register (FCCE)/Mask Register (FCCM)	
31-8	HDLC Interrupt Event Example	
31-9	FCC Status Register (FCCS)	
32-1	In-Line Synchronization Pattern	
32-2	Sending Transparent Frames between MPC8260s	
33-1	SPI Block Diagram	
33-2	Single-Master/Multi-Slave Configuration	
33-3	Multimaster Configuration	
33-4	SPMODE—SPI Mode Register	
33-5	SPI Transfer Format with SPMODE[CP] = 0	
33-6	SPI Transfer Format with SPMODE[CP] = 1	
33-7	SPIE/SPIM—SPI Event/Mask Registers	
33-8	SPCOM-SPI Command Register	
33-9	RFCR/TFCR-Function Code Registers	
33-10	SPI Memory Structure	
33-11	SPI RxBD	
33-12	SPI TxBD	
34-1	I ² C Controller Block Diagram	
34-2	I ² C Master/Slave General Configuration	
34-3	I ² C Transfer Timing	
34-4	I ² C Master Write Timing	
34-5	I ² C Master Read Timing	

Figure Number	Title	Page Number
34-6	I ² C Mode Register (I2MOD)	
34-7	I ² C Address Register (I2ADD)	
34-8	I ² C Baud Rate Generator Register (I2BRG)	
34-9	I2C Event/Mask Registers (I2CER/I2CMR)	
34-10	I ² C Command Register (I2COM)	
34-11	I ² C Function Code Registers (RFCR/TFCR)	
34-12	I ² C Memory Structure	
34-13	I ² C RxBD	
34-14	I ² C TxBD	
35-1	Port Open-Drain Registers (PODRA-PODRD)	
35-2	Port Data Registers (PDATA-PDATD)	
35-3	Port Data Direction Register (PDIR)	
35-4	Port Pin Assignment Register (PPARA-PPARD)	
35-5	Special Options Registers (PSORA-POSRD)	
35-6	Port Functional Operation	
35-7	Primary and Secondary Option Programming	

Table Number

Title

Page Number

i	Acronyms and Abbreviated Termslx
ii	Terminology Conventionslxiv
iii	Instruction Field Conventions
iv	Acronyms and Abbreviated Terms I-lxvii
1-1	MPC8260 Serial Protocols 1-9
1-2	MPC8260 Serial Performance
2-1	HID0 Field Descriptions
2-2	HID1 Field Descriptions
2-3	HID2 Field Descriptions
2-4	Exception Classifications for the Processor Core
2-5	Exceptions and Conditions
2-6	Integer Divide Latency
2-7	Major Differences between MPC8260's Core and the MPC603e User's
	Manual
3-1	Internal Memory Map
v	Acronyms and Abbreviated Terms II-i
4-1	System Configuration and Protection Functions
4-2	Interrupt Source Priority Levels
4-3	Encoding the Interrupt Vector
4-4	SICR Field Descriptions
4-5	SIPRR Field Descriptions
4-6	SCPRR_H Field Descriptions
4-7	SCPRR_L Field Descriptions
4-8	SIEXR Field Descriptions
4-9	BCR Field Descriptions
4-10	PPC_ACR Field Descriptions
4-11	LCL_ACR Field Descriptions
4-12	SIUMCR Register Field Descriptions
4-13	IMMR Field Descriptions
4-14	SYPCR Field Descriptions
4-15	TESCR1 Field Descriptions
4-16	TESCR2 Field Descriptions
4-17	L_TESCR1 Field Descriptions
4-18	L_TESCR2 Field Descriptions
4-19	TMCNTSC Field Descriptions
4-20	TMCNTAL Field Descriptions

Table Number	Title	Page Number
4-21	PISCR Field Descriptions	
4-22	PITC Field Descriptions	
4-23	PITR Field Descriptions	
4-24	SIU Pins Multiplexing Control	
5-1	Reset Causes	5-1
5-2	Reset Actions for Each Reset Source	5-2
5-3	RSR Field Descriptions	5-4
5-4	RMR Field Descriptions	
5-5	RSTCONF Connections in Multiple-MPC8260 Systems	5-6
5-6	Configuration EPROM Addresses	5-7
5-7	Hard Reset Configuration Word Field Descriptions	5-8
vi	Acronyms and Abbreviated Terms	III-iii
6-1	External Signals	6-3
7-1	DP[0-7] Signal Assignments	7-15
8-1	Terminology	8-1
8-2	Transfer Type Encoding	8-10
8-3	Transfer Code Encoding	
8-4	Transfer Size Signal Encoding	8-13
8-5	Burst Ordering	8-14
8-6	Aligned Data Transfers	
8-7	Unaligned Data Transfer Example (4-Byte Example)	8-16
8-8	Data Bus Requirements For Read Cycle	
8-9	Data Bus Contents for Write Cycles	8-19
8-10	Address and Size State Calculations	8-20
8-11	Data Bus Contents for Extended Write Cycles	
8-12	Data Bus Requirements for Extended Read Cycles	
8-13	Address and Size State for Extended Transfers	8-22
9-1	Clock Default Modes	
9-2	Clock Configuration Modes	
9-3	Dedicated PLL Pins	
9-4	SCCR Field Descriptions	
9-5	SCMR Field Descriptions	
10-1	Number of PSDVAL Assertions Needed for TA Assertion	
10-2	60x Bus Memory Controller Registers	
10-3	BRx Field Descriptions	
10-4	ORx Field Descriptions (SDRAM Mode)	10-16
10-5	ORx-GPCM Mode Field Descriptions	10-18
10-6	Option Register (ORx)-UPM Mode	10-20
10-7	PSDMR Field Descriptions	
10-8	LSDMR Field Descriptions	
10-9	Machine x Mode Registers (MxMR)	
10-10	MDR Field Descriptions	10-29
10-11	MAR Field Description	10-30

Table Number	Title	Page Number
10-12	60x Bus-Assigned UPM Refresh Timer (PURT)	10-30
10-13	Local Bus-Assigned UPM Refresh Timer (LURT)	
10-14	60x Bus-Assigned SDRAM Refresh Timer (PSRT)	
10-15	LSRT Field Descriptions	
10-16	MPTPR Field Descriptions	
10-17	SDRAM Interface Signals	
10-18	SDRAM Interface Commands	
10-19	SDRAM Address Multiplexing (A0–A15)	
10-20	SDRAM Address Multiplexing (A16–A31)	
10-21	60x Address Bus Partition	
10-22	SDRAM Device Address Port during activate Command	
10-23	SDRAM Device Address Port during read/write Command	
10-24	Register Settings (Page-Based Interleaving	
10-25	60x Address Bus Partition	
10-26	SDRAM Device Address Port during activate Command	
10-27	SDRAM Device Address Port during read/write Command	
10-28	Register Settings (Bank-Based Interleaving)	
10-29	GPCM Interfaces Signals	
10-30	GPCM Strobe Signal Behavior	
10-31	TRLX and EHTR Combinations	
10-32	Boot Bank Field Values after Reset	
10-33	UPM Interfaces Signals	
10-34	UPM Routines Start Addresses	
10-35	RAM Word Bit Settings	
10-36	MxMR Loop Field Usage	
10-37	UPM Address Multiplexing	
10-38	60x Address Bus Partition	
10-39	DRAM Device Address Port during an activate command	
10-40	Register Settings	
10-41	UPMs Attributes Example	
10-42	UPMs Attributes Example	
10-43	EDO Connection Field Value Example	
12-1	TAP Signals	
12-2	Boundary Scan Bit Definition	
12-3	Instruction Decoding	
vii	Acronyms and Abbreviated Terms	
13-1	Possible MPC8260 Applications	
13-2	Peripheral Prioritization	
13-3	RISC Controller Configuration Register Field Descriptions	
13-4	RTSCR Field Descriptions	
13-5	RISC Microcode Revision Number	
13-6	CP Command Register Field Descriptions	
13-7	CP Command Opcodes	

Table Number	Title	Page Number
13-8	Command Descriptions	
13-9	Buffer Descriptor Format	
13-10	Parameter RAM	
13-11	RISC Timer Table Parameter RAM	
14-1	SIx RAM Entry (MCC = 0)	
14-2	SIx RAM Entry (MCC = 1)	
14-3	SIx RAM Entry Descriptions	
14-4	SIxGMR Field Descriptions	
14-5	SIxMR Field Descriptions	
14-6	SIxRSR Field Descriptions	
14-7	SIxCMDR Field Description	
14-8	SIxSTR Field Descriptions	
14-9	IDL Signal Descriptions	
14-10	SIx RAM Entries for an IDL Interface	
14-11	GCI Signals	
14-12	SIx RAM Entries for a GCI Interface (SCIT Mode)	
15-1	Clock Source Options	
15-2	CMXUAR Field Descriptions	
15-3	CMXSI1CR Field Descriptions	
15-4	CMXSI2CR Field Descriptions	
15-5	CMXFCR Field Descriptions	
15-6	CMXSCR Field Descriptions	
15-7	CMXSMR Field Descriptions	
16-1	BRGCx Field Descriptions	
16-2	BRG External Clock Source Options	
16-3	Typical Baud Rates for Asynchronous Communication	
17-1	TGCR1 Field Descriptions	
17-2	TGCR2 Field Descriptions	
17-3	TMRI-TMR4 Field Descriptions	
17-4	TER Field Descriptions	
18-1	SDSR Field Descriptions	
18-2	PDTEM and LDTEM Field Descriptions	
18-3	IDMA Transfer Parameters	
18-4	IDMAx Parameter RAM	
18-5	DCM Field Descriptions	
18-6	IDMA Channel Data Transfer Operation	
18-7	Valid Memory-to-Memory STS/DTS Values	
18-8	Valid STS/DTS Values for Peripherals	
18-9	IDSR/IDMR Field Descriptions	
18-10	IDMA BD Field Descriptions	
18-11	IDMA Bus Exceptions	
18-12	Parallel I/O Register Programming—Port C	
18-13	Parallel I/O Register Programming—Port A	

Table Number	Title	Page Number
18-14	Parallel I/O Register Programming—Port D	
18-15	Example: Peripheral-to-Memory Mode-IDMA2	
18-16	Example: Memory-to-Peripheral Fly-By Mode (on 60x)-IDMA3	
19-1	GSMR_H Field Descriptions	
19-2	GSMR_L Field Descriptions	
19-3	TODR Field Descriptions	19-10
19-4	SCC Parameter RAM Map for All Protocols	
19-5	Parameter RAM-SCC Base Addresses	19-15
19-6	RFCRx /TFCRx Field Descriptions	
19-7	SCCx Event, Mask, and Status Registers	
19-8	Preamble Requirements	
19-9	DPLL Codings	
20-1	UART-Specific SCC Parameter RAM Memory Map	
20-2	Transmit Commands	
20-3	Receive Commands	
20-4	Control Character Table, RCCM, and RCCR Descriptions	
20-5	TOSEQ Field Descriptions	
20-6	DSR Fields Descriptions	
20-7	Transmission Errors	
20-8	Reception Errors	
20-9	PSMR UART Field Descriptions	
20-10	SCC UART RxBD Status and Control Field Descriptions	
20-11	SCC UART TxBD Status and Control Field Descriptions	
20-12	SCCE/SCCM Field Descriptions for UART Mode	
20-13	UART SCCS Field Descriptions	
20-14	UART Control Characters for S-Records Example	
21-1	HDLC-Specific SCC Parameter RAM Memory Map	
21-2	Transmit Commands	
21-3	Receive Commands	
21-4	Transmit Errors	
21-5	Receive Errors	
21-6	PSMR HDLC Field Descriptions	
21-7	SCC HDLC RxBD Status and Control Field Descriptions	
21-8	SCC HDLC TxBD Status and Control Field Descriptions	
21-9	SCCE/SCCM Field Descriptions	
21-10	HDLC SCCS Field Descriptions	
22-1	SCC BISYNC Parameter RAM Memory Map	
22-2	Transmit Commands	
22-3	Receive Commands	
22-4	Control Character Table and RCCM Field Descriptions	
22-5	BSYNC Field Descriptions	
22-6	BDLE Field Descriptions	
22-7	Receiver SYNC Pattern Lengths of the DSR	

Table Number	Title	Page Number
22-8	Transmit Errors	
22-9	Receive Errors	
22-10	PSMR Field Descriptions	
22-11	SCC BISYNC RxBD Status and Control Field Descriptions	
22-12	SCC BISYNC TxBD Status and Control Field Descriptions	
22-13	SCCE/SCCM Field Descriptions	
22-14	SCCS Field Descriptions	
22-15	Control Characters	
23-1	Receiver SYNC Pattern Lengths of the DSR	
23-2	SCC Transparent Parameter RAM Memory Map	
23-3	Transmit Commands	
23-4	Receive Commands	
23-5	Transmit Errors	
23-6	Receive Errors	
23-7	SCC Transparent RxBD Status and Control Field Descriptions	
23-8	SCC Transparent TxBD Status and Control Field Descriptions	
23-9	SCCE/SCCM Field Descriptions	
23-10	SCCS Field Descriptions	
24-1	SCC Ethernet Parameter RAM Memory Map	
24-2	Transmit Commands	
24-3	Receive Commands	
24-4	Transmission Errors	
24-5	Reception Errors	
24-6	PSMR Field Descriptions	
24-7	SCC Ethernet Receive RxBD Status and Control Field Descriptions	
24-8	SCC Ethernet Transmit TxBD Status and Control Field Descriptions	
24-9	SCCE/SCCM Field Descriptions	
26-1	SMCMR1/SMCMR2 Field Descriptions	
26-2	SMC UART and Transparent Parameter RAM Memory Map	
26-3	RFCR/TFCR Field Descriptions	
26-4	Transmit Commands	
26-5	Receive Commands	
26-6	SMC UART Errors	
26-7	SMC UART RxBD Field Descriptions	
26-8	SMC UART TxBD Field Descriptions	
26-9	SMCE/SMCM Field Descriptions	
26-10	SMC Transparent Transmit Commands	
26-11	SMC Transparent Receive Commands	
26-12	SMC Transparent Error Conditions	
26-13	SMC Transparent RxBD Field Descriptions	
26-14	SMC Transparent TxBD	
26-15	SMC Transparent TxBD Field Descriptions	
26-16	SMCE/SMCM Field Descriptions	

Table Number	Title	Page Number
26-17	SMC GCI Parameter RAM Memory Map	
26-18	SMC GCI Commands	
26-19	SMC Monitor Channel RxBD Field Descriptions	
26-20	SMC Monitor Channel TxBD Field Descriptions	
26-21	SMC C/I Channel RxBD Field Descriptions	
26-22	SMC C/I Channel TxBD Field Descriptions	
26-23	SMCE/SMCM Field Descriptions	
27-1	Global Multiple-Channel Parameters	
27-2	Channel Extra Parameters	
27-3	Channel-Specific Parameters for HDLC	
27-4	TSTATE High-Byte Field Descriptions	
27-5	CHAMR Field Descriptions	
27-6	RSTATE High-Byte Field Descriptions	
27-7	Channel-Specific Parameters for Transparent Operation	
27-8	CHAMR Field Descriptions-Transparent Mode	
27-9	MCCF Field Descriptions	
27-10	Group Channel Assignments	
27-11	Transmit Commands	
27-12	Receive Commands	
27-13	MCCE/MCCM Register Field Descriptions	
27-14	Interrupt Circular Table Entry Field Descriptions	
27-15	RxBD Field Descriptions	
27-16	TxBD Field Descriptions	
28-1	GFMR Register Field Descriptions	
28-2	FCC Data Synchronization Register (FDSR)	
28-3	FCC Transmit-on-Demand Register (TODR)	
28-4	TODR Field Descriptions	
28-5	FCC Parameter RAM Common to All Protocols	
28-6	FCRx Field Descriptions	
29-1	ATM Service Types	
29-2	External CAM Input and Output Field Descriptions	
29-3	Field Descriptions for Address Compression	
29-4	VCOFFSET Calculation Examples for Contiguous VCLTs	
29-5	VP-Level Table Entry Address Calculation Example	
29-6	VC-Level Table Entry Address Calculation Example	
29-7	Fields and their Positions in RM Cells	
29-8	Pre-Assigned Header Values at the UNI	
29-9	Pre-Assigned Header Values at the NNI	
29-10	Performance Monitoring Cell Fields	
29-11	ATM Parameter RAM Map	
29-12	UEAD_OFFSETs for Extended Addresses in the UDC Extra Header	
29-13	VCI Filtering Enable Field Descriptions	
29-14	GMODE Field Descriptions	

Table Number	Title	Page Number
29-15	Receive and Transmit Connection Table Sizes	
29-16	RCT Field Descriptions	
29-17	RCT Settings (AAL5 Protocol-Specific)	
29-18	ABR Protocol-Specific RCT Field Descriptions	
29-19	AAL1 Protocol-Specific RCT Field Descriptions	
29-20	AAL0-Specific RCT Field Descriptions	
29-21	TCT Field Descriptions	
29-22	AAL5-Specific TCT Field Descriptions	
29-23	AAL1-Specific TCT Field Descriptions	
29-24	AAL0-Specific TCT Field Descriptions	
29-25	VBR-Specific TCTE Field Descriptions	
29-26	UBR+ Protocol-Specific TCTE Field Descriptions	
29-27	ABR-Specific TCTE Field Descriptions	
29-28	OAM-Performance Monitoring Table Field Descriptions	
29-29	APC Parameter Table	
29-30	APC Priority Table Entry	
29-31	Control Slot Field Description	
29-32	Free Buffer Pool Entry Field Descriptions	
29-33	Free Buffer Pool Parameter Table	
29-34	Receive and Transmit Buffers	
29-35	AAL5 RxBD Field Descriptions	
29-36	AAL1 RxBD Field Descriptions	
29-37	AAL0 RxBD Field Descriptions	
29-38	AAL5 TxBD Field Descriptions	
29-39	AAL1 TxBD Field Descriptions	
29-40	AAL0 TxBD Field Descriptions	
29-41	UNI Statistics Table	
29-42	Interrupt Queue Entry Field Description	
29-43	Interrupt Queue Parameter Table	
29-44	UTOPIA Master Mode Signal Descriptions	
29-45 29-46	UTOPIA Slave Mode Signals	
29-46 29-47	UTOPIA Loop-Back Modes FCC ATM Mode Register (FPSMR)	
29-47	FCC ATM Mode Register (FPSMR) FCCE/FCCM Field Descriptions	
29-48	FTIRRx Field Descriptions	
29-49 29-50	COMM INFO Field Descriptions	
29-30 30-1	Flow Control Frame Structure	
30-1 30-2	Ethernet-Specific Parameter RAM	
30-2	Transmit Commands	
30-3 30-4	Receive Commands	
30- 4 30-5	RMON Statistics and Counters	
30-5 30-6	Transmission Errors	
30-0 30-7	Reception Errors	
20 /	r	

Table Number	Title	Page Number
30-8	FPSMR Ethernet Field Descriptions	
30-9	FCCE/FCCM Field Descriptions	
30-10	RxBD Field Descriptions	
30-11	Ethernet TxBD Field Definitions	
31-1	FCC HDLC-Specific Parameter RAM Memory Map	
31-2	Transmit Commands	
31-3	Receive Commands	
31-4	HDLC Transmission Errors	
31-5	HDLC Reception Errors	
31-6	FPSMR Field Descriptions	
31-7	RxBD field Descriptions	
31-8	HDLC TxBD Field Descriptions	
31-9	FCCE/FCCM Field Descriptions	
31-10	FCCS Register Field Descriptions	
33-1	SPMODE Field Descriptions	
33-2	Example Conventions	
33-3	SPIE/SPIM Field Descriptions	
33-4	SPCOM Field Descriptions	
33-5	SPI Parameter RAM Memory Map	
33-6	RFCR/TFCR Field Descriptions	
33-7	SPI Commands	
33-8	SPI RxBD Status and Control Field Descriptions	
33-9	SPI TxBD Status and Control Field Descriptions	
34-1	I2MOD Field Descriptions	
34-2	I2ADD Field Descriptions	
34-3	I2BRG Field Descriptions	
34-4	I2CER/I2CMR Field Descriptions	
34-5	I2COM Field Descriptions	
34-6	I ² C Parameter RAM Memory Map	
34-7	RFCR/TFCR Field Descriptions	
34-8	I ² C Transmit/Receive Commands	
34-9	I2C RxBD Status and Control Bits	
34-10	I ² C TxBD Status and Control Bits	
35-1	PODRx Field Descriptions	
35-2	PDIR Field Descriptions	
35-3	PPAR Field Descriptions	
35-4	PSORx Field Descriptions	
35-5	Port A—Dedicated Pin Assignment (PPARA = 1)	
35-6	Port B Dedicated Pin Assignment (PPARB = 1)	
35-7	Port C Dedicated Pin Assignment (PPARC = 1)	
35-8 A-1	Port D Dedicated Pin Assignment (PPARD = 1)	
	User-Level PowerPC Registers (Non-SPRs)	
A-2	User-Level PowerPC SPRs	A-1

Table Number	Title	Page Number
A-3	Supervisor-Level PowerPC Registers (Non-SPR)	A-2
A-4	Supervisor-Level PowerPC SPRs	A-2
A-5	MPC8260-Specific Supervisor-Level SPRs	A-3

About This Book

The primary objective of this manual is to help communications system designers build systems using the Motorola MPC8260 and to help software designers provide operating systems and user-level applications to take fullest advantage of the MPC8260.

Although this book describes aspects regarding the PowerPCTM architecture that are critical for understanding the MPC8260 core, it does not contain a complete description of the architecture. Where additional information might help the reader, references are made to *The PowerPC Microprocessor Family: The Programming Environments*. Ordering information for this book are provided in the section, "PowerPC Documentation."

The information in this book is subject to change without notice, as described in the disclaimers on the title page of this book. As with any technical documentation, it is the readers' responsibility to be sure they are using the most recent version of the documentation. For more information, contact your sales representative.

Before Using this Manual-Important Note

Before using this manual, determine whether it is the latest revision and if there are errata or addenda. To locate any published errata or updates for this document, refer to the worldwide web at http://www.motorola.com/netcomm.

Audience

This manual is intended for software and hardware developers and application programmers who want to develop products for the MPC8260. It is assumed that the reader has a basic understanding of computer networking, OSI layers, and RISC architecture. In addition, it is assumed that the reader has a basic understanding of the communications protocols described here. Where it is considered useful, additional sources are provided that provide in-depth discussions of such topics.

Organization

Following is a summary and a brief description of the chapters of this manual:

- Part I, "Overview," provides a high-level description of the MPC8260, describing general operation and listing basic features.
 - Chapter 1, "Overview," provides a high-level description of MPC8260 functions and features. It roughly follows the structure of this book, summarizing the relevant features and providing references for the reader who needs additional information.
 - Chapter 2, "PowerPC Processor Core," provides an overview of the MPC8260 core, summarizing topics described in further detail in subsequent chapters.
 - Chapter 3, "Memory Map," presents a table showing where MPC8260 registers are mapped in memory. It includes cross references that indicate where the registers are described in detail.
- Part II, "Configuration and Reset," describes start-up behavior of the MPC8260
 - Chapter 4, "System Interface Unit (SIU)," describes the system configuration and protection functions which provide various monitors and timers, and the 60x bus configuration.
 - Chapter 5, "Reset," describes the behavior of the MPC8260 at reset and start-up.
- Part III, "The Hardware Interface," describes external signals, clocking, memory control, and power management of the MPC8260.
 - Chapter 6, "External Signals," shows a functional pinout of the MPC8260 and describes the MPC8260 signals.
 - Chapter 7, "60x Signals," describes signals on the 60x bus.
 - Chapter 8, "The 60x Bus," describes the operation of the bus used by PowerPC processors.
 - Chapter 9, "Clocks and Power Control," describes the clocking architecture of the MPC8260.
 - Chapter 10, "Memory Controller," describes the memory controller, which controlling a maximum of eight memory banks shared between a generalpurpose chip-select machine (GPCM) and three user-programmable machines (UPMs).
 - Chapter 11, "Secondary (L2) Cache Support," provides information about implementation and configuration of a level-2 cache.
 - Chapter 12, "IEEE 1149.1 Test Access Port," describes the dedicated useraccessible test access port (TAP), which is fully compatible with the *IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture*.
- Part IV, "Communications Processor Module," describes the configuration, clocking, and operation of the various communications protocols supported by the MPC8260.

- Chapter 13, "Communications Processor Module Overview," provides a brief overview of the MPC8260 CPM.
- Chapter 14, "Serial Interface with Time-Slot Assigner," describes the SIU, which controls system start-up, initialization and operation, protection, as well as the external system bus.
- Chapter 15, "CPM Multiplexing," describes the CPM multiplexing logic (CMX) which connects the physical layer—UTOPIA, MII, modem lines,
- Chapter 16, "Baud-Rate Generators (BRGs)," describes the eight independent, identical baud-rate generators (BRGs) that can be used with the FCCs, SCCs, and SMCs.
- Chapter 17, "Timers," describes the MPC8260 timer implementation, which can be configured as four identical 16-bit or two 32-bit general-purpose timers.
- Chapter 18, "SDMA Channels and IDMA Emulation," describes the two physical serial DMA (SDMA) channels on the MPC8260.
- Chapter 19, "Serial Communications Controllers (SCCs)," describes the four serial communications controllers (SCC), which can be configured independently to implement different protocols for bridging functions, routers, and gateways, and to interface with a wide variety of standard WANs, LANs, and proprietary networks.
- Chapter 20, "SCC UART Mode," describes the MPC8260 implementation of universal asynchronous receiver transmitter (UART) protocol that is used for sending low-speed data between devices.
- Chapter 21, "SCC HDLC Mode," describes the MPC8260 implementation of HDLC protocol.
- Chapter 22, "SCC BISYNC Mode," describes the MPC8260 implementation of byte-oriented BISYNC protocol developed by IBM for use in networking products.
- Chapter 23, "SCC Transparent Mode," describes the MPC8260 implementation of transparent mode (also called totally transparent mode), which provides a clear channel on which the SCC can send or receive serial data without bit-level manipulation.
- Chapter 24, "SCC Ethernet Mode," describes the MPC8260 implementation of Ethernet protocol.
- Chapter 25, "SCC AppleTalk Mode," describes the MPC8260 implementation of AppleTalk.
- Chapter 26, "Serial Management Controllers (SMCs)," describes two serial management controllers, full-duplex ports that can be configured independently to support one of three protocols—UART, transparent, or general-circuit interface (GCI).

- Chapter 27, "Multi-Channel Controllers (MCCs)," describes the MPC8260's multi-channel controller (MCC), which handles up to 128 serial, full-duplex data channels.
- Chapter 28, "Fast Communications Controllers (FCCs)," describes the MPC8260's fast communications controllers (FCCs), which are SCCs optimized for synchronous high-rate protocols.
- Chapter 29, "ATM Controller," describes the MPC8260 ATM controller, which provides the ATM and AAL layers of the ATM protocol. The ATM controller performs segmentation and reassembly (SAR) functions of AAL5, AAL1, and AAL0, and most of the common parts convergence sublayer (CP-CS) of these protocols.
- Chapter 30, "Fast Ethernet Controller," describes the MPC8260's implementation of the Ethernet IEEE 802.3 protocol.
- Chapter 31, "FCC HDLC Controller," describes the FCC implementation of the HDLC protocol.
- Chapter 32, "FCC Transparent Controller," describes the FCC implementation of the transparent protocol.
- Chapter 33, "Serial Peripheral Interface (SPI)," describes the serial peripheral interface, which allows the MPC8260 to exchange data between other MPC8260 chips, the MC68360, the MC68302, the M68HC11, and M68HC05 microcontroller families, and peripheral devices such as EEPROMs, real-time clocks, A/D converters, and ISDN devices.
- Chapter 34, "I2C Controller," describes the MPC8260 implementation of the inter-integrated circuit (I²C[®]) controller, which allows data to be exchanged with other I²C devices, such as microcontrollers, EEPROMs, real-time clock devices, and A/D converters.
- Chapter 35, "Parallel I/O Ports," describes the four general-purpose I/O ports A–D. Each signal in the I/O ports can be configured as a general-purpose I/O signal or as a signal dedicated to supporting communications devices, such as SMCs, SCCs. MCCs, and FCCs.
- Appendix A, "Register Quick Reference Guide," provides a quick reference to the registers incorporated in the PowerPC core.
- This book also includes an index and a glossary.

Suggested Reading

This section lists additional reading that provides background for the information in this manual as well as general information about the PowerPC architecture.

MPC8xx Documentation

Supporting documentation for the MPC8260 can be accessed through the world-wide web at http://www.mot.com/netcomm. This documentation includes technical specifications, reference materials, and detailed applications notes.

PowerPC Documentation

The PowerPC documentation is organized in the following types of documents:

- User's manuals—These books provide details about individual PowerPC implementations and are intended to be used in conjunction with *The Programming Environments Manual*. These include the following:
 - PowerPC MPC603e[™] & EC603e RISC Microprocessor User's Manual (Motorola order #: MPC603EUM/AD, Rev. 1)
 - PowerPC 604[™] RISC Microprocessor User's Manual (Motorola order #: MPC604UM/AD)
- Programming environments manuals—These books provide information about resources defined by the PowerPC architecture that are common to PowerPC processors. There are two versions, one that describes the functionality of the combined 32- and 64-bit architecture models and one that describes only the 32-bit model.
 - PowerPC Microprocessor Family: The Programming Environments, Rev 1 (Motorola order #: MPCFPE/AD)
 - PowerPC Microprocessor Family: The Programming Environments for 32-Bit Microprocessors, Rev. 1 (Motorola order #: MPCFPE32B/AD)
- PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors (Motorola order #: MPCBUSIF/AD) provides a detailed functional description of the 60x bus interface, as implemented on the PowerPC MPC601[™], MPC603e, MPC604, and MPC750 family of PowerPC microprocessors. This document is intended to help system and chip set developers by providing a centralized reference source to identify the bus interface presented by the 60x family of PowerPC microprocessors.
- PowerPC Microprocessor Family: The Programmer's Reference Guide (Motorola order #: MPCPRG/D) is a concise reference that includes the register summary, memory control model, exception vectors, and the PowerPC instruction set.
- *PowerPC Microprocessor Family: The Programmer's Pocket Reference Guide* (Motorola order #: MPCPRGREF/D). This feedlot card provides an overview of the PowerPC registers, instructions, and exceptions for 32-bit implementations.

• Application notes—These short documents contain useful information about specific design issues useful to programmers and engineers working with PowerPC processors.

For a current list of PowerPC documentation, refer to the world-wide web at http://www.mot.com/PowerPC.

Conventions

This document uses the following notational conventions:

Bold	Bold entries in figures and tables showing registers and parameter RAM should be initialized by the user.
mnemonics	Instruction mnemonics are shown in lowercase bold.
italics	Italics indicate variable command parameters, for example, bcctr <i>x</i> .
	Book titles in text are set in italics.
0x0	Prefix to denote hexadecimal number
0b0	Prefix to denote binary number
rA, rB	Instruction syntax used to identify a source GPR
rD	Instruction syntax used to identify a destination GPR
REG[FIELD]	Abbreviations or acronyms for registers or buffer descriptors are shown in uppercase text. Specific bits, fields, or numerical ranges appear in brackets. For example, MSR[LE] refers to the little-endian mode enable bit in the machine state register.
Х	In certain contexts, such as in a signal encoding or a bit field, indicates a don't care.
n	Used to express an undefined numerical value
7	NOT logical operator
&	AND logical operator
I	OR logical operator

Acronyms and Abbreviations

Table i contains acronyms and abbreviations used in this document. Note that the meanings for some acronyms (such as SDR1 and DSISR) are historical, and the words for which an acronym stands may not be intuitively obvious.

Term	Meaning
A/D	Analog-to-digital
ALU	Arithmetic logic unit
ATM	Asynchronous transfer mode
BD	Buffer descriptor
BIST	Built-in self test
BPU	Branch processing unit
BRI	Basic rate interface.
BUID	Bus unit ID
CAM	Content-addressable memory
CEPT	Conference des administrations Europeanes des Postes et Telecommunications (European Conference of Postal and Telecommunications Administrations).
CMX	CPM multiplexing logic
СРМ	Communication processor module
CR	Condition register
CRC	Cyclic redundancy check
CTR	Count register
DABR	Data address breakpoint register
DAR	Data address register
DEC	Decrementer register
DMA	Direct memory access
DPLL	Digital phase-locked loop
DRAM	Dynamic random access memory
DSISR	Register used for determining the source of a DSI exception
DTLB	Data translation lookaside buffer
EA	Effective address
EEST	Enhanced Ethernet serial transceiver
EPROM	Erasable programmable read-only memory
FPR	Floating-point register
FPSCR	Floating-point status and control register

Table i. Acronyms and Abbreviated Terms

Term	Meaning
FPU	Floating-point unit
GCI	General circuit interface
GPCM	General-purpose chip-select machine
GPR	General-purpose register
GUI	Graphical user interface
HDLC	High-level data link control
l ² C	Inter-integrated circuit
IDL	Inter-chip digital link
IEEE	Institute of Electrical and Electronics Engineers
IrDA	Infrared Data Association
ISDN	Integrated services digital network
ITLB	Instruction translation lookaside buffer
IU	Integer unit
JTAG	Joint Test Action Group
LIFO	Last-in-first-out
LR	Link register
LRU	Least recently used
LSB	Least-significant byte
lsb	Least-significant bit
LSU	Load/store unit
MAC	Multiply accumulate
MESI	Modified/exclusive/shared/invalid—cache coherency protocol
MMU	Memory management unit
MSB	Most-significant byte
msb	Most-significant bit
MSR	Machine state register
NaN	Not a number
NIA	Next instruction address
NMSI	Nonmultiplexed serial interface
No-op	No operation
OEA	Operating environment architecture
OSI	Open systems interconnection

Term	Meaning
PCI	Peripheral component interconnect
PCMCIA	Personal Computer Memory Card International Association
PIR	Processor identification register
PRI	Primary rate interface
PVR	Processor version register
RISC	Reduced instruction set computing
RTOS	Real-time operating system
RWITM	Read with intent to modify
Rx	Receive
SCC	Serial communication controller
SCP	Serial control port
SDLC	Synchronous Data Link Control
SDMA	Serial DMA
SI	Serial interface
SIMM	Signed immediate value
SIU	System interface unit
SMC	Serial management controller
SNA	Systems network architecture
SPI	Serial peripheral interface
SPR	Special-purpose register
SPRGn	Registers available for general purposes
SRAM	Static random access memory
SRR0	Machine status save/restore register 0
SRR1	Machine status save/restore register 1
ТАР	Test access port
ТВ	Time base register
TDM	Time-division multiplexed
TLB	Translation lookaside buffer
TSA	Time-slot assigner
Tx	Transmit
UART	Universal asynchronous receiver/transmitter
UIMM	Unsigned immediate value

Table i. Acronyms and Abbreviated Terms (Continued)

Table i. Acronyms and Abbreviated Terms (Continued)

Term	Meaning
UISA	User instruction set architecture
UPM	User-programmable machine
USART	Universal synchronous/asynchronous receiver/transmitter
USB	Universal serial bus
VA	Virtual address
VEA	Virtual environment architecture
XER	Register used primarily for indicating conditions such as carries and overflows for integer operations

PowerPC Architecture Terminology Conventions

Table ii lists certain terms used in this manual that differ from the architecture terminology conventions.

The Architecture Specification	This Manual
Data storage interrupt (DSI)	DSI exception
Extended mnemonics	Simplified mnemonics
Instruction storage interrupt (ISI)	ISI exception
Interrupt	Exception
Privileged mode (or privileged state)	Supervisor-level privilege
Problem mode (or problem state)	User-level privilege
Real address	Physical address
Relocation	Translation
Storage (locations)	Memory
Storage (the act of)	Access

Table ii. Terminology Conventions

Table iii describes instruction field notation conventions used in this manual.

The Architecture Specification	Equivalent to:
BA, BB, BT	crbA, crbB, crbD (respectively)
BF, BFA	crfD, crfS (respectively)
D	d
DS	ds
FLM	FM
FXM	CRM
RA, RB, RT, RS	rA, rB, rD, rS (respectively)
SI	SIMM
U	IMM
UI	UIMM
/, //, ///	00 (shaded)

Table iii. Instruction Field Conventions

Part I Overview

Intended Audience

Part I is intended for readers who need a high-level understanding of the MPC8260.

Contents

Part I provides a high-level description of the MPC8260, describing general operation and listing basic features.

- Chapter 1, "Overview," provides a high-level description of MPC8260 functions and features. It roughly follows the structure of this book, summarizing the relevant features and providing references for the reader who needs additional information.
- Chapter 2, "PowerPC Processor Core," provides an overview of the MPC8260 core.
- Chapter 3, "Memory Map," presents a table showing where MPC8260 registers are mapped in memory. It includes cross references that indicate where the registers are described in detail.

Conventions

Part I uses the following notational conventions:

mnemonics	Instruction mnemonics are shown in lowercase bold.
italics	Italics indicate variable command parameters, for example, bcctr <i>x</i> .
	Book titles in text are set in italics.
0x0	Prefix to denote hexadecimal number
0b0	Prefix to denote binary number
rA, rB	Instruction syntax used to identify a source GPR
rD	Instruction syntax used to identify a destination GPR

REG[FIELD]	Abbreviations or acronyms for registers or buffer descriptors are shown in uppercase text. Specific bits, fields, or numerical ranges appear in brackets. For example, MSR[LE] refers to the little-endian mode enable bit in the machine state register.
Х	In certain contexts, such as in a signal encoding or a bit field, indicates a don't care.
n	Indicates an undefined numerical value

Acronyms and Abbreviations

Table iv contains acronyms and abbreviations that are used in this document.

Term	Meaning
АТМ	Asynchronous Mode
BD	Buffer descriptor
BPU	Branch processing unit
COP	Common on-chip processor
СР	Communications processor
СРМ	Communications processor module
CRC	Cyclic redundancy check
CTR	Count register
DABR	Data address breakpoint register
DAR	Data address register
DEC	Decrementer register
DMA	Direct memory access
DPLL	Digital phase-locked loop
DRAM	Dynamic random access memory
DTLB	Data translation lookaside buffer
EA	Effective address
FCC'	Fast communications controller
FPR	Floating-point register
GPCM	General-purpose chip-select machine
GPR	General-purpose register
HDLC	High-level data link control
l ² C	Inter-integrated circuit
IEEE	Institute of Electrical and Electronics Engineers

Table iv. Acronyms and Abbreviated Terms

Term	Meaning
ISDN	Integrated services digital network
ITLB	Instruction translation lookaside buffer
IU	Integer unit
JTAG	Joint Test Action Group
LRU	Least recently used (cache replacement algorithm)
LSU	Load/store unit
MCC	Multi-channel controller
МІІ	Media-independent interface
MMU	Memory management unit
MSR	Machine state register
NMSI	Nonmultiplexed serial interface
OEA	Operating environment architecture
OSI	Open systems interconnection
PCI	Peripheral component interconnect
RISC	Reduced instruction set computing
RTC	Real-time clock
RTOS	Real-time operating system
Rx	Receive
SCC	Serial communications controller
SDLC	Synchronous data link control
SDMA	Serial DMA
SI	Serial interface
SIU	System interface unit
SMC	Serial management controller
SPI	Serial peripheral interface
SPR	Special-purpose register
SRAM	Static random access memory
ТАР	Test access port
ТВ	Time base register
TDM	Time-division multiplexed
TLB	Translation lookaside buffer
TSA	Time-slot assigner

Table iv. Acronyms and Abbreviated Terms (Continued)

Part I. Overview

Term	Meaning
Тх	Transmit
UART	Universal asynchronous receiver/transmitter
UISA	User instruction set architecture
UPM	User-programmable machine
VEA	Virtual environment architecture

Table iv. Acronyms and Abbreviated Terms (Continued)

Chapter 1 Overview

The MPC8260 PowerQUICC II[™] is a versatile communications processor that integrates on one chip a high-performance PowerPC[™] RISC microprocessor, a very flexible system integration unit, and many communications peripheral controllers that can be used in a variety of applications, particularly in communications and networking systems.

The core is an embedded variant of the PowerPC MPC603e[™] microprocessor with 16 Kbytes of instruction cache and 16 Kbytes of data cache and no floating-point unit (FPU). The system interface unit (SIU) consists of a flexible memory controller that interfaces to almost any user-defined memory system, and many other peripherals making this device a complete system on a chip.

The communications processor module (CPM) includes all the peripherals found in the MPC860, with the addition of three high-performance communication channels that support new emerging protocols (for example, 155-Mbps ATM and Fast Ethernet). MPC8260 has dedicated hardware that can handle up to 256 full-duplex, time-division-multiplexed logical channels

This document describes the functional operation of MPC8260, with an emphasis on peripheral functions. Chapter 2, "PowerPC Processor Core," is an overview of the PowerPC microprocessor core; detailed information about the core can be found in the *MPC603e* & *EC603e RISC Microprocessors User's Manual* (order number: MPC603EUM/AD).

1.1 Features

The following is an overview of the MPC8260 feature set:

- PowerPC dual-issue integer core
 - A core version of the MPC603e microprocessor
 - System core microprocessor supporting frequencies of 100-200 MHz
 - Separate 16-Kbyte data and instruction caches:
 - Four-way set associative
 - Physically addressed
 - LRU replacement algorithm

- PowerPC architecture-compliant memory management unit (MMU)
- Common on-chip processor (COP) test interface
- Supports bus snooping for cache coherency
- No floating-point unit (FPU). Floating-point arithmetic is not supported.
- Support for floating-point loads and stores.
- Support for cache locking.
- Low-power (less than 2.5 W when fully operational at 133 MHz, 2-V internal and 3.3-V I/O)
- Separate power supply for internal logic (2 V) and for I/O (3.3 V)
- Separate PLLs for PowerPC core and for the CPM
 - PowerPC core and CPM can run at different frequencies for power/performance optimization
 - Internal PowerPC core/bus clock multiplier that provides 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1 ratios
 - Internal CPM/bus clock multiplier that provides 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1 ratios
- 64-bit data and 32-bit address 60x bus
 - Bus supports multiple master designs
 - Supports single transfers and burst transfers
 - 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
 - Supports data parity or ECC and address parity
- 32-bit data and 18-bit address local bus
 - Single-master bus, supports external slaves
 - Eight-beat burst transfers
 - 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
- System interface unit (SIU)
 - Clock synthesizer
 - Reset controller
 - Real-time clock (RTC) register
 - Periodic interrupt timer
 - Hardware bus monitor and software watchdog timer
 - IEEE 1149.1 JTAG test access port
- Twelve-bank memory controller
 - Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash and other user-definable peripherals

- Byte write enables and selectable parity generation
- 32-bit address decodes with programmable bank size
- Three user programmable machines, general-purpose chip-select machine, and page mode pipeline SDRAM machine
- Byte selects for 64-bit bus width (60x) and for 32-bit bus width (local)
- Dedicated interface logic for SDRAM
- Disable CPU mode
- Communications processor module (CPM)
 - Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible support for communications peripherals
 - Interfaces to PowerPC core through on-chip 24-Kbyte dual-port RAM and DMA controller
 - Serial DMA channels for receive and transmit on all serial channels
 - Parallel I/O registers with open-drain and interrupt capability
 - Virtual DMA functionality executing memory to memory and memory to I/O transfers
 - Three fast communication controllers (FCCs) supporting the following protocols
 - 10/100-Mbit Ethernet/IEEE 802.3 CDMA/CS interface through media independent interface (MII)
 - ATM—full-duplex SAR at 155 Mbps, UTOPIA interface, AAL5, AAL1, AAL0 protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up to 64 K external connections
 - Transparent
 - HDLC-up to T3 rates (clear channel)
 - Two multichannel controllers (MCCs)
 - Two 128 serial full-duplex data channels (for a total of 256 64 Kbps channels).
 Each MCC can be split into four subgroups of 32 channels each.
 - Almost any combination of subgroups can be multiplexed to single or multiple TDM interfaces
 - Four serial communications controllers (SCCs) identical to those on the MPC860, supporting the digital portions of the following protocols:
 - Ethernet/IEEE 802.3 CDMA/CS
 - HDLC/SDLC and HDLC bus
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Binary synchronous (BiSync) communications
 - Transparent

- Two serial management controllers (SMCs), identical to those of the MPC860
 - Provide management for BRI devices as general-circuit interface (GCI) controllers in time- division-multiplexed (TDM) channels
 - Transparent
 - UART (low-speed operation)
- One serial peripheral interface identical to the MPC860 SPI
- One I^2C controller (identical to the MPC860 I^2C controller)
 - Microwire compatible
 - Multiple-master, single-master, and slave modes
- Up to eight TDM interfaces
 - Supports two groups of four TDM channels for a total of eight TDMs
 - 2,048 bytes of SI RAM
 - Bit or byte resolution
 - Independent transmit and receive routing, frame synchronization.
 - Supports T1, CEPT, T1/E1, T3/E3, pulse code modulation highway, ISDN basic rate, ISDN primary rate, Motorola interchip digital link (IDL), general circuit interface (GCI), and user-defined TDM serial interfaces
- Eight independent baud rate generators and 20 input clock pins for supplying clocks to FCC, SCC, and SMC serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers

1.2 MPC8260's Architecture Overview

The MPC8260 has two external buses to accommodate bandwidth requirements from the high-speed system core and the very fast communications channels. As shown in Figure 1-1, the MPC8260 has three major functional blocks:

- A 64-bit PowerPC core derived from the MPC603e with MMUs and cache
- A system interface unit (SIU)
- A communications processor module (CPM)

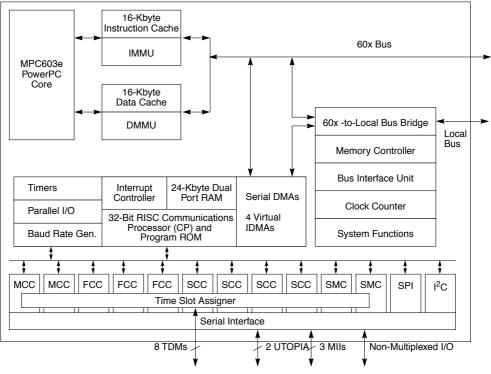


Figure 1-1. MPC8260 Block Diagram

Both the system core and the CPM have an internal PLL, which allows independent optimization of the frequencies at which they run. The system core and CPM are both connected to the 60x bus.

1.2.1 MPC603e Core

The MPC603e core is derived from the PowerPC MPC603e microprocessor without the floating-point unit and with power management modifications. The core is a high-performance low-power implementation of the PowerPC family of reduced instruction set computer (RISC) microprocessors. The MPC603e core implements the 32-bit portion of the PowerPC architecture, which provides 32-bit effective addresses, integer data types of 8, 16, and 32 bits. The MPC603e cache provides snooping to ensure data coherency with other masters. This helps ensure coherency between the CPM and system core.

The core includes 16 Kbytes of instruction cache and 16 Kbytes of data cache. It has a 64bit split-transaction external data bus, which is connected directly to the external MPC8260 pins. The MPC603e core has an internal common on-chip (COP) debug processor. This processor allows access to internal scan chains for debugging purposes. It is also used as a serial connection to the core for emulator support.

The MPC603e core performance for the SPEC 95 benchmark for integer operations ranges between 4.4 and 5.1 at 200 MHz. In Dhrystone 2.1 MIPS, the MPC603e is 280 MIPS at 200 MHz (compared to 86 MIPS of the MPC860 at 66 MHz).

The MPC603e core can be disabled. In this mode, the MPC8260 functions as a slave peripheral to an external core or to another MPC8260 device with its core enabled.

1.2.2 System Interface Unit (SIU)

The SIU consists of the following:

- A 60x-compatible parallel system bus configurable to 64-bit data width. The MPC8260 supports 64-, 32-, 16-, and 8-bit port sizes. The MPC8260 internal arbitrar arbitrates between internal components that can access the bus (system core, CPM, and one external master). This arbiter can be disabled, and an external arbiter can be used if necessary.
- A local (32-bit data, 32-bit internal and 18-bit external address) bus. This bus is used to enhance the operation of the very high-speed communication controllers. Without requiring extensive manipulation by the core, the bus can be used to store connection tables for ATM or buffer descriptors (BDs) for the communication channels or raw data that is transmitted between channels. The local bus is synchronous to the 60x bus and runs at the same frequency.
- Memory controller supporting 12 memory banks that can be allocated for either the system or the local bus. The memory controller is an enhanced version of the MPC860 memory controller. It supports three user-programmable machines. Besides all MPC860 features, the memory controller also supports SDRAM with page mode and address data pipeline.
- Supports JTAG controller IEEE 1149.1 test access port (TAP).
- A bus monitor that prevents 60x bus lock-ups, a real-time clock, a periodic interrupt timer, and other system functions useful in embedded applications.
- Glueless interface to L2 cache (MPC2605) and 4-/16-K-entry CAM (MCM69C232/ MCM69C432).

1.2.3 Communications Processor Module (CPM)

The CPM contains features that allow the MPC8260 to excel in a variety of applications targeted mainly for networking and telecommunication markets.

The CPM is a superset of the MPC860 PowerQUICC CPM, with enhancements on the CP performance and additional hardware and microcode routines that support high bit rate protocols like ATM (up to 155 Mbps full-duplex) and Fast Ethernet (100-Mbps full-duplex).

The following list summarizes the major features of the CPM:

- The CP is an embedded 32-bit RISC controller residing on a separate bus (CPM local bus) from the 60x bus (used by the system core). With this separate bus, the CP does not affect the performance of the PowerPC core. The CP handles the lower layer tasks and DMA control activities, leaving the PowerPC core free to handle higher layer activities. The CP has an instruction set optimized for communications, but can also be used for general-purpose applications, relieving the system core of small often repeated tasks.
- Two serial DMA (SDMA) that can do simultaneous transfers, optimized for burst transfers to the 60x bus and to the local bus.
- Three full-duplex, serial fast communications controllers (FCCs) supporting ATM (155 Mbps) protocol through UTOPIA2 interface (there are two UTOPIA interfaces on the MPC8260), IEEE 802.3 and Fast Ethernet protocols, HDLC up to E3 rates (45 Mbps) and totally transparent operation. Each FCC can be configured to transmit fully transparent and receive HDLC or vice-versa.
- Two multichannel controllers (MCCs) that can handle an aggregate of 256 X 64 Kbps HDLC or transparent channels, multiplexed on up to eight TDM interfaces. The MCC also supports super-channels of rates higher than 64 Kbps and subchanneling of the 64-Kbps channels.
- Four full-duplex serial communications controllers (SCCs) supporting IEEE802.3/ Ethernet, high- level synchronous data link control, HDLC, local talk, UART, synchronous UART, BISYNC, and transparent.
- Two full-duplex serial management controllers (SMC) supporting GCI, UART, and transparent operations
- Serial peripheral interface (SPI) and I²C bus controllers
- Time-slot assigner (TSA) that supports multiplexing of data from any of the four SCCs, three FCCs, and two SMCs.

1.3 Software Compatibility Issues

As much as possible, the MPC8260 CPM features were made similar to those of the previous devices (MPC860). The code flow ports easily from previous devices to the MPC8260, except for new protocols supported by the MPC8260.

Although many registers are new, most registers retain the old status and event bits, so an understanding of the programming models of the MC68360, MPC860, or MPC85015 is helpful. Note that the MPC8260 initialization code requires changes from the MPC860 initialization code (Motorola provides reference code).

1.3.1 Signals

Figure 1-2 shows MPC8260 signals grouped by function. Note that many of these signals are multiplexed and this figure does not indicate how these signals are multiplexed.

NOTE

A bar over a signal name indicates that the signal is active low—for example, \overline{BB} (bus busy). Active-low signals are referred to as asserted (active) when they are low and negated when they are high. Signals that are not active low, such as TSIZ[0–3] (transfer size signals) are referred to as asserted when they are high and negated when they are low.

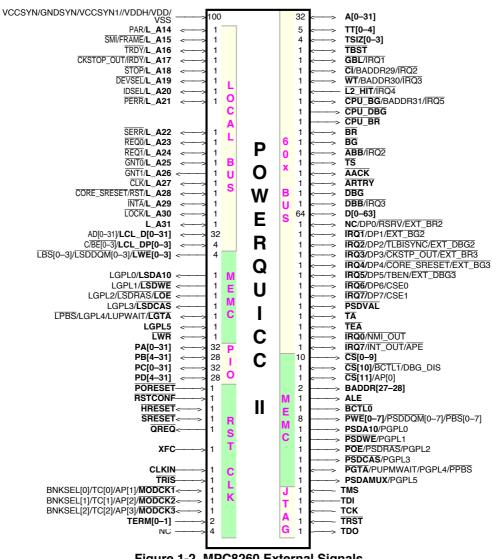


Figure 1-2. MPC8260 External Signals

1.4 Differences between MPC860 and MPC8260

The following MPC860 features are not included in the MPC8260.

- On-chip crystal oscillators (must use external oscillator)
- 4-MHz oscillator (input clock must be at the bus speed)
- Low power (stand-by) modes
- Battery-backup real-time clock (must use external battery-backup clock)
- BDM (COP offers most of the same functionality)
- True little-endian mode
- PCMCIA interface
- Infrared (IR) port
- QMC protocol in SCC (256 HDLC channels are supported by the MCCs)
- Multiply and accumulate (MAC) block in the CPM
- Centronics port (PIP)
- Asynchronous HDLC protocol (optional RAM microcode)
- Pulse-width modulated outputs
- SCC Ethernet controller option to sample 1 byte from the parallel port when a receive frame is complete
- Parallel CAM interface for SCC (Ethernet)

1.5 Serial Protocol Table

Table 1-1 summarizes available protocols for each serial port.

Port	Port					
Port	FCC	SCC	MCC	SMC		
ATM (Utopia)	\checkmark					
100BaseT	\checkmark					
10BaseT	\checkmark	\checkmark				
HDLC	\checkmark	\checkmark	\checkmark			
HDLC_BUS		\checkmark				
Transparent	\checkmark	\checkmark	\checkmark	\checkmark		
UART		\checkmark		\checkmark		
DPLL		\checkmark				
Multichannel			\checkmark			

Table 1-1. MPC8260 Serial Protocols

1.6 MPC8260 Configurations

The MPC8260 offers flexibility in configuring the device for specific applications. The functions mentioned in the above sections are all available in the device, but not all of them can be used at the same time. This does not imply that the device is not fully activated in any given implementation: The CPM architecture has the advantage of using common hardware resources for many different protocols, and applications. Two physical factors limit the functionality in any given system—pinout and performance.

1.6.1 Pin Configurations

Some pins have multiple functions. Choosing one function may preclude the use of another. Information about multiplexing constraints can be found in Chapter 15, "CPM Multiplexing," and Chapter 35, "Parallel I/O Ports."

1.6.2 Serial Performance

Serial performance depends on a number of factors:

- Serial rate versus CPM clock frequency for adequate sampling on serial channels
- Serial rate and protocol versus CPM clock frequency for CP protocol handling
- Serial rate and protocol versus bus bandwidth
- Serial rate and protocol versus system core clock for adequate protocol handling

The second item above is addressed in this section—the CP's ability to handle high bit-rate protocols in parallel. Slow bit-rate protocols do not significantly affect those numbers.

Table 1-2 describes a few options to configure the fast communications channels on the MPC8260. The frequency specified is the minimum CPM frequency necessary to run the mentioned protocols concurrently at full-duplex.

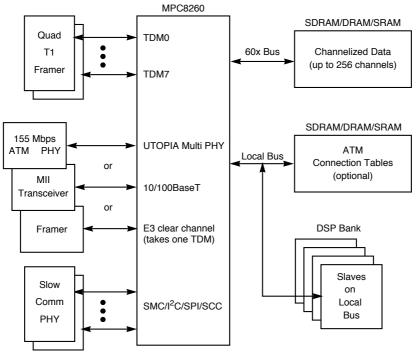
FCC1	FCC2	FCC3	МСС	CPM Clock	60x Bus Clock
155-Mbps ATM	100 BaseT	100 BaseT		133 MHz	66 MHz
100 BaseT	100 BaseT	100 BaseT		133 MHz	66 MHz
155-Mbps ATM			128 * 64 Kbps channels	133 MHz	66 MHz
100 BaseT	100 BaseT		128 * 64 Kbps channels	133 MHz	66 MHz
155-Mbps ATM			256 * 64 Kbps channels	166 MHz	66 MHz
100 BaseT			256 * 64 Kbps channels	133 MHz	66 MHz
45-Mbps HDLC			256 * 64 Kbps	133 MHz	66 MHz
45-Mbps HDLC	100 BaseT		256 * 64 Kbps	166 MHz	66 MHz
100 BaseT			16 * 576 Kbps	166 MHz	66 MHz

Table 1-2. MPC8260 Serial Performance

FCCs can also be used to run slower HDLC or 10 BaseT, for example. The CP's RISC architecture has the advantage of using common hardware resources for all FCCs.

1.7 MPC8260 Application Examples

The MPC8260 can be configured to meet many system application needs, as shown in the following sections.


1.7.1 Examples of Communication Systems

Communication examples:

- Remote access server
- Regional office router
- LAN-to-WAN bridge router
- Cellular base station
- Telecom switch controller
- SONET transmission controller

1.7.1.1 Remote Access Server

See Figure 1-3 for remote access server configuration.

Part I. Overview

In this application, eight TDM ports are connected to external framers. In the MPC8260, each group of four ports support up to 128 channels. One TDM interface can support 32–128 channels. The MPC8260 receives and transmits data in transparent or HDLC mode, and stores or retrieves the channelized data from memory. The data can be stored either in memory residing on the 60x bus or in memory residing on the local bus.

The main trunk can be configured as 155 Mbps full-duplex ATM, using the UTOPIA interface, or as 10/100 BaseT Fast Ethernet with MII interface, or as a high-speed serial channel (up to 45 Mbps). In ATM mode, there may be a need to store connection tables in external memory on the local bus; for example, 128 active internal connections require 8 Kbytes of dual-port RAM. The need for local bus depends on the total throughput of the system. The MPC8260 supports automatic (without software intervention) cross connect between ATM and MCC, routing ATM AAL1 frames to MCC slots.

The local bus can be used as an interface to a bank of DSPs that can run code that performs analog modem signal modulation. Data to and from the DSPs can be transferred through the parallel bus with the internal virtual IDMA.

The MPC8260 memory controller supports many types of memories, including EDO DRAM and page-mode, pipeline SDRAM for efficient burst transfers.

1.7.1.2 Regional Office Router

Figure 1-4 shows a regional office router configuration.

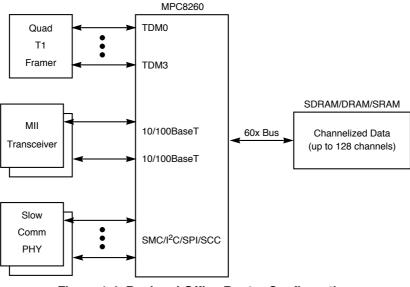


Figure 1-4. Regional Office Router Configuration

In this application, the MPC8260 is connected to four TDM interfaces channelizing up to 128 channels. Each TDM port supports 32–128 channels. If 128 channels are needed, each TDM port can be configured to support 32 channels. This example has two MII ports for 10/100 BaseT LAN connections. In all the examples, the SCC ports can be used for management.

1.7.1.3 LAN-to-WAN Bridge Router

Figure 1-5 shows a LAN-to-WAN router configuration, which is similar to the previous example.

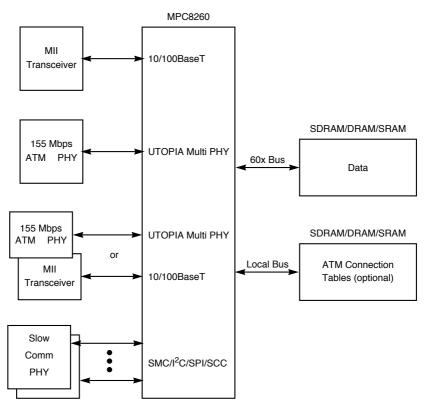


Figure 1-5. LAN-to-WAN Bridge Router Configuration

1.7.1.4 Cellular Base Station

Figure 1-6 shows a cellular base station configuration.

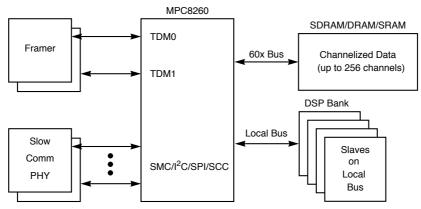
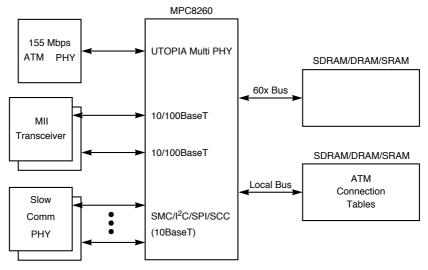


Figure 1-6. Cellular Base Station Configuration


Here the MPC8260 channelizes two E1s (up to 256, 16-Kbps channels).

The local bus can control a bank of DSPs. Data to and from the DSPs can be transferred through the parallel bus to the host port of the DSPs with the internal virtual IDMA.

The slow communication ports (SCCs, SMCs, I²C, SPI) can be used for management and debug functions.

1.7.1.5 Telecommunications Switch Controller

Figure 1-7 shows a telecommunications switch controller configuration.

The MPC8260 CPM supports a total aggregate throughput of 710 Mbps at 133 MHz. This includes two full-duplex 100 BaseT and one full-duplex 155 Mbps for ATM. The MPC603e core can operate at a different (higher) speed, if the application requires it.

1.7.1.6 SONET Transmission Controller

Figure 1-8 shows a SONET transmission controller configuration.

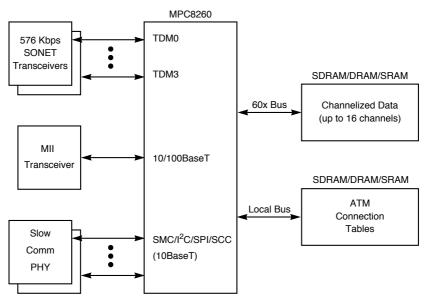


Figure 1-8. SONET Transmission Controller Configuration

In this application, the MPC8260 implements super channeling with the MCC. Nine 64-Kbps channels are combined to form a 576-Kbps channel. The MPC8260 at 133 MHz can support up to sixteen 576-Kbps superchannels. The MPC8260 also supports subchanneling (under 64 Kbps) with its MCC.

1.7.2 Bus Configurations

The following sections describe the following possible bus configurations:

- Basic system
- High-performance communication system
- High-performance system core

1.7.2.1 Basic System

In the basic system configuration., shown in Figure 1-9, the MPC8260 core is enabled and uses the 64-bit 60x data bus. The 32-bit local bus data is needed to store connection tables for many active ATM connections. The local bus may also be used to store data that does

not need to be heavily processed by the core. The CP can store large data frames in the local memory without interfering with the operation of the system core.

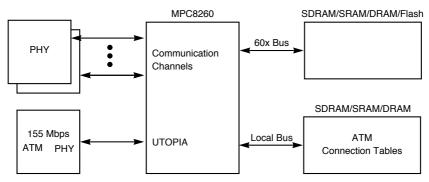


Figure 1-9. Basic System Configuration

1.7.2.2 High-Performance Communication

Figure 1-10 shows a high-performance communication configuration.

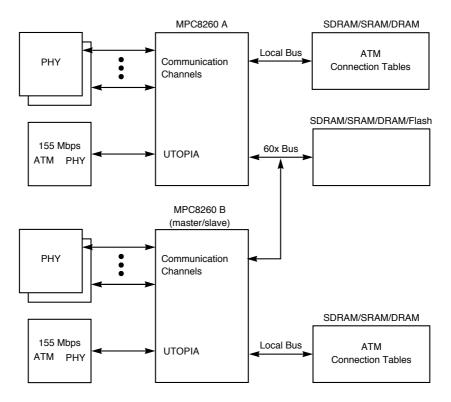


Figure 1-10. High-Performance Communication

Serial throughput is enhanced by connecting one MPC8260 in master or slave mode (with system core enabled or disabled) to another MPC8260 in master mode with the core enabled. The core in MPC8260 A can access the memory on the local bus of MPC8260 B.

1.7.2.3 High-Performance System Microprocessor

Figure 1-11 shows a configuration with a high-performance system microprocessor (MPC750).

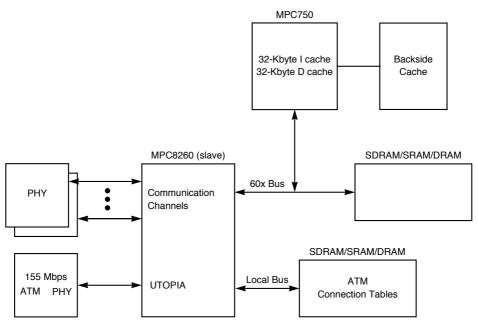


Figure 1-11. High-Performance System Microprocessor Configuration

In this system, the MPC603e core internal is disabled and an external high-performance microprocessor is connected to the 60x bus.

Part I. Overview

Chapter 2 PowerPC Processor Core

The MPC8260 contains an embedded version of the PowerPC 603e[™] processor. This chapter provides an overview of the basic functionality of the processor core. For detailed information regarding the processor refer to the following:

- *MPC603e & EC603e User's Manual* (Those chapters that describe the programming model, cache model, memory management model, exception model, and instruction timing)
- PowerPC[™] Microprocessor Family: The Programming Environments for 32-Bit Microprocessors

This section describes the details of the processor core, provides a block diagram showing the major functional units, and describes briefly how those units interact.

The signals associated with the processor core are described individually in Chapter 7, "60x Signals." Chapter 8, "The 60x Bus," describes how those signals interact.

2.1 Overview

The processor core is a low-power implementation of the PowerPC microprocessor family of reduced instruction set computing (RISC) microprocessors. The processor core implements the 32-bit portion of the PowerPC architecture, which supports 32-bit effective addresses.

Figure 2-1 is a block diagram of the processor core.

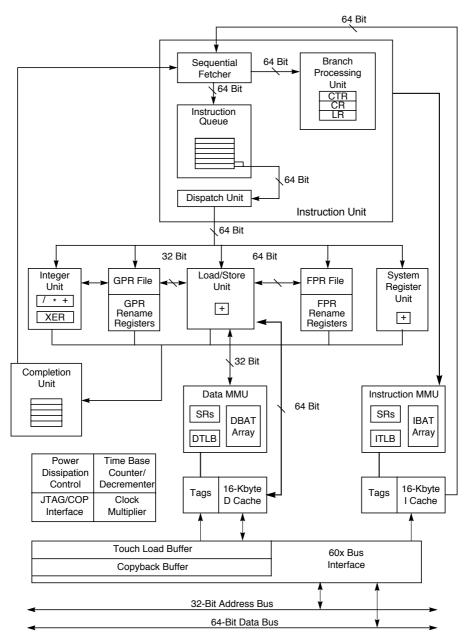


Figure 2-1. MPC8260 Integrated Processor Core Block Diagram

The processor core is a superscalar processor that can issue and retire as many as three instructions per clock. Instructions can execute out of order for increased performance; however, the processor core makes completion appear sequential.

The processor core integrates four execution units—an integer unit (IU), a branch processing unit (BPU), a load/store unit (LSU), and a system register unit (SRU). The ability to execute four instructions in parallel and the use of simple instructions with rapid execution times yield high efficiency and throughput. Most integer instructions execute in one clock cycle.

The processor core supports integer data types of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits. Note that although the MPC8260 does not implement a floating-point arithmetic unit, it does retain the 32 architecturally-defined floating point registers (FPRs), which can be used to hold 32, 64-bit operands that can in turn be transferred to and from the 32 general-purpose registers (GPRs), which can hold 32, 32-bit operands.

The processor core provides separate on-chip, 16-Kbyte, four-way set-associative, physically addressed caches for instructions and data and on-chip instruction and data memory management units (MMUs). The MMUs contain 64-entry, two-way set-associative, data and instruction translation lookaside buffers (DTLB and ITLB) that provide support for demand-paged virtual memory address translation and variable-sized block translation. The TLBs and caches use a least recently used (LRU) replacement algorithm. The processor core also supports block address translation through the use of two independent instruction and data block address translation (IBAT and DBAT) arrays of four entries each. Effective addresses are compared simultaneously with all four entries in the BAT array during block translation. In accordance with the PowerPC architecture, if an effective address hits in both the TLB and BAT array, the BAT translation takes priority.

As an added feature to the MPC603e core, the MPC8260 can lock the contents of 1-3 ways in the instruction and data cache (or an entire cache). For example, this allows embedded applications to lock interrupt routines or other important (time-sensitive) instruction sequences into the instruction cache. It allows data to be locked into the data cache, which may be important to code that must have deterministic execution.

The processor core has a 60x bus that incorporates a 64-bit data bus and a 32-bit address bus. The processor core supports single-beat and burst data transfers for memory accesses and supports memory-mapped I/O operations.

2.2 PowerPC Processor Core Features

This section describes the major features of the processor core:

- High-performance, superscalar microprocessor
 - As many as three instructions issued and retired per clock cycle
 - As many as four instructions in execution per clock cycle
 - Single-cycle execution for most instructions

- Four independent execution units and two register files
 - BPU featuring static branch prediction
 - A 32-bit IU
 - LSU for data transfer between data cache and GPRs and FPRs
 - SRU that executes condition register (CR), special-purpose register (SPR), and integer add/compare instructions
 - Thirty-two GPRs for integer operands
 - Thirty-two FPRs. These can be used for operands for floating-point load and store operands,
- High instruction and data throughput
 - Zero-cycle branch capability (branch folding)
 - Programmable static branch prediction on unresolved conditional branches
 - BPU that performs CR lookahead operations
 - Instruction fetch unit capable of fetching two instructions per clock from the instruction cache
 - A six-entry instruction queue that provides lookahead capability
 - Independent pipelines with feed-forwarding that reduces data dependencies in hardware
 - 16-Kbyte data cache—four-way set-associative, physically addressed; LRU replacement algorithm
 - 16-Kbyte instruction cache—four-way set-associative, physically addressed; LRU replacement algorithm
 - Cache write-back or write-through operation programmable on a per page or per block basis
 - Address translation facilities for 4-Kbyte page size, variable block size, and 256-Mbyte segment size
 - A 64-entry, two-way set-associative ITLB
 - A 64-entry, two-way set-associative DTLB
 - Four-entry data and instruction BAT arrays providing 128-Kbyte to 256-Mbyte blocks
 - Software table search operations and updates supported through fast trap mechanism
 - 52-bit virtual address; 32-bit physical address
- Facilities for enhanced system performance
 - A 32- or 64-bit, split-transaction external data bus with burst transfers
 - Support for one-level address pipelining and out-of-order bus transactions
 - Hardware support for misaligned little-endian accesses
 - Added bus multipliers of 4.5x, 5x, 5.5x, 6x, 6.5x, 7x, 7.5x, 8x. See Figure 2-3.

- Integrated power management
 - Three power-saving modes: doze, nap, and sleep
 - Automatic dynamic power reduction when internal functional units are idle
- Deterministic behavior and debug features
 - On-chip cache locking options for the instruction and data caches (1–3 ways or the entire cache contents can be locked)
 - In-system testability and debugging features through JTAG and boundary-scan capability

Figure 2-1 shows how the execution units—IU, BPU, LSU, and SRU—operate independently and in parallel. Note that this is a conceptual diagram and does not attempt to show how these features are physically implemented on the chip.

The processor core provides address translation and protection facilities, including an ITLB, DTLB, and instruction and data BAT arrays. Instruction fetching and issuing is handled in the instruction unit. The MMUs translate addresses for cache or external memory accesses.

2.2.1 Instruction Unit

As shown in Figure 2-1, the instruction unit, which contains a fetch unit, instruction queue, dispatch unit, and the BPU, provides centralized control of instruction flow to the execution units. The instruction unit determines the address of the next instruction to be fetched based on information from the sequential fetcher and from the BPU.

The instruction unit fetches the instructions from the instruction cache into the instruction queue. The BPU extracts branch instructions from the fetcher and uses static branch prediction on unresolved conditional branches to allow the instruction unit to fetch instructions from a predicted target instruction stream while a conditional branch is evaluated. The BPU folds out branch instructions for unconditional branches or conditional branches unaffected by instructions in progress in the execution pipeline.

Instructions issued beyond a predicted branch do not complete execution until the branch is resolved, preserving the programming model of sequential execution. If any of these instructions are to be executed in the BPU, they are decoded but not issued. Instructions to be executed by the IU, LSU, and SRU are issued and allowed to complete up to the register write-back stage. Write-back is allowed when a correctly predicted branch is resolved, and instruction execution continues without interruption on the predicted path. If branch prediction is incorrect, the instruction unit flushes all predicted path instructions, and instructions are issued from the correct path.

2.2.2 Instruction Queue and Dispatch Unit

The instruction queue (IQ), shown in Figure 2-1, holds as many as six instructions and loads up to two instructions from the instruction unit during a single cycle. The instruction fetch unit continuously loads as many instructions as space in the IQ allows. Instructions

are dispatched to their respective execution units from the dispatch unit at a maximum rate of two instructions per cycle. Reservation stations at the IU, LSU, and SRU facilitate instruction dispatch to those units. The dispatch unit checks for source and destination register dependencies, determines dispatch serializations, and inhibits subsequent instruction dispatching as required. Section 2.7, "Instruction Timing," describes instruction dispatch in detail.

2.2.3 Branch Processing Unit (BPU)

The BPU receives branch instructions from the fetch unit and performs CR lookahead operations on conditional branches to resolve them early, achieving the effect of a zero-cycle branch in many cases.

The BPU uses a bit in the instruction encoding to predict the direction of the conditional branch. Therefore, when an unresolved conditional branch instruction is encountered, instructions are fetched from the predicted target stream until the conditional branch is resolved.

The BPU contains an adder to compute branch target addresses and three user-control registers—the link register (LR), the count register (CTR), and the CR. The BPU calculates the return pointer for subroutine calls and saves it into the LR for certain types of branch instructions. The LR also contains the branch target address for the Branch Conditional to Link Register (**bclr***x*) instruction. The CTR contains the branch target address of the LR and CTR can be copied to or from any GPR. Because the BPU uses dedicated registers rather than GPRs or FPRs, execution of branch instructions is largely independent from execution of other instructions.

2.2.4 Independent Execution Units

The PowerPC architecture's support for independent execution units allows implementation of processors with out-of-order instruction execution. For example, because branch instructions do not depend on GPRs or FPRs, branches can often be resolved early, eliminating stalls caused by taken branches.

In addition to the BPU, the processor core provides three other execution units and a completion unit, which are described in the following sections.

2.2.4.1 Integer Unit (IU)

The IU executes all integer instructions. The IU executes one integer instruction at a time, performing computations with its arithmetic logic unit (ALU), multiplier, divider, and XER register. Most integer instructions are single-cycle instructions. Thirty-two general-purpose registers are provided to support integer operations. Stalls due to contention for GPRs are minimized by the automatic allocation of rename registers. The processor core writes the contents of the rename registers to the appropriate GPR when integer instructions are retired by the completion unit.

2.2.4.2 Load/Store Unit (LSU)

The LSU executes all load and store instructions and provides the data transfer interface between the GPRs, FPRs, and the cache/memory subsystem. The LSU calculates effective addresses, performs data alignment, and provides sequencing for load/store string and multiple instructions.

Load and store instructions are issued and translated in program order; however, the actual memory accesses can occur out of order. Synchronizing instructions are provided to enforce strict ordering where needed.

Cacheable loads, when free of data dependencies, execute in an out-of-order manner with a maximum throughput of one per cycle and a two-cycle total latency. Data returned from the cache is held in a rename register until the completion logic commits the value to a GPR or FPR. Store operations do not occur until a predicted branch is resolved. They remain in the store queue until the completion logic signals that the store operation is definitely to be completed to memory.

The processor core executes store instructions with a maximum throughput of one per cycle and a three-cycle total latency. The time required to perform the actual load or store operation varies depending on whether the operation involves the cache, system memory, or an I/O device.

2.2.4.3 System Register Unit (SRU)

The SRU executes various system-level instructions, including condition register logical operations and move to/from special-purpose register instructions, and also executes integer add/compare instructions. Because SRU instructions affect modes of processor operation, most SRU instructions are completion-serialized. That is, the instruction is held for execution in the SRU until all prior instructions issued have completed. Results from completion-serialized instructions executed by the SRU are not available or forwarded for subsequent instructions until the instruction completes.

2.2.5 Completion Unit

The completion unit tracks instructions from dispatch through execution, and then retires, or completes them in program order. Completing an instruction commits the processor core to any architectural register changes caused by that instruction. In-order completion ensures the correct architectural state when the processor core must recover from a mispredicted branch or any exception.

Instruction state and other information required for completion is kept in a first-in-first-out (FIFO) queue of five completion buffers. A single completion buffer is allocated for each instruction once it enters the dispatch unit. An available completion buffer is a required resource for instruction dispatch; if no completion buffers are available, instruction dispatch stalls. A maximum of two instructions per cycle are completed in order from the queue.

2.2.6 Memory Subsystem Support

The processor core supports cache and memory management through separate instruction and data MMUs (IMMU and DMMU). The processor core also provides dual 16-Kbyte instruction and data caches, and an efficient processor bus interface to facilitate access to main memory and other bus subsystems. The memory subsystem support functions are described in the following subsections.

2.2.6.1 Memory Management Units (MMUs)

The processor core's MMUs support up to 4 Petabytes (2^{52}) of virtual memory and 4 Gbytes (2^{32}) of physical memory (referred to as real memory in the PowerPC architecture specification) for instructions and data. The MMUs also control access privileges for these spaces on block and page granularities. Referenced and changed status is maintained by the processor for each page to assist implementation of a demand-paged virtual memory system. A key bit is implemented to provide information about memory protection violations prior to page table search operations.

The LSU calculates effective addresses for data loads and stores, performs data alignment to and from cache memory, and provides the sequencing for load and store string and multiple word instructions. The instruction unit calculates the effective addresses for instruction fetching.

The MMUs translate effective addresses and enforce the protection hierarchy programmed by the operating system in relation to the supervisor/user privilege level of the access and in relation to whether the access is a load or store.

2.2.6.2 Cache Units

The processor core provides independent 16-Kbyte, four-way set-associative instruction and data caches. The cache block size is 32 bytes. The caches are designed to adhere to a write-back policy, but the processor core allows control of cacheability, write policy, and memory coherency at the page and block levels. The caches use a least recently used (LRU) replacement algorithm.

The load/store and instruction fetch units provide the caches with the address of the data or instruction to be fetched. In the case of a cache hit, the cache returns two words to the requesting unit.

2.3 Programming Model

The following subsections describe the PowerPC instruction set and addressing modes in general.

2.3.1 Register Set

This section describes the register organization in the processor core as defined by the three programming environments of the PowerPC architecture—the user instruction set architecture (UISA), the virtual environment architecture (VEA), and the operating

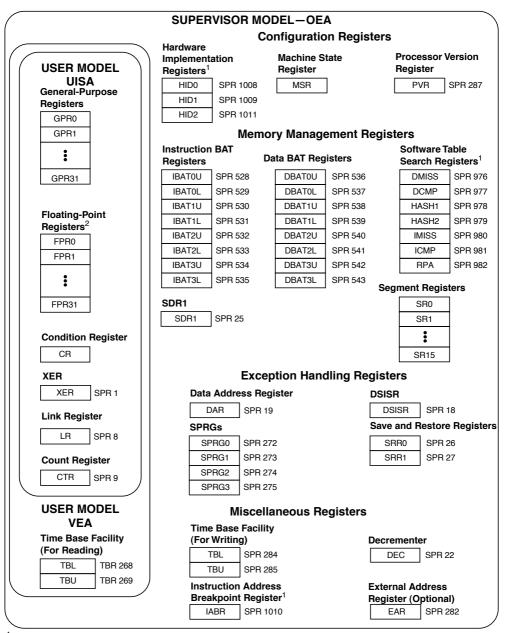
environment architecture (OEA), as well as the MPC8260 core implementation-specific registers. Full descriptions of the basic register set defined by the PowerPC architecture are provided in Chapter 2, "PowerPC Register Set," in *The Programming Environments Manual*.

The PowerPC architecture defines register-to-register operations for all arithmetic instructions. Source data for these instructions is accessed from the on-chip registers or is provided as an immediate value embedded in the opcode. The three-register instruction format allows specification of a target register distinct from the two source registers, thus preserving the original data for use by other instructions and reducing the number of instructions required for certain operations. Data is transferred between memory and registers with explicit load and store instructions only.

Figure 2-2 shows the complete MPC8260 register set and the programming environment to which each register belongs. This figure includes both the PowerPC register set and the MPC8260-specific registers.

Note that there may be registers common to other PowerPC processors that are not implemented in the MPC8260's processor core. Unsupported SPR values are treated as follows:

- Any **mtspr** with an invalid SPR executes as a no-op.
- Any **mfspr** with an invalid SPR cause boundedly undefined results in the target register.


Conversely, some SPRs in the processor core may not be implemented in other PowerPC processors, or may not be implemented in the same way in other PowerPC processors.

2.3.1.1 PowerPC Register Set

The PowerPC UISA registers, shown in Figure 2-2, can be accessed by either user- or supervisor-level instructions. The general-purpose registers (GPRs) and floating-point registers (FPRs) are accessed through instruction operands. Access to registers can be explicit (that is, through the use of specific instructions for that purpose such as the **mtspr** and **mfspr** instructions) or implicit as part of the execution (or side effect) of an instruction. Some registers are accessed both explicitly and implicitly.

The number to the right of the register name indicates the number that is used in the syntax of the instruction operands to access the register (for example, the number used to access the XER is one). For more information on the PowerPC register set, refer to Chapter 2, "PowerPC Register Set," in *The Programming Environments Manual*.

Note that the reset value of the MSR exception prefix bit (MSR[IP]), described in the *MPC603e User's Manual*, is determined by the CIP bit in the hard reset configuration word in the MPC8260. This is described in Section 5.4.1, "Hard Reset Configuration Word."

¹These implementation–specific registers may not be supported by other PowerPC processors or processor cores. ²Although the MPC8260 does not implement an FPU, the LSU can access FPRs if MSR[FP] = 1.

Figure 2-2. MPC8260 Programming Model—Registers

Although the MPC8260 does not support floating-point arithmetic instructions, the FPRs are provided to support floating-point load and store instructions, which can be executed by the LSU. For these instructions to execute, the FPRs must be enabled (MSR[FP] = 1); otherwise, a floating-point unavailable exception is taken. It is recommended that the FPRs be enabled only when there is a need to access the FPRs, for example, to handle flash memory updates. Otherwise, the processor should run in default mode, with FPRs disabled (MSR[FP] = 0).

2.3.1.2 MPC8260-Specific Registers

The set of registers specific to the MPC603e are also shown in Figure 2-2. Most of these are described in the *MPC603e User's Manual* and are implemented in the MPC8260 as follows:

- MMU software table search registers: DMISS, DCMP, HASH1, HASH2, IMISS, ICMP, and RPA. These registers facilitate the software required to search the page tables in memory.
- IABR. This register facilitates the setting of instruction breakpoints.

The hardware implementation-dependent registers (HIDx) are implemented differently in the MPC8260, and they are described in the following subsections.

2.3.1.2.1 Hardware Implementation-Dependent Register 0 (HID0)

The processor core's implementation of HID0 differs from the *MPC603e User's Manual* as follows:

- Bit 5, HID0[EICE], has been removed. There is no support for pipeline tracking.
- Bit 24, HID0[IFEM], instruction fetch enable M, has been added.
- Bit 28, HID0[ABE], address broadcast enable, has been added.

Figure 2-3 shows the MPC8260 implementation of HID0.

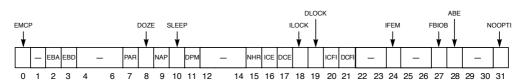


Figure 2-3. Hardware Implementation Register 0 (HID0)

Table 2-1 shows the bit definitions for HID0.

Bits	Name	Description
0	EMCP	 Enable machine check input pin 0 The assertion of the MCP does not cause a machine check exception. 1 Enables the entry into a machine check exception based on assertion of the MCP input, detection of a Cache Parity Error, detection of an address parity error, or detection of a data parity error. Note that the machine check exception is further affected by MSR[ME], which specifies whether the processor checkstops or continues processing.
1	-	Reserved
2	EBA	 Enable/disable 60x bus address parity checking 0 Prevents address parity checking. 1 Allows a address parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if MSR[ME] = 1. EBA and EBD let the processor operate with memory subsystems that do not generate parity.
3	EBD	Enable 60x bus data parity checking 0 Parity checking is disabled. 1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if MSR[ME] = 1. EBA and EBD let the processor operate with memory subsystems that do not generate parity.
4–6	-	Reserved
7	PAR	Disable precharge of ARTRY. 0 Precharge of ARTRY enabled 1 Alters bus protocol slightly by preventing the processor from driving ARTRY to high (negated) state, allowing multiple ARTRY signals to be tied together. If this is done, the system must restore the signals to the high state.
8	DOZE	 Doze mode enable. Operates in conjunction with MSR[POW].¹ 0 Doze mode disabled. 1 Doze mode enabled. Doze mode is invoked by setting MSR[POW] after this bit is set. In doze mode, the PLL, time base, and snooping remain active.
9	NAP	Nap mode enable. Operates in conjunction with MSR[POW]. ¹ 0 Nap mode disabled. 1 Nap mode enabled. Nap mode is invoked by setting MSR[POW] while this bit is set. When this occurs, the processor asserts <u>QREQ</u> to indicate that it is ready to enter nap mode. If the system logic determines that the processor may enter nap mode, the quiesce acknowledge signal, <u>QACK</u> , is asserted back to the processor. Once <u>QACK</u> assertion is detected, the processor enters nap mode after several processor clocks. Because bus snooping is disabled for nap and sleep modes, this serves as a hardware mechanism for ensuring data coherency. In nap mode, the PLL and the time base remain active.
10	SLEEP	 Sleep mode enable. Operates in conjunction with MSR[POW]. ¹ O Sleep mode disabled. 1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is set. When this occurs, the processor asserts QREQ to indicate that it is ready to enter sleep mode. If the system logic determines that the processor may enter sleep mode, the quiesce acknowledge signal, QACK, is asserted back to the processor. Once QACK assertion is detected, the processor enters sleep mode after several processor clocks. At this point, the system logic may turn off the PLL by first configuring PLL_CFG[0–3] to PLL bypass mode, and then disabling SYSCLK.

Table 2-1. HID0 Field Descriptions

Table 2-1. HID0 Field Descriptions	(Continued)
------------------------------------	-------------

Bits	Name	Description
11	DPM	Dynamic power management enable. ¹ 0 Dynamic power management is disabled. 1 Functional units enter a low-power mode automatically if the unit is idle. This does not affect operational performance and is transparent to software or any external hardware.
12–14	-	Reserved
15	NHR	 Not hard reset (software-use only)—Helps software distinguish a hard reset from a soft reset. 0 A hard reset occurred if software had previously set this bit. 1 A hard reset has not occurred. If software sets this bit after a hard reset, when a reset occurs and this bit remains set, software can tell it was a soft reset.
16	ICE	Instruction cache enable ² 0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were marked cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are ignored and all accesses are propagated to the bus as single-beat transactions. For those transactions, however, CI reflects the original state determined by address translation regardless of cache disabled status. ICE is zero at power-up. 1 The instruction cache is enabled
17	DCE	 Data cache enable ² 0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are ignored and all accesses are propagated to the bus as single-beat transactions. For those transactions, however, CI reflects the original state determined by address translation regardless of cache disabled status. DCE is zero at power-up. 1 The data cache is enabled.
18	ILOCK	Instruction cache lock O Normal operation 1 Instruction cache is locked. A locked cache supplies data normally on a hit, but an access is treated as a cache-inhibited transaction on a miss. On a miss, the transaction to the bus is single-beat, however, CI still reflects the original state as determined by address translation independent of cache locked or disabled status. To prevent locking during a cache access, an isync must precede the setting of ILOCK.
19	DLOCK	Data cache lock 0 Normal operation 1 Data cache is locked. A locked cache supplies data normally on a hit but an access is treated as a cache-inhibited transaction on a miss. On a miss, the transaction to the bus is single- beat, however, CI still reflects the original state as determined by address translation independent of cache locked or disabled status. A snoop hit to a locked L1 data cache performs as if the cache were not locked. A cache block invalidated by a snoop remains invalid until the cache is unlocked. To prevent locking during a cache access, a sync must precede the setting of DLOCK.

Bits	Name	Description
20	ICFI	Instruction cache flash invalidate ² 0 The instruction cache is not invalidated. The bit is cleared when the invalidation operation begins (usually the next cycle after the write operation to the register). The instruction cache must be enabled for the invalidation to occur. 1 An invalidate operation is issued that marks the state of each instruction cache block as invalid without writing back modified cache blocks to memory. Cache access is blocked during this time. Bus accesses to the cache are signaled as a miss during invalidate-all operations. Setting ICFI clears all the valid bits of the blocks and the PLRU bits to point to way L0 of each set. Once the L1 flash invalidate bits are set through an mtspr instruction, hardware automatically resets these bits in the next cycle (provided that the corresponding cache enable bits are set in HID0).
21	DCFI	 Data cache flash invalidate ² The data cache is not invalidated. The bit is cleared when the invalidation operation begins (usually the next cycle after the write operation to the register). The data cache must be enabled for the invalidation to occur. An invalidate operation is issued that marks the state of each data cache block as invalid without writing back modified cache blocks to memory. Cache access is blocked during this time. Bus accesses to the cache are signaled as a miss during invalidate-all operations. Setting DCFI clears all the valid bits of the blocks and the PLRU bits to point to way L0 of each set. Once the L1 flash invalidate bits are set through an mtspr instruction, hardware automatically resets these bits in the next cycle (provided that the corresponding cache enable bits are set in HID0).
22–23	_	Reserved
24	IFEM	Enable M bit on 60x bus for instruction fetches 0 M bit not reflected on 60x bus. Instruction fetches are treated as nonglobal on the bus. 1 Instruction fetches reflect the M bit from the WIM settings on the 60x bus.
25–26	-	Reserved
27	FBIOB	Force branch indirect on bus. 0 Register indirect branch targets are fetched normally 1 Forces register indirect branch targets to be fetched externally.
28	ABE	Address broadcast enable 0 dcbf , dcbi , and dcbst instructions are not broadcast on the 60x bus. 1 dcbf , dcbi , and dcbst generate address-only broadcast operations on the 60x bus.
29–30	_	Reserved
31	NOOPTI	No-op the data cache touch instructions. 0 The dcbt and dcbtst instructions are enabled. 1 The dcbt and dcbtst instructions are no-oped globally.

Table 2-1. HID0 Field Descriptions (Continued)

¹ See Chapter 9, "Power Management," of the MPC603e User's Manual for more information.

² See Chapter 3, "Instruction and Data Cache Operation," of the MPC603e User's Manual for more information.

2.3.1.2.2 Hardware Implementation-Dependent Register 1 (HID1)

The MPC8260 implementation of HID1 is shown in Figure 2-4.

	PLLCFG	_	
0	4	5	31

Figure 2-4. Hardware Implementation Register 1 (HID1)

Table 2-2 shows the bit definitions for HID1.

Bits	Name	Function	
0–4	PLLCFG	PLL configuration setting	
5–31	_	Reserved	

2.3.1.2.3 Hardware Implementation-Dependent Register 2 (HID2)

The processor core implements an additional hardware implementation-dependent register not described in the *MPC603e User's Manual*, shown in Figure 2-5.

_	SFP	IWLCK	-	DWLCK	_
0 14	15	16 18	19 23	24 20	6 27 3 ⁻

Figure 2-5. Hardware Implementation-Dependent Register 2 (HID2)

Table 2-3 describes the HID2 fields.

Table	2-3.	HID2	Field	Descri	ptions
-------	------	------	-------	--------	--------

Bits	Name	Function
0–14	_	Reserved
15	SFP	Speed for low power. Setting SFP reduces power consumption at the cost of reducing the maximum frequency, which benefits power-sensitive applications that are not frequency-critical.
16–18	IWLCK	Instruction cache way lock. Useful for locking blocks of instructions into the instruction cache for time-critical applications that require deterministic behavior. See Section 2.4.2.3, "Cache Locking."
19–23	-	Reserved
24–26	DWLCK	Data cache way lock. Useful for locking blocks of data into the data cache for time-critical applications where deterministic behavior is required. See Section 2.4.2.3, "Cache Locking."
27–31	-	Reserved

2.3.1.2.4 Processor Version Register (PVR)

Software can identify the MPC8260's processor core by reading the processor version register (PVR). The MPC8260's processor version number is 0x0081; the processor revision level starts at 0x0100 and is incremented for each revision of the chip.

2.3.2 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats are consistent among all instruction types, permitting efficient decoding to occur in parallel with operand accesses. This fixed instruction length and consistent format greatly simplifies instruction pipelining.

2.3.2.1 Calculating Effective Addresses

The effective address (EA) is the 32-bit address computed by the processor when executing a memory access or branch instruction or when fetching the next sequential instruction.

The PowerPC architecture supports two simple memory addressing modes:

- EA = (rA|0) + offset (including offset = 0) (register indirect with immediate index)
- $EA = (\mathbf{r}A|0) + \mathbf{r}B$ (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses. Calculation of the effective address for aligned transfers occurs in a single clock cycle.

For a memory access instruction, if the sum of the effective address and the operand length exceeds the maximum effective address, the memory operand is considered to wrap around from the maximum effective address to effective address 0.

Effective address computations for both data and instruction accesses use 32-bit unsigned binary arithmetic. A carry from bit 0 is ignored in 32-bit implementations.

In addition to the functionality of the MPC603e, the MPC8260 has additional hardware support for misaligned little-endian accesses. Except for string/multiple load and store instructions, little-endian load/store accesses not on a word boundary generate exceptions under the same circumstances as big-endian requests.

2.3.2.2 PowerPC Instruction Set

The PowerPC instructions are divided into the following categories:

- Integer instructions—These include arithmetic and logical instructions.
 - Integer arithmetic
 - Integer compare
 - Integer logical
 - Integer rotate and shift

- Load/store instructions—These include integer and floating-point load and store instructions.
 - Integer load and store
 - Integer load and store with byte reverse
 - Integer load and store string/multiple
 - Floating-point load and store. Setting MSR[FPE] allows the MPC8260 to access the FPRs with the floating-point load and store instructions described in the MPC603e User's Manual. This is useful both for systems that require emulation of floating-point instructions and for increasing data throughput.
- Flow control instructions—These include branching instructions, condition register logical instructions, trap instructions, and other synchronizing instructions that affect the instruction flow.
 - Branch and trap
 - Condition register logical
 - Primitives used to construct atomic memory operations (lwarx and stwcx.)
 - Synchronize
- Processor control instructions—These instructions are used for synchronizing memory accesses and management of caches, TLBs, and the segment registers.
 - Move to/from SPR
 - Move to/from MSR
 - Instruction synchronize
- Memory control instructions—These provide control of caches, TLBs, and segment registers.
 - Supervisor-level cache management
 - User-level cache management
 - Segment register manipulation
 - TLB management

Note that this grouping of the instructions does not indicate which execution unit executes a particular instruction or group of instructions.

Integer instructions operate on byte, half-word, and word operands. The PowerPC architecture uses instructions that are four bytes long and word-aligned. It provides for byte, half-word, and word operand loads and stores between memory and a set of 32 GPRs. It also provides for word and double-word operand loads and stores between memory and a set of 32 floating-point registers (FPRs). Although the MPC8260 does use the FPRs for 64-bit loads and stores, it does not support floating-point arithmetic instructions.

Computational instructions do not modify memory. To use a memory operand in a computation and then modify the same or another memory location, the memory contents must be loaded into a register, modified, and then written back to the target location with separate instructions. Decoupling arithmetic instructions from memory accesses increases throughput by facilitating pipelining.

PowerPC processors follow the program flow when they are in the normal execution state. However, the flow of instructions can be interrupted directly by the execution of an instruction or by an asynchronous event. Either kind of exception may cause one of several components of the system software to be invoked.

2.3.2.3 MPC8260 Implementation-Specific Instruction Set

The MPC8260 processor core instruction set is defined as follows:

- The processor core provides hardware support for all 32-bit PowerPC instructions.
- The processor core provides two implementation-specific instructions used for software table search operations following TLB misses:
 - Load Data TLB Entry (tlbld)
 - Load Instruction TLB Entry (tlbli)
- The processor core implements the following instructions defined as optional by the PowerPC architecture:
 - External Control In Word Indexed (eciwx)
 - External Control Out Word Indexed (ecowx)
 - Store Floating-Point as Integer Word Indexed (stfiwx)

The MPC8260 does not provide the hardware support for misaligned **eciwx** and **ecowx** instructions provided by the MPC603e processor. An alignment exception is taken if these instructions are not word-aligned.

2.4 Cache Implementation

The MPC8260 processor core has separate data and instruction caches. The cache implementation is described in the following sections.

2.4.1 PowerPC Cache Model

The PowerPC architecture does not define hardware aspects of cache implementations. For example, some PowerPC processors, including the MPC8260's processor core, have separate instruction and data caches (Harvard architecture), while others, such as the PowerPC 601[®] microprocessor, implement a unified cache.

PowerPC microprocessors control the following memory access modes on a page or block basis:

- Write-back/write-through mode
- Caching-inhibited mode
- Memory coherency

The PowerPC cache management instructions provide a means by which the application programmer can affect the cache contents.

2.4.2 MPC8260 Implementation-Specific Cache Implementation

As shown in Figure 2-1, the caches provide a 64-bit interface to the instruction fetch unit and load/store unit. The surrounding logic selects, organizes, and forwards the requested information to the requesting unit. Write operations to the cache can be performed on a byte basis, and a complete read-modify-write operation to the cache can occur in each cycle.

Each cache block contains eight contiguous words from memory that are loaded from an 8-word boundary (that is, bits A27–A31 of the effective addresses are zero); thus, a cache block never crosses a page boundary. Misaligned accesses across a page boundary can incur a performance penalty.

The cache blocks are loaded in to the processor core in four beats of 64 bits each. The burst load is performed as critical double word first.

To ensure coherency among caches in a multiprocessor (or multiple caching-device) implementation, the processor core implements the MEI protocol. These three states, modified, exclusive, and invalid, indicate the state of the cache block as follows:

- Modified—The cache block is modified with respect to system memory; that is, data for this address is valid only in the cache and not in system memory.
- Exclusive—This cache block holds valid data that is identical to the data at this address in system memory. No other cache has this data.
- Invalid—This cache block does not hold valid data.

2.4.2.1 Data Cache

As shown in Figure 2-6, the data cache is configured as 128 sets of four blocks each. Each block consists of 32 bytes, two state bits, and an address tag. The two state bits implement the three-state MEI (modified/exclusive/invalid) protocol. Each block contains eight 32-bit words. Note that the PowerPC architecture defines the term 'block' as the cacheable unit. For the MPC8260's processor core, the block size is equivalent to a cache line.

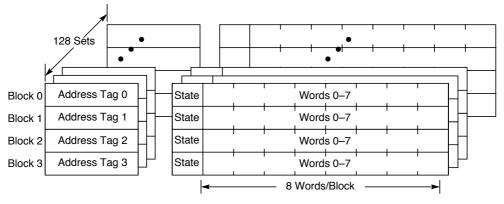


Figure 2-6. Data Cache Organization

Because the processor core data cache tags are single-ported, simultaneous load or store and snoop accesses cause resource contention. Snoop accesses have the highest priority and are given first access to the tags, unless the snoop access coincides with a tag write, in which case the snoop is retried and must rearbitrate for access to the cache. Loads or stores that are deferred due to snoop accesses are executed on the clock cycle following the snoop.

Because the caches on the processor core are write-back caches, the predominant type of transaction for most applications is burst-read memory operations, followed by burst-write memory operations, and single-beat (noncacheable or write-through) memory read and write operations. When a cache block is filled with a burst read, the critical double word is simultaneously written to the cache and forwarded to the requesting unit, thus minimizing stalls due to load delays.

Additionally, there can be address-only operations, variants of the burst and single-beat operations, (for example, global memory operations that are snooped and atomic memory operations), and address retry activity (for example, when a snooped read access hits a modified line in the cache).

The processor core differs from the *MPC603e User's Manual* with the addition of the HIDO[ABE] bit. Setting this bit causes execution of the **dcbf**, **dcbi**, and **dcbst** instructions to be broadcast onto the 60x bus. The value of ABE does not affect **dcbz** instructions, which are always broadcast and snooped. The cache operations are intended primarily for managing on-chip caches. However, the optional broadcast feature is necessary to allow proper management of a system using an external copyback L2 cache.

The address and data buses operate independently to support pipelining and split transactions during memory accesses. The processor core pipelines its own transactions to a depth of one level.

Typically, memory accesses are weakly ordered—sequences of operations, including load/ store string and multiple instructions, do not necessarily complete in the order they begin—

maximizing the efficiency of the internal bus without sacrificing coherency of the data. The processor core allows pending read operations to precede previous store operations (except when a dependency exists, or in cases where a non-cacheable access is performed), and provides support for a write operation to proceed a previously queued read data tenure (for example, allowing a snoop push to be enveloped by the address and data tenures of a read operation). Because the processor can dynamically optimize run-time ordering of load/ store traffic, overall performance is improved.

2.4.2.2 Instruction Cache

The instruction cache also consists of 128 sets of four blocks, and each block consists of 32 bytes, an address tag, and a valid bit. The instruction cache may not be written to except through a block fill operation caused by a cache miss. In the processor core, internal access to the instruction cache is blocked only until the critical load completes.

The processor core supports instruction fetching from other instruction cache lines following the forwarding of the critical first double word of a cache line load operation. The processor core's instruction cache is blocked only until the critical load completes (hits under reloads allowed). Successive instruction fetches from the cache line being loaded are forwarded, and accesses to other instruction cache lines can proceed during the cache line load operation.

The instruction cache is not snooped, and cache coherency must be maintained by software. A fast hardware invalidation capability is provided to support cache maintenance. The organization of the instruction cache is very similar to the data cache shown in Figure 2-6.

2.4.2.3 Cache Locking

The processor core supports cache locking, which is the ability to prevent some or all of a microprocessor's instruction or data cache from being overwritten. Cache entries can be locked for either an entire cache or for individual ways within the cache. Entire data cache locking is enabled by setting HID0[DLOCK], and entire instruction cache locking is enabled by setting HID0[ILOCK]. For more information, refer to *Cache Locking on the G2 Core* application note (order number: AN1767/D). Cache way locking is controlled by the IWLCK and DWLCK bits of HID2.

2.4.2.3.1 Entire Cache Locking

When an entire cache is locked, hits within the cache are supplied in the same manner as hits to an unlocked cache. Any access that misses in the cache is treated as a cache-inhibited access. Cache entries that are invalid at the time of locking will remain invalid and inaccessible until the cache is unlocked. Once the cache has been unlocked, all entries (including invalid entries) are available. Entire cache locking is inefficient if the number of instructions or the size of data to be locked is small compared to the cache size.

2.4.2.3.2 Way Locking

Locking only a portion of the cache is accomplished by locking ways within the cache. Locking always begins with the first way (way0) and is sequential. That is, it is valid to lock ways 0, 1, and 2 but it is not possible to lock just way0 and way2). When using way locking at least one way must be left unlocked. The maximum number of lockable ways is three.

Unlike entire cache locking, invalid entries in a locked way are accessible and available for data placement. As hits to the cache fill invalid entries within a locked way, the entries become valid and locked. This behavior differs from entire cache locking where nothing is placed in the cache, even if invalid entries exist in the cache. Unlocked ways of the cache behave normally.

2.5 Exception Model

This section describes the PowerPC exception model and implementation-specific details of the MPC8260 core.

2.5.1 PowerPC Exception Model

The PowerPC exception mechanism allows the processor to change to supervisor state as a result of external signals, errors, or unusual conditions arising in the execution of instructions. When exceptions occur, information about the state of the processor is saved to certain registers and the processor begins execution at an address (exception vector) predetermined for each exception. Processing of exceptions occurs in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more specific condition may be determined by examining a register associated with the exception—for example, the DSISR identifies instructions that cause a DSI exception. Additionally, some exception conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore, although a particular implementation may recognize exception conditions out of order, exceptions are taken in strict order. When an instruction-caused exception is recognized, any unexecuted instructions that appear earlier in the instruction stream, including any that have not yet entered the execute stage, are required to complete before the exception is taken. Any exceptions caused by those instructions are handled first. Likewise, exceptions that are asynchronous and precise are recognized when they occur, but are not handled until the instruction currently in the completion stage successfully completes execution or generates an exception, and the completed store queue is emptied.

Unless a catastrophic condition causes a system reset or machine check exception, only one exception is handled at a time. If, for example, a single instruction encounters multiple exception conditions, those conditions are handled sequentially. After the exception handler handles an exception, the instruction execution continues until the next exception condition is encountered. However, in many cases there is no attempt to re-execute the instruction. This method of recognizing and handling exception conditions sequentially guarantees that exceptions are recoverable.

Exception handlers should save the information stored in SRR0 and SRR1 early to prevent the program state from being lost due to a system reset or machine check exception or to

an instruction-caused exception in the exception handler. SRR0 and SRR1 should also be saved before enabling external interrupts.

The PowerPC architecture supports four types of exceptions:

- Synchronous, precise—These are caused by instructions. All instruction-caused exceptions are handled precisely; that is, the machine state at the time the exception occurs is known and can be completely restored. This means that (excluding the trap and system call exceptions) the address of the faulting instruction is provided to the exception handler and that neither the faulting instruction nor subsequent instructions in the code stream will complete execution before the exception is taken. Once the exception is processed, execution resumes at the address of the faulting instruction (or at an alternate address provided by the exception handler). When an exception is taken due to a trap or system call instruction, execution resumes at an address provided by the handler.
- Synchronous, imprecise—The PowerPC architecture defines two imprecise floating-point exception modes, recoverable and nonrecoverable. These are not implemented on the MPC8260.
- Asynchronous, maskable—The external, system management interrupt (SMI), and decrementer interrupts are maskable asynchronous exceptions. When these exceptions occur, their handling is postponed until the next instruction and any exceptions associated with that instruction complete execution. If no instructions are in the execution units, the exception is taken immediately upon determination of the correct restart address (for loading SRR0).
- Asynchronous, nonmaskable—There are two nonmaskable asynchronous exceptions: system reset and the machine check exception. These exceptions may not be recoverable, or may provide a limited degree of recoverability. All exceptions report recoverability through MSR[RI].

2.5.2 MPC8260 Implementation-Specific Exception Model

As specified by the PowerPC architecture, all processor core exceptions can be described as either precise or imprecise and either synchronous or asynchronous. Asynchronous exceptions (some of which are maskable) are caused by events external to the processor's execution. Synchronous exceptions, which are all handled precisely by the processor core, are caused by instructions. The processor core exception classes are shown in Table 2-4.

Synchronous/Asynchronous	Precise/Imprecise	Exception Type
Asynchronous, nonmaskable	Imprecise	Machine check System reset
Asynchronous, maskable	Precise	External interrupt Decrementer System management interrupt
Synchronous	Precise	Instruction-caused exceptions

 Table 2-4. Exception Classifications for the Processor Core

Although exceptions have other characteristics as well, such as whether they are maskable or nonmaskable, the distinctions shown in Table 2-4 define categories of exceptions that the processor core handles uniquely. Note that Table 2-4 includes no synchronous imprecise instructions.

The processor core's exceptions, and conditions that cause them, are listed in Table 2-5.

Exception Type	Vector Offset (hex)	Causing Conditions	
Reserved	00000	-	
System reset	00100	A system reset is caused by the assertion of either SRESET or HRESET. Note that the reset value of the MSR exception prefix bit (MSR[IP]), described in the MPC603e User's Manual, is determined by the CIP bit in the hard reset configuration word. This is described in Section 5.4.1, "Hard Reset Configuration Word."	
Machine check	00200	A machine check is caused by the assertion of the $\overline{\text{TEA}}$ signal during a data bus transaction, assertion of $\overline{\text{MCP}}$, or an address or data parity error.	
DSI	00300	 The cause of a DSI exception can be determined by the bit settings in the DSISR, listed as follows: Set if the translation of an attempted access is not found in the primary hash table entry group (HTEG), or in the rehashed secondary HTEG, or in the range of a DBAT register; otherwise cleared. Set if a memory access is not permitted by the page or DBAT protection mechanism; otherwise cleared. Set by an eciwx or ecowx instruction if the access is to an address that is marked as write-through, or execution of a load/store instruction that accesses a direct-store segment. Set for a store operation and cleared for a load operation. Set if eciwx or ecowx is used and EAR[E] is cleared. 	

Table 2-5. Exceptions and Conditions

Exception Type	Vector Offset (hex)	Causing Conditions	
ISI	00400	 An ISI exception is caused when an instruction fetch cannot be performed for any of the following reasons: The effective (logical) address cannot be translated. That is, there is a page fault for this portion of the translation, so an ISI exception must be taken to load the PTE (and possibly the page) into memory. The fetch access is to a direct-store segment (indicated by SRR1[3] set). The fetch access violates memory protection (indicated by SRR1[4] set). If the key bits (Ks and Kp) in the segment register and the PP bits in the PTE are set to prohibit read access, instructions cannot be fetched from this location. 	
External interrupt	00500	An external interrupt is caused when MSR[EE] = 1 and the \overline{INT} signal is asserted.	
Alignment	00600	 An alignment exception is caused when the processor core cannot perform a memory access for any of the reasons described below: The operand of a floating-point load or store is to a direct-store segment. The operand of a floating-point load or store is not word-aligned. The operand of an elementary, multiple or string load or store crosses a segment boundary with a change to the direct store T bit. The operand of dcbz instruction is in memory that is write-through required or caching inhibited, or dcbz is executed in an implementation that has either no data cache or a write-through data cache. A multiple or string access with MSR[LE] set The processor core differs from MPC603e User's Manual in that it initiates an alignment exception when it detects a misaligned eciwx or ecowx instruction and does not initiate an alignment exception when a little-endian access is misaligned. 	
Program	00700	 A program exception is caused by one of the following exception conditions, which correspond to bit settings in SRR1 and arise during execution of an instruction: Illegal instruction — An illegal instruction program exception is generated when execution of an instruction is attempted with an illegal opcode or illegal combination of opcode and extended opcode fields (including PowerPC instructions not implemented in the processor core), or when execution of an optional instruction not provided in the processor core is attempted (these do not include those optional instructions that are treated as no-ops). Privileged instruction — A privileged instruction is attempted and the MSR register user privilege bit, MSR[PR], is set. In the processor core, this exception is generated for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and MSR[PR] = 1. This may not be true for all PowerPC processors. Trap—A trap type program exception is generated when any of the conditions specified in a trap instruction is met. 	
Floating-point unavailable	00800	If MSR[FP] = 0, the FPRs are disabled and attempting to execute any floating-point instruction causes a floating-point unavailable exception. A floating-point unavailable exception cannot occur if MSR[FP] = 1.	
Decrementer	00900	The decrementer exception occurs when the most significant bit of the decrementer (DEC) register transitions from 0 to 1. Must also be enabled with the MSR[EE] bit.	
Reserved	00A00-00BFF	-	
System call	00C00	A system call exception occurs when a System Call (sc) instruction is executed.	

Exception Type	Vector Offset (hex)	Causing Conditions	
Trace	00D00	A trace exception is taken when MSR[SE] = 1 or when the currently completing instruction is a branch and MSR[BE] = 1.	
Floating-point assist	00E00	Not implemented.	
Reserved	00E10-00FFF	-	
Instruction translation miss	01000	An instruction translation miss exception is caused when the effective address for an instruction fetch cannot be translated by the ITLB.	
Data load translation miss	01100	A data load translation miss exception is caused when the effective address for a data load operation cannot be translated by the DTLB.	
Data store translation miss	01200	A data store translation miss exception is caused when the effective address for a data store operation cannot be translated by the DTLB, or when a DTLB hit occurs, and the changed bit in the PTE must be set due to a data store operation.	
Instruction address breakpoint	01300	An instruction address breakpoint exception occurs when the address (bits 0–29) in the IABR matches the next instruction to complete in the completion unit, and the IABR enable bit (bit 30) is set.	
System management interrupt	01400	A system management interrupt is caused when MSR[EE] = 1 and the \overline{SMI} input signal is asserted.	
Reserved	01500-02FFF	-	

2.5.3 Exception Priorities

The exception priorities for the processor core are unchanged from those described in the *MPC603e User's Manual* except for the alignment exception, whose causes are prioritized as follows:

- 1. Floating-point operand not word-aligned
- 2. Imw, stmw, lwarx, or stwcx. operand not word-aligned
- 3. eciwx or ecowx operand misaligned
- 4. A multiple or string access is attempted with MSR[LE] set

2.6 Memory Management

The following subsections describe the memory management features of the PowerPC architecture and the MPC8260 implementation.

2.6.1 PowerPC MMU Model

The primary functions of the MMU are to translate logical (effective) addresses to physical addresses for memory accesses, and to provide access protection on blocks and pages of memory.

There are two types of accesses generated by the processor core that require address translation—instruction accesses and data accesses to memory generated by load and store instructions.

The PowerPC MMU and exception models support demand-paged virtual memory. Virtual memory management permits execution of programs larger than the size of physical memory; demand-paged implies that individual pages are loaded into physical memory from system memory only when they are first accessed by an executing program.

The PowerPC architecture supports the following three translation methods:

- Address translations disabled. Translation is enabled by setting bits in the MSR-MSR[IR] enables instruction address translations and MSR[DR] enables data address translations. Clearing these bits disables translation and the effective address is used as the physical address.
- Block address translation. The PowerPC architecture defines independent four-entry BAT arrays for instructions and data that maintain address translations for blocks of memory. Block sizes range from 128 Kbyte to 256 Mbyte and are software selectable. The BAT arrays are maintained by system software. The BAT registers, defined by the PowerPC architecture for block address translations, are shown in Figure 2-2.
- Demand page mode. The page table contains a number of page table entry groups (PTEGs). A PTEG contains eight page table entries (PTEs) of eight bytes each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points for table search operations.

The hashed page table is a variable-sized data structure that defines the mapping between virtual page numbers and physical page numbers. The page table size is a power of 2, and its starting address is a multiple of its size.

On-chip instruction and data TLBs provide address translation in parallel with the on-chip cache access, incurring no additional time penalty in the event of a TLB hit. A TLB is a cache of the most recently used page table entries. Software is responsible for maintaining the consistency of the TLB with memory. In the MPC8260, the processor core's TLBs are 64-entry, two-way set-associative caches that contain instruction and data address translations. The MPC8260's core provides hardware assist for software table search operations through the hashed page table on TLB misses. Supervisor software can invalidate TLB entries selectively.

The MMU also directs the address translation and enforces the protection hierarchy programmed by the operating system in relation to the supervisor/user privilege level of the access and in relation to whether the access is a load or store.

2.6.2 MPC8260 Implementation-Specific MMU Features

The instruction and data MMUs in the processor core provide 4-Gbytes of logical address space accessible to supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size.

The MPC8260's MMUs support up to 4 Petabytes (2^{52}) of virtual memory and 4 Gbytes (2^{32}) of physical memory (referred to as real memory in the PowerPC architecture specification) for instructions and data. Referenced and changed status is maintained by the processor for each page to assist implementation of a demand-paged virtual memory system.

The MPC8260's TLBs are 64-entry, two-way set-associative caches that contain instruction and data address translations. The processor core provides hardware assist for software table search operations through the hashed page table on TLB misses. Supervisor software can invalidate TLB entries selectively.

After an effective address is generated, the higher-order bits of the effective address are translated by the appropriate MMU into physical address bits. Simultaneously, the lower-order address bits (that are untranslated and therefore, considered both logical and physical), are directed to the on-chip caches where they form the index into the four-way set-associative tag array. After translating the address, the MMU passes the higher-order bits of the physical address to the cache, and the cache lookup completes. For caching-inhibited accesses or accesses that miss in the cache, the untranslated lower-order address bits are concatenated with the translated higher-order address bits; the resulting 32-bit physical address is then used by the system interface, which accesses external memory.

For instruction accesses, the MMU performs an address lookup in both the 64 entries of the ITLB, and in the IBAT array. If an effective address hits in both the ITLB and the IBAT array, the IBAT array translation takes priority. Data accesses cause a lookup in the DTLB and DBAT array for the physical address translation. In most cases, the physical address translation resides in one of the TLBs and the physical address bits are readily available to the on-chip cache.

When the physical address translation misses in the TLBs, the processor core provides hardware assistance for software to search the translation tables in memory. When a required TLB entry is not found in the appropriate TLB, the processor vectors to one of the three TLB miss exception handlers so that the softawre can perform a table search operation and load the TLB. When this occurs, the processor automatically saves information about the access and the executing context. Refer to the *MPC603e User's Manual* for more detailed information about these features and the suggested software routines for searching the page tables.

2.7 Instruction Timing

The processor core is a pipelined superscalar processor. A pipelined processor is one in which the processing of an instruction is broken into discrete stages. Because the processing of an instruction is broken into a series of stages, an instruction does not require the entire resources of an execution unit at one time. For example, after an instruction completes the decode stage, it can pass on to the next stage, while the subsequent instruction flow. The instruction pipeline in the processor core has four major stages, described as follows:

- The fetch pipeline stage primarily involves retrieving instructions from the memory system and determining the location of the next instruction fetch. Additionally, the BPU decodes branches during the fetch stage and folds out branch instructions before the dispatch stage if possible.
- The dispatch pipeline stage is responsible for decoding the instructions supplied by the instruction fetch stage, and determining which of the instructions are eligible to be dispatched in the current cycle. In addition, the source operands of the instructions are read from the appropriate register file and dispatched with the instruction to the execute pipeline stage. At the end of the dispatch pipeline stage, the dispatched instructions and their operands are latched by the appropriate execution unit.
- During the execute pipeline stage, each execution unit that has an executable instruction executes the selected instruction (perhaps over multiple cycles), writes the instruction's result into the appropriate rename register, and notifies the completion stage that the instruction has finished execution.

The execution unit reports any internal exceptions to the completion/writeback pipeline stage and discontinues execution until the exception is handled. The exception is not signaled until that instruction is the next to be completed. Execution of most load/store instructions is also pipelined. The load/store unit has two pipeline stages. The first stage is for effective address calculation and MMU translation and the second stage is for accessing the data in the cache.

• The complete/writeback pipeline stage maintains the correct architectural machine state and transfers the contents of the rename registers to the GPRs and FPRs as instructions are retired. If the completion logic detects an instruction causing an exception, all following instructions are cancelled, their execution results in rename registers are discarded, and instructions are fetched from the correct instruction stream.

The processor core provides support for single-cycle store operations and it provides an adder/comparator in the SRU that allows the dispatch and execution of multiple integer add and compare instructions on each cycle.

Performance of integer divide operations has been improved in the processor core. A divide instruction takes half the cycles to execute as described in the *MPC603e User's Manual*.

The new latency is reflected in Table 2-6.

Primary Opcode	Extended Opcode	Mnemonic	Form	Unit	Cycles
31	459	divwu[o][.]	хо	IU	20
31	491	divw[o][.]	хо	IU	20

 Table 2-6. Integer Divide Latency

2.8 Differences between the MPC8260's Core and the PowerPC 603e Microprocessor

The MPC8260's processor core is a derivative of the MPC603e microprocessor design. Some changes have been made and are visible either to a programmer or a system designer. Any software designed around an MPC603e is functional when replaced with the MPC8260 except for the specific customer-visible changes listed in Table 2-7.

Software can distinguish between the MPC603e and the MPC8260 by reading the processor version register (PVR). The MPC8260's processor version number is 0x0081; the processor revision level starts at 0x0100 and is incremented for each revision of the chip.

Table 2-7. Major Differences between MPC8260's Core and the MPC603e User's				
Manual				

Description	Impact
Added bus multipliers of 4.5x, 5x, 5.5x, 6x, 6.5x 7x, 7.5x, 8x	Occupies unused encodings of the PLL_CFG[0-4]
No FPU	Floating-point arithmetic instructions are not supported in hardware.
Added hardware support for misaligned little endian accesses	Except for strings/multiples, little-endian load/store accesses not on a word boundary generate exceptions under the same circumstances as big-endian accesses.
Removed misalignment support for eciwx and ecowx instructions.	These instructions take an alignment exception if not on a word boundary.
Added ability to broadcast dcbf , dcbi , and dcbst onto the 60x bus	Setting HID0[ABE] enables the new broadcast feature (new in the PID7v- 603e). The default is to not broadcast these operations.
Added ability to reflect the value of the M bit onto the 60x bus during instruction translations	Setting HID0[IFEM] enables this feature. The default is to not present the M bit on the bus.
Removed HID0[EICE]	There is no support for ICE pipeline tracking.
Added instruction and data cache locking mechanism	Implements a cache way locking mechanism for both the instruction and data caches. One to three of the four ways in the cache can be locked with control bits in the HID2 register. See Section 2.3.1.2.3, "Hardware Implementation-Dependent Register 2 (HID2)."
Added pin-configurable reset vector	The value of MSR[IP], interrupt prefix, is determined at hard reset by the hardware configuration word.

Table 2-7. Major Differences between MPC8260's Core and the MPC603e User's Manual

Description	Impact
Addition of speed-for-power functionality	The processor core implements an additional dynamic power management mechanism. HID2[SFP] controls this function. See Section 2.3.1.2.3, "Hardware Implementation-Dependent Register 2 (HID2)."
Improved access to cache during block fills	The MPC8260 provides quicker access to incoming data and instruction on a cache block fill. See Section 2.4.2, "MPC8260 Implementation-Specific Cache Implementation."
Improved integer divide latency	Performance of integer divide operations has been improved in the processor core. A divide takes half the cycles to execute as described in MPC603e User's Manual. The new latency is reflected in Table 2-6.

Part I. Overview

Chapter 3 Memory Map

The MPC8260's internal memory resources are mapped within a contiguous block of memory. The size of the internal space in the MPC8260 is 128 Kbytes. The location of this block within the global 4-Gbyte real memory space can be mapped on 128 Kbytes resolution through an implementation specific special register called the internal memory map register (IMMR). For more information, see Section 4.3.2.7, "Internal Memory Map Register (IMMR). The following table defines the internal memory map of the MPC8260. Table 3-1 defines the internal memory map of the MPC8260.

Internal Address	Abbreviation	Name	Size	Section/Page Number		
	CPM Dual-Port RAM					
00000-03FFF	DPRAM1	Dual-port RAM	16 Kbytes	13.5/13-15		
04000-07FFF	Reserved	-	16 Kbytes	-		
08000-08FFF	DPRAM2	Dual-port RAM	4 Kbytes	13.5/13-15		
09000-0AFFF	Reserved	-	8 Kbytes	-		
0B000-0BFFF	DPRAM3	Dual-port RAM	4 Kbytes	13.5/13-15		
0C000-0FFFF	Reserved	-	16 Kbytes	-		
		General SIU				
10000	SIUMCR	SIU module configuration register	32 bits	4.3.2.6/4-31		
10004	SYPCR	System protection control register	32 bits	4.3.2.8/4-35		
10008	Reserved	-	6 bytes	-		
1000E	SWSR	Software service register	16 bits	4.3.2.9/4-36		
10010-10023	Reserved	-	20 bytes	-		
10024	BCR	Bus configuration register	32 bits	4.3.2.1/4-25		
10028	PPC_ACR	60x bus arbiter configuration register	8 bits	4.3.2.2/4-28		
1002C	PPC ALRH	60x bus arbitration-level register high (first 8 clients)	32 bits	4.3.2.3/4-28		

Table	3-1.	Internal	Memory	/ Map
- abio	••••	mornar	moniory	map

Internal Address	Abbreviation	Name	Size	Section/Page Number
10030	PPC_ALRL	60x bus arbitration-level register low (next 8 clients)	32 bits	4.3.2.3/4-28
10034	LCL_ACR	Local arbiter configuration register	8 bits	4.3.2.4/4-29
10038	LCL_ALRH	Local arbitration-level register (first 8 clients)	32 bits	4.3.2.5/4-30
1003C	LCL_ALRL	Local arbitration-level register (next 8 clients)	32 bits	4.3.2.3/4-28
10040	TESCR1	60x bus transfer error status control register 1	32 bits	4.3.2.10/4-36
10044	TESCR2	60x bus transfer error status control register 2	32 bits	4.3.2.11/4-37
10048	L_TESCR1	Local bus transfer error status control register 1	32 bits	4.3.2.12/4-38
1004C	L_TESCR2	Local bus transfer error status control register 2	32 bits	4.3.2.13/4-39
10050	PDTEA	60x bus DMA transfer error address	32 bits	18.2.3/18-4
10054	PDTEM	60x bus DMA transfer error MSNUM	8 bits	18.2.4/18-4
10055	Reserved	-	24 bits	-
10058	LDTEA	Local bus DMA transfer error address	32 bits	18.2.3/18-4
1005C	LDTEM	Local bus DMA transfer error MSNUM	8 bits	18.2.4/18-4
1005D-100FF	Reserved	-	163 bytes	-
		Memory Controller		
10100	BR0	Base register bank 0	32 bits	10.3.1/10-14
10104	OR0	Option register bank 0	32 bits	10.3.2/10-16
10108	BR1	Base register bank 1	32 bits	10.3.1/10-14
1010C	OR1	Option register bank 1	32 bits	10.3.2/10-16
10110	BR2	Base register bank 2	32 bits	10.3.1/10-14
10114	OR2	Option register bank 2	32 bits	10.3.2/10-16
10118	BR3	Base register bank 3	32 bits	10.3.1/10-14
1011C	OR3	Option register bank 3	32 bits	10.3.2/10-16
10120	BR4	Base register bank 4	32 bits	10.3.1/10-14
10124	OR4	Option register bank 4	32 bits	10.3.2/10-16
10128	BR5	Base register bank 5	32 bits	10.3.1/10-14
1012C	OR5	Option register bank 5	32 bits	10.3.2/10-16
10130	BR6	Base register bank 6	32 bits	10.3.1/10-14

Table 3-1. Internal Memory Map (Continued)

Internal Address	Abbreviation	Name	Size	Section/Page Number
10134	OR6	Option register bank 6	32 bits	10.3.2/10-16
10138	BR7	Base register bank 7	32 bits	10.3.1/10-14
1013C	OR7	Option register bank 7	32 bits	10.3.2/10-16
10140	BR8	Base register bank 8	32 bits	10.3.1/10-14
10144	OR8	Option register bank 8	32 bits	10.3.2/10-16
10148	BR9	Base register bank 9	32 bits	10.3.1/10-14
1014C	OR9	Option register bank 9	32 bits	10.3.2/10-16
10150	BR10	Base register bank 10	32 bits	10.3.1/10-14
10154	OR10	Option register bank 10	32 bits	10.3.2/10-16
10158	BR11	Base register bank 11	32 bits	10.3.1/10-14
1015C	OR11	Option register bank 11	32 bits	10.3.2/10-16
10160	Reserved	-	8 bytes	-
10168	MAR	Memory address register	32 bits	10.3.7/10-29
1016C	Reserved	-	32 bits	-
10170	MAMR	Machine A mode register	32 bits	10.3.5/10-26
10174	MBMR	Machine B mode register	32 bits	
10178	MCMR	Machine C mode register	32 bits	
1017C	Reserved	-	48 bits	-
10184	MPTPR	Memory periodic timer prescaler	16 bits	10.3.12/10-32
10188	MDR	Memory data register	32 bits	10.3.6/10-28
1018C	Reserved	-	32 bits	-
10190	PSDMR	60x bus SDRAM mode register	32 bits	10.3.3/10-21
10194	LSDMR	Local bus SDRAM mode register	32 bits	10.3.4/10-24
10198	PURT	60x bus-assigned UPM refresh timer	8 bits	10.3.8/10-30
1019C	PSRT	60x bus-assigned SDRAM refresh timer	8 bits	10.3.10/10-31
101A0	LURT	Local bus-assigned UPM refresh timer	8 bits	10.3.9/10-30
101A4	LSRT	Local bus-assigned SDRAM refresh timer	8 bits	10.3.11/10-32
101A8	IMMR	Internal memory map register	32 bits	4.3.2.7/4-34
101AC-101FF	Reserved	—	84 bytes	-

Table 3-1. Internal Memory Map (Continued)

Internal Address	Abbreviation	Name	Size	Section/Page Number
		System Integration Timers		
10200–10 21F	Reserved	-	32 bytes	
10220	TMCNTSC	Time counter status and control register	16 bits	4.3.2.14/4-40
10224	TMCNT	Time counter register	32 bits	4.3.2.15/4-41
10228	Reserved	-	32 bits	-
1022C	TMCNTAL	Time counter alarm register	32 bits	4.3.2.16/4-41
10230–1023F	Reserved	-	16 bytes	-
10240	PISCR	Periodic interrupt status and control register	16 bits	4.3.3.1/4-42
10244	PITC	Periodic interrupt count register	32 bits	4.3.3.2/4-43
10248	PITR	Periodic interrupt timer register	32 bits	4.3.3.3/4-44
1024C-102A8	Reserved	-	94 bytes	-
102AA-10BFF	Reserved	-	2,390bytes	-
		Interrupt Controller		
10C00	SICR	SIU interrupt configuration register	16 bits	4.3.1.1/4-17
10C04	SIVEC	SIU interrupt vector register	32 bits	4.3.1.6/4-23
10C08	SIPNR_H	SIU interrupt pending register (high)	32 bits	4.3.1.4/4-21
10C0C	SIPNR_L	SIU interrupt pending register (low)	32 bits	4.3.1.4/4-21
10C10	SIPRR	SIU interrupt priority register	32 bits	4.3.1.2/4-18
10C14	SCPRR_H	CPM interrupt priority register (high)	32 bits	4.3.1.3/4-19
10C18	SCPRR_L	CPM interrupt priority register (low)	32 bits	4.3.1.3/4-19
10C1C	SIMR_H	SIU interrupt mask register (high)	32 bits	4.3.1.5/4-22
10C20	SIMR_L	SIU interrupt mask register (low)	32 bits	4.3.1.5/4-22
10C24	SIEXR	SIU external interrupt control register	32 bits	4.3.1.7/4-24
10C28-10C7F	Reserved			
		Clocks and Reset		
10C80	SCCR	System clock control register	32 bits	9.8/9-8
10C88	SCMR	System clock mode register	32 bits	9.9/9-9
10C90	RSR	Reset status register	32 bits	5.2/5-4
10C94	RMR	Reset mode register	32 bits	5.3/5-5
10C98-10CFF	Reserved	-	104 bytes	-

Internal Address	Abbreviation	Name	Size	Section/Page Number
		Input/Output Port		
10D00	PDIRA	Port A data direction register	32 bits	35.2.3/35-3
10D04	PPARA	Port A pin assignment register	32 bits	35.2.4/35-4
10D08	PSORA	Port A special options register	32 bits	35.2.5/35-4
10D0C	PODRA	Port A open drain register	32 bits	35.2.1/35-2
10D10	PDATA	Port A data register	32 bits	35.2.2/35-2
10D14–10D1F	Reserved	-	12 bytes	-
10D20	PDIRB	Port B data direction register	32 bits	35.2.3/35-3
10D24	PPARB	Port B pin assignment register	32 bits	35.2.4/35-4
10D28	PSORB	Port B special operation register	32 bits	35.2.5/35-4
10D2C	PODRB	Port B open drain register	32 bits	35.2.1/35-2
10D30	PDATB	Port B data register	32 bits	35.2.2/35-2
10D34–10D3F	Reserved	-	12 bytes	-
10D40	PDIRC	Port C data direction register	32 bits	35.2.3/35-3
10D44	PPARC	Port C pin assignment register	32 bits	35.2.4/35-4
10D48	PSORC	Port C special operation register	32 bits	35.2.5/35-4
10D4C	PODRC	Port C open drain register	32 bits	35.2.1/35-2
10D50	PDATC	Port C data register	32 bits	35.2.2/35-2
10D54–10D5F	Reserved	-	12 bytes	-
10D60	PDIRD	Port D data direction register	32 bits	35.2.3/35-3
10D64	PPARD	Port D pin assignment register	32 bits	35.2.4/35-4
10D68	PSORD	Port D special operation register	32 bits	35.2.5/35-4
10D6C	PODRD	Port D open drain register	32 bits	35.2.1/35-2
10D70	PDATD	Port D data register	32 bits	35.2.2/35-2
	·	CPM Timers		
10D80	TGCR1	Timer 1 and timer 2 global configuration register	8 bits	17.2.2/17-4
10D81	Reserved	-	3 bytes	-
10D84	TGCR2	Timer 3 and timer 4 global configuration register	8 bits	17.2.2/17-4
10D85–10D8F	Reserved	-	11 bytes	-
10D90	TMR1	Timer 1 mode register	16 bits	17.2.3/17-6

Internal Address	Abbreviation	Name	Size	Section/Page Number
10D92	TMR2	Timer 2 mode register	16 bits	17.2.3/17-6
10D94	TRR1	Timer 1 reference register	16 bits	17.2.4/17-7
10D96	TRR2	Timer 2 reference register	16 bits	17.2.4/17-7
10D98	TCR1	Timer 1 capture register	16 bits	17.2.5/17-8
10D9A	TCR2	Timer 2 capture register	16 bits	17.2.5/17-8
10D9C	TCN1	Timer 1 counter	16 bits	17.2.6/17-8
10D9E	TCN2	Timer 2 counter	16 bits	17.2.6/17-8
10DA0	TMR3	Timer 3 mode register	16 bits	17.2.3/17-6
10DA2	TMR4	Timer 4 mode register	16 bits	17.2.3/17-6
10DA4	TRR3	Timer 3 reference register	16 bits	17.2.4/17-7
10DA6	TRR4	Timer 4 reference register	16 bits	17.2.4/17-7
10DA8	TCR3	Timer 3 capture register	16 bits	17.2.5/17-8
10DAA	TCR4	Timer 4 capture register	16 bits	17.2.5/17-8
10DAC	TCN3	Timer 3 counter	16 bits	17.2.6/17-8
10DAE	TCN4	Timer 4 counter	16 bits	17.2.6/17-8
10DB0	TER1	Timer 1 event register	16 bits	17.2.7/17-8
10DB2	TER2	Timer 2 event register	16 bits	17.2.7/17-8
10DB4	TER3	Timer 3 event register	16 bits	17.2.7/17-8
10DB6	TER4	Timer 4 event register	16 bits	17.2.7/17-8
10D74-11017	Reserved	-	670 bytes	-
		SDMA–General		
11018	SDSR	SDMA status register	8 bits	18.2.1/18-3
11019	Reserved	-	24 bits	-
1101C	SDMR	SDMA mask register	8 bits	18.2.2/18-4
1101D	Reserved	-	24 bits	-
		IDMA		
11020	IDSR1	IDMA 1 event register	8 bits	18.8.4/18-22
11021	Reserved	-	24 bits	-
11024	IDMR1	IDMA 1 mask register	8 bits	18.8.4/18-22
11025	Reserved	-	24 bits	-
11028	IDSR2	IDMA 2 event register	8 bits	18.8.4/18-22

Table 3-1. Internal Memory Map (Continued)

Internal Address	Abbreviation	Name	Size	Section/Page Number
11029	Reserved	-	24 bits	-
1102C	IDMR2	IDMA 2 mask register	8 bits	18.8.4/18-22
1102D	Reserved	-	24 bits	-
11030	IDSR3	IDMA 3 event register	8 bits	18.8.4/18-22
11031	Reserved	-	24 bits	-
11034	IDMR3	IDMA 3 mask register	8 bits	18.8.4/18-22
11035	Reserved	-	24 bits	-
11038	IDSR4	IDMA 4 event register	8 bits	18.8.4/18-22
11039	Reserved	-	24 bits	-
1103C	IDMR4	IDMA 4 mask register	8 bits	18.8.4/18-22
1103D-112FF	Reserved	-	707 bytes	-
		FCC1		
11300	GFMR1	FCC1 general mode register	32 bits	28.2/28-3
11304	FPSMR1	FCC1 protocol-specific mode register	32 bits	29.13.2/29-85 (ATM) 30.18.1/30-20 (Ethernet) 31.6/31-7 (HDLC)
11308	FTODR1	FCC1 transmit on demand register	16 bits	28.5/28-7
1130A	Reserved	-	2 bytes	-
1130C	FDSR1	FCC1 data synchronization register	16 bits	28.4/28-7
1130E	Reserved	-	2 bytes	-
11310	FCCE1	FCC1 event register	32 bits	29.13.3/29-87 (ATM)
11314	FCCM1	FCC1 mask register	32 bits	30.18.2/30-21 (Ethernet) 31.9/31-14 (HDLC)
11318	FCCS1	FCC1 status register	8 bits	31.10/31-16 (HDLC)
11319	Reserved	_	3 bytes	-
1131C	FTIRR1_PHY0	FCC1 transmit internal rate registers	8 bits	29.13.4/29-88 (ATM)
1131D	FTIRR1_PHY1	for PHY0–3	8 bits	
1131E	FTIRR1_PHY2		8 bits	
1131F	FTIRR1_PHY3		8 bits	
		FCC2		
11320	GFMR2	FCC2 general mode register	32 bits	28.2/28-3
11324	FPSMR2	FCC2 protocol-specific mode register	32 bits	29.13.2/29-85 (ATM) 30.18.1/30-20 (Ethernet) 31.6/31-7 (HDLC)

Internal Address	Abbreviation	Name	Size	Section/Page Number
11328	FTODR2	FCC2 transmit on-demand register	16 bits	28.5/28-7
1132A	Reserved	-	2 bytes	-
1132C	FDSR2	FCC2 data synchronization register	16 bits	28.4/28-7
1132E	Reserved	-	2 bytes	-
11330	FCCE2	FCC2 event register	32 bits	29.13.3/29-87 (ATM)
11334	FCCM2	FCC2 mask register	32 bits	30.18.2/30-21 (Ethernet) 31.9/31-14 (HDLC)
11338	FCCS2	FCC2 status register	8 bits	31.10/31-16 (HDLC)
11339	Reserved	-	3 bytes	-
1133C	FTIRR2_PHY0	FCC2 transmit internal rate registers	8 bits	29.13.4/29-88 (ATM)
1133D	FTIRR2_PHY1	for PHY0–3	8 bits	-
1133E	FTIRR2_PHY2		8 bits	-
1133F	FTIRR2_PHY3		8 bits	
		FCC3		
11340	GFMR3	FCC3 general mode register	32 bits	28.2/28-3
11344	FPSMR3	FCC3 protocol-specific mode register	32 bits	29.13.2/29-85 (ATM) 30.18.1/30-20 (Ethernet) 31.6/31-7 (HDLC)
11348	FTODR3	FCC3 transmit on-demand register	16 bits	28.5/28-7
1134A	Reserved	-	2 bytes	-
1134C	FDSR3	FCC3 data synchronization register	16 bits	28.4/28-7
1134E	Reserved	-	2 bytes	-
11350	FCCE3	FCC3 event register	32 bits	29.13.3/29-87 (ATM)
11354	FCCM3	FCC3 mask register	32 bits	30.18.2/30-21 (Ethernet) 31.9/31-14 (HDLC)
11358	FCCS3	FCC3 status register	8 bits	31.10/31-16 (HDLC)
11359–113FF	Reserved	Reserved	167 bytes	-
		BRGs 5–8	•	
115F0	BRGC5	BRG5 configuration register	32 bits	16.1/16-2
115F4	BRGC6	BRG6 configuration register	32 bits	-
115F8	BRGC7	BRG7 configuration register	32 bits	
115FC	BRGC8	BRG8 configuration register	32 bits	
11600–1185F	Reserved	Reserved	608 bytes	-

Table 3-1. Internal Memory Map (Continued)

Internal Address	Abbreviation	Name	Size	Section/Page Number
	1	l ² C		
11860	I2MOD	I ² C mode register	8 bits	34.4.1/34-6
11862	Reserved	-	24 bits	-
11864	I2ADD	I ² C address register	8 bits	34.4.2/34-7
11866	Reserved	-	24 bits	-
11868	I2BRG	I ² C BRG register	8 bits	34.4.3/34-7
1186A	Reserved	-	24 bits	-
1186C	I2COM	I ² C command register	8 bits	34.4.5/34-8
1186E	Reserved	-	24 bits	-
11870	I2CER	I ² C event register	8 bits	34.4.4/34-8
11872	Reserved	-	24 bits	-
11874	I2CMR	I ² C mask register	8 bits	34.4.4/34-8
11875–119BF	Reserved	-	315 bytes	-
		Communications Processo	r	
119C0	CPCR	Communications processor command register	32 bits	13.4.1/13-11
119C4	RCCR	CP configuration register	32 bits	13.3.6/13-7
119C8–119D5	Reserved	-	12 bytes	-
119D6	RTER	CP timers event register	16 bits	13.6.4/13-21
119DA	RTMR	CP timers mask register	16 bits	
119DC	RTSCR	CP time-stamp timer control register	16 bits	13.3.7/13-9
119DE	Reserved	-	16 bits	
119E0	RTSR	CP time-stamp register	32 bits	13.3.8/13-10
		BRGs 1–4		
119F0	BRGC1	BRG1 configuration register	32 bits	16.1/16-2
119F4	BRGC2	BRG2 configuration register	32 bits	1
119F8	BRGC3	BRG3 configuration register	32 bits	-
119FC	BRGC4	BRG4 configuration register	32 bits	
		SCC1		
11A00	GSMR_L1	SCC1 general mode register	32 bits	19.1.1/19-3
11A04	GSMR_H1	SCC1 general mode register	32 bits	1

Internal Address	Abbreviation	Name	Size	Section/Page Number
11A08	PSMR1	SCC1 protocol-specific mode register	16 bits	19.1.2/19-9 20.16/20-13 (UART) 21.8/21-7 (HDLC) 22.11/22-10 (BISYNC) 23.9/23-9 (Transparent) 24.17/24-15 (Ethernet)
11A0A	Reserved	-	2 bytes	-
11A0C	TODR1	SCC1 transmit-on-demand register	16 bits	19.1.4/19-9
11A0E	DSR1	SCC1 data synchronization register	16 bits	19.1.3/19-9
11A10	SCCE1	SCC1 event register	16 bits	20.19/20-19 (UART)
11A14	SCCM1	SCC1 mask register	16 bits	21.11/21-12 (HDLC) 22.14/22-15 (BISYNC) 23.12/23-12 (Transparent) 24.20/24-21 (Ethernet)
11A17	SCCS1	SCC1 status register	8 bits	20.20/20-21 (UART) 21.12/21-14 (HDLC) 22.15/22-16 (BISYNC) 23.13/23-13 (Transparent)
11A18–11A1F	Reserved	-	8 bytes	-
		SCC2		
11A20	GSMR_L2	SCC2 general mode register (low)	32 bits	19.1.1/19-3
11A24	GSMR_H2	SCC2 general mode register (high)	32 bits	
11A28	PSMR2	SCC2 protocol-specific mode register	16 bits	19.1.2/19-9 20.16/20-13 (UART) 21.8/21-7 (HDLC) 22.11/22-10 (BISYNC) 23.9/23-9 (Transparent) 24.17/24-15 (Ethernet)
11A2A	Reserved	-	2 bytes	-
11A2C	TODR2	SCC2 transmit-on-demand register	16 bits	19.1.4/19-9
11A2E	DSR2	SCC2 data synchronization register	16 bits	19.1.3/19-9
11A30	SCCE2	SCC2 event register	16 bits	20.19/20-19 (UART)
11A34	SCCM2	SCC2 mask register	16 bits	21.11/21-12 (HDLC) 22.14/22-15 (BISYNC) 23.12/23-12 (Transparent) 24.20/24-21 (Ethernet)
11A37	SCCS2	SCC2 status register	8 bits	20.20/20-21 (UART) 21.12/21-14 (HDLC) 22.15/22-16 (BISYNC) 23.13/23-13 (Transparent)
11A38–11A3F	Reserved	-	8 bytes	-

Internal Address	Abbreviation	Name	Size	Section/Page Number
		SCC3		
11A40	GSMR_L3	SCC3 general mode register	32 bits	19.1.1/19-3
11A44	GSMR_H3	SCC3 general mode register	32 bits	
11A48	PSMR3	SCC3 protocol-specific mode register	16 bits	19.1.2/19-9 20.16/20-13 (UART) 21.8/21-7 (HDLC) 22.11/22-10 (BISYNC) 23.9/23-9 (Transparent) 24.17/24-15 (Ethernet)
11A4A	Reserved	-	2 bytes	-
11A4C	TODR3	SCC3 transmit on demand register	16 bits	19.1.4/19-9
11A4E	DSR3	SCC3 data synchronization register	16 bits	19.1.3/19-9
11A50	SCCE3	SCC3 event register	16 bits	20.19/20-19 (UART)
11A54	SCCM3	SCC3 mask register	16 bits	21.11/21-12 (HDLC) 22.14/22-15 (BISYNC) 23.12/23-12 (Transparent) 24.20/24-21 (Ethernet)
11A57	SCCS3	SCC3 status register	8 bits	20.20/20-21 (UART) 21.12/21-14 (HDLC) 22.15/22-16 (BISYNC) 23.13/23-13 (Transparent)
11A58–11A5F	Reserved	-	8 bytes	-
	1	SCC4	1	1
11A60	GSMR_L4	SCC4 general mode register	32 bits	19.1.1/19-3
11A64	GSMR_H4	SCC4 general mode register	32 bits	
11A68	PSMR4	SCC4 protocol-specific mode register	16 bits	19.1.2/19-9 20.16/20-13 (UART) 21.8/21-7 (HDLC) 22.11/22-10 (BISYNC) 23.9/23-9 (Transparent) 24.17/24-15 (Ethernet)
11A6A	Reserved	-	2 bytes	-
11A6C	TODR4	SCC4 transmit on-demand register	16 bits	19.1.4/19-9
11A6E	DSR4	SCC4 data synchronization register	16 bits	19.1.3/19-9
11A70	SCCE4	SCC4 event register	16 bits	20.19/20-19 (UART)
11A74	SCCM4	SCC4 mask register	16 bits	21.11/21-12 (HDLC) 22.14/22-15 (BISYNC) 23.12/23-12 (Transparent) 24.20/24-21 (Ethernet)

Internal Address	Abbreviation	Name	Size	Section/Page Number
11A77	SCCS4	SCC4 status register	8 bits	20.20/20-21 (UART) 21.12/21-14 (HDLC) 22.15/22-16 (BISYNC) 23.13/23-13 (Transparent)
11A78–11A7F	Reserved	-	8 bytes	-
		SMC1		
11A82	SMCMR1	SMC1 mode register	16 bits	26.2.1/26-3
11A86	SMCE1	SMC1 event register	8 bits	26.3.11/26-18 (UART)
11A8A	SMCM1	SMC1 mask register	8 bits	26.4.10/26-28 (Transparent) 26.5.9/26-34 (GCI)
11A8B–11A 91	Reserved	-	7 bytes	-
		SMC2	-	
11A92	SMCMR2	SMC2 mode register	16 bits	26.2.1/26-3
11A96	SMCE2	SMC2 event register	8 bits	26.3.11/26-18 (UART)
11A9A	SMCM2	SMC2 mask register	8 bits	26.4.10/26-28 (Transparent) 26.5.9/26-34 (GCI)
11A9B-11A9F	Reserved	-	5 bytes	-
	1	SPI	1	
11AA0	SPMODE	SPI mode register	16 bits	33.4.1/33-6
11AA2	Reserved	-	4 bytes	-
11AA6	SPIE	SPI event register	8 bits	33.4.2/33-9
11AA7	Reserved	-	24 bits	-
11AAA	SPIM	SPI mask register	8 bits	33.4.2/33-9
11AAB	Reserved	-	24 bits	-
11AAD	SPCOM	SPI command register	8 bits	33.4.3/33-9
11AA7–11AFF	Reserved	-	89 bytes	-
		CPM Mux		
11B00	CMXSI1CR	CPM mux SI1 clock route register	8 bits	15.4.2/15-10
11B02	CMXSI2CR	CPM mux SI2 clock route register	8 bits	15.4.3/15-11
11B03	Reserved	-	8 bits	-
11B04	CMXFCR	CPM mux FCC clock route register	32 bits	15.4.4/15-12
11B08	CMXSCR	CPM mux SCC clock route register	32 bits	15.4.5/15-14
11B0C	CMXSMR	CPM mux SMC clock route register	8 bits	15.4.6/15-17
11B0D	Reserved	-	8 bits	-

Table 3-1. Internal Memory Map (Continued)

MOTOROLA

Internal Address	Abbreviation	Name	Size	Section/Page Number
11B0E	CMXUAR	CPM mux UTOPIA address register	16 bits	15.4.1/15-7
11B10–11B1F	Reserved	-	16 bytes	-
		SI1 Registers		
11B20	SI1AMR	SI1 TDMA1 mode register	16 bits	14.5.2/14-17
11B22	SI1BMR	SI1 TDMB1 mode register	16 bits	_
11B24	SI1CMR	SI1 TDMC1 mode register	16 bits	
11B26	SI1DMR	SI1 TDMD1 mode register	16 bits	
11B28	SI1GMR	SI1 global mode register	8 bits	14.5.1/14-17
11B2A	SI1CMDR	SI1 command register	8 bits	14.5.4/14-24
11B2C	SI1STR	SI1 status register	8 bits	14.5.5/14-25
11B2E	SI1RSR	SI1 RAM shadow address register	16 bits	14.5.3/14-23
	1	MCC1 Registers		
11B30	MCCE1	MCC1 event register	16 bits	27.10.1/27-18
11B34	MCCM1	MCC1 mask register	16 bits	-
11B36	Reserved	-	16 bits	-
11B38	MCCF1	MCC1 configuration register	8 bits	27.8/27-15
11B39–11B3F	Reserved	-	7 bytes	-
		SI2 Registers		
11B40	SI2AMR	SI2 TDMA2 mode register	16 bits	14.5.2/14-17
11B42	SI2BMR	SI2 TDMB2 mode register	16 bits	
11B44	SI2CMR	SI2 TDMC2 mode register	16 bits	
11B46	SI2DMR	SI2 TDMD2 mode register	16 bits	
11B48	SI2GMR	SI2 global mode register	8 bits	14.5.1/14-17
11B49	Reserved	-	8 bits	-
11B4A	SI2CMDR	SI2 command register	8 bits	14.5.4/14-24
11B4B	Reserved	-	8 bits	-
11B4C	SI2STR	SI2 status register	8 bits	14.5.5/14-25
11B4D	Reserved	-	8 bits	-
11B4E	SI2RSR	SI2 RAM shadow address register	16 bits	14.5.3/14-23

Internal Address	Abbreviation	Name	Size	Section/Page Number		
	MCC2 Registers					
11B50	MCCE2	MCC2 event register	16 bits	27.10.1/27-18		
11B54	MCCM2	MCC2 mask register	16 bits			
11B58	MCCF2	MCC2 configuration register	8 bits	27.8/27-15		
11B59–11FFF	Reserved	-	1,159 bytes	_		
	SI1 RAM					
12000–121FF	SI1TxRAM	SI 1 transmit routing RAM	512	14.4.3/14-10		
12200–123FF	Reserved		512			
12400–125FF	SI1RxRAM	SI 1 receive routing RAM	512	14.4.3/14-10		
12600–127FF	Reserved		512			
SI2 RAM						
12800–129FF	SI2TxRAM	SI 2 transmit routing RAM	512	14.4.3/14-10		
12A00-12BFF	Reserved	-	512	-		
12C00-12DFF	SI2RxRAM	SI 2 receive routing RAM	512	14.4.3/14-10		
12E00-12FFF	Reserved	-	512	-		
13000–137FF	Reserved	Reserved	2048	-		
13800–13FFF	Reserved	Reserved	2048	-		

Part II Configuration and Reset

Audience

Part II is intended for system designers and programmers who need to understand the operation of the MPC8260 at start up. It assumes understanding of the PowerPC programming model described in the previous chapters and a high level understanding of the MPC8260.

Contents

Part II describes start-up behavior of the MPC8260.

It contains the following chapters:

- Chapter 4, "System Interface Unit (SIU)," describes the system configuration and protection functions which provide various monitors and timers, and the 60x bus configuration.
- Chapter 5, "Reset," describes the behavior of the MPC8260 at reset and start-up.

Suggested Reading

Supporting documentation for the MPC8260 can be accessed through the world-wide web at http://www.motorola.com/netcomm and at http://www.mot.com/PowerPC. This documentation includes technical specifications, reference materials, and detailed applications notes.

Conventions

This chapter uses the following notational conventions:

Bold	Bold entries in figures and tables showing registers and parameter RAM should be initialized by the user.	
mnemonics	Instruction mnemonics are shown in lowercase bold.	
italics	Italics indicate variable command parameters, for example, bcctrx.	
	Book titles in text are set in italics.	
0x0	Prefix to denote hexadecimal number	
0b0	Prefix to denote binary number	
rA, rB	Instruction syntax used to identify a source GPR	
rD	Instruction syntax used to identify a destination GPR	
REG[FIELD]	Abbreviations or acronyms for registers or buffer descriptors are shown in uppercase text. Specific bits, fields, or numerical ranges appear in brackets. For example, MSR[LE] refers to the little-endian mode enable bit in the machine state register.	
Х	In certain contexts, such as in a signal encoding or a bit field, indicates a don't care.	
n	Indicates an undefined numerical value	

Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this document. Note that the meanings for some acronyms (such as SDR1 and DSISR) are historical, and the words for which an acronym stands may not be intuitively obvious.

Term	Meaning
BIST	Built-in self test
DMA	Direct memory access
DRAM	Dynamic random access memory
EA	Effective address
GPR	General-purpose register
IEEE	Institute of Electrical and Electronics Engineers
LSB	Least-significant byte
lsb	Least-significant bit
LSU	Load/store unit
MSB	Most-significant byte

Table v. Acronyms and Abbreviated Terms

Term	Meaning	
msb	Most-significant bit	
MSR	Machine state register	
PCI	Peripheral component interconnect	
RTOS	Real-time operating system	
Rx	Receive	
SPR	Special-purpose register	
SWT	Software watchdog timer	
Тх	Transmit	

Table v. Acronyms and Abbreviated Terms (Continued)

Part II. Configuration and Reset

Chapter 4 System Interface Unit (SIU)

The system interface unit (SIU) consists of several functions that control system start-up and initialization, as well as operation, protection, and the external system bus. Key features of the SIU include the following:

- System configuration and protection
- System reset monitoring and generation
- Clock synthesizer
- Power management
- 60x bus interface
- Flexible, high-performance memory controller
- Level-two cache controller interface
- IEEE 1149.1 test-access port (TAP)

Figure 4-1 is a block diagram of the SIU.

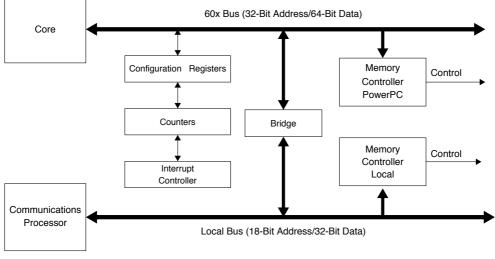


Figure 4-1.SIU Block Diagram

The system configuration and protection functions provide various monitors and timers, including the bus monitor, software watchdog timer, periodic interrupt timer, and time counter. The clock synthesizer generates the clock signals used by the SIU and other MPC8260 modules. The SIU clocking scheme supports stop and normal modes.

The 60x bus interface is a standard pipelined bus. The MPC8260 allows external bus masters to request and obtain system bus mastership. Chapter 8, "The 60x Bus," describes bus operation, but 60x bus configuration is explained in this section.

The memory controller module, described in Chapter 10, "Memory Controller," provides a seamless interface to many types of memory devices and peripherals. It supports up to twelve memory banks, each with its own device and timing attributes.

The MPC8260's implementation supports circuit board test strategies through a useraccessible test logic that is fully compliant with the IEEE 1149.1 test access port.

4.1 System Configuration and Protection

The MPC8260 incorporates many system functions that normally must be provided in external circuits. In addition, it is designed to provide maximum system safeguards against hardware and/or software faults. Table 4-1 describes functions provided in the system configuration and protection submodule.

Function	Description		
System configuration	The SIU allows the user to configure the system according to the particular requirements. The functions include control of parity checking and part and mask number constants.		
60x bus monitor	Monitors the transfer acknowledge (TA) and address acknowledge (\overline{AACK}) response time for all bus accesses initiated by internal or external masters. TEA is asserted if the TA/AACK response limit is exceeded. This function can be disabled if needed.		
Local bus monitor	Monitors transfers between local bus internal masters and local bus slaves. An internal $\overline{\text{TEA}}$ assertion occurs if the transfer time limit is exceeded. This function can be disabled.		
Software watchdog timer	Asserts a reset or NMI interrupt, selected by the system protection control register (SYPCR) if the software fails to service the software watchdog timer for a certain period of time (for example, because software is lost or trapped in a loop). After a system reset, this function is enabled, selects a maximum time-out period, and asserts a system reset if the time-out is reached. The software watchdog timer can be disabled or its time-out period may be changed in the SYPCR. Once the SYPCR is written, it cannot be written again until a system reset. For more information, see Section 4.1.5, "Software Watchdog Timer."		
Periodic interrupt timer (PIT)	Generates periodic interrupts for use with a real-time operating system or the application software. The periodic interrupt timer (PIT) is clocked by the timersclk clock, providing a period from 122 μ s to 8 seconds. The PIT function can be disabled if needed. See Section 4.1.4, "Periodic Interrupt Timer (PIT)."		
Time counter	Provides a time-of-day information to the operating system/application software. It is composed of a 45-bit counter and an alarm register. A maskable interrupt is generated when the counter reaches th value programmed in the alarm register. The time counter (TMCNT) is clocked by the timersclk clock See Section 4.1.3, "Time Counter (TMCNT)."		

Table 4-1. System Configuration and Protection Functions

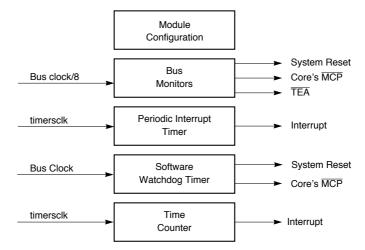


Figure 4-2 is a block diagram of the system configuration and protection logic.

Figure 4-2. System Configuration and Protection Logic

Many aspects of system configuration are controlled by several SIU module configuration registers, described in Section 4.3.2, "System Configuration and Protection Registers."

4.1.1 Bus Monitor

The MPC8260 has two bus monitors, one for the 60x bus and one for the local bus. The bus monitor ensures that each bus cycle is terminated within a reasonable period. The bus monitor does not count when the bus is idle. When a transaction starts (\overline{TS} asserted), the bus monitor starts counting down from the time-out value. For standard bus transactions with an address tenure and a data tenure, the bus monitor counts until a data beat is acknowledged on the bus. It then reloads the time-out value and resumes the count down. This process continues until the whole data tenure is completed. Following the data tenure the bus monitor will idle in case there is no pending transaction; otherwise it will reload the time-out value and resume counting.

For address-only transactions, the bus monitor counts until \overline{AACK} is asserted. If the monitor times out for a standard bus transaction, transfer error acknowledge (\overline{TEA}) is asserted. If the monitor times out for an address-only transaction, the bus monitor asserts \overline{AACK} and a core machine check or reset interrupt is generated, depending on SYPCR[SWRI]. To allow variation in system peripheral response times, SYPCR[BMT] defines the time-out period, whose maximum value can be 2,040 system bus clocks. The timing mechanism is clocked by the system bus clock divided by eight.

4.1.2 Timers Clock

The two SIU timers (the time counter and the periodic interrupt timer) use the same clock source, timersclk, which can be derived from several sources, as described in Figure 4-3.

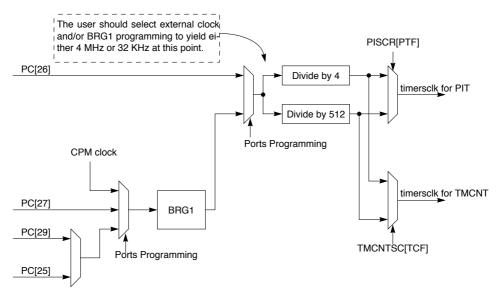


Figure 4-3. Timers Clock Generation

For details, see Section 35.2.4, "Port Pin Assignment Register (PPAR)." For proper time counter operation, the user must ensure that the frequency of timersclk for TMCNT is 8,192 Hz by properly selecting the external clock and programming BRG1 and the prescaler control bits in the time counter status and control register (TMCNTSC[TCF]) and periodic interrupt status and control register (PISCR[PTF]).

4.1.3 Time Counter (TMCNT)

The time counter (TMCNT) is a 32-bit counter that is clocked by timersclk. It provides a time-of-day indication to the operating system and application software. The counter is reset to zero on PORESET reset but is not affected by soft or hard reset. It is initialized by the software; the user should set the timersclk frequency to 8,192 Hz, as explained in Section 4.1.2, "Timers Clock."

TMCNT can be programmed to generate a maskable interrupt when the time value matches the value in its associated alarm register. It can also be programmed to generate an interrupt every second. The time counter control and status register (TMCNTSC) is used to enable or disable the various timer functions and report the interrupt source. Figure 4-4 shows a block diagram of TMCNT.

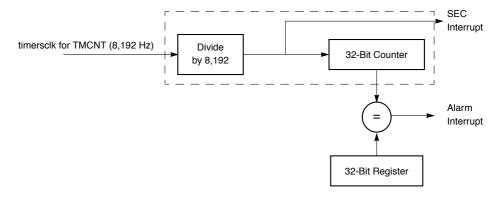


Figure 4-4. TMCNT Block Diagram

Section 4.3.2.15, "Time Counter Register (TMCNT)," describes the time counter register.

4.1.4 Periodic Interrupt Timer (PIT)

The periodic interrupt timer consists of a 16-bit counter clocked by timersclk. The 16-bit counter decrements to zero when loaded with a value from the periodic interrupt timer count register (PITC); after the timer reaches zero, PISCR[PS] is set and an interrupt is generated if PISCR[PIE] = 1. At the next input clock edge, the value in the PITC is loaded into the counter and the process repeats. When a new value is loaded into the PITC, the PIT is updated, the divider is reset, and the counter begins counting.

Setting PS creates a pending interrupt that remains pending until PS is cleared. If PS is set again before being cleared, the interrupt remains pending until PS is cleared. Any write to the PITC stops the current countdown and the count resumes with the new value in PITC. If PTE = 0, the PIT cannot count and retains the old count value. The PIT is not affected by reads. Figure 4-5 is a block diagram of the PIT.

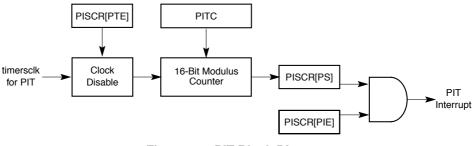


Figure 4-5. PIT Block Diagram

The time-out period is calculated as follows:

$$PIT_{period} = \frac{PITC + 1}{F_{timersclk}} = \frac{PITC + 1}{8192}$$

This gives a range from 122 μ s (PITC = 0x0000) to 8 seconds (PITC = 0xFFFF).

4.1.5 Software Watchdog Timer

The SIU provides the software watchdog timer option to prevent system lock in case the software becomes trapped in loops with no controlled exit. Watchdog timer operations are configured in the SYPCR, described in Section 4.3.2.8, "System Protection Control Register (SYPCR)."

The software watchdog timer is enabled after reset to cause a soft reset if it times out. If the software watchdog timer is not needed, the user must clear SYPCR[SWE] to disable it. If used, the software watchdog timer requires a special service sequence to be executed periodically. Without this periodic servicing, the software watchdog timer times out and issues a reset or a nonmaskable interrupt, programmed in SYPCR[SWRI]. Once software writes SWRI, the state of SWE cannot be changed.

The software watchdog timer service sequence consists of the following two steps:

- 1. Write 0x556C to the software service register (SWSR)
- 2. Write 0xAA39 to SWSR

The service sequence clears the watchdog timer and the timing process begins again. If a value other than 0x556C or 0xAA39 is written to the SWSR, the entire sequence must start over. Although the writes must occur in the correct order before a time-out, any number of instructions can be executed between the writes. This allows interrupts and exceptions to occur between the two writes when necessary. Figure 4-6 shows a state diagram for the watchdog timer.

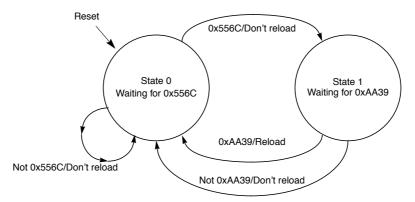


Figure 4-6. Software Watchdog Timer Service State Diagram

Although most software disciplines permit or even encourage the watchdog concept, some systems require a selection of time-out periods. For this reason, the software watchdog timer must provide a selectable range for the time-out period. Figure 4-7 shows how to handle this need.

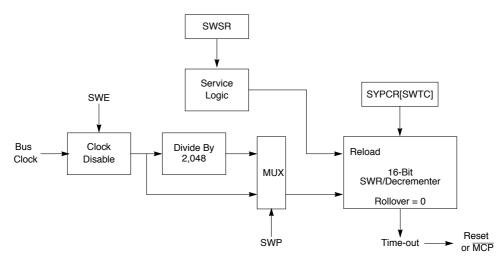


Figure 4-7. Software Watchdog Timer Block Diagram

In Figure 4-7, the range is determined by SYPCR[SWTC]. The value in SWTC is then loaded into a 16-bit decrementer clocked by the system clock. An additional divide-by-2,048 prescaler is used when needed.

The decrementer begins counting when loaded with a value from SWTC. After the timer reaches 0x0, a software watchdog expiration request is issued to the reset or $\overline{\text{MCP}}$ control logic. Upon reset, SWTC is set to the maximum value and is again loaded into the software watchdog register (SWR), starting the process over. When a new value is loaded into SWTC, the software watchdog timer is not updated until the servicing sequence is written to the SWSR. If SYPCR[SWE] is loaded with 0, the modulus counter does not count.

4.2 Interrupt Controller

Key features of the interrupt controller include the following:

- Communications processor module (CPM) interrupt sources (FCCs, SCCs, MCCs, timers, SMCs, I²C, IDMA, SDMA, and SPI)
- Three SIU interrupt sources (PIT and TMCNT)
- 24 external sources (16 port C and 8 IRQ)
- Programmable priority between PIT and TMCNT
- Programmable priority between SCCs, FCCs, and MCCs

- Two priority schemes for the SCCs: grouped, spread
- Programmable highest priority request
- Unique vector number for each interrupt source

4.2.1 Interrupt Configuration

Figure 4-8 shows the MPC8260 interrupt structure. The interrupt controller receives interrupts from internal sources, such as the PIT or TMCNT, from the CPM, and from external pins (port C parallel I/O pins).

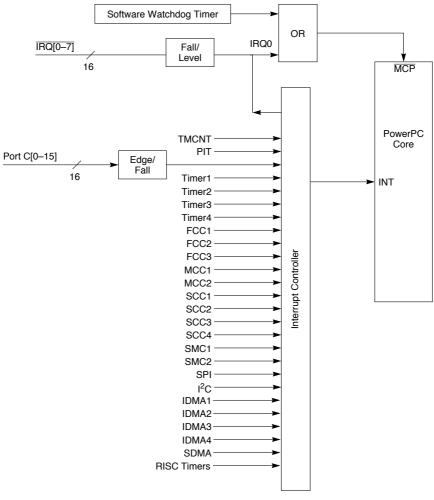


Figure 4-8. MPC8260 Interrupt Structure

If the software watchdog timer is programmed to generate an interrupt, it always generates a machine check interrupt to the core. The external $\overline{\text{IRQ0}}$ can generate MCP as well. Note that the core takes the machine check interrupt when $\overline{\text{MCP}}$ is asserted; it takes an external interrupt for any other interrupt asserted by the interrupt controller.

The interrupt controller allows masking of each interrupt source. Multiple events within a CPM sub-block event are also maskable.

All interrupt sources are prioritized and bits are set in the interrupt pending register (SIPNR). On the MPC8260, the prioritization of the interrupt sources is flexible in the following two aspects:

- The relative priority of the FCCs, SCCs, and MCCs can be modified
- One interrupt source can be assigned the highest priority

When an unmasked interrupt source is pending in the SIPNR, the interrupt controller sends an interrupt request to the core. When an exception is taken, the interrupt mask bit in the machine state register (MSR[EE]) is cleared to disable further interrupt requests until software can handle them.

The SIU interrupt vector register (SIVEC) is updated with a 6-bit vector corresponding to the sub-block with the highest current priority.

4.2.2 Interrupt Source Priorities

The interrupt controller has 37 interrupt sources that assert one interrupt request to the core. Table 4-2 shows prioritization of all interrupt sources. As described in following sections, flexibility exists in the relative ordering of the interrupts, but, in general, relative priorities are as shown. A single interrupt priority number is associated with each table entry.

Note that the group and spread options, shown with YCC entries in Table 4-2, are described in Section 4.2.2.1, "SCC, FCC, and MCC Relative Priority."

Priority Level	Interrupt Source Description	Multiple Events
1	Highest	_
2	XSIU1	No (TMCNT,PIT = Yes)
3	XSIU2 (GSIU = 0)	No (TMCNT,PIT = Yes)
4	XSIU3 (GSIU = 0)	No (TMCNT,PIT = Yes)

Table 4-2. Interrupt Source Priority Levels

Priority Level	Interrupt Source Description	Multiple Events				
5	XSIU4 (GSIU = 0)	No (TMCNT,PIT = Yes)				
6	XCC1	Yes				
7	XCC2	Yes				
8	XCC3	Yes				
9	XCC4	Yes				
10	XSIU2 (GSIU = 1)	No (TMCNT,PIT = Yes)				
11	XCC5	Yes				
12	XCC6	Yes				
13	XCC7	Yes				
14	XCC8	Yes				
15	XSIU5 (GSIU = 0)	No (TMCNT,PIT = Yes)				
16	XSIU6 (GSU = 0)	No (TMCNT,PIT = Yes)				
17	XSIU7 (GSU = 0)	No (TMCNT,PIT = Yes)				
18	XSIU8 (GSU = 0)	No (TMCNT,PIT = Yes)				
19	XSIU3 (GSIU = 1)	No (TMCNT,PIT = Yes)				
20	YCC1 (Grouped)	Yes				
21	YCC2 (Grouped)	Yes				
22	YCC3 (Grouped)	Yes				
23	YCC4 (Grouped)	Yes				
24	YCC5 (Grouped)	Yes				
25	YCC6 (Grouped)	Yes				
26	YCC7 (Grouped)	Yes				
27	YCC8 (Grouped)	Yes				
28	XSIU4 (GSIU = 1)	No (TMCNT,PIT = Yes)				
29	Parallel I/O-PC15	Yes				
30	Timer 1 Yes					
31	Parallel I/O-PC14	Yes				
32	YCC1 (Spread)	Yes				
33	Parallel I/O-PC13	Yes				

Table 4-2. Interrupt Source Priority Levels (Continued)

Priority Level	Interrupt Source Description	Multiple Events			
34	SDMA Bus Error	Yes			
35	IDMA1	Yes			
36	YCC2 (Spread)	Yes			
37	Parallel I/O-PC12	No			
38	Parallel I/O-PC11	No			
39	IDMA2	Yes			
40	Timer 2	Yes			
41	Parallel I/O-PC10	No			
42	XSIU5 (GSIU = 1)	No (TMCNT,PIT = Yes)			
43	YCC3 (Spread)	Yes			
44	RISC Timer Table	Yes			
45	I2C	Yes			
46	YCC4 (Spread)	Yes			
47	Parallel I/O-PC9	No			
48	Parallel I/O-PC8	No			
49	IRQ6	No			
50	IDMA3	Yes			
51	IRQ7	No			
52	Timer 3	Yes			
53	XSIU6 (GSIU = 1)	No (TMCNT,PIT = Yes)			
54	YCC5 (Spread)	Yes			
55	Parallel I/O-PC7	No			
56	Parallel I/O-PC6	No			
57	Parallel I/O-PC5	No			
58	Timer 4	Yes			
59	YCC6 (Spread)	Yes			
60	Parallel I/O-PC4 No				
61	XSIU7 (GSIU = 1) No (TMCNT,PIT = Ye				
62	IDMA4 Yes				
63	SPI	Yes			
64	Parallel I/O-PC3	No			
65	Parallel I/O-PC2	No			

 Table 4-2. Interrupt Source Priority Levels (Continued)

Priority Level	Interrupt Source Description	Multiple Events
66	SMC1	Yes
67	YCC7 (spread)	Yes
68	SMC2	Yes
69	Parallel I/O-PC1	No
70	Parallel I/O-PC0	No
71	XSIU8 (GSIU = 1)	No (TMCNT,PIT = Yes)
72	YCC8(spread)	Yes
73	Reserved	-

Table 4-2. Interrupt Source Priority Levels (Continued)

Notice the lack of SDMA interrupt sources, which are reported through each individual FCC, SCC, SMC, SPI, or I²C channel. The only true SDMA interrupt source is the SDMA channel bus error entry that is reported when a bus error occurs during an SDMA access. There are two ways to add flexibility to the table of CPM interrupt priorities—the FCC, MCC, and SCC relative priority option, described in Section 4.2.2.1, "SCC, FCC, and MCC Relative Priority," and the highest priority option, described in Section 4.2.2.3, "Highest Priority Interrupt."

4.2.2.1 SCC, FCC, and MCC Relative Priority

The relative priority between the four SCCs, three FCCs, and MCC is programmable and can be changed dynamically. In Table 4-2 there is no entry for SCC1–SCC4, MCC1–MCC2, FCC1–FCC3, but rather there are entries for XCC1–XCC8 and YCC1–YCC8. Each SCC can be mapped to any YCC location and each FCC and MCC can be mapped to any XCC location. The SCC, FCC, and MCC priorities are programmed in the CPM interrupt priority registers (SCPRR_H and SCPRR_L) and can be changed dynamically to implement a rotating priority.

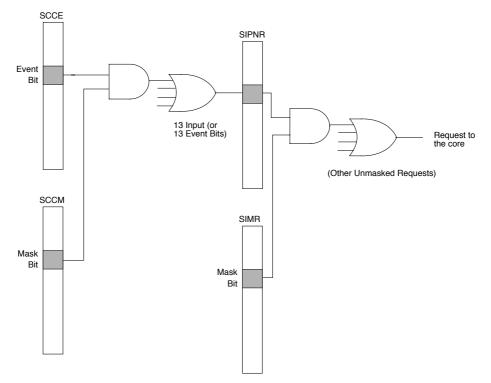
In addition, the grouping of the locations of the YCC entries has the following two options

- Group. In the group scheme, all SCCs are grouped together at the top of the priority table, ahead of most other CPM interrupt sources. This scheme is ideal for applications where all SCCs, FCCs, and MCCs function at a very high data rate and interrupt latency is very important.
- Spread. In the spread scheme, priorities are spread over the table so other sources can have lower interrupt latencies. This scheme is also programmed in the SICR but cannot be changed dynamically.

4.2.2.2 PIT, TMCNT, and IRQ Relative Priority

The MPC8260 has seven general-purpose interrupt requests (IRQs), five of which, with the PIT, and TMCNT, can be mapped to any XSIU location. $\overline{IRQ6}$ and $\overline{IRQ7}$ have fixed priority.

4.2.2.3 Highest Priority Interrupt


In addition to the FCC/MCC/SCC relative priority option, SICR[HP] can be used to specify one interrupt source as having highest priority. This interrupt remains within the same interrupt level as the other interrupt controller interrupts, but is serviced before any other interrupt in the table.

If the highest priority feature is not used, select the interrupt request in XSIU1 to be the highest priority interrupt; the standard interrupt priority order is used. SICR[HP] can be updated dynamically to allow the user to change a normally low priority source into a high priority-source for a certain period.

4.2.3 Masking Interrupt Sources

By programming the SIU mask registers, SIMR_H and SIMR_L, the user can mask interrupt requests to the core. Each SIMR bit corresponds an interrupt source. To enable an interrupt, write a one to the corresponding SIMR bit. When a masked interrupt source has a pending interrupt request, the corresponding SIPNR bit is set, even though the interrupt is not generated to the core. The user can mask all interrupt sources to implement a polling interrupt servicing scheme.

When an interrupt source has multiple interrupting events, the user can individually mask these events by programming a mask register within that block. Table 4-2 shows which interrupt sources have multiple interrupting events. Figure 4-9 shows an example of how the masking occurs, using an SCC as an example.

4.2.4 Interrupt Vector Generation and Calculation

Pending unmasked interrupts are presented to the core in order of priority. The interrupt vector that allows the core to locate the interrupt service routine is made available to the core by reading SIVEC. The interrupt controller passes an interrupt vector corresponding to the highest-priority, unmasked, pending interrupt. Table 4-3 lists encodings for the six low-order bits of the interrupt vector.

Interrupt Number	Interrupt Source Description	Interrupt Vector
0	Error (No interrupt)	0b00_0000
1	l ² C	0b00_0001
2	SPI	0b00_0010
3	RISC Timers	0b00_0011
4	SMC1	0b00_0100
5	SMC2	0b00_0101

Table 4-3.	Encoding	the	Interrup	t Vector
	Encouning		monup	

Interrupt Number	Interrupt Source Description	Interrupt Vector
6	IDMA1	0b00_0110
7	IDMA2	0b00_0111
8	IDMA3	0b00_1000
9	IDMA4	0b00_1001
10	SDMA	0b00_1010
11	Reserved	0b00_1011
12	Timer1	0b00_1100
13	Timer2	0b00_1101
14	Timer3	0b00_1110
15	Timer4	0b00_1111
16	TMCNT	0b01_0000
17	PIT	0b01_0001
18	Reserved	0b01_0010
19	IRQ1	0b01_0011
20	IRQ2	0b01_0100
21	IRQ3	0b01_0101
22	IRQ4	0b01_0110
23	IRQ5	0b01_0111
24	IRQ6	0b01_1000
25	IRQ7	0b01_1001
26	Reserved	0b01_1010-01_1111
27	FCC1	0b10_0000
28	FCC2	0b10_0001
29	FCC3	0b10_0010
30	Reserved	0b10_0011
31	MCC1	0b10_0100
32	MCC2	0b10_0101
33	Reserved	0b10_0110
34	Reserved	0b10_0111
35	SCC1	0b10_1000
36	SCC2	0b10_1001
37	SCC3	0b10_1010

Table 4-3. Encoding the Interrupt Vector (Continued)

Interrupt Number	Interrupt Source Description	Interrupt Vector
38	SCC4	0b10_1011
39	Reserved	0b10_11xx
40	PC15	0b11_0000
41	PC14	0b11_0001
42	PC13	0b11_0010
43	PC12	0b11_0011
44	PC11	0b11_0100
45	PC10	0b11_0101
46	PC9	0b11_0110
47	PC8	0b11_0111
48	PC7	0b11_1000
49	PC6	0b11_1001
50	PC5	0b11_1010
51	PC4	0b11_1011
52	PC3	0b11_1100
53	PC2	0b11_1101
54	PC1	0b11_1110
55	PC0	0b11_1111

 Table 4-3. Encoding the Interrupt Vector (Continued)

Note that the interrupt vector table differs from the interrupt priority table in only two ways:

- FCC, SCC, and MCC vectors are fixed; they are not affected by the SCC group mode, spread mode, or the relative priority order of the FCCs, SCCs, and MCC.
- An error vector exists as the last entry in Table 4-3. The error vector is issued when no interrupt is requesting service.

4.2.4.1 Port C External Interrupts

There are 16 external interrupts, coming from the parallel I/O port C pins, PC[0-15]. When ones of these pins is configured as an input, a change according to the SIU external interrupt control register (SIEXR) causes an interrupt request signal to be sent to the interrupt controller. PC[0-15] lines can be programmed to assert an interrupt request upon any change. Each port C line asserts a unique interrupt request to the interrupt pending register and has a different internal interrupt priority level within the interrupt controller.

Requests can be masked independently in the interrupt mask register (SIMR). Notice that the global SIMR is cleared on system reset so pins left floating do not cause false interrupts.

4.3 Programming Model

The SIU registers are grouped into the following three categories:

- Interrupt controller registers. These registers control configuration, prioritization, and masking of interrupts. They also include registers for determining the interrupt sources. These registers are described in Section 4.3.1, "Interrupt Controller Registers."
- System configuration and protection registers. These include registers for configuring the SIU, defining the base address for the internal memory map, configuring the watchdog timer, specifying bus characteristics, as well as general functionality of the 60x, and local buses such as arbitration, error status, and control. These registers are described in Section 4.3.2, "System Configuration and Protection Registers."
- Periodic interrupt registers. These include registers for configuring and providing status for periodic interrupts. See Section 4.3.3, "Periodic Interrupt Registers."

4.3.1 Interrupt Controller Registers

There are seven interrupt controller registers, described in the following sections:

- Section 4.3.1.1, "SIU Interrupt Configuration Register (SICR)"
- Section 4.3.1.2, "SIU Interrupt Priority Register (SIPRR)"
- Section 4.3.1.3, "CPM Interrupt Priority Registers (SCPRR_H and SCPRR_L)"
- Section 4.3.1.4, "SIU Interrupt Pending Registers (SIPNR_H and SIPNR_L)"
- Section 4.3.1.5, "SIU Interrupt Mask Registers (SIMR_H and SIMR_L)"
- Section 4.3.1.6, "SIU Interrupt Vector Register (SIVEC)"
- Section 4.3.1.7, "SIU External Interrupt Control Register (SIEXR)"

4.3.1.1 SIU Interrupt Configuration Register (SICR)

The SIU interrupt configuration register (SICR), shown in Figure 4-10, defines the highest priority interrupt and whether interrupts are grouped or spread in the priority table, Table 4-2.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	-	-	HP						_						GSIU	SPS
Reset		0000_0000_0000														
R/W		R/W														
Addr		0x10C00														

Figure 4-10. SIU Interrupt Configuration Register (SICR)

The SICR register bits are described in Table 4-4.

Bits	Name	Description
0–1	-	Reserved, should be cleared.
2–7	HP	Highest priority. Specifies the 6-bit interrupt number of the single interrupt controller interrupt source that is advanced to the highest priority in the table. HP can be modified dynamically. To retain the original priority, program HP to the interrupt number assigned to XSIU1.
8–14	_	Reserved, should be cleared.
14	GSIU	 Group SIU. Selects the relative XSIU priority scheme. It cannot be changed dynamically. Grouped. The XSIUs are grouped by priority at the top of the table. Spread. The XSIUs are spread by priority in the table.
15	SPS	 Spread priority scheme. Selects the relative YCC priority scheme. It cannot be changed dynamically. Grouped. The YCCs are grouped by priority at the top of the table. Spread. The YCCs are spread by priority in the table.

Table 4-4. SICR Field Descriptions

4.3.1.2 SIU Interrupt Priority Register (SIPRR)

The SIU interrupt priority register (SIPRR), shown in Figure 4-11, defines the priority between IRQ1–IRQ6, PIT, and TMCNT.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	XS1P XS2P						XS3P			XS4P			_			
Reset		000			001			010		011			0000			
R/W				-				R/	W							
Addr								0x10	C10							
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field		XS5P			XS6P			XS7P			XS8P			_	_	
Reset	100 101 110 111 0000															
R/W	R/W															
Addr	0x10C12															

Figure 4-11. SIU Interrupt Priority Register (SIPRR)

The SIPRR register bits are described in Table 4-5.

Bits	Name	Description
0–3	XS1P-XSIU1	Priority order. Defines which PIT/TMCNT/IRQs asserts its request in the XSIU1 priority position. The user should not program the same PIT/TMCNT/IRQs to more than one priority position (1–8). These bits can be changed dynamically. 000 TMCNT asserts its request in the XSIU1 position. 001 PIT asserts its request in the XSIU1 position. 010 Reserved 011 IRQ2 asserts its request in the XSIU1 position. 100 IRQ2 asserts its request in the XSIU1 position. 101 IRQ2 asserts its request in the XSIU1 position. 101 IRQ2 asserts its request in the XSIU1 position. 101 IRQ3 asserts its request in the XSIU1 position. 101 IRQ3 asserts its request in the XSIU1 position. 111 IRQ5 asserts its request in the XSIU1 position. 111 IRQ5 asserts its request in the XSIU1 position.
4–12	XS2P– XS8P	Same as XS1P, but for XSIU2–XSIU8.
13–15	_	Reserved, should be cleared.

Table 4-5. SIPRR Field Descriptions

4.3.1.3 CPM Interrupt Priority Registers (SCPRR_H and SCPRR_L)

The CPM high interrupt priority register (SCPRR_H), shown in Figure 4-12, define priorities between the FCCs and MCCs.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field		XC1P	-		XC2P			ХСЗР			XC4P		_		_	
Reset		000			001			010			011		0		000	
R/W	R	R/W	R/W	R/W	R	R/W	R	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W
Addr			-					0x10	C14							
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field		XC5P	-		XC6P			XC7P			XC8P				_	
Reset		100			101			110			111		0		000	
R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W
Addr		0x10C16														

Figure 4-12. CPM High Interrupt Priority Register (SCPRR_H)

Table 4-6 describes SCPRR_H fields.

Bits	Name	Description
0-2	XC1P-XCC1	 Priority order. Defines which FCC/MCC asserts its request in the XCC1 priority position. The user should not program the same FCC/MCC to more than one priority position (1–8). These bits can be changed dynamically. 000 FCC1 asserts its request in the XCC1 position. 001 FCC2 asserts its request in the XCC1 position. 010 FCC3 asserts its request in the XCC1 position. 011 XCC1 position not active. 100 MCC1 asserts its request in the XCC1 position. 101 MCC2 asserts its request in the XCC1 position. 110 XCC1 position not active. 111 XCC1 position not active.
3–12	XC2P–XC8P	Same as XC1P, but for XCC2-XCC8
13–15	_	Reserved, should be cleared.

The CPM low interrupt priority register (SCPRR_L), shown in Figure 4-13, defines prioritization of SCCs.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field		YC1P	P YC2P YC3P YC4P —													
Reset		000 001 010 011 0000														
R/W								R/	W							
Addr								0x10	C18							
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field		YC5P			YC6P			YC7P			YC8P			-	_	
	100 101 110 111 0000															
Reset		100			101			110			111			00	00	
Reset R/W		100			101			110 R/	W		111			00	00	

Figure 4-13. CPM Low Interrupt Priority Register (SCPRR_L)

Table 4-7 describes SCPRR_L fields.

Table 4-7. SCPRR_L Field Descriptions

Bits	Name	Description
0–2	YC1P-YCC1	 Priority order. Defines which SCC asserts its request in the YCC1 priority position. Do not program the same SCC to multiple priority positions. This field can be changed dynamically. 000 SCC1 asserts its request in the YCC1 position. 001 SCC2 asserts its request in the YCC1 position. 010 SCC3 asserts its request in the YCC1 position. 011 SCC4 asserts its request in the YCC1 position. 111 SCC4 asserts its request in the YCC1 position. 112 YCC1 position is not active.

Bits	Name	Description
3–11	YC2P-YC8P	Same as YC1P, but for YCC2-YCC8
12–15	_	Reserved, should be cleared.

Table 4-7. SCPRR_L Field Descriptions (Continued)

4.3.1.4 SIU Interrupt Pending Registers (SIPNR_H and SIPNR_L)

Each bit in the interrupt pending registers (SIPNR_H and SIPNR_L), shown in Figure 4-14 and Figure 4-15, corresponds to an interrupt source. When an interrupt is received, the interrupt controller sets the corresponding SIPNR bit.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	PC0	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	PC13	PC14	PC15
Reset				Unde	fined (t	he use	r shoul	d write	1s to o	clear th	nese bi	ts befo	re using	g)		
R/W								F	R/W							
Addr								0x1	0C08							
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	IRQ0	IRQ1	IRQ2	IRQ3	IRQ4	IRQ5	IRQ6	IRQ7			_			TMCNT	PIT	-
Reset		Und	defined	(the u	ser sho	uld wri	te 1s to	o clear	these	bits be	fore us	ing)		01	0 ¹	0 ¹
R/W	R/W															
Addr	0x10C10															

¹ These fields are zero after reset because their corresponding mask register bits are cleared (disabled).

Figure 4-14. SIPNR_H Fields

Figure 4-15 shows SIPNR_L fields.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	FCC1	FCC2	FCC3	-	MCC1	MCC2	ICC2 – SCC1 SCC2 SCC3 SCC4 –									
Reset							00	000_000	0_0000_	_0000 ¹						
R/W									R/W							
Addr								0x	10C0C						-	
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	I2C	SPI	RTT	SMC1	SMC2	IDMA1	IDMA2	IDMA3	IDMA4	SDMA	-	TIMER1	TIMER2	TIMER3	TIMER4	_
Reset							000	0_0000	_0000_0	000 ¹						01
R/W	R/W															
Addr	0x10C0E															

¹ These fields are zero after reset because their corresponding mask register bits are cleared (disabled).

Figure 4-15. SIPNR_L Fields

When a pending interrupt is handled, the user clears the corresponding SIPNR bit. However, if an event register exists, the unmasked event register bits should be cleared instead, causing the SIPNR bit to be cleared.

SIPNR bits are cleared by writing ones to them. Because the user can only clear bits in this register, writing zeros to this register has no effect.

Note that the SCC/FCC/MCC SIPNR bit positions are not changed according to their relative priority.

4.3.1.5 SIU Interrupt Mask Registers (SIMR_H and SIMR_L)

Each bit in the SIU interrupt mask register (SIMR) corresponds to a interrupt source. The user masks an interrupt by clearing and enables an interrupt by setting the corresponding SIMR bit. When a masked interrupt occurs, the corresponding SIPNR bit is set, regardless of the SIMR bit although no interrupt request is passed to the core.

If an interrupt source requests interrupt service when the user clears its SIMR bit, the request stops. If the user sets the SIMR bit later, a previously pending interrupt request is processed by the core, according to its assigned priority. The SIMR can be read by the user at any time.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	PC0	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	PC13	PC14	PC15
Reset							00	00_00	00_000	000_000	0					
R/W									R/W							
Addr								0>	<10C10	2						
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	_	IRQ1	IRQ2	IRQ3	IRQ4	IRQ5	IRQ6	IRQ7			_			TMCNT	PIT	-
Reset							00	00_00	00_000	000_000	0					
R/W	R/W															
Addr	0x10C1E															

Figure 4-16 shows the SIMR_H register.

Figure 4-16. SIMR_H Register

Figure 4-17 shows SIMR_L.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	FCC1	FCC2	FCC3	_	MCC1	MCC2 - SCC1 SCC2 SCC3 SCC4 -										
Reset							00	00_000	0_0000	_0000						
R/W								I	R/W							
Addr								0x ⁻	10C20							
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
		2C SPI RTT SMC1 SMC2 IDMA1 IDMA2 IDMA3 IDMA4 SDMA – TIMER1 TIMER2 TIMER3 TIMER4 –														
Field	I2C	SPI	RTT	SMC1	SMC2	IDMA1	IDMA2	IDMA3	IDMA4	SDMA	—	TIMER1	TIMER2	TIMER3	TIMER4	-
Field Reset	_	SPI	RTT	SMC1	SMC2	IDMA1		IDMA3 00_000		-	_	TIMER1	TIMER2	TIMER3	TIMER4	_
	_	SPI	RTT	SMC1	SMC2	IDMA1		00_000		-	_	TIMER1	TIMER2	TIMER3	TIMER4	_

Figure 4-17. SIMR_L Register

Note the following:

- SCC/MCC/FCC SIMR bit positions are not affected by their relative priority.
- The user can clear pending register bits that were set by multiple interrupt events only by clearing all unmasked events in the corresponding event register.
- If an SIMR bit is masked at the same time that the corresponding SIPNR bit causes an interrupt request to the core, the error vector is issued (if no other interrupts pending). Thus, the user should always include an error vector routine, even if it contains only an **rfi** instruction. The error vector cannot be masked.

4.3.1.6 SIU Interrupt Vector Register (SIVEC)

The SIU interrupt vector register (SIVEC), shown in Figure 4-18, contains an 8-bit code representing the unmasked interrupt source of the highest priority level.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field		Interrupt Code 0 0 0 0 0 0 0 0 0 0 0												0		
Reset							0000	_0000_	_0000_	0000						
R/W								F	٦							
Addr								0x10	C04							
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reset							0000	_0000_	_0000_	0000						
R/W		R														
Addr		0x10C06														

Figure 4-18. SIU Interrupt Vector Register (SIVEC)

Part II. Configuration and Reset

The SIVEC can be read as either a byte, half word, or a word. When read as a byte, a branch table can be used in which each entry contains one instruction (branch). When read as a half word, each entry can contain a full routine of up to 256 instructions. The interrupt code is defined such that its two lsbs are zeroes, allowing indexing into the table, as shown in Figure 4-19.

INTR: · ·			INTR: · · ·	
R3 <	e state - @ SIVEC Base of branch table			tate @ SIVEC Base of branch table
add	RX, R3 (0) # load as byt RX, RX, R4 r CTR, RX	e	add	RX, R3 (0) # load as half RX, RX, R4 CTR, RX
BASE	b Routine1		BASE	1st Instruction of Routine1
BASE + 4	b Routine2		BASE + 400	1st Instruction of Routine2
BASE + 8	b Routine3		BASE + 800	1st Instruction of Routine3
BASE + C	b Routine4		BASE + C00	1st Instruction of Routine4
BASE +10			BASE +1000	•
DAGE +10	•		DASE +1000	•
BASE + n	•		BASE + n	•
				•

Figure 4-19. Interrupt Table Handling Example

Note that the MPC8260 differs from previous MPC8xx implementations in that when an interrupt request occurs, SIVEC can be read. If there are multiple interrupt sources, SIVEC latches the highest priority interrupt. Note that the value of SIVEC cannot change while it is being read.

4.3.1.7 SIU External Interrupt Control Register (SIEXR)

Each defined bit in the SIU external interrupt control register (SIEXR), shown in Figure 4-20, determines whether the corresponding port C line asserts an interrupt request upon either a high-to-low change or any change on the pin. External interrupts can come from port C (PC[0-15]).

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	EDPC0	EDPC1	EDPC2	EDPC3	EDPC4	EDPC5	EDPC6	EDPC7	EDPC8	EDPC9	EDPC10	EDPC11	EDPC12	EDPC13	EDPC14	EDPC15
Reset							00	000_000	000_000	0_0000						
R/W		R/W														
Addr		0x10C24														
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	EDI0	EDI1	EDI2	EDI3	EDI4	EDI5	EDI6	EDI7					_			
Reset							00	000_000	000_000	0_0000						
R/W		R/W R														
Addr		0x10C26														

Figure 4-20. SIU External Interrupt Control Register (SIEXR)

Table 4-8 describes SIEXR fields.

Table 4-8. SIEXR Field Descriptions

Bits	Name	Description
0–15	EDPCx	 Edge detect mode for port Cx. The corresponding port C line (PCx) asserts an interrupt request according to the following: 0 Any change on PCx generates an interrupt request. 1 High-to-low change on PCx generates an interrupt request.
16–23	EDIx	 Edge detect mode for IRQx. The corresponding IRQ line (IRQx) asserts an interrupt request according to the following: 0 Low assertion on IRQx generates an interrupt request. 1 High-to-low change on IRQx generates an interrupt request.

4.3.2 System Configuration and Protection Registers

The system configuration and protection registers are described in the following sections.

4.3.2.1 Bus Configuration Register (BCR)

The bus configuration register (BCR), shown in Figure 4-21, contains configuration bits for various features and wait states on the 60x bus.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	EBM		APD		L2C		L2D		PLDP	EAV		_	ETM	LETM	EPAR	LEPAR
Reset	Depends on reset configuration sequence. See Section 5.4.1, "Hard Reset Configuration Word."															
R/W	R/W															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field		NPQM		_	_	EXDD			_			ISPS			_	
Reset	Depends on reset configuration sequence. See Section 5.4.1, "Hard Reset Configuration Word."						"									
R/W	R/W															
Addr	0x10024															

Figure 4-21. Bus Configuration Register (BCR)

Table 4-9 describes BCR fields.

Table 4-9. BCR Field Descriptions

Bits	Name	Description
0	EBM	External bus mode. 0 Single MPC8260 bus mode is assumed 1 60x-compatible bus mode. For more information refer to Section 8.2, "Bus Configuration."
1–3	APD	Address phase delay. Specifies the minimum number of address tenure wait states for address operations initiated by a 60x bus master. BCR[APD] specifies the minimum number of address tenure wait states for address operations initiated by 60x-bus devices. APD indicates how many cycles the MPC8260 should wait for ARTRY, but because it is assumed that ARTRY can be asserted (by other masters) only on cachable address spaces, APD is considered only on transactions that hit one of the 60x-assigned memory controller banks and have the GBL signal asserted during address phase.
4	L2C	Secondary cache controller. See Chapter 11, "Secondary (L2) Cache Support." 0 No secondary cache controller is assumed. 1 An external secondary cache controller is assumed.
5–7	L2D	L2 cache hit delay. Controls the number of clock cycles from the assertion of TS until HIT is valid.
8	PLDP	Pipeline maximum depth. See Section 8.4.5, "Pipeline Control." 1 The pipeline maximum depth is zero. 0 The pipeline maximum depth is one.
9	EAV	Enable address visibility. Normally, when the MPC8260 is in single-MPC8260 bus mode, the bank select signalsfor SDRAM accesses are multiplexed on the 60x bus address lines. So, for SDRAM accesses, the internal address is not visible for debug purposes. However the bank select signals can also be driven on dedicated pins (see SIUMCR[APPC]). In this case EAV can be used to force address visibility. 0 Bank select signals are driven on 60x bus address lines. There is no full address visibility. 1 Bank select signals are not driven on address bus. During READ and WRITE commands to SDRAM devices, the full address is driven on 60x bus address lines.
10–11	_	Reserved, should be cleared.
12	ETM	Compatibility mode enable. See Section 8.4.3.8, "Extended Transfer Mode." 0 Strict 60x bus mode. Extended transfer mode is disabled. 1 Extended transfer mode is enabled.

Bits	Name	Description
13	LETM	Local bus compatibility mode enable. See Section 8.4.3.8, "Extended Transfer Mode." 1 Extended transfer mode is enable on the local bus. 0 Extended transfer mode is disabled in the local bus. Note that if the local bus memory controller is configured to work with read-modify-write parity, LETM must be cleared.
14	EPAR	Even parity. Determines odd or even parity, Writing the memory with EPAR = 1 and reading the memory with EPAR = 0 generates parity errors for testing.
15	LEPAR	Local bus even parity. Specifies odd or even parity in the local bus. Writing the memory with LEPAR = 1 and reading the memory with LEPAR = 0 generates parity errors for testing.
16–18	NPQM	Non PowerQUICC II master. Identifies the type of bus masters which are connected to the arbitration lines when the MPC8260 is in internal arbitrer mode. Possible types are PowerQUICC II master and non-PowerQUICC II master. This field is related to the data pipelining bits (BRx[DR]) in the memory controller. Because an external bus master that is not a MPC8260 cannot use the data pipelining feature, the MPC8260, which controls the memory, needs to know when a non-PowerQUICC II master is accessing the memory and handle the transaction differently. NPQM[0] designates the type of master connected to the set of pins BR, BG, and DBG. NPQM[1] designates the type of master connected to the set of pins EXT_BR2, EXT_BG2, and EXT_DBG2. NPQM[2] designates the type of master which is connected to the set of pins EXT_BR3, EXT_BG3 and EXT_DBG3 0 The bus master connected to the arbitration lines is a MPC8260. 1 The bus master connected to the arbitration lines is not a MPC8260.
16–20	_	Reserved, should be cleared.
21	EXDD	External master delay disable. Generally, the MPC8260 adds one clock cycle delay for each external master access to a region controlled by the memory controller. This occurs because the external master drives the address on the external pins (compared to internal master, like MPC8260's DMA, which drives the address on an internal bus in the chip). Thus, it is assumed that an additional cycle is needed for the memory controllers banks to complete the address match. However in some cases (when the bus is operated in low frequency), this extra cycle is not needed. The user can disable the extra cycle by setting EXDD. 0 The memory controller inserts one wait state between the assertion of TS and the assertion of CS when external master accesses an address space controlled by the memory controller. 1 The memory controller asserts CS on the cycle following the assertion of TS by external master accessing an address space controller.
22–26	_	Reserved, should be cleared.
27	ISPS	Internal space port size. Defines the port size of MPC8260's internal space region as seen to external masters. Setting ISPS enables a 32-bit master to access MPC8260 internal space. 0 MPC8260 acts as a 64-bit slave to external masters accesses to its internal space. 1 MPC8260 acts as a 32-bit slave to external masters accesses to its internal space.
28–31	_	Reserved, should be cleared.

4.3.2.2 60x Bus Arbiter Configuration Register (PPC_ACR)

The 60x bus arbiter configuration register (PPC_ACR), shown in Figure 4-22, defines the arbiter modes and parked master on the 60x bus.

Bit	0	1	2	3	4	5	6	7			
Field	-	_	DBGD	EARB	PRKM						
Reset	Depends o	n reset confi	guration sec	uence. See	Section 5.4.	1, "Hard Res	set Configura	ation Word."			
R/W		R/W									
Addr		0x10028									

Figure 4-22. PPC_ACR

Table 4-10 describes PPC_ACR fields.

Table 4-10. PPC_ACR Field Descriptions

Bits	Name	Description
0–1	-	Reserved, should be cleared.
2	DBGD	Data bus grant delay. Specifies the minimum number of data tenure wait states for 60x bus master- initiated data operations. This is the minimum delay between TS and DBG. 0 DBG is asserted with TS if the data bus is free. 1 DBG is asserted one cycle after TS if the data bus is not busy. See Section 8.5.1, "Data Bus Arbitration."
3	EARB	External arbitration. 0 Internal arbitration is performed. See Section 8.3.1, "Arbitration Phase." 1 External arbitration is assumed.
4-7	PRKM	Parking master. 0000 CPM high request level 0001 CPM middle request level 0010 CPM low request level 0011 Reserved 0100 Reserved 0101 Reserved 0110 Internal core 0111 External master 1 1000 External master 2 1001 External master 3 Values 1010–1111 are reserved.

4.3.2.3 60x Bus Arbitration-Level Registers (PPC_ALRH/PPC_ALRL)

The 60x bus arbitration-level registers, shown in Figure 4-23 and Figure 4-24, define arbitration priority of MPC8260 bus masters. Priority field 0 has highest-priority. For information about MPC8260 bus master indexes, see the description of PPC_ACR[PRKM] in Table 4-10.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	Priority Field 0 Priority Field 1 Priority Field 2 Priority Field 3									3						
Reset		00	00			00	01			00	10			00	11	
R/W								R/	W							
Addr		0x1002C														
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	I	Priority	Field 4	1		Priority	Field 5	5	ł	Priority	Field 6	6	l	Priority	Field 7	,
Reset	0100 0101 0110 0111															
R/W	R/W															
Addr	0x1002E															

Figure 4-23. PPC_ALRH

PPC_ALRL, shown in Figure 4-24, defines arbitration priority of 60x bus masters 8–15. Priority field 0 is the highest-priority arbitration level. For information about the MPC8260 bus master indexes, see the description of PPC_ACR[PRKM] in Table 4-10.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	Priority Field 8 Priority Field 9 Priority Field 10 Priority Field 11									1						
Reset		10	00			10	01			10	10			10	11	
R/W								R/	w							
Addr		0x10030														
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	F	Priority	Field 1	2	F	Priority	Field 1	3	F	Priority	Field 1	4	F	Priority	Field 1	5
Reset	1100 1101 1110 1111															
R/W	R/W															
	0x10032															

Figure 4-24. PPC_AALRL

4.3.2.4 Local Bus Arbiter Configuration Register (LCL_ACR)

The local bus arbiter configuration register (LCL_ACR), shown in Figure 4-25, defines the arbiter modes and the parked master on the local bus.

Bit	0	1	2	3	4	5	6	7			
Field	-	_	DBGD	-	PRKM						
Reset				0000_	_0010						
R/W				R/	W						
Addr	0x10034										

Figure 4-25. LCL_ACR

Table 4-11 describes LCL_ACR register bits.

Bits	Name	Description
0–1	-	Reserved, should be cleared.
2	DBGD	Data bus grant delay. Specifies the minimum number of data tenure wait states for PowerPC master-initiated data operations. This is the minimum delay between TS and DBG. 0 DBG is asserted with TS if the data bus is free. 1 DBG is asserted one cycle after TS if the data bus is not busy. See Section 8.5.1, "Data Bus Arbitration."
3	-	Reserved, should be cleared.
4–7	PRKM	Parking master. Defines the parked master. 0000 CPM high request level 0001 CPM middle request level 0010 CPM low request level (default) 0011 Host bridge Values 0100–1111 are reserved.

Table 4-11. LCL_ACR Field Descriptions

4.3.2.5 Local Bus Arbitration Level Registers (LCL_ALRH and LCL_ACRL)

The local bus arbitration level registers (LCL_ALRH and LCL_ALRL), shown in Figure 4-26 and Figure 4-27, defines arbitration priority for MPC8260 local bus masters 0–7. Priority field 0 has highest-priority. For information about the MPC8260 local bus master indexes see LCL_ACR[PRKM] in Table 4-11.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field		Priority	Field 0)		Priority	Field 1		I	Priority	Field 2	2	I	Priority	Field 3	3
Reset		00	00			00	01			00	10			00	11	
R/W		R/W														
Addr	0x10038															
Bit	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 ³											31				
Field		Priority	Field 4	1		Priority	Field 5	5	Ι	Priority	Field 6	6	Priority Field 7			
Reset		01	00			01	01			01	10			01	11	
R/W								R/	W							
Addr	0x10040															

Figure 4-26. LCL_ALRH

LCL_ALRL, shown in Figure 4-27, defines arbitration priority of MPC8260 local bus masters 8–15.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Field	I	Priority	Field 8	3	I	Priority	Field 9)	F	Priority	Field 1	0	F	Priority	Field 1	1	
Reset		10	00			10	01			10	10			10	11		
R/W		R/W															
Addr		0x1003C															
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
Field	F	Priority	Field 1	2	F	Priority	Field 1	3	F	Priority	Field 1	4	Priority Field 15				
Reset		11	00			11	01			11	10			11	11		
R/W								R/	w								
Addr	0x1003E																

Figure 4-27. LCL_ALRL

4.3.2.6 SIU Module Configuration Register (SIUMCR)

The SIU module configuration register (SIUMCR), shown in Figure 4-28, contains bits that configure various features in the SIU module.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	BBD	ESE	PBSE	CDIS	DP	PC	L2C	PC	LB	PC	AP	PC	CS1	0PC	BC	TLC
Reset						000	000_000	0_000	0_000	0						
R/W	Depends on reset configuration sequence. See Section 5.4.1, "Hard Reset Configuration Word."															
Addr	0x10000															
Bits	16	17	7 18 19 20 21 22 23 24 25 26 27 28 29 30 31													
Field	М	MR	LPBSE							—						
Reset						000	000_000	0_000	0_000	0						
	Depends on reset configuration sequence. See Section 5.4.1, "Hard Reset Configuration Word."															
R/W	I	Depends	on reset	configui	ration s	sequer	nce. Se	e Sect	tion 5.4	4.1, "H	ard Re	set Co	onfigura	ation V	/ord."	

Figure 4-28. SIU Model Configuration Register (SIUMCR)

Table 4-12 describes SIUMCR fields.

Bits	Name			Des	cription		
0	BBD	Bus busy disable. 0 ABB/IRQ2 pin is ABE 1 ABB/IRQ2 pin is IRQ					
1	ESE	External snoop enable. 0 External snooping dis 1 External snooping en	sabled. (G	BL/IRQ1 pin is			
2	PBSE	Parity byte select enab 0 Parity byte select is d 1 Parity byte select is e	lisabled. (
3	CDIS	Core disable. 0 The MPC8260 core is 1 The MPC8260 core is			nctions as a sla	ve device.	
4–5	DPPC	Data parity pins configu EXT_DBG2, EXT_BR3 Setting EARB (to choose these lines.	, EXT_B	G3, and EXT_[DBG3) are oper bined with prog	ational only when A ramming DPPC to 1	CR[EARB] = 0.
		Pin			[OPPC	
				00	01	10	11
		DP(0)/RSRV	ī	-	DP(0)	RSRV	EXT_BR2
		DP(1)/IRQ1		IRQ1	DP(1)	IRQ1	EXT_BG2
		DP(2)/TLBISYNC	/IRQ2	IRQ2	DP(2)	TLBISYNC	EXT_DBG2
		DP(3)/IRQ3		IRQ3	DP(3)	CKSTP_OUT	EXT_BR3
		DP(4)/IRQ4		IRQ4	DP(4)	CORE_SRESET	EXT_BG3
		DP(5)/TBEN/IR	Q5	IRQ5	DP(5)	TBEN	EXT_DBG3
		DP(6)/CSE(0)/IF	RQ6	IRQ6	DP(6)	CSE(0)	IRQ6
		DP(7)/CSE(1)/IF	RQ7	IRQ7	DP(7)	CSE(1)	IRQ7
6–7	L2CPC	L2 cache pins configur	ation.				· · ·
		Dia			Multiplexir	ng	
		Pin		L2CPC = 00	L2CPC = 01	L2CPC = 10	
		CI/BADDR(29)/II	RQ2	CI	IRQ2	BADDR(29)	
		WT/BADDR(30)/I	IRQ3	WT	IRQ3	BADDR(30)	1
		L2_HIT/IRQ4	Ī	L2_HIT	IRQ4	-	
		CPU_BG/BADDR(3	1)/IRQ5	CPU_BG	IRQ5	BADDR(31)	
8–9	LBPC	Local bus pins configur 00 Local bus pins funct 01 Reserved 10 Local bus pins funct 11 Reserved	tion as loo				

Bits	Name		Des	scription											
10–11	APPC	MODCK1/AP(1)/TC(0)/ BNKSEL(0) TC(0) AP(1) BNKSEL(0) MODCK2/AP(2)/TC(1)/ BNKSEL(1) TC(1) AP(2) BNKSEL(1) MODCK3/AP(3)/TC(2)/ BNKSEL(2) TC(2) AP(3) BNKSEL(2) IRQ7/INT_OUT/APE IRQ7/ INT_OUT IRQ7/ INT_OUT IRQ7/ INT_OUT IRQ7/ INT_OUT													
		Dia			APPC										
		Pin	00	01	10	11									
			TC(0)	AP(1)	BNKSEL(0)	-									
			TC(1)	AP(2)	BNKSEL(1)										
			TC(2)	BNKSEL(2)											
		IRQ7/INT_OUT/APE		IRQ7/INT_OUT	IRQ7/ INT_OUT										
		CS11/AP(0)	CS11	AP(0)	CS11	-									
12–13	CS10PC	Chip select 10-pin configuration.				_									
		Dia		CS10PC											
		Pin	00	01	10										
		CS10/BCTL1/DBG_DIS	CS10	BCTL1	DBG_DIS										
14–15	BCTLC	00 BCTL0 is used as W/R contro 01 BCTL0 is used as W/R contro 10 BCTL0 is used as WE contro 11 Reserved	ol. <u>BCTL1</u> is us I. BCTL1 is us	sed as OE contro ed as RE contro	rol. bl.										
16-17	MMR	Mask masters requests. In some only one should be active during initializes system memories and boot scheme by masking the sel hard reset configuration sequem Typically system configuration id system and then enables all oth Note: It is not recommended to r master in the arbiter, since this of 00 No masking on bus request I 01 Reserved 10 The MPC8260's internal core masked (boot master connect 11 All external bus requests ma	boot sequence devices and e ected master's ce see Section lentifies only o er devices by v mask the reque cannot prevent ines. e bus request r ted to externa	e. The active m nables all other bus requests. I 5.4.2, "Hard R ne master is the writing 00 to MM est of a master this master from nasked and ext I bus request 1)	aster, which is the b masters. MMR facil MMR can be configu- eset Configuration E boot device, which IR. which is defined as t m getting a bus gran ernal bus requests to	oot device, itates such a irred through the xamples." initializes the he parked t. wo and three									
18	LPBSE	Local bus parity byte select enal 0 Parity byte select is disabled. 1 Parity byte select is enabled. MPC8260.	LGPL4 outpu												

Table 4-12. SIUMCR Register Field Descriptions (Continued)

19–31

_

Reserved, should be cleared.

4.3.2.7 Internal Memory Map Register (IMMR)

The internal memory map register (IMMR), shown in Figure 4-29, contains identification of a specific device as well as the base address for the internal memory map. Software can deduce availability and location of any on-chip system resources from the values in IMMR. PARTNUM and MASKNUM are mask programmed and cannot be changed for any particular device.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field						_		ISB	_					_		-
Reset		Depen	ds on r	eset co	onfigura	ation se	equenc	e. See	Sectio	n 5.4.1	, "Hard	Reset	Config	uration	Word.'	,
R/W			R/W													
Addr		0x101A8														
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field				PART	NUM							MAS	KNUM			
Reset								-	_							
R/W								F	7							
Addr								0x10	1AA							

Table 4-13 describes IMMR fields.

Table 4-13. IMMR Field Descriptions

Bits	Name	Description
0-14	ISB	Internal space base. Defines the base address of the internal memory space. The value of ISB be configured at reset to one of 32 addresses; it can then be changed to any value by the software. The default is 0, which maps to address 0x0000_0000. ISB defines the 15 msbs of the memory map register base address. IMMR itself is mapped in the internal memory space region. As soon as the ISB is written with a new base address, the IMMR base address is relocated according to the ISB. ISB can be configured to one of 32 possible addresses at reset to enable the configuration of multiple-MPC8260 systems. The number of programmable bits in this field, and hence the resolution of the location of internal space, depends on the internal memory space of a specific implementation. In the MPC8260, all 15 bits can be programmed. See Chapter 3, "Memory Map," for details on the device's internal memory map and to Chapter 5, "Reset," for the available, default initial values.
15	_	Reserved, should be cleared.
16–23	PARTNUM	Part number. This read-only field is mask-programmed with a code corresponding to the part number of the part on which the SIU is located. It is intended to help factory test and user code which is sensitive to part changes. This changes when the part number changes. For example, it would change if any new module is added or if the size of any memory module is changed. It would not change if the part is changed to fix a bug in an existing module. The MPC8260 has an ID of 0x00.
24–31	MASKNUM	Mask number. This read-only field is mask-programmed with a code corresponding to the mask number of the part on which the SIU is located. It is intended to help factory test and user code which is sensitive to part changes. It is programmed in a commonly changed layer and should be changed for all mask set changes. The MPC8260 (Rev 0) has an ID of 0x00.

4.3.2.8 System Protection Control Register (SYPCR)

The system protection control register, shown in Figure 4-30, controls the system monitors, software watchdog period, and bus monitor timing. SYPCR can be read at any time but can be written only once after system reset.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field								S	WTC					-		
Reset		1111_1111_1111														
R/W		R/W														
Addr		0x10004														
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field				BN	ЛТ				PBME	LBME		_		SWE	SWRI	SWP
Reset				1111_	_1111				0	0		00_0		1	1	1
R/W									R/W					-		
Addr								0x	10006							

Figure 4-30. System Protection Control Register (SYPCCR)

Table 4-14 describes SYPCR fields.

Table 4-14	SYPCR	Field Description	IS
------------	-------	-------------------	----

Bits	Name	Description
0–15	SWTC	Software watchdog timer count. Contains the count value for the software watchdog timer.
16–23	BMT	Bus monitor timing. Defines the time-out period for the bus monitor, the granularity of this field is 8 bus clocks. (BMT = 0xFF is translated to 0x7f8 clock cycles). BMT is used both in the 60x and local bus monitors. Note that the value 0 in invalid; an error is generated for each bus transaction.
24	PBME	60x bus monitor enable. 0 60x bus monitor is disabled. 1 The 60x bus monitor is enabled.
25	LBME	Local bus monitor enable. 0 Local bus monitor is disabled. 1 The local bus monitor is enabled.
26–29	_	Reserved, should be cleared.
29	SWE	Software watchdog enable. Enables the operation of the software watchdog timer. It should be cleared by software after a system reset to disable the software watchdog timer.
30	SWRI	Software watchdog reset/interrupt select. 0 Software watchdog timer and bus monitor time-out causes a machine check interrupt to the core. 1 Software watchdog timer and bus monitor time-out causes a soft reset (this is the default value after soft reset).
31	SWP	Software watchdog prescale. Controls the divide-by-2,048 software watchdog timer prescaler. 0 The software watchdog timer is not prescaled. 1 The software watchdog timer clock is prescaled.

4.3.2.9 Software Service Register (SWSR)

The software service register (SWSR) is the location to which the software watchdog timer servicing sequence is written. To prevent software watchdog timer time-out, the user should write 0x556C followed by 0xAA39 to this register, which resides at 0x1000E. SWSR can be written at any time, but returns all zeros when read.

4.3.2.10 60x Bus Transfer Error Status and Control Register 1 (TESCR1)

The 60x bus transfer error status and control register 1 (TESCR1) is shown in Figure 4-31.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	BM	ISBE	PAR	ECC2	ECC1	WP	EXT		тс		-			TT		
Reset				•			0000_	_0000_	0000_0	0000						
R/W		R/W														
Addr		0x10040														
Bits	16	6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31														
Field	_	DMD			_							EC	NT			
Reset							0000_	_0000_	0000_0	0000						
R/W								R/\	N							
Addr	0x10042															

Figure 4-31. The 60x Bus Transfer Error Status and Control Register 1 (TESCR1)

Table 4-15 describes TESCR1 fields.

Table 4-15. TESCR1 Field Descriptions

Bits	Name	Description
0	BM	60x bus monitor time-out. Set when \overline{TEA} is asserted due to the 60x bus monitor time-out.
1	ISBE	Internal space bus error. Indicates that TEA was asserted due to error on a transaction to MPC8260's internal memory space. TESCR2[REGS, DPR] indicate which of MPC8260's internal slaves caused the error.
2	PAR	$60x$ bus parity error. Indicates that $\overline{\text{TEA}}$ was asserted due to parity error on the $60x$ bus. TESCR2[PB] indicates which byte lane caused the error; TESCR2[BNK] indicates which memory controller bank was accessed.
3	ECC2	Double ECC error. Indicates that TEA was asserted due to double ECC error on the 60x bus. TESCR2[BNK] indicates which memory controller bank was accessed.
4	ECC1	Single ECC error. Indicates that $\overline{\text{TEA}}$ was asserted due to single bit ECC error on the 60x bus. TESCR2[BNK] indicates which memory controller bank was accessed. Single-bit errors are usually fixed by the ECC logic. However, if the ECC counter (ECNT) has reached its maximum value, all single-bit errors cause the assertion of TEA.
5	WP	Write protect error. Indicates that a write was attempted to a 60x bus memory region that was defined as read-only in the memory controller. Note that this alone does not cause TEA assertion. Usually, in this case, the bus monitor will time-out.

Bits	Name	Description
6	EXT	External error. Indicates that TEA was asserted by an external bus slave.
7–9	тс	Transfer code. Indicates the transfer code of the 60x bus transaction that caused the \overline{TEA} . See Section 8.4.3.2, "Transfer Code Signals TC[0–2]," for a description of the various transfer codes.
10	_	Reserved, should be cleared.
11–15	TT	Transfer type. These bits indicates the transfer type of the 60x bus transaction that caused the \overline{TEA} . See Section 8.4.3.1, "Transfer Type Signal (TT[0–4]) Encoding," for a description of the various transfer types.
16	_	Reserved, should be cleared.
17	DMD	Data errors disable. 0 Errors are enabled. 1 All data errors (parity and single and double ECC errors) on the 60x bus are disabled.
18–23	_	Reserved, should be cleared.
24–31	ECNT	Single ECC error counter.Indicates the number of single ECC errors that occurred in the system. When the counter reaches its maximum value (255), TEA is asserted for all single ECC errors. This feature gives the system the ability to withstand a few random errors yet react to a catastrophic failure. The user can set a lower threshold to the number of tolerated single ECC errors by writing some value to ECNT. The counter starts from this value instead of zero.

Table 4-15. TESCR1 Field Descriptions (Continued)

4.3.2.11 60x Bus Transfer Error Status and Control Register 2 (TESCR2)

The 60x bus transfer error status and control register 2 (TESCR2) is shown in Figure 4-32.

Bits	0 1 2 3					5	6	7	8	9	10	11	12	13	14	15
Field	_	REGS	DPR		-	_		LCL	PB							
Reset	0000_0000_0000															
R/W	R/W															
Addr	0x10044															
	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Bits Field	16	17	18	19	20	21 BNI		23	24	25	26	27	28	29	30	31
	16	17	18	19	20	BNł	<	23		-	26	27	28	29	30	31
Field	16	17	18	19	20	BNł	<		000_0	-	26	27	28	29	30	31

Figure 4-32. 60x Bus Transfer Error Status and Control Register 2 (TESCR2)

The TESCR2 register is described in Table 4-16.

Bits	Name	Description
0	_	Reserved, should be cleared.
1	REGS	Internal registers error. An error occurred in a transaction to the MPC8260's internal registers.
2	DPR	Dual port ram error. An error occurred in a transaction to the MPC8260's dual-port RAM.
3–6	_	Reserved, should be cleared.
7	LCL	Local bus bridge error. An error occurred in a transaction to the MPC8260's 60x bus to local bus bridge.
8–15	PB	Parity error on byte. There are eight parity error status bits, one per 8-bit lane. A bit is set for the byte that had a parity error.
16–27	BNK	Memory controller bank. There are twelve error status bits, one per memory controller bank. A bit is set for the 60x bus memory controller bank that had an error. Note that this field is invalid if the error was not caused by ECC or parity checks.
28–31	_	Reserved, should be cleared.

Table 4-16. TESCR2 Field Descriptions

4.3.2.12 Local Bus Transfer Error Status and Control Register 1 (L_TESCR1)

The local bus transfer error status and control register 1 (L_TESCR1) is shown in Figure 4-33.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
Field	BM	-	PAR	-	- WP – TC –							- тт						
Reset	0000_0000_0000																	
R/W	R/W																	
Addr	0x10048																	
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31		
Field	-	DMD					-		-	_			-					
Reset							0000	_0000	_0000_	_0000								
R/W								R	Ŵ									
Addr	0x1004A																	

Figure 4-33. Local Bus Transfer Error Status and Control Register 1 (L_TESCR1)

The L_TESCR1 register bits are described in Table 4-17.

Bits	Name	Description
0	BM	Bus monitor time-out. Indicates that TEA was asserted due to the local bus monitor time-out.
1	_	Reserved, should be cleared.
2	PAR	Parity error. Indicates that $\overline{\text{TEA}}$ was asserted due to parity error on the local bus. L_TESCR2[PB] indicates the byte lane that caused the error and L_TESCR2[BNK] indicates which memory controller bank was accessed.
3–4	_	Reserved, should be cleared.
5	WP	Write protect error. Indicates that a write was attempted to a local bus memory region that was defined as read-only in the memory controller. Note that this alone does not cause TEA assertion. Usually, in this case, the bus monitor will time-out.
6	-	Reserved, should be cleared.
7–9	TC	Transfer code. These bits indicates the transfer code of the local bus transaction that caused the TEA. Section 8.4.3.2, "Transfer Code Signals TC[0–2], describes transfer codes.
10	-	Reserved, should be cleared.
11–15	TT	Transfer type. Indicates the transfer type of the local bus transaction that caused the \overline{TEA} . Section 8.4.3.1, "Transfer Type Signal (TT[0–4]) Encoding," describes the various transfer types.
16	_	Reserved, should be cleared.
17	DMD	Data errors disable. Setting this bit disables parity errors on the local bus.
18–31	_	Reserved, should be cleared.

Table 4-17. L_TESCR1 Field Descriptions

4.3.2.13 Local Bus Transfer Error Status and Control Register 2 (L_TESCR2)

The local bus transfer error status and control register 2 (L_TESCR2) is shown in Figure 4-34.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field						-	_							Р	В	
Reset	0000_0000_0000															
R/W	R/W															
Addr	0x1004C															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field						BI	NK							-	_	
Reset							0000	_0000	_0000_	_0000						
R/W								R	Ŵ							
Addr	0x1004E															

Figure 4-34. Local Bus Transfer Error Status and Control Register 2 (L_TESCR2)

Table 4-18 describes L_TESCR2 fields.

Bits	Name	Description
0–11	-	Reserved, should be cleared.
12–15	PB	Parity error on byte. There are four parity error status bits, one per 8-bit lane. A bit is set for the byte that had a parity error.
16–27	BNK	Memory controller bank. There are twelve error status bits, one per memory controller bank. A bit is set for the local bus memory controller bank that had an error. Note that BNK is invalid if the error was not caused by ECC or PARITY checks.
28–31	_	Reserved, should be cleared.

Table 4-18. L_TESCR2 Field Descriptions

4.3.2.14 Time Counter Status and Control Register (TMCNTSC)

The time counter status and control register (TMCNTSC), shown in Figure 4-35, is used to enable the different TMCNT functions and for reporting the source of the interrupts. The register can be read at any time. Status bits are cleared by writing ones; writing zeros does not affect the value of a status bit.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Field				-	_				SEC	ALR	-	– SIE ALE TCF					
Reset		0000_0000_0000															
R/W		R/W															
Addr		0x10220															

Figure 4-35. Time Counter Status and Control Register (TMCNTSC)

Table 4-19 describes TMCNTSC fields.

Table 4-19. TMCNTSC Field Descriptions

Bits	Name	Description
0–7	_	Reserved, should be cleared.
8	SEC	Once per second interrupt. This status bit is set every second and should be cleared by software.
9	ALR	Alarm interrupt. This status bit is set when the value of the TMCNT is equal to the value programmed in the alarm register.
10–11	-	Reserved, should be cleared.
12	SIE	Second interrupt enable. 0 The time counter does not generate an interrupt when SEC is set. 1 The time counter generates an interrupt when SEC is set.
13	ALE	Alarm interrupt enable. If ALE = 1, the time counter generates an interrupt when ALR is set.

Bits	Name	Description
14	TCF	Time counter frequency. The input clock to the time counter may be either 4 MHz or 32 KHz. The user should set the TCF bit according to the frequency of this clock. 0 The input clock to the time counter is 4 MHz. 1 The input clock to the time counter is 32 KHz. See Section 4.1.2, "Timers Clock" for further details.
15	TCE	Time counter enable. Is not affected by soft or hard reset.0 The time counter is disabled.1 The time counter is enabled.

Table 4-19. TMCNTSC Field Descriptions (Continued)

4.3.2.15 Time Counter Register (TMCNT)

The time counter register (TMCNT), shown in Figure 4-36, contains the current value of the time counter.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field				-				-	TMCN.	Т						
Reset	_															
R/W	R/W															
Addr	0x10224															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field				-				-	TMCN.	Т						
Reset									—							
R/W	R/W															
Addr	0x10226															

Figure 4-36. Time Counter Register (TCMCNT)

4.3.2.16 Time Counter Alarm Register (TMCNTAL)

The time counter alarm register (TMCNTAL), shown in Figure 4-37, holds a value (ALARM). When the value of TMCNT equals ALARM, a maskable interrupt is generated.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	ALARM															
Reset	—															
R/W	R/W															
Addr	0x1022C															
Bits	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31											31				
Field	ALARM															
Reset	_															
R/W	R/W															
Addr	0x1222E															

Figure 4-37. Time Counter Alarm Register (TMCNTAL)

Table 4-20 describes TMCNTAL fields.

Table 4-20. TMCNTAL Field Descriptions

Bits	Name	Description
0–31		The alarm interrupt is generated when ALARM field matches the corresponding TMCNT bits. The resolution of the alarm is 1 second.

4.3.3 Periodic Interrupt Registers

The periodic interrupt registers are described in the following sections.

4.3.3.1 Periodic Interrupt Status and Control Register (PISCR)

The periodic interrupt status and control register (PISCR), shown in Figure 4-38, contains the interrupt request level and the interrupt status bit. It also contains the controls for the 16 bits to be loaded in a modulus counter.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	_									– PIE PTF						PTE
Reset	0000_0000_0000															
R/W	R/W															
Addr	0x10240															

Figure 4-38. Periodic Interrupt Status and Control Register (PISCR)

Table 4-21 describes PISCR fields.

Bits	Name	Description
0–7	-	Reserved, should be cleared.
8	PS	Periodic interrupt status. Asserted if the PIT issues an interrupt. The PIT issues an interrupt after the modulus counter counts to zero. The PS bit can be negated by writing a one to PS. A write of zero has no effect on this bit.
9–12	_	Reserved, should be cleared.
13	PIE	Periodic interrupt enable. If PIE = 1, the periodic interrupt timer generates an interrupt when PS = 1.
14	PTF	 Periodic interrupt frequency. The input clock to the periodic interrupt timer may be either 4 MHz or 32 KHz. The user should set the PTF bit according to the frequency of this clock. 0 The input clock to the periodic interrupt timer is 4 MHz. 1 The input clock to the periodic interrupt timer is 32 KHz. See Section 4.1.2, "Timers Clock," for further details
15	PTE	Periodic timer enable. This bit controls the counting of the periodic interrupt timer. When the timer is disabled, it maintains its old value. When the counter is enabled, it continues counting using the previous value. 0 Disable counter. 1 Enable counter

Table 4-21. PISCR Field Descriptions

4.3.3.2 Periodic Interrupt Timer Count Register (PITC)

The periodic interrupt timer count register (PITC), shown in Figure 4-39, contains the 16 bits to be loaded in a modulus counter.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field								Pľ	тс							
Reset		0000_0000_0000														
R/W		R/W														
Addr	0x10244															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field								-	_							
Reset		0000_0000_0000														
R/W		R/W														
Addr		0x10246														

Figure 4-39. Periodic interrupt Timer Count Register (PITC)

Table 4-22 describes PITC fields.

Bits	Name	Description
0–15	PITC	Periodic interrupt timing count. Bits 0–15 are defined as the PITC, which contains the count for the periodic timer. Setting PITC to 0xFFFF selects the maximum count period.
16–31	_	Reserved, should be cleared.

Table 4-22. PITC Field Descriptions

4.3.3.3 Periodic Interrupt Timer Register (PITR)

The periodic interrupt timer register (PITR), shown in Figure 4-40, is a read-only register that shows the current value in the periodic interrupt down counter. The PITR counter is not affected by reads or writes to it.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field								Р	IT							
Reset		0000_0000_0000														
R/W		Read Only														
Addr	0x10248															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field		_														
Reset		0000_0000_0000														
R/W		Read Only														
Addr	0x1024A															

Figure 4-40. Periodic Interrupt Timer Register (PITR)

Table 4-23 describes PITR fields.

Table 4-23. PITR Field Descriptions

Bits	Name	Description
0–15	PITC	Periodic interrupt timing count. Bits 0–15 are defined as the PIT. It contains the current count remaining for the periodic timer. Writes have no effect on this field.
16–31	_	Reserved, should be cleared.

4.4 SIU Pin Multiplexing

Some functions share pins. The actual pinout of the MPC8260 is shown in the hardware specifications. The control of the actual functionality used on a specific pin is shown in

Table 4-24.

Pin Name	Pin Configuration Control
GBL/IRQ1 CI/BADDR29/IRQ2 WT/BADDR30/IRQ3 L2_HIT/IRQ4 CPU_BG/BADDR31/IRQ5 ABB/IRQ2 DBB/IRQ3 NC/DP0/RSRV/EXT_BR2 IRQ1/DP1/EXT_BG2 IRQ2/DP2/TLBISYNC/EXT_DBG2 IRQ3/DP3/CKSTP_OUT/EXT_BG3 IRQ5/DP5/TBEN/EXT_DBG3 IRQ5/DP5/TBEN/EXT_BG3 IRQ5/DP5/TBEN/EXT_BG3 IRQ5/DP5/TBEN/EXT_BG3 IRQ5/DP5/TBEN/EXT_BG3 IRQ5/DP5/TBEN/EXT_BG3 IRQ5/DP5/TBEN/EXT_BG3 IRQ5/DP5/TBEN/EXT_BG3 IRQ5/DP5/TBEN/EXT_BG3 IRQ5/DP1/LA18 DEVSEUL_A16 CKST0P_OUT/INFIL_A18 DEVSEUL_A20 PERR/L_A21<	Controlled by SIUMCR programming see Section 4.3.2.6, "SIU Module Configuration Register (SIUMCR)," for more details.
PWE[0-7]/PSDDQM[0-7]/PBS[0-7] PSDA10/PGPL0 PSDWE/PGPL1 POE/PSDRAS/PGPL2 PSDCAS/PGPL3 PGTA/PUPMWAIT/PGPL4/PPBS PSDAMUX/PGPL5 LBS[0-3]/LSDDOM[0-3]/LWE[0-3] LGPL0/LSDA10 LGPL1/LSDWE LGPL2/LSDRAS/LOE LGPL3/LSDCAS LPBS/LGPL4/LUPWAIT/LGTA LGPL5/LSDAMUX	Controlled dynamically according to the specific memory controller machine that handles the current bus transaction.

Table 4-24	. SIU Pins	Multiplexing	Control
------------	------------	--------------	---------

Part II. Configuration and Reset

Chapter 5 Reset

The MPC8260 has several inputs to the reset logic:

- Power-on reset (PORESET)
- External hard reset (HRESET)
- External soft reset (SRESET)
- Software watchdog reset
- Bus monitor reset
- Checkstop reset
- JTAG reset

All of these reset sources are fed into the reset controller and, depending on the source of the reset, different actions are taken. The reset status register, described in Section 5.2, "Reset Status Register (RSR)," indicates the last sources to cause a reset.

5.1 Reset Causes

Table 5-1 describes reset causes.

Table	5-1.	Reset	Causes
-------	------	-------	--------

Name	Description
Power-on reset (PORESET)	Input pin. Asserting this pin initiates the power-on reset flow that resets all the chip and configures various attributes of the chip including its clock mode.
Hard reset (HRESET)	This is a bidirectional I/O pin. The MPC8260 can detect an external assertion of HRESET only if it occurs while the MPC8260 is not asserting reset. During HRESET, SRESET is asserted. HRESET is an open-collector pin.
Soft reset (SRESET)	Bidirectional I/O pin. The MPC8260 can only detect an external assertion of SRESET if it occurs while the MPC8260 is not asserting reset. SRESET is an open-drain pin.
Software watchdog reset	After the MPC8260's watchdog counts to zero, a software watchdog reset is signaled. The enabled software watchdog event then generates an internal hard reset sequence.
Bus monitor reset	After the MPC8260s bus monitor counts to zero, a bus monitor reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence.
Checkstop reset	If the core enters checkstop state and the checkstop reset is enabled (RMR[CSRE] = 1), the checkstop reset is asserted. The enabled checkstop event then generates an internal hard reset sequence.
JTAG reset	When JTAG logic asserts the JTAG soft reset signal, an internal soft reset sequence is generated.

5.1.1 Reset Actions

The reset block has a reset control logic that determines the cause of reset, synchronizes it if necessary, and resets the appropriate logic modules. The memory controller, system protection logic, interrupt controller, and parallel I/O pins are initialized only on hard reset. Soft reset initializes the internal logic while maintaining the system configuration.

Table 5-2 identifies reset actions for each reset source.

Reset Source	Reset Logic and PLL States Reset	System Configuration Sampled	Clock Module Reset	HRESET Driven	Other Internal Logic Reset	SRESET Driven	Core Reset
Power-on reset	Yes	Yes	Yes	Yes	Yes	Yes	Yes
External hard reset Software watchdog Bus monitor Checkstop	No	Yes	Yes	Yes	Yes	Yes	Yes
JTAG reset External soft reset	No	No	No	No	Yes	Yes	Yes

Table 5-2. Reset Actions for Each Reset Source

5.1.2 Power-On Reset Flow

Assertion of the PORESET external pin initiates the power-on reset flow. PORESET should be asserted externally for at least 16 input clock cycles after external power to the chip reaches at least 2/3 Vcc. The value driven on RSTCONF while PORESET changes from assertion to negation determines the chip configuration. If RSTCONF is negated (driven high) while PORESET changes, the chip acts as a configuration slave. If RSTCONF is asserted while PORESET changes, the chip acts as a configuration master. Section 5.4, "Reset Configuration," explains the configuration sequence and the terms 'configuration master' and 'configuration slave.'

Directly after the negation of $\overrightarrow{PORESET}$ and choice of the reset operation mode as configuration master or configuration slave, the MPC8260 starts the configuration process. The MPC8260 asserts \overrightarrow{HRESET} and \overrightarrow{SRESET} throughout the power-on reset process, including configuration. Configuration takes 1,024 CLOCKIN cycles, after which MODCK[1–3] are sampled to determine the chips working mode. Next the MPC8260 halts until the main PLL locks. As described in Section 9.2, "Clock Configuration," the main PLL locks according to MODCK[1–3], which are sampled, and to MODCK_HI (MODCK[4–7]) taken from the reset configuration word. The main PLL lock can take up to 200 μ s depending on the specific chip. During this time \overrightarrow{HRESET} and \overrightarrow{SRESET} are asserted. When the main PLL is locked, the clock block starts distributing clock signals in the chip. \overrightarrow{HRESET} remains asserted for another 512 clocks and is then released. The \overrightarrow{SRESET} is released three clocks later.

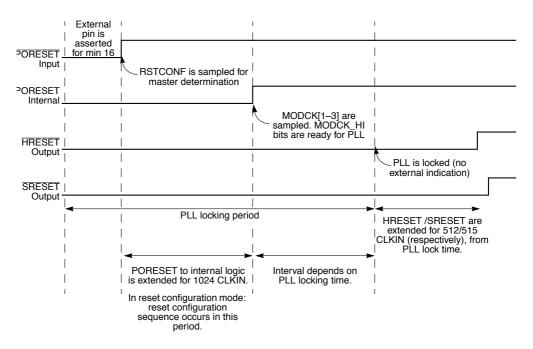
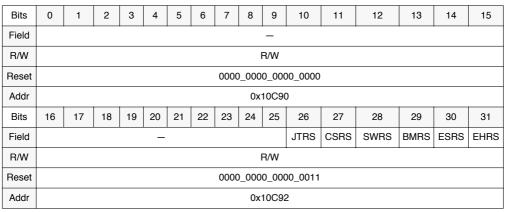


Figure 5-3 shows the power-on reset flow.

5.1.3 HRESET Flow


The $\overline{\text{HRESET}}$ flow may be initiated externally by asserting $\overline{\text{HRESET}}$ or internally when the chip detects a reason to assert $\overline{\text{HRESET}}$. In both cases the chip continues asserting $\overline{\text{HRESET}}$ and $\overline{\text{SRESET}}$ throughout the $\overline{\text{HRESET}}$ flow. The $\overline{\text{HRESET}}$ flow begins with the hard reset configuration sequence, which configures the chip as explained in Section 5.4, "Reset Configuration." After the chip asserts $\overline{\text{HRESET}}$ and $\overline{\text{SRESET}}$ for 1,024 input clock cycles, it releases both signals and exits the $\overline{\text{HRESET}}$ flow. An external pull-up resistor should negate the signals. After negation is detected, a 16-cycle period is taken before testing the presence of an external (hard/soft) reset.

5.1.4 SRESET Flow

The SRESET flow may be initiated externally by asserting SRESET or internally when the chip detects a cause to assert SRESET. In both cases the chip asserts SRESET for 512 input clock cycles, after which the chip releases SRESET and exits the SRESET flow. An external pull-up resistor should negate SRESET; after negation is detected, a 16-cycle period is taken before testing the presence of an external (hard/soft) reset. While SRESET is asserted, internal hardware is reset but hard reset configuration does not change.

5.2 Reset Status Register (RSR)

The reset status register (RSR), shown in Figure 5-1, is memory-mapped into the MPC8260's SIU register map.

Figure 5-1. Reset Status Register (RSR)

Table 5-3 describes RSR fields.

Bits	Name	Function
0–25	-	Reserved, should be cleared.
26	JTRS	JTAG reset status. When the JTAG reset request is set, JTRS is set and remains set until software clears it. JTRS is cleared by writing a 1 to it (writing zero has no effect). 0 No JTAG reset event occurred 1 A JTAG reset event occurred
27	CSRS	Check stop reset status. When the core enters a checkstop state and the checkstop reset is enabled by the RMR[CSRE], CSRS is set and it remains set until software clears it. CSRS is cleared by writing a 1 to it (writing zero has no effect). 0 No enabled checkstopreset event occurred 1 An enabled checkstopreset event occurred
28	SWRS	Software watchdog reset status. When a software watchdog expire event (which causes a reset) is detected, the SWRS bit is set and remains that way until the software clears it. SWRS is cleared by writing a 1 to it (writing zero has no effect). 0 No software watchdog reset event occurred 1 A software watchdog reset event has occurred
29	BMRS	Bus monitor reset status. When a bus monitor expire event (which causes a reset) is detected, BMRS is set and remains set until the software clears it. BMRS can be cleared by writing a 1 to it (writing zero has no effect). 0 No bus monitor reset event has occurred 1 A bus monitor reset event has occurred

Bits	Name	Function
30	ESRS	External soft reset status. When an external soft reset event is detected, ESRS is set and it remains that way until software clears it. ESRS is cleared by writing a 1 to it (writing zero has no effect). 0 No external soft reset event has occurred 1 An external soft reset event has occurred
31	EHRS	External hard reset status. When an external hard reset event is detected, EHRS is set and it remains set until software clears it. EHRS is cleared by writing a 1 (writing zero has no effect). 0 No external hard reset event has occurred 1 An external hard reset event has occurred

Table 5-3. RSR Field Descriptions (Continued)

Note that RSR accumulates reset events. For example, because software watchdog expiration results in a hard reset, which in turn results in a soft reset, RSR[SWRS], RSR[ESRS] and RSR[EHRS] are all set after a software watchdog reset.

5.3 Reset Mode Register (RMR)

The reset mode register (RMR), shown in Figure 5-2, is memory-mapped into the SIU register map.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	_															
R/W	R/W															
Reset	0000_0000_0000															
Addr	0x10C94															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	_									CSRE						
R/W	R/W															
Reset	0000_0000_0000															
Addr		0x10C96														

Figure 5-2. Reset Mode Register (RMR)

Table 5-4 describes RMR fields.

Table 5-4. RMR Field Descriptions

Bits	Name	Function
0–30	—	Reserved, should be cleared.
31	CSRE	Checkstop reset enable. The core can enter checkstop mode as the result of several exception conditions. Setting CSRE configures the chip to perform a hard reset sequence whenever the core enters checkstop state. 0 Reset not generated when core enters checkstop state. 1 Reset generated when core enters checkstop state.

5.4 Reset Configuration

Various features may be configured during hard reset or power-on reset. For example, one configurable features is core disable, which can be used to configure a system that uses two MPC8260s, one a slave device and the other a the host with an active core. Most configurable features are reconfigured whenever HRESET is asserted. However, the clock mode is configured only when PORESET is asserted.

The 32-bit hard reset configuration word is described in Section 5.4.1, "Hard Reset Configuration Word." The reset configuration sequence is designed to support a system that uses up to eight MPC8260 chips, each configured differently. It needs no additional glue logic for reset configuration.

The description below explains the operation of this sequence with regard to a multiple-MPC8260 system. This and other simpler systems are described in Section 5.4.2, "Hard Reset Configuration Examples." In a typical multi-MPC8260 system, one MPC8260 should act as the configuration master while all other MPC8260s should act as configuration slaves. The configuration master in the system typically reads the various configuration words from EPROM in the system and uses them to configure itself as well as the configuration slaves. How the MPC8260 acts during reset configuration is determined by the value of the RSTCONF input while PORESET changes from assertion to negation. If RSTCONF is asserted while PORESET changes, MPC8260 is a configuration master; otherwise, it is a slave.

In a typical multiple-MPC8260 system, $\overline{\text{RSTCONF}}$ input of the configuration master should be hard wired to ground, while $\overline{\text{RSTCONF}}$ inputs of other chips should be connected to the high-order address bits of the configuration master, as described in Table 5-5.

Configured Device	RSTCONF Connection
Configuration master	GND
First configuration slave	A0
Second configuration slave	A1
Third configuration slave	A2
Fourth configuration slave	A3
Fifth configuration slave	A4
Sixth configuration slave	A5
Seventh configuration slave	A6

 Table 5-5. RSTCONF Connections in Multiple-MPC8260 Systems

The configuration words for all MPC8260s are assumed to reside in an EPROM connected to $\overline{CS0}$ of the configuration master. Because the port size of this EPROM is not known to the configuration master, before reading the configuration words, the configuration master reads all configuration words byte-by-byte only from locations that are independent of port size.

Table 5-6 shows addresses that should be used to configure the various MPC8260s. Byte addresses that do not appear in this table have no effect on the configuration of the MPC8260 chips. The values of the bytes in Table 5-6 are always read on byte lane D[0-7] regardless of the port size.

Configured Device	Byte 0 Address	Byte 1 Address	Byte 2 Address	Byte 3 Address
Configuration master	0x00	0x08	0x10	0x18
First configuration slave	0x20	0x28	0x30	0x38
Second configuration slave	0x40	0x48	0x50	0x58
Third configuration slave	0x60	0x68	0x70	0x78
Fourth configuration slave	0x80	0x88	0x90	0x98
Fifth configuration slave	0xA0	0xA8	0xB0	0xB8
Sixth configuration slave	0xC0	0xC8	0xD0	0xD8
Seventh configuration slave	0xE0	0xE8	0xF0	0xF8

Table 5-6. Configuration EPROM Addresses

The configuration master first reads a value from address 0x00 then reads a value from addresses 0x08, 0x10, and 0x18. These four bytes are used to form the configuration word of the configuration master, which then proceeds reading the bytes that form the configuration word of the first slave device. The configuration master drives the whole configuration word on D[0-31] and toggles its A0 address line. Each configuration slave uses its **RSTCONF** input as a strobe for latching the configuration word during **HRESET** assertion time. Thus, the first configuration slave whose RSTCONF input is connected to configuration master's A0 output latches the word driven on D[0-31] as its configuration word. In this way the configuration master continues to configure all MPC8260 chips in the system. The configuration master always reads eight configuration words regardless of the number of MPC8260 parts in the system. In a simple system that uses one stand-alone MPC8260, it is possible to use the default hard reset configuration word (all zeros). This is done by tying **RSTCONF** input to VCC. Another scenario may be a system which has no boot EPROM. In this case the user can configure the MPC8260 as a configuration slave by driving RSTCONF to 1 during PORESET assertion and then applying a negative pulse on **RSTCONF** and an appropriate configuration word on D[0-31]. In such a system, asserting HRESET in the middle of operation causes the MPC8260 to return to the configuration programmed after PORESET assertion (not the default configuration represented by configuration word of all zeros).

5.4.1 Hard Reset Configuration Word

The contents of the hard reset configuration word are shown in Figure 5-3.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	d EARB EXMC CDIS EBM BPS CIP ISPS L2CPC DPPC -							ISB								
Reset		0000_0000_0000														
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	BMS	AS BBD MMR LBPC				PC	C APPC CS10PC – MODCH						СК_Н			
Reset	0000_0000_0000															

Figure 5-3. Hard Reset Configuration Word

Table 5-7 describes hard reset configuration word fields.

Table 5-7. Hard Reset Configuration Word Field Descriptions

Bits	Name	Description
0	EARB	External arbitration. Defines the initial value for ACR[EARB]. If EARB = 1, external arbitration is assumed. See Section 4.3.2.2, "60x Bus Arbiter Configuration Register (PPC_ACR)."
1	EXMC	External MEMC. Defines the initial value of BR0[EMEMC]. If EXMC = 1, an external memory controller is assumed. See Section 10.3.1, "Base Registers (BRx)."
2	CDIS	Core disable. Defines the initial value for the SIUMCR[CDIS]. 0 The core is active. See Section 4.3.2.6, "SIU Module Configuration Register (SIUMCR)." 1 The core is disabled. In this mode the MPC8260 functions as a slave.
3	EBM	External bus mode. Defines the initial value of BCR[EBM]. See Section 4.3.2.1, "Bus Configuration Register (BCR)."
4–5	BPS	Boot port size. Defines the initial value of BR0[PS], the port size for memory controller bank 0. 00 64-bit port size 01 8-bit port size 10 16-bit port size 11 32-bit port size See Section 10.3.1, "Base Registers (BRx)."
6	CIP	Core initial prefix. Defines the initial value of MSR[IP]. Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended with Fs or 0s. In the following description, nnnnn is the offset of the exception vector. 0 MSR[IP] = 1 (default). Exceptions are vectored to the physical address 0xFFFn_nnnn 1 MSR[IP] = 0 Exceptions are vectored to the physical address 0x000n_nnnn.
7	ISPS	Internal space port size. Defines the initial value of BCR[ISPS]. Setting ISPS configures the MPC8260 to respond to accesses from a 32-bit external master to its internal space. See Section 4.3.2.1, "Bus Configuration Register (BCR)."
8–9	L2CPC	L2 cache pins configuration. Defines the initial value of SIUMCR[L2CPC]. See Section 4.3.2.6, "SIU Module Configuration Register (SIUMCR)."
10–11	DPPC	Data parity pin configuration. Defines the initial value of SIUMCR[DPPC]. For more details refer to Section 4.3.2.6, "SIU Module Configuration Register (SIUMCR)."
12		Reserved, should be cleared.

Bits	Name	Description
13–15	ISB	Initial internal space base select. Defines the initial value of IMMR[0–14] and determines the base address of the internal memory space. 000 0x0000_0000 001 0x00F0_0000 010 0x0F0_0000 011 0x0FF0_0000 100 0xF00_0000 101 0xFF0_0000 101 0xFF0_0000 111 0xFFF0_0000 111 0xFFF0_0000 111 0xFFF0_0000 121 0x7FF0_0000
16	BMS	Boot memory space. Defines the initial value for BR0[BA]. There are two possible boot memory regions: HIMEM and LOMEM. 0 0xFE00_0000-0xFFFF_FFF 1 0x0000_0000-0x01FF_FFFF See Section 10.3.1, "Base Registers (BRx)."
17	BBD	Bus busy disable. Defines the initial value of SIUMCR[BBD]. See Section 4.3.2.6, "SIU Module Configuration Register (SIUMCR)."
18–19	MMR	Mask masters requests. Defines the initial value of SIUMCR[MMR]. See Section 4.3.2.6, "SIU Module Configuration Register (SIUMCR)."
20–21	LBPC	Local bus pin configuration. Defines the initial value of SIUMCR[LBPC]. See Section 4.3.2.6, "SIU Module Configuration Register (SIUMCR)."
22–23	APPC	Address parity pin configuration. Defines the initial value of SIUMCR[APPC]. See Section 4.3.2.6, "SIU Module Configuration Register (SIUMCR)."
24–25	CS10PC	CS10 pin configuration. Defines the initial value of SIUMCR[CS10PC]. See Section 4.3.2.6, "SIU Module Configuration Register (SIUMCR)."
26–27	-	Reserved, should be cleared.
28–31	MODCK_H	High-order bits of the MODCK bus, which determine the clock reset configuration. See Chapter 9, "Clocks and Power Control," for details.

Table 5-7. Hard Reset Configuration Word Field Descriptions (Continued)

5.4.2 Hard Reset Configuration Examples

This section presents some examples of hard reset configurations in different systems.

5.4.2.1 Single MPC8260 with Default Configuration

This is the simplest configuration scenario. It can be used if the default values achieved by clearing the hard reset configuration word are desired. This is applicable only for systems using single-MPC8260 bus mode (as opposed to 60x bus mode). To enter this mode, tie $\overline{\text{RSTCONF}}$ to V_{CC} as shown in Figure 5-4. The MPC8260 does not access the boot EPROM; it is assumed that the default configuration is used upon exiting hard reset.

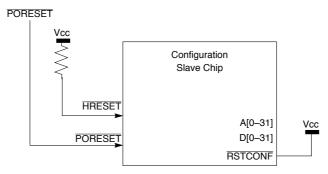


Figure 5-4. Single Chip with Default Configuration

5.4.2.2 Single MPC8260 Configured from Boot EPROM

For a configuration that differs from the default, the MPC8260 can be used as a configuration master by tying $\overline{\text{RSTCONF}}$ to GND as shown in Figure 5-5. The MPC8260 can access the boot EPROM. It is assumed the configuration is as defined there upon exiting hard reset.

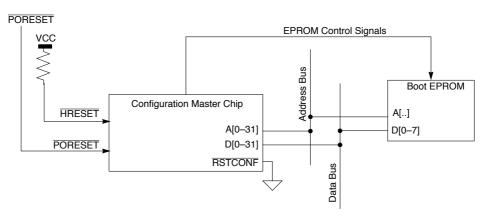


Figure 5-5. Configuring a Single Chip from EPROM

5.4.2.3 Multiple MPC8260s Configured from Boot EPROM

For a complex system with multiple MPC8260 devices that may each be configured differently, configuration is done by assigning one configuration master and multiple configuration slaves. The MPC8260 that controls the boot EPROM should be the configuration master—RSTCONF tied to GND. The RSTCONF inputs of the other MPC8260 devices are tied to the address bus lines, thus assigning them as configuration slaves. See Figure 5-6.

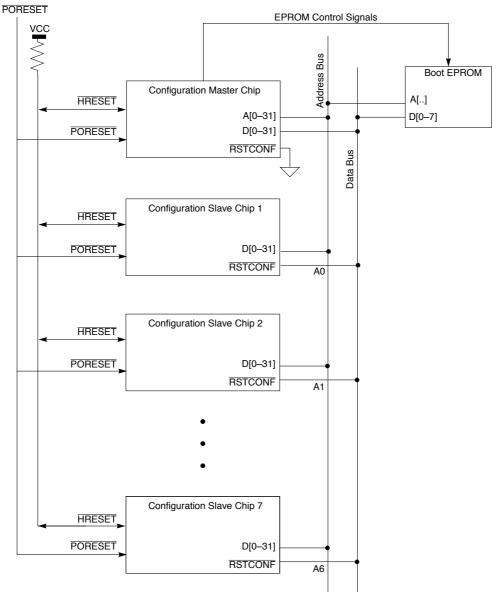


Figure 5-6. Configuring Multiple Chips

Part II. Configuration and Reset

In this system, the configuration master initially reads its own configuration word. It then reads other configuration words and drives them to the configuration slaves by asserting RSTCONF. As Figure 5-6 shows, this complex configuration is done without additional glue logic. The configuration master controls the whole process by asserting the EPROM control signals and the system's address signals as needed.

5.4.2.4 Multiple MPC8260s in a System with No EPROM

In some cases, the configuration master capabilities of the MPC8260 cannot be used. This can happen for example if there is no boot EPROM in the system or the boot EPROM is not controlled by an MPC8260.

If this occurs, the user must do one of the following:

- Accept the default configuration,
- Emulate the configuration master actions in external logic (where the MPC8260 is a configuration slave).
- The external hardware should be connected to all RSTCONF pins of the different devices and to the upper 32 bits of the data bus. During PORESET, the rising edge the external hardware should negate all RSTCONF inputs to put all of the devices in their configuration slave mode. For 1,024 clocks after PORESET negation, the external hardware can configure the different devices by driving appropriate configuration words on the data bus and asserting RSTCONF for each device to strobe the data being received.

Part III The Hardware Interface

Intended Audience

Part III is intended for system designers who need to understand how each MPC8260 signal works and how those signals interact.

Contents

Part III describes external signals, clocking, memory control, and power management of the MPC8260.

It contains the following chapters:

- Chapter 6, "External Signals," shows a functional pinout of the MPC8260 and describes the MPC8260 signals.
- Chapter 7, "60x Signals," describes signals on the 60x bus.
- Chapter 8, "The 60x Bus," describes the operation of the bus used by PowerPC processors.
- Chapter 9, "Clocks and Power Control," describes the clocking architecture of the MPC8260.
- Chapter 10, "Memory Controller," describes the memory controller, which controlling a maximum of eight memory banks shared between a general-purpose chip-select machine (GPCM) and three user-programmable machines (UPMs).
- Chapter 11, "Secondary (L2) Cache Support," provides information about implementation and configuration of a level-2 cache.
- Chapter 12, "IEEE 1149.1 Test Access Port," describes the dedicated user-accessible test access port (TAP), which is fully compatible with the *IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture*.

Suggested Reading

This section lists additional reading that provides background for the information in this manual as well as general information about the PowerPC architecture.

MPC8xx Documentation

Supporting documentation for the MPC8260 can be accessed through the world-wide web at http://www.motorola.com/SPS/RISC/netcomm. This documentation includes technical specifications, reference materials, and detailed applications notes.

PowerPC Documentation

The PowerPC documentation is organized in the following types of documents:

- PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors (Motorola order #: MPCBUSIF/AD) provides a detailed functional description of the 60x bus interface, as implemented on the PowerPC MPC601[™], MPC603, MPC604, and MPC750 family of PowerPC microprocessors. This document is intended to help system and chip set developers by providing a centralized reference source to identify the bus interface presented by the 60x family of PowerPC microprocessors.
- Application notes—These short documents contain useful information about specific design issues useful to programmers and engineers working with PowerPC processors.

For a current list of PowerPC documentation, refer to the world-wide web at http://www.mot.com/PowerPC.

Conventions

This document uses the following notational conventions:

Bold	Bold entries in figures and tables showing registers and parameter RAM should be initialized by the user.
mnemonics	Instruction mnemonics are shown in lowercase bold.
italics	Italics indicate variable command parameters, for example, bcctrx.
	Book titles in text are set in italics.
0x0	Prefix to denote hexadecimal number
0b0	Prefix to denote binary number
REG[FIELD]	Abbreviations or acronyms for registers or buffer descriptors are shown in uppercase text. Specific bits, fields, or numerical ranges appear in brackets. For example, MSR[LE] refers to the little-endian mode enable bit in the machine state register.
X	In certain contexts, such as in a signal encoding or a bit field, indicates a don't care.

- *n* Indicates an undefined numerical value
- ¬ NOT logical operator
- & AND logical operator
- OR logical operator

Acronyms and Abbreviations

Table i contains acronyms and abbreviations used in this document. Note that the meanings for some acronyms (such as SDR1 and DSISR) are historical, and the words for which an acronym stands may not be intuitively obvious.

Term	Meaning
BD	Buffer descriptor
BIST	Built-in self test
BRI	Basic rate interface
CAM	Content-addressable memory
СРМ	Communications processor module
CRC	Cyclic redundancy check
DMA	Direct memory access
DPLL	Digital phase-locked loop
DRAM	Dynamic random access memory
DSISR	Register used for determining the source of a DSI exception
EA	Effective address
EEST	Enhanced Ethernet serial transceiver
GCI	General circuit interface
GPCM	General-purpose chip-select machine
HDLC	High-level data link control
l ² C	Inter-integrated circuit
IDL	Inter-chip digital link
IEEE	Institute of Electrical and Electronics Engineers
IrDA	Infrared Data Association
ISDN	Integrated services digital network
JTAG	Joint Test Action Group
LIFO	Last-in-first-out
LRU	Least recently used

Table vi. Acronyms and Abbreviated Terms

Term	Meaning
LSB	Least-significant byte
lsb	Least-significant bit
LSU	Load/store unit
MAC	Multiply accumulate
MMU	Memory management unit
MSB	Most-significant byte
msb	Most-significant bit
MSR	Machine state register
NMSI	Nonmultiplexed serial interface
OSI	Open systems interconnection
PCI	Peripheral component interconnect
PCMCIA	Personal Computer Memory Card International Association
PRI	Primary rate interface
Rx	Receive
SCC	Serial communications controller
SCP	Serial control port
SDLC	Synchronous data link control
SDMA	Serial DMA
SI	Serial interface
SIU	System interface unit
SMC	Serial management controller
SNA	Systems network architecture.
SPI	Serial peripheral interface
SPR	Special-purpose register
SRAM	Static random access memory
TDM	Time-division multiplexed
TLB	Translation lookaside buffer
TSA	Time-slot assigner
Тх	Transmit
UART	Universal asynchronous receiver/transmitter

Table vi. Acronyms and Abbreviated Terms (Continued)

Term	Meaning
UISA	User instruction set architecture
UPM	User-programmable machine
USART	Universal synchronous/asynchronous receiver/transmitter

Table vi. Acronyms and Abbreviated Terms (Continued)

Part III. The Hardware Interface

Chapter 6 External Signals

This chapter describes the MPC8260 external signals. A more detailed description of 60x bus signals is provided in Chapter 8, "The 60x Bus."

6.1 Functional Pinout

Figure 6-1 shows MPC8260 signals grouped by function. Note that many of these signals are multiplexed and this figure does not indicate how these signals are multiplexed.

NOTE

A bar over a signal name indicates that the signal is active low—for example, \overline{BB} (bus busy). Active-low signals are referred to as asserted (active) when they are low and negated when they are high. Signals that are not active low, such as TSIZ[0–1] (transfer size signals) are referred to as asserted when they are high and negated when they are low.

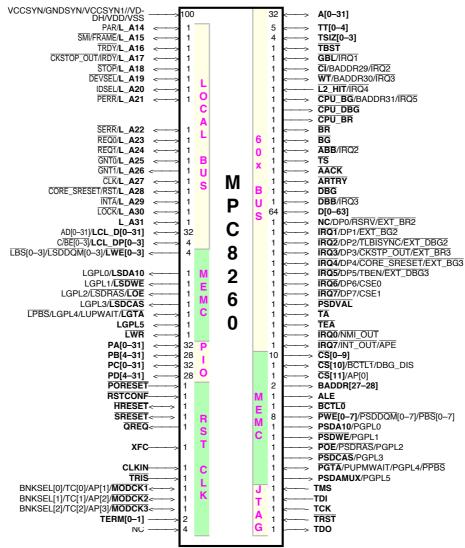


Figure 6-1. MPC8260 External Signals

6.2 Signal Descriptions

The MPC8260 system bus, shown in Table 6-1, consists of all the signals that interface with the external bus. Many of these pins perform different functions, depending on how the user assigns them.

Signal	Description			
BR	60x bus request—This is an output when an external arbiter is used and an input when an inter arbiter is used. As an output the MPC8260 asserts this pin to request ownership of the 60x bus. an input an external master should assert this pin to request 60x bus ownership from the intern arbiter.			
BG	60x bus grant—This is an output when an internal arbiter is used and an input when an external arbiter is used. As an output the MPC8260 asserts this pin to grant 60x bus ownership to an external bus master. As an input the external arbiter should assert this pin to grant 60x bus ownership to the MPC8260.			
ABB IRQ2	60x address bus busy—(Input/output)As an output the MPC8260 asserts this pin for the duration of the address bus tenure. Following an AACK, which terminates the address bus tenure, the MPC8260 negates ABB for a fraction of a bus cycle and than stops driving this pin. As an input the MPC8260 will not assume 60x bus ownership as long as it senses this pin is asserted by an external 60x bus master. Interrupt Request 2—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core.			
TS	60x bus transfer start—(Input/output)Assertion of this pin signals the beginning of a new address bus tenure. The MPC8260 asserts this signal when one of its internal 60x bus masters (core, DMA, PCI bridge) begins an address tenure. When the MPC8260 senses this pin being asserted by an external 60x bus master, it will respond to the address bus tenure as required (snoop if enabled, access internal MPC8260 resources, memory controller support).			
A[0–31]	60x address bus—These are input/output pins. When the MPC8260 is in external master bus mode, these pins function as the 60x address bus. The MPC8260 drives the address of its internal 60x bus masters and respond to addresses generated by external 60x bus masters. When the MPC8260 is in internal master bus mode, these pins are used as address lines connected to memory devices and controlled by the MPC8260's memory controller.			
TT[0-4]	60x bus transfer type—These are input/output pins. The 60x bus master drives these pins during the address tenure to specify the type of the transaction.			
TBST	60x bus transfer burst—(Input/output)The 60x bus master asserts this pin to indicate that the current transaction is a burst transaction (transfers 4 double words).			
TSIZ[0–3]	60x transfer size — These are input/output pins. The 60x bus master drives these pins with a value indicating the amount of bytes transferred in the current transaction.			
AACK	60x address acknowledge—This is an input/output signal. A 60x bus slave asserts this signal to indicate that it identified the address tenure. Assertion of this signal terminates the address tenure.			
ARTRY	60x address retry—(Input/output)Assertion of this signal indicates that the bus transaction should be retried by the 60x bus master. The MPC8260 asserts this signal to enforce data coherency with its internal cache and to prevent deadlock situations.			
DBG	60x data bus grant—This is an output when an internal arbiter is used and an input when an external arbiter is used. As an output the MPC8260 asserts this pin to grant 60x data bus ownership to an external bus master. As an input the external arbiter should assert this pin to grant 60x data bus ownership to the MPC8260.			

Table 6-1. External Signals

Signal	Description			
DBB IRQ3	60x data bus busy—(Input/output)As an output the MPC8260 asserts this pin for the duration of data bus tenure. Following a TA, which terminates the data bus tenure, the MPC8260 negates D for a fraction of a bus cycle and than stops driving this pin. As an input, the MPC8260 does not assume 60x data bus ownership as long as it senses DBB asserted by an external 60x bus mas Interrupt request 3—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core.			
D[0-63]	60x data bus—These are input/output pins. In write transactions the 60x bus master drives the valid data on this bus. In read transactions the 60x slave drives the valid data on this bus.			
DP[0]	60x data parity 0—(Input/output)The 60x agent that drives the data bus drives also the data parity signals. The value driven on data parity 0 pin should give odd parity (odd number of 1's) on the group of signals that includes data parity 0 and D[0–7].			
RSRV	Reservation—The value driven on this output pin represents the state of the coherency bit in the reservation address register that is used by the Iwarx and stwcx. instructions.			
EXT_BR2	External bus request 2—(Input). An external master should assert this pin to request 60x bus ownership from the internal arbiter.			
IRQ1	Interrupt request 1—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core.			
DP[1]	60x data parity 1—(Input/output)The 60x agent that drives the data bus drives also the data parity signals. The value driven on data parity 1 pin should give odd parity (odd number of '1's) on the group of signals that includes data parity 1 and D[8–15].			
EXT_BG2	External bus grant 2—(Output) The MPC8260 asserts this pin to grant 60x bus ownership to an external bus master.			
IRQ2	Interrupt request 2—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core.			
DP[2]	60x data parity 2—(Input/output)The 60x agent that drives the data bus drives also the data parity signals. The value driven on data parity 2 pin should give odd parity (odd number of '1's) on the group of signals that includes data parity 2 and S16–23].			
TLBISYNC	TLB sync—This input pin can be used to synchronize 60x core instruction execution to hardware indications. Asserting this pin will force the core to stop instruction execution following a tlbsync instruction execution. The core resumes instructions execution once this pin is negated.			
EXT_DBG2	External data bus grant 2—(Output) The MPC8260 asserts this pin to grant 60x data bus ownership to an external bus master.			
IRQ3	Interrupt request 3—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core.			
DP[3]	60x data parity 3—(Input/output)The 60x agent that drives the data bus drives also the data parity signals. The value driven on data parity 3 pin should give odd parity (odd number of 1's) on the group of signals that includes data parity 3 and D[24–31].			
CKSTP_OUT	Checkstop output—(Output) Assertion indicates that the core is in its checkstop mode.			
EXT_BR3	External bus request 3—(Input). An external master should assert this pin to request 60x bus ownership from the internal arbiter.			
IRQ4	Interrupt request 4—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core.			
DP[4]	60x data parity 4—(Input/output)The 60x agent that drives the data bus drives also the data parity signals. The value driven on data parity 4 pin should give odd parity (odd number of '1's) on the group of signals that includes data parity 4 and D[32–39].			
CORE_SRESET	Core system reset—(Input). Asserting this pin will force the core to branch to its reset vector.			
EXT_BG3	External bus grant 3—(Output) The MPC8260 asserts this pin to grant 60x bus ownership to an external bus master.			

Signal	Description			
IRQ5 DP[5] TBEN EXT_DBG3	Interrupt request 5—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core. 60x data parity 5—(Input/output)The 60x agent that drives the data bus drives also the data parity signals. The value driven on data parity 5 pin should give odd parity (odd number of '1's) on the group of signals that includes data parity 5 and D[40–47]. Time base enable—This is a count enable input to the Time Base counter in the core. External data bus grant 3—(Output) The MPC8260 asserts this pin to grant 60x data bus ownership to an external bus master.			
IRQ6 DP[6] CSE[0]	Interrupt request 6—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core. 60x data parity 6—(Input/output)The 60x agent that drives the data bus drives also the data parit signals. The value driven on data parity 6 pin should give odd parity (odd number of '1's) on the group of signals that includes data parity 6 and D[48–55]. Cache set entry 0—The cache set entry outputs from the core represent the cache replacement s element for the current core transaction reloading into or writing out of the cache.			
IRQ7 DP[7] CSE[1]	Interrupt request 7—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core. 60x data parity 7—(Input/output)The 60x master or slave that drives the data bus drives also the data parity signals. The value driven on data parity 7 pin should give odd parity (odd number of '1's) on the group of signals that includes data parity 7 and D[56–63]. Cache set entry 1—The cache set entry outputs from the core represent the cache replacement set element for the current core transaction reloading into or writing out of the cache.			
PSDVAL	$60x$ data valid – (Input/output)Assertion of the \overrightarrow{PSDVAL} pin indicates that a data beat is valid on the data bus. The difference between the TA pin and the \overrightarrow{PSDVAL} pin is that the TA pin is asserted to indicate 60x data transfer terminations while the \overrightarrow{PSDVAL} signal is asserted with each data beat movement. Thus always when TA is asserted, \overrightarrow{PSDVAL} will be asserted but when \overrightarrow{PSDVAL} is asserted, \overrightarrow{TA} is not necessarily asserted. For example when a double word (2x64 bits) transfer is initiated by the SDMA to a memory device that has 32 bits port size, \overrightarrow{PSDVAL} will be asserted 3 times without TA and finally both pins will be asserted to terminate the transfer.			
TĂ	Transfer acknowledge—(Input/output) Indicates that a 60x data beat is valid on the data bus. For 60x single beat transfers, assertion of this pin indicates the termination of the transfer. For 60x burst transfers \overline{TA} is asserted four times to indicate the transfer of four data beats with the last assertion indicating the termination of the burst transfer.			
TEA	Transfer error acknowledge – (Input/output)Assertion of this pin indicates a bus error. 60x masters within the MPC8260 monitor the state of this pin. MPC8260's internal bus monitor may assert this pin in case it identified a 60x bus transfer that is hung.			
GBL IRQ1	Global—(Input/output)When a 60x master within the chip initiates a bus transaction it drives this pin. When an external 60x master initiates a bus transaction it should drive this pin. Assertion of this pin indicates that the transfer is global and it should be snooped by caches in the system. The MPC8260MPC8260's data cache monitors the state of this pin. Interrupt request 1—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core.			
CI BADDR29 IRQ2	Cache inhibit—Output pin. Used for L2 cache control. For each MPC8260 60x transaction initiated in the core, the state of this pin indicates if this transaction should be cached or not. Assertion of the \overline{CI} pin indicates that the transaction should not be cached. Burst address 29—There are five burst address output pins. These pins are outputs of the 60x memory controller. These pins are used in external master configuration and are connected directly to memory devices controlled by MPC8260's memory controller. Interrupt request 2—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core.			

Signal	Description		
WT	Write through—Output used for L2 cache control. For each core-initiated MPC8260 60x transaction, the state of this pin indicates if the transaction should be cached using write-through or copy-back mode. Assertion of WT indicates that the transaction should be cached using the write-through mode.		
BADDR30	Burst address 30—There are five burst address output pins. These pins are outputs of the 60x memory controller. These pins are used in external master configuration and are connected directly to memory devices controlled by MPC8260's memory controller.		
IRQ3	Interrupt request 3—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core.		
L2_HIT	L2 cache hit—(Input). It is used for L2 cache control. Assertion of this pin indicates that the 60x transaction will be handled by the L2 cache. In this case, the memory controller will not start an access to the memory it controls.		
IRQ4	Interrupt request 4—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core.		
CPU_BG	CPU bus grant—(Output) The value of the 60x core bus grant is driven on this pin for the use of an external MPC2605GA L2 cache. The driven bus grant is non qualified, that is, in case of external arbiter the user should qualify this signal with the bus grant input to the MPC8260 before connecting it to the L2 cache.		
BADDR31	Burst address 31—There are five burst address output of the 60x memory controller used in external master configuration and are connected directly to the memory devices controlled by MPC8260's memory controller.		
IRQ5	Interrupt Request 5—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core.		
CPU_DBG	CPU bus data bus grant—(Output) The value of the 60x core data bus grant is driven on this pin for the use of an external MPC2605GA L2 cache.		
CPU_DBG	CPU data bus grant—(Output). The OR of all data bus grant signals for internal masters from the internal arbiter is driven on CPU_DBG. CPU_DBG should be connected to the CPU_DBG input of an external MPC2605GA L2 cache if the internal arbiter is used (BCR[EARB] = 0). If an external arbiter is used in this MPC8260, the CPU_DBG input of the L2 cache should be connected to the DBG driven from the external arbiter to this MPC8260.		
CPU_BR	CPU bus request—(Output) The value of the 60x core bus request is driven on this pin for the use of an external MPC2605GA L2 cache.		
CS[0-9]	Chip select—These are output pins that enable specific memory devices or peripherals connected to MPC8260 buses.		
CS[10]	Chip select—These are output pins that enable specific memory devices or peripherals connected to MPC8260 buses.		
BCTL1	Buffer control 1—Output signal whose its function is controlling buffers on the 60x data bus. Usually used with BCTL0. The exact function of this pin is defined by the value of SIUMCR[BCTLC]. See Section 4.3.2.6, "SIU Module Configuration Register (SIUMCR)," for details.		
DBG_DIS	Data bus grant disable—This is an output when the MPC8260 is in external arbiter mode and an input when the MPC8260 is in internal arbiter mode. When this pin is asserted, the 60x bus arbiter should negate all of its DBG outputs to prevent data bus contention.		
CS[11]	Chip select—Output that enable specific memory devices or peripherals connected to MPC826 buses.		
AP[0]	Address parity 0—(Input/output)The 60x master that drives the address bus, drives also the address parity signals. The value driven on address parity 0 pin should give odd parity (odd num of '1's) on the group of signals that includes address parity 0 and A[0–7].		

Signal	Description				
BADDR[27-28]	Burst address 27:28—There are five burst address output pins. These pins are outputs of the 6 memory controller. Used in external master configuration and connected directly to the memor devices controlled by MPC8260's memory controller.				
ALE	Address latch enable—This output pin controls the external address latch that should be used in external master 60x bus configuration.				
BCTL0	Buffer control 0—Output whose function is controlling buffers on the 60x data bus. Usually used with BCTL1 that is multiplexed on CS10. The exact function of this pin is defined by the value of SIUMCR[BCTLC]. See Section 4.3.2.6, "SIU Module Configuration Register (SIUMCR)," for details				
PWE[0-7] PSDDQM[0-7] PBS[0-7]	 60x bus write enable—Outputs of the 60x bus GPCM. These pins select byte lanes for write operations. 60x bus SDRAM DQM—The DQM pins are outputs of the SDRAM control machine. These pins select specific byte lanes of SDRAM devices. 60x bus UPM byte select—The byte select pins are outputs of the UPM in the memory controller. They are used to select specific byte lanes during memory operations. The timing of these pins is programmed in the UPM. The actual driven value depends on the address and size of the transaction and the port size of the accessed device. 				
PSDA10 PGPL0	60x bus SDRAM A10—(Output) from the 60x bus SDRAM controller. Part of the address when a row address is driven and is part of the command when a column address is driven. 60x bus UPM general purpose line 0—This is one of six general purpose output lines from UPM The values and timing of this pin is programmed in the UPM.				
PSDWE PGPL1	60x bus SDRAM write enable—(Output) from the 60x bus SDRAM controller. Should be connected to SDRAMs' WE input. 60x bus UPM general purpose line 1—This is one of six general purpose output lines from UPM. The values and timing of this pin is programmed in the UPM.				
POE PSDRAS PGPL2	60x bus output enable—The output enable pin is an output of the 60x bus GPCM. Controls the output buffer of memory devices during read operations. 60x bus SDRAM ras—Output from the 60x bus SDRAM controller. Should be connected to SDRAMs' RAS input. 60x bus UPM general purpose line 2—This is one of six general purpose output lines from UPM. The values and timing of this pin is programmed in the UPM.				
PSDCAS PGPL3	60x bus SDRAM CAS—Output from the 60x bus SDRAM controller. Should be connected to SDRAMs' CAS input. 60x bus UPM general purpose line 3—This is one of six general purpose output lines from UPM The values and timing of this pin is programmed in the UPM.				
PGTA PUPMWAIT PGPL4 PPBS	 VAIT external pull up resistor for proper operation. 60x bus UPM wait—This is an input to the UPM. An external device may hold this pin low to force 				
PSDAMUX PGPL5	60x bus SDRAM address multiplexer—This output pin controls the 60x SDRAM address multiplex when the MPC8260 is in external master mode. 60x bus UPM general purpose line 5—This is one of six general purpose output lines from UPM The values and timing of this pin is programmed in the UPM.				

Signal	Description				
LWE[0-3] LSDDQM[0-3] LBS[0-3]	Local bus write enable—The write enable pins are outputs of the Local bus GPCM. These pins select specific byte lanes for write operations. Local bus SDRAM DQM—The DQM pins are outputs of the SDRAM control machine. These pins select specific byte lanes of SDRAM devices. Local bus UPM byte select—The byte select pins are outputs of the UPM in the memory controller. They are used to select specific byte lanes during memory operations. The timing of these pins is programmed in the UPM. The actual driven value depends on the address and size of the transaction and the port size of the accessed device.				
LSDA10 LGPL0	Local bus SDRAM A10. Output from the 60x bus SDRAM controller. Is part of the address when a row address is driven and is part of the command when a column address is driven. Local bus UPM general purpose line 0—This is one of six general purpose output lines from UPM The values and timing of this pin is programmed in the UPM.				
LSDWE LGPL1	Local bus SDRAM write enable—Output from the local bus SDRAM controller. Should be connected to SDRAMs' WE input. Local bus UPM general purpose line 1—This is one of six general purpose output lines from UPM. The values and timing of this pin is programmed in the UPM.				
LOE LSDRAS LGPL2	Local bus output enable—The output enable pin is an output of the Local bus GPCM. Controls the output buffer of memory devices during read operations. Local bus SDRAM ras—Output from the Local bus SDRAM controller. Should be connected to the SDRAM RAS input. Local bus UPM general purpose line 2—This is one of six general purpose output lines from UPM. The values and timing of this pin is programmed in the UPM.				
LSDCAS LGPL3	Local bus SDRAM CAS—Output from the Local bus SDRAM controller. Should be connected to SDRAMs' CAS input. Local bus UPM general purpose line 3—This is one of six general purpose output lines from UPM The values and timing of this pin is programmed in the UPM.				
LGTA LUPWAIT LGPL4 LPBS	Local bus GPCM TA—This input pin is used for transaction termination during GPCM operation. Requires external pull up resistor for proper operation. Local bus UPM wait—This is an input to the UPM. An external device may hold this pin low to force the UPM to wait until the device is ready for the continuation of the operation. Local bus UPM general purpose line 4—This is one of six general purpose output lines from UPM. The values and timing of this pin is programmed in the UPM. Local bus parity byte select—In systems in which the data parity is stored in a separate chip, this output is used as the byte select for that chip.				
LGPL5	Local bus UPM general purpose line 5—This is one of six general purpose output lines from UPM. The values and timing of this pin is programmed in the UPM.				
LWR	Local write—The local write pin is an output from the local bus memory controller. It is used to distinguish between read and write transactions.				
L_A14 PCI_PAR	Local bus address 14—Local bus address bit 14 output pin. In the local address bus bit 14 is more significant and bit 31 is least significant. PCI parity—PCI parity input/output pin. Assertion of this pin indicates that odd parity is driven across PCI_AD[0–31] and PCI_C/BE[0–3] during address and data phases. Negation of PCI_P/ indicates that even parity is driven across the PCI_AD[0–31] and PCI_C/BE[0–3] during address and data phases.				

Table 6-1. E	External	Signals ((Continued)
--------------	----------	-----------	-------------

Signal	Description
L_A15	Local bus address 15—Local bus address bit 15 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
SMI	System management interrupt—System management interrupt input to the core.
PCI_FRAME	PCI frame—PCI cycle frame input output pin. Used by the current PCI master to indicate the beginning and duration of an access. Driven by the MPC8260 when its PCI interface is the master of the access. Otherwise, it is an input.
L_A16	Local bus address 16—Local bus address bit 16 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
PCI_TRDY	PCI target ready—PCI target ready input/output pin. This pin is driven by the MPC8260 when its PCI interface is the target of a PCI transfer. Assertion of this pin indicates that the PCI target is ready to send or accept a data beat.
L_A17	Local bus address 17—Local bus address bit 17 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
PCI_IRDY	PCI initiator ready—PCI initiator ready input/output pin. This pin is driven by the MPC8260 when its PCI interface is the initiator of a PCI transfer. Assertion of this pin indicates that the PCI initiator is ready to send or accept a data beat.
CKSTOP_OUT	Checkstop output—(Output) Assertion of CKSTOP_OUT indicates the core is in checkstop mode.
L_A18	Local bus address 18—Local bus address bit 18 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
PCI_STOP	PCI stop—PCI stop input/output pin. This pin is driven by the MPC8260 when its PCI interface is the target of a PCI transfer. Assertion of this pin indicates that the PCI target is requesting the master to stop the current PCI transfer.
L_A19	Local bus address 19—Local bus address bit 19 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
PCI_DEVSEL	PCI device select—PCI device select input/output pin. This pin is driven by the MPC8260 when its PCI interface has decoded the address as the target of the current PCI transfer. As an input, PCI_DEVSEL indicates whether any device on the PCI bus has been selected.
L_A20	Local bus address 20—Local bus address bit 20 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
PCI_IDSEL	PCI initialization device select—(Input). Used to select MPC8260's PCI interface during a PCI configuration cycle.
L_A21	Local bus address 21—Local bus address bit 21 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
PCI_PERR	PCI parity error—PCI data parity error input/output pin. Assertion of this pin indicates that a data parity error was detected during a PCI transfer (except for a special cycle).
L_A22	Local bus address 22—Local bus address bit 22 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
PCI_SERR	PCI system error—PCI system error input/output pin. Assertion of this pin indicates that a PCI system error was detected during a PCI transfer. The PCI system error is for reporting address parity errors, data parity errors on a special cycle command, or other catastrophic system errors.
L_A23	Local bus address 23—Local bus address bit 23 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
PCI_REQ0	PCI arbiter request 0—PCI request 0 input/output pin. When MPC8260's internal PCI arbiter is used, this is an input pin. In this mode assertion of this pin indicates that an external PCI agent is requesting the PCI bus. When an external PCI arbiter is used, this is an output pin. In this mode assertion of this pin indicates that performing the PCI bus.

Signal	Description
L_A24	Local bus address 24—Local bus address bit 24 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
PCI_REQ1	PCI arbiter request 1—PCI request 1 input pin. When MPC8260's internal PCI arbiter is used, assertion of this pin indicates that an external PCI agent is requesting the PCI bus.
L_A25	Local bus address 25—Local bus address bit 25 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
PCI_GNT0	PCI arbiter grant 0—PCI grant 0 input/output pin. When MPC8260's internal PCI arbiter is used, this is an output pin. In this mode, assertion of PCI_GNT0 indicates that an the external PCI agent that requested the PCI bus PCI_REQ0 is granted the bus. When an external PCI arbiter is used, this is an input pin. In this mode, assertion of PCI_GNT0 indicates that MPC8260's PCI interface is granted the PCI bus.
L_A26	Local bus address 26—Local bus address bit 26 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
PCI_GNT1	PCI arbiter grant 1—PCI grant 1 output pin. When MPC8260's internal PCI arbiter is used, assertion of $\overline{PCI_GNT1}$ indicates that the external PCI agent that requested the PCI bus with $\overline{PCI_REQT}$ pin is granted the bus.
L_A27	Local bus address 27—Local bus address bit 27 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
CLKOUT	Clock Out—Clock output pin. In a PCI system where MPC8260's PCI interface is configured to operate from an external PCI clock, the 60x bus clock is driven on CLKOUT. In a PCI system where the MPC8260's PCI interface is configured to generate the PCI clock, the PCI clock is driven on CLKOUT. The PCI clock frequency range is 25–66 MHz.
L_A28	Local bus address 28—Local bus address bit 28 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
PCI_RST	PCI reset—PCI reset input/output pin. When the MPC8260 is the host in the PCI system, PCI_RST is an output. When the MPC8260 is not the host of the PCI system, PCI_RST is an input.
CORE_SRESET	Core system reset—This is an input to the core. When this input pin is asserted the core branches to its reset vector.
L_A29	Local bus address 29—Local bus address bit 29 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
PCI_INTA	PCI INTA—(Input/output) When the MPC8260 is the host in the PCI system, this pin is an input for delivering PCI interrupts to the host. When the MPC8260 is not the host of the PCI system, this pin is an output used by the MPC8260 to signal an interrupt to the PCI host.
L_A30	Local bus address 30—Local bus address bit 30 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
L_A31	Local bus address 31—Local bus address bit 31 output pin. In the local address bus bit 14 is most significant and bit 31 is least significant.
DLLSYNC	DLLSYNC—DLL synchronization input. Used to eliminate skew for the clock driven on CLKOUT.
LCL_D[0-31] PCI_AD[0-31]	Local bus data—Local bus data input/output pins. In the local data bus bit 0 is most significant and bit 31 is least significant. PCI address/data—PCI bus address/data input/output pins. During an address phase PCI_AD[0-31] contains a physical address, during data phase PCI_AD[0-31] contains the data bytes. In the PCI address/data bus, bit 31 is msb and bit 0 is lsb.

Table 6-1. External Signals (Continued)

Signal	Description
LCL_DP[0-3] PCI_C/BE[0-3]	Local bus data parity—Local bus data parity input/output pins. In local bus write operations the MPC8260 drives these pins. In local bus read operations the accessed device drives these pins. LCL_DP[0] is driven with a value that gives odd parity with LCL_D[0–7]. LCL_DP[1] is driven with a value that gives odd parity with LCL_D[8–15]. LCL_DP[2] is driven with a value that gives odd parity with LCL_D[16–23]. LCL_DP[3] is driven with a value that gives odd parity with LCL_D[24–31]. PCI command/byte enable—PCI command/byte enable input/output pins. The MPC8260 drives these pins when it is the initiator of a PCI transfer. During an address phase the PCI_C/BE[0–3] defines the command, during the data phase PCI_C/BE[0–3] defines the byte enables.
IRQ0 NMI_OUT	Interrupt request 0—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core. Non-maskable interrupt output—This is an output driven from MPC8260's internal interrupt controller. Assertion of this output indicates that an unmasked interrupt is pending in MPC8260's internal interrupt controller.
IRQ7 INT_OUT APE	Interrupt request 7—This input is one of the eight external lines that can request (by means of the internal interrupt controller) a service routine from the core. Interrupt output—This is an output driven from MPC8260's internal interrupt controller. Assertion of this output indicates that an unmasked interrupt is pending in MPC8260's internal interrupt controller. Address parity error—This output pin will be asserted when the MPC8260 detects wrong parity driven on its address parity pins by an external master.
TRST	Test reset (JTAG) — Input only. This is the reset input to MPC8260's JTAG/COP controller. See Section 12.1, "Overview," and Section 12.6, "Nonscan Chain Operation."
тск	Test clock (JTAG)—Input only. Provides the clock input for MPC8260's JTAG/COP controller.
TMS	Test mode select (JTAG)-Input only. Controls the state of MPC8260's JTAG/COP controller.
TDI	Test data in (JTAG) – Input only. Data input to MPC8260's JTAG/COP controller.
TDO	Test data out (JTAG)—Output only. Data output from MPC8260's JTAG/COP controller.
TRIS	Three-state – Asserting TRIS forces all other MPC8260's pins to high impedance state.
PORESET	Power-on reset—When asserted, this input line causes the MPC8260 to enter power-on reset state.
HRESET	Hard reset-This open drain line, when asserted causes the MPC8260 to enter hard reset state.
SRESET	Soft reset-This open drain line, when asserted causes the MPC8260 to enter the soft reset state.
QREQ	Quiescent request— Output only. Indicates that MPC8260's internal core is about to enter its low power mode. In the MPC8260 this pin will be typically used for debug purposes.
RSTCONF	RSTCONF Input used during reset configuration sequence of the chip. Find detailed explanation of its function in Section 5.1.2, "Power-On Reset Flow," and Section 5.4, "Reset Configuration."
MODCK1 AP[1] TC[0] BNKSEL[0]	MODCK1—Clock mode input. Defines the operating mode of internal clock circuits. Address parity 1—(Input/output)The 60x master that drives the address bus, drives also the address parity signals. The value driven on address parity 1 pin should give odd parity (odd number of 1s) on the group of signals that includes address parity 1 and A[8–15]. Transfer Code 0—The transfer code output pins supply information that can be useful for debug purposes for each of the MPC8260's initiated bus transactions. Bank Select 0—The bank select outputs are used for selecting SDRAM bank when the MPC8260 is in 60x compatible bus mode.

Signal	Description
MODCK2 AP[2] TC[1] BNKSEL[1]	MODCK2—Clock mode input. Defines the operating mode of internal clock circuits. Address parity 2—(Input/output)The 60x master that drives the address bus, drives also the address parity signals. The value driven on address parity 2 pin should give odd parity (odd number of 1s) on the group of signals that includes address parity 2 and A[16–23]. Transfer code 1—The transfer code output pins supply information that can be useful for debug purposes for each of the MPC8260's initiated bus transactions. Bank select 1—The bank select outputs are used for selecting SDRAM bank when the MPC8260 is in 60x-compatible bus mode.
MODCK3 AP[3] TC[2] BNKSEL[2]	MODCK3—Clock mode input. Defines the operating mode of internal clock circuits. Address parity 3—(Input/output)The 60x master that drives the address bus, drives also the address parity signals. The value driven on address parity 3 pin should give odd parity (odd number of 1s) on the group of signals that includes address parity 3 and A[24—31]. Transfer code 2—The transfer code output pins supply information that can be useful for debug purposes for each of the MPC8260's initiated bus transactions. Bank select 2—The bank select outputs are used for selecting SDRAM bank when the MPC8260 is in 60x-compatible bus mode.
XFC	External filter capacitance-Input connection for an external capacitor filter for PLL circuitry.
CLKIN	Clock In—Primary clock input to MPC8260'S PLL. In a PCI system, where the MPC8260 PCI interface is operated from the PCI bus clock, CLKIN should be connected to the PCI bus clock. In that case, the 60x bus clock is driven on CLKOUT.
PA[0-31]	General-purpose I/O port A bits 0-31. See Chapter 35, "Parallel I/O Ports."
PB[4-31]	General-purpose I/O port B bits 4-31. See Chapter 35, "Parallel I/O Ports."
PC[0-31]	General-purpose I/O port C bits 0-31. See Chapter 35, "Parallel I/O Ports."
PD[4-31]	General-purpose I/O port D bits 4-31. See Chapter 35, "Parallel I/O Ports."
Power Supply	VDD—This is the power supply of the internal logic. VDDH—This is the power supply of the I/O Buffers. VCCSYN—This is the power supply of the PLL circuitry. GNDSYN—This is a special ground of the PLL circuitry. VCCSYN1—This is the power supply of the core's PLL circuitry.

Table 6-1. External Signals (Continued)

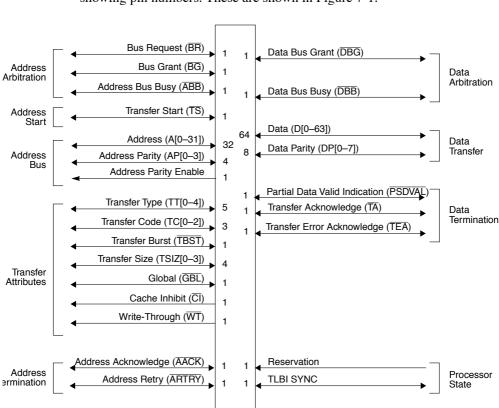
Note that CPM port multiplexing is described in the Chapter 35, "Parallel I/O Ports."

Chapter 7 60x Signals

This chapter describes the MPC8260 PowerPC processor's external signals. It contains a concise description of individual signals, showing behavior when a signal is asserted and negated, when the signal is an input and an output, and the differences in how signals work in external-master or internal-only configurations.

NOTE

A bar over a signal name indicates that the signal is active low– for example, \overline{ARTRY} (address retry) and \overline{TS} (transfer start). Active-low signals are referred to as asserted (active) when they are low and negated when they are high. Signals that are not active-low, such as TSIZ[0–3] (transfer size signals) and TT[0–4] (transfer type signals) are referred to as asserted when they are high and negated when they are low.


The 60x bus signals used with MPC8260 are grouped as follows:

- Address arbitration signals—In external arbiter mode, MPC8260 uses these signals to arbitrate for address bus mastership. The MPC8260 arbiter uses these signals to enable an external device to arbitrate for address bus mastership.
- Address transfer start signals—These signals indicate that a bus master has begun a transaction on the address bus.
- Address transfer signals (address bus)—These signals are used to transfer the address.
- Transfer attribute signals—These signals provide information about the type of transfer, such as the transfer size and whether the transaction is single, single extended, bursted, write-through or cache-inhibited.
- Address transfer termination signals—These signals are used to acknowledge the end of the address phase of the transaction. They also indicate whether a condition exists that requires the address phase to be repeated.
- Data arbitration signals—The MPC8260, in external arbiter mode, uses these signals to arbitrate for data bus mastership. The MPC8260 arbiter uses these signals to enable an external device to arbitrate for data bus mastership.

- Data transfer signals—These signals, which consist of the data bus, data parity, and data parity error signals, transfer the data and ensure its integrity.
- Data transfer termination signals—Data termination signals are required after each data beat in a data transfer. In a single-beat transaction, the data termination signals also indicate the end of the tenure. For burst accesses or extended port-size accesses, the data termination signals apply to individual beats and indicate the end of the tenure only after the final data beat.

7.1 Signal Configuration

Figure shows the grouping of the MPC8260's 60x bus signal configuration.

The MPC8260 hardware specifications provides a pinout showing pin numbers. These are shown in Figure 7-1.

NOTE

Figure 7-1. PowerPC Signal Groupings

7.2 Signal Descriptions

This section describes individual MPC8260 60x signals, grouped according to Figure 7-1. Note that the following sections briefly summarize signal functions. Chapter 8, "The 60x Bus," describes many of these signals in greater detail, both in terms of their function and how groups of signals interact.

7.2.1 Address Bus Arbitration Signals

The address arbitration signals are a collection of input and output signals devices use to request address bus mastership, recognize when the request is granted, and indicate to other devices when mastership is granted. For a detailed description of how these signals interact, see Section 8.4.1, "Address Arbitration."

Bus arbitration signals have no meaning in internal-only mode.

7.2.1.1 Bus Request (BR)-Output

The bus request (\overline{BR}) signal is both an input and an output signal on the MPC8260.

7.2.1.1.1 Address Bus Request (BR)-Output

Following are the state meaning and timing comments for the \overline{BR} signal output in external master mode.

State Meaning	Asserted—Indicates that MPC8260 is requesting mastership of the address bus. Note that \overline{BR} may be asserted for one or more cycles and then deasserted due to an internal cancellation of the bus request (for example, due to a load hit in the touch load buffer). See Section 8.4.1, "Address Arbitration."
	Negated—Indicates that the MPC8260 is not requesting the address bus. The MPC8260 may have no bus operation pending, it may be parked, or the ARTRY input was asserted on the previous bus clock cycle.
Timing Comments	Assertion—May occur on any cycle; does not occur if the MPC8260 is parked and the address bus is idle (\overline{BG} asserted and \overline{ABB} input negated).
	Negation—Occurs for at least one cycle following a qualified \overline{BG} even if another transaction is pending; also negated for at least one cycle following any qualified \overline{ARTRY} on the bus unless MPC8260 asserted \overline{ARTRY} and requires a snoop copyback; may also be negated if MPC8260 cancels the bus request internally before receiving a qualified \overline{BG} .
	High Impedance-Occurs during a hard reset or checkstop condition

7.2.1.1.2 Address Bus Request (BR)-Input

Following are the state meaning and timing comments for the $\overline{\text{BR}}$ signal input in external master mode.

State Meaning	Asserted — Indicates that the external master has a bus transaction to perform and is waiting for a qualified \overline{BG} to begin the address tenure. BR may be asserted even if the two possible pipelined address tenures have already been granted.
	Negated—Indicates that the external master has no bus transaction to perform, or if the device is parked, that it is potentially ready to start a bus transaction on the next clock cycle (with proper qualification, see \overline{BG}).
Timing Comments	Assertion—May occur on any cycle; does not occur if the external master is parked and the address bus is idle (\overline{BG} asserted and \overline{ABB} input negated).
	Negation—Occurs for at least one cycle after a qualified \overline{BG} even if another transaction is pending; also negated for at least one cycle following any qualified \overline{ARTRY} on the bus unless this chip asserted the \overline{ARTRY} and requires to perform a snoop copyback; may also be negated if the external master cancels a bus request internally before receiving a qualified \overline{BG} .
	High Impedance—Occurs during a hard reset or checkstop condition.

7.2.1.2 Bus Grant (BG)

The address bus grant (\overline{BG}) signal is both an input and an output signal.

7.2.1.2.1 Bus Grant (BG)-Input

The following are the state meaning and timing comments for the \overline{BG} signal input in external master mode.

State Meaning	Asserted—Indicates that the MPC8260 may, with the proper qualification, begin a bus transaction and assume ownership of the address bus. A qualified bus grant is generally determined from the bus state as follows: QBG = $\overline{BG} \cdot \neg \overline{ABB} \cdot \neg \overline{ARTRY}$ where \overline{ARTRY} is asserted only during the cycle after \overline{AACK} . Note that the assertion of \overline{BR} is not required for a qualified bus grant (for bus parking).
	Negated—Indicates that the MPC8260 is not granted next address ownership.
Timing Comments	Assertion—May occur on any cycle. Once the MPC8260 has assumed address bus ownership, it does not begin checking for \overline{BG} again until the cycle after \overline{AACK} .

Negation—May occur whenever the MPC8260 must be prevented from using the address bus. The MPC8260 may still assume address bus ownership on the cycle \overline{BG} is negated if it was asserted the previous cycle with other bus grant qualifications.

7.2.1.2.2 Bus Grant (BG) – Output

Following are the state meaning and timing comments for the \overline{BG} signal output in external master mode.

State Meaning	Asserted—Indicates that the external device may, with the proper qualification, begin a bus transaction and assume ownership of the address bus. A qualified bus grant is generally determined from the bus state as follows: $QBG = \overline{BG} \cdot \neg \overline{ABB} \cdot \neg \overline{ARTRY}$ where \overline{ARTRY} is asserted only during the cycle after \overline{AACK} . Note that the assertion of \overline{BR} is not required for a qualified bus grant (for bus parking).
	Negated—Indicates that the external device is not granted next address ownership.
Timing Comments	Assertion—May occur on any cycle. Once the external device has assumed address bus ownership, it does not begin checking for \overline{BG} again until the cycle after \overline{AACK} .
	Negation—May occur when an external device must be kept from using the address bus. The external device may still assume address bus ownership on the cycle that \overline{BG} is negated if it was asserted the previous cycle with other bus grant qualifications.

7.2.1.3 Address Bus Busy (ABB)

The address bus busy (\overline{ABB}) signal is both an input and an output signal.

7.2.1.3.1 Address Bus Busy (ABB)-Output

Following are the state meaning and timing comments for the \overline{ABB} output signal.

State Meaning	Asserted—Indicates that the MPC8260 is the current address bus master. The MPC8260 may not assume address bus ownership in case a bus request is internally cancelled by the cycle a qualified \overline{BG} would have been recognized.
	Negated—Indicates that MPC8260 is not the current address bus master.
Timing Comments	Assertion—Occurs the cycle after a qualified \overline{BG} is accepted by MPC8260 and remains asserted for the duration of the address tenure.
	Turn-Off Sequencing—Negates for a fraction of a bus cycle (1/2 minimum, depends on clock mode) starting the cycle following the assertion of \overline{AACK} . It then goes to the high impedance state.

7.2.1.3.2 Address Bus Busy (ABB)-Input

Following are the state meaning and timing comments for the ABB input signal.

State Meaning	Asserted-Indicates that external device is the address bus master.
	Negated—Indicates that the address bus may be available for use by the MPC8260 (see \overline{BG}). The MPC8260 also tracks the state of \overline{ABB} on the bus from the \overline{TS} and \overline{AACK} inputs. (See section on address arbitration phase.)
Timing Comments	Assertion—May occur whenever the MPC8260 must be prevented from using the address bus.
	Negation—May occur whenever the MPC8260 may use the address bus.

7.2.2 Address Transfer Start Signal

In the internal only mode the address transfer start signal has no meaning.

Address transfer start signal are input and output signals that indicate that an address bus transfer has begun.

7.2.2.1 Transfer Start (TS)

The $\overline{\text{TS}}$ signal is both an input and an output signal on the MPC8260.

7.2.2.1.1 Transfer Start (TS)-Output

Following are the state meaning and timing comments for the \overline{TS} output signal.

State Meaning	Asserted—Indicates that the MPC8260 has started a bus transaction and that the address bus and transfer attribute signals are valid. It is also an implied data bus request if the transfer attributes TT[0–4] indicate that a data tenure is required for the transaction.
	Negated-Has no special meaning during a normal transaction.
Timing Comments	Assertion/Negation—Driven and asserted on the cycle after a qualified \overline{BG} is accepted by MPC8260; remains asserted for one clock only. Negated for the remainder of the address tenure. Assertion is coincident with the first clock that \overline{ABB} is asserted.
	High Impedance—Occurs the cycle following the assertion of \overline{AACK} (same cycle as \overline{ABB} negation).

7.2.2.2 Transfer Start (TS)-Input

Following are the state meaning and timing comments for the \overline{TS} input signal.

State Meaning Asserted—Indicates that another device has begun a bus transaction and that the address bus and transfer attribute signals are valid for snooping.

Negated—Has no special meaning.

Timing Comments Assertion/Negation—Must be asserted for one cycle only and then immediately negated. Assertion may occur at any time during the assertion of ABB.

7.2.3 Address Transfer Signals

In internal only mode the memory controller uses these signals for glueless address transfers to memory and I/O devices.

The address transfer signals are used to transmit the address.

7.2.3.1 Address Bus (A[0-31])

The address bus (A[0–31]) consists of 32 signals that are both input and output signals.

7.2.3.1.1 Address Bus (A[0-31])-Output

Following are the state meaning and timing comments for the A[0–31] output signals.

State Meaning	Content—Specifies the physical address of the bus transaction. For burst or extended operations, the address is a double-word.
Timing Comments	Assertion/Negation—Driven valid on the same cycle that $\overline{\text{TS}}$ is driven/asserted; remains driven/valid for the duration of the address tenure.
	High Impedance — Occurs the cycle following the assertion of \overline{AACK} ; no precharge action performed on release.

7.2.3.1.2 Address Bus (A[0-31])-Input

Following are the state meaning and timing comments for the A[0–31] input signals.

State MeaningAsserted—Indicates that another device has begun a bus transaction
and that the address bus and transfer attribute signals are valid for
snooping and in slave mode.
Negated—Has no special meaning.Timing CommentsAssertion/Negation—Must be valid on the same cycle that TS is
asserted; sampled by the processor only on this cycle.

7.2.4 Address Transfer Attribute Signals

In internal only mode the address transfer attribute signals have no meaning.

The transfer attribute signals are a set of signals that further characterize the transfer—such as the size of the transfer, whether it is a read or write operation, and whether it is a burst or single-beat transfer. For a detailed description of how these signals interact, see Section 7.2.4, "Address Transfer Attribute Signals."

7.2.4.1 Transfer Type (TT[0-4])

The transfer type signals (TT[0-4]) consist of five input/output signals on the MPC8260. For a complete description of TT[0-4] signals and transfer type encoding, see Section 8.4.3.1, "Transfer Type Signal (TT[0-4]) Encoding."

7.2.4.1.1 Transfer Type (TT[0-4])-Output

Following are the state meaning and timing comments for the TT[0-4] output signals on the MPC8260.

State Meaning	Asserted/Negated—Specifies the type of transfer in progress.
Timing Comments	Assertion/Negation—Same as A[0-31].
	High Impedance—Same as A[0–31].

7.2.4.1.2 Transfer Type (TT[0–4])—Input

Following are the state meaning and timing comments for the TT[0–4] input signals on the MPC8260.

State Meaning	Asserted/Negated—Specifies the type of transfer in progress for snooping by the MPC8260
Timing Comments	Assertion/Negation—Same as A[0-31].

7.2.4.2 Transfer Size (TSIZ[0-3])

The transfer size (TSIZ[0–3]) signals consist of four input/output signals on the MPC8260, following are the state meaning and timing comments for the TSIZ[0–3] signals on the MPC8260.

State Meaning	Asserted/Negated—Specifies the data transfer size for the transaction (see Section 8.4.3.3, "TBST and TSIZ[0–3] Signals and Size of Transfer"). During graphics transfer operations, these signals form part of the Resource ID (see TBST).
Timing Comments	Assertion/Negation—Same as A[0–31].
	High Impedance—Same as A[0–31].

7.2.4.3 Transfer Burst (TBST)

The transfer burst (TBST) signal is an input/output signal on the MPC8260. Following are the state meaning and timing comments for the TBST output/input signal.

State Meaning	Asserted—Indicates that a burst transfer is in progress (see Section 8.4.3.3, "TBST and TSIZ[0–3] Signals and Size of Transfer"). During graphics transfer operations, this signal forms part of the Resource ID field from the EAR as follows: TBST TSIZ[0–3] = EAR[28–31]. (See TBST.) Negated—Indicates that a burst transfer is not in progress.
Timing Comments	Assertion/Negation—Same as A[0–31].

High Impedance—Same as A[0–31].

7.2.4.4 Global (GBL)

The global (GBL) signal is an input/output signal on the MPC8260.

7.2.4.4.1 Global (GBL) – Output

Following are the state meaning and timing comments for the $\overline{\text{GBL}}$ output signal.

State Meaning	Asserted—Indicates that the transaction is global and should be snooped by other devices. GBL reflects the M bit (WIM bits) from the MMU except during certain transactions.
	Negated—Indicates that the transaction is not global and should not be snooped by other devices.
Timing Comments	Assertion/Negation-Same as A[0-31].
	High Impedance—Same as A[0–31].
70440 Clobal	

7.2.4.4.2 Global (GBL)—Input

Following are the state meaning and timing comments for the $\overline{\text{GBL}}$ input signal.

State Meaning	Asserted—Indicates that a transaction must be snooped by MPC8260.	
	Negated—Indicates that a transaction should not be snooped by MPC8260. (In addition, certain non-global transactions are snooped for reservation coherency.)	
Timing Commonte	Assortion/Nagation Some of A[0, 21]	

Timing Comments Assertion/Negation—Same as A[0–31].

7.2.4.5 Caching-Inhibited (CI) – Output

The cache inhibit (\overline{CI}) signal is an output signal on the MPC8260. Following are the state meaning and timing comments for \overline{CI} .

State Meaning	Asserted—Indicates that the transaction in progress should not be cached. CI reflects the I bit (WIM bits) from the MMU except during certain transactions.
Timing Comments	Negated—Indicates that the transaction should be cached. Assertion/Negation—Same as A[0–31]. High Impedance—Same as A[0–31].

7.2.4.6 Write-Through (\overline{WT}) -Output

The write-through (\overline{WT}) signal is an output signal on the MPC8260. Following are the state meaning and timing comments for \overline{WT} .

State Meaning Asserted—Indicates that the transaction should operate in writethrough mode. WT reflects the W bit (WIM bits) from the MMU except during certain transactions. WT may be asserted during read transactions. Negated—Indicates that the transaction should not operate in writethrough mode.

Timing Comments Assertion/Negation—Same as A[0–31].

High Impedance—Same as A[0–31].

7.2.5 Address Transfer Termination Signals

The address transfer termination signals are used to indicate either that the address phase of the transaction has completed successfully or must be repeated, and when it should be terminated. For detailed information about how these signals interact, see Section 7.2.5, "Address Transfer Termination Signals."

The address transfer termination signals have no meaning in internal only mode.

7.2.5.1 Address Acknowledge (AACK)

The address acknowledge (\overline{AACK}) signal is an input/output on the MPC8260.

7.2.5.1.1 Address Acknowledge (AACK)-Output

.Following are the state meaning and timing comments for \overline{AACK} as an output signal.

Asserted—Indicates that the address tenure of a transaction is terminated. On the cycle following the assertion of \overline{AACK} , the bus master releases the address-tenure-related signals to the high-impedance state and samples \overline{ARTRY} .
Negated—Indicates that the address bus and the transfer attributes must remain driven, if negated during \overline{ABB} .
Assertion—Occurs a programmable number of clocks after $\overline{\text{TS}}$ or whenever $\overline{\text{ARTRY}}$ conditions are resolved. Negation—Occurs one clock after assertion.

7.2.5.1.2 Address Acknowledge (AACK)-Input

Following are the state meaning and timing comments for AACK as an input signal.

State Meaning	Asserted—Indicates that a 60x bus slave is terminating the address tenure. On the cycle following the assertion of \overline{AACK} , the bus master releases the address tenure related signals to the high-impedance state and samples \overline{ARTRY} .
	Negated—Indicates that the address tenure must remain active and the address tenure related signals driven.
Timing Comments	Assertion—Occurs during the 60x bus slave access, at least two clocks after \overline{TS} .
	Negation—Occurs one clock after assertion.

7.2.5.2 Address Retry (ARTRY)

The address retry $(\overline{\text{ARTRY}})$ signal is both an input and output signal on the MPC8260

7.2.5.2.1 Address Retry (ARTRY)-Output

.Following are the state meaning and timing comments for $\overline{\text{ARTRY}}$ as an output signal.

State Meaning	Asserted—Indicates that the MPC8260 detects a condition in which an address tenure must be retried. If the MPC8260 processor needs to update memory as a result of snoop that caused the retry, the MPC8260 asserts \overline{BR} the second cycle after \overline{AACK} if \overline{ARTRY} is asserted.
	High Impedance—Indicates that the MPC8260 does not need the address tenure to be retried.
Timing Comments	Assertion—Asserted the third bus cycle following the assertion of $\overline{\text{TS}}$ if a retry is required.
	Negation—Occurs the second bus cycle after the assertion of \overline{AACK} . Since this signal may be simultaneously driven by multiple devices, it negates in a unique fashion. First the buffer goes to high impedance for a minimum of one-half processor cycle (dependent on the clock mode), then it is driven negated for one bus cycle before returning to high impedance.

7.2.5.2.2 Address Retry (ARTRY)-Input

Following are the state meaning and timing comments for the ARTRY input.

State Meaning	Asserted—If the MPC8260 is the address bus master, \overline{ARTRY} indicates that the MPC8260 must retry the preceding address tenure and immediately negate \overline{BR} (if asserted). If the associated data tenure has started, the MPC8260 also aborts the data tenure immediately even if the burst data has been received. If the MPC8260 is not the address bus master, this input indicates that the MPC8260 should negate \overline{BR} for one bus clock cycle immediately after external device asserts \overline{ARTRY} to permit a copy-back operation to main memory. Note that the subsequent address presented on the address bus may not be the one that generated the assertion of \overline{ARTRY} .
	Negated/High Impedance—Indicates that the MPC8260 does not need to retry the last address tenure.
Timing Comments	Assertion—May occur as early as the second cycle following the assertion of $\overline{\text{TS}}$ and must occur by the bus clock cycle immediately following the assertion of $\overline{\text{AACK}}$ if an address retry is required.
	Negation—Must occur during the second cycle after the assertion of \overline{AACK} .

7.2.6 Data Bus Arbitration Signals

The data bus arbitration signals have no meaning in internal-only mode.

Like the address bus arbitration signals, data bus arbitration signals maintain an orderly process for determining data bus mastership. Note that there is no data bus arbitration signal equivalent to the address bus arbitration signal \overline{BR} (bus request), because, except for address-only transactions, \overline{TS} implies data bus requests. For a detailed description on how these signals interact, see Section 8.5.1, "Data Bus Arbitration."

7.2.6.1 Data Bus Grant (DBG)

The data bus grant signal (\overline{DBG}) is an output/input on the MPC8260

7.2.6.1.1 Data Bus Grant (DBG)-Input

 $\overline{\text{DBG}}$ an input when MPC8260 is configured to an external arbiter. The following are the state meaning and timing comments for $\overline{\text{DBG}}$.

State Meaning	Asserted—Indicates that the MPC8260 may, with the proper qualification, assume mastership of the data bus. The MPC8260 derives a qualified data bus grant when \overline{DBG} is asserted and \overline{DBB} and \overline{ARTRY} are negated; that is, the data bus is not busy (\overline{DBB} is negated), and there is no outstanding attempt to perform an \overline{ARTRY} of the associated address tenure.
	Negated—Indicates that the MPC8260 must hold off its data tenures.
Timing Comments	Assertion—May occur any time to indicate the MPC8260 is free to take data bus mastership. It is not sampled until \overline{TS} is asserted.
	Negation—May occur at any time to indicate the MPC8260 cannot assume data bus mastership.

7.2.6.1.2 Data Bus Grant (DBG)-Output

DBG signal is output when the MPC8260 configured to Internal Arbiter. Following are the state meaning and timing comments for the DBG signal.

State Meaning	Asserted—Indicates that the external device may, with the proper qualification, assume mastership of the data bus. A qualified data bus grant is defined as the assertion of \overline{DBG} , negation of \overline{DBB} , and negation of \overline{ARTRY} . The requirement for the \overline{ARTRY} signal is only for the address bus tenure associated with the data bus tenure about to be granted (that is, not for another address tenure available because of address pipelining).
	Negated—Indicates that an external device is not granted mastership of the data bus.
Timing Comments	Assertion—Occurs on the first clock in which the data bus is not busy and the processor has the highest priority outstanding data transaction. Negation—Occurs one clock after assertion.

7.2.6.2 Data Bus Busy (DBB)

The data bus busy (\overline{DBB}) signal is both an input and output signal on the MPC8260

7.2.6.2.1 Data Bus Busy (DBB)-Output

Following are the state meaning and timing comments for the $\overline{\text{DBB}}$ output signal.

State Meaning	Asserted—Indicates that the MPC8260 is the data bus master. The MPC8260 always assumes data bus mastership if it needs the data bus and determines a qualified data bus grant (see \overline{DBG}).
	Negated—Indicates that the MPC8260 is not using the data bus.
Timing Comments	Assertion—Occurs during the bus clock cycle following a qualified $\overline{\text{DBG}}$.
	Negation—Occurs for a minimum of one-half bus clock cycle following the assertion of the final \overline{TA} following \overline{TEA} or certain \overline{ARTRY} cases.
	High Impedance—Occurs after $\overline{\text{DBB}}$ is negated.

7.2.6.2.2 Data Bus Busy (DBB)-Input

Following are the state meaning and timing comments for the DBB input signal.

State Meaning	Asserted-Indicates that another device is bus master.	
	Negated—Indicates that the data bus is free (with proper qualification, see \overline{DBG}) for use by the MPC8260.	
Timing Comments	Assertion—Must occur when the MPC8260 must be prevented from using the data bus.	
	Negation—May occur whenever the data bus is available.	

7.2.7 Data Transfer Signals

Data transfer signals are used in the same way in both internal only and external master modes. Like the address transfer signals, the data transfer signals are used to transmit data and to generate and monitor parity for the data transfer. For a detailed description of how data transfer signals interact, see Section 7.2.7, "Data Transfer Signals."

7.2.7.1 Data Bus (D[0-63])

The data bus (D[0-63]) states have the same meanings in both internal only mode external master mode. The data bus consists of 64 signals that are both inputs and outputs on the MPC8260. Following are the state meaning and timing comments for the data bus.

State Meaning The data bus holds 8 byte lanes assigned as shown in Table 7-1.

Timing Comments The number of times the data bus is driven depends on the transfer size, port size, and whether the transfer is a single-beat or burst operation.

7.2.7.1.1 Data Bus (D[0-63])-Output

Following are the state meaning and timing comments for the D[0–63] output signals.

- State MeaningAsserted/Negated—Represents the state of data during a data write.
Byte lanes not selected for data transfer do not supply valid data.
MPC8260 duplicates data to enable valid data to be sent to different
port sizes.
- **Timing Comments** Assertion/Negation—Initial beat coincides with $\overline{\text{DBB}}$, for bursts, transitions on the bus clock cycle following each assertion of $\overline{\text{TA}}$ and, for port size, transitions on the bus clock cycle following each assertion of $\overline{\text{PSDVAL}}$.

High Impedance—Occurs on the bus clock cycle after the final assertion of \overline{TA} , \overline{TEA} , or certain \overline{ARTRY} cases.

Table 0-1. Data Bus Lane Assignments

Data Bus Signals	Byte Lane
D0–D7	0
D8–D15	1
D16–D23	2
D24–D31	3
D32–D39	4
D40–D47	5
D48–D55	6
D56–D63	7

7.2.7.1.2 Data Bus (D[0-63])-Input

Following are the state meaning and timing comments for the D[0–63] input signals.

- **State Meaning** Asserted/Negated—Represents the state of data during a data read transaction.
- **Timing Comments** Assertion/Negation—Data must be valid on the same bus clock cycle that TA and/or PSDVAL is asserted.

7.2.7.2 Data Bus Parity (DP[0-7])

The eight data bus parity (DP[0–7]) signals both output and input signals.

7.2.7.2.1 Data Bus Parity (DP[0-7])-Output

Following are the state meaning and timing comments for the DP[0–7] output signals.

State Meaning Asserted/Negated—Represents odd parity for each of 8 bytes of data write transactions. Odd parity means that an odd number of bits, including the parity bit, are driven high. The signal assignments are listed in Table 7-1.

Signal Name	Data Bus Signal Assignments	
DP0	D[0-7]	
DP1	D[8–15	
DP2	D[16–23]	
DP3	D[24–31]	
DP4	D[32–39]	
DP5	D[40–47]	
DP6	D[48–55]	
DP7	D[56–63]	

Table 7-1. DP[0–7] Signal Assignments

Timing Comments Assertion/Negation—The same as the data bus.

High Impedance—The same as the data bus.

7.2.7.2.2 Data Bus Parity (DP[0-7])-Input

Following are the state meaning and timing comments for the DP input signals.

State Meaning Asserted/Negated—Represents odd parity for each byte of read data. Parity is checked on all data byte lanes, regardless of the size of the transfer. Detected even parity causes a checkstop if data parity errors are enabled in the BCS[PAR_EN].

Timing Comments Assertion/Negation—The same as D[0–63].

7.2.8 Data Transfer Termination Signals

Data termination signals are required after each data beat in a data transfer. Note that in a single-beat transaction that is not a port-size transfer, the data termination signals also indicate the end of the tenure. In burst or port size accesses, the data termination signals apply to individual beats and indicate the end of the tenure only after the final data beat. For a detailed description of how these signals interact, see Section 8.5, "Data Tenure Operations."

7.2.8.1 Transfer Acknowledge (TA)

The transfer acknowledge (\overline{TA}) signal is both input and output on the MPC8260.

7.2.8.1.1 Transfer Acknowledge (TA)-Input

Following are the state meaning and timing comments for the TA input signal.

State MeaningAsserted—Indicates that a single-beat data transfer completed
successfully or that a data beat in a burst transfer completed
successfully. Note that TA must be asserted for each data beat in a
burst transaction. For more information, see Section 8.5.3, "Data
Bus Transfers and Normal Termination."

Negated—(During assertion of $\overline{\text{DBB}}$) indicates that, until $\overline{\text{TA}}$ is asserted, the MPC8260 must continue to drive the data for the current write or must wait to sample the data for reads.

Timing Comments Assertion—Must not occur before \overline{AACK} for the current transaction (if the address retry mechanism is to be used to prevent invalid data from being used by the MPC8260); otherwise, assertion may occur at any time during the assertion of \overline{DBB} . The system can withhold assertion of \overline{TA} to indicate that the MPC8260 should insert wait states to extend the duration of the data beat.

Negation—Must occur after the bus clock cycle of the final (or only) data beat of the transfer. For a burst transfer, the system can assert \overline{TA} for one bus clock cycle and then negate it to advance the burst transfer to the next beat and insert wait states during the next beat. (Note: when configured for 1:1 clock mode and is performing a burst read into the data cache, the MPC8260 requires two wait states between the assertion of \overline{TS} and the first assertion of \overline{TA} for that transaction, or one wait state for 1.5:1 clock mode.)

7.2.8.1.2 Transfer Acknowledge (TA)-Output

Following are the state meaning and timing comments for \overline{TA} as an output signal.

State Meaning	Asserted—Indicates that the data has been latched for a write operation, or that the data is valid for a read operation, thus terminating the current data beat. If it is the last or only data beat, this also terminates the data tenure.
	Negated—Indicates that master must extend the current data beat (insert wait states) until data can be provided or accepted by the MPC8260.
Timing Comments	Assertion—Occurs on the clock in which the current data transfer can be completed.
	Negation—Occurs after the clock cycle of the final (or only) data beat of the transfer. For a burst transfer, TA may be negated between beats to insert one or more wait states before the completion of the next beat.

7.2.8.2 Transfer Error Acknowledge (TEA)

The transfer error acknowledge ($\overline{\text{TEA}}$) signal is both input and output on the MPC8260, This signal can be ignored if BCR[TEA_EN] is cleared.

7.2.8.2.1 Transfer Error Acknowledge (TEA)-Input

Following are the state meaning and timing comments for the TEA input signal.

State MeaningAsserted—Indicates that a bus error occurred. The assertion of TEA
causes the negation/high impedance of DBB in the next clock cycle.
However, data entering the MPC8260 internal memory resources
such as GPRs or caches are not invalidated.

Negated-Indicates that no bus error was detected.

Timing CommentsAssertion—May be asserted while \overline{DBB} is asserted and for the cycle
after is \overline{TA} is asserted during a read operation. \overline{TEA} should be
asserted for one cycle only.

Negation— $\overline{\text{TEA}}$ must be negated no later than the negation of $\overline{\text{DBB}}$.

7.2.8.2.2 Transfer Error Acknowledge (TEA) – Output

Following are the state meaning and timing comments for the TEA output.

State Meaning	Asserted—Indicates that a bus error has occurred. Assertion of $\overline{\text{TEA}}$ terminates the transaction in progress; that is, asserting $\overline{\text{TA}}$ is unnecessary because it is ignored by the target device. An unsupported memory transaction, such as a direct-store access or a graphics read or write, causes the assertion of $\overline{\text{TEA}}$ (provided $\overline{\text{TEA}}$ is enabled and the address transfer matches the MPC8260 memory map).
	Negated—Indicates that no bus error was detected.
Timing Comments	Assertion—Occurs on the first clock after the bus error is detected.
	Negation—Occurs one clock after assertion.

7.2.8.3 Partial Data Valid Indication (PSDVAL)

The partial data valid indication (PSDVAL) is both an input and output on the MPC8260

7.2.8.3.1 Partial Data Valid (PSDVAL)-Input

Following are the state meaning and timing comments for the \overline{PSDVAL} input signal. Note that \overline{TA} asserts with \overline{PSDVAL} to indicate the termination of the current transfer and for each complete data beat in burst transactions.

State Meaning	Asserted—Indicates that a beat data transfer completed successfully. Note that <u>PSDVAL</u> must be asserted for each data beat in a single beat, port size and burst transaction,. For more information, see Section 8.5.5, "Port Size Data Bus Transfers and PSDVAL Termination."
	Negated—(During \overline{DBB}) indicates that, until \overline{PSDVAL} is asserted, the MPC8260 must continue to drive the data for the current write or must wait to sample the data for reads.
Timing Comments	Assertion—Must not occur before \overline{AACK} for the current transaction (if the address retry mechanism is to be used to prevent invalid data from being used by the MPC8260); otherwise, assertion may occur at any time during the assertion of \overline{DBB} . The system can withhold assertion of \overline{PSDVAL} to indicate that the MPC8260 should insert wait states to extend the duration of the data beat.
	Negation—Must occur after the bus clock cycle of the final (or only) data beat of the transfer. For a burst and/or port size transfer, the

system can assert $\overrightarrow{\text{PSDVAL}}$ for one bus clock cycle and then negate it to insert wait states during the next beat. (Note: when the MPC8260 Processor is configured for 1:1 clock mode and is performing a burst read into the data cache, the MPC8260 requires two wait state between the assertion of $\overrightarrow{\text{TS}}$ and the first assertion of $\overrightarrow{\text{PSDVAL}}$ for that transaction, or 1 wait state for 1.5:1 clock mode.)

7.2.8.3.2 Partial Data Valid (PSDVAL)-Output

Following are the state meaning and timing comments for **PSDVAL** as an output signal.

State MeaningAsserted—Indicates that the data has been latched for a write
operation, or that the data is valid for a read operation, thus
terminating the current data beat. If it is the last or only data beat, this
also terminates the data tenure.
Negated—Indicates that the master must extend the current data beat
(insert wait states) until data can be provided or accepted by the
MPC8260.Timing CommentsAssertion—Occurs on the clock in which the current data transfer
can be completed.
Negation—Occurs after the clock cycle of the final (or only) data

Negation—Occurs after the clock cycle of the final (or only) data beat of the transfer. For a burst transfer, <u>PSDVAL</u> may be negated between beats to insert one or more wait states before the completion of the next beat.

Chapter 8 The 60x Bus

The 60x bus, which is used by PowerPC processors, provides flexible support for the onchip PowerPC MPC603 processor as well as other internal and external bus devices. The 60x bus supports 32-bit addressing, a 64-bit data bus, and burst operations that transfer as many as 256 bits of data in a four-beat burst. The 60x data bus can be accessed in 8-, 16-, 32-, and 64-bit data ports. The 60x bus supports accesses of 1, 2, 3, and 4 bytes, aligned or unaligned, on 4-byte (word) boundaries; it also supports 64-, 128-, 192-, and 256-bit accesses.

The address and data buses support synchronous, one-level pipeline transactions. The 60x bus interface can be configured to support both external and internal masters or internal masters only.

8.1 Terminology

Table 8-1 defines terms used in this chapter.

Term	Definition
Atomic	A bus access that attempts to be part of a read-write operation to the same address uninterrupted by any other access to that address. The MPC8260 initiates the read and write separately, but signals the memory system that it is attempting an atomic operation. If the operation fails, status is kept so that MPC8260 can try again.
Beat	A single state on the MPC8260 interface that may extend across multiple bus cycles. (An MPC8260 transaction can be composed of multiple address or data beats.)
Burst	A multiple-beat data transfer whose total size is typically equal to a cache block size (in MPC8260: 32 bytes, or 4 data beats at 8 bytes per beat).
Cache block	The PowerPC architecture defines the basic unit of coherency as a cache block, which can be considered the same thing as a cache line.
Clean	An operation that causes a cache block to be written to memory if modified, and then left in a valid, unmodified state in the cache.
Flush	An operation that causes a cache block to be invalidated in the cache, and its data, if modified, to be written back to main memory.
Kill	An operation that causes a cache block to be invalidated in the cache without writing any modified data to memory.

Term	Definition
Lane	A sub-grouping of signals within a bus. An 8-bit section of the address or data bus may be referred to as a byte lane for that bus.
Master	The device that owns the address or data bus, the device that initiates or requests the transaction.
Modified	Identifies a cache block The M state in a MESI or MEI protocol.
Parking	Granting potential bus mastership without requiring a bus request from that device. This eliminates the arbitration delay associated with the bus request.
Pipelining	Initiating a bus transaction before the current one finishes. This involves running an address tenure for a new bus transaction before the data tenure for a current bus transaction completes.
Slave	The device addressed by the master. The slave is identified in the address tenure and is responsible for sourcing or sinking the requested data for the master during the data tenure.
Snooping	Monitoring addresses driven by a bus master to detect the need for coherency actions.
Split-transaction	A transaction with separate request and response tenures.
Tenure	The period of bus mastership. For MPC8260, there can be separate address bus tenures and data bus tenures.
Transaction	A complete exchange between two bus devices. A typical transaction is composed of an address tenure and a data tenure, which may overlap or occur separately from the address tenure. A transaction can minimally consist of an address tenure alone.

Table 8-1. Terminology (Continued)

8.2 Bus Configuration

The 60x bus supports separate bus configurations for internal masters and external bus masters.

- Single-MPC8260 bus mode connects external devices by using only the memory controller. This is described in Section 8.2.1, "Single MPC8260 Bus Mode."
- The 60x-compatible bus mode, described in Section 8.2.2, "60x-Compatible Bus Mode," enables connections to other masters and 60x-bus slaves, such as an external L2 cache controller.

The figures in the following sections show how the MPC8260 can be connected in these two configurations.

8.2.1 Single MPC8260 Bus Mode

In single-MPC8260 bus mode, the MPC8260 is the only bus device in the system. The internal memory controller controls all devices on the external pins. Figure 8-1 shows the signal connections for single-MPC8260 bus mode.

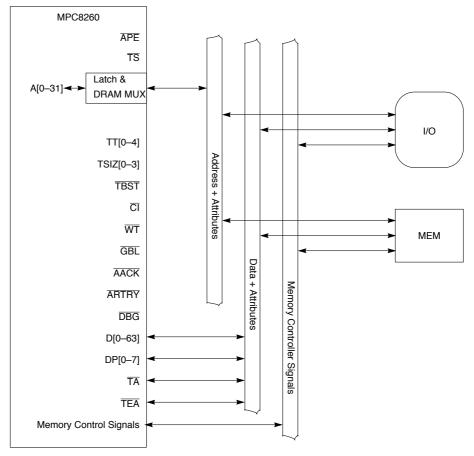
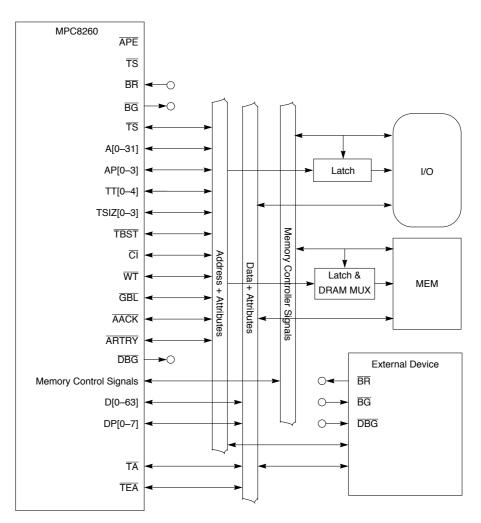



Figure 8-1. Single MPC8260 Bus Mode

Note that in single MPC8260 bus mode, the MPC8260 uses the address bus as a memory address bus. Slaves cannot use the 60x bus signals because the addresses have memory timing, not address tenure timing.

8.2.2 60x-Compatible Bus Mode

The 60x-compatible bus mode can include one or more potential external masters (for example, an L2 cache, an ASIC DMA, a high-end PowerPC processor, or a second MPC8260). When operating in a multiprocessor configuration, the MPC8260 snoops bus operations and maintains coherency between the primary caches and main memory. Figure 8-2 shows how an external processor is attached to the MPC8260.

8.3 60x Bus Protocol Overview

Typically, 60x bus accesses consist of address and data tenures, which in turn each consist of three phases—arbitration, transfer, and termination, as shown in Figure 8-3 The independence of the tenures is indicated by showing the data tenure overlap the next address tenure), which allows split-bus transactions to be implemented at the system level in multiprocessor systems. Figure 8-3 shows a data transfer that consists of a single-beat transfer of as many as 256 bits. Four-beat burst transfers of 32-byte cache blocks require data transfer termination signals for each beat of data. Note that the MPC8260 supports port sizes of 8, 16, 32, and 64 bits and requires the additional bus signal, PSDVAL, which is not

defined by the 60x bus specification. For more information, see Section 8.5.5, "Port Size Data Bus Transfers and PSDVAL Termination."

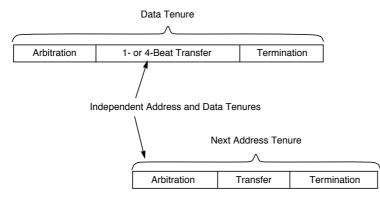


Figure 8-3. Basic Transfer Protocol

The basic functions of the address and data tenures are as follows:

- Address tenure
 - Arbitration: Address bus arbitration signals are used to request and grant address bus mastership.
 - Transfer: After a device is granted address bus mastership, it transfers the address. The address signals and the transfer attribute signals control the address transfer.
 - Termination: After the address transfer, the system acknowledges that the address tenure is complete or that it must be repeated, signalled by the assertion of the address retry signal (ARTRY).
- Data tenure
 - Arbitration: After the address tenure begins, the bus device arbitrates for data bus mastership.
 - Transfer: After the device is granted data bus mastership, it samples the data bus for read operations or drives the data bus for write operations.
 - Termination: Acknowledgment of a successful data transfer is required after each beat in a data transfer. In single-beat transactions, the data termination signals also indicate the end of the tenure. In burst or port-size accesses, data termination signals indicate the completion of individual beats and, after the final data beat, the end of the tenure.

8.3.1 Arbitration Phase

The external bus design permits one device (either the MPC8260 or a bus-attached external device) to be granted bus mastership at a time. Bus arbitration can be handled either by an

external central bus arbiter or by the internal on-chip arbiter. In the latter case, the system is optimized for three external bus masters besides the MPC8260. The arbitration configuration (external or internal) is determined at system reset by sampling configuration pins. See Section 10.9, "External Master Support (60x-Compatible Mode)," for more information.

The MPC8260 controls bus access through the bus request (\overline{BR}) and bus grant (\overline{BG}) signals. It determines the state of the address and data bus busy signals by monitoring \overline{DBG} , \overline{TS} , \overline{AACK} , and \overline{TA} , and it qualifies them with \overline{ABB} and \overline{DBB} .

The following signals are used for address bus arbitration:

- \overline{BR} (bus request)—A device asserts \overline{BR} to request address bus mastership.
- BG (bus grant)—Assertion indicates that a bus device may, with proper qualification, assume mastership of the address bus. A qualified bus grant occurs when BG is asserted while ABB and ARTRY are negated.
- ABB (address bus busy)—A device asserts ABB to indicate it is the current address bus master. Note that if all devices assert AACK with TS and would normally negate ABB after AACK is asserted, the devices can ignore ABB because the MPC8260 can internally generate ABB. The MPC8260's ABB, if enabled, must be tied to a pull-up resistor.

The following signals are used for data bus arbitration:

- DBG (data bus grant)—Indicates that a bus device can, with the proper qualification, assume data bus mastership. A qualified data bus grant occurs when DBG is asserted while DBB and ARTRY are negated.
- DBB (data bus busy)—Assertion by the device indicates that the device is the current data bus master. The device master always assumes data bus mastership if it needs the data bus and is given a qualified data bus grant (see DBG). Note that if all devices assert DBB in conjunction with qualified data bus grant and would normally negate DBB after the last TA is asserted, the devices can ignore DBB because the MPC8260 can generate DBB internally. The MPC8260's DBB signal, if enabled, must be tied to a pull-up resistor.

The following is a summary of rules for arbitration:

- Preference among devices is determined at the request level. The MPC8260 supports eight levels of bus requests.
- When no bus device is requesting the address bus, the MPC8260 parks the device selected in the arbiter configuration register on the bus.

For more information, see Section 4.3.2.2, "60x Bus Arbiter Configuration Register (PPC_ACR)."

8.3.2 Address Pipelining and Split-Bus Transactions

The 60x bus protocol provides independent address and data bus capability to support pipelined and split-bus transaction system organizations. Address pipelining allows the next address tenure to begin before the current data tenure has finished. Although this ability does not inherently reduce memory latency, support for address pipelining and splitbus transactions can greatly improve effective bus/memory throughput. These benefits are most fully realized in shared-memory, multiple-master implementations where bus bandwidth is critical to system performance.

External arbitration (as provided by the MPC8260) is required in systems in which multiple devices share the system bus. The MPC8260 uses the address acknowledge (\overline{AACK}) signal to control pipelining. The MPC8260 supports both one- and zero-level bus pipelining. One-level pipelining is achieved by asserting \overline{AACK} to the current address bus master and granting mastership of the address bus to the next requesting master before the current data bus tenure has completed. Two address tenures can occur before the current data bus tenure completes. The MPC8260 also supports non-pipelined accesses.

8.4 Address Tenure Operations

This section describes the three phases of the address tenure-address bus arbitration, address transfer, and address termination.

8.4.1 Address Arbitration

Bus arbitration can be handled either by an external arbiter or by the internal on-chip arbiter. The arbitration configuration (external or internal) is chosen at system reset. For internal arbitration, the MPC8260 provides arbitration for the 60x address bus and the system is optimized for three external bus masters besides the MPC8260. The bus request (\overline{BR}) for the external device is an external input to the arbiter. The bus grant signal for the external device (\overline{BG}) is output to the external device. The \overline{BG} signal asserted by MPC8260's on-chip arbiter is asserted one clock after the current master on the bus has asserted \overline{AACK} ; therefore, it can be called a qualified \overline{BG} . Assuming that all potential masters negate \overline{ABB} one clock after receiving \overline{AACK} , the device receiving \overline{BG} can start the address tenure (by asserting \overline{TS}) one clock after receiving \overline{BG} . In addition to the external signals, there are internal request and grant signals for the MPC8260 processor, communications processor, refresh controller, and the PCI internal bridge. Bus accesses are prioritized, with programmable priority. When a MPC8260's internal master needs the 60x bus, it asserts the internal bus grant for the highest priority request.

The MPC8260 supports address bus parking through the use of the parked master bits in the arbiter configuration register. The MPC8260 parks the address bus (asserts the address bus grant signal in anticipation of an address bus request) to the external master or internal masters. When a device is parked, the arbiter can hold BG asserted for a device even if that device has not requested the bus. Therefore, when the parked device needs to perform a bus

Part III. The Hardware Interface

transaction, it skips the bus request delay and assumes address bus mastership on the next cycle. For this case, \overline{BR} is not asserted and the access latency seen by the device is shortened by one cycle.

The MPC8260 and external device bus devices qualify \overline{BG} by sampling \overline{ARTRY} in the negated state prior to taking address bus mastership. The negation of \overline{ARTRY} during the address retry window (one cycle after the assertion of \overline{AACK}) indicates that no address retry is requested. If a device detects \overline{ARTRY} asserted, it cannot accept a address bus grant during the \overline{ARTRY} cycle or the cycle following. A device that asserts \overline{ARTRY} due to a modified cache block hit, for example, asserts its bus request during the cycle after the assertion of \overline{ARTRY} and assumes bus mastership for the cache block push when it is given a bus grant.

The series of address transfers in Figure 8-4 shows the transfer protocol when the MPC8260 is configured in 60x-compatible bus mode. In this example, MPC8260 is initially parked on the bus with $\overline{BG INT}$ -asserted (note that $\overline{BG INT}$ is an internal signal not seen by the user at the pins), which lets it start an address bus tenure by asserting \overline{TS} . During the same clock cycle, the external master's bus request is asserted to request access to the 60x bus, thereby causing the negation of $\overline{BG INT}$ internally and the assertion of \overline{BG} at the pin. Following MPC8260's address tenure, the external master takes the bus and initiates its address transaction. The on-chip arbiter samples \overline{BR} during the clock cycle in which \overline{AACK} is asserted; if \overline{BR} is not asserted (no pending request), it negates \overline{BG} and asserts the parked bus grant ($\overline{BG_INT}$ in this example).

The master can assert \overline{BR} and receive a qualified bus grant without subsequently using the bus. It can negate (cancel) \overline{BR} before accepting a qualified bus grant. This can occur when a replacement copyback transaction waiting to be run on the bus is killed by a snoop of another bus master. This can also occur when the reservation set by a pending **stwcx**. transaction is cancelled by a snoop of another master. In both cases, the pending transaction by the processor is cancelled and \overline{BR} is negated.

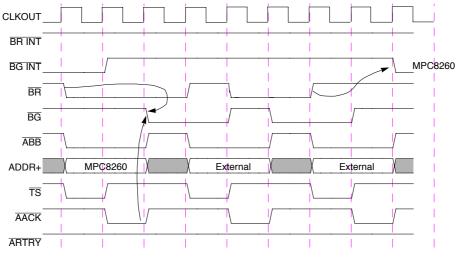


Figure 8-4. Address Bus Arbitration with External Bus Master

8.4.2 Address Pipelining

The MPC8260 supports one-level address pipelining by asserting \overline{AACK} to the current bus master when its data tenure starts and by granting the address bus to the next requesting device before the current data bus tenure completes. Address pipelining improves data throughput by allowing the memory-control hardware to decode a new set of address and control signals while the current data transaction finishes. The MPC8260 pipelines data bus operations in strict order with the associated address operations. Figure 8-5 shows how address pipelining allows address tenures to overlap the associated data tenures.

Figure 8-5. Address Pipelining

8.4.3 Address Transfer Attribute Signals

During the address transfer, the address is placed on the address signals, A[0-31]. The bus master provides other signals that characterize the address transfer—transfer type (TT[0-4]), transfer code (TC[0-2]), transfer size (TSIZ[0-3]), and transfer burst (TBST) signals. These signals are discussed in the following sections.

8.4.3.1 Transfer Type Signal (TT[0-4]) Encoding

The transfer type signals define the nature of the transfer requested. They indicate whether the operation is an address-only transaction or whether both address and data are to be transferred. Table 8-2 describes the MPC8260's action as master, slave, and snooper.

TT[0-4] ¹	60x Bus Specification ²		MPC8260 as Bus Master		MPC8260 as Snooper	MPC8260 as Slave
	Command	Transaction	Bus Trans.	Transaction Source	Action on Hit	Action on Slave Hit
00000	Clean block	Address only	Address only (if enabled)	dcbst (if enabled)	Not applicable to MPC8260	AACK asserted; MPC8260 takes no further action.
00100	Flush block	Address only	Address only (if enabled)	dcbf (if enabled)	Not applicable to MPC8260	AACK is asserted; MPC8260 takes no further action.

Table 8-2. Transfer Type Encoding

TT[0–4] ¹	60x Bus Specification ²		MPC8260	MPC8260 as Bus Master		MPC8260 as Slave
	Command	Transaction	Bus Trans.	Transaction Source	Action on Hit	Action on Slave Hit
01000	sync	Address only	Address only (if enabled)	sync (if enabled)	Not applicable to MPC8260	Assert AACK. BG is negated until MPC8260 buffers are flushed.
01100	Kill block	Address only	Address only	dcbz or dcbi (if enabled)	Flush, cancel reservation	AACK is asserted.
10000	eieio	Address only	Address only (if enabled)	eieio (if enabled)	Not applicable to MPC8260	Assert AACK. BG is negated until MPC8260 buffers are flushed.
101 00	Graphics write	Single-beat write	Single-beat write (non- GLB)	ecowx	Not applicable to MPC8260	No action.
11000	TLB invalidate	Address only	Not applicable to MPC8260	Not applicable to MPC8260	Not applicable to MPC8260	AACK is asserted; MPC8260 takes no further action.
11100	Graphics read	Single-beat read	Single-beat read (non-GBL)	eciwx	Not applicable to MPC8260	MPC8260 takes no action.
00001	Iwarx reservation set	Address only	Not applicable to MPC8260	Not applicable to MPC8260	Not applicable to MPC8260	Address-only operation. AACK is asserted; MPC8260 takes no further action.
00101	Reserved	-	Not applicable to MPC8260	Not applicable to MPC8260	Not applicable to MPC8260	Illegal
01001	tlbsync	Address only	Not applicable to MPC8260	Not applicable to MPC8260	Not applicable to MPC8260	Address-only operation. AACK is asserted; MPC8260 takes no further action.
01101	icbi	Address only	Not applicable to MPC8260	Not applicable to MPC8260	Not applicable to MPC8260	Address-only operation. AACK is asserted; MPC8260 takes no further action.
1XX01	Reserved for customer	-	Not applicable to MPC8260	Not applicable to MPC8260	Not applicable to MPC8260	Illegal
00010	WR w/flush	Single-beat write or Burst	Single-beat write	CI, WT store, or non- processor master under	Flush, cancel reservation	Write, assert AACK and TA.
00110	WR w/Kill	Burst	Burst (non- GLB)	Castout, ca-op push, or snoop copyback	Kill, cancel reservation	Write, assert \overline{AACK} and \overline{TA} .
01010	Read	Single-beat read or burst	Single-beat read	CI load, CI I-fetch or nonprocessor master	Clean or flush	Read, assert \overline{AACK} and \overline{TA} .

Table 8-2. Transfer Type Encoding (Continued)

TT[0–4] ¹	60x Bus Sp	ecification ²	MPC8260 as Bus Master		MPC8260 as Snooper	MPC8260 as Slave
	Command	Transaction	Bus Trans.	Transaction Source	Action on Hit	Action on Slave Hit
01110	Read with intent to modify	Burst	Burst	Load miss, store miss, or I-fetch	Flush	Read, assert \overline{AACK} and \overline{TA} .
10010	WR w/flush atomic	Single-beat write	Single-beat write	stwcx	Flush, cancel reservation	Write, assert \overline{AACK} and \overline{TA}
10110	Reserved	Not applicable to MPC8260	Not applicable to MPC8260	Not applicable to MPC8260	Not applicable to MPC8260	Illegal
11010	Read atomic	Single-beat read or burst	Single-beat read	Iwarx (CI load)	Clean or flush	Read, assert \overline{AACK} and \overline{TA}
11110	Read with intent to modify atomic	Burst	Burst	lwarx (load miss)	Flush	Read, assert AACK and TA
00011	Reserved	-	Not applicable to MPC8260	Not applicable to MPC8260	Not applicable to MPC8260	Illegal
00111	Reserved	-	Not applicable to MPC8260	Not applicable to MPC8260	Not applicable to MPC8260	Illegal
01011	Read with no intent to cache	Single-beat read or burst	Not applicable to MPC8260	Not applicable to MPC8260	Clean	Read, assert \overline{AACK} and \overline{TA}
01111	Reserved	-	Not applicable to MPC8260	Not applicable to MPC8260	Not applicable to MPC8260	Illegal
1XX11	Reserved for customer	-	Not applicable to MPC8260	Not applicable to MPC8260	Not applicable to MPC8260	Illegal

Table 8-2	. Transfer	Type Encoding	(Continued)
-----------	------------	---------------	-------------

¹TT1 can be interpreted as a read-versus-write indicator for the bus.

²This column specifies the TT encoding for the general 60x protocol. The processor generates or snoops only a subset of those encodings.

Note the following regarding Table 8-2:

- For reads, the processor cleans or flushes during a snoop based on the TBST input. The processor cleans for single-beat reads (TBST negated) to emulate read-with-nointent-to-cache operations.
- Castouts and snoop copybacks are generally marked as non-global and are not snooped (except for reservation monitoring). However, other masters performing DMA write operations with the same TT encoding and marked as a global WR operation (whether global or non-global) will cancel an active reservation during a snoop hit in the reservation register (independent of a snoop hit in the cache).
- A non-processor read can cause the internal processor to invalidate the corresponding cache line if it exists.

8.4.3.2 Transfer Code Signals TC[0–2]

The transfer code signals, TC[0–2], provide supplemental information about the corresponding address (mainly regarding the source of the transaction). Note that TCx signals can be used with the TT[0–4] and $\overline{\text{TBST}}$ to further define the current transaction.

TC[0-2]	Read	Write	
000	Core data transaction	Any write	
001	Core touch load	-	
010	Core instruction fetch	_	
011	Reserved	-	
100	Reserved		
101	Reserved		
110	DMA function code 0		
111	DMA function code 1		

Table 8-3 Transfer Code Encoding

8.4.3.3 TBST and TSIZ[0–3] Signals and Size of Transfer

As shown in Table 8-4, the transfer size signals (TSIZ[0–3]) and the transfer burst signal (TBST) together indicate the size of the requested data transfer. These signals can be used with address bits A[27–31] and the device port size to determine which portion of the data bus contains valid data for a write transaction or which portion of the bus should contain valid data for a read transaction.

The MPC8260 uses four double-word burst transactions for transferring cache blocks. For these transactions, TSIZ[0-3] are encoded as 0b0010, and address bits A[27-28] determine which double-word is sent first.

The MPC8260 supports critical-word-first burst transactions (double-word-aligned) from the processor. The MPC8260 transfers the critical double word of data first, followed by the double words from increasing addresses, wrapping back to the beginning of the eight-word block as required.

TBST	TSIZ[0-3]	Transfer Size	Comments	Source
Negated	0001	1 Byte	Byte	Core and DMA
Negated	0010	2 Bytes	Half-word	Core and DMA
Negated	0011	3 Bytes	-	Core and DMA
Negated	0100	4 Bytes	Word	Core and DMA
Negated	0101	5 Bytes	Extended 5 bytes	SDMA (MPC8260 only)
Negated	0110	6 Bytes	Extended 6 bytes	SDMA (MPC8260 only)

Table 8-4. Transfer Size Signal Encoding

TBST	TSIZ[0–3]	Transfer Size	Comments	Source
Negated	0111	7 Bytes	Extended 7 bytes	SDMA (MPC8260 only)
Negated	0000	8 Bytes	Double-word (maximum data bus size)	Core and DMA
Negated	1001	16 Bytes	Extended double double-word	SDMA (MPC8260 only)
Negated	1010	24 Bytes	Extended triple double-word	SDMA (MPC8260 only)
Asserted	0010	32 bytes	Quad double-word (4 maximum data beats)	Core and DMA

Table 8-4. Transfer Size Signal Encoding (Continued)

Note that the basic coherency size of the bus is 32 bytes for the processor (cache-block size). Data transfers that cross an aligned 32-byte boundary must present a new address onto the bus at that boundary for proper snoop operation, or must operate as non-coherent with respect to the MPC8260.

8.4.3.4 Burst Ordering During Data Transfers

During burst transfers, 32 bytes of data (one cache block) are transferred to or from the cache. Burst write transfers are performed zero double-word-first. However, because burst reads are performed critical-double-word-first, a burst-read transfer may not start with the first double word of the cache block and the cache-block-fill operation may wrap around the end of the cache block. Table 8-5 describes MPC8260 burst ordering.

Data Transfer		Double-Word Starting Address:										
Data Italisiei	A[27-28] = 00 ¹	A[27–28] = 01	A[27–28] = 10	A[27–28] = 11								
1st data beat	DW0 ²	DW1	DW2	DW3								
2nd data beat	DW1	DW2	DW3	DW0								
3rd data beat	DW2	DW3	DW0	DW1								
4th data beat	DW3	DW0	DW1	DW2								

Table 8-5. Burst Ordering

¹A[27–28] specifies the first double word of the 32-byte block being transferred; any subsequent double words must wrap-around the block. A[29–31] are always 0b000 for burst transfers by the MPC8260.

²DWx represents the double word that would be addressed by A[27-28] = x if a nonburst transfer were performed.

Each data beat is terminated with an assertion of \overline{TA} .

8.4.3.5 Effect of Alignment on Data Transfers

Table 8-6 lists the aligned transfers that can occur to and from the MPC8260. These are transfers in which the data is aligned to an address that is an integer multiple of the size of the data. For example, Table 8-6 shows that 1-byte data is always aligned; however, a 4-byte word must reside at an address that is a multiple of 4 to be aligned.

In Figure 8-6, Table 8-8, and Table 8-9, OP0 is the most-significant byte of a word operand and OP7 is the least-significant byte.

			Data Bus Byte Lanes								
Program Transfer Size	TSIZ[0-3]	A[29–31]	A[29–31] D0		l	D31		D32		D63	
			B0	B1	B2	В3	B4	B5	B6	B7	
Byte	0001	000	OP0 ¹	_2	-	-	-	-	_	_	
	0001	001	-	OP1	-	_	_	_	_	_	
	0001	010	-	_	OP2	_	_	_	_	_	
	0001	011	-	_	-	OP3	_	_	_	_	
	0001	100	-	_	-	_	OP4	_	_	_	
	0001	101	-	_	-	-	-	OP5	_	_	
	0001	110	-	_	-	_	_	_	OP6	_	
	0001	111	-	_	-	_	_	_	_	OP7	
Half-Word	0010	000	OP0	OP1	-	_	_	_	_	_	
	0010	010	-	_	OP2	OP3	_	_	_	_	
	0010	100	-	_	-	_	OP4	OP5	_	_	
	0010	110	-	_	-	_	_	_	OP6	OP7	
Word	0100	000	OP0	OP1	OP2	OP3	_	_	_	_	
	0100	100	-	_	-	_	OP4	OP5	OP6	OP7	
Double-Word	0000	000	OP0	OP1	OP2	OP3	OP4	OP5	OP6	OP7	

¹OPn: These lanes are read or written during that bus transaction. OP0 is the most-significant byte of a word operand and OP7 is the least-significant byte.

²—: These lanes are ignored during reads and driven with undefined data during writes.

The MPC8260 supports misaligned memory operations, although they may degrade performance substantially. A misaligned memory address is one that is not aligned to the size of the data being transferred (such as, a word read from an odd byte address). The MPC8260's processor bus interface supports misaligned transfers within a word (32-bit aligned) boundary, as shown in Table 8-7. Note that the 4-byte transfer in Table 8-7 is only one example of misalignment. As long as the attempted transfer does not cross a word boundary, the MPC8260 can transfer the data to the misaligned address within a single bus transfer (for example, a half-word read from an odd byte-aligned address). It takes two bus transfers to access data that crosses a word boundary.

Due to the performance degradation, misaligned memory operations should be avoided. In addition to the double-word straddle boundary condition, the processor's address translation logic can generate substantial exception overhead when the load/store multiple and load/store string instructions access misaligned data. It is strongly recommended that

software attempt to align code and data where possible.

	•				-	• •		• •			
		A[29–31]	Data Bus Byte Lanes								
Program Size of Word (4 bytes)	TSIZ[1-3]		D0.		l	D31	D32		D63		
			В0	B1	B2	B3	B4	B5	B6	B7	
Aligned	100	000	A ¹	A	A	Α	_2	_	-	-	
Misaligned-1st access	011	001	-	A	A	A	_	_	-	-	
2nd access	001	100	-	-	-	-	A	_	-	-	
Misaligned-1st access	010	010	-	-	A	A	_	_	-	-	
2nd access	010	100	-	-	-	-	A	A	-	-	
Misaligned-1st access	001	011	-	-	-	A	_	_	-	-	
2nd access	011	100	-	-	-	-	A	Α	A	-	
Aligned	100	100	-	-	-	-	A	A	A	A	
Misaligned-1st access	011	101	-	-	-	-	_	Α	A	A	
2nd access	001	000	А	-	-	-	_	_	-	-	
Misaligned-1st access	010	110	-	-	-	-	_	-	A	A	
2nd access	010	000	Α	A	-	-	_	-	-	-	
Misaligned-1st access	001	111	-	-	-	-	_	-	-	A	
2nd access	011	000	Α	A	A	-	_	-	-	-	
					•	•	•			•	

Table 8-7. Unaligned Data Transfer Example (4-Byte Example)

¹A: Byte lane used

²-: Byte lane not used

8.4.3.6 Effect of Port Size on Data Transfers

The MPC8260 can transfer operands through its 64-bit data port. If the transfer is controlled by the internal memory controller, the MPC8260 can support 8-, 16-, 32-, and 64-bit data port sizes. The bus requires that the portion of the data bus used for a transfer to or from a particular port size be fixed. A 64-bit port must reside on data bus bits D[0–63], a 32-bit port must reside on bits D[0–31], a 16-bit port must reside on bits D[0–15], and an 8-bit port must reside on bits D[0–7]. The MPC8260 always tries to transfer the maximum amount of data on all bus cycles: for a word operation, it always assumes the port is 64 bits wide when beginning the bus cycle; for burst and extended byte cycles, a 64-bit bus is assumed.

Figure 8-6 shows the device connections on the data bus. Table 8-8 lists the bytes required on the data bus for read cycles.

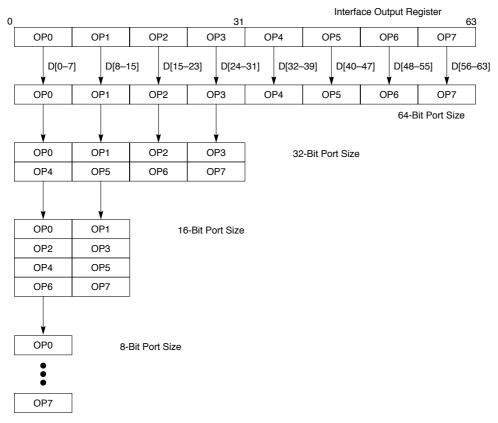


Figure 8-6. Interface to Different Port Size Devices

T						P	ort Size	e/Data	Bus As	ssignr	nents					
Transfer Size	Address State ¹		64-Bit								32	2-Bit		16	8-Bit	
TSIZ[0-3]	A[29–31]	0–7	8–15	16–23	24–31	32–39	40–47	48–55	56–63	0–7	8–15	16–23	24–31	0–7	8–15	0–7
Byte	000	OP0 ²	_3	_	_	_	_	_	_	OP0	_	_	-	OP0	_	OP0
(0001)	001	_	OP1	_	-	-	_	-	_	-	OP1	_	-	-	OP1	OP1
	010	_	-	OP2	_	-	_	-	_	-	_	OP2	_	OP2	-	OP2
	011	_	I	_	OP3	_	_	_	_	-	-	_	OP3	-	OP3	OP3
	100	-	I	_	_	OP4	-	_	_	OP4	_	_	_	OP4	-	OP4
	101	_	I	_	_	_	OP5	_	_	-	OP5	_	_	-	OP5	OP5
	110	-	I	_	_	-	-	OP6	_	-	_	OP6	_	OP6	-	OP6
	111	_	-	_	_	_	_	_	OP7	_	_	_	OP7	-	OP7	OP7
Half Word	000	OP0	OP1	_	_	-	_	_	_	OP0	OP1	_	_	OP0	OP1	OP0
(0010)	001	_	OP1	OP2	_	-	_	_	_	_	OP1	OP2	_	-	OP1	OP1
	010	_	-	OP2	OP3	-	—	_	_	-	_	OP2	OP3	OP2	OP3	OP2
	100	-	-	-	-	OP4	OP5	-	-	OP4	OP5	-	-	OP4	OP5	OP4
	101	-	1	-	-	-	OP5	OP6	_	-	OP5	OP6	_	-	OP5	OP5
	110	_	_	_	_	-	_	OP6	OP7	_	_	OP6	OP7	OP6	OP7	OP6
Triple Byte	000	OP0	OP1	OP2	_	_	—	_	_	OP0	OP1	OP2	_	OP0	OP1	OP0
(0011)	001	-	OP1	OP2	OP3	_	_	_	_	_	OP1	OP2	OP3	-	OP1	OP1
	100	_	I	_	_	OP4	OP5	OP6	_	OP4	OP5	OP6	_	OP4	OP5	OP4
	101	-	-	_	_	_	OP5	OP6	OP7	_	OP5	OP6	OP7	-	OP5	OP5
Word	000	OP0	OP1	OP2	OP3	-	-	_	_	OP0	OP1	OP2	OP3	OP0	OP1	OP0
(0100)	100	_	-	_	-	OP4	OP5	OP6	OP7	OP4	OP5	OP6	OP7	OP4	OP5	OP4
Double Word (0000)	000	OP0	OP1	OP2	OP3	OP4	OP5	OP6	OP7	OP0	OP1	OP2	OP3	OP0	OP1	OP0

Table 8-8. Data Bus Requirements For Read Cycle

¹Address state is the calculated address for port size.

²OPn: These lanes are read or written during that bus transaction. OP0 is the most-significant byte of a word operand and OP7 is the least-significant byte.

³— Denotes a byte not required during that read cycle.

Table 8-9 lists data transfer patterns for write cycles for accesses initiated by the MPC8260.

Transfer	Address			Ex	ternal Dat	a Bus Pat	tern		
Size TSIZ[0–3]	State ¹ A[29–31]	0–7	8–15	16–23	24–31	32–39	40–47	48–55	56-63
Byte	000	OP0 ²	_3	-	_	_	_	_	-
(0001)	001	OP1	OP1	-	_	_	_	-	-
	010	OP2	-	OP2	—	—	—	-	-
	011	OP3	OP3	-	OP3	_	_	-	-
	100	OP4	-	-	_	OP4	_	-	-
	101	OP5	OP5	-	-	—	OP5	-	-
	110 ¹	OP6	-	OP6	-	_	-	OP6	-
	111	OP7	OP7	-	OP7	—	—	-	OP7
Half Word	000	OP0	OP1	-	-	-	-	-	-
(0010)	001	OP1	OP1	OP2	—	—	—	-	-
	010	OP2	OP3	OP2	OP3	_	_	-	-
	100	OP4	OP5	-	-	OP4	OP5	-	-
	101	OP5	OP5	OP6	—	—	OP5	OP6	-
	110	OP6	OP7	OP6	OP7	—	-	OP6	OP7
Triple Byte	000	OP0	OP1	OP2	-	—	—	-	-
(0011)	001	OP1	OP1	OP2	OP3	—	—	-	-
	100	OP4	OP5	OP6	-	OP4	OP5	OP6	-
	101	OP5	OP5	OP6	OP7	-	OP5	OP6	OP7
Word	000	OP0	OP1	OP2	OP3	_	_	-	-
(0100)	100	OP4	OP5	OP6	OP7	OP4	OP5	OP6	OP7
Double Word (0000)	000	OP0	OP1	OP2	OP3	OP4	OP5	OP6	OP7

Table 8-9. Data Bus Contents for Write Cycles

¹Address state is the calculated address for port size

²OPn: These lanes are read or written during that bus transaction. OP0 is the most-significant byte of a word operand and OP7 is the least-significant byte.

 3 - Denotes a byte not driven during that write cycle.

8.4.3.7 60x-Compatible Bus Mode-Size Calculation

To comply with the requirements listed in Table 8-8 and Table 8-9, the transfer size and a new address must be calculated at the termination of each beat of a port-size transaction. In single-MPC8260 bus mode, these calculations are internal and do not constrain the system. In 60x-compatible bus mode, the external slave or master must determine the new address and size. Table 8-10 describes the address and size calculation state machine. Note that the address and size states are for internal use and are not transferred on the address or TSIZ pins. Extended transactions (16- and 24-byte) are not described here but can be determined by extending this table for 9-, 10-, 16-, 23-, and 24-byte transactions.

Size State	Address State [0-4]		Port Size	Next Size State	Next Address State [0-4]							
Byte	x	x	x	x	x	x		Stop				
2-Byte	x	x	x	x	0	Byte	Byte	x	x	x	x	1
	x	x	0	0	1		Byte	x	x	0	1	0
	x	x	1	0	1		Byte	x	x	1	1	0
	x	x	x	0	1	Half	Byte	x	x	x	1	0
	x	x	x	x	0			Stop			•	
3-Byte	x	x	0	0	0	Byte	2-Byte	x	x	0	0	1
	x	x	0	0	1		2-Byte	x	х	0	1	0
	x	x	1	0	0		2-Byte	x	х	1	0	1
	x	x	1	0	1		2-Byte	x	x	1	1	0
	x	x	0	0	0	Half	Byte	x	x	0	1	0
	x	x	0	0	1		2-Byte	x	x	0	1	0
	x	x	1	0	0		Byte	x	x	1	1	0
	x	x	1	0	1		2-Byte	x	x	1	1	0
	x	x	x	x	x	Word		Stop		1		
4-Byte	x	x	x	0	0	Byte	3-Byte	x	x	x	0	1
	x	x	x	0	0	Half	2-Byte	x	х	x	1	0
	x	x	x	x	x	Word		Stop				
5-Byte	x	x	0	1	1	Byte	4-Byte	x	x	1	0	0
6-Byte	x	x	0	1	0	Byte	5-Byte	x	x	0	1	1
	x	x	0	1	0	Half	4-Byte	x	x	1	0	0
7-Byte	x	x	0	0	1	Byte	6-Byte	x	x	0	1	0
8-Byte	x	x	0	0	0	Byte	7-Byte	x	x	0	0	1
	x	x	0	0	0	Half	6-Byte	x	x	0	1	0
	x	x	0	0	0	Word	4-Byte	x	x	1	0	0
	x	x	0	0	0	Double		Stop				·

Table 8-10. Address and Size State Calculations

8.4.3.8 Extended Transfer Mode

The MPC8260 supports an extended transfer mode that improves bus performance. This should not be confused with the extended bus protocol used to support direct-store operations supported in some earlier PowerPC processors. The MPC8260 can generate 5-, 6-, 7-, 16-, or 24-byte extended transfers. These transactions are compatible with the 60x

bus, but some slaves or masters do not support these features. Clear BCR[ETM] to disable this type of transaction. This places the MPC8260 in strict 60x bus mode. The following tables are extensions to Table 8-9, Table 8-8, and Table 8-10.

Table 8-11 lists the patterns of the extended data transfer for write cycles when MPC8260 initiates an access. Note that 16- and 24-byte transfers are always eight-byte aligned and use a 64-bit or less port size.

Transfer Size	Address State A[29–		External Data Bus Pattern												
TSIZ[0-3])	31]	D[0-7]	D[8–15]	D[16-23]	D[24–31]	D[32–39]	D[40-47]	D[48–55]	D[56-63]						
5 Bytes	000	OP0	OP1	OP2	OP3	OP4	_	_	_						
(0101)	011	OP3	OP3	_	OP3	OP4	OP5	OP6	OP7						
6 Bytes	000	OP0	OP1	OP2	OP3	OP4	OP5	_	_						
(0110)	010	OP2	OP3	OP2	OP3	OP4	OP5	OP6	OP7						
7 Bytes	000	OP0	OP1	OP2	OP3	OP4	OP5	OP6	-						
(0111)	001	OP1	OP1	OP2	OP3	OP4	OP5	OP6	OP7						

Table 8-11. Data Bus Contents for Extended Write Cycles

Table 8-12 lists the bytes required on the data bus for extended read cycles. Note that 16and 24-byte transfers are always 8-byte aligned and use a maximum 64-bit port size.

 Table 8-12. Data Bus Requirements for Extended Read Cycles

Tropofor	Address						Port S	ize/Da	ta Bus	Assig	Inment	S				
Transfer Size TSIZ[0–3]	State				6	4-Bit					32	-Bit		16-	Bit	8-Bit
1312[0-3]	A[29-31]	0–7	8–15	16–23	24–31	32–39	40–47	48–55	56–63	0–7	8–15	16–23	24–31	0–7	8–15	0–7
5 Byte	000	OP0	OP1	OP2	OP3	OP4	_	_	_	OP0	OP1	OP2	OP3	OP0	OP1	OP0
(0101)	011	_	_	_	OP3	OP4	OP5	OP6	OP7	_	_	_	OP3	_	OP3	OP3
6 Byte	000	OP0	OP1	OP2	OP3	OP4	OP5	-	-	OP0	OP1	OP2	OP3	OP0	OP1	OP0
(0110)	010	-	-	OP2	OP3	OP4	OP5	OP6	OP7	-	_	OP2	OP3	OP2	OP3	OP2
7 Byte	000	OP0	OP1	OP2	OP3	OP4	OP5	OP6	—	OP0	OP1	OP2	OP3	OP0	OP1	OP0
(0111)	001	_	OP1	OP2	OP3	OP4	OP5	OP6	OP7	_	OP1	OP2	OP3	I	OP1	OP1

Table 8-13 includes added states to the transfer size calculation state machine. Only extended transfers use these states.

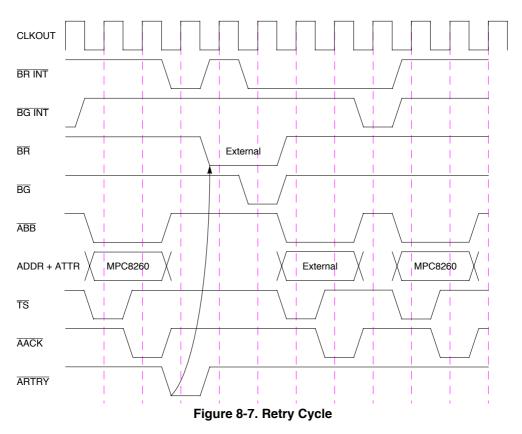
Size State [0-3]	A					Port Size	Next Size State [0-3]	Nex	t Add	ress	State[0-4]
Half	х	х	x	1	1	Byte	Byte	x	x	1	0	0
	х	x	1	0	1			x	x	1	1	0
	х	х	x	х	x	Half	:	Stop				
3-Byte	х	х	0	1	0	Byte	Half	x	x	0	1	1
	х	х	1	0	0			x	х	1	0	1
	х	х	0	1	0	Half	Byte	x	х	1	0	0
	х	х	1	0	0			x	х	1	1	0
Word	х	х	0	0	1	Byte	3-Byte	x	x	0	1	0
	х	х	0	1	1			x	x	1	0	0
5-Byte	х	х	0	0	0	Byte	Word	x	x	0	0	1
	х	х	0	0	1			x	x	0	1	0
	х	х	0	1	0			x	x	0	1	1
	х	х	0	1	1			х	x	1	0	0
	х	х	0	0	0	Half	3-Byte	x	х	0	1	0
	х	х	0	1	0			x	х	1	0	0
	х	х	0	1	1		Word	x	х	1	0	0
	х	х	0	0	0	Word	Byte	x	x	1	0	0
	х	х	0	1	1		Word	x	х	1	0	0
	х	х	x	х	x	Double	Ę	Stop				
6-Byte	х	х	0	0	0	Byte	5-Byte	x	x	0	0	1
	х	х	0	0	1			x	x	0	1	0
	x	х	0	1	0			x	x	0	1	1
	х	х	0	0	0	Half	Word	x	x	0	1	0
	х	х	0	1	0			x	x	1	0	0
	x	х	0	0	0	Word	Half	x	x	1	0	0
	х	х	0	1	0		Word	x	x	1	0	0
	х	х	x	x	x	Double		Stop				
7-Byte	х	х	0	0	0	Byte	6-Byte	x	x	0	0	1
	х	х	0	0	1			x	x	0	1	0
	х	х	0	0	0	Half	5-Byte	x	x	0	1	0
	х	х	0	0	1		6-Byte	x	x	0	1	0
	х	х	0	0	0	Word	3-Byte	х	x	1	0	0
	х	х	0	0	1		4-Byte	x	x	1	0	0
	х	х	x	х	x	Double		Stop				

Table 8-13. Address and Size State for Extended Transfers

Extended transfer mode is enabled by setting the BCR[ETM].

8.4.4 Address Transfer Termination

Address transfer termination occurs with the assertion of the address acknowledge (\overline{AACK}) signal, or retried with the assertion of \overline{ARTRY} . \overline{ARTRY} must remain asserted until one clock after \overline{AACK} ; the bus clock cycle after \overline{AACK} is called the \overline{ARTRY} window. The MPC8260 controls assertion of \overline{AACK} unless the cycle is claimed by an external slave, such as an external L2 cache controller. Following the assertion of L2_HIT, the L2 cache controller is responsible for asserting \overline{AACK} . When \overline{AACK} is asserted by the external slave, it should be asserted for one clock cycle and then negated for one clock cycle before entering a high-impedance state. The MPC8260 holds \overline{AACK} in a high-impedance state until it is required to assert \overline{AACK} to terminate the address cycle.


The MPC8260 uses \overline{AACK} to enforce a pipeline depth of one to its internal slaves.

NOTE

If the MPC8260 processor clock is configured for 1x or 1.5x clock mode, the $\overline{\text{ARTRY}}$ snoop response cannot be determined in the minimum allowed address tenure period. For this clock mode, $\overline{\text{AACK}}$ must not be asserted to the chip until at least the third clock of the address tenure (one address wait state) to give the processor time to assert $\overline{\text{ARTRY}}$ on the bus. For the other clock configuration modes, the $\overline{\text{ARTRY}}$ snoop response can be determined in the minimum address tenure period, and $\overline{\text{AACK}}$ may be asserted as early as the second bus clock of the address tenure (zero address wait states).

8.4.4.1 Address Retried with ARTRY

The address transfer can be terminated with the requirement to retry if $\overline{\text{ARTRY}}$ is asserted during the address tenure and through the cycle following $\overline{\text{AACK}}$. The assertion causes the entire transaction (address and data tenure) to be rerun. As a snooping device, the MPC8260 processor asserts $\overline{\text{ARTRY}}$ for a snooped transaction that hits modified data in the data cache that must be written back to memory, or if the snooped transaction could not be serviced. As a bus master, the MPC8260 responds to an assertion of $\overline{\text{ARTRY}}$ by aborting the bus transaction and requesting the bus again, as shown in Figure 8-7. Note that after recognizing an assertion of $\overline{\text{ARTRY}}$ and aborting the current transaction, the MPC8260 may not run the same transaction the next time it is granted the bus.

As a bus master, the MPC8260 recognizes either an early or qualified $\overline{\text{ARTRY}}$ and prevents the data tenure associated with the retried address tenure. If the data tenure has begun, the MPC8260 terminates the data tenure immediately even if the burst data has been received. If the assertion of $\overline{\text{ARTRY}}$ is received up to or on the bus cycle after the first (or only) assertion of $\overline{\text{TA}}$ for the data tenure, the MPC8260 ignores the first data beat. If it is a read operation, the MPC8260 does not forward data internally to the cache, execution unit, or any other MPC8260 internal storage. This address retry case succeeds because the data tenure is aborted in time, and the entire transaction is rerun. This retry mechanism allows the memory system to begin operating in parallel with the bus snoopers, provided external devices do not present data sooner than the bus cycle before all snoop responses can be determined and asserted on the bus.

Note that the system must ensure that the first (or only) assertion of \overline{TA} for a data transfer does not occur sooner than the cycle before the first assertion of \overline{ARTRY} on the bus, (or conversely, that \overline{ARTRY} is never asserted later than the cycle after the first or only assertion of \overline{TA}). This guarantees the relationship between \overline{TA} and \overline{ARTRY} such that, in case of an address retry, the data may be cancelled in the chip before it can be forwarded internally to the internal memory resources (registers or cache). Generally, the memory system must also detect this event and abort any transfer in progress. If this TA/ARTRY relationship is not met, the master may enter an undefined state. Users may use PPC_ACR[DBGD] to ensure correct operation of the system.

During the clock of a qualified $\overline{\text{ARTRY}}$, each device master determines whether it should negate $\overline{\text{BR}}$ and ignore $\overline{\text{BG}}$ on the following cycle. The following cycle is referred to as the window-of-opportunity for the snooping master. During this window, only the snooping master that asserted $\overline{\text{ARTRY}}$ and requires a snoop copyback operation is allowed to assert $\overline{\text{BR}}$. This guarantees the snooping master a window of opportunity to request and be granted the bus before the just-retried master can restart its transaction. $\overline{\text{BG}}$ is also blocked in the window-of-opportunity, so the arbiter has a chance to negate $\overline{\text{BG}}$ to an already granted potential bus master to perform a new arbitration.

Note that in some systems, an external processor may be unable to perform a pending snoop copyback when a new snoop operation is performed. In this case, the MPC8260 requests the window of opportunity if it hits on the new snooped address. To clear its internal snoop queue, it performs the snoop copyback operation for the earlier snooped address instead of the current snooped address.

8.4.4.2 Address Tenure Timing Configuration

During address tenures initiated by 60x-bus devices, the timing of the assertion of \overline{AACK} by the MPC8260 is determined by the BCR[APD] and the pipeline status of the 60x bus. Because the MPC8260 can support one level of pipelining, it uses \overline{AACK} to control the 60x-bus pipeline condition. To maintain the one-level pipeline, \overline{AACK} is not asserted for a pipelined address tenure until the current data tenure ends. The MPC8260 also delays asserting \overline{AACK} until no more address retry conditions can occur. Note that the earliest the MPC8260 can assert \overline{AACK} is the clock cycle when the wait-state values set by BCR[APD] have expired.

BCR[APD] specifies the minimum number of address tenure wait states for address operations initiated by 60x-bus devices. APD indicates how many cycles the MPC8260 should wait for $\overline{\text{ARTRY}}$, but because it is assumed that $\overline{\text{ARTRY}}$ can be asserted (by other masters) only on cacheable address spaces, APD is considered only on transactions that hit a 60x-assigned memory controller bank and that have $\overline{\text{GBL}}$ asserted during the address phase.

Extra wait states may occur because of other MPC8260 configuration parameters. Note that in a system with an L2 cache, the number of wait states configured by BCR[APD] should be at least as large as the value needed by the L2 controller to assert hit response. In systems with multiple potential masters, the number of wait states configured by BCR[APD] should be at least as large as the value the slowest master would need by to assert a snoop response. For example, additional wait states are required when the internal processor is in 1:1 clock mode; this case requires at least one wait state to generate the <u>ARTRY</u> response.

8.4.5 Pipeline Control

The MPC8260 supports the two following modes:

- One-level pipeline mode To maintain the one-level pipeline, AACK is not asserted for a pipelined address tenure until the current data tenure ends. In 60x-compatible bus mode, a two-level pipeline depth can occur (for example, when an external 60x-bus slave does not support one-level pipelining). When the internal arbiter counts a pipeline depth of two (two assertions of AACK before the assertion of the current data tenure) it negates all address bus grant (BG) signals.
- No-pipeline mode—The MPC8260 does not assert AACK until the corresponding data tenure ends.

8.5 Data Tenure Operations

This section describes the operation of the MPC8260 during the data bus arbitration, transfer, and termination phases of the data tenure.

8.5.1 Data Bus Arbitration

The beginning of an address transfer, marked by the assertion of transfer start (\overline{TS}), is also an implicit data bus request provided that the transfer type signals (TT[0-4]) indicate that the transaction is not address-only.

The MPC8260 arbiter supports one external master and uses $\overline{\text{DBG}}$ to grant the external master data bus. The $\overline{\text{DBG}}$ signals are not asserted if the data bus, which is shared with memory, is busy with a transaction.

A qualified data bus grant (QDBG) can be expressed as the assertion of $\overline{\text{DBG}}$ while $\overline{\text{DBB}}$ and $\overline{\text{ARTRY}}$ (associated with the data bus operation) are negated.

Note that the MPC8260 arbiter should assert \overline{DBG} only when it is certain that the first \overline{TA} will be asserted with or after the associated \overline{ARTRY} . The MPC8260 \overline{DBG} is asserted with \overline{TS} if the data bus is free and if the PPC_ACR[DBGD] = 0. If PPC_ACR[DBGD] = 1, \overline{DBG} is asserted one cycle after \overline{TS} if the data bus is not busy. The \overline{DBG} delay should be used to ensure that \overline{ARTRY} is not asserted after the first or only \overline{TA} assertion. For the programming model, see Section 4.3.2.2, "60x Bus Arbiter Configuration Register (PPC_ACR)."

Note that $\overline{\text{DBB}}$ should not be asserted after the data tenure is finished. Assertion of $\overline{\text{DBB}}$ after the last $\overline{\text{TA}}$ causes improper operation of the bus. (MPC8260 internal masters do not assert $\overline{\text{DBB}}$ after the last $\overline{\text{TA}}$.)

Note the following:

• External bus arbiters must comply with the following restriction on assertion of DBG which is connected to the MPC8260. In case the data bus is not busy with the data of a previous transaction on the bus, external arbiter must assert DBG in the same cycle in which TS is asserted (by a master which was granted the bus) or in the following cycle. In case the external arbiter asserts DBG on the cycle in which \overline{TS} was asserted, PPC_ACR[DBGD] should be zero. Otherwise, PPC_ACR[DBGD] should be set.

• External masters connected to the 60x bus must assert DBB only for the duration of its data tenure. External masters should not use DBB to prevent other masters from using the data bus after their data tenure has ended.

8.5.2 Data Streaming Mode

The MPC8260 supports a special data streaming mode that can improve bus performance in some conditions. Generally, the bus protocol requires one idle cycle between any two data tenures. This idle cycle is essential to prevent contention on the data bus when the driver of the data is changing. However, when the driver on the data bus is the same for both data tenures, this idle cycle may be omitted.

In data streaming mode, the MPC8260 omits the idle cycle where possible. MPC8260 applications often require data stream transfers of more than 4 x 64 bits. For example, the ATM cell's payload is 6 x 64 bits. All this data is driven from a single device on the bus, so data-streaming saves a cycle for such a transfer. When data-streaming mode is enabled, transactions initiated by the core are not affected, while transactions initiated by other bus masters within the chip omit the idle cycle if the data driver is the same. Note that data streaming mode cannot be enabled when the MPC8260 is in 60x-compatible bus mode and a device that uses \overline{DBB} is connected to the bus. This restriction is due to the fact that a MPC8260 for which data streaming mode is enabled may leave \overline{DBB} asserted after the last TA of a transaction and this is a violation of the strict bus protocol. The data streaming mode is enabled by setting BCR[ETM].

8.5.3 Data Bus Transfers and Normal Termination

The data transfer signals include D[0-63] and DP[0-7]. For memory accesses, the data signals form a 64-bit data path, D[0-63], for read and write operations.

The MPC8260 handles data transfers in either single-beat or burst operations. Single-beat operations can transfer from 1 to 24 bytes of data at a time. Burst operations always transfer eight words in four double-word beats. A burst transaction is indicated by the assertion of $\overline{\text{TBST}}$ by the bus master. A transaction is terminated normally by asserting $\overline{\text{TA}}$.

The three following signals are used to terminate the individual data beats of the data tenure and the data tenure itself:

- TA indicates normal termination of data transactions. It must always be asserted on the bus cycle coincident with the data that it is qualifying. It may be withheld by the slave for any number of clocks until valid data is ready to be supplied or accepted.
- Asserting TEA indicates a nonrecoverable bus error event. Upon receiving a final (or only) termination condition, the MPC8260 always negates DBB for one cycle, except when fast data bus grant is performed.

• Asserting ARTRY causes the data tenure to be terminated immediately if the ARTRY is for the address tenure associated with the data tenure in operation (the data tenure may not be terminated due to address pipelining). The earliest allowable assertion of TA depends directly on the latest possible assertion of ARTRY.

Figure 8-8 shows both a single-beat and burst data transfer. The MPC8260 asserts \overline{TA} to mark the cycle in which data is accepted. In a normal burst transfer, the fourth assertion of \overline{TA} signals the end of a transfer.

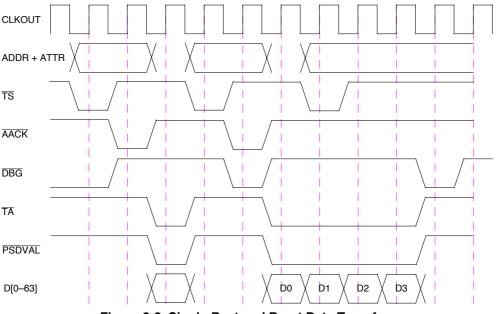


Figure 8-8. Single-Beat and Burst Data Transfers

8.5.4 Effect of ARTRY Assertion on Data Transfer and Arbitration

The MPC8260 allows an address tenure to overlap its associated data tenure. The MPC8260 internally guarantees that the first \overline{TA} of the data tenure is delayed to be at the same time or after the \overline{ARTRY} window (the clock after the assertion of \overline{AACK}).

8.5.5 Port Size Data Bus Transfers and PSDVAL Termination

The MPC8260 can transfer data via data ports of 8, 16, 32, and 64 bits, as shown in Section 8.4.3, "Address Transfer Attribute Signals." Single-beat transaction sizes can be 8, 16, 32, 64, 128, and 192 bits; burst transactions are 256 bits. Single-beat and burst transactions are divided into to a number of intermediate beats depending on the port size. The MPC8260 asserts \overrightarrow{PSDVAL} to mark the cycle in which data is accepted. Assertion of \overrightarrow{PSDVAL} in conjunction with \overrightarrow{TA} marks the end of the transfer in single-beat mode. The fourth assertion of \overrightarrow{PSDVAL} in conjunction with \overrightarrow{TA} signals the end of a burst transfer.

Figure 8-9 shows an extended transaction of 4 words to a port size of 32 bits. The single-beat transaction is translated to four port-sized beats.

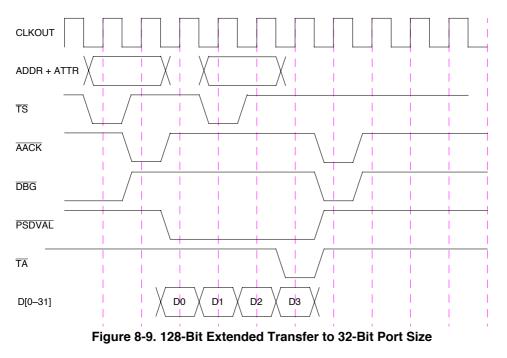


Figure 8-10 shows a burst transfer to a 32-bit port. Each double-word burst beat is divided into two port-sized beats such that the four double words are transferred in eight beats.

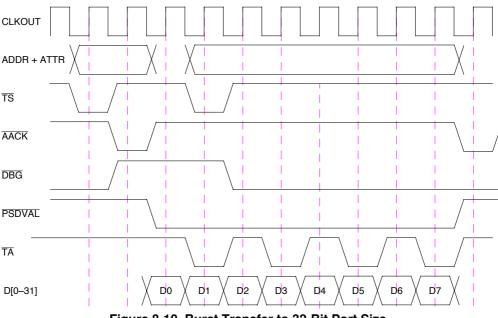


Figure 8-10. Burst Transfer to 32-Bit Port Size

8.5.6 Data Bus Termination by Assertion of TEA

If a device initiates a transaction that is not supported by the MPC8260, the MPC8260 signals an error by asserting TEA. Because the assertion of TEA is sampled by the device only during the data tenure of the bus transaction, the MPC8260 ensures that the device master receives a qualified data bus grant by asserting DBG before asserting TEA. The data tenure is terminated by a single assertion of TEA regardless of the port size or whether the data tenure is a single-beat or burst transaction. This sequence is shown in Figure 8-11. In Figure 8-11 the data bus is busy at the beginning of the transaction, thus delaying the assertion of DBG. Note that data errors (parity and ECC) are reported not by assertion of TEA but by assertion of MCP.

Because the assertion of $\overline{\text{TEA}}$ is sampled by the device only during the data tenure of the bus transaction, the MPC8260 ensures that the device receives a qualified data bus grant by asserting $\overline{\text{DBG}}$ before asserting $\overline{\text{TEA}}$. The data tenure is terminated by a single assertion of $\overline{\text{TEA}}$ regardless of the port size or whether the data tenure is a single-beat or burst transaction. This sequence is shown in Figure 8-11. In Figure 8-11 the data bus is busy at the beginning of the transaction, thus delaying the assertion of $\overline{\text{DBG}}$.

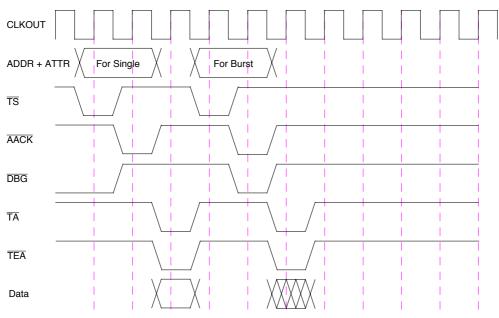


Figure 8-11. Data Tenure Terminated by Assertion of TEA

MPC8260 interprets the following bus transactions as bus errors:

- Direct-store transactions, as indicated by the assertion of \overline{XATS} .
- Bus errors asserted by slaves (internal or external).

8.6 Memory Coherency-MEI Protocol

The MPC8260 provides dedicated hardware to ensure memory coherency by snooping bus transactions, by maintaining information about the status of data in a cache block, and by the address retry capability. Each data cache block includes status bits that support the modified/exclusive/invalid, or MEI, cache-coherency protocol.

Asserting the global (\overline{GBL}) output signal indicates whether the current transaction must be snooped by other snooping devices on the bus. Address bus masters assert \overline{GBL} to indicate that the current transaction is a global access (that is, an access to memory shared by more than one device). If \overline{GBL} is not asserted for the transaction, that transaction is not snooped. When other devices detect the \overline{GBL} input asserted, they must respond by snooping any addresses broadcast. Normally, \overline{GBL} reflects the M bit value specified for the memory reference in the corresponding translation descriptor. Care must be taken to minimize the number of pages marked as global, because the retry protocol discussed in the previous section used to enforce coherency can require significant bus bandwidth.

Part III. The Hardware Interface

When the MPC8260 processor is not the address bus master, $\overline{\text{GBL}}$ is an input. The MPC8260 processor snoops a transaction if $\overline{\text{TS}}$ and $\overline{\text{GBL}}$ are asserted together in the same bus clock cycle (a qualified snooping condition). No snoop update to the MPC8260 processor cache occurs if the transaction is not marked global. This includes invalidation cycles.

When the MPC8260 processor detects a qualified snoop condition, the address associated with the $\overline{\text{TS}}$ is compared against the data cache tags. Snooping completes if no hit is detected. However, if the address hits in the cache, the MPC8260 processor reacts according to the MEI protocol shown in Figure 8-12. This figure assumes that WIM = 0b001 (memory space is marked for write-back, caching-allowed, and coherency-enforced modes).

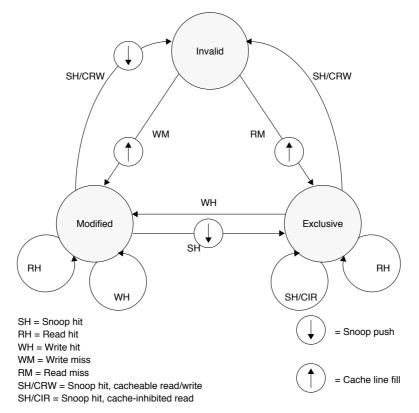


Figure 8-12. MEI Cache Coherency Protocol—State Diagram (WIM = 001)

8.7 Processor State Signals

This section describes the MPC8260's support for atomic update and memory through the use of the **lwarx/stwcx.** instruction pair. It also describes the **TLBISYNC** input.

8.7.1 Support for the lwarx/stwcx. Instruction Pair

The load word and reserve indexed (**Iwarx**) and the store word conditional indexed (**stwcx.**) instructions provide a way to update memory atomically by setting a reservation on the load and checking that the reservation is still valid before the store is performed. In the MPC8260, reservations are made on behalf of aligned, 32-byte sections of the memory address space.

The reservation ($\overline{\text{RSRV}}$) output signal is driven synchronously with the bus clock and reflects the status of the reservation coherency bit in the reservation address register.

Note that each external master must do its own snooping; the MPC8260 does not provide external reservation snooping.

8.7.2 TLBISYNC Input

The TLBISYNC input permits hardware synchronization of changes to MMU tables when the MPC8260 and another DMA master share the MMU translation tables in system memory. A DMA master asserts TLBISYNC when it uses shared addresses that the MPC8260 could change in the MMU tables during the DMA master's tenure.

When the <u>TLBISYNC</u> input is asserted, the MPC8260 cannot complete any instructions past a **tlbsync** instruction. Generally, during the execution of an **eciwx** or **ecowx** instruction, the selected DMA device should assert the MPC8260's <u>TLBISYNC</u> signal and hold it asserted during its DMA tenure if it is using a shared translation address. Subsequent instructions by the MPC8260 processor should include a **sync** and **tlbsync** instruction before any MMU table changes are performed. This prevents the MPC8260 from making disruptive table changes during the DMA tenure.

8.8 Little-Endian Mode

The MPC8260 supports a little-endian mode in which low-order address bits are operated on (munged) based on the size of the requested data transfer. This mode allows a littleendian program running on the processor with a big-endian memory system to offset into a data structure and receive the same results as it would if it were operating on a true littleendian processor and memory system. For example, writing a word to memory as a word operation on the bus and then reading in the second byte of that word as a byte operation on the bus.

Note that when the processor is selected for little-endian operation, the bus interface is still operating in big-endian mode. That is, byte address 0 of a double word (as selected by A[29–31] on the bus—after the internal address munge) still selects the most significant (left most) byte of the double word on D[0–7]. If the processor interfaces with a true little-endian environment, the system may need to perform byte-lane swapping or other operations external to the processor.

Part III. The Hardware Interface

Chapter 9 Clocks and Power Control

The MPC8260's clocking architecture includes two PLLs-the main PLL and the core PLL.

The clock block, which contains the main PLL, provides the following:

- Internal clocks for all blocks in the chip except core blocks
- The internal 60x bus clock in the chip

The core input clock has the 60x bus frequency, which the core PLL multiplies by a configurable factor and provides to all core blocks.

Seven bits, three that are dedicated (MODCK[1–3]) and four that are from the hardware configuration word, (MODCK_H) map the MPC8260 clocks to one of 49 work options. Each option determines the bus, core, and CPM frequencies. Assuming the four configuration bits are zero, the three dedicated pins MODCK[1–3] select one of eight work options, see Section 9.2, "Clock Configuration."

The CLOCKIN signal is the main timing reference for the MPC8260. The CLOCKIN frequency is equal to the 60x and local bus frequencies. The main PLL can multiply the frequency of the input clock to the final CPM frequency.

9.1 Clock Unit

The MPC8260's clock module consists of the input clock interface (OSCM), the PLL, the system frequency dividers, the clock generator/driver blocks, the configuration control unit, and the clock control block. The clock module and the configuration control unit are managed through the system clock mode register (SCMR), the configuration bits MODCK[1–7], and reset block.

To improve noise immunity, the charge pump and the VCO of the main PLL have their own set of power supply pins (VCCSYN and GNDSYN). All other circuits are powered by the normal supply pins, VDD and VSS.

9.2 Clock Configuration

To configure the main PLL multiplication factor and the core, CPM, and 60x bus frequencies, the MODCK[1–3] pins are sampled while $\overline{\text{HRESET}}$ is asserted. Table 9-1 shows the eight basic configuration modes. Another 49 modes are available by using the configuration pin ($\overline{\text{RSTCONF}}$) and driving four pins on the data bus.

MODCK[1-3]	Input Clock Frequency	CPM Multiplication Factor	CPM Frequency	Core Multiplication Factor	Core Frequency
000	33 MHz	3	100 MHz	4	133 MHz
001	33 MHz	3	100 MHz	5	166 MHz
010	33 MHz	4	133 MHz	4	133 MHz
011	33 MHz	4	133 MHz	5	166 MHz
100	66 MHz	2	133 MHz	2.5	166 MHz
101	66 MHz	2	133 MHz	3	200 MHz
110	66 MHz	2.5	166 MHz	2.5	166 MHz
111	66 MHz	2.5	166 MHz	3	200 MHz

Table 9-1. Clock Default Modes

Table 9-2 describes all possible clock configurations when using the hard reset configuration sequence. Note that clock configuration changes only after $\overline{\text{POR}}$ is asserted. Note also that basic modes are bolded in this table.

MODCK_H-MODCK[1-3]	Input Clock Frequency	CPM Multiplication Factor	CPM Frequency	Core Multiplication Factor	Core Frequency
0001_000	33 MHz	2	66 MHz	4	133 MHz
0001_001	33 MHz	2	66 MHz	5	166 MHz
0001_010	33 MHz	2	66 MHz	6	200 MHz
0001_011	33 MHz	2	66 MHz	7	233 MHz
0001_100	33 MHz	2	66 MHz	8	266 MHz
0001_101	33 MHz	3	100 MHz	4	133 MHz
0001_110	33 MHz	3	100 MHz	5	166 MHz
0001_111	33 MHz	3	100 MHz	6	200 MHz
0010_000	33 MHz	3	100 MHz	7	233 MHz
0010_001	33 MHz	3	100 MHz	8	266 MHz
0010_010	33 MHz	4	133 MHz	4	133 MHz

Table 9-2. Clock Configuration Modes

MODCK_H-MODCK[1-3]	Input Clock Frequency	CPM Multiplication Factor	CPM Frequency	Core Multiplication Factor	Core Frequency
0010_011	33 MHz	4	133 MHz	5	166 MHz
0010_100	33 MHz	4	133 MHz	6	200 MHz
0010_101	33 MHz	4	133 MHz	7	233 MHz
0010_110	33 MHz	4	133 MHz	8	266 MHz
0010_111	33 MHz	5	166 MHz	4	133 MHz
0011_000	33 MHz	5	166 MHz	5	166 MHz
0011_001	33 MHz	5	166 MHz	6	200 MHz
0011_010	33 MHz	5	166 MHz	7	233 MHz
0011_011	33 MHz	5	166 MHz	8	266 MHz
					1
0011_100	33 MHz	6	200 MHz	4	133 MHz
0011_101	33 MHz	6	200 MHz	5	166 MHz
0011_110	33 MHz	6	200 MHz	6	200 MHz
0011_111	33 MHz	6	200 MHz	7	233 MHz
0100_000	33 MHz	6	200 MHz	8	266 MHz
		1	1		1
0100_001			Reserved		
0100_010					
0100_011					
0100_100					
0100_101					
0100_110					
0100_111			Reserved		
0101_000					
0101_001					
0101_010					
0101_011					
0101_100					
0101_101	66 MHz	2	133 MHz	2	133 MHz

Table 9-2. Clock Configuration Modes (Continued)

MODCK_H-MODCK[1-3]	Input Clock Frequency	CPM Multiplication Factor	CPM Frequency	Core Multiplication Factor	Core Frequency
0101_110	66 MHz	2	133 MHz	2.5	166 MHz
0101_111	66 MHz	2	133 MHz	3	200 MHz
0110_000	66 MHz	2	133 MHz	3.5	233 MHz
0110_001	66 MHz	2	133 MHz	4	266 MHz
0110_010	66 MHz	2	133 MHz	4.5	300 MHz
0110_011	66 MHz	2.5	166 MHz	2	133 MHz
0110_100	66 MHz	2.5	166 MHz	2.5	166 MHz
0110_101	66 MHz	2.5	166 MHz	3	200 MHz
0110_110	66 MHz	2.5	166 MHz	3.5	233 MHz
0110_111	66 MHz	2.5	166 MHz	4	266 MHz
0111_000	66 MHz	2.5	166 MHz	4.5	300 MHz
0111_001	66 MHz	3	200 MHz	2	133 MHz
0111_010	66 MHz	3	200 MHz	2.5	166 MHz
0111_011	66 MHz	3	200 MHz	3	200 MHz
0111_100	66 MHz	3	200 MHz	3.5	233 MHz
0111_101	66 MHz	3	200 MHz	4	266 MHz
0111_110	66 MHz	3	200 MHz	4.5	300 MHz
0111_111	66 MHz	3.5	233 MHz	2	133 MHz
1000_000	66 MHz	3.5	233 MHz	2.5	166 MHz
1000_001	66 MHz	3.5	233 MHz	3	200 MHz
1000_010	66 MHz	3.5	233 MHz	3.5	233 MHz
1000_011	66 MHz	3.5	233 MHz	4	266 MHz
1000_100	66 MHz	3.5	233 MHz	4.5	300 MHz

Table 9-2. Clock Configuration Modes (Continued)

Because of speed dependencies, not all configurations in Table 9-2 may be applicable.

The 66 MHz configurations are required for input clock frequencies higher than 50 MHz; 33 MHz configurations are required for input clock frequencies below 50 MHz.

9.3 External Clock Inputs

The input clock source to the PLL is an external clock oscillator at the bus frequency. The PLL skew elimination between the CLOCKIN pin and the internal bus clock is guaranteed.

9.4 Main PLL

The main PLL performs frequency multiplication and skew elimination. It allows the processor to operate at a high internal clock frequency using a low-frequency clock input, which has two immediate benefits: A lower clock input frequency reduces overall electromagnetic interference generated by the system, and oscillating at different frequencies eliminates the need for another oscillator to the system.

9.4.1 PLL Block Diagram

Figure 9-1 shows how clocking is implemented and the interdependencies of the SCMR fields:

- BUSDF-60x bus division factor
- CPMDF—CPM division factor. This value is always 1.
- PLLDF—PLL pre-divider value. Ensures that PLLMF is an integer value regardless of whether CPM_CLK/CLKIN is an integer.
- PLLMF—PLL multiplication factor

These fields are described in detail in Table 9-5.

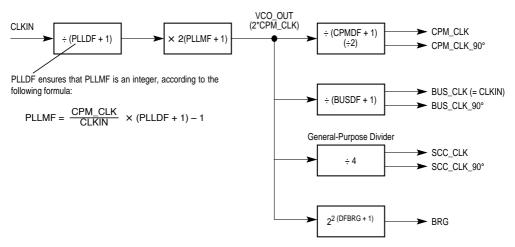


Figure 9-1. System PLL Block Diagram

The reference signal (CLKIN) goes to the phase comparator that controls the direction (up or down) that the charge pump drives the voltage across the external filter capacitor (XFC).

The direction selected depends on whether the feedback signal phase lags or leads the reference signal. The output of the charge pump drives the VCO whose output frequency is divided and fed back to the phase comparator for comparison with the reference signal, CLKIN. Ranging between 1 and 4,096, the PLL multiplication factor is held in the system clock mode register (SCMR[PLLMF]). Also, when the PLL is operating, its output frequency is twice the CPM frequency. This double frequency is required to generate the CPM_CLK and CPM_CLK_90 clocks. See the block diagram in Figure 9-1 for details.

On initial system power-up, power-on reset (PORESET) should be asserted by external logic for 16 input clocks after a valid level is reached on the power supply. Whenever power-on reset is asserted, SCMR[PLLMF, PLLDF] are programmed by the configuration pins; see Table 9-2. This value then drives the clock block to generate the correct CPM and bus frequencies.

9.4.2 Skew Elimination

The PLL can tighten synchronous timings by eliminating skew between phases of the internal clock and the external clock entering the chip (CLOCKIN). Skew elimination is always active when the PLL is enabled. Disabling the PLL can greatly increase clock skew.

9.5 Clock Dividers

The PLL output is twice the maximum frequency needed for all the clocks. The PLL output is sent to general-purpose dividers (CPMDF, BUSDF), either of which can divide the double clock by a programmable number between 1 and 16. The delay is the same for all dividers independent on the programmable number, so the clocks are synchronized.

The output of each divider has two phases, one shifted 90° from the other, as shown in Table 9-1. Each phase has a 50% duty cycle.

9.6 The MPC8260's Internal Clock Signals

The internal logic of the MPC8260 uses the following internal clock lines:

- CPM general system clocks (CPM_CLK, CPM_CLK_90)
- 60x bus, core bus (BUS_CLK, BUS_CLK_90)
- SCC clocks (SCC_CLK, SCC_CLK_90)
- Baud-rate generator clock (BRG_CLK)

The PLL synchronizes these clock signals to each other (but does not synchronize to BRG_CLK).

9.6.1 General System Clocks

The general system clocks (CPM_CLK, CPM_CLK_90) are the basic clocks supplied to most modules and sub-modules on the CPM. The following points should be kept in mind:

- BUS_CLK and BUS_CLK_90 are supplied to the 60x bus and to the core.
- Many modules use both clocks (SIU, serials)
- The external clock, CLKIN, is the same as BUS_CLK

9.7 PLL Pins

Table 9-3 shows dedicated PLL pins.

Table 9-3. Dedicated PLL Pine

Signal			Descriptio	n									
VCCSYN1	power t possible VCCSY	to the VCCSYN1 input v e, place the circuit as cl	dicated to core analog PLL with a circuit similar to the or ose as possible to VCCSYN μ F capacitor, and finally the	ne in Figure 9-2. To filter as λ1. The 0.1-μF capacitor sho	much noise ould be clos	e as sest to							
VCCSYN	the pow possible to VCC	ver to the VCCSYN inpute, place the circuit shou	ge—Analog VDD dedicated to analog main PLL circuits. To ensure internal clock stability, filter to the VCCSYN input with a circuit similar to the one in Figure 9-2. To filter as much noise as lace the circuit should as close as possible to VCCSYN. The $0.1-\mu$ F capacitor should be closest N, followed by the $10-\mu$ F capacitor, and finally the $10-\Omega$ resistor to Vdd. These traces should be and direct.										
GNDSYN	low imp as poss	edance path to ground sible to the chip package	bltage—Analog VSS dedicated to analog main PLL circuits. Should be provided with an extremely lance path to ground and should be bypassed to VCCSYN by a 0.1 - μ F capacitor located as close le to the chip package. The user should also bypass GNDSYN to VCCSYN with a 0.01 - μ F as close as possible to the chip package.										
XFC	capacit 30 MΩ	or is connected to XFC is the minimum parasiti	ects to the off-chip capacito while the other terminal is o c resistance value that ensu . XFC capacitor values are s	connected to VCCSYN. ures proper PLL operation w									
		Multiplication Factor	2 Volts (Minimum)	2.5 Volts (Maximum)	Unit								
		1 ≤ Factor ≤ 4	1 ≤ Factor ≤ 4 XFC = Factor * 935- 90 XFC = Factor * 680 - 90 pF										
		Factor > 4	Factor > 4 XFC = Factor * 1370 XFC = Factor * 970 pF										
			ition factor ranges between 9.9, "System Clock Mode Re	-	1F field								

Figure 9-2 shows the filtering circuit for VCCSYN and VCCSYN1, described in Table 9-3.

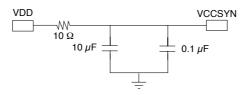


Figure 9-2. PLL Filtering Circuit

9.8 System Clock Control Register (SCCR)

The system clock control register (SCCR), shown in Figure 9-3, is memory-mapped into the MPC8260's internal space.

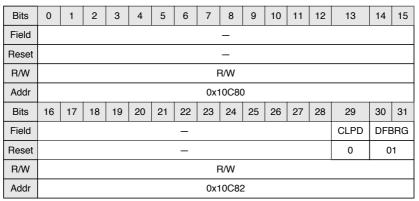


Figure 9-3. System Clock Control Register (SCCR)

Table 9-4 describes SCCR fields.

Table 9-4. SCCR Field Descriptions

Bits	Name		Defaults	Description
Dits	Name	POR	Hard Reset	•
0–28	-			Reserved
29	CLPD	0	Unaffected	 CPM low power disable. 0 Default. CPM does not enter low power mode when the core enters low power mode. 1 CPM and SIU enter low power mode when the core does. This may be useful for debug tools that use the assertion of OREQ as an indication of breakpoint in the core.

Bits	Name	1	Defaults	Description
DIIS	POR Hard Reset	Description		
30–31	DFBRG	01	Unaffected	Division factor of BRGCLK from VCO_OUT (twice the CPM clock). Defines the BRGCLK frequency. Changing the value does not result in a loss of lock condition. The BRGCLK is divided from the CPM clock. 00 Divide by 4 01 Divide by 16 (normal operation) 10 Divide by 64 11 Divide by 128

Table 9-4. SCCR Field Descriptions

9.9 System Clock Mode Register (SCMR)

The system clock mode register (SCMR), shown in Figure 9-4, holds the parameters which determine the output clock frequencies. To understand how these values interact, see Section 9.4, "Main PLL."

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field		- CORECNF BUSDF CPMDF														
Reset		See Table 9-5														
R/W		R														
Addr		0x10C88														
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field		-		PLLDF						PLL	.MF					
Reset							S	ee Tab	le 9-5							
R/W	R															
Addr		0x10C8A														

Figure 9-4. System Clock Mode Register (SCMR)

Table 9-5 describes SCMR fields.

Table 9-5. SCMR Field Descriptions

Bits	Name	Defaults		Description	
		POR	Hard Reset	Description	
0–2	_	_	_	Reserved	
3–7	CORECNF	Config pins	Unaffected	Core configuration. PLL configuration of the core.	
8–11	BUSDF	Config pins	Unaffected	60x bus division factor	
12–15	CPMDF	Config pins	Unaffected	CPM division factor. This value is always 1.	
16–18	_	—	_	Reserved	

Bits	Name	Defaults		Description
		POR	Hard Reset	Description
19	PLLDF	Config pins	Unaffected	PLL pre-divider value. Ensures that PLLMF is an integer value regardless of whether CPM_CLK/CLKIN is an integer. 0 The ratio, CPM_CLK/CLKIN, is an integer 1 The ratio, CPM_CLK/CLKIN, is not an integer PLL division factor can be either 1 or 2.
20–31	PLLMF	Config pins	Unaffected	PLL multiplication factor. (A PLLMF value of 0x000 corresponds to 1, and 0xFFF to 4,096.) The VCO output is divided to generate the feedback signal that goes to the phase comparator. PLLMF and PLLDF bits control the value of the divider in the PLL feedback loop. The phase comparator determines the phase shift between the feedback signal and the reference clock. This difference causes an increase or decrease in the VCO output frequency.

Table 9-5. SCMR Field Descriptions (Continued)

The relationships among these parameters are described in the formulas in Figure 9-5.

 $PLLMF = \frac{CPM_CLK}{CLKIN} \times (PLLDF + 1) - 1$

$BUSDF = \frac{(PLLMF + 1) \times 2}{(PLLDF + 1)} - 1$

Figure 9-5. Relationships of SCMR Parameters

9.10 Basic Power Structure

The I/O buffers, logic, and clock block are fed by a 3.3-V power supply that allows them to function in a TTL-compatible voltage range. Internal logic can be fed by a 2.0-V source considerably reducing power consumption. The PLL is fed by a separate power supply (VCCSYN) to achieve a highly stable output frequency. The VCCSYN value is equal to the internal supply (2.0 V).

The MPC8260 supports the two following power modes:

- Full mode: Both the chip PLL and core PLL work.
- Stop mode: Main PLL is working, core PLL is stopped, internal clocks are disabled.
 - When stop mode is entered, software sets the sleep bit in the core (HID0[10] =
 1) and the clock block freezes all clocks to the chip (the core clock and all other clocks) the main PLL remains active
 - When stop mode is exited, the <u>SRESET_B</u> input must be asserted to the chip, the clock block resumes clocks to all blocks and then releases the reset to the whole chip.

Chapter 10 Memory Controller

The memory controller is responsible for controlling a maximum of twelve memory banks shared by a high performance SDRAM machine, a general-purpose chip-select machine (GPCM), and three user-programmable machines (UPMs). It supports a glueless interface to synchronous DRAM (SDRAM), SRAM, EPROM, flash EPROM, burstable RAM, regular DRAM devices, extended data output DRAM devices, and other peripherals. This flexible memory controller allows the implementation of memory systems with very specific timing requirements.

- The SDRAM machine provides an interface to synchronous DRAMs, using SDRAM pipelining, bank interleaving, and back-to-back page mode to achieve the highest performance.
- The GPCM provides interfacing for simpler, lower-performance memory resources and memory-mapped devices. The GPCM has inherently lower performance because it does not support bursting. For this reason, GPCM-controlled banks are used primarily for boot-loading and access to low-performance memory-mapped peripherals.
- The UPM supports address multiplexing of the external bus, refresh timers, and generation of programmable control signals for row address and column address strobes to allow for a glueless interface to DRAMs, burstable SRAMs, and almost any other kind of peripheral. The refresh timers allow refresh cycles to be initiated. The UPM can be used to generate different timing patterns for the control signals that govern a memory device. These patterns define how the external control signals behave during a read, write, burst-read, or burst- write access request. Refresh timers are also available to periodically generate user-defined refresh cycles.

Unless stated otherwise, this chapter describes the 60x bus memory controller. The local bus memory controller provides the same functionality as the 60x bus memory controller except 64-bit port size ECC and external master support.

Part III. The Hardware Interface

The MPC8260 supports the following new features as compared to the MPC860 and MPC850.

- The synchronous DRAM machine enables back-to-back memory read or write operations using page mode, pipelined operation and bank interleaving for high-performance systems.
- The memory controller supports the local bus and the 60x bus in parallel. The 60x bus and the local bus share twelve memory banks as well as two SDRAM machines, three user-programmable machines (UPMs) and GPCMs.
- The memory controller supports atomic operation.
- The memory controller supports read-modify-write (RMW) data parity check.
- The memory controller supports ECC data check and correction.
- Two data buffer controls (one for the local bus).
- ECC/parity byte select pin, which enables a fast, glueless connection to ECC/ RMW-parity devices.
- 18-bit address and 32-bit local data bus memory controller. The local bus memory controller supports the following:
 - 8-, 16-, and 32-bit port sizes
 - Parity checking and generation
 - Ability to work in parallel with the 60x bus memory controller

Unless stated otherwise, this chapter describes the 60x bus memory controller. The local bus memory controller provides the same functionality as the 60x bus memory controller except 64-bit port size, ECC, and external master support.

- Flexible chip-select assignment—The 60x bus and local bus share twelve chip-select lines (controlled by a memory controller bank). The user can allocate the twelve banks as needed between the 60x bus and the local bus.
- Flexible UPM assignment—The user can assign any of the three UPMs to the 60x bus or the Local bus

Figure 10-1 shows the dual-bus architecture.

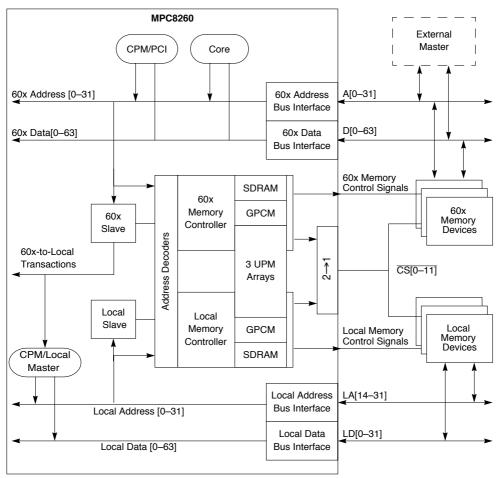


Figure 10-1. Dual-Bus Architecture

10.1 Features

The memory controller's main features are as follows:

- Twelve memory banks
 - 32-bit address decoding with mask
 - Variable block sizes (32 Kbytes to 4 Gbytes)
 - Three types of data errors check/correction:
 - Normal odd/even parity
 - Read-modify-write (RMW) odd/even parity for single accesses
 - ECC

- Write-protection capability
- Control signal generation machine selection on a per-bank basis
- Flexible chip-select assignment between the 60x bus and the local bus
- Supports internal or external masters on the 60x bus
- Data buffer controls activated on a per-bank basis
- Atomic operation
- Extensive external memory-controller/bus-slave support
- ECC/parity byte-select
- Data pipeline to reduce data setup time for synchronous devices
- Synchronous DRAM machine (60x or local bus)
 - Provides the control functions and signals for glueless connection to JEDEC-compliant SDRAM devices
 - Back-to-back page mode for consecutive, back-to-back accesses
 - Supports 2-, 4- and 8-way bank interleaving
 - Supports SDRAM port size of 64-bit (60x only), 32-bit, 16-bit and 8-bit
 - Supports external address and/or command lines buffering
- General-purpose chip-select machine (GPCM)-60x or local bus
 - Compatible with SRAM, EPROM, FEPROM, and peripherals
 - Global (boot) chip-select available at system reset
 - Boot chip-select support for 8-, 16-, 32-, and 64-bit devices
 - Minimum two clock accesses to external device
 - Eight byte write enable signals (\overline{WE}) -four on the local bus
 - Output enable signal (\overline{OE})
 - External access termination signal ($\overline{\text{GTA}}$)
- Three UPMs
 - Each machine can be assigned to the 60x or local bus.
 - Programmable-array-based machine controls external signal timing with a granularity of up to one quarter of an external bus clock period
 - User-specified control-signal patterns run when an internal or external master requests a single-beat or burst read or write access.
 - UPM refresh timer runs a user-specified control signal pattern to support refresh
 - User-specified control-signal patterns can be initiated by software

- Each UPM can be defined to support DRAM devices with depths of 64, 128, 256, and 512 Kbytes, and 1, 2, 4, 8, 16, 32, 64, 128, and 256 Mbytes
 - Chip-select line
 - Byte-select lines
 - Six external general-purpose lines
- Supports 8-, 16-, 32-, and 64-bit memory port sizes, 8-, 16-, and 32-bit port sizes on the local bus
- Page mode support for successive transfers within a burst
- Internal address multiplexing for all on-chip bus masters supporting 64-, 128-, 256-, and 512-Kbyte, and 1-, 2-, 4-, 8-, 16-, 32-, 64-, 128-, 256-Mbyte page banks

10.2 Basic Architecture

The memory controller consists of three basic machines:

- Synchronous DRAM machine
- General-purpose chip-select machine (GPCM)
- Three UPMs

Each bank can be assigned to any one of these machines via BRx[MS] as shown in Figure 10-2. The MS and MxMR[BS] bits (for UPMs) assign banks to the 60x bus or local bus, as shown in Figure 10-2. Addresses are decoded by comparing (A[0–16] bit-wise and ORx[AM]) with BRx[BA]. If an address match occurs in multiple banks, the lowest numbered bank has priority. However, if a 60x bus access hits a bank allocated to the local bus, the access is transferred to the local bus. Local bus access hits to 60x assigned banks are ignored.

When a memory address matches BRx[BA], the corresponding machine takes ownership of the external signals that control access and maintains control until the cycle ends.

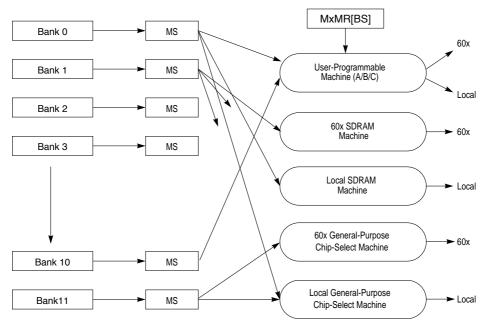


Figure 10-2. Memory Controller Machine Selection

Some features are common to all machines.

- A 17-bit most-significant address decode on each memory bank
- The block size of each memory bank can vary between 32 Kbytes (1 Mbyte for SDRAM) and 4 Gbytes (128 Mbytes for SDRAM).
- Normal parity may be generated and checked for any memory bank.
- Read-modify-write parity may be generated and checked for any memory bank with either 32- or 64-bit port size. Using RMW parity on 32-bit port size bank, requires the bus to be in strict 60x mode (BCR[ETM] = 0. See Section 4.3.2.1, "Bus Configuration Register (BCR)."
- ECC may be generated and checked for any memory bank with a 64-bit port size
- Each memory bank can be selected for read-only or read/write operation.
- Each memory bank can use data pipelining, which reduces the required data setup time for synchronous devices.
- Each memory bank can be controlled by an external memory controller or bus slave.

The memory controller functionality minimizes the need for glue logic in MPC8260-based systems. In Figure 10-3, $\overline{CS0}$ is used with the 16-bit boot EPROM with BR0[MS] defaulting to select the GPCM. $\overline{CS1}$ is used as the \overline{RAS} signal for 64-bit DRAM with BR1[MS] configured to select UPMA. $\overline{BS[0-7]}$ are used as \overline{CAS} signals on the DRAM.

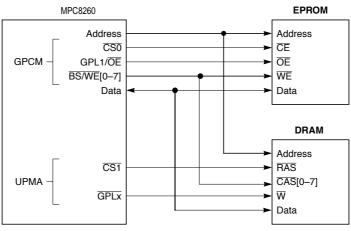


Figure 10-3. Simple System Configuration

Implementation differences between the supported machines are described in the following:

- The SDRAM machine provides a glueless interface to JEDEC-compliant SDRAM devices, and using SDRAM pipelining, page mode, and bank interleaving delivers very high performance. To allow fine tuning of system performance, the SDRAM machine provides two types of page modes selectable per memory bank:
 - Page mode for consecutive back-to-back accesses (normal operation)
 - Page mode for intermittent accesses

SDRAM machines are available on the 60x and local buses; each memory bank can be assigned to any SDRAM machine.

- The GPCM provides a glueless interface to EPROM, SRAM, flash EPROM (FEPROM), and other peripherals. The GPCM is available on both buses on CS[0-11]. CS0 also functions as the global (boot) chip-select for accessing the boot EPROM or FLASH device. The chip-select allows 0 to 30 wait states.
- The UPMs provide a flexible interface to many types of memory devices. Each UPM can control the address multiplexing for accessing DRAM devices and the timings of BS[0–7] and GPL. Each UPM can be assigned either to the 60x or to the local bus. Each memory bank can be assigned to any UPM.

Each UPM is a programmable RAM-based machine. The UPM toggles the memory controller external signals as programmed in RAM when an internal or external master initiates any external read or write access. The UPM also controls address multiplexing, address increment, and transfer acknowledge (TA) assertion for each memory access. The UPM specifies a set of signal patterns for a user-specified number of clock cycles. The UPM RAM pattern run by the memory controller is

selected according to the type of external access transacted. At every clock cycle, the logical value of the external signals specified in the RAM array is output on the corresponding UPM pins.

Figure 10-4 shows a basic configuration.

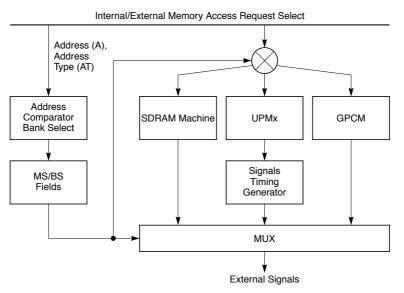


Figure 10-4. Basic Memory Controller Operation

The SDRAM mode registers (LSDMR and PSDMR) define the global parameters for the 60x and local SDRAM devices. Machine A/B/C mode registers (MxMR) define most of the global features for each UPM. GPCM parameters are defined in the option register (ORx). Some SDRAM and UPM parameters are also defined in ORx.

10.2.1 Address and Address Space Checking

The defined base address is written to the BRx. The bank size is written to the ORx. Each time a bus cycle access is requested on the 60x or local bus, addresses are compared with each bank. If a match is found on a memory controller bank, the attributes defined in the BRx and ORx for that bank are used to control the memory access. If a match is found in more than one bank, the lowest-numbered bank handles the memory access (that is, bank 0 has priority over bank 1).

Note that although 60x bus accesses that hit a bank allocated to the local bus are transferred to the local bus, local bus access hits to banks allocated to the 60x bus are ignored. 60x-to-local bus transactions has priority over regular memory bank hits.

10.2.2 Page Hit Checking

The SDRAM machine supports page-mode operation. Each time a page is activated on the SDRAM device, the SDRAM machine stores its address in a page register. The page information, which the user writes to the ORx register, is used along with the bank size to compare page bits of the address to the page register each time a bus-cycle access is requested. If a match is found together with bank match, the bus cycle is defined as a page hit. An open page is automatically closed by the SDRAM machine if the bus becomes idle, unless ORx[PMSEL] is set.

10.2.3 Error Checking and Correction (ECC)

ECC can be configured for any bank as long as it is assigned to the 60x bus and is connected to a 64-bit port size memory. ECC is generated and checked on a 64-bit basis using DP[0-7] for the bank if BRx[DECC] = 11. If ECC is used, single errors can be corrected and all double-bit errors can be detected.

10.2.4 Parity Generation and Checking

Parity can be configured for any bank, if it is preferred. Parity is generated and checked on a per-byte basis using DP[0-7] or LDP[0-3] for the bank if BR[DECC] = 01 for normal parity and 10 for RMW parity. SIUMCR[EPAR] determines the global type of parity (odd or even).

Note that RMW parity can be used only for 32- or 64-bit port size banks. Also, using RMW parity on a 32-bit port size bank, requires that the bus is placed is strict 60x mode. This is done by setting BCR[ETM] (BCR[LETM] for the local bus) see Section 4.3.2.1, "Bus Configuration Register (BCR)," for more details.

10.2.5 Transfer Error Acknowledge (TEA) Generation

The memory controller asserts the transfer error acknowledge signal ($\overline{\text{TEA}}$) (if enabled) in the following cases:

- An unaligned or burst access is attempted to internal MPC8260 space (registers or dual-port RAM).
- The core or an external master attempts a burst access to the local bus address space
- A bus monitor timeout

10.2.6 Machine Check Interrupt (MCP) Generation

The memory controller asserts machine check interrupt ($\overline{\text{MCP}}$) in the following cases:

- A parity error
- An ECC double-bit error
- An ECC single bit error when the maximum number of ECC errors has been reached

10.2.7 Data Buffer Controls (BCTLx)

The memory controller provides two data buffer controls for the 60x bus ($\overline{BCTL0}$ and $\overline{BCTL1}$) and one for the local bus (\overline{LWR}). These controls are activated when a GPCM- or UPM-controlled bank is accessed. The \overline{BCTLx} controls can be disabled by setting ORx[BCTLD]. Access to SDRAM-machine controlled bank does not activate the \overline{BCTLx} controls. The \overline{BCTL} signals are asserted on the rising edge of CLKIN on the first cycle of the memory controller operation. They are negated on the rising edge of CLKIN after the last assertion of \overline{PSDVAL} of the access is asserted. (See Section 10.2.13, "Partial Data Valid Indication (PSDVAL).") If back-to-back memory controller operations are pending, \overline{BCTLx} is not negated.

The BCTL signals have a programmable polarity. See Section 4.3.2.6, "SIU Module Configuration Register (SIUMCR)."

10.2.8 Atomic Bus Operation

The MPC8260 supports the following kinds of atomic bus operations BRx[ATOM]:

• Read-after-write (RAWA). When a write access hits a memory bank in which ATOM = 01, the MPC8260 locks the bus for the exclusive use of the accessing master (internal or external).

While the bus is locked, no other device can be granted the bus. The lock is released when the master that created the lock access the same bank with a read transaction. If the master fails to release the lock within 256 bus clock cycles, the lock is released and a special interrupt is generated. This feature is intended for CAM operations.

• Write-after-read (WARA). When a read access hit a memory bank in which ATOM = 10, the MPC8260 locks the bus for the exclusive use of the accessing master (internal or external).

During the lock period, no other device can be granted bus mastership. The lock is released when the device that created the lock access the same bank with a write transaction. If the device fails to release the lock within 256 bus clock cycles, the lock is released and a special interrupt is generated.

Note that this mechanism does not replace the PowerPC reservation mechanism.

10.2.9 Data Pipelining

Multiple-MPC8260 systems that use that use data checking, such as ECC or parity, face a timing problem when synchronous memories, such as SDRAM, are used. Because these devices can output data every cycle and because the data checking requires additional data setup time, the timing constraints are extremely hard to meet. In such systems, the user should set the data pipelining bit, BRx[DR]. This creates data pipelining of one stage within the memory controller in which the data check calculations are done, thus eliminating the additional data setup time requirement.

Note that this feature cannot be used with L2 cacheable banks and that in systems that involve both PowerQUICC II-type masters and 60x compatible master, this feature can still be used on the 60x bus under the following restrictions:

- 1. The arbiter and the memory controller are in the same MPC8260.
- 2. The register field BCR[NPQM] is setup correctly.

See "Section 10.9, "External Master Support (60x-Compatible Mode)" and "Section 4.3.2.1, "Bus Configuration Register (BCR)."

10.2.10 External Memory Controller Support

The MPC8260 has an option to allocate specific banks (address spaces) to be controlled by an external memory controller or bus slave, while retaining all the bank properties: port size, data check/correction, atomic operation, and data pipelining. This is done by programming BRx and ORx[AM] and by setting the external memory controller bit, BRx[EMEMC]. This action automatically assigns the bank to the 60x bus. For an access that hits the bank, all bus acknowledgment signals (such as \overline{AACK} , \overline{PSDVAL} , and \overline{TA}) and the memory-device control strobes are driven by an external memory controller or slave. If the device that initiates the transaction is internal to the MPC8260, the memory controller handles the port size, data checking, atomic locking, and data pipelining as if the access were governed by it.

This feature allows multiple MPC8260 systems to be connected in 60x-compatible mode without loosing functionality and performance. It also make it easy to connect other 60x-compatible slaves on the 60x bus.

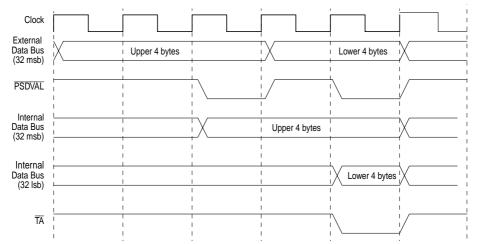
10.2.11 External Address Latch Enable Signal (ALE)

The memory controller provides control for an external address latch, needed on the 60x bus in 60x compatible mode. ALE is asserted for one clock cycle on the first cycle of each memory-controller transaction. In this section, whenever ALE is not on a timing diagram, assume that it is asserted on the first cycle in which \overline{CS} can be asserted. Note that ALE is relevant only on the 60x bus and only in 60x-compatible mode.

10.2.12 ECC/Parity Byte Select (PBSE)

Systems that use ECC or read-modify-write parity, require an additional memory device that requires byte-select like a normal data device. ANDing $\overline{BS[0-7]}$ through external logic to achieve the logical function of this byte-select can affect the memory access timing because it adds a delay to the byte-select path. The MPC8260's memory controller provides optional byte-select pins that are an internal AND of the eight byte selects, allowing glueless, faster connection to ECC/RMW-parity devices.

This option is enabled by setting SIUMCR[PBSE], as described in Section 4.3.2.6, "SIU Module Configuration Register (SIUMCR)."


10.2.13 Partial Data Valid Indication (PSDVAL)

The 60x and local buses have an internal 64-bit data bus. According to the 60x bus specification, \overline{TA} is asserted when up to a double word of data is transferred. Because the MPC8260 supports memories with port sizes smaller than 64 bits, there is a need for partial data valid indication. The memory controller uses PSDVAL to indicate that data is latched by the memory on write accesses or valid data is present on read accesses. The quantity of the data depends on the memory port size and the transfer size. The memory controller accumulates \overline{PSDVAL} assertions, and when a double word (or the transfer size) is transferred, the memory controller asserts \overline{TA} to indicate that a 60x data beat was transferred. Table 10-1 shows the number of \overline{PSDVAL} assertions needed for one \overline{TA} assertion under various circumstances.

Port Size	Transfer Size	PSDVAL Assertions	TA Assertions
64	Any	1	1
32	Double word	2	1
32	Word/half word/byte (32-bit aligned)	1	1
16	Double Word	4	1
16	Word	2	1
16	Half/byte	1	1
8	Double word	8	1
8	Word	4	1
8	Half	2	1
8	Byte	1	1

Table 10-1. Number of **PSDVAL** Assertions Needed for **TA** Assertion

Figure 10-5 shows a double-word transfer on 32-bit port size memory.

10.3 Register Descriptions

Table 10-2 lists registers used to control the 60x bus memory controller.

Abbreviation	Name	Reference
BR0-BR11	Base register banks 0-11	Section 10.3.1
OR0-OR11]	Option register banks 0–11	Section 10.3.2
PSDMR	60x bus SDRAM machine mode register	Section 10.3.3
LSDMR	Local bus SDRAM machine mode register	Section 10.3.4
MAMR	UPMA mode register	Section 10.3.5
MBMR	UPMB mode register	
MCMR	UPMC mode register	
MDR	Memory data register	Section 10.3.6
MAR	Memory address register	Section 10.3.7
MPTPR	Memory refresh timer prescaler register	Section 10.3.12
PURT	60x bus assigned UPM refresh timer	Section 10.3.8
PSRT	60x bus assigned SDRAM refresh timer	Section 10.3.10
LURT	Local bus assigned UPM refresh timer	Section 10.3.9
LSRT	Local bus assigned SDRAM refresh timer	Section 10.3.11
TESCRx	60x bus error status and control registers	Section 10.3.13
LTESCRx	Local bus error status and control regs	Section 10.3.14

Table 10-2. 60x Bus Memory Controller Registers

10.3.1 Base Registers (BRx)

The base registers (BR0–BR11) contain the base address and address types that the memory controller uses to compare the address bus value with the current address accessed. Each register also includes a memory attribute and selects the machine for memory operation handling. Figure 10-6 shows the BR*x* register format.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	BA															
Reset	Depends on reset configuration sequence. See Section 5.4.1, "Hard Reset Configuration Word."															
R/W	R/W															
Addr	0x10100 (BR0); 0x10108 (BR1); 0x10110 (BR2); 0x10118 (BR3); 0x10120 (BR4); 0x10128 (BR5); 0x10130 (BR6); 0x10138 (BR7); 0x10140 (BR8); 0x10148 (BR9); 0x10150 (BR10); 0x10158 (BR11)									0130						
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	BA	-	_	Р	S	DE	CC	WP		MS	6	EMEMC	ATO	М	DR	V
Reset							0000_	0000_	0000	_0000)					1
R/W	Depends on reset configuration sequence. See Section 5.4.1, "Hard Reset Configuration Word."															
Addr		· /	·	· ·	,,					`		122 (BR4); 52 (BR10)		`		0132

¹ After a system reset, the V bit is set in BR0 and reset in BR[1-11].

Figure 10-6. Base Registers (BRx)

Table 10-3 describes BR*x* fields.

Table 10-3. BRx Field Descriptions

Bits	Name	Description
0–16	BA	Base address. The upper 17 bits of each base address register are compared to the address on the address bus to determine if the bus master is accessing a memory bank controlled by the memory controller. Used with ORx[BSIZE].
17–18	-	Reserved, should be cleared.
19–20	PS	Port size. Specifies the port size of this memory region. 01 8-bit 10 16-bit 11 32-bit 00 64-bit (60x bus only)
21–22	DECC	Data error correction and checking. Specifies the method for data error checking and correction. See Section 10.2.3, "Error Checking and Correction (ECC)," and Section 10.2.4, "Parity Generation and Checking." 00 Data errors checking disabled 01 Normal parity checking 10 Read-modify-write parity checking 11 ECC correction and checking

Bits	Name	Description
23	WP	 Write protect. Can restrict write accesses within the address range of a BR. An attempt to write to this address range while WP = 1 can cause TEA to be asserted by the bus monitor logic (if enabled) which terminates the cycle. 0 Read and write accesses are allowed. 1 Only read accesses are allowed. The memory controller does not assert CSx and PSDVAL on write cycles to this memory bank. MSTAT[WPER] is set if a write to this memory bank is attempted.
24–26	MS	Machine select. specifies machine select for the memory operations handling and assigns the bank to the 60x or local bus if GPCM or SDRAM are selected. If UPMx is selected, the bus assignment is determined by MxMR[BSEL]. 000 GPCM—60x bus (reset value) 001 GPCM—local bus 010 SDRAM—60x Bus 011 SDRAM—local bus 100 UPMA 101 UPMB 110 UPMC 111 Reserved
27	EMEMC	 External MEMC enable. Overrides MSEL and assigns the bank to the 60x bus. However, other BRx fields remain in effect. See Section 10.2.10, "External Memory Controller Support." 0 Access are handled by the memory controller according to MSEL. 1 Access are handled by an external memory controller (or other slave) on the 60x bus. The external memory controller is expected to assert AACK, TA, and PSDVAL.
28–29	АТОМ	 Atomic operation. See Section 10.2.8, "Atomic Bus Operation." 00 The address space controlled by the memory controller bank is not used for atomic operations. 01 Read-after-write-atomic (RAWA). Writes to the address space handled by the memory controller bank cause the MPC8260 to lock the bus for the exclusive use of the master. The lock is released when the master performs a read operation from this address space. This feature is intended for CAM operations. 10 Write-after-read-atomic (WARA). Reads from the address space handled by the memory controller bank cause the MPC8260 to lock the bus for the exclusive use of the accessing device. The lock is released when the device performs a write operation to this address space. 11 Reserved Note that If the device fails to release the bus, the lock is released after 256 clock cycles.
30	DR	 Data pipelining. See Section 10.2.9, "Data Pipelining." 0 No data pipelining is done. 1 Data beats of accesses to the address space controlled by the memory controller bank are delayed by one cycle. This feature is intended for memory regions that use ECC or parity checks and need to improve data setup time.
31	V	Valid bit. Indicates that the contents of the BRx and ORx pair are valid. The \overline{CS} signal does not assert until V is set. 0 This bank is invalid. 1 This bank is valid Notes: An access to a region that has no V bit set may cause a bus monitor time-out. After a system reset, BR0[V] is set.

10.3.2 Option Registers (ORx)

The ORx registers define the sizes of memory banks and access attributes. The ORx attributes bits support the following three modes of operation as defined by BR[MS].

- SDRAM mode
- GPCM mode
- UPM mode

Figure 10-7 shows the ORx as it is formatted for SDRAM mode.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	SDAM LSDAM															
Reset		0000_0000_0000														
R/W		R/W														
Addr	0x10104 (OR0); 0x1010C (OR1); 0x10114 (OR2); 0x1011C (OR3); 0x10124 (OR4); 0x1012C (OR5); 0x10134 (OR6); 0x1013C (OR7); 0x10144 (OR8); 0x1014C (OR9); 0x10154 (OR10); 0x1015C (OR11)															
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	LSDAM	BF	PD	F	ROWS	т	-		NUMF	1	PMSEL	IBID		_		
Reset							0000	_0000	_0000	000_0	0		-			
R/W		R/W														
Addr	0x10106 (((C			•			•			• •); 0x10126 ; 0x10156	•				0136

Figure 10-7. Option Registers (ORx)-SDRAM Mode

Table 10-4 describes OR*x* fields in SDRAM mode. For more details see Section 10.4.12, "SDRAM Configuration Examples."

Table 10-4. ORx Field Descriptions (SDRAM Mode)

Bits	Name	Description
0-4	SDAM	SDRAM address mask. Provides masking for corresponding BRx bits. By masking address bits independently, SDRAM devices of different size address ranges can be used. Clearing bits masks the corresponding address bit. Setting bits causes the corresponding address bit to be compared with the address pins. Address mask bits can be set or cleared in any order, allowing a resource to reside in more than one area of the address map. SDAM can be read or written at any time. 0000_0000_0000 = 4Gbyte 1111_1111_1111 = 1 Mbyte Note: if xSDMR[PBI]=0, the maximum size of the memory bank should not exceed 128 Mbytes.

Bits	Name	Description							
5-11	SDAM	SDRAM address mask. Provides masking for corresponding bits in the associated BRx. By masking address bits independently, SDRAM devices of different size address ranges can be used. Any clear bit masks the corresponding address bit. Any set bit causes the corresponding address bit to be compared with the address pins. Address mask bits can be set or cleared in any order, allowing a resource to reside in more than one area of the address map. SDAM can be read or written at any time. 0000000128 Mbyte 100000064 Mbyte 110000032 Mbyte 11110008 Mbyte 11110008 Mbyte 11111004 Mbyte 11111102 Mbyte							
12–16	LSDAM	Lower SDRAM address mask. The user should reset LSDAM to 0x0 to implements a minimum size of 1 Mbyte when using SDRAM							
		SDRAM Page Information							
17–18	BPD	Banks per device. Sets the number of internal banks per SDRAM device. 00 2 internal banks per device 01 4 internal banks per device 10 8 internal banks per device (not valid for 128-Mbyte SDRAMs) 11 Reserved Note that for 128-Mbyte SDRAMs, BPD must be 00 or 01.							
19–21	ROWST	Row start address bit. Sets the demultiplexed row start address bit. The value of ROWST depends on SDMR[PBI].							
		For xSDMR[PBI] = 0: For xSDMR[PBI] = 1: 0010 A7 0000 A0 0100 A8 0001 A1 0110 A9 1000 A10 1010 A10 1100 A12 1010 A11 1101–1111 Reserved 1100 A12 1100 A12 1110 A13 Other values are reserved Image: Content of the served							
22	-	Reserved							
23–25	NUMR	Number of row address lines. Sets the number of row address lines in the SDRAM device. 000 9 row address lines 001 10 row address lines 010 11 row address lines 011 12 row address lines 100 13 row address lines 101 14 row address lines 110 15 row address lines 111 16 row address lines							
26	PMSEL	Page mode select. Selects page mode for the SDRAM connected to the memory controller bank. 0 Back-to-back page mode (normal operation). Page is closed when the bus becomes idle. 1 Page is kept open until a page miss or refresh occurs.							

Table 10-4. ORx Field Descriptions (SDRAM Mode) (Continued)

Bits	Name	Description
27	IBID	Internal bank interleaving within same device disable. Setting this bit disables bank interleaving between internal banks of a SDRAM device connected to the chip-select line. IBID should be set in 60x-compatible mode if the SDRAM device is not connected to the BANKSEL pins.
28–31	-	Reserved, should be cleared.

Figure 10-8 shows ORx as it is formatted for GPCM mode.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field		AM														
Reset		1111_1110_0000_0000														
R/W								F	R/W							
Addr	0x10104 (OR0); 0x1010C (OR1); 0x10114 (OR2); 0x1011C (OR3); 0x10124 (OR4); 0x1012C (OR5); 0x10134 (OR6); 0x1013C (OR7); 0x10144 (OR8); 0x1014C (OR9); 0x10154 (OR10); 0x1015C (OR11)															
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	AM	-	_	BCTLD	CSNT	A	CS	Ι		ę	SCY		SETA	TRLX	EHTR	—
Reset	0	0	0	0	1	1	1	0			1111		0	1	0	0
R/W	R/W															
Addr	0x1010	0x10106 (OR0); 0x1010E (OR1); 0x10116 (OR2); 0x1011E (OR3); 0x10126 (OR4); 0x1012E (OR5); 0x10136 (OR6); 0x1013E (OR7); 0x10146 (OR8); 0x1014E (OR9); 0x10156 (OR10); 0x1015E (OR11)														

Figure 10-8. ORx – GPCM Mode

Table 10-5 describes ORx fields in GPCM mode.

Table 10-5. ORx-GPCM Mode Field Descriptions

Bits	Name	Description
0–16	AM	 Address mask. Masks corresponding BRx bits. Masking address bits independently allows external devices of different size address ranges to be used. 0 Corresponding address bits are masked. 1 The corresponding address bits are used in the comparison with address pins. Address mask bits can be set or cleared in any order in the field, allowing a resource to reside in more than one area of the address map. AM can be read or written at any time. Note: After system reset, OR0[AM] is 1111_1110_0000_0000_0.
17–18	_	Reserved, should be cleared.
19	BCTLD	Data buffer control disable. Disables the assertion of BCTLx during access to the current memory bank. See Section 10.2.7, "Data Buffer Controls (BCTLx)." 0 BCTLx is asserted upon access to the current memory bank. 1 BCTLx is not asserted upon access to the current memory bank.
20	CSNT	Chip-select negation time. Determines when CS/WE are negated during an external memory write access handled by the GPCM. This helps meet address/data hold times for slow memories and peripherals. 0 CS/WE are negated normally. 1 CS/WE are negated a quarter of a clock earlier. Note: After system reset OR0[CSNT] is set.

Table 10-5. ORx-GPCM Mode Field Descriptions (Continued)

Bits	Name	Description
21–22	ACS	Address to chip select setup. Can be used when the external memory access is handled by the GPCM. It allows the delay of the \overline{CS} assertion relative to the address change. 00 \overline{CS} is output at the same time as the address lines 01 Reserved 10 \overline{CS} is output a quarter of a clock after the address lines 11 \overline{CS} is output half a clock after the address lines Note: After a system reset, OR0[ACS] = 1.
23	-	Reserved, should be cleared.
24–27	SCY	Cycle length in clocks. Determines the number of wait states inserted in the cycle, when the GPCM. handles the external memory access. Thus it is the main parameter for determining cycle length. The total cycle length depends on other timing attribute settings. The total memory access length is (2 + SCY) x Clocks. If the user selects an external PSDVAL response for this memory bank (by setting the SETA bit), SCY is not used. 0000 = 0 clock cycle wait states1111 = 15 clock cycles wait states Note: After a system reset, OR0[SCY] = 1111.
28	SETA	External access termination (PSDVAL generation). Used to specify that when the GPCM is selected to handle the memory access initiated to this memory region, the access is terminated externally by asserting the GTA external pin. In this case, PSDVAL is asserted one clock later on the bus. 0 PSDVAL is generated internally by the memory controller unless GTA is asserted earlier externally. 1 PSDVAL is generated after external logic asserts GTA. Note: After a system reset, the OR0[SETA] is cleared.
29	TRLX	Timing relaxed. Works in conjunction with EHTR (bit 30). 0 Normal timing is generated by the GPCM 1 Relaxed timing is generated by the GPCM for accesses initiated to this memory region.
30	EHTR	Extended hold time on read accesses. Indicates with TRLX how many cycles are inserted between a read access from the current bank and the next access. ORx[29,30] are interpreted as follows: 00 Normal timing is generated by the memory controller. No additional cycles are inserted. 01 One idle clock cycle is inserted. 10 Four idle clock cycles are inserted. 11 Eight idle clock cycles are inserted.
31	—	Reserved, should be cleared.

Part III. The Hardware Interface

Figure 10-9 shows ORx as it is formatted for UPM mode.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	AM															
Reset	0000_0000_0000															
R/W	R/W															
Addr	0x10104 (OR0); 0x1010C (OR1); 0x10114 (OR2); 0x1011C (OR3); 0x10124 (OR4); 0x1012C (OR5); 0x10134 (OR6); 0x1013C (OR7); 0x10144 (OR8); 0x1014C (OR9); 0x10154 (OR10); 0x1015C (OR11)															
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	AM	-	_	BCTLD		_		BI			_			Eŀ	ITR	-
Reset							0000_	_0000_	0000_	0000						
R/W	R/W															
Addr				; 0x1010E 0x1013E												

Figure 10-9. ORx–UPM Mode

Table 10-6 describes the ORx fields in UPM mode.

Table 10-6. Option Register (ORx)-UPM Mode

Bits	Name	Description
0–16	AM	Address mask. Provides masking for corresponding BRx bits. By masking address bits independently, external devices of different size address ranges can be used. Any clear bit masks the corresponding address bit. Any set bit causes the corresponding address bit to be used in the comparison with the address pins. Address mask bits can be set or cleared in any order in the field, allowing a resource to reside in more than one area of the address map. AM can be read or written at any time.
17–19	—	Reserved, should be cleared.
19	BCTLD	Data buffer control disable. Used to disable the assertion of BCTLx) during access to the current memory bank. See Section 10.2.7, "Data Buffer Controls (BCTLx)". 0 BCTLx is asserted upon access to the current memory bank. 1 BCTLx is not asserted upon access to the current memory bank.
20–22	-	Reserved, should be cleared.
23	BI	 Burst inhibit. Indicates if this memory bank supports burst accesses. 0 The bank supports burst accesses 1 The bank does not support burst accesses. The UPMx executes burst accesses as series of single accesses.
24–28	_	Reserved, should be cleared.
29–30	EHTR	Extended hold time on read accesses. Indicates how many cycles are inserted between a read access from the current bank and the next access. 00 Normal timing is generated by the memory controller. No additional cycles are inserted. 01 One idle clock cycle is inserted. 10 Four idle clock cycles are inserted. 11 Eight idle clock cycles are inserted.
31	_	Reserved, should be cleared.

10.3.3 60x SDRAM Mode Register (PSDMR)

The 60x SDRAM mode register (PSDMR), shown in Figure 10-10, is used to configure operations pertaining to SDRAM.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	PBI	RFEN	FEN OP S				SDAM BSMA					SDA1	RFRC			
Reset	0000_0000_0000															
R/W	R/W															
Addr	0x10190 (PSDMR), 0x10194 (LSDMR)															
Bit	16	17	18	19	20	21	22 23		24	25	26	27	28	29	30	31
Field	RFRC	PRE	TOAC	т	AC	TTOF	RW	BL	LDOT	OPRE	W	RC	EAMUX	BUFCMD	С	L
Reset							00	000_0	000_00	00_00	00					
R/W									R/W							
Addr						0x1	0192	(PSDI	VIR), 0x	10196	(LSD	MR)				

Figure 10-10. 60x/Local SDRAM Mode Register (PSDMR/LSDMR)

Table 10-7 describes PSMDR fields. LSMDR fields are described in Table 10-8.

Table 10-7. PSDMR Field Descriptions

Bits	Name	Description
0	PBI	Page-based interleaving. Selects the address multiplexing method. PBI works in conjunction with ORx[SDA10]. See Section 10.4.5, "Bank Interleaving." 0 Bank-based interleaving 1 Page-based interleaving (normal operation)
1	RFEN	Refresh enable. Indicates that the UPM needs refresh services. 0 Refresh services are not required 1 Refresh services are required Note: After system reset, RFEN is cleared. See Section 10.3.8, "60x Bus-Assigned UPM Refresh Timer (PURT)," Section 10.3.9, "Local Bus-Assigned UPM Refresh Timer (LURT)," Section 10.3.10, "60x Bus-Assigned SDRAM Refresh Timer (PSRT)," and Section 10.3.11, "Local Bus-Assigned SDRAM Refresh Timer (LSRT)."
2-4	OP	SDRAM operation. Determines which operation occurs when the SDRAM device is accessed. 000 Normal operation 001 CBR refresh, used in SDRAM initialization. 010 Self refresh (for debug purpose). 011 Mode Register write, used in SDRAM initialization. Note that if 60x-compatible mode is in effect on the 60x bus, the bus master must supply the mode register data on the low bits of the address during the access. 100 Precharge bank (for debug purpose). 101 Precharge all banks, used in SDRAM initialization. 110 Activate bank (for debug purpose). 111 Read/write (for debug purpose).
5–7	SDAM	Address multiplex size. Determines how the address of the current memory cycle can be output on the address pins. See Section 10.4.5.1, "SDRAM Address Multiplexing (SDAM and BSMA)."

Name	Description
BSMA	Bank select multiplexed address line. Selects the address pins to serve as bank-select address for the 60x SDRAM. The bank select address can also be output on the BANKSEL pins (optional). See Section 10.4.5.1, "SDRAM Address Multiplexing (SDAM and BSMA)." 000 A12–A14 001 A13–A15 010 A14–A16 011 A15–A17 100 A16–A18 101 A17–A19 110 A18–A20 111 A19–A21
SDA10	"A10" control. With ORx[PBI], determines which address line can be output to SDA10 during an ACTIVATE command, when SDRAM is selected, to control the memory access. See Section 10.4.12.1, "SDRAM Configuration Example (Page-Based Interleaving)."
	For PBI = 0: For PBI = 1: 000 A12 000 A10 001 A11 001 A9 010 A10 010 A8 011 A9 011 A7 100 A8 100 A6 101 A7 101 A5 110 A6 110 A4 111 A5 111 A3
	SDRAM Device-Specific Parameters:
RFRC	Refresh recovery. Defines the earliest timing for an activate command after a REFRESH command. Sets the refresh recovery interval in clock cycles. See Section 10.4.6.6, "Refresh Recovery Interval (RFRC)," for how to set this field. 000 Reserved 001 3 clocks 010 4 clocks 011 5 clocks 100 6 clocks 101 7 clocks 110 8 clocks 111 16 clocks
PRETOACT	Precharge to activate interval. Defines the earliest timing for ACTIVATE or REFRESH command after a precharge command. See Section 10.4.6.1, "Precharge-to-Activate Interval." 001 1 clock-cycle wait states 010 2 clock-cycle wait states 111 7 clock-cycle wait states 000 8 clock-cycle wait states
ACTTORW	Activate to read/write interval. Defines the earliest timing for READ/WRITE command after an ACTIVATE command. See Section 10.4.6.2, "Activate to Read/Write Interval." 001 1 clock cycle 010 2 clock cycles 111 7 clock cycles
	BSMA SDA10 RFRC

Table 10-7. PSDMR Field Descriptions (Continued)

Bits	Name	Description
23	BL	Burst length 0 SDRAM burst length is 4. Use this value if the device port size is 64 or 16 1 SDRAM burst length is 8. Use this value if the device port size is 32 or 8
24–25	LDOTOPRE	Last data out to precharge. Defines the earliest timing for PRECHARGE command after the last data was read from the SDRAM. See Section 10.4.6.4, "Last Data Out to Precharge." 00 0 clock cycles 01 -1 clock cycle 10 -2 clock cycles 11 Reserved
26–27	WRC	Write recovery time. Defines the earliest timing for PRECHARGE command after the last data was written to the SDRAM. See Section 10.4.6.5, "Last Data In to Precharge—Write Recovery." 01 1 clock cycles 10 2 clock cycles 11 3 clock cycles 00 4 clock cycles
28	EAMUX	External address multiplexing enable/disable. 0 No external address multiplexing. Fastest timing. 1 The memory controller asserts SDAMUX for an extra cycle before issuing an ACTIVATE command to the SDRAM. This is useful when external address multiplexing can cause a delay on the address lines. Note that if this bit is set, ACTTORW should be a minimum of 2. In 60x-compatible mode, external address multiplexing is placed on the address lines. If the additional delay of the multiplexing endangers the device setup time, EAMUX should be set. Setting this bit causes the memory controller to add another cycle for each address phase. Note that EAMUX can also be set in any case of delays on the address lines, such as address buffers. See Section 10.4.6.7, "External Address Multiplexing Signal."
29	BUFCMD	If external buffers are placed on the control lines going to both the SDRAM and address lines, setting BUFCMD causes all SDRAM control lines except \overline{CS} to be asserted for two cycles, instead of one. See Section 10.4.6.8, "External Address and Command Buffers (BUFCMD)." 0 Normal timing for the control lines 1 All control lines except \overline{CS} are asserted for two cycles In 60x-compatible mode, external buffers may be placed on the command strobes, except \overline{CS} , as well as the address lines. If the additional delay of the buffers endangers the device setup time, BUFCMD should be set, which causes the memory controller to add a cycle for each SDRAM command.
30–31	CL	CAS latency. Defines the timing for first read data after SDRAM samples a column address. See Section 10.4.6.3, "Column Address to First Data Out—CAS Latency." 00 Reserved 01 1 10 2 11 3

10.3.4 Local Bus SDRAM Mode Register (LSDMR)

The LSDMR, shown in Figure 10-10, has the same fields as the PSDMR. Table 10-8 describes LSDMR fields.

Bits	Name	Description
0	PBI	Page-based interleaving. Selects the address multiplexing method. PBI works in conjunction with ORx[SDA10]. See Section 10.4.5, "Bank Interleaving." 0 Bank-based interleaving 1 Page-based interleaving (normal operation)
1	RFEN	Refresh enable. Indicates that the SDRAM requires refresh services. 0 Refresh services are not required 1 Refresh services are required
2–4	OP	SDRAM operation. Selects the operation that occurs when the SDRAM device is accessed. 000 Normal operation 001 CBR refresh, used in SDRAM initialization. 010 Self refresh (for debug purpose). 011 Mode Register write, used in SDRAM initialization. 100 Precharge bank (for debug purpose). 101 Precharge all banks, used in SDRAM initialization. 100 Precharge all banks, used in SDRAM initialization. 110 Activate bank (for debug purpose). 111 Read/write (for debug purpose).
5–7	SDAM	Address multiplex size. Determines how the address of the current memory cycle is output on the address pins. See Section 10.4.5.1, "SDRAM Address Multiplexing (SDAM and BSMA)."
8–10	BSMA	Bank select multiplexed address line. Selects which MPC8260 address pins serve as bank-select address for the local bus SDRAM. See Section 10.4.5.1, "SDRAM Address Multiplexing (SDAM and BSMA)."000 L_A14 (ORx[BPD] must be 00) 001 L_A-L_A15 (ORx[BPD] must be 00 or 01) 010 L_A14-L_A16 011 L_A15-L_A17 100 L_A16-L_A18 101 L_A17-L_A19 110 L_A18-L_A20 111 L_A19-L_A21
11–13	SDA10	 "A10" control. When SDRAM is selected, with ORx[PBI], determines which address line is output to SDA10 during an ACTIVATE command, to control the memory access. See Section 10.4.12.1, "SDRAM Configuration Example (Page-Based Interleaving)." For PBI=0: For PBI=1: 000 A12 000 A10 001 A11 001 A9 010 A10 010 A8 011 A9 011 A7 100 A8 100 A6 101 A7 101 A5 110 A6 110 A4 111 A5 111 A3

Table 10-8. LSDMR Field Descriptions

Bits	Name	Description
	I	SDRAM Device-Specific Parameters:
14–16	RFRC	Refresh recovery. Defines the earliest timing for an activate command after a REFRESH command. Sets the refresh recovery interval in clock cycles. See Section 10.4.6.6, "Refresh Recovery Interval (RFRC)," for how to set this field. 000 Reserved 001 3 clocks 010 4 clocks 011 5 clocks 100 6 clocks 101 7 clocks 110 8 clocks 111 16 clocks
17–19	PRETOACT	Precharge to activate interval. Defines the earliest timing for ACTIVATE or REFRESH command after a precharge command. See Section 10.4.6.1, "Precharge-to-Activate Interval." 001 1 clock-cycle wait states 010 2 clock-cycle wait states 111 7 clock-cycle wait states 000 8 clock-cycle wait states
20–22	ACTTORW	Activate to read/write interval. Defines the earliest timing for READ/WRITE command after an ACTIVATE command. See Section 10.4.6.2, "Activate to Read/Write Interval." 001 1 clock cycle 010 2 clock cycles 111 7 clock cycles 000 8 clock cycles
23	BL	Burst length 0 SDRAM burst length is 4. Use this value if the device port size is16 1 SDRAM burst length is 8. Use this value if the device port size is 32 or 8
24–25	LDOTOPRE	Last data out to precharge. Defines the earliest timing for PRECHARGE command after the last data was read from the SDRAM. See Section 10.4.6.4, "Last Data Out to Precharge." 00 0 clock cycles 01 -1 clock cycle 10 -2 clock cycles 11 Reserved
26–27	WRC	Write recovery time. Defines the earliest timing for PRECHARGE command after the last data is written to the SDRAM. See Section 10.4.6.5, "Last Data In to Precharge—Write Recovery." 01 1 clock cycles 10 2 clock cycles 11 3 clock cycles 00 4 clock cycles

Table 10-8. LSDMR Field Descriptions (Continued)

Bits	Name	Description
28	EAMUX	 External address multiplexing enable/disable. 0 No external address multiplexing. Fastest timing. 1 The memory controller asserts SDAMUX for an extra cycle before issuing an ACTIVATE command to the SDRAM. This is useful when external address multiplexing can cause a delay on the address lines. Note that if EAMUX is set, ACTTORW should be at least 2. In 60x-compatible mode, external address multiplexing is placed on the address lines. If the additional delay of the multiplexing endangers the device setup time, EAMUX should be set. Setting this bit causes the memory controller to add another cycle for each address phase. Note that EAMUX can also be set in case of address line delays, such as address buffers. See Section 10.4.6.7, "External Address Multiplexing Signal."
29	BUFCMD	If external buffers are placed on the control lines going to both the SDRAM and address lines, setting BUFCMD causes all SDRAM control lines except \overline{CS} to be asserted for two cycles, instead of one. See Section 10.4.6.8, "External Address and Command Buffers (BUFCMD)." 0 Normal timing for the control lines 1 All control lines except \overline{CS} are asserted for two cycles In 60x-compatible mode, external buffers may be placed on the command strobes, except \overline{CS} , as well as the address lines. If the additional delay of the buffers is endangering the device setup time, BUFCMD should be set to cause the memory controller to add another cycle for each SDRAM command.
30–31	CL	CAS latency. Defines the timing for first read data after a column address is sampled by the SDRAM. See Section 10.4.6.3, "Column Address to First Data Out—CAS Latency." 00 Reserved 01 1 clock cycle 10 2 clock cycles 11 3 clock cycles

Table 10-8. LSDMR Field Descriptions (Continued)

10.3.5 Machine A/B/C Mode Registers (MxMR)

The machine x mode registers (MxMR), shown in Figure 10-11, contain the configuration for the three UPMs.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	BSEL	RFEN	0	Р	Ι		AMx DSx			Sx	G0CLx			GPL_x4DIS	RLFx	
Reset	t 0000_0000_0 1													0	0	
R/W	R/W															
Addr	0x10170 (MAMR); 0x10174 (MBMR); 0x10178 (MCMR)															
Bit	16	17	18	19	20	21	22	23 24 25			26	27	28	29	30	31
Field	RL	.Fx		WL	Fx			ΤL	Fx					MAD		
Reset	0000_0000_0000															
R/W									R/W							
Addr				0	x1017	2 (MA	.MR); (0x1017	76 (ME	BMR);	0x101	7A (M	CMR)			

Figure 10-11. Machine x Mode Registers (MxMR)

Table 10-9 describes MxMR bits.

Bits	Name	Description
0	BSEL	Bus select. Assigns banks that select UPMx to the 60x or local bus. 0 Banks that select UPMx are assigned to the 60x bus. 1 Banks that select UPMx are assigned to the local bus. Note: if refresh is required, the UPM's should be assigned as follows: UPMA: 60x bus (if 60x bus refresh needed) UPMB: Local bus (if local bus refresh required) UPMC: any bus, as long as UPMA or UPMB is used on the relevant bus. See Section 10.6.1.2, "UPM Refresh Timer Requests."
1	RFEN	Refresh enable. Indicates that the UPM needs refresh services. 0 Refresh services are not required 1 Refresh services are required See Section 10.3.8, "60x Bus-Assigned UPM Refresh Timer (PURT)," Section 10.3.9, "Local Bus-Assigned UPM Refresh Timer (LURT)," Section 10.3.10, "60x Bus-Assigned SDRAM Refresh Timer (PSRT)," and Section 10.3.11, "Local Bus-Assigned SDRAM Refresh Timer (LSRT)."
2–3	OP	 Command opcode. Determines the command executed by the UPMx when a memory access hit a UPM assigned bank. 00 Normal operation. 01 Write to array. On the next memory access that hits a UPM assigned bank, write the contents of the MDR into the RAM location pointed by MAD. After the access, the MAD field is automatically incremented. 10 Read from array. On the next memory access that hits a UPM assigned bank, read the contents of the RAM location pointed by MAD into the MDR. After the access, the MAD field is automatically incremented. 11 Run pattern. On the next memory access that hits a UPM assigned bank, run the pattern written in the RAM array. The pattern run starts at the location pointed by MAD and continues until the LAST bit is set in the RAM. Note: RLF determines the number of times a loop is executed during a pattern run.
4	_	Reserved, should be cleared.
5–7	AMx	Address multiplex size. Determines how the address of the current memory cycle can be output on the address pins. The address output on the pins controlled by the contents of the UPMx RAM array. This field is useful when connecting the MPC8260 to DRAM devices requiring row and column addresses multiplexed on the same pins. See Section 10.6.4.2, "Address Multiplexing."
8–9	DSx	Disable timer period. Guarantees a minimum time between accesses to the same memory bank if it is controlled by the UPMx. The disable timer is turned on by the TODT in the RAM array, and when expired, the UPMx allows the machine access to handle a memory pattern to the same memory region. Accesses to a different memory region by the same UPMx will be allowed. 00 1-cycle disable period 01 2-cycle disable period 10 3-cycle disable period 11 4-cycle disable period Note: To avoid conflicts between successive accesses to different memory regions, the minimum pattern in the RAM array for a request serviced should not be shorter than the period established by DSx.

Table 10-9. Machine x Mode Registers (MxMR)

Bits	Name	Description
10–12	G0CLx	General line 0 control. Determines which address line can be output to the GPL0 pin when the UPMx is selected to control the memory access. 000 A12 001 A11 010 A10 011 A9 100 A8 101 A7 110 A6 111 A5
13	GPL_x4DIS	 GPL_A4 output line disable. Determines if the UPWAIT/GTA/GPL_4 pin behaves as an output line controlled by the corresponding bits in the UPMx array (GPL4x). 0 UPWAIT/GTA/GPL_x4 behaves as GPL_4. UPMx[G4T4/DLT3] is interpreted as G4T4. The UPMx[G4T3/WAEN] is interpreted as G4T3. 1 UPWAIT/GTA/GPL_x4 behaves as UPWAIT. UPMx[G4T4/DLT3] is interpreted as DLT3. UPMx[G4T3/WAEN] is interpreted as WAEN. Note: After a system reset, GPL_x4DIS = 1.
14–17	RLFx	Read loop field. Determines the number of times a loop defined in the UPMx will be executed for a burst- or single-beat read pattern or when MxMR[OP] = 11 (RUN command) 0001 The loop is executed 1 time 0010 The loop is executed 2 times 1111 The loop is executed 15 times 0000 The loop is executed 16 times
18–21	WLFx	Write loop field. Determines the number of times a loop defined in the UPMx will be executed for a burst- or single-beat write pattern. 0001 The loop is executed 1 time 0010 The loop is executed 2 times 1111 The loop is executed 15 times 0000 The loop is executed 16 times
22–25	TLFx	Refresh loop field. Determines the number of times a loop defined in the UPMx will be executed for a refresh service pattern. 0001 The loop is executed 1 time 0010 The loop is executed 2 times 1111 The loop is executed 15 times 0000 The loop is executed 16 times
26–31	MAD	Machine address. RAM address pointer for the command executed. This field is incremented by 1, each time the UPM is accessed and the OP field is set to WRITE or READ.

Table 10-9. Machine x Mode Registers (MxMR) (Continued)

10.3.6 Memory Data Register (MDR)

The memory data register (MDR), shown in Figure 10-12, contains data written to or read from the RAM array for UPM READ or WRITE commands. MDR must be set up before issuing a write command to the UPM.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field		MD														
Reset		0000_0000_0000														
R/W		R/W														
Addr	0x10188															
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field									MD				-			
Reset		0000_0000_0000														
R/W		R/W														
Addr		0x1018A														

Figure 10-12. Memory Data Register (MDR)

Table 10-10 describes MDR fields.

Table 10-10. MDR Field Descriptions

Bits	Name	Description
0–31	1	Memory data. The data to be read or written into the RAM array when a WRITE or READ command is supplied to the UPM.

10.3.7 Memory Address Register (MAR)

The memory address register (MAR) is shown in Figure 10-13.

Bit	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15															
Field		Α														
Reset		0000_0000_0000														
R/W		R/W														
Addr	0x10168															
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field									Α							
Reset		0000_0000_0000														
R/W	R/W															
Addr		0x10116A														

Figure 10-13. Memory Address Register (MAR)

Part III. The Hardware Interface

Table 10-11 describes MAR fields.

Bits	Name	Description
0–31	Α	Memory address. The memory address register can be output to the address lines under control of the AMX bits in the UPM

Table 10-11. MAR Field Description

10.3.8 60x Bus-Assigned UPM Refresh Timer (PURT)

The 60x bus assigned UPM refresh timer register (PURT) is shown in Figure 10-14.

Bit	0	1	2	3	4	5	6	7		
Field		PURT								
Reset		0000_0000								
R/W		R/W								
Addr		0x10198								

Figure 10-14. 60x Bus-Assigned UPM Refresh Timer (PURT)

Table 10-12 describes PURT fields.

Table 10-12. 60x Bus-Assigned UPM Refresh Timer (PURT)

Bits	Name	Description
0–7	PURT	Refresh timer period. Determines the timer period according to the following equation:
		$TimerPeriod = \left(\frac{PURT}{F_{MPTC}}\right)$
		This timer generates a refresh request for all valid banks that selected a UPM machine assigned to the 60x bus (MxMR[BSEL] = 0) and is refresh-enabled (MxMR[RFEN] = 1). Each time the timer expires, a qualified bank generates a refresh request using the selected UPM. The qualified banks are rotating their requests. Example: For a 25-MHz SYSTEM CLOCK and a required service rate of 15.6 μ s, given MPTPR[PTP] = 32, the PURT value should be 12 decimal. 12/(25 MHz/32) = 15.36 μ s, which is less than the required service period of 15.6 μ s.

10.3.9 Local Bus-Assigned UPM Refresh Timer (LURT)

The local bus assigned UPM refresh timer register (LURT) is shown in Figure 10-15.

Bit	0	1	2	3	4	5	6	7			
Field		LURT									
Reset		0000_0000									
R/W		R/W									
Addr		0x101A0									

Figure 10-15. Local Bus-Assigned UPM Refresh Timer (LURT)

Table 10-13 describes LURT fields.

Table 10-13. Local Bus-Assigned UPM Refresh Timer (LURT)

Bits	Name	Description
0–7	LURT	Refresh timer period. Determines the timer period according to the following equation:
		$TimerPeriod = \left(\frac{LURT}{F_{MPTC}}\right)$
		This timer generates a refresh request for all valid banks that selected a UPM machine assigned to the local bus (MxMR[BSEL] =1) and is refresh-enabled (MxMR[RFEN] =1). Each time the timer expires, a qualified bank generates a refresh request using the selected UPM. The qualified banks are rotating their requests. Example: For a 25-MHz system clock and a required service rate of 15.6 μ s, given MPTPR[PTP] = 32, the LURT value should be 12 decimal. 12/(25 MHz/32) = 15.36 μ s, which is less than the required service period of 15.6 μ s.

10.3.10 60x Bus-Assigned SDRAM Refresh Timer (PSRT)

The 60x bus assigned SDRAM refresh timer register (PSRT) is shown in Figure 10-16.

Bit	0	0 1 2 3 4 5 6 7								
Field		PSRT								
Reset		0000_0000								
R/W		R/W								
Addr		0x1019C								

Figure 10-16. 60x Bus-Assigned SDRAM Refresh Timer (PSRT)

Table 10-14 describes PSRT fields.

Table 10-14. 60x Bus-Assigned SDRAM Refresh Timer (PSRT)

Bits	Name	Description
0–7	PSRT	Refresh timer period. Determines the timer period according to the following equation:
		$TimerPeriod = \left(\frac{PSRT}{F_{MPTC}}\right)$
		This timer generates refresh requests for all valid banks that selected a SDRAM machine assigned to the 60x bus and is refresh-enabled (PSDMR[RFEN] = 1). Each time the timer expires, all banks that qualify generate a bank staggering auto refresh request using the SDRAM machine. See Section 10.4.10, "SDRAM Refresh." Example: For a 25-MHz system clock and a required service rate of 15.6 μ s, given MPTPR[PTP] = 32, the PSRT value should be 12 decimal. 12/(25 MHz/32) = 15.36 μ s, which is less than the required service period of 15.6 μ s.

10.3.11 Local Bus-Assigned SDRAM Refresh Timer (LSRT)

The local bus-assigned SDRAM refresh timer register (LSRT) is shown in Figure 10-17.

Bit	0	1	2	3	4	5	6	7			
Field	LSRT										
Reset	0000_0000										
R/W		R/W									
Addr	0x101A4										

Figure 10-17. Local Bus-Assigned SDRAM Refresh Timer (LSRT)

Table 10-15 describes LSRT fields.

Table 10-15. LSRT Field Descriptions

Bits	Name	Description
0–7	LSRT	Refresh timer period. Determines the timer period according to the following equation:
		$TimerPeriod = \left(\frac{LSRT}{F_{MPTC}}\right)$
		This timer generates refresh requests for all valid banks that selected a SDRAM machine assigned to the local bus and is refresh enabled (LSDMR[RFEN] = 1). Each time the timer expires, all banks that qualify generate a bank staggering auto refresh request using the SDRAM machine. See Section 10.4.10, "SDRAM Refresh." Example: For a 25-MHz system clock and a required service rate of 15.6 μ s, given MPTPR[PTP] = 32, the LSRT value should be 12 (decimal). 12/(25 MHz/32) = 15.36 μ s, which is less than the required service period of 15.6 μ s.

10.3.12 Memory Refresh Timer Prescaler Register (MPTPR)

Figure 10-18 shows the memory refresh timer prescaler register (MPTPR).

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15					
Field	PTP							_						-							
Reset	0000_001x							0000_0000													
R/W								R/	/W												
Addr	0x10184																				

Figure 10-18. Memory Refresh Timer Prescaler Register (MPTPR)

Table 10-16 describes MPTPR fields.

Table 10-16. MPTPR Field Descriptions

Bits	Name	Description
0–7		Refresh timers prescaler. Determines the period of the memory refresh timers input clock. It divides the system clock.
8–15	_	Reserved, should be cleared

10.3.13 60x Bus Error Status and Control Registers (TESCRx)

These registers indicate the source of an error that caused $\overline{\text{TEA}}$ or $\overline{\text{MCP}}$ to be asserted on the 60x bus. See Section 4.3.2.10, "60x Bus Transfer Error Status and Control Register 1 (TESCR1)," and Section 4.3.2.11, "60x Bus Transfer Error Status and Control Register 2 (TESCR2)."

10.3.14 Local Bus Error Status and Control Registers (L_TESCRx)

These registers indicate the source of an error that causes $\overline{\text{TEA}}$ or $\overline{\text{MCP}}$ to be asserted on the local bus. See Section 4.3.2.12, "Local Bus Transfer Error Status and Control Register 1 (L_TESCR1)," and Section 4.3.2.13, "Local Bus Transfer Error Status and Control Register 2 (L_TESCR2)."

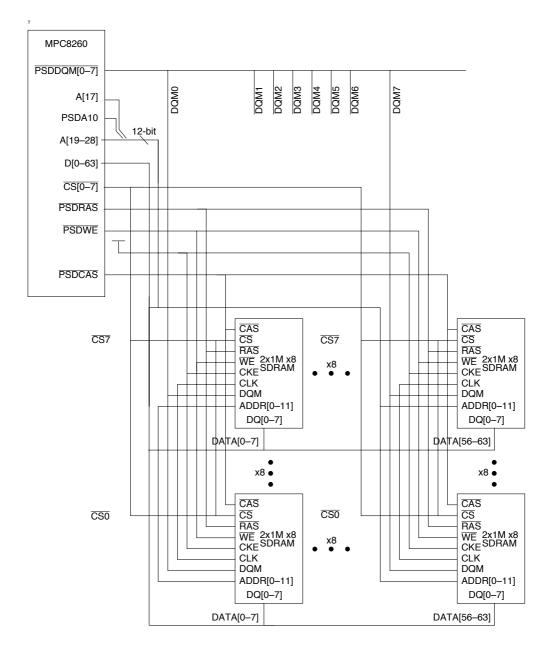
10.4 SDRAM Machine

The MPC8260 provides one SDRAM interface (machine) for the 60x bus and one for the local bus. The machines provide the necessary control functions and signals for JEDEC-compliant SDRAM devices.

Each bank can control a SDRAM device on the 60x or the local bus. Table 10-17 describes the SDRAM interface signals controlled by the memory controller.

60x Bus	Local Bus	Comments					
CS[C)-11]	Device select					
PSDRAS	LSDRAS	RAS					
SDCAS	LSDCAS	CAS					
SDWE	LSDWE	WEN					
SDA10	LSDA10	"A10" control					
DQM[0-7]	LDQM[0-3]	Byte select					

Table 10-17. SDRAM Interface Signals


Additional controls are available in 60x-compatible mode (60x bus only):

- ALE-External address latch enable
- PSDAMUX—External address multiplexing control (asserted = row, negated = column)
- BNKSEL[0-2]-Bank select address to allow internal bank interleaving

Throughout this section, whenever a signal is named, the reference is to the 60x or local bus signal, according to the accessed bank's machine-select.

Figure 10-19 shows an eight-bank, 128-Mbyte system. Each bank consists of eight 2 x 1-Mbit x 8 SDRAMs. Note that the SDRAM memory clock must operate at the same frequency as, and be phase-aligned with, the system clock.

Part III. The Hardware Interface

Figure 10-19. 128-Mbyte SDRAM (Eight-Bank Configuration, Banks 1 and 8 Shown)

10.4.1 Supported SDRAM Configurations

The MPC8260 memory controller supports any SDRAM configuration under the restrictions that all SDRAM devices that reside on the same bus (60x or local) should have the same port size and timing parameters.

10.4.2 SDRAM Power-On Initialization

At system reset, initialization software must set up the programmable parameters in the memory controller banks registers (ORx, BRx, P/LSDMR). After all memory parameters are configured, system software should execute the following initialization sequence for each SDRAM device.

- 1. Issue a PRECHARGE-ALL-BANKS command
- 2. Issue eight CBR REFRESH commands
- 3. Issue a MODE-SET command to initialize the mode register

The initial commands are executed by setting P/LSDMR[OP] and accessing the SDRAM with a single-byte transaction. See Figure 10-10.

Note that software should ensure that no memory operations begin until this process completes.

10.4.3 JEDEC-Standard SDRAM Interface Commands

The MPC8260 performs all accesses to SDRAM by using JEDEC-standard SDRAM interface commands. The SDRAM device samples the command and data inputs on the rising edge of the MPC8260 bus clock. Data at the output of the SDRAM device must be sampled on the rising edge of the MPC8260 bus clock.

The MPC8260 provides the following SDRAM interface commands:

Command	Description
BANK-ACTIVATE	Latches the row address and initiates a memory read of that row. Row data is latched in SDRAM sense amplifiers and must be restored with a PRECHARGE command before another BANK-ACTIVATE is issued.
MODE-SET	Allows setting of SDRAM options — \overline{CAS} latency, burst type, and burst length. \overline{CAS} latency depends on the SDRAM device used (some SDRAMs provide CAS latency of 1, 2, or 3; some provide a latency of 1, 2, 3, or 4, etc.). Burst type must be chosen according to the 60x cache wrap (sequential). Although some SDRAMs provide burst lengths of 1, 2, 4, 8, or a page, MPC8260 supports only a 4-beat burst for 64-bit port size and an 8-beat burst for 32-bit port size. MPC8260 does not support burst lengths of 1, 2, and a page for SDRAMs. The mode register data (CAS latency, burst length, and burst type) is programmed into the P/LSDMR register by initialization software at reset. After the P/ LSDMR is set, the MPC8260 transfers the information in the SDMODE field to the SDRAM array by issuing a MODE-SET command. Section 10.4.9, "SDRAM Mode-Set Command Timing," gives timing information.

Table 10-18. SDRAM Interface Commands

Command	Description
PRECHARGE (SINGLE BANK/ ALL BANKS)	Restores data from the sense amplifiers to the appropriate row. Also initializes the sense amplifiers to prepare for reading another row in the SDRAM array. A PRECHARGE command must be issued after a read or write if the row address changes on the next access. Note that the MPC8260 uses the SDA10 pin to distinguish the PRECHARGE-ALL-BANKS command. The SDRAMs must be compatible with this format.
READ	Latches the column address and transfers data from the selected sense amplifier to the output buffer as determined by the column address. During each successive clock, additional data is output without additional READ commands. The amount of data transferred is determined by the burst size. At the end of the burst, the page remains open.
REFRESH	Causes a row to be read in both memory banks (JEDEC SDRAM) as determined by the refresh row address counter (similar to CBR). The refresh row address counter is internal to the SDRAM device. After being read, a row is automatically rewritten into the memory array. Both banks must be in a precharged state before executing REFRESH.
WRITE	Latches the column address and transfers data from the data signals to the selected sense amplifier as determined by the column address. During each successive clock, additional data is transferred to the sense amplifiers from the data signals without additional WRITE commands. The amount of data transferred is determined by the burst size. At the end of the burst, the page remains open.

Table 10-18. SDRAM Interface Commands (Continued)

10.4.4 Page-Mode Support and Pipeline Accesses

The SDRAM interface supports back-to-back page mode. A page remains open as long as back-to-back accesses that hit the page are generated on the bus. The page is closed once the bus becomes idle unless ORx[PMSEL] is set.

The use of SDRAM pipelining allows data phases to occur on with zero bubbles for CPM accesses and with one bubble for core accesses, as required by the 60x bus specification.

If ETM/LETM = 1, the use of SDRAM pipelining also allows for back-to-back data phases to occur with zero clocks of separation for CPM accesses and with one clock of separation for core accesses, as required by the 60x bus specification.

10.4.5 Bank Interleaving

The SDRAM interface supports bank interleaving. This means that if a missed page is in a different SDRAM bank than the currently open page, the SDRAM machine first issues an ACTIVATE command to the new page and later issues a DEACTIVATE command to the old page, thus eliminating the DEACTIVATE time overhead.

This procedure can be done if both pages reside on different SDRAM devices or on different internal SDRAM banks. The second option can be disabled by setting ORx[IBID]. The user should set this bit if the BNKSEL pins are not used in 60x-compatible mode.

The following two methods are used for internal bank interleaving:

- Page-based interleaving Page-based interleaving yields the best performance and is the preferred interleaving method. This method uses low address bits as the Bank-Select for the SDRAM, thus allowing interleaving on every page boundary. It is activated by setting xSDMR[PBI]=1. See "0xSDRAM Configuration Example (Page-Based Interleaving)".
- Bank-based interleaving This method uses the most-significant address bits as the bank-select for the SDRAM, thus allowing interleaving only on bank boundaries. It is activated by clearing xSDMR[PBI]. See Section 10.4.12, "SDRAM Configuration Examples."

10.4.5.1 SDRAM Address Multiplexing (SDAM and BSMA)

In single MPC8260 mode, the lower bits of the address bus are connected to the device's address port, and the memory controller multiplex the row/column and the internal banks select lines, according to the PL/SDMR[SDAM] and PL/SDMR[BSMA].

Table 10-37 shows how P/LSDMR[SDAM] settings affect address multiplexing. For the effect of PL/SDMR[BSMA] see Section 10.4.12, "SDRAM Configuration Examples."

Note that in 60x-compatible mode, the 60x address must be latched and multiplexed by glue logic that is controlled by ALE and SDAMUX, however, the user still has to configure PSDMR[SDAM].

On the local bus, only the lower 18 bits of the address are output. Table 10-19 shows SDRAM address multiplexing for A0–A15.

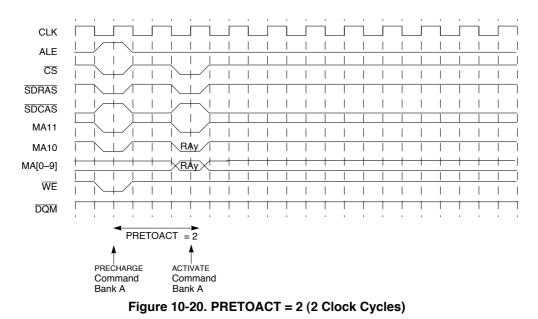
SDAM	External Bus Address Pins	A0	A1	A2	A3	A 4	A 5	A 6	A7	A 8	A 9	A10	A11	A12	A13	A14	A15
000		_	-	-	-	_	_	-	_	-	-	_	_	-	A5	A6	A7
001	Signal driven		_	-	-	_	_	I	_	_	_	_	_	-	_	A5	A6
010	on external pins when	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	A5
011	address multiplexing	-	-	-	-	-	_	Ι	-	-	-	-	_	-	_	-	-
100	is enabled	_	-	-	-	-	_	_	_	-	-	-	_	-	_	_	-
101		_	-	-	-	-	_		_	-	-	-	_	-	_	-	-

Table 10-20 shows SDRAM address multiplexing for A16–A31.

SDAM	External Bus Address Pins	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	A30	A31
000		A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23
001	Signal driven	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22
010	on external pins when	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21
011	address multiplexing	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20
100	is enabled	-	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19
101		_	_	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18

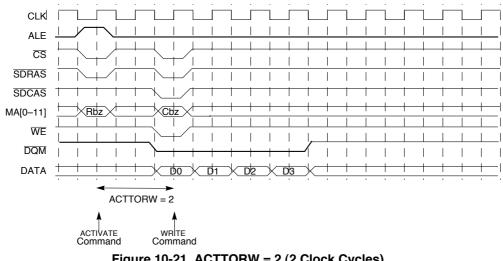
Table 10-20. SDRAM Address Multiplexing (A16–A31)

10.4.6 SDRAM Device-Specific Parameters

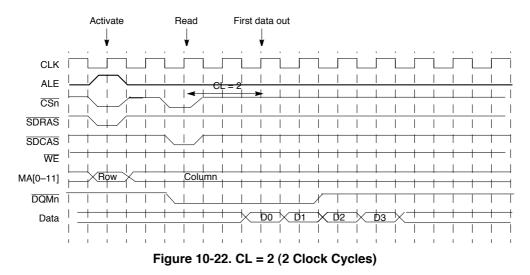

The software is responsible for setting correct values to some device-specific parameter that can be extracted from the data sheet. The values are stored in the ORx and P/LSDMR registers. These parameters include the following:

- Precharge to activate interval (P/LSDMR[PRETOACT]). See Section 10.4.6.1, "Precharge-to-Activate Interval."
- Activate to read/write interval (P/LSDMR[ACTTORW]). See Section 10.4.6.2, "Activate to Read/Write Interval."
- CAS latency, column address to first data out (P/LSDMR[CL]). See Section 10.4.6.3, "Column Address to First Data Out—CAS Latency."
- Last data out to precharge (P/LSDMR[LDOTOPRE]). Section 10.4.6.4, "Last Data Out to Precharge."
- Write recovery, last data in to precharge (P/LSDMR[WRC]). See Section 10.4.6.5, "Last Data In to Precharge—Write Recovery."
- Refresh recovery interval (P/LSDMR[RFRC]). See Section 10.4.6.6, "Refresh Recovery Interval (RFRC)."
- External address multiplexing present (P/LSDMR[EAMUX]). See Section 10.4.6.7, "External Address Multiplexing Signal."
- External buffers on the control lines present (P/LSDMR[BUFCMD]). See Section 10.4.6.8, "External Address and Command Buffers (BUFCMD)."

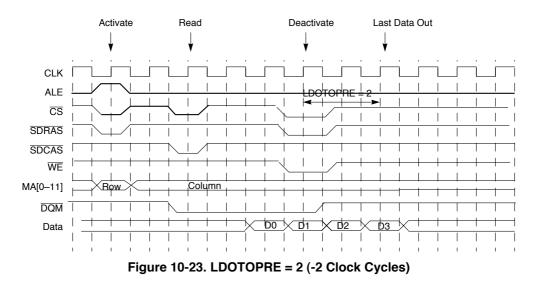
The following sections describe the SDRAM parameters that are programmed in the P/LSDMR register.


10.4.6.1 Precharge-to-Activate Interval

This parameter, controlled by P/LSDMR[PRETOACT] defines the earliest timing for activate or refresh command after a precharge command.



This parameter, controlled by P/LSDMR[ACTTORW], defines the earliest timing for READ/WRITE command after an ACTIVATE command.


10.4.6.3 Column Address to First Data Out-CAS Latency

This parameter, controlled by P/LSDMR[CL], defines the timing for first read data after a column address is sampled by the SDRAM.

10.4.6.4 Last Data Out to Precharge

This parameter, controlled by P/LSDMR[LDOTOPRE], defines the earliest timing for the PRECHARGE command after the last data was read from the SDRAM. It is always related to the CL parameter.

10.4.6.5 Last Data In to Precharge-Write Recovery

This parameter, controlled by P/LSDMR[WRC], defines the earliest timing for PRECHARGE command after the last data was written to the SDRAM.

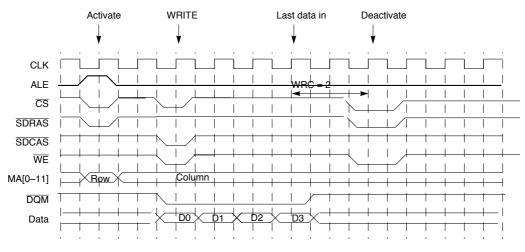


Figure 10-24. WRC = 2 (2 Clock Cycles)

10.4.6.6 Refresh Recovery Interval (RFRC)

This parameter, controlled by P/LSDMR[RFRC], defines the earliest timing for an ACTIVATE command after a REFRESH command.

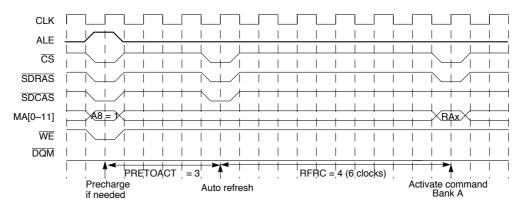


Figure 10-25. RFRC = 4 (6 Clock Cycles)

10.4.6.7 External Address Multiplexing Signal

In 60x-compatible mode, external address multiplexing is placed on the address lines. If the additional delay of multiplexing is endangers the device setup time, P/LSDMR[EAMUX]

Part III. The Hardware Interface

should be set. Setting this bit causes the memory controller to add another cycle for each address phase.

Note that EAMUX can also be set in any case of delays on the address lines, such as address buffers.

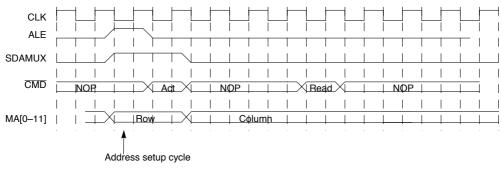
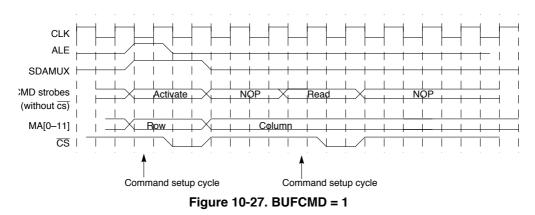
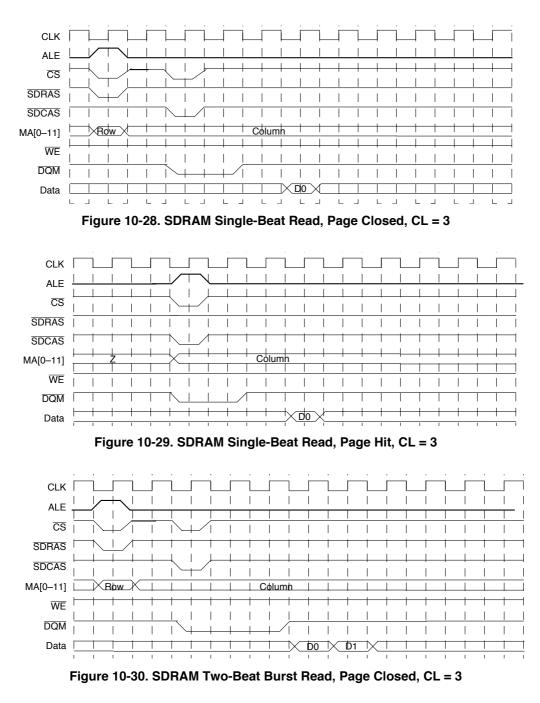
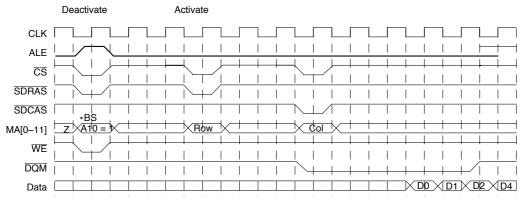



Figure 10-26. EAMUX = 1


10.4.6.8 External Address and Command Buffers (BUFCMD)

In 60x-compatible mode, external buffers may be placed on the command strobes, except \overline{CS} , as well as the address lines. If the additional delay of the buffers is endangering the device setup time, P/LSDMR[BUFCMD] should be set. Setting this bit causes the memory controller to add one cycle for each SDRAM command.

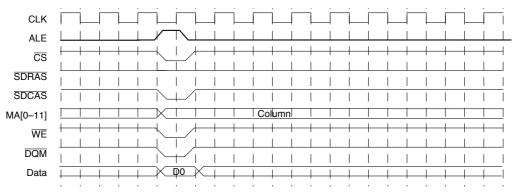
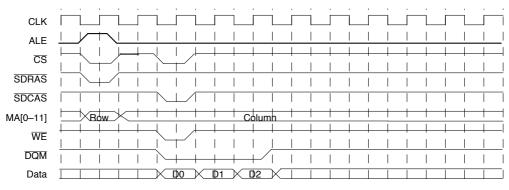
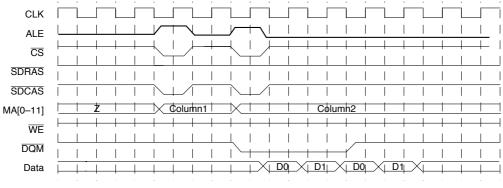


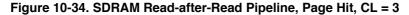
10.4.7 SDRAM Interface Timing

The following figures show SDRAM timing for various types of accesses.

Part III. The Hardware Interface

* BS—Bank select according to SDRAM organization. A10 = 1 means not all banks will be precharged. CAS Latency = 3


Figure 10-32. SDRAM Single-Beat Write, Page Hit

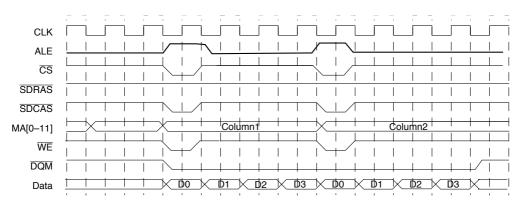


Figure 10-35. SDRAM Write-after-Write Pipelined, Page Hit

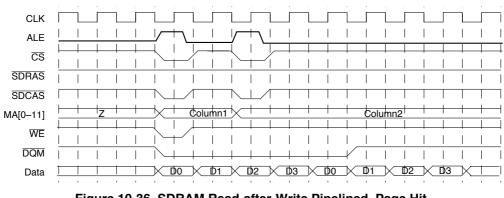
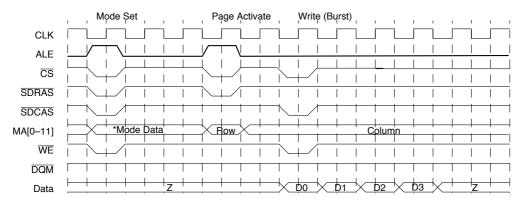


Figure 10-36. SDRAM Read-after-Write Pipelined, Page Hit

10.4.8 SDRAM Read/Write Transactions


The SDRAM interface supports the following read/write transactions:

- Single-beat reads/writes up to double word size
- Bursts of two, three, or four double words

SDRAM devices perform bursts for each transaction, the burst length depends on the port size. For 64-bit port size, it is a burst of 4. For 32-bit port size, it is a burst of 8. For reads that require less than the full burst length, extraneous data in the burst is ignored. For writes that require less than the full burst length, the MPC8260 protects non-targeted addresses by driving \overline{DQMn} high on the irrelevant cycles of the burst. However, system performance is not compromised since, if a new transaction is pending, the MPC8260 begins executing it immediately, effectively terminating the burst early.

10.4.9 SDRAM MODE-SET Command Timing

The MPC8260 transfers mode register data (CAS latency, burst length, burst type) stored in P/LSDMR[SDMODE] to the SDRAM array by issuing the MODE-SET command. Figure 10-37 shows timing for the MODE-SET command.

*The mode data is the address value during a mode-set cycle. It is driven by the memory controller, in single MPC8260 mode, according to P/LSDMR[CL] register. In 60x-compatible mode, software must drive the correct value on the address lines. Figure 10-38 shows the actual value.

Figure 10-37. SDRAM MODE-SET Command Timing

Figure 10-38 shows mode data bit settings.

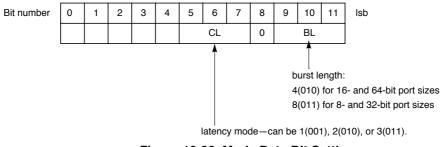


Figure 10-38. Mode Data Bit Settings

10.4.10 SDRAM Refresh

The memory controller supplies auto (CBR) refreshes to SDRAM according to the interval specified in PSRT or LSRT. This represents the time period required between refreshes. The value of P/LSRT depends on the specific SDRAM devices used and the operating frequency of the MPC8260's bus. This value should allow for a potential collision between memory accesses and refresh cycles. The period of the refresh interval must be greater than the access time to ensure that read and write operations complete successfully.

There are two levels of refresh request priority—low and high. The low priority request is generated as soon as the refresh timer expires, this request is granted only if no other requests to the memory controller are pending. If the request is not granted (memory controller is busy) and the refresh timer expires two more times, the request becomes high priority and is served when the current memory controller operation finishes.

Note that there are two SDRAM refresh timers, one for 60x SDRAM machines and one for local bus SDRAM machines.

10.4.11 SDRAM Refresh Timing

The memory controller implements bank staggering for the auto refresh function. This reduces instantaneous current consumption for memory refresh operations.

Once a refresh request is granted the memory controller begins issuing auto-refresh command to each device associated with the refresh timer, in one clock intervals. After the last REFRESH command is issued, the memory controller waits for the number of clocks written in the SDRAM machine's mode register (RFRC in P/LSDMR). The timing is shown in Figure 10-39

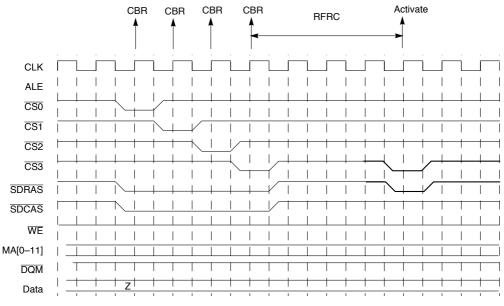


Figure 10-39. SDRAM Bank-Staggered CBR Refresh Timing

10.4.12 SDRAM Configuration Examples

The following sections provide SDRAM configuration examples for page- and bank-based interleaving.

10.4.12.1 SDRAM Configuration Example (Page-Based Interleaving)

Consider the following SDRAM organization:

- 64-bit port size organized as 8 x 8 x 64 Mbit.
- Each device has 4 internal banks, 12 rows, and 9 columns

For page-based interleaving, the address bus should be partitioned as shown in Table 10-21.

Table 10-21. 60x Address Bus Partition

A[0–5]	A[6–17]	A[18–19]	A[20–28]	A[29–31]
msb of start address	Row	Bank select	Column	lsb

The following parameters can be extracted:

- PSDMR[PBI] = 1—Page-based interleaving
- ORx[BPD] = 01—Four internal banks
- ORx[ROWST] = 0110 Row starts at A[6]
- ORx[NUMR] = 011 Twelve row lines

Now, from the SDRAM device point of view, during an ACTIVATE command, its address port should look like Table 10-22.

"A[0–14]"	A[15–16]	A[17–28]	A[29–31]
-	Internal bank select (A[18–19])	Row (A[6–17])	n.c.

Table 10-19 indicates that to multiplex A[6–17] over A[17–28], PSDMR[SDAM] must be 011 and, because the internal bank selects are multiplexed over A[15–16], PSDMR[BSMA] must be 010 (only the lower two bank select lines are used).

Note that if the device is connected to the BNKSEL pins, the value of PSDMR[BSMA] has no effect. In the above example, address lines [18–19] are output on BNKSEL1 and BNKSEL0, accordingly.

During a READ/WRITE command, the address port should look like Table 10-23.

Table 10-23. SDRAM Device Address Port during READ/WRITE Command

"A[0–14]"	A[15–16]	A[17]	A[18]	A[19]	A[20–28]	A[29–31]
_	Internal bank select	Don't care	AP	Don't care	Column	n.c.

Because AP alternates with A[7] of the row lines, set PSDMR[SDA10] = 011. This outputs A[7] on the SDA10 line during the ACTIVATE command and AP during READ/WRITE and CBR commands.

Table 10-24 shows the register configuration. Not shown are PSRT and MPTPR, which should be programmed according to the device refresh requirements:

Register		Settings				
BRx	BA PS DECC WP MS	Base address 00 = 64-bit port size 00 0 010 = SDRAM-60x bus	EMEMC ATOM DR V	0 00 0 1		
ORx	AM LSDAM BPD ROWST	1111_1100_0000 00000 01 0110	NUMR PMSEL IBID	011 0 0		
PSDMR	PBI RFEN OP SDAM BSMA SDA10 RFRC PRETOACT	1 1 000 011 010 011 from device data sheet from device data sheet	ACTTOROW BL LDOTOPRE WRC EAMUX BUFCMD CL	from device data sheet 0 from device data sheet from device data sheet 0 0 from device data sheet		

Table 10-24. Register Settings (Page-Based Interleaving

10.4.13 SDRAM Configuration Example (Bank-Based Interleaving)

Consider the following SDRAM organization:

- 64-bit port size organized as 8 x 8 x 64 Mbit.
- Each device has four internal banks, 12 rows, and 9 columns

For bank-based Interleaving, this means that the address bus should be partitioned as shown in Table 10-25.

Table 10-25. 60x Address Bus Partition

A[0-5]	A[6-7]	A[8–19]	A[20–28]	A[29–31]
msb of start address	Internal bank select	Row	Column	lsb

The following parameters can be extracted:

- PSDMR[PBI] = 0
- ORx[BPD] = 01 4 internal banks
- ORx[ROWST] = 0100 row starts at A[8]
- ORx[NUMR] = 011—there are 12 row lines

Now, from the SDRAM device point of view, during an ACTIVATE command, its address port should look like Table 10-26.

Table 10-26. SDRAM Device Address Port during ACTIVATE Command

"A[0–14]"	A[15–16]	A[17–28]	A[29–31]
_	Internal bank select (A[6–7])	Row (A[8–19])	n.c.

Table 10-19 indicates that in order to multiplex A[6-19] over A[15-28] PSDMR[SDAM] must be 001 and, because the internal bank selects are multiplexed over A[15-16] PSDMR[BSMA] must be 010 (only the lower two bank select lines are used).

During a READ/WRITE command, the address port should look like Table 10-27.

Table 10-27. SDRAM Device Address Port during READ/WRITE Command

"A[0–14]"	A[15–16]	A[17]	A[18]	A[19]	A[20–28]	A[29–31]
_	Internal bank select	Don't care	AP	Don't care	Column	n.c.

Because AP alternates with A[9] of the row lines, set PSDMR[SDA10] = 011. This outputs A[9] on the SDA10 line during the ACTIVATE command and AP during READ/WRITE and CBR commands.

Table 10-28 shows the register configuration. Not shown are PSRT and MPTPR, which should be programmed according to the device refresh requirements.

Register		Se	ttings	
BRx	BA PS DECC WP MS	Base address 00 = 64-bit port size 00 0 010 = SDRAM-60x bus	EMEMC ATOM DR V	0 00 0 1
ORx	SDAM LSDAM BPD ROWST	1111_1100_0000 00000 01 010	NUMR PMSEL IBID	011 0 0
PSDMR	PBI RFEN OP SDAM BSMA SDA10 RFRC PRETOACT	0 1 000 001 010 011 from device data sheet from device data sheet	ACTTOROW BL LDOTOPRE WRC EAMUX BUFCMD CL	from device data sheet 0 from device data sheet from device data sheet 0 0 from device data sheet

Table 10-28. Register Settings (Bank-Based Interleaving)

10.5 General-Purpose Chip-Select Machine (GPCM)

Users familiar with the MPC8xx memory controller should read Section 10.5.4, "Differences between MPC8xx's GPCM and MPC8260's GPCM," first.

The GPCM allows a glueless and flexible interface between the MPC8260, SRAM, EPROM, FEPROM, ROM devices, and external peripherals. The GPCM contains two basic configuration register groups—BRx and ORx.

Table 10-29 lists the GPCM interface signals on the 60x and local bus.

Table 10-29. GPCM Interfaces Signals

60x Bus	Local Bus	Comments
CS[0–11]		Device select
WE[0-7]	LWE[0-3]	Write enables for write cycles
ŌĒ	LOE	Output enable for read cycles

GPCM-controlled devices can use $\overline{\text{BCTLx}}$ as read/write indicators. The $\overline{\text{BCTLx}}$ signals appears as R/\overline{W} in the timing diagrams. See Section 10.2.7, "Data Buffer Controls (BCTLx)."

Additional control is available in 60x-compatible mode (60x bus only)—ALE–external address latch enable

In this section, when a signal is named, the reference is to the 60x or local bus signal, according to the bank being accessed. Figure 10-40 shows a simple connection between a 32-bit port size SRAM device and the MPC8260.

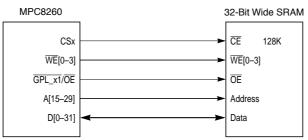


Figure 10-40. GPCM-to-SRAM Configuration

10.5.1 Timing Configuration

If BRx[MS] selects the GPCM, the attributes for the memory cycle are taken from OR*x*. These attributes include the CSNT, ACS[0–1], SCY[0–3], TRLX, EHTR, and SETA fields. Table 10-30 shows signal behavior and system response.

Option Register Attributes			ibutes		Signal Behavior				
TRLX	Access	ACS	CSNT	Address to CS Asserted	CS Negated to Address Change	WE Negated to Address/Data Invalid	Total Cycles		
0	Read	00	x	0	0	x	2+SCY1		
0	Read	10	x	1/4*Clock	0	x	2+SCY		
0	Read	11	x	1/2*Clock	0	x	2+SCY		
0	Write	00	0	0	0	0	2+SCY		
0	Write	10	0	1/4*Clock	0	0	2+SCY		
0	Write	11	0	1/2*Clock	0	0	2+SCY		
0	Write	00	1	0	0	-1/4*Clock	2+SCY		
0	Write	10	1	1/4*Clock	-1/4*Clock	-1/4*Clock	2+SCY		
0	Write	11	1	1/2*Clock	-1/4*Clock	-1/4*Clock	2+SCY		
1	Read	00	х	0	0	x	2+2*SCY		
1	Read	10	x	(1+1/4)*Clock	0	x	3+2*SCY		
1	Read	11	x	(1+1/2)*Clock	0	x	3+2*SCY		
1	Write	00	0	0	0	0	2+2*SCY		
1	Write	10	0	(1+1/4)*Clock	0	0	3+2*SCY		
1	Write	11	0	(1+1/2)*Clock	0	0	3+2*SCY		
1	Write	00	1	0	0	-1-1/4*Clock	3+2*SCY		
1	Write	10	1	(1+1/4)*Clock	-1-1/4*Clock	-1-1/4*Clock	4+2*SCY		
1	Write	11	1	(1+1/2)*Clock	-1-1/4*Clock	-1-1/4*Clock	4+2*SCY		

Table 10-30. GPCM Strobe Signal Behavior

¹ SCY is the number of wait cycles from the option register.

10.5.1.1 Chip-Select Assertion Timing

From 0 to 30 wait states can be programmed for \overrightarrow{PSDVAL} generation. Byte-write enable signals (\overrightarrow{WE}) are available for each byte written to memory. Also, the output enable signal (\overrightarrow{OE}) is provided to eliminate external glue logic. The memory banks selected to work with the GPCM have unique features. On system reset, a global (boot) chip-select is available that provides a boot ROM chip-select prior to the system being fully configured. The banks selected to work with the GPCM support an option to output the \overrightarrow{CS} line at different timings with respect to the external address bus. \overrightarrow{CS} can be output in any of three configurations:

- Simultaneous with the external address
- One quarter of a clock cycle later
- One half of a clock cycle later

Figure 10-41 shows a basic connection between the MPC8260 and an external peripheral device. Here, \overline{CS} (the strobe output for the memory access) is connected directly to \overline{CE} of the memory device and $\overline{BCTL0}$ is connected to the respective R/W in the peripheral device.

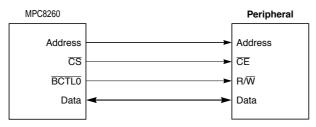


Figure 10-41. GPCM Peripheral Device Interface

Figure 10-42 shows \overline{CS} as defined by the setup time required between the address lines and \overline{CE} . The user can configure OR*x*[ACS] to specify \overline{CS} to meet this requirement.

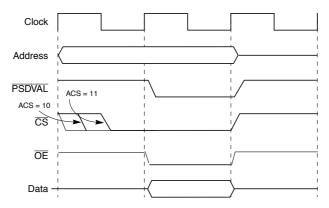


Figure 10-42. GPCM Peripheral Device Basic Timing (ACS = 1x and TRLX = 0)

10.5.1.2 Chip-Select and Write Enable Deassertion Timing

Figure 10-43 shows a basic connection between the MPC8260 and a static memory device. Here, \overline{CS} is connected directly to \overline{CE} of the memory device. The \overline{WE} signals are connected to the respective \overline{W} signal in the memory device where each \overline{WE} corresponds to a different data byte.

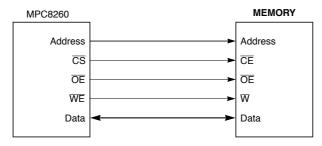


Figure 10-43. GPCM Memory Device Interface

As Figure 10-45 shows, the timing for \overline{CS} is the same as for the address lines. The strobes for the transaction are supplied by \overline{OE} or \overline{WE} , depending on the transaction direction (read or write). ORx[CSNT] controls the timing for the appropriate strobe negation in write cycles. When this attribute is asserted, the strobe is negated one quarter of a clock before the normal case. For example, when ACS = 00 and CSNT = 1, \overline{WE} is negated one quarter of a clock earlier, as shown in Figure 10-44.

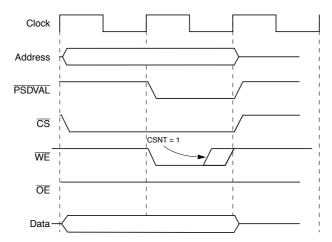
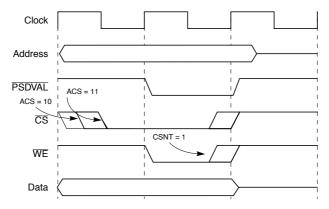



Figure 10-44. GPCM Memory Device Basic Timing (ACS = 00, CSNT = 1, TRLX = 0)

When ACS \neq 00 and CSNT = 1, WE and \overline{CS} are negated one quarter of a clock earlier, as shown in Figure 10-45.

10.5.1.3 Relaxed Timing

ORx[TRLX] is provided for memory systems that require more relaxed timing between signals. When TRLX = 1 and ACS \neq 00, an additional cycle between the address and strobes is inserted by the MPC8260 memory controller. See Figure 10-46 and Figure 10-47.

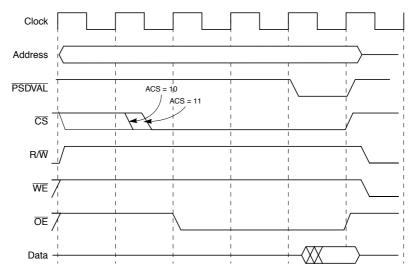


Figure 10-46. GPCM Relaxed Timing Read (ACS = 1x, SCY = 1, CSNT = 0, TRLX = 1)

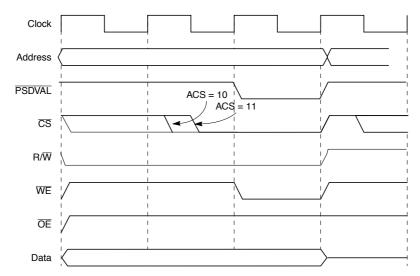
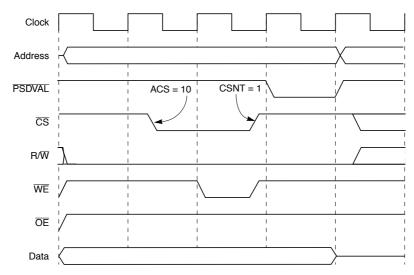



Figure 10-47. GPCM Relaxed-Timing Write (ACS = 1x, SCY = 0, CSNT = 0,TRLX = 1)

When TRLX and CSNT are set in a write-memory access, the strobe lines, $\overline{WE}[0-7]$ are negated one clock earlier than in the normal case. If ACS $\neq 0$, \overline{CS} is also negated one clock earlier, as shown in Figure 10-48 and Figure 10-49. When a bank is selected to operate with external transfer acknowledge (SETA and TRLX = 1), the memory controller does not support external devices that provide \overline{PSDVAL} to complete the transfer with zero wait states. The minimum access duration in this case is three clock cycles.

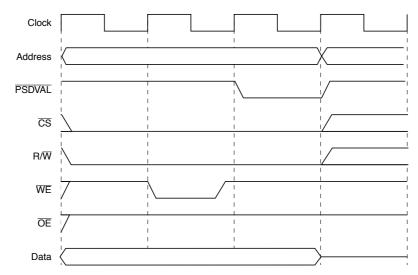


Figure 10-49. GPCM Relaxed-Timing Write (ACS = 00, SCY = 0, CSNT = 1, TRLX = 1)

10.5.1.4 Output Enable (OE) Timing

The timing of the \overline{OE} is affected only by TRLX. It always asserts and negates on the rising edge of the external bus clock. \overline{OE} always asserts on the rising clock edge after \overline{CS} is asserted, and therefore its assertion can be delayed (along with the assertion of \overline{CS}) by programming TRLX = 1. \overline{OE} deasserts on the rising clock edge coinciding with or immediately after \overline{CS} deassertion.

10.5.1.5 Programmable Wait State Configuration

The GPCM supports internal \overrightarrow{PSDVAL} generation. It allows fast accesses to external memory through an internal bus master or a maximum 17-clock access by programming OR*x*[SCY]. The internal \overrightarrow{PSDVAL} generation mode is enabled if OR*x*[SETA] = 0. If \overrightarrow{GTA} is asserted externally at least two clock cycles before the wait state counter has expired, the current memory cycle is terminated. When TRLX = 1, the number of wait states inserted by the memory controller is defined by 2 x SCY or a maximum of 30 wait states.

10.5.1.6 Extended Hold Time on Read Accesses

Slow memory devices that take a long time to turn off their data bus drivers on read accesses should chose some combination of ORx[29-30] (TRLX and EHTR). Any access following a read access to the slower memory bank is delayed by the number of clock cycles specified by Table 10-31. See Figure 10-50 through Figure 10-53 for timing examples.

ORx[TRLX]	ORx[EHTR]	Number of Hold Time Clock Cycles
0	0	0
0	1	1
1	0	4
1	1	8

Table 10-31. TRLX and EHTR Combinations

Figure 10-50 through Figure 10-53 show timing examples.

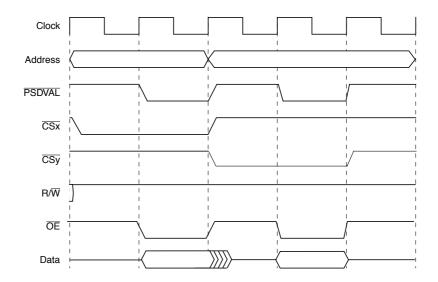


Figure 10-50. GPCM Read Followed by Read (ORx[29–30] = 0x, Fastest Timing)

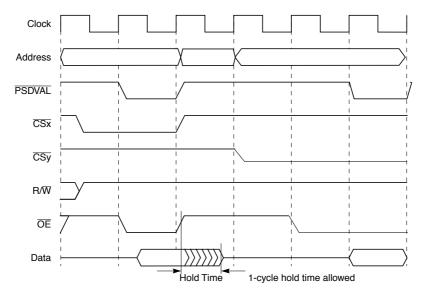


Figure 10-51. GPCM Read Followed by Read (ORx[29–30] = 01)

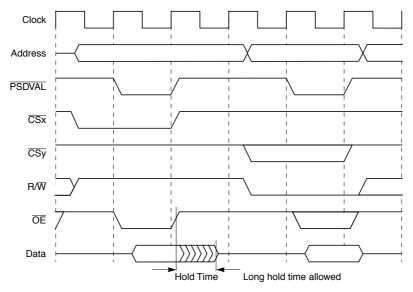


Figure 10-52. GPCM Read Followed by Write (ORx[29–30] = 01)

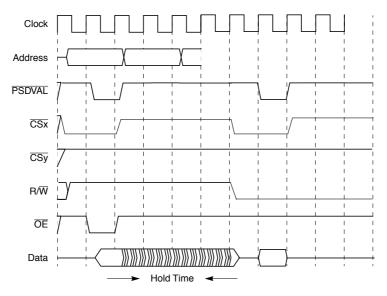
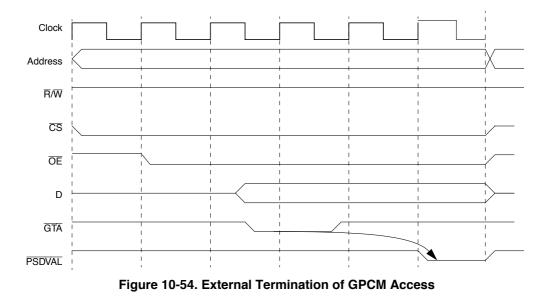



Figure 10-53. GPCM Read Followed by Read (ORx[29–30] = 10)

10.5.2 External Access Termination

External access termination is supported by the GPCM using $\overline{\text{GTA}}$, which is synchronized and sampled internally by the MPC8260. If, during a GPCM data phase (second cycle or later), the sampled signal is asserted, it is converted to $\overline{\text{PSDVAL}}$, which terminates the current GPCM access. $\overline{\text{GTA}}$ should be asserted for one cycle. Note that because $\overline{\text{GTA}}$ is synchronized, bus termination may occur up to two cycles after $\overline{\text{GTA}}$ assertion, so in case of read cycle, the device still must output data as long is $\overline{\text{OE}}$ is asserted. The user selects whether $\overline{\text{PSDVAL}}$ is generated internally or externally (by means of $\overline{\text{GTA}}$ assertion) by resetting/setting BRx[SETA].

Figure 10-54 shows how a GPCM access is terminated by $\overline{\text{GTA}}$ assertion. Asserting $\overline{\text{GTA}}$ terminates an access even if BRx[SETA] = 0 (internal $\overline{\text{PSDVAL}}$ generation).

10.5.3 Boot Chip-Select Operation

Boot chip-select operation allows address decoding for a boot ROM before system initialization. The $\overline{CS0}$ signal is the boot chip-select output; its operation differs from the other external chip-select outputs on system reset. When the MPC8260 internal core begins accessing memory at system reset, $\overline{CS0}$ is asserted for every address in the boot address range, unless an internal register is accessed. The address range is configured during reset.

The boot chip-select also provides a programmable port size during system reset by using the configuration mechanism described in Section 5.4, "Reset Configuration." The boot chip-select does not provide write protection. $\overline{CS0}$ operates this way until the first write to OR0 and it can be used as any other chip-select register once the preferred address range is loaded into BR0. After the first write to OR0, the boot chip-select can be restarted only on hardware reset. Table 10-32 describes the initial values of the boot bank in the memory controller.

Register		Setting
BRO	BA PS DECC WP MS[0–12] EMEMC V	From hard reset configuration word. See Section 5.4.1, "Hard Reset Configuration Word." From hard reset configuration word. See Section 5.4.1, "Hard Reset Configuration Word" 0 000 From hard reset configuration word. See Section 5.4.1, "Hard Reset Configuration Word" 1
OR0	AM[0–16] BCTLD CSNT ACS[0–1] SCY[0–3] SETA TRLX EHTR	1111_1110_0000_0000_0 (32 MByte) 0 1 11 111 0 1 0 1 0

Table 10-32. Boot Bank Field Values after Reset

10.5.4 Differences between MPC8xx's GPCM and MPC8260's GPCM

Users familiar with the MPC8xx GPCM should read this section first:

- External termination—In the MPC8xx the external termination connects to the external bus TA and so must be asserted in sync with the system clock. In the MPC8260, this signal is separated from the bus and named GTA. The signal is synchronized internally and sampled. The sampled signal is used to generate TA, which terminates the bus transaction.
- Extended hold time for reads can be up to 8 clock cycles (instead of 1 in the MPC8xx).

10.6 User-Programmable Machines (UPMs)

Users familiar with MPC8xx memory controller should first read Section 10.6.6, "Differences between MPC8xx UPM and MPC8260 UPM." Table 10-33 lists the UPM interface signals on the 60x and local bus.

60x Bus	Local Bus	Comments
CS[C)11]	Device select
PBS[0-7]	LBS[0-3]	Byte Select
PGPL_0	LGPL_0	General-purpose line 0
PGPL_1	LGPL_1	General-purpose line 1
PGPL_2	LGPL_2	General-purpose line 2
PGPL_3	LGPL_3	General-purpose line 3
PGPL_4/UPWAIT	LGPL_4/UPWAIT	General-purpose line 4/UPM WAIT
PGPL_5	LGPL_5	General-purpose line 5

Table 10-33. UPM Interfaces Signals

Additional control is available in 60x-compatible mode (60x bus only)—ALE—External address latch enable (not a UPM-controlled signal).

Note that in this section, when a signal is named, the reference is to the 60x or local bus signal, according to the bank being accessed.

The three user-programmable machines (UPMs) are flexible interfaces that connect to a wide range of memory devices. At the heart of each UPM is an internal-memory RAM array that specifies the logical value driven on the external memory controller pins for a given clock cycle. Each word in the RAM array provides bits that allow a memory access to be controlled with a resolution of up to one quarter of the external bus clock period on the byte-select and chip-select lines. Figure 10-55 shows the basic operation of each UPM. The following events initiate a UPM cycle:

- Any internal or external device requests an external memory access to an address space mapped to a chip-select serviced by the UPM
- A UPM refresh timer expires and requests a transaction, such as a DRAM refresh
- A transfer error or reset generates an exception request

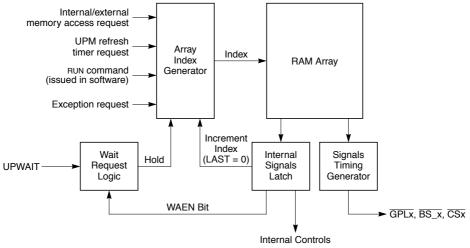


Figure 10-55. User-Programmable Machine Block Diagram

The RAM array contains 64 32-bit RAM words. The signal timing generator loads the RAM word from the RAM array to drive the general-purpose lines, byte-selects, and chip-selects. If the UPM reads a RAM word with WAEN set, the external UPWAIT signal is sampled and synchronized by the memory controller and the current request is frozen.

When a new access to external memory is requested by any device on the 60x or local bus, the addresses of the transfer are compared to each one of the valid banks defined in the memory controller. When an address match is found in one of the memory banks, BRx[MS] selects the UPM to handle this memory access. MxMR[BS] assigns the UPM to the 60x or the local bus.

Part III. The Hardware Interface

Note that 60x bus accesses that hit a bank allocated to the local bus are transferred to the local bus. However, local bus accesses that hit a bank allocated to the 60x bus are ignored.

10.6.1 Requests

An internal or external device's request for a memory access initiates one of the following patterns (MxMR[OP] = 00):

- Read single-beat pattern (RSS)
- Read burst cycle pattern (RBS)
- Write single-beat pattern (WSS)
- Write burst cycle pattern (WBS)

These patterns are described in Section 10.6.1.1, "Memory Access Requests."

A UPM refresh timer request pattern initiates a refresh timer pattern (PTS), as described in Section 10.6.1.2, "UPM Refresh Timer Requests."

An exception (caused by a soft reset or the assertion of $\overline{\text{TEA}}$) occurring while another UPM pattern is running initiates an exception condition pattern (EXS).

A special pattern in the RAM array is associated with each of these cycle type. Figure 10-56 shows the start addresses of these patterns in the UPM RAM, according to cycle type. RUN commands (MxMR[OP] = 11), however, can initiate patterns starting at any of the 64 UPM RAM words.

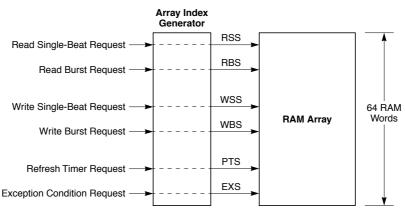


Figure 10-56. RAM Array Indexing

Table 10-34 show the start address of each pattern.

UPM Routine	Routine Start Address
Read single-beat (RSS)	0x00
Read burst (RBS)	0x08
Write single-beat (WSS)	0x18
Write burst (WBS)	0x20
Refresh timer (PTS)	0x30
Exception condition (EXS)	0x3C

 Table 10-34. UPM Routines Start Addresses

10.6.1.1 Memory Access Requests

When an internal device requests a new access to external memory, the address of transfer are compared to each valid bank defined in BRx. The value in BRx[MS] selects the UPM to handle the memory access. The user must ensure that the UPM is appropriately initialized before a request.

The UPM supports two types of memory reads and writes:

- A single-beat transfer transfers one operand consisting of up to double word. A single-beat cycle starts with one transfer start and ends with one transfer acknowledge.
- A burst transfer transfers four double words. For 64-bit accesses, the burst cycle starts with one transfer start but ends after four transfer acknowledges. A 32-bit device requires 8 data acknowledges; an 8-bit device requires 32. See Section 10.2.13, "Partial Data Valid Indication (PSDVAL)."

The MPC8260 defines two additional transfer sizes: bursts of two and three doublewords. These access are treated by the UPM as back-to-back, single-beat transfers.

10.6.1.2 UPM Refresh Timer Requests

Each UPM contains a refresh timer that can be programmed to generate refresh service requests of a particular pattern in the RAM array. Figure 10-57 shows the hardware associated with memory refresh timer request generation. PURT defines the period for the timers associated with UPM*x* on the 60x bus and LURT defines it on the local bus. See Section 10.3.8, "60x Bus-Assigned UPM Refresh Timer (PURT)," and Section 10.3.9, "Local Bus-Assigned UPM Refresh Timer (LURT)."

All 60x bus refreshes are done using the refresh pattern of UPMA. This means that if refresh is required on the 60x bus, UPMA must be assigned to the 60x bus and MxMR[RFEN] must be set. It also means that only one refresh routine should be programmed for the 60x bus and be placed in UPMA, which serves as the 60x bus refresh executor. If refresh is not required on the 60x bus, UPMA can be assigned to any bus.

All local bus refreshes are done using the refresh pattern of UPMB. This means that if refresh is required on the local bus, UPMB must be assigned to the local bus and MBMR[RFEN] must be set. It also means that only one refresh routine should be programmed for the local bus, and be placed in UPMB, which serves as the local bus refresh executor. If refresh is not required on the local bus, UPMB can be assigned to any bus.

UPMC can be assigned to any bus; there is no need to program its refresh routine because it will use the one in UPMA or UPMB, according to the bus to which it is assigned.

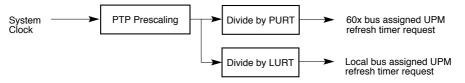


Figure 10-57. Memory Refresh Timer Request Block Diagram

10.6.1.3 Software Requests - RUN Command

Software can start a request to the UPM by issuing a RUN command to the UPM. Some memory devices have their own signal handshaking protocol to put them into special modes, such as self-refresh mode. Other memory devices require special commands to be issued on their control signals, such as for SDRAM initialization.

For these special cycles, the user creates a special RAM pattern that can be stored in any unused areas in the UPM RAM. Then the RUN command is used to run the cycle. The UPM runs the pattern beginning at the specified RAM location until it encounters a RAM word with its LAST bit set. The RUN command is issued by setting MxMR[OP] = 11 and accessing the UPMx memory region with a single-byte transaction.

Note that the pattern must contain exactly one assertion of \overrightarrow{PSDVAL} (UTA bit in the RAM word, described in Table 10-35), otherwise bus timeout may occur.

10.6.1.4 Exception Requests

When the MPC8260 under UPM control initiates an access to a memory device, the external device may assert $\overline{\text{TEA}}$ or $\overline{\text{SRESET}}$. The UPM provides a mechanism by which memory control signals can meet the timing requirements of the device without losing data. The mechanism is the exception pattern that defines how the UPM deasserts its signals in a controlled manner.

10.6.2 Programming the UPMs

The UPM is a microsequencer that requires microinstructions or RAM words to generate signal timings for different memory cycles. Follow these steps to program the UPMs:

- 1. Set up BRx and ORx.
- 2. Write patterns into the RAM array.

- 3. Program MPTPR and L/PSRT if refresh is required.
- 4. Program the machine mode register (MxMR).

Patterns are written to the RAM array by setting MxMR[OP] = 01 and accessing the UPM with a single byte transaction. See Figure 10-11.

10.6.3 Clock Timing

Fields in the RAM word specify the value of the various external signals at each clock edge. The signal timing generator causes external signals to behave according to the timing specified in the current RAM word. Figure 10-58 and Figure 10-59 show the clock schemes of the UPMs in the memory controller for integer and non-integer clock ratios. The clock phases shown reflect timing windows during which generated signals can change state. If specified in the RAM, the value of the external signals can be changed after any of the positive edges of T[1–4], plus a circuit delay time as specified in the *MPC8260 Hardware Specifications*.

Note that for integer clock ratios, the widths of T1/2/3/4 are equal, for a 1:2.5 clock ratio, T1 = 4/3*T2 and T3 = 4/3*T4, and for a 1:3.5 clock ratio, the ticks widths are T1 = 3/2*T2 and T3 = 3/2*T4.

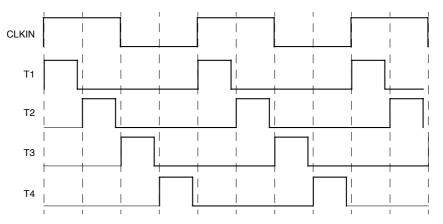


Figure 10-58. Memory Controller UPM Clock Scheme for Integer Clock Ratios

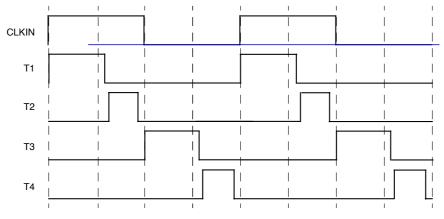


Figure 10-59. Memory Controller UPM Clock Scheme for Non-Integer (2.5:1/3.5:1) Clock Ratios

The state of the external signals may change (if specified in the RAM array) at any positive edge of T1, T2, T3, or T4 (there is a propagation delay specified in the MPC8260 *Hardware Specifications*). Note however that only the \overline{CS} signal corresponding to the currently accessed bank is manipulated by the UPM pattern when it runs. The \overline{BS} signal assertion and negation timing is also specified for each cycle in the RAM word; which of the four \overline{BS} signals are manipulated depends on the port size of the specified bank, the external address accessed, and the value of TSIZ*n*. The \overline{GPL} lines toggle as programmed for any access that initiates a particular pattern, but resolution of control is limited to T1 and T3.

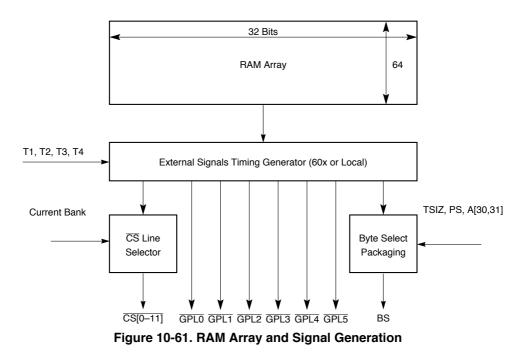

Figure 10-60 shows how \overline{CSx} , $\overline{GPL1}$, and $\overline{GPL2}$ can be controlled. A word is read from the RAM that specifies on every clock cycle the logical bits CST1, CST2, CST3, CST4, G1T1, G1T3, G2T1, and G2T3. These bits indicate the electrical value for the corresponding output pins at the appropriate timing.

Figure 10-60. UPM Signals Timing Example

10.6.4 The RAM Array

The RAM array for each UPM is 64 locations deep and 32 bits wide, as shown in Figure 10-61. The signals at the bottom of Figure 10-61 are UPM outputs. The selected \overline{CS} is for the bank that matches the current address. The selected \overline{BS} is for the byte lanes read or written by the access.

10.6.4.1 RAM Words

The RAM word, shown in Figure 10-62, is a 32-bit microinstruction stored in one of 64 locations in the RAM array. It specifies timing for external signals controlled by the UPM.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	CST1	CST2	CST3	CST4	BST1	BST2	BST3	BST4	4 GOL GOH G1T1 G1T3 G2T1 (G2T3			
Reset		_														
R/W	R/W															
Addr	(MCR[MAD] indirect addressing of 1 of 64 entries															
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	I G3T1 G3T3 G4T1/ G4T3/ G5T1 G5T3 REDO LOOP EXEN				AN	ЛХ	NA	UTA	TODT	LAST						
Reset	set															
R/W	R/W															
Addr			(All 32 bi	ts of the	RAM w	vord are	addres	ssed as	shown i	n the ac	dre	ss ro	w abov	/e.)		

Figure 10-62. The RAM Word

Table 10-35 describes RAM word fields.

Bit	Name	Description
0	CST1	Chip-select timing 1. Defines the state of \overline{CS} during clock phase 1. 0 The value of the \overline{CS} line at the rising edge of T1 will be 0 1 The value of the \overline{CS} line at the rising edge of T1 will be 1 See Section 10.6.4.1.1, "Chip-Select Signals (CxTx)."
1	CST2	Chip-select timing 2. Defines the state of \overline{CS} during clock phase 2. 0 The value of the \overline{CS} line at the rising edge of T2 will be 0 1 The value of the \overline{CS} line at the rising edge of T2 will be 1
2	CST3	Chip-select timing 3. Defines the state of \overline{CS} during clock phase 3. 0 The value of the \overline{CS} line at the rising edge of T3 will be 0 1 The value of the \overline{CS} line at the rising edge of T3 will be 1
3	CST4	Chip-select timing4. Defines the state of \overline{CS} during clock phase 4. 0 The value of the \overline{CS} line at the rising edge of T4 will be 0 1 The value of the \overline{CS} line at the rising edge of T4 will be 1
4	BST1	Byte-select timing 1. Defines the state of \overline{BS} during clock phase 1. 0 The value of the \overline{BS} lines at the rising edge of T2 will be 0 1 The value of the \overline{BS} lines at the rising edge of T2 will be 1 The final value of the \overline{BS} lines depends on the values of BRx[PS], the TSIZ lines, and A[30–31] for the access. See Section 10.6.4.1.2, "Byte-Select Signals (BxTx)."
5	BST2	Byte-select timing 2. Defines the state of BS during clock phase 2. 0 The value of the BS lines at the rising edge of T2 will be 0 1 The value of the BS lines at the rising edge of T2 will be 1 The final value of the BS lines depends on the values of BRx[PS], TSIZx, and A[30–31] for the access.
6	BST3	Byte-select timing 3. Defines the state of BS during clock phase 3. 0 The value of the BS lines at the rising edge of T3 will be 0 1 The value of the BS lines at the rising edge of T3 will be 1 The final value of the BS lines depends on the values of BRx[PS], TSIZx, and A[30–31] for the access.
7	BST4	Byte-select timing 4. Defines the state of BS during clock phase 4. 0 The value of the BS lines at the rising edge of T4 will be 0 1 The value of the BS lines at the rising edge of T4 will be 1 The final value of the BS lines depends on the values of BRx[PS], TSIZx, and A[30–31] for the access.
8–9	G0L	General-purpose line 0 lower. Defines the state of GPL0 during phases 1–2. 00 The value of GPL0 at the rising edge of T1 is as defined in MxMR[G0CL] 10 The value of the GPL0 line at the rising edge of T1 will be 0 11 The value of the GPL0 line at the rising edge of T1 will be 1 See Section 10.6.4.1.3, "General-Purpose Signals (GxTx, GOx)."
10–11	G0H	General-purpose line 0 higher. Defines the state of GPL0 during phase 3–4. 00 The value of GPL0 at the rising edge of T3 is as defined in MxMR[GOCL] 10 The value of the GPL0 line at the rising edge of T3 will be 0 11 The value of the GPL0 line at the rising edge of T3 will be 1 See Section 10.6.4.1.3, "General-Purpose Signals (GxTx, GOx)."

Table 10-35. RAM Word Bit Settings

Bit	Name	Description
12	G1T1	General-purpose line 1 timing 1. Defines the state of GPL1 during phase 1–2. 0 The value of the GPL0 line at the rising edge of T1 will be 0 1 The value of the GPL0 line at the rising edge of T1 will be 1 See Section 10.6.4.1.3, "General-Purpose Signals (GxTx, GOx)."
13	G1T3	General-purpose line 1 timing 3. Defines the state of <u>GPL1</u> during phase 3–4. 0 The value of the <u>GPL1</u> line at the rising edge of T3 will be 0 1 The value of the <u>GPL1</u> line at the rising edge of T3 will be 1 See Section 10.6.4.1.3, "General-Purpose Signals (GxTx, GOx)."
14	G2T1	General-purpose line 2 timing 1. Defines the state of GPL2 during phase 1–2. 0 The value of the GPL2 line at the rising edge of T1 will be 0 1 The value of the GPL2 line at the rising edge of T1 will be 1 See Section 10.6.4.1.3, "General-Purpose Signals (GxTx, GOx)."
15	G2T3	General-purpose line 2 timing 3. Defines the state of GPL2 during phase 3–4. 0 The value of the GPL2 line at the rising edge of T3 will be 0 1 The value of the GPL2 line at the rising edge of T3 will be 1 See Section 10.6.4.1.3, "General-Purpose Signals (GxTx, GOx)."
16	G3T1	General-purpose line 3 timing 1. Defines the state of GPL3 during phase 1–2. 0 The value of the GPL3 line at the rising edge of T1 will be 0 1The value of the GPL3 line at the rising edge of T1 will be 1 See Section 10.6.4.1.3, "General-Purpose Signals (GxTx, GOx)."
17	G3T3	General-purpose line 3 timing 3. Defines the state of GPL3 during phase 3–4. 0 The value of the GPL3 line at the rising edge of T3 will be 0 1 The value of the GPL3 line at the rising edge of T3 will be 1 See Section 10.6.4.1.3, "General-Purpose Signals (GxTx, GOx)."
18	G4T/ DLT2	General-purpose line 4 timing 1/delay time 2. The function is determined by MxMR[GPLx4DIS].
	G4T1	If MxMR defines UPWAITx/GPL_x4 as an output (GPL_x4), this bit functions as G4T1: 0 The value of the GPL4 line at the rising edge of T1 will be 0 1 The value of the GPL4 line at the rising edge of T1 will be 1 See Section 10.6.4.1.3, "General-Purpose Signals (GxTx, GOx)."
	DLT3	 If MxMR[GPLx4DIS] = 1, UPWAITx is chosen and this bit functions as DLT3. 0 In the current word, indicates that the data bus should be sampled at the rising edge of T1 (if a read burst or a single read service is executed). 1 In the current word, indicates that the data bus should be sampled at the rising edge of T3 (if a read burst or a single read service is executed). 1 In the current word, indicates that the data bus should be sampled at the rising edge of T3 (if a read burst or a single read service is executed). For an example, see Section 10.6.4.3, "Data Valid and Data Sample Control."
19	G4T3/ WAEN	General-purpose line 4 timing 3/wait enable. Function depends on the value of MxMR[GPLx4DIS].
	G4T3	If MxMR[GPLx4DIS] = 0, G4T3 is selected. 0 The value of the GPL4 line at the rising edge of T3 will be 0 1 The value of the GPL4 line at the rising edge of T3 will be 1
	WAEN	If MxMR[GPLx4DIS] = 1, WAEN is selected. See Section 10.6.4.5, "The Wait Mechanism." 0 The UPWAITx function is disabled. 1 A freeze in the external signals logical value occurs if the external WAIT signal is detected asserted. This condition lasts until WAIT is negated.

Table 10-35. RAM Word Bit Settings (Continued)

Table 10-35. RAM Word Bit Settings (Continued)

Bit	Name	Description
20	G5T1	General-purpose line 5 timing 1. Defines the state of GPL5 during phase 1–2. 0 The value of the GPL5 line at the rising edge of T1 will be 0 1 The value of the GPL5 line at the rising edge of T1 will be 1
21	G5T3	General-purpose line 5 timing 3. Defines the state of GPL5 during phase 3–4. 0 The value of the GPL5 line at the rising edge of T3 will be 0 1 The value of the GPL5 line at the rising edge of T3 will be 1
22–23	_	 Redo current RAM word. See "Section 10.6.4.1.5, "Repeat Execution of Current RAM Word (REDO)." 00 Normal operation 01 The current RAM word is executed twice. 10 The current RAM word is executed tree times. 11 The current RAM word is executed four times.
24	LOOP	Loop. The first RAM word in the RAM array where LOOP is 1 is recognized as the loop start word. The next RAM word where LOOP is 1 is the loop end word. RAM words between the start and end are defined as the loop. The number of times the UPM executes this loop is defined in the corresponding loop field of the MxMR. 0 The current RAM word is not the loop start word or loop end word. 1 The current RAM word is the start or end of a loop. See Section 10.6.4.1.4, "Loop Control."
25	EXEN	 Exception enable. If an external device asserts TEA or RESET, EXEN allows branching to an exception pattern at the exception start address (EXS) at a fixed address in the RAM array. When the MPC8260 under UPM control begins accessing a memory device, the external device may assert TEA or SRESET. An exception occurs when one of these signals is asserted by an external device and the MPC8260 begins closing the memory cycle transfer. When one of these exception start address (EXS) and begins operating as the pattern defined there specifies. See Table 10-34. The user should provide an exception pattern to deassert signals controlled by the UPM in a controlled fashion. For DRAM control, a handler should negate RAS and CAS to prevent data corruption. If EXEN = 0, exceptions are deferred and execution continues. After the UPM branches to the exception start address, it continues reading until the LAST bit is set in the RAM word. 0 The UPM continues executing the remaining RAM words. 1 The current RAM word allows a branch to the exception pattern after the current cycle if an exception condition is detected. The exception condition can be an external device asserting TEA or SRESET.
26–27	AMX	 Address multiplexing. Determines the source of A[0-31] at the rising edge of t1 (single-MPC8260 mode only). See Section 10.6.4.2, "Address Multiplexing." 00 A[0-31] is the non-multiplexed address. For example, column address. 01 Reserved. 10 A[0-31] is the address requested by the internal master multiplexed according to MxMR[AMx]. For example, row address. 11 A[0-31] is the contents of MAR. Used for example, during SDRAM mode initialization.
28	NA	Next address. Determines when the address is incremented during a burst access. 0 The address increment function is disabled 1 The address is incremented in the next cycle. In conjunction with the BRx[PS], the increment value of A[27–31] and/or BADDR[27–31] at the rising edge of T1 is as follows If the accessed bank has a 64-bit port size, the value is incremented by 8. If the accessed bank has a 32-bit port size, the value is incremented by 4. If the accessed bank has a 16-bit port size, the value is incremented by 2. If the accessed bank has a 8-bit port size, the value is incremented by 1. Note: The value of NA is relevant only when the UPM serves a burst-read or burst-write request. NA is reserved under other patterns.

Bit	Name	Description
29	UTA	UPM transfer acknowledge. Indicates assertion of PSDVAL, sampled by the bus interface in the current cycle. 0 PSDVAL is not asserted in the current cycle. 1 PSDVAL is asserted in the current cycle.
30	TODT	Turn-on disable timer. The disable timer associated with each UPM allows a minimum time to be guaranteed between two successive accesses to the same memory bank. This feature is critical when DRAM requires a RAS precharge time. TODT, turns the timer on to prevent another UPM access to the same bank until the timer expires. The disable timer period is determined in MxMR[DSx]. The disable timer does not affect memory accesses to different banks. 0 The disable timer for the current bank is activated preventing a new access to the same bank (when controlled by the UPMs) until the disable timer expires. For example, precharge time. Note: TODT must be set together with LAST. Otherwise it is ignored.
31	LAST	Last. If this bit is set, it is the last RAM word in the program. When the LAST bit is read in a RAM word, the current UPM pattern terminates and the highest priority pending UPM request (if any) is serviced immediately in the external memory transactions. If the disable timer is activated and the next access is top the same bank, the execution of the next UPM pattern is held off for the number of clock cycles specified in MxMR[DSx]. 0 The UPM continues executing RAM words. 1 The service to the UPM request is done.

Table 10-35. RAM Word Bit Settings (Continued)

Additional information about some of the RAM word fields is provided in the following sections.

10.6.4.1.1 Chip-Select Signals (CxTx)

If BR*x*[MS] of the accessed bank selects a UPM on the currently requested cycle the UPM manipulates the \overline{CS} signal for that bank with timing as specified in the UPM RAM word. The selected UPM affects only assertion and negation of the appropriate \overline{CS} signal. The state of the selected \overline{CSx} signal of the corresponding bank depends on the value of each CSTn bit.

Figure 10-63 and the timing diagrams in Figure 10-60 show how UPMs control \overline{CS} signals.

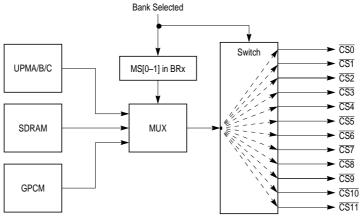


Figure 10-63. CS Signal Selection

10.6.4.1.2 Byte-Select Signals (BxTx)

BR*x*[MS] of the accessed memory bank selects a UPM on the currently requested cycle. The selected UPM affects only the assertion and negation of the appropriate \overline{BS} signal; its timing as specified in the RAM word. The \overline{BS} signals are controlled by the port size of the accessed bank, the transfer size of the transaction, and the address accessed. Figure 10-64 shows how UPMs control \overline{BS} signals.

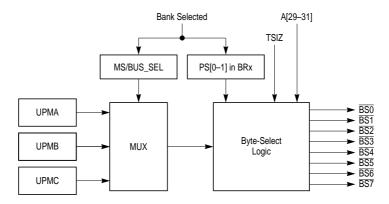


Figure 10-64. BS Signal Selection

The uppermost byte select ($\overline{BS0}$) indicates that D[0–7] contains valid data during a cycle. Likewise, $\overline{BS1}$ indicates that D[8–15] contains valid data, $\overline{BS2}$ indicates that D[16–23] contains valid data, and $\overline{BS3}$ indicates that D[24–31] contains valid data during a cycle, and so forth. Table 10-31 shows how \overline{BS} signals affect 64-, 32-, 16-, and 8-bit accesses. Note that for a refresh timer request, all the \overline{BS} signals are asserted/negated by the UPM.

10.6.4.1.3 General-Purpose Signals (GxTx, GOx)

The general-purpose signals ($\overline{\text{GPL}[1-5]}$) each have two bits in the RAM word that define the logical value of the signal to be changed at the rising edge of T1 and/or at the rising edge of T3. $\overline{\text{GPL0}}$ offer enhancements beyond the other $\overline{\text{GPLx}}$ lines.

 $\overline{\text{GPL0}}$ can be controlled by an address line specified in MxMR[G0CLx]. To use this feature, set G0H and G0L in the RAM word. For example, for a SIMM with multiple banks, this address line can be used to switch between banks.

10.6.4.1.4 Loop Control

The LOOP bit in the RAM word (bit 24) specifies the beginning and end of a set of UPM RAM words that are to be repeated. The first time LOOP = 1, the memory controller recognizes it as a loop start word and loads the memory loop counter with the corresponding contents of the loop field shown in Table 10-36. The next RAM word for which LOOP = 1 is recognized as a loop end word. When it is reached, the loop counter is decremented by one.

Continued loop execution depends on the loop counter. If the counter is not zero, the next RAM word executed is the loop start word. Otherwise, the next RAM word executed is the one after the loop end word. Loops can be executed sequentially but cannot be nested.

Request Serviced	Loop Field
Read single-beat cycle	RLFx
Read burst cycle	RLFx
Write single-beat cycle	WLFx
Write burst cycle	WLFx
Refresh timer expired	TLFx
RUN command	RLFx

Table 10-36. MxMR Loop Field Usage

10.6.4.1.5 Repeat Execution of Current RAM Word (REDO)

The REDO function is useful for wait-state insertion in a long UPM routine that would otherwise need too many RAM words. Setting the REDO bits of the RAM word to a nonzero value to cause the UPM to reexecute the current RAM word up to three times, according to Table 10-35.

Special care must be taken in the following cases:

- When UTA and REDO are set together, <u>PSDVAL</u> is asserted the number of times specified by the REDO function.
- When LOOP and REDO are set together, the loop mechanism works as usual and the line is repeated according to the REDO function.
- LAST and REDO should not be set together.
- REDO should not be used within the exception routine.

Figure 10-79 shows an example of REDO use.

10.6.4.2 Address Multiplexing

The address lines can be controlled by the pattern the user provides in the UPM. The address multiplex bits can choose between outputting an address requested by the internal master as is and outputting it according to the multiplexing specified by the MxMR[AMx]. The last option is to output the contents of the MAR on the address pins.

Note that in 60x-compatible mode, MAR cannot be output on the 60x bus external address line.

Note that on the local bus, only the lower 18 bits of the MAR are output.

Table 10-37 shows how MxMR[AMx] settings affect address multiplexing.

AMx	External Bus Address Pin	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	A30	A31
000		A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23
001	Signal Driven	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22
010	on External Pin when	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21
011	Address Multiplexing	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20
100	is Enabled	_	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19
101		-	-	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18

Table 10-37. UPM Address Multiplexing

See Section 10.6.5, "UPM DRAM Configuration Example," for more details.

10.6.4.3 Data Valid and Data Sample Control

When a read access is handled by the UPM and the UTA bit is 1, the value of the DLT3 bit in the same RAM word indicates when the data input is sampled by the internal bus master, assuming that MxMR[GPLx4DIS] = 1.

- If G4T4/DLT3 functions as DLT3 and DLT3 = 1 in the RAM word, data is latched on the falling edge of CLKIN instead of the rising edge. The data is sampled by the internal master on the next rising edge as is required by the MPC8260 bus operation spec. This feature lets the user speed up the memory interface by latching data 1/2 clock early, which can be useful during burst reads. This feature should be used only in systems without external synchronous bus devices.
- If G4T4/DLT3 functions as G4T4, data is latched on the rising edge of CLKIN, as is normal in MPC8260 bus operation.

Figure 10-65 shows data sampling that is controlled by the UPM.

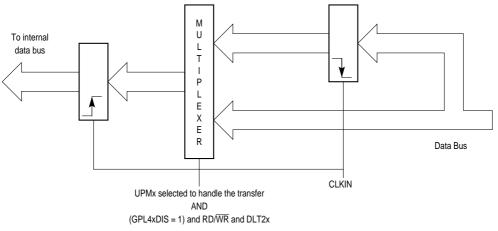


Figure 10-65. UPM Read Access Data Sampling

10.6.4.4 Signals Negation

When the LAST bit is read in a RAM word, the current UPM pattern terminates. On the next cycle all the UPM signals are negated unconditionally (driven to logic '1').

This negation will not occur only if there is a back-to-back UPM request pending. In this case the signals value on the cycle following the LAST bit, will be taken from the first line of the pending UPM routine.

10.6.4.5 The Wait Mechanism

The WAEN bit in the RAM array word, shown in Table 10-35, can be used to enable the UPM wait mechanism in selected UPM RAM words.

If the UPM reads a RAM word with the WAEN bit set, the external UPWAIT signal is sampled and synchronized by the memory controller and the current request is frozen. The UPWAIT signal is sampled at the rising edge of CLKIN. If UPWAIT is asserted and WAEN = 1 in the current UPM word, the UPM is frozen until UPWAIT is negated. The value of the external pins driven by the UPM remains as indicated in the previous word read by the UPM. When UPWAIT is negated, the UPM continues its normal functions. Note that during the WAIT cycles, the UPM negates \overrightarrow{PSDVAL} .

Figure 10-66 shows how the WAEN bit in the word read by the UPM and the UPWAIT signal are used to hold the UPM in a particular state until UPWAIT is negated. As the example in Figure 10-66 shows, the \overline{CSx} and $\overline{GPL1}$ states (C12 and F) and the WAEN value (C) are frozen until UPWAIT is recognized as deasserted. WAEN is typically set before the line that contain UTA = 1.

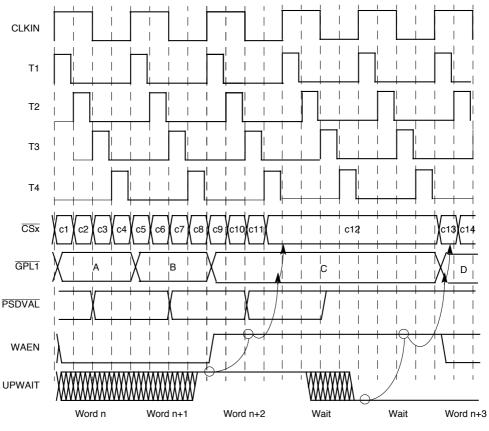


Figure 10-66. Wait Mechanism Timing for Internal and External Synchronous Masters

10.6.4.6 Extended Hold Time on Read Accesses

Slow memory devices that take a long time to turn off their data bus drivers on read accesses should chose some combination of ORx[EHTR]. Accesses after a read access to the slower memory bank is delayed by the number of clock cycles specified by Table 10-31. The information in Section 10.5.1.6, "Extended Hold Time on Read Accesses," provides additional information.

10.6.5 UPM DRAM Configuration Example

Consider the following DRAM organization:

- 64-bit port size organized as 8 x 8 x 16 Mbits
- Each device has 12 row lines and 9 column lines.

This means that the address bus should be partitioned as shown in Table 10-38.

Table 10-38. 60x Address Bus Partition
--

A[0-7]	A[8–19]	A[20–28]	A[29–31]
msb of start address	Row	Column	lsb

From the device perspective, during \overline{RAS} assertion, its address port should look like Table 10-39:

Table 10-39. DRAM Device Address Port during an ACTIVATE command

"A[0–16]"	A[17–28]	A[29–31]
_	Row (A[8–19])	n.c.

Table 10-37 indicates that to multiplex A[8–19] over A[17–28], choose AMx = 001.

Table 10-40 shows the register configuration. Not shown are PURT and MPTPR, which should be programmed according to the device refresh requirements.

Register	Settings								
BRx	BA PS DECC WP MS	msb of base address 00 = 64-bit port size 00 0 100 = UPMA	ememc Atom Dr V	0 00 0 1					
ORx	AM BI	1111_111_0000_0000_0 = 16 Mbyte 0	EHTR	0					
MxMR	BSEL RFEN OP AM DSA G0CLA	0 = 60x bus 1 00 001 As needed N/A	GPL_A4DIS RLFA WLFA TLFA MAD	0 As needed As needed As needed N/A					

Table 10-40. Register Settings

10.6.6 Differences between MPC8xx UPM and MPC8260 UPM

Users familiar with the MPC8xx UPM should read this section first.

Below is a list of the major differences between the MPC8xx devices and the MPC8260:

• First cycle timing transferred to the UPM array—In the MPC8xx's UPM, the first cycle value of some of the signals is determined from ORx[SAM,G5LA,G5LS]. This is eliminated in the MPC8260. All signals are controlled only by the pattern written to the array.

- Timing of GPL[0–5]—In the MPC8xx's UPM, the GPL lines could change on the positive edge of T2 or T3. In the MPC8260 these signals can change in the positive edge of T1 or T3 to allow connection to high-speed synchronous devices such as burst SRAM.
- UPM controlled signals negated at end of an access—In the MPC8xx's UPM, if the user did not negate the UPM signals at end of an access, those signals kept their previous value. In the PowerQUICC II, all UPM signals are negated ($\overline{CS},\overline{BS},GPL[0:4]$ driven to logic 1 and GPL5 driven to logic 0) at the end of that cycle, unless there is a back-to-back UPM cycle pending. In many cases this allows the UPM routine to finish one cycle earlier because it is now possible and desired to assert both UTA and LAST.
- MCR is eliminated—In the MPC8260, MCR is eliminated. The function of RAM read/write and RUN is done via the MxMR.
- UTA polarity is reversed—In the MPC8260, UTA is active-high.
- The disable timer control (TODT) and LAST bit in the RAM array word must be set together, otherwise TODT is ignored.
- Refresh timer value is in a separate register—In the MPC8260, the refresh timer value has moved to two registers, PURT and LURT, which can serve multiple UPMs.
- Refresh on the 60x bus must be done in UPMA; on the local bus, it must be done in UPMB.
- New feature: Repeated execution of the current RAM word (REDO).
- Extended hold time on reads can be up to 8 clock cycles instead of 1 in the MPC8xx.

10.7 Memory System Interface Example Using UPM

Connecting the MPC8260 to a DRAM device requires a detailed examination of the timing diagrams representing the possible memory cycles that must be performed when accessing this device. This section provides timing diagrams for various UPM configurations.

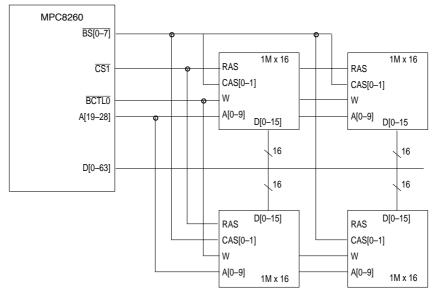


Figure 10-67. DRAM Interface Connection to the 60x Bus (64-Bit Port Size)

After timings are created, programming the UPM continues with translating these timings into tables representing the RAM array contents for each possible cycle. When a table is completed, the global parameters of the UPM must be defined for handling the disable timer (precharge) and the refresh timer relative to Figure 10-67. Table 10-41 shows settings of different fields.

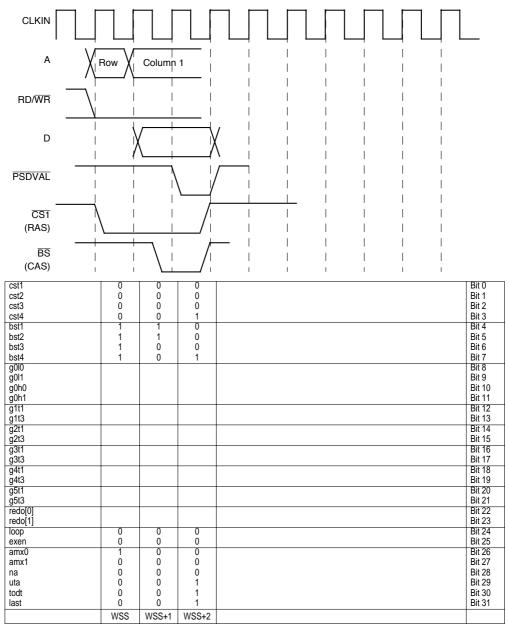

Explanation	Field	Value
Machine select UPMA	BRx[MS]	0b100
Port size 64-bit	BRx[PS]	0b00
No write protect (R/W)	BRx[WP]	0b0
Refresh timer value (1024 refresh cycles)	PURT[PURT]	0x0C
Refresh timer enable	MxMR[RFEN]	0b1
Address multiplex size	MxMR[AMx]	0b010
Disable timer period	MxMR[DSx]	0b01
Select between GPL4 and Wait = GPL4 data sample at clock rising edge	MxMR[GPL_x4DIS]	0b0
Burst inhibit device	ORx[BI]	0b0

Table 10-41. UPMs Attributes Example

The OR and BR of the specific bank must be initialized according to the address mapping of the DRAM device used. The MS field should indicate the specific UPM selected to handle the cycle. The RAM array of the UPM can than be written through use of the MxMR[OP] = 11. Figure 10-56 shows the first locations addressed by the UPM, according to the different services required by the DRAM.

a X	Row	Column 1	 	 	 	 		 	 	
DI		X		/ \	 	i I				
PSDVAL		/ /			 	 	 		 	
CS1 (RAS)		 	/	/ 	 	 				
BS (CAS)			/						l	
cst1 cst2 cst3 cst4	0 0 0 0	0 0 0 0	0 0 0 0							Bit 0 Bit 1 Bit 2 Bit 3
bst1 bst2 bst3 bst4	1 1 1 1	1 0 0 0	0 0 0 0							Bit 4 Bit 5 Bit 6 Bit 7
g0l0 g0l1 g0h0 g0h1		-	-							Bit 8 Bit 9 Bit 10 Bit 11
g1t1 g1t3 g2t1										Bit 12 Bit 13 Bit 14
g2t3 g3t1 g3t3 g4t1										Bit 15 Bit 16 Bit 17 Bit 18
g4t3 g5t1 g5t3 redo[0]										Bit 19 Bit 20 Bit 21 Bit 22
redo[1] loop exen	0	0 0	0 0		 					Bit 23 Bit 24 Bit 25
amx0 amx1 na uta	1 0 0 0	0 0 0 0	0 0 0 1							Bit 26 Bit 27 Bit 28 Bit 29
todt last	0 0 RSS	0 0 RSS+1	1 1 RSS+2		 					Bit 30 Bit 31

Figure 10-68. Single-Beat Read Access to FPM DRAM

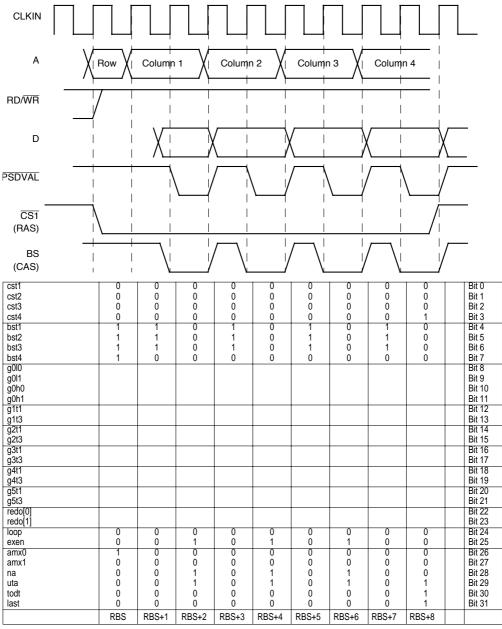


Figure 10-70. Burst Read Access to FPM DRAM (No LOOP)

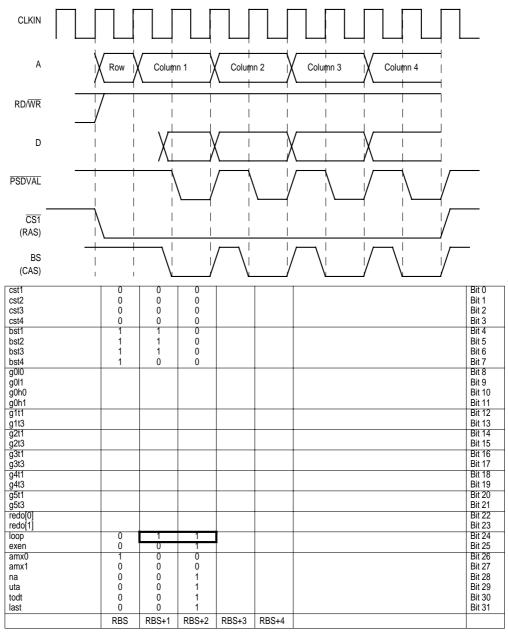


Figure 10-71. Burst Read Access to FPM DRAM (LOOP)

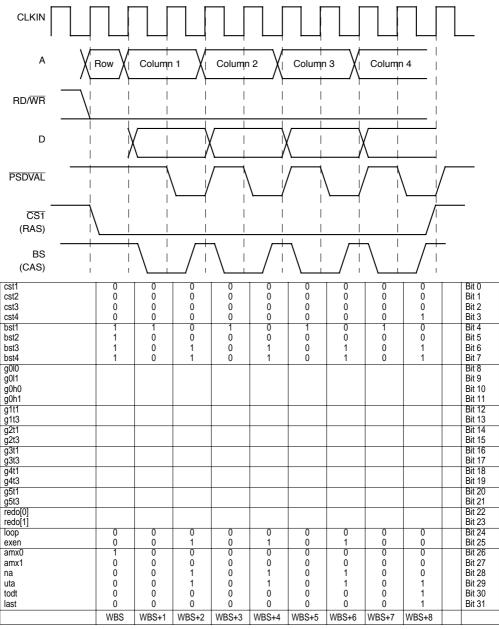


Figure 10-72. Burst Write Access to FPM DRAM (No LOOP)

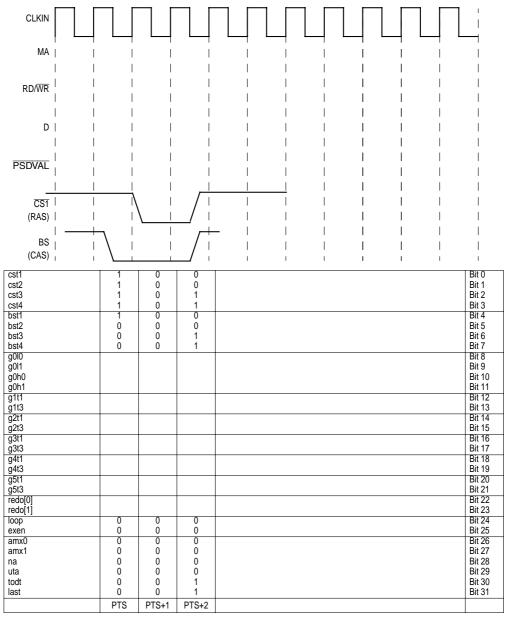
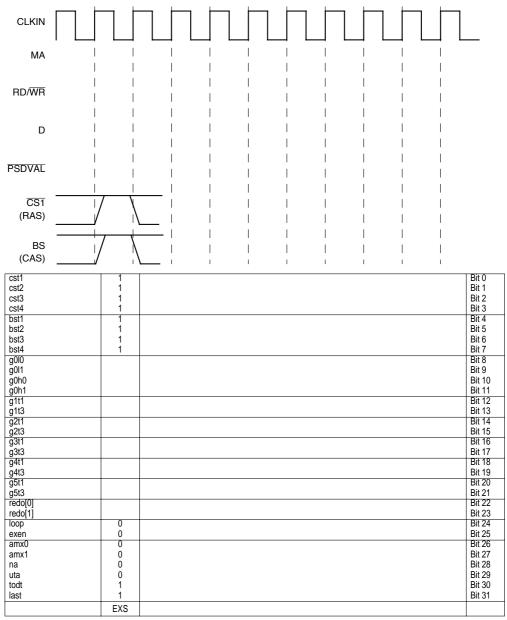



Figure 10-73. Refresh Cycle (CBR) to FPM DRAM

Figure	10-74.	Exception	Cycle
--------	--------	-----------	-------

• If GPL_4 is not used as an output, the performance for a page read access can be improved by setting MxMR[GPL_x4DIS]. The following example shows how the burst read access to FPM DRAM (no LOOP) can be modified using this feature. In this case the configuration registers are defined in the following way.

Explanation	Field	Value
Machine select UPMA	BRx[MS]	0b100
Port size 64-bit	BRx[PS]	0b00
No write protect (R/W)	BRx[WP]	0b0
Refresh timer value (1024 refresh cycles)	PURT[PURT]	0x0C
Refresh timer enable	MxMR[RFEN]	0b1
Address multiplex size	MxMR[AMx]	0b010
Disable timer period	MxMR[DSx]	0b01
Select between GPL4 and Wait = Wait, data sampled at clock negative edge	MxMR[GPL_x4DIS]	0b1
Burst inhibit device	ORx[BI]	0b0

Table 10-42. UPMs Attributes Example

The timing diagram in Figure 10-75 shows how the burst-read access shown in Figure 10-70 can be reduced.

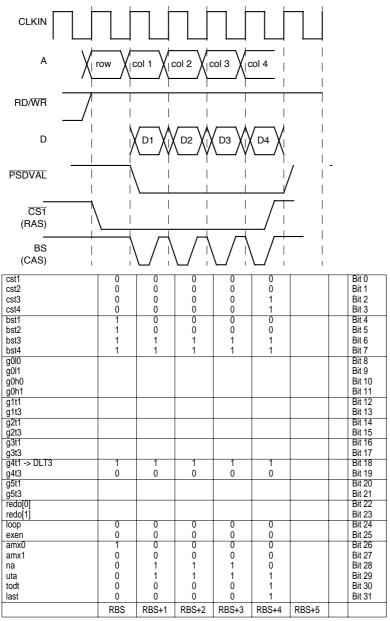


Figure 10-75. FPM DRAM Burst Read Access (Data Sampling on Falling Edge of CLKIN)

10.7.0.1 EDO Interface Example

Figure 10-76 shows a memory connection to extended data-out type devices. For this connection, $\overline{\text{GPL1}}$ is connected to the memory device's $\overline{\text{OE}}$ pins.

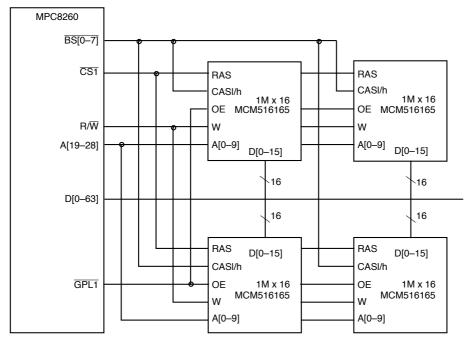


Figure 10-76. MPC8260/EDO Interface Connection to the 60x Bus

Table 10-43 shows the programming of the register field for supporting the configuration shown in Figure 10-76. The example assumes a CLKIN frequency of 66 MHz and that the device needs a 1,024-cycle refresh every 10 μ s.

Explanation	Field	Value
Machine select UPMA	BRx[MS]	0b100
Port size 64-bit	BRx[PS]	0b00
No write protect (R/W)	BRx[WP]	0b0
Refresh timer prescaler	MPTPR	0x04
Refresh timer value (1024 refresh cycles)	PURT[PURT]	0x07
Refresh timer enable	MxMR[RFEN]	0b1
Address multiplex size	MxMR[AMx]	0b001
Disable timer period	MxMR[DSx]	0b10
Burst inhibit device	ORx[BI]	0 b0

Table 10-43. EDO Connection Field Value Example

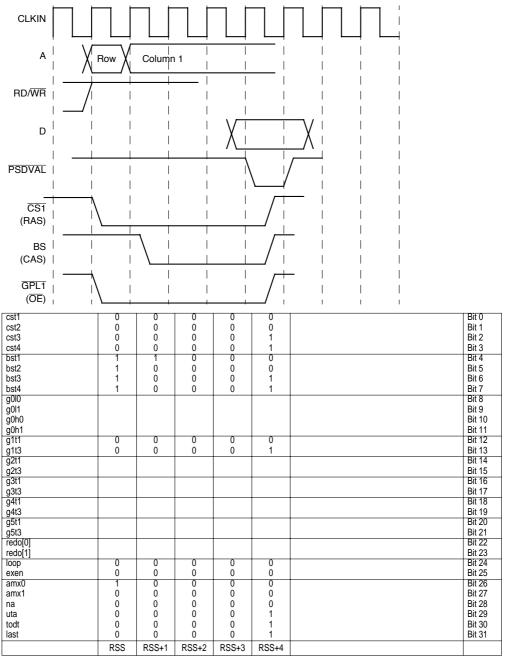
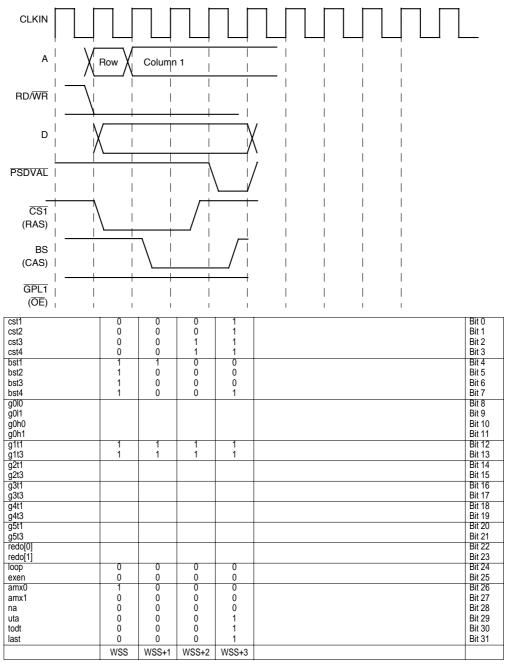
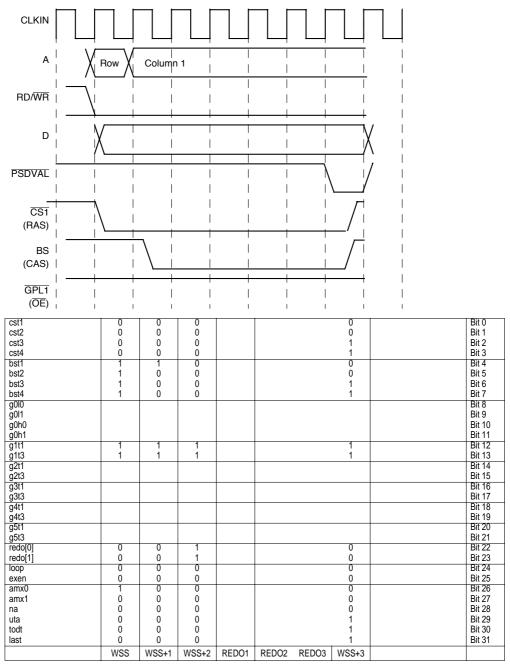




Figure 10-77. Single-Beat Read Access to EDO DRAM

Figure 10-79. Single-Beat Write Access to EDO DRAM Using REDO to Insert Three Wait States

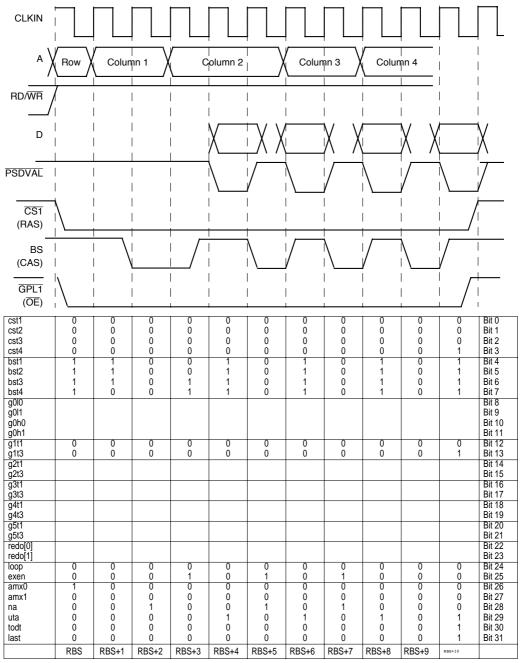


Figure 10-80. Burst Read Access to EDO DRAM

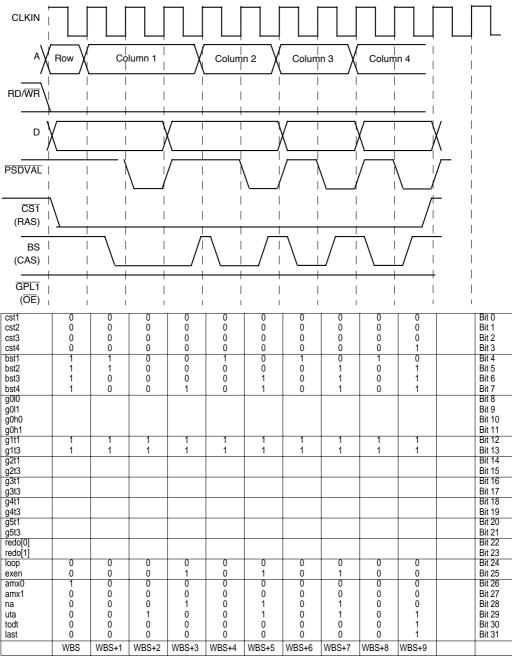


Figure 10-81. Burst Write Access to EDO DRAM

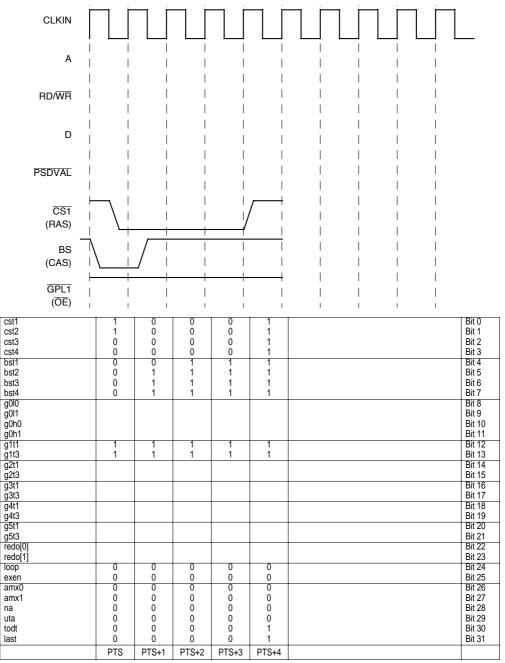


Figure 10-82. Refresh Cycle (CBR) to EDO DRAM

CLKIN													
А													
RD/WR	 	 		 	 	 		 	 	 	 		
D				 	 	 		 	 	 			
PSDVAL					 	 			 				
CS1 (RAS)	 	7		 	 	 		 	 	 	 		
BS (CAS)	 	7			 	 			 				
GPL1 (OE)	 				 	 		 		 			
cst1 cst2 cst3 cst4 bst1			1 1 1 1										Bit 0 Bit 1 Bit 2 Bit 3 Bit 4
bst2 bst3 bst4 g0l0			1 1 1										Bit 5 Bit 6 Bit 7 Bit 8
g0l0 g0l1 g0h0 g0h1 g1t1			1										Bit 0 Bit 9 Bit 10 Bit 11 Bit 12
g1t3 a2t1			1								 		Bit 13 Bit 14
g2t3 g3t1 g3t3													Bit 15 Bit 16 Bit 17
g4t1 g4t3 g5t1								 				 	Bit 18 Bit 19 Bit 20
g5t3 redo[0] redo[1]													Bit 21 Bit 22 Bit 23
loop exen			0		 			 					Bit 24 Bit 25
amx0 amx1 na uta			0 0 0 0										Bit 26 Bit 27 Bit 28 Bit 29
todt last			1 1 EXS									 	Bit 30 Bit 31
		1			 _			 					

Figure 10-83. Exception Cycle For EDO DRAM

10.8 Handling Devices with Slow or Variable Access Times

The memory controller provides two ways to interface with slave devices that are very slow (access time is greater than the maximum allowed by the user programming model) or cannot guarantee a predefined access time (for example some FIFO, hierarchical bus interface, or dual-port memory devices). These mechanisms are as follows:

- The wait mechanism—Used only in accesses controlled by the UPM. Setting MxMR[GPLx4DIS] enables this mechanism.
- The external termination (GTA) mechanism is used only in accesses controlled by the GPCM. OR*x*[SETA] specifies whether the access is terminated internally or externally.

The following examples show how the two mechanisms work.

10.8.1 Hierarchical Bus Interface Example

Assume that the core initiates a local-bus read cycle that addresses main memory connected to the system bus. The hierarchical bus interface accepts local bus requests and generates a read cycle on the system bus. The programmer cannot predict when valid data can be latched by the core because a DMA device may be occupying the system bus.

- The wait solution (UPM)—The external module asserts UPWAIT to the memory controller to indicate that data is not ready. The memory controller synchronized this signal because the wait signal is asynchronous. As a result of the wait signal being asserted, the UPM enters a freeze mode at the rising edge of CLKIN upon encountering the WAEN bit being set in the UPM word. The UPM stays in that state until UPWAIT is negated. After UPWAIT is negated, the UPM continues executing from the next entry to the end of the pattern (LAST bit is set).
- The external termination solution (GPCM)—The bus interface module asserts GTA to the memory controller when it can sample data. Note that GTA is also synchronized.

10.8.2 Slow Devices Example

Assume that the core initiates a read cycle from a device whose access time exceeds the maximum allowed by the user programming model.

- The wait solution (UPM)—The core generates a read access from the slow device. The device in turn asserts the wait signal until the data is ready. The core samples data only after the wait signal is negated.
- The external termination solution (GPCM)—The core generates a read access from the slow device, which must generate the asynchronous GTA when it is ready.

10.9 External Master Support (60x-Compatible Mode)

The memory controller supports internal and external bus masters. Accesses from the core or the CPM are considered internal; accesses from an external bus master are external. External bus master support is available only if the MPC8260 is placed in 60x-compatible mode. This is done by setting the BCR[EBM], described in Section 4.3.2.1, "Bus Configuration Register (BCR)."

There are two types of external bus masters:

- Any 60x-compatible device that uses a 64-bit data bus, such as: MPC603e, MPC604e, MPC750, MPC2605 (L2 cache) in copy-back mode and others
- MPC8260 type devices

10.9.1 60x-Compatible External Masters

Any 60x-compatible devices that use a 64-bit data bus can access the MPC8260 internal registers and local bus. These devices can also use memory controller services under the following restrictions, which apply only to 60x-assigned memory banks accessed by the external device:

- 64-bit port size only
- No ECC or RMW-parity

For 60x bus compatibility, the following connections should be observed:

- MPC8260's TSIZ[1–3] should be connected to the external master's TSIZ[0–2]
- MPC8260's TSIZ[0] should be pulled down
- MPC8260's PSDVAL should be pulled up

10.9.2 MPC8260-Type External Masters

An MPC8260 external master is a 60x-compatible master with additional functionality. As described in the following, it has fewer the restrictions than other 60x-compatible masters:

- Any port size is allowed
- ECC and RMW-parity are supported

10.9.3 Extended Controls in 60x-Compatible Mode

In 60x-compatible mode, the memory controller provided extended controls for the glue logic. The extended control consists of the following:

- Memory address latch (ALE) to latch the 60x address for memory use
- The address multiplex pin (GPL5/SDAMUX), which controls external multiplexing for DRAM and SDRAM devices
- LSB address pins (BADDR[27–31]) for incrementing memory addresses

- **PSDVAL** as a termination to a partial transaction (such as port-size beat access).
- Internal SDRAM bank selects (BNKSEL[0-2]) to allow SDRAM bank interleaving, as described in Section 10.9.4, "Using BNKSEL SIgnals in Single-MPC8260 Bus Mode."

10.9.4 Using BNKSEL SIgnals in Single-MPC8260 Bus Mode

The BNKSEL signals provide the following functionality in single-MPC8260 bus mode

• If bank-based interleaving is used, BNKSEL signals facilitate compatibility with SDRAMs that have different numbers of row or column address lines. The address lines of the MPC8260 bus and the BNKSEL lines can be routed independently to the address lines and BA lines of the DIMM. Note that all SDRAMs populated on an MPC8260 bus must still have the same organization. This flexibility merely allows the SDRAMs to be populated as a group with larger or smaller devices as appropriate.

If BNKSEL lines were not used, the number of row and column address lines of the SDRAMs would affect which MPC8260 address bus lines on which the bank select signals would be driven, and would thus require that the BA signals of the SDRAMs be routed to those address lines, thus limiting flexibility.

• If BCR[HP] is programmed, BNKSEL signals facilitate logic analysis of the system. Otherwise, the logic analyzer equipment must understand the address multiplexing scheme of the board and intelligently reconstruct the address of bus transactions.

10.9.5 Address Incrementing for External Bursting Masters

BADDR[27–31] should be used to generate addresses to memory devices for burst accesses. In 60x-compatible mode, when a master initiates an external bus transaction, it reflects the value of A[27–31] on the first clock cycle of the memory access. These signals are latched by the memory controller and on subsequent clock cycles, BADDR[27–31] increments as programmed in the UPM or after each data beat is sampled in the GPCM or after each READ/WRITE command in the SDRAM machine (the SDRAM machine uses BADDR only for port sizes of 16 or 8 bits).

10.9.6 External Masters Timing

External and internal masters have similar memory access timings. However, because it takes more time to decode the addresses of external masters, memory accesses by external masters start one cycle later than those of internal masters.

As soon as the external master asserts $\overline{\text{TS}}$, the memory controller compares the address with each of its defined valid banks. If a match is found, the memory controller asserts the address latch enable (ALE) and control signals to the memory devices. The memory controller asserts $\overline{\text{PSDVAL}}$ for each data beat to indicate data beat termination on write transactions and data valid on read transactions.

The 60x bus is pipelined. The ALE pins control the external latch that latches the address from the 60x bus and keeps the address stable for the memory access. The memory controller asserts ALE only on the start of new memory controller access.

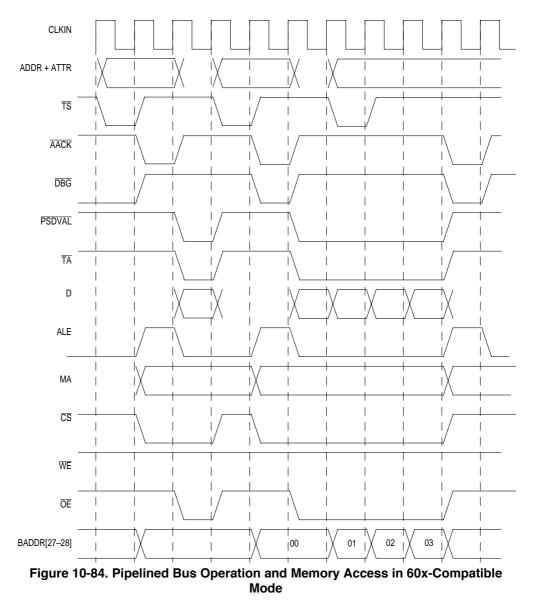


Figure 10-85 shows the 1-cycle delay for external master access. For systems that use the 60x bus with low frequency (33 MHz), the 1-cycle delay for external masters can be eliminated by setting BCR[EXDD].



Figure 10-85. External Master Access (GPCM)

10.9.6.1 Example of External Master Using the SDRAM Machine

Figure 10-86 shows an interconnection in which a 60x-compatible external master and the MPC8260 can share access to a SDRAM bank. Note that the address multiplexer is controlled by SDAMUX, while the address latch is controlled by ALE. Also note that because this is a 64-bit port size SDRAM, BADDR is not needed.

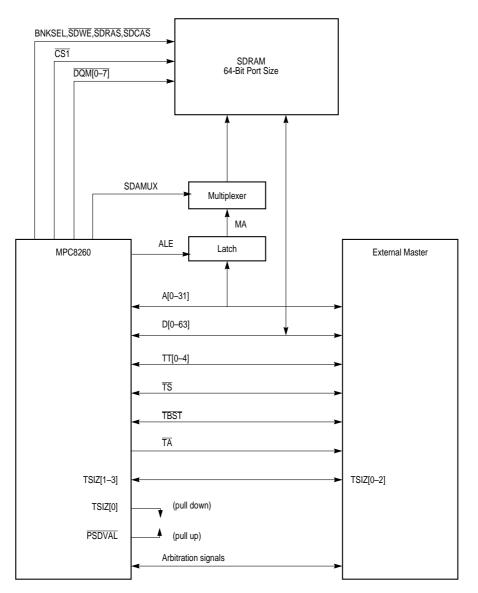


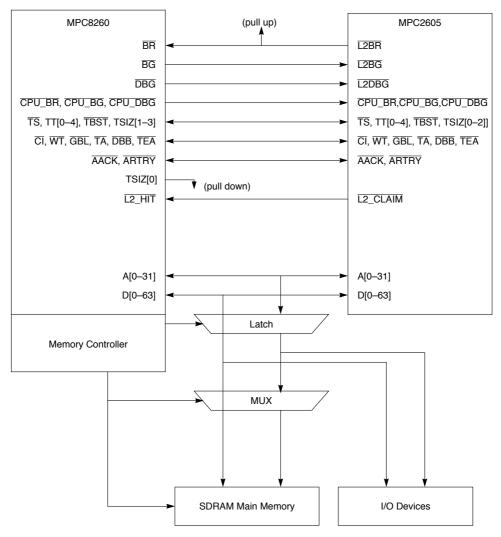
Figure 10-86. External Master Configuration with SDRAM Device

Chapter 11 Secondary (L2) Cache Support

The MPC8260 has features to support an externally controlled secondary (L2) cache such as the Motorola MPC2605 integrated secondary cache for PowerPC microprocessors. This chapter describes the MPC8260's L2 cache interface—configurations, operation, programmable parameters, system requirements, and timing.

11.1 L2 Cache Configurations

The MPC8260 supports three L2 cache configurations—copy-back mode, write-through mode, and ECC/parity mode. The following sections describe the L2 cache modes.


11.1.1 Copy-Back Mode

The use of a copy-back L2 cache offers several advantages over direct access to the memory system. In copy-back mode, cacheable write operations are performed to the L2 cache without updating main memory. Since every cacheable write operation does not go to main memory but to the L2 cache which can be accessed more quickly, write operation latency is reduced along with contention for the memory system. In copy-back mode, cacheable read operations that hit in the L2 cache are serviced from the L2 cache without requiring a memory transaction and its associated latency. Copy-back mode offers the greatest performance of all the L2 cache modes.

Copy-back L2 cache blocks implement a dirty bit in their tag RAM, which indicates whether the contents of the L2 cache block have been modified from that in main memory. During L2 cache line replacement, L2 cache blocks that have been modified (dirty) are written back to memory; unmodified (not dirty) L2 cache blocks are invalidated and overwritten without being written back to memory.

Copy-back mode requires that the L2 cache is able to initiate copy-backs to main memory. To do this, the L2 cache must act as a bus master and implement the bus arbitration signals \overline{BR} , \overline{BG} , and \overline{DBG} . The MPC8260 can also support additional bus masters (60x or MPC8260 type) in copy-back mode.

Figure 11-1 shows a MPC8260 connected to a MPC2605 integrated L2 cache in copy-back mode.

11.1.2 Write-Through Mode

In write-through mode, cacheable write operations are performed to both the L2 cache and to main memory. Since every cacheable write operation goes to the L2 cache and to main memory, write operation latency is the same as an ordinary memory write transaction. In write-through mode, cacheable read operations that hit in the L2 cache are serviced from the L2 cache without requiring a memory transaction and its associated latency. Thus, reads

are serviced just as they are for copy-back mode. Write-through mode sacrifices some of the write performance of copy-back mode, but guarantees L2 cache coherency with main memory.

Since write-through mode keeps memory coherent with the contents of the L2 cache, there is never any need to perform an L2 copy-back. This removes the need for the L2 cache to maintain a dirty bit in the tag RAM (all cache blocks are unmodified) and it also removes the need for bus arbitration signals.

The L2 cache is configured for write-through mode by pulling down it's WT signal. There are no configuration changes to the MPC8260 required in write-through mode. The MPC8260 can also support additional bus masters (60x or MPC8260 type) in write-through mode.

Figure 11-2 shows a MPC8260 connected to a MPC2605 integrated L2 cache in write-through mode.

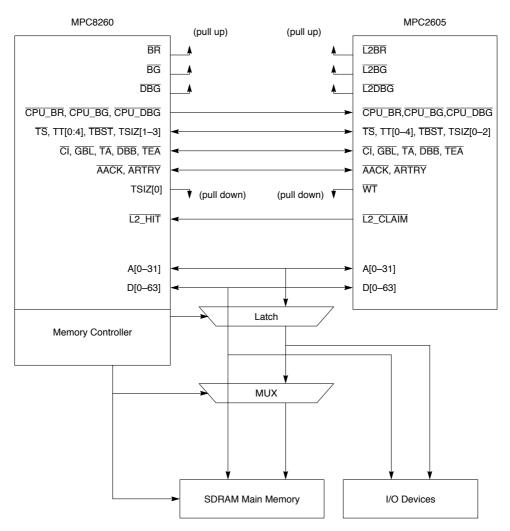


Figure 11-2. External L2 Cache in Write-Through Mode

11.1.3 ECC/Parity Mode

ECC/parity mode is a subset of write-through mode with some connection changes that allow the L2 cache to support ECC or Parity. The connection changes are:

- The MPC8260's DP[0:7] signals are connected to the L2 cache's DP[0:7] signals.
- The L2's TSIZ[0:2] signals are pulled down to always indicate 8-byte transaction size.
- The L2's A[29:31] signals are pulled down.

In ECC/parity mode the L2 cache can support memory regions with ECC/Parity under the following restrictions:

- All non-write-protected (BR*x*[WP] = 0) memory banks marked caching-allowed must use either ECC (BR*x*[DECC] = 0b11) or read-modify-write parity (BR*x*[DECC] = 0b10). See Section 10.3.1, "Base Registers (BR*x*)," for more information about the MPC8260 base register parameters.
- Only MPC8260-type masters are supported in systems that use ECC/parity L2 cache mode. See Section 10.9, "External Master Support (60x-Compatible Mode)," for more information about external master types.

Figure 11-3 shows a MPC8260 connected to an MPC2605 integrated L2 cache in ECC/ Parity mode.

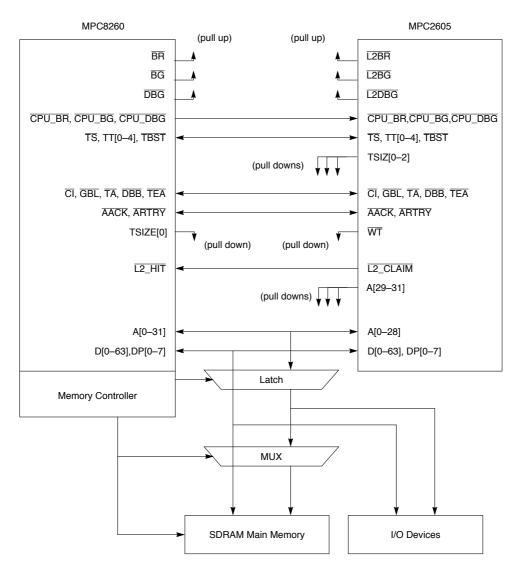


Figure 11-3. External L2 Cache in ECC/Parity Mode

11.2 L2 Cache Interface Parameters

The L2 cache interface parameters in the bus configuration register (BCR) control the configuration and operation of the MPC8260's L2 interface. The parameters should be configured as follows:

- BCR[EBM] = 1 MPC8260 in 60x-compatible mode.
- BCR[L2C] = 1-L2 cache is present.
- BCR[L2D] = 0-L2 response time. In this case, the L2 will claim a bus transaction one clock cycle after TS assertion.
- BCR[APD] = 1: This parameter is not L2 specific, but should consider the L2 ARTRY assertion timing.

See Section 4.3.2.1, "Bus Configuration Register (BCR)," for more details about these parameters.

11.3 System Requirements When Using the L2 Cache Interface

The following requirements apply to MPC8260-based systems that implement an external L2 cache:

- For systems that use copy-back mode, all cachable memory regions must be marked as global in the CPU's MMU and the CPM's RBA. This causes the assertion of the GBL signal on every cachable transaction. Systems that use write-through mode (or ECC/Parity mode) have no such restriction.
- All cachable memory regions must have a 64-bit port size.
- All cachable memory regions must not set the BRx[DR] bit.
- All cachable memory regions must not use ECC or parity unless the external L2 is connected as described in Section 11.1.3, "ECC/Parity Mode."
- All non-cachable memory regions must be marked as caching-inhibited in the CPU's MMU. This causes the assertion of the CI signal on every non-cachable transaction. Note that the MPC8260's internal space (IMMR) and any memory banks assigned to the local bus are always considered non-cachable.

11.4 L2 Cache Operation

When configured for an L2 cache (BCR[L2C] = 1), the MPC8260 samples the $\overline{L2_HIT}$ input signal when the delay time programmed in BCR[L2D] expires. For 60x bus cycles, if $\overline{L2_HIT}$ is asserted, the external L2 cache drives AACK and TA to complete the transaction without the MPC8260 initiating a system memory transfer.

The external L2 cache can assert $\overline{\text{ARTRY}}$ to retry 60x bus cycles, and can request the bus by asserting $\overline{\text{BR}}$ to perform L2 cast-out operations. The arbiter grants the address and data

bus to the external L2 cache by asserting \overline{BG} and \overline{DBG} , respectively. If the external L2 cache asserts \overline{ARTRY} , it should not assert $\overline{L2}$ -HIT.

For more information about the timing and behavior of the MPC2605 integrated L2 cache, refer to the MPC2605 data sheet.

11.5 Timing Example

Figure 11-4 shows a read access performed by the MPC8260 with an externally controlled L2 cache. For the first transaction (A0), the MPC8260 grants the bus and asserts $\overline{\text{TS}}$ with the address and address transfer attributes. In this example, BCR[L2D] = 0, which means that $\overline{\text{L2}}$ -HIT is valid one clock cycle after the assertion of $\overline{\text{TS}}$. The MPC8260 samples $\overline{\text{L2}}$ -HIT when L2D expires. In the second transaction (A1), the access misses in the L2 cache and the memory controller starts the transaction a minimum of three cycles after the assertion of $\overline{\text{TS}}$.

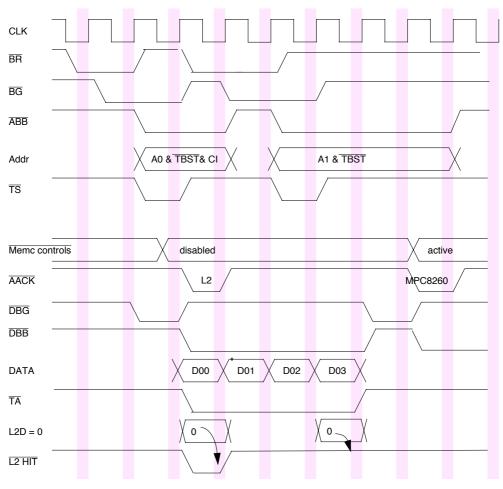


Figure 11-4. Read Access with L2 Cache

Chapter 12 IEEE 1149.1 Test Access Port

The MPC8260 provides a dedicated user-accessible test access port (TAP) that is fully compatible with the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems associated with testing high-density circuit boards have led to development of this proposed standard under the sponsorship of the Test Technology Committee of IEEE and the Joint Test Action Group (JTAG). The MPC8260's implementation supports circuit-board test strategies based on this standard.

The TAP consists of five dedicated signal pins—a 16-state TAP controller and two test data registers. A boundary scan register links all device signal pins into a single shift register. The test logic, which is implemented using static logic design, is independent of the device system logic. The MPC8260's implementation provides the capability to do the following:

- Perform boundary scan operations to check circuit-board electrical continuity.
- Bypass the MPC8260 for a given circuit-board test by effectively reducing the boundary scan register to a single cell.
- Sample the MPC8260 system pins during operation and transparently shift out the result in the boundary-scan register.
- Disable the output drive to pins during circuit-board testing.

NOTE

Precautions must be observed to ensure that the IEEE 1149.1like test logic does not interfere with nontest operation.

12.1 Overview

The MPC8260's implementation includes a TAP controller, a 4-bit instruction register, and two test registers (a 1-bit bypass register and a 475-bit boundary scan register). Figure 12-1 shows an overview of the MPC8260's scan chain implementation.

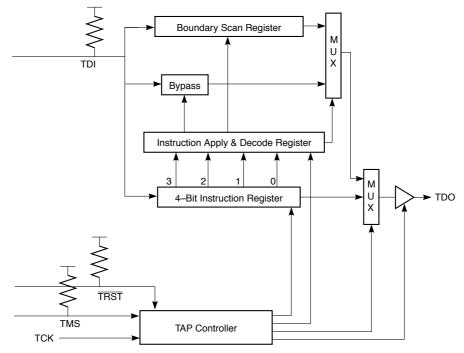


Figure 12-1. Test Logic Block Diagram

The TAP consists of the signals in Table 12-1.

Table 12-1. TAP Signals

Signal	Description
тск	A test clock input to synchronize the test logic.
TMS	A test mode select input (with an internal pull-up resistor) that is sampled on the rising edge of TCK to sequence the TAP controller's state machine.
TDI	A test data input (with an internal pull-up resistor) that is sampled on the rising edge of TCK.
TDO	A data output that can be three-stated and actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCK.
TRST	An asynchronous reset with an internal pull-up resistor that provides initialization of the TAP controller and other logic required by the standard.

12.2 TAP Controller

The TAP controller is responsible for interpreting the sequence of logical values on the TMS signal. It is a synchronous state machine that controls the operation of the JTAG logic. The value shown adjacent to each bubble represents the value of the TMS signal sampled on the rising edge of the TCK signal. Figure 12-2 shows the state machine.

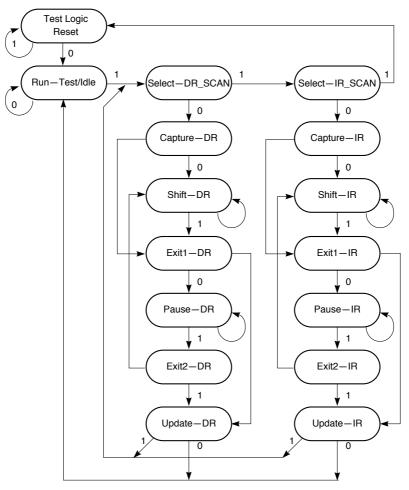


Figure 12-2. TAP Controller State Machine

12.3 Boundary Scan Register

The MPC8260's scan chain implementation has a 475-bit boundary scan register that contains bits for all device signal, clock pins, and associated control signals. The XTAL, EXTAL, and XFC pins are associated with analog signals and are not included in the boundary scan register. An IEEE-1149.1-compliant boundary-scan register has been included on the MPC8260 that can be connected between TDI and TDO when EXTEST or SAMPLE/PRELOAD instructions are selected. It is used for capturing signal pin data on the input pins, forcing fixed values on the output signal pins, and selecting the direction and drive characteristics (a logic value or high impedance) of the bidirectional and three-state signal pins. Figure 12-3, Figure 12-4, Figure 12-5, and Figure 12-6 show various cell types.

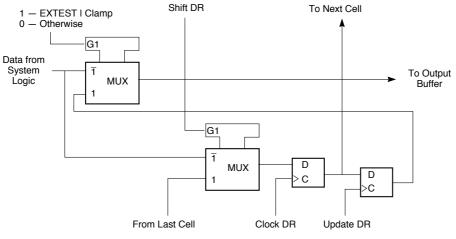


Figure 12-3. Output Pin Cell (O.Pin)

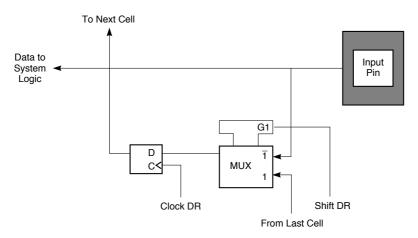


Figure 12-4. Observe-Only Input Pin Cell (I.Obs)

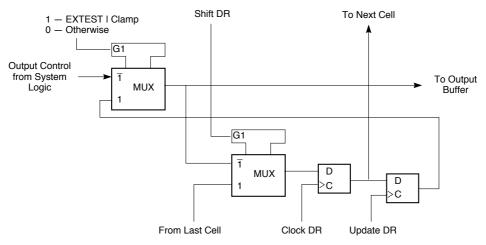


Figure 12-5. Output Control Cell (IO.CTL)

Figure 12-6. General Arrangement of Bidirectional Pin Cells

The control bit value controls the output function of the bidirectional pin. One or more bidirectional data cells can be serially connected to a control cell. Bidirectional pins include two scan cell for data (IO.Cell) as shown in Figure 12-6 and these bits are controlled by the cell shown in Figure 12-5.

It is important to know the boundary scan bit order and pins that are associated with them. Table 12-2 shows the bit order starting with the TDO output and ending with the TDI input. The first column of the table defines the bit's ordinal position in the boundary scan register. The shift register cell nearest TDO (first to be shifted in) is defined as Bit 1 and the last bit to be shifted in is bit 475. The second column references one of the three MPC8260's cell types depicted in Figure 12-3 through Figure 12-5 that describe the cell structure for each

type. The third column lists the pin name for all pin-related cells and defines the name of the bidirectional control register bits. The fourth column lists the pin type, and the last column indicates the associated boundary scan register control bit for the bidirectional output pins.

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell
0	i.obs	pa[4]	io	-
1	o.pin	pa[4]	io	g2.ctl
2	IO.ctl	g2.ctl	_	-
3	i.obs	spare5	io	-
4	o.pin	spare5	io	g287.ctl
5	IO.ctl	g287.ctl	_	-
6	i.obs	pa[5]	io	-
7	o.pin	pa[5]	io	g286.ctl
8	IO.ctl	g286.ctl	_	_
9	i.obs	pd[8]	io	-
10	o.pin	pd[8]	io	g285.ctl
11	IO.ctl	g285.ctl	_	_
12	i.obs	pb[8]	io	_
13	o.pin	pb[8]	io	g284.ctl
14	IO.ctl	g284.ctl	-	-
15	i.obs	pa[6]	io	_
16	o.pin	pa[6]	io	g283.ctl
17	IO.ctl	g283.ctl	-	-
18	i.obs	pd[9]	io	-
19	o.pin	pd[9]	io	g282.ctl
20	IO.ctl	g282.ctl	-	-
21	i.obs	pc[5]	io	-
22	o.pin	pc[5]	io	g281.ctl
23	IO.ctl	g281.ctl	_	_
24	i.obs	pb[9]	io	-
25	o.pin	pb[9]	io	g280.ctl
26	IO.ctl	g280.ctl	-	-
27	i.obs	pa[7]	io	-
28	o.pin	pa[7]	io	g279.ctl
29	IO.ctl	g279.ctl	-	-
30	i.obs	pd[10]	io	-
31	o.pin	pd[10]	io	g278.ctl
32	IO.ctl	g278.ctl	-	-
33	i.obs	pc[6]	io	-
34	o.pin	pc[6]	io	g277.ctl

Table 12-2. Boundary Scan Bit Definition

35 IO.ctl g277.ctl 36 i.obs pb[10] io 37 o.pin pb[10] io 38 IO.ctl g276.ctl	_ g276.ctl _
37 o.pin pb[10] io	 g276.ctl
	g276.ctl — —
28 IO ctl c276 ctl	-
38 IO.ctl g276.ctl –	_
39 i.obs pa[8] io	
40 o.pin pa[8] io	g275.ctl
41 IO.ctl g275.ctl –	_
42 i.obs pd[12] io	_
43 o.pin pd[12] io	g274.ctl
44 IO.ctl g274.ctl –	_
45 i.obs pc[7] io	_
46 o.pin pc[7] io	g273.ctl
47 IO.ctl g273.ctl –	_
48 i.obs pb[11] io	_
49 o.pin pb[11] io	g272.ctl
50 IO.ctl g272.ctl –	_
51 i.obs pa[9] io	-
52 o.pin pa[9] io	g271.ctl
53 IO.ctl g271.ctl –	_
54 i.obs pa[10] io	_
55 o.pin pa[10] io	g269.ctl
56 IO.ctl g269.ctl –	_
57 i.obs pd[11] io	_
58 o.pin pd[11] io	g268.ctl
59 IO.ctl g268.ctl –	_
60 i.obs pc[8] io	-
61 o.pin pc[8] io	g267.ctl
62 IO.ctl g267.ctl –	_
63 i.obs pb[12] io	_
64 o.pin pb[12] io	g266.ctl
65 IO.ctl g266.ctl –	_
66 i.obs pa[11] io	_
67 o.pin pa[11] io	g265.ctl
68 IO.ctl g265.ctl –	_
69 i.obs pd[13] io	_
70 o.pin pd[13] io	g264.ctl
71 IO.ctl g264.ctl –	_
72 i.obs pc[9] io	_
73 o.pin pc[9] io	g263.ctl

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell
74	IO.ctl	g263.ctl	-	-
75	i.obs	pb[13]	io	-
76	o.pin	pb[13]	io	g262.ctl
77	IO.ctl	g262.ctl	-	-
78	i.obs	pa[12]	io	-
79	o.pin	pa[12]	io	g261.ctl
80	IO.ctl	g261.ctl	_	-
81	i.obs	pd[14]	io	-
82	o.pin	pd[14]	io	g260.ctl
83	IO.ctl	g260.ctl	_	_
84	i.obs	pc[10]	io	_
85	o.pin	pc[10]	io	g259.ctl
86	IO.ctl	g259.ctl	_	_
87	i.obs	pb[14]	io	_
88	o.pin	pb[14]	io	g258.ctl
89	IO.ctl	g258.ctl	_	_
90	i.obs	pa[13]	io	_
91	o.pin	pa[13]	io	g257.ctl
92	IO.ctl	g257.ctl	_	_
93	i.obs	pd[15]	io	_
94	o.pin	pd[15]	io	g256.ctl
95	IO.ctl	g256.ctl	_	_
96	i.obs	pc[11]	io	-
97	o.pin	pc[11]	io	g255.ctl
98	IO.ctl	g255.ctl	_	_
99	i.obs	pb[15]	io	-
100	o.pin	pb[15]	io	g254.ctl
101	IO.ctl	g254.ctl	_	_
102	i.obs	pa[14]	io	_
103	o.pin	pa[14]	io	g253.ctl
104	IO.ctl	g253.ctl	-	-
105	i.obs	pc[12]	io	-
106	o.pin	pc[12]	io	g252.ctl
107	IO.ctl	g252.ctl	-	-
108	i.obs	pa[15]	io	-
109	o.pin	pa[15]	io	g251.ctl
110	IO.ctl	g251.ctl	-	-
111	i.obs	pd[16]	io	-
112	o.pin	pd[16]	io	g250.ctl

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell
113	IO.ctl	g250.ctl	_	_
114	i.obs	pc[13]	io	-
115	o.pin	pc[13]	io	g249.ctl
116	IO.ctl	g249.ctl	_	_
117	i.obs	pb[16]	io	-
118	o.pin	pb[16]	io	g248.ctl
119	IO.ctl	g248.ctl	-	-
120	i.obs	pa[16]	io	-
121	o.pin	pa[16]	io	g247.ctl
122	IO.ctl	g247.ctl	_	-
123	i.obs	pd[17]	io	_
124	o.pin	pd[17]	io	g246.ctl
125	IO.ctl	g246.ctl	-	-
126	i.obs	pc[14]	io	-
127	o.pin	pc[14]	io	g245.ctl
128	IO.ctl	g245.ctl	-	-
129	i.obs	pb[17]	io	-
130	o.pin	pb[17]	io	g244.ctl
131	IO.ctl	g244.ctl	_	-
132	i.obs	pa[17]	io	-
133	o.pin	pa[17]	io	g243.ctl
134	IO.ctl	g243.ctl	_	-
135	i.obs	pd[18]	io	-
136	o.pin	pd[18]	io	g242.ctl
137	IO.ctl	g242.ctl	_	-
138	i.obs	pc[15]	io	_
139	o.pin	pc[15]	io	g241.ctl
140	IO.ctl	g241.ctl	-	-
141	i.obs	pb[22]	io	-
142	o.pin	pb[22]	io	g240.ctl
143	IO.ctl	g240.ctl	-	-
144	i.obs	pa[18]	io	-
145	o.pin	pa[18]	io	g239.ctl
146	IO.ctl	g239.ctl	-	-
147	i.obs	pd[19]	io	-
148	o.pin	pd[19]	io	g238.ctl
149	IO.ctl	g238.ctl	-	-
150	i.obs	pc[16]	io	-
151	o.pin	pc[16]	io	g237.ctl

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell
152	IO.ctl	g237.ctl	-	-
153	i.obs	pb[23]	io	-
154	o.pin	pb[23]	io	g236.ctl
155	IO.ctl	g236.ctl	-	-
156	i.obs	pa[19]	io	-
157	o.pin	pa[19]	io	g235.ctl
158	IO.ctl	g235.ctl	-	-
159	i.obs	pc[17]	io	-
160	o.pin	pc[17]	io	g234.ctl
161	IO.ctl	g234.ctl	-	_
162	i.obs	pd[20]	io	_
163	o.pin	pd[20]	io	g233.ctl
164	IO.ctl	g233.ctl		-
165	i.obs	pc[18]	io	_
166	o.pin	pc[18]	io	g232.ctl
167	IO.ctl	g232.ctl	-	_
168	i.obs	pb[18]	io	_
169	o.pin	pb[18]	io	g231.ctl
170	IO.ctl	g231.ctl	_	_
171	i.obs	pa[20]	io	_
172	o.pin	pa[20]	io	g230.ctl
173	IO.ctl	g230.ctl	_	_
174	i.obs	pd[21]	io	_
175	o.pin	pd[21]	io	g229.ctl
176	IO.ctl	g229.ctl	_	_
177	i.obs	pc[19]	io	_
178	o.pin	pc[19]	io	g228.ctl
179	IO.ctl	g228.ctl	_	_
180	i.obs	pb[19]	io	_
181	o.pin	pb[19]	io	g227.ctl
182	IO.ctl	g227.ctl		-
183	i.obs	pa[21]	io	-
184	o.pin	pa[21]	io	g226.ctl
185	IO.ctl	g226.ctl	-	-
186	i.obs	pd[22]	io	-
187	o.pin	pd[22]	io	g225.ctl
188	IO.ctl	g225.ctl	_	
189	i.obs	pc[20]	io	-
190	o.pin	pc[20]	io	g224.ctl

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell
191	IO.ctl	g224.ctl	-	-
192	i.obs	pb[20]	io	-
193	o.pin	pb[20]	io	g223.ctl
194	IO.ctl	g223.ctl	_	-
195	i.obs	pa[22]	io	-
196	o.pin	pa[22]	io	g222.ctl
197	IO.ctl	g222.ctl	_	-
198	i.obs	pd[23]	io	-
199	o.pin	pd[23]	io	g221.ctl
200	IO.ctl	g221.ctl	_	-
201	i.obs	pc[21]	io	_
202	o.pin	pc[21]	io	g220.ctl
203	IO.ctl	g220.ctl		-
204	i.obs	pb[21]	io	-
205	o.pin	pb[21]	io	g219.ctl
206	IO.ctl	g219.ctl	_	-
207	i.obs	pa[23]	io	-
208	o.pin	pa[23]	io	g218.ctl
209	IO.ctl	g218.ctl		-
210	i.obs	spare1	io	_
211	o.pin	spare1	io	g121.ctl
212	IO.ctl	g121.ctl		-
213	i.obs	pc[22]	io	
214	o.pin	pc[22]	io	g217.ctl
215	IO.ctl	g217.ctl		-
216	i.obs	pd[24]	io	
217	o.pin	pd[24]	io	g216.ctl
218	IO.ctl	g216.ctl		-
219	i.obs	pc[23]	io	_
220	o.pin	pc[23]	io	g215.ctl
221	IO.ctl	g215.ctl	-	-
222	i.obs	pb[24]	io	-
223	o.pin	pb[24]	io	g214.ctl
224	IO.ctl	g214.ctl	-	-
225	i.obs	pa[24]	io	-
226	o.pin	pa[24]	io	g213.ctl
227	IO.ctl	g213.ctl	-	-
228	i.obs	pd[25]	io	-
229	o.pin	pd[25]	io	g212.ctl

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell
230	IO.ctl	g212.ctl	-	_
231	i.obs	pc[24]	io	-
232	o.pin	pc[24]	io	g211.ctl
233	IO.ctl	g211.ctl	_	_
234	i.obs	pb[25]	io	-
235	o.pin	pb[25]	io	g210.ctl
236	IO.ctl	g210.ctl	_	_
237	i.obs	pa[25]	io	_
238	o.pin	pa[25]	io	g209.ctl
239	IO.ctl	g209.ctl		_
240	i.obs	pd[26]	io	-
241	o.pin	pd[26]	io	g208.ctl
242	IO.ctl	g208.ctl		_
243	i.obs	pc[25]	io	_
244	o.pin	pc[25]	io	g207.ctl
245	IO.ctl	g207.ctl		-
246	i.obs	pb[26]	io	_
247	o.pin	pb[26]	io	g206.ctl
248	IO.ctl	g206.ctl		
249	i.obs	pa[26]	io	_
250	o.pin	pa[26]	io	g205.ctl
251	IO.ctl	g205.ctl		
252	i.obs	pd[27]	io	
253	o.pin	pd[27]	io	g204.ctl
254	IO.ctl	g204.ctl		
255	i.obs	pc[26]	io	
256	o.pin	pc[26]	io	g203.ctl
257	IO.ctl	g203.ctl		
258	i.obs	pb[27]	io	
259	o.pin	pb[27]	io	g202.ctl
259	IO.ctl	g202.ctl		
		_		
261	i.obs	pa[27]	io	
262	o.pin	pa[27]	io	g201.ctl
263	IO.ctl	g201.ctl		
264	i.obs	rstconf_b	i	-
265	i.obs	hreset_b	io	-
266	o.pin	hreset_b	io	g171.ctl
267	IO.ctl	g171.ctl	-	-
268	i.obs	sreset_b	io	-

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell
269	o.pin	sreset_b	io	g170.ctl
270	IO.ctl	g170.ctl	-	-
271	i.obs	clkin	i	-
272	i.obs	pc[27]	io	-
273	o.pin	pc[27]	io	g166.ctl
274	IO.ctl	g166.ctl	-	-
275	i.obs	pd[28]	io	-
276	o.pin	pd[28]	io	g165.ctl
277	IO.ctl	g165.ctl	-	-
278	i.obs	pc[28]	io	-
279	o.pin	pc[28]	io	g164.ctl
280	IO.ctl	g164.ctl	-	-
281	i.obs	pb[28]	io	-
282	o.pin	pb[28]	io	g163.ctl
283	IO.ctl	g163.ctl	-	_
284	i.obs	pa[28]	io	-
285	o.pin	pa[28]	io	g162.ctl
286	IO.ctl	g162.ctl	-	-
287	i.obs	pd[29]	io	-
288	o.pin	pd[29]	io	g161.ctl
289	IO.ctl	g161.ctl	-	-
290	i.obs	pc[29]	io	_
291	o.pin	pc[29]	io	g160.ctl
292	IO.ctl	g160.ctl	-	-
293	i.obs	pb[29]	io	-
294	o.pin	pb[29]	io	g159.ctl
295	IO.ctl	g159.ctl	-	-
296	i.obs	pa[29]	io	-
297	o.pin	pa[29]	io	g158.ctl
298	IO.ctl	g158.ctl	-	_
299	i.obs	pd[30]	io	-
300	o.pin	pd[30]	io	g157.ctl
301	IO.ctl	g157.ctl	-	-
302	i.obs	pc[30]	io	-
303	o.pin	pc[30]	io	g156.ctl
304	IO.ctl	g156.ctl	-	-
305	i.obs	pb[30]	io	-
306	o.pin	pb[30]	io	g155.ctl
307	IO.ctl	g155.ctl	_	_

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell
308	i.obs	pa[30]	io	-
309	o.pin	pa[30]	io	g154.ctl
310	IO.ctl	g154.ctl	-	-
311	i.obs	pd[31]	io	_
312	o.pin	pd[31]	io	g153.ctl
313	IO.ctl	g153.ctl	-	-
314	i.obs	pc[31]	io	-
315	o.pin	pc[31]	io	g152.ctl
316	IO.ctl	g152.ctl	_	-
317	i.obs	pb[31]	io	-
318	o.pin	pb[31]	io	g151.ctl
319	IO.ctl	g151.ctl	_	-
320	i.obs	pa[31]	io	_
321	o.pin	pa[31]	io	g150.ctl
322	IO.ctl	g150.ctl	_	-
323	i.obs	tris_b	i	-
324	o.pin	qreq_b	0	-
325	i.obs	l2_hit_b_irq4_b	i	_
326	o.pin	cpu_br_b	0	-
327	i.obs	br_b	io	-
328	o.pin	br_b	io	g139.ctl
329	IO.ctl	g139.ctl	_	_
330	i.obs	modclk3_ap3_tc2_bnksel2	io	-
331	o.pin	modclk3_ap3_tc2_bnksel2	io	g138.ctl
332	IO.ctl	g138.ctl	_	-
333	i.obs	modclk2_ap2_tc1_bnksel1	io	-
334	o.pin	modclk2_ap2_tc1_bnksel1	io	g137.ctl
335	IO.ctl	g137.ctl	_	-
336	i.obs	modclk1_ap1_tc0_bnksel0	io	-
337	o.pin	modclk1_ap1_tc0_bnksel0	io	g136.ctl
338	IO.ctl	g136.ctl	_	-
339	i.obs	gbl_b_irq1_b	io	-
340	o.pin	gbl_b_irq1_b	io	g133.ctl
341	IO.ctl	g133.ctl	-	-
342	i.obs	tea_b	io	-
343	o.pin	tea_b	io	g132.ctl
344	IO.ctl	g132.ctl	-	-
345	i.obs	spare6	io	-
346	o.pin	spare6	io	g89.ctl

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell
347	IO.ctl	g89.ctl	_	-
348	i.obs	psdval_b	io	-
349	o.pin	psdval_b	io	g130.ctl
350	IO.ctl	g130.ctl	-	-
351	i.obs	dbb_b_irq3_b	io	-
352	o.pin	dbb_b_irq3_b	io	g129.ctl
353	IO.ctl	g129.ctl	-	-
354	i.obs	dbg_b	io	-
355	o.pin	dbg_b	io	g128.ctl
356	IO.ctl	g128.ctl	_	-
357	i.obs	spare4	io	-
358	o.pin	spare4	io	g127.ctl
359	IO.ctl	g127.ctl	-	-
360	i.obs	cpu_bg_b_baddr31_irq5_b	io	-
361	o.pin	cpu_bg_b_baddr31_irq5_b	io	g126.ctl
362	IO.ctl	g126.ctl	-	-
363	i.obs	wt_b_baddr30_irq3_b	io	-
364	o.pin	wt_b_baddr30_irq3_b	io	g125.ctl
365	IO.ctl	g125.ctl	-	-
366	i.obs	ci_b_baddr29_irq2_b	io	-
367	o.pin	ci_b_baddr29_irq2_b	io	g124.ctl
368	IO.ctl	g124.ctl	_	-
369	o.pin	baddr[28]	0	_
370	o.pin	baddr[27]	0	-
371	o.pin	ale	0	-
372	i.obs	irq0_b_nmi_out_b	io	-
373	o.pin	irq0_b_nmi_out_b	io	g120.ctl
374	IO.ctl	g120.ctl	_	-
375	o.pin	cpu_dbg_b	0	-
376	i.obs	a[31]	io	-
377	o.pin	a[31]	io	g111.ctl
378	i.obs	a[30]	io	-
379	o.pin	a[30]	io	g111.ctl
380	i.obs	a[29]	io	-
381	o.pin	a[29]	io	g111.ctl
382	i.obs	a[28]	io	-
383	o.pin	a[28]	io	g111.ctl
384	i.obs	a[27]	io	-
385	o.pin	a[27]	io	g111.ctl

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell
386	IO.ctl	g111.ctl	_	-
387	i.obs	a[26]	io	-
388	o.pin	a[26]	io	g111.ctl
389	i.obs	a[25]	io	-
390	o.pin	a[25]	io	g111.ctl
391	i.obs	a[24]	io	-
392	o.pin	a[24]	io	g111.ctl
393	i.obs	a[23]	io	-
394	o.pin	a[23]	io	g110.ctl
395	i.obs	a[22]	io	-
396	o.pin	a[22]	io	g110.ctl
397	i.obs	a[21]	io	-
398	o.pin	a[21]	io	g110.ctl
399	i.obs	a[20]	io	-
400	o.pin	a[20]	io	g110.ctl
401	i.obs	a[19]	io	-
402	o.pin	a[19]	io	g110.ctl
403	IO.ctl	g110.ctl	_	-
404	i.obs	a[18]	io	-
405	o.pin	a[18]	io	g110.ctl
406	i.obs	a[17]	io	_
407	o.pin	a[17]	io	g110.ctl
408	i.obs	a[16]	io	-
409	o.pin	a[16]	io	g110.ctl
410	i.obs	a[15]	io	-
411	o.pin	a[15]	io	g109.ctl
412	i.obs	a[14]	io	-
413	o.pin	a[14]	io	g109.ctl
414	i.obs	a[13]	io	-
415	o.pin	a[13]	io	g109.ctl
416	i.obs	a[12]	io	-
417	o.pin	a[12]	io	g109.ctl
418	i.obs	a[11]	io	-
419	o.pin	a[11]	io	g109.ctl
420	IO.ctl	g109.ctl	_	-
421	i.obs	a[10]	io	-
422	o.pin	a[10]	io	g109.ctl
423	i.obs	a[9]	io	-
424	o.pin	a[9]	io	g109.ctl

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell
425	i.obs	a[8]	io	-
426	o.pin	a[8]	io	g109.ctl
427	i.obs	a[7]	io	-
428	o.pin	a[7]	io	g108.ctl
429	i.obs	a[6]	io	-
430	o.pin	a[6]	io	g108.ctl
431	i.obs	a[5]	io	-
432	o.pin	a[5]	io	g108.ctl
433	i.obs	a[4]	io	-
434	o.pin	a[4]	io	g108.ctl
435	i.obs	a[3]	io	-
436	o.pin	a[3]	io	g108.ctl
437	IO.ctl	g108.ctl	_	-
438	i.obs	a[2]	io	-
439	o.pin	a[2]	io	g108.ctl
440	i.obs	a[1]	io	-
441	o.pin	a[1]	io	g108.ctl
442	i.obs	a[0]	io	_
443	o.pin	a[0]	io	g108.ctl
444	i.obs	tt[3]	io	_
445	o.pin	tt[3]	io	g112.ctl
446	i.obs	tt[2]	io	-
447	o.pin	tt[2]	io	g112.ctl
448	IO.ctl	g112.ctl	_	-
449	i.obs	tt[1]	io	_
450	o.pin	tt[1]	io	g112.ctl
451	i.obs	tt[0]	io	_
452	o.pin	tt[0]	io	g112.ctl
453	i.obs	tt[4]	io	-
454	o.pin	tt[4]	io	g112.ctl
455	i.obs	artry_b	io	-
456	o.pin	artry_b	io	g118.ctl
457	IO.ctl	g118.ctl	-	-
458	i.obs	aack_b	io	-
459	o.pin	aack_b	io	g117.ctl
460	IO.ctl			-
461	i.obs	abb_b_irq2_b	io	-
462	o.pin	abb_b_irq2_b	io	g116.ctl
463	IO.ctl	g116.ctl		

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell		
464	i.obs	bg_b	io	-		
465	o.pin	bg_b	g115.ctl			
466	IO.ctl	g115.ctl	-			
467	i.obs	irq7_b_int_out_b_ape_b	io	-		
468	o.pin	irq7_b_int_out_b_ape_b	io	g114.ctl		
469	IO.ctl	g114.ctl	-	-		
470	i.obs	ts_b	io	-		
471	o.pin	ts_b	io	g113.ctl		
472	i.obs	tsize[3]	io	_		
473	o.pin	tsize[3]	io	g113.ctl		
474	i.obs	tsize[2]	io	_		
475	o.pin	tsize[2]	io	g113.ctl		
476	IO.ctl	g113.ctl	-	-		
477	i.obs	tsize[1]	io	-		
478	o.pin	tsize[1]	io	g113.ctl		
479	i.obs	tsize[0]	io	-		
480	o.pin	tsize[0]	io	g113.ctl		
481	i.obs	tbst_b	io	-		
482	o.pin	tbst_b	io	g113.ctl		
483	i.obs	d[63]	io	-		
484	o.pin	d[63]	io	g91.ctl		
485	IO.ctl	g91.ctl	_	-		
486	i.obs	d[55]	io	-		
487	o.pin	d[55]	io	g107.ctl		
488	i.obs	d[47]	io	-		
489	o.pin	d[47]	io	g107.ctl		
490	i.obs	d[39]	io	-		
491	o.pin	d[39]	io	g107.ctl		
492	i.obs	d[31]	io	-		
493	o.pin	d[31]	io	g107.ctl		
494	IO.ctl	g107.ctl	-	-		
495	i.obs	d[23]	io	-		
496	o.pin	d[23]	io	g107.ctl		
497	i.obs	d[15]	d[15] io			
498	o.pin	d[15]	io g107.ctl			
499	i.obs	d[7]	io –			
500	o.pin	d[7]	io g107.ctl			
501	i.obs	d[62]	io	-		
502	o.pin	d[62]	io	g106.ctl		

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell		
503	i.obs	d[54]	io	-		
504	o.pin	d[54]	io	g106.ctl		
505	i.obs	d[46]	io	-		
506	o.pin	d[46]	io	g106.ctl		
507	i.obs	d[38]	io	-		
508	o.pin	d[38]	io	g106.ctl		
509	i.obs	d[30]	io	-		
510	o.pin	d[30]	io	g106.ctl		
511	IO.ctl	g106.ctl	_	_		
512	i.obs	d[22]	io	_		
513	o.pin	d[22]	io	g106.ctl		
514	i.obs	d[14]	io			
515	o.pin	d[14]	io	g106.ctl		
516	i.obs	d[6]	io	-		
517	o.pin	d[6]	io	g106.ctl		
518	i.obs	d[61]	io	_		
519	o.pin	d[61]	io	g105.ctl		
520	i.obs	d[53]	io	_		
521	o.pin	d[53]	io	g105.ctl		
522	i.obs	d[45]	io			
523	o.pin	d[45]	io	g105.ctl		
524	i.obs	d[37]	io	_		
525	o.pin	d[37]	io	g105.ctl		
526	i.obs	d[29]	io	_		
527	o.pin	d[29]	io	g105.ctl		
528	IO.ctl	g105.ctl		_		
529	i.obs	d[21]	io	_		
530	o.pin	d[21]	io	g105.ctl		
531	i.obs	d[13]	io	_		
532	o.pin	d[13]	io	g105.ctl		
533	i.obs	d[5]	io	_		
534	o.pin	d[5]	io	g105.ctl		
535	i.obs	d[60]	io	-		
536	o.pin	d[60]	io	g104.ctl		
537	i.obs	d[52]	io	_		
538	o.pin	d[52]	io	g104.ctl		
539	i.obs	d[44]	io	-		
540	o.pin	d[44]	io	g104.ctl		
541	i.obs	d[36]	io			

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell	
542	o.pin	d[36]	io	g104.ctl	
543	i.obs	d[28]	io	-	
544	o.pin	d[28]	io	g104.ctl	
545	IO.ctl	g104.ctl	_	-	
546	i.obs	d[20]	io	-	
547	o.pin	d[20]	io	g104.ctl	
548	i.obs	d[12]	io	-	
549	o.pin	d[12]	io	g104.ctl	
550	i.obs	d[4]	io	-	
551	o.pin	d[4]	io	g104.ctl	
552	i.obs	d[59]	io	-	
553	o.pin	d[59]	io	g103.ctl	
554	i.obs	d[51]	io	-	
555	o.pin	d[51]	io	g103.ctl	
556	i.obs	d[43]	io	-	
557	o.pin	d[43]	io	g103.ctl	
558	i.obs	d[35]	io	-	
559	o.pin	d[35]	io	g103.ctl	
560	i.obs	d[27]	io	-	
561	o.pin	d[27]	io	g103.ctl	
562	IO.ctl	g103.ctl	_	_	
563	i.obs	d[19]	io		
564	o.pin	d[19]	io	g103.ctl	
565	i.obs	d[11]	io	-	
566	o.pin	d[11]	io	g103.ctl	
567	i.obs	d[3]	io	-	
568	o.pin	d[3]	io	g103.ctl	
569	i.obs	d[58]	io	-	
570	o.pin	d[58]	io	g102.ctl	
571	i.obs	d[50]	io	-	
572	o.pin	d[50]	io	g102.ctl	
573	i.obs	d[42]	io	-	
574	o.pin	d[42]	io	g102.ctl	
575	i.obs	d[34]	io	-	
576	o.pin			g102.ctl	
577	i.obs			-	
578	o.pin	d[26]	io	g102.ctl	
579	IO.ctl	g102.ctl	-		
580	i.obs	d[18]	io	_	

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell		
581	o.pin	d[18]	g102.ctl			
582	i.obs	d[10]	io	-		
583	o.pin	d[10]	io	g102.ctl		
584	i.obs	d[2]	io	_		
585	o.pin	d[2]	io	g102.ctl		
586	i.obs	d[57]	io	-		
587	o.pin	d[57]	io	g101.ctl		
588	i.obs	d[49]	io	-		
589	o.pin	d[49]	io	g101.ctl		
590	i.obs	d[41]	io	-		
591	o.pin	d[41]	io	g101.ctl		
592	i.obs	d[33]	io	_		
593	o.pin	d[33]	io	g101.ctl		
594	i.obs	d[25]	io	-		
595	o.pin	d[25]	io	g101.ctl		
596	IO.ctl	g101.ctl	_	-		
597	i.obs	d[17]	io	-		
598	o.pin	d[17]	io	g101.ctl		
599	i.obs	d[9]	io —			
600	o.pin	d[9]	io	g101.ctl		
601	i.obs	d[1]	io	-		
602	o.pin	d[1]	io	g101.ctl		
603	i.obs	d[56]	io	-		
604	o.pin	d[56]	io	g100.ctl		
605	i.obs	d[48]	io	_		
606	o.pin	d[48]	io	g100.ctl		
607	i.obs	d[40]	io	_		
608	o.pin	d[40]	io	g100.ctl		
609	i.obs	d[32]	io	_		
610	o.pin	d[32]	io	g100.ctl		
611	i.obs	d[24]	io	_		
612	o.pin	d[24]	io	g100.ctl		
613	IO.ctl	g100.ctl	-	-		
614	i.obs	d[16] io		-		
615	o.pin	d[16] io		g100.ctl		
616	i.obs	d[8] io		-		
617	o.pin	d[8]	io	g100.ctl		
618	i.obs	d[0]	io	-		
619	o.pin	d[0]	io	g100.ctl		

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell		
620	i.obs	dp7_cse1_irq7_b	io	-		
621	o.pin	dp7_cse1_irq7_b	io	g99.ctl		
622	IO.ctl	g99.ctl	-	-		
623	i.obs	dp6_cse0_irq6_b	io	-		
624	o.pin	dp6_cse0_irq6_b	io	g98.ctl		
625	IO.ctl	g98.ctl	-	-		
626	i.obs	dp5_tben_irq5_b	io	-		
627	o.pin	dp5_tben_irq5_b	io	g97.ctl		
628	IO.ctl	g97.ctl	-	_		
629	i.obs	dp4_irq4_b	io	_		
630	o.pin	dp4_irq4_b	io	g96.ctl		
631	IO.ctl	g96.ctl	-	_		
632	i.obs	dp3_irq3_b	io	_		
633	o.pin	dp3_irq3_b	io	g95.ctl		
634	IO.ctl	g95.ctl	-	_		
635	i.obs	dp2_tlbisync_b_irq2_b	io	-		
636	o.pin	dp2_tlbisync_b_irq2_b	io	g94.ctl		
637	IO.ctl	g94.ctl	_	_		
638	i.obs	dp1_irq1_b	io	_		
639	o.pin	dp1_irq1_b	io	g93.ctl		
640	IO.ctl	g93.ctl	-	_		
641	i.obs	dp0_rsrv_b	io	_		
642	o.pin	dp0_rsrv_b	io	g92.ctl		
643	IO.ctl	g92.ctl	_	_		
644	i.obs	ta_b	io	_		
645	o.pin	ta_b	io	g131.ctl		
646	IO.ctl	g131.ctl	_	_		
647	o.pin	sdamux_gpl5	0	_		
648	i.obs	gta_b_upwait_gpl4_pbs	io	_		
649	o.pin	gta_b_upwait_gpl4_pbs	io	g87.ctl		
650	IO.ctl	g87.ctl	-	_		
651	o.pin	sdcas_b_gpl3	0	_		
652	o.pin	oe_b_sdras_b_gpl2	0	-		
653	o.pin	sdwe_b_gpl1	-			
654	o.pin	sda10_gpl0	_			
655	o.pin	we_dqm_bs_b[7]	-			
656	o.pin	we_dqm_bs_b[6]	_			
657	o.pin	we_dqm_bs_b[5]	0	-		
658	o.pin	we_dqm_bs_b[4]	0	_		

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell		
659	o.pin	we_dqm_bs_b[3]	0	-		
660	o.pin	we_dqm_bs_b[2]	0	-		
661	o.pin	we_dqm_bs_b[1]	0	-		
662	o.pin	bctl0_b	0	-		
663	o.pin	we_dqm_bs_b[0]	0	-		
664	o.pin	lsdamux_gpl5	0	-		
665	i.obs	lgta_b_upwait_gpl4_pbs	io	-		
666	o.pin	lgta_b_upwait_gpl4_pbs	io	g66.ctl		
667	IO.ctl	g66.ctl	_	-		
668	o.pin	lsdcas_b_gpl3	0	-		
669	o.pin	loe_b_sdras_b_gpl2	0	-		
670	o.pin	lsdwe_b_gpl1	0	-		
671	o.pin	lsda10_gpl0	0	-		
672	o.pin	lwr_b	0	-		
673	o.pin	cs_b[0]	0	-		
674	o.pin	cs_b[1]	0	-		
675	o.pin	cs_b[2]	0	-		
676	o.pin	cs_b[3]	0	-		
677	o.pin	cs_b[4]	0	-		
678	o.pin	cs_b[5]	0	-		
679	o.pin	cs_b[6]	0	-		
680	o.pin	cs_b[7]	0	-		
681	o.pin	cs_b[8]	0	-		
682	o.pin	cs_b[9]	0	-		
683	i.obs	cs10_b_bctl1_b_dbg_dis	io	-		
684	o.pin	cs10_b_bctl1_b_dbg_dis	io	g59.ctl		
685	IO.ctl	g59.ctl	_	_		
686	i.obs	cs11_b_ap0	io	-		
687	o.pin	cs11_b_ap0	io	g60.ctl		
688	IO.ctl	g60.ctl	-	-		
689	o.pin	lwe_dqm_bs_b[3]	0	-		
690	o.pin	lwe_dqm_bs_b[2]	0	-		
691	o.pin	lwe_dqm_bs_b[1]	0	-		
692	o.pin	lwe_dqm_bs_b[0]	-			
693	i.obs	lcl_d_ad[0]	-			
694	o.pin	lcl_d_ad[0]	g40.ctl			
695	i.obs	lcl_d_ad[5]	-			
696	o.pin	lcl_d_ad[5]	io	g48.ctl		
697	IO.ctl	g48.ctl		_		

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell		
698	i.obs	i.obs lcl_d_ad[4]		-		
699	o.pin	lcl_d_ad[4]	io	g40.ctl		
700	i.obs	lcl_d_ad[3]	io	-		
701	o.pin	lcl_d_ad[3]	io	g40.ctl		
702	i.obs	lcl_d_ad[2]	io	-		
703	o.pin	lcl_d_ad[2]	io	g40.ctl		
704	i.obs	lcl_d_ad[1]	io	-		
705	o.pin	lcl_d_ad[1]	io	g40.ctl		
706	i.obs	lcl_d_ad[6]	io	-		
707	o.pin	lcl_d_ad[6]	io	g40.ctl		
708	IO.ctl	g40.ctl	-	-		
709	i.obs	lcl_d_ad[10]	io	-		
710	o.pin	lcl_d_ad[10]	io	g40.ctl		
711	i.obs	lcl_d_ad[9]	io	-		
712	o.pin	lcl_d_ad[9]	io	g40.ctl		
713	i.obs	lcl_d_ad[8]	io	-		
714	o.pin	lcl_d_ad[8]	io	g40.ctl		
715	i.obs	lcl_dp_c_be[0]	io	-		
716	o.pin	lcl_dp_c_be[0]	io	g49.ctl		
717	IO.ctl	g49.ctl	-	-		
718	i.obs	lcl_d_ad[7]	io	-		
719	o.pin	lcl_d_ad[7]	io	g41.ctl		
720	i.obs	lcl_d_ad[14]	io	-		
721	o.pin	lcl_d_ad[14]	io	g41.ctl		
722	i.obs	lcl_d_ad[13]	io	-		
723	o.pin	lcl_d_ad[13]	io	g41.ctl		
724	IO.ctl	g41.ctl	-	-		
725	i.obs	lcl_d_ad[12]	io	-		
726	o.pin	lcl_d_ad[12]	io	g41.ctl		
727	i.obs	lcl_d_ad[11]	io	-		
728	o.pin	lcl_d_ad[11]	io	g41.ctl		
729	i.obs	I_a26_gnt1_b	io	-		
730	o.pin	I_a26_gnt1_b io		g32.ctl		
731	IO.ctl	g32.ctl	-			
732	i.obs	I_a22_serr_b	-			
733	o.pin	I_a22_serr_b	g28.ctl			
734	IO.ctl	g28.ctl	-			
735	i.obs	I_a14_par	io	-		
736	o.pin	I_a14_par	io	g20.ctl		

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell		
737	IO.ctl	g20.ctl	-	-		
738	i.obs	lcl_dp_c_be[1]	io	-		
739	o.pin	lcl_dp_c_be[1]	io	g44.ctl		
740	IO.ctl	g44.ctl	_	-		
741	i.obs	lcl_d_ad[15]	io	-		
742	o.pin	lcl_d_ad[15]	io	g47.ctl		
743	IO.ctl	g47.ctl	-	-		
744	i.obs	I_a30_lock_b	io	-		
745	o.pin	I_a30_lock_b	io	g36.ctl		
746	IO.ctl	g36.ctl	_	-		
747	i.obs	I_a21_perr_b	io	-		
748	o.pin	I_a21_perr_b	io	g27.ctl		
749	IO.ctl	g27.ctl	-	-		
750	i.obs	I_a24_req1_b	io	-		
751	o.pin	I_a24_req1_b	io	g30.ctl		
752	IO.ctl	g30.ctl	-	-		
753	i.obs	l_a19_devsel_b	io	-		
754	o.pin	l_a19_devsel_b	io	g25.ctl		
755	IO.ctl	g25.ctl	-	-		
756	i.obs	I_a17_irdy_b_ckstp_out	io	-		
757	o.pin	I_a17_irdy_b_ckstp_out	io	g23.ctl		
758	IO.ctl	g23.ctl	-	-		
759	i.obs	I_a16_trdy_b	io	-		
760	o.pin	I_a16_trdy_b	io	g22.ctl		
761	IO.ctl	g22.ctl	-	-		
762	i.obs	l_a18_stop_b	io	-		
763	o.pin	l_a18_stop_b	io	g24.ctl		
764	IO.ctl	g24.ctl	-	-		
765	i.obs	l_a15_frm_b_smi_b	io	-		
766	o.pin	l_a15_frm_b_smi_b	io	g21.ctl		
767	IO.ctl	g21.ctl	-	-		
768	i.obs	lcl_dp_c_be[2]	io	-		
769	o.pin	lcl_dp_c_be[2]	io	g46.ctl		
770	IO.ctl	g46.ctl	-			
771	i.obs	lcl_d_ad[16]	-			
772	o.pin	lcl_d_ad[16]	g42.ctl			
773	i.obs	lcl_d_ad[17]	-			
774	o.pin	lcl_d_ad[17]	io	g42.ctl		
775	i.obs	lcl_d_ad[18]	io	-		

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell		
776	o.pin	lcl_d_ad[18]	io	g42.ctl		
777	i.obs	lcl_d_ad[19]	io	-		
778	o.pin	lcl_d_ad[19]	io	g42.ctl		
779	IO.ctl	g42.ctl	-	-		
780	i.obs	lcl_d_ad[20]	io	-		
781	o.pin	lcl_d_ad[20]	io	g42.ctl		
782	i.obs	lcl_d_ad[21]	io	-		
783	o.pin	lcl_d_ad[21]	io	g42.ctl		
784	i.obs	lcl_d_ad[22]	io	-		
785	o.pin	lcl_d_ad[22]	io	g42.ctl		
786	i.obs	lcl_d_ad[23]	io	-		
787	o.pin	lcl_d_ad[23]	io	g42.ctl		
788	i.obs	I_a20_idsel_b	io	-		
789	o.pin	l_a20_idsel_b	io	g26.ctl		
790	IO.ctl	g26.ctl	_	-		
791	i.obs	lcl_dp_c_be[3]	io	-		
792	o.pin	lcl_dp_c_be[3]	io	g45.ctl		
793	IO.ctl	g45.ctl		_		
794	i.obs	lcl_d_ad[24]	io	-		
795	o.pin	lcl_d_ad[24]	io	g43.ctl		
796	i.obs	lcl_d_ad[25]	io	-		
797	o.pin	lcl_d_ad[25]	io	g43.ctl		
798	i.obs	lcl_d_ad[26]	io	-		
799	o.pin	lcl_d_ad[26]	io	g43.ctl		
800	i.obs	lcl_d_ad[27]	io	_		
801	o.pin	lcl_d_ad[27]	io	g43.ctl		
802	IO.ctl	g43.ctl		-		
803	i.obs	lcl_d_ad[28]	io	-		
804	o.pin	lcl_d_ad[28]	io	g43.ctl		
805	i.obs	lcl_d_ad[29]	io	_		
806	o.pin	lcl_d_ad[29]	io	g43.ctl		
807	i.obs	lcl_d_ad[30]	io	-		
808	o.pin	lcl_d_ad[30]	io	g43.ctl		
809	i.obs	lcl_d_ad[31]	-			
810	o.pin	lcl_d_ad[31]	g43.ctl			
811	i.obs	I_a23_req0_b	-			
812	o.pin	I_a23_req0_b	g29.ctl			
813	IO.ctl	g29.ctl	io	-		
814	i.obs	I_a25_gnt0_b	io	_		

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell		
815	o.pin	I_a25_gnt0_b	io	g31.ctl		
816	IO.ctl	g31.ctl	-	-		
817	i.obs	I_a27_pclk	io	_		
818	o.pin	I_a27_pclk	io	g33.ctl		
819	IO.ctl	g33.ctl	-	_		
820	i.obs	I_a28_rst_b	io	_		
821	o.pin	I_a28_rst_b	io	g34.ctl		
822	IO.ctl	g34.ctl	_	_		
823	i.obs	I_a29_inta_b	io	_		
824	o.pin	I_a29_inta_b	io	g35.ctl		
825	IO.ctl	g35.ctl	_	_		
826	i.obs	l_a31	io	_		
827	o.pin	l_a31	io	g37.ctl		
828	IO.ctl	g37.ctl	_	_		
829	i.obs	pc[0]	io	_		
830	o.pin	pc[0]	io	g19.ctl		
831	IO.ctl	g19.ctl	_	_		
832	i.obs	pa[0]	io	_		
833	o.pin	pa[0]	io	g18.ctl		
834	IO.ctl	g18.ctl				
835	i.obs	pd[4]	io	_		
836	o.pin	pd[4]	io	g17.ctl		
837	IO.ctl	g17.ctl		_		
838	i.obs	pc[1]	io	_		
839	o.pin	pc[1]	io	g16.ctl		
840	IO.ctl	g16.ctl		_		
841	i.obs	pb[4]	io	_		
842	o.pin	pb[4]	io	g15.ctl		
843	IO.ctl	g15.ctl		_		
844	i.obs	pa[1]	io	-		
845	o.pin	pa[1]	io	g14.ctl		
846	IO.ctl	g14.ctl		_		
847	i.obs	pd[5]	io	_		
848	o.pin	pd[5]	io	g13.ctl		
849	IO.ctl			_		
850	i.obs			_		
851	o.pin	pc[2]	io	g12.ctl		
852	IO.ctl	g12.ctl		_		
853	i.obs	pb[5]	io	_		

Table 12-2. Boundary Scan Bit Definition (Continued)

Bit	Cell Type	Pin/Cell Name	Pin Type	Output Control Cell	
854	o.pin pb[5]		io	g11.ctl	
855	IO.ctl	g11.ctl	-	-	
856	i.obs	pa[2]	io	-	
857	o.pin	pa[2]	io	g10.ctl	
858	IO.ctl	g10.ctl	-	-	
859	i.obs	pd[6]	io	-	
860	o.pin	pd[6]	io	g9.ctl	
861	IO.ctl	g9.ctl	-	-	
862	i.obs	pc[3]	io	-	
863	o.pin	pc[3]	io	g8.ctl	
864	IO.ctl	g8.ctl	-	-	
865	i.obs	pb[6]	io	-	
866	o.pin	pb[6]	io	g7.ctl	
867	IO.ctl	g7.ctl	-	-	
868	i.obs	pa[3]	io	-	
869	o.pin	pa[3]	io	g6.ctl	
870	IO.ctl	g6.ctl	-	-	
871	i.obs	pd[7]	io	-	
872	o.pin	pd[7]	io	g5.ctl	
873	IO.ctl	g5.ctl	-	-	
874	i.obs	pc[4]	io	-	
875	o.pin	pc[4]	io	g4.ctl	
876	IO.ctl	IO.ctl g4.ctl –			
877	i.obs	pb[7]	io	-	
878	o.pin	pb[7]	io	g3.ctl	

Table 12-2. Boundary Scan Bit Definition (Continued)

12.4 Instruction Register

The MPC8260's JTAG implementation includes the public instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) and also supports the CLAMP instruction. One additional public instruction (HI-Z) can be used to disable all device output drivers. The MPC8260 includes a 4-bit instruction register (no parity) that consists of a shift register with four parallel outputs. Data is transferred from the shift register to the parallel outputs during the update-IR controller state. The four bits are used to decode the five unique instructions listed in Table 12-3.

	Code					D ecoded as				
B7	B 6	B5	В4	В3	B2	B1	В0	Instruction	Description	
0	0	0	0	0	0	0	0	EXTEST	External test. Selects the 475-bit boundary scan register. EXTEST also asserts an internal reset for the MPC8260's system logic to force a known beginning internal state while performing external boundary scan operations. By using the TAP, the register is capable of scanning user-defined values into the output buffers, capturing values presented to input pins, and controlling the output drive of three-state output or bidirectional pins. For more details on the function and use of EXTEST, refer to the IEEE 1149.1 standard.	
1	1	0	0	0	0	0	0	SAMPLE/ PRELOAD	Initializes the boundary scan register output cells before the selection of EXTEST. This initialization ensures that known data appears on the outputs when entering an EXTEST instruction. SAMPLE/PRELOAD also provides a chance to obtain a snapshot of system data and control signals. NOTE: Since there is no internal synchronization between the TCK and CLKOUT, the user must provide some form of external synchronization between the JTAG operation at TCK frequency and the system operation CLKOUT frequency to achieve meaningful results.	
1	1	1	1	1	1	1	1	BYPASS	The BYPASS instruction creates a shift register path from TDI to the bypass register and, finally, to TDO, circumventing the 475-bit boundary scan register. This instruction is used to enhance test efficiency when a component other than the MPC8260 becomes the device under test. It selects the single-bit bypass register as shown below. Shift DR $G1$ 0 1 MUX DC Clock DR When the bypass register is selected by the current instruction, the shift register stage is cleared on the rising edge of TCK in the capture-DR controller state. Thus, the first bit to be shifted out after selecting the bypass register is always a logic zero.	
1	1	1	1	0	0	0	0	HI–Z	Provided as a manufacturer's optional public instruction to avoid back driving the output pins during circuit-board testing. When HI-Z is invoked all output drivers, including the two-state drivers, are turned off (high impedance). The instruction selects the bypass register.	
1	1	1	1	0	0	0	1	CLAMP and BYPASS	CLAMP selects the single-bit bypass register as shown in the BYPASS instruction figure above, and the state of all signals driven from the system output pins is completely defined by the data previously shifted into the boundary scan register. For example, using the SAMPLE/PRELOAD instruction.	

Table 12-3. Instruction Decoding

B0 (lsb) is shifted first.

The parallel output of the instruction register is set to all ones in the test-logic-reset controller state. Notice that this preset state is equivalent to the BYPASS instruction. During the capture-IR controller state, the parallel inputs to the instruction shift register are loaded with the CLAMP command code.

12.5 MPC8260 Restrictions

The control afforded by the output enable signals using the boundary-scan register and the EXTEST instruction requires a compatible circuit-board test environment to avoid device-destructive configurations. The user must avoid situations in which the MPC8260's output drivers are enabled into actively driven networks.

12.6 Nonscan Chain Operation

In nonscan chain operation, the TCK input does not include an internal pull-up resistor and should be tied high or low to preclude mid-level inputs.

To ensure that the scan chain test logic is kept transparent to the system logic, the TAP controller is forced into the test-logic-reset state. This is done inside the chip by connecting TRST to PORESET

TMS should remain connected to V_{cc} or should not change state, so that the TAP controller will not leave the test-logic-reset state.

Part IV Communications Processor Module

Intended Audience

Part IV is intended for system designers who need to implement various communications protocols on the MPC8260. It assumes a basic understanding of the PowerPC exception model, the MPC8260 interrupt structure, as well as a working knowledge of the communications protocols to be used. A complete discussion of these protocols is beyond the scope of this book.

Contents

Part IV describes behavior of the MPC8260 communications processor module (CPM) and the RISC communications processor (CP) that it contains (note that this is separate from the embedded PowerPC processor).

It contains the following chapters:

- Chapter 13, "Communications Processor Module Overview," provides a brief overview of the MPC8260 CPM.
- Chapter 14, "Serial Interface with Time-Slot Assigner," describes the SIU, which controls system start-up, initialization and operation, protection, as well as the external system bus.
- Chapter 15, "CPM Multiplexing," describes the CPM multiplexing logic (CMX) which connects the physical layer—UTOPIA, MII, modem lines,
- Chapter 16, "Baud-Rate Generators (BRGs)," describes the eight independent, identical baud-rate generators (BRGs) that can be used with the FCCs, SCCs, and SMCs.
- Chapter 17, "Timers," describes the MPC8260 timer implementation, which can be configured as four identical 16-bit or two 32-bit general-purpose timers.
- Chapter 18, "SDMA Channels and IDMA Emulation," describes the two physical serial DMA (SDMA) channels on the MPC8260.

Part IV. Communications Processor Module

- Chapter 19, "Serial Communications Controllers (SCCs)," describes the four serial communications controllers (SCC), which can be configured independently to implement different protocols for bridging functions, routers, and gateways, and to interface with a wide variety of standard WANs, LANs, and proprietary networks.
- Chapter 20, "SCC UART Mode," describes the MPC8260 implementation of universal asynchronous receiver transmitter (UART) protocol that is used for sending low-speed data between devices.
- Chapter 21, "SCC HDLC Mode," describes the MPC8260 implementation of HDLC protocol.
- Chapter 22, "SCC BISYNC Mode," describes the MPC8260 implementation of byte-oriented BISYNC protocol developed by IBM for use in networking products.
- Chapter 23, "SCC Transparent Mode," describes the MPC8260 implementation of transparent mode (also called totally transparent mode), which provides a clear channel on which the SCC can send or receive serial data without bit-level manipulation.
- Chapter 24, "SCC Ethernet Mode," describes the MPC8260 implementation of Ethernet protocol.
- Chapter 25, "SCC AppleTalk Mode," describes the MPC8260 implementation of AppleTalk.
- Chapter 26, "Serial Management Controllers (SMCs)," describes two serial management controllers, full-duplex ports that can be configured independently to support one of three protocols—UART, transparent, or general-circuit interface (GCI).
- Chapter 27, "Multi-Channel Controllers (MCCs)," describes the MPC8260's multichannel controller (MCC), which handles up to 128 serial, full-duplex data channels.
- Chapter 28, "Fast Communications Controllers (FCCs)," describes the MPC8260's fast communications controllers (FCCs), which are SCCs optimized for synchronous high-rate protocols.
- Chapter 29, "ATM Controller," describes the MPC8260 ATM controller, which provides the ATM and AAL layers of the ATM protocol. The ATM controller performs segmentation and reassembly (SAR) functions of AAL5, AAL1, and AAL0, and most of the common parts convergence sublayer (CP-CS) of these protocols.
- Chapter 30, "Fast Ethernet Controller," describes the MPC8260's implementation of the Ethernet IEEE 802.3 protocol.
- Chapter 31, "FCC HDLC Controller," describes the FCC implementation of the HDLC protocol.
- Chapter 32, "FCC Transparent Controller," describes the FCC implementation of the transparent protocol.

- Chapter 33, "Serial Peripheral Interface (SPI)," describes the serial peripheral interface, which allows the MPC8260 to exchange data between other MPC8260 chips, the MC68360, the MC68302, the M68HC11, and M68HC05 microcontroller families, and peripheral devices such as EEPROMs, real-time clocks, A/D converters, and ISDN devices.
- Chapter 34, "I2C Controller," describes the MPC8260 implementation of the interintegrated circuit (I²C®) controller, which allows data to be exchanged with other I²C devices, such as microcontrollers, EEPROMs, real-time clock devices, and A/D converters.
- Chapter 35, "Parallel I/O Ports," describes the four general-purpose I/O ports A–D. Each signal in the I/O ports can be configured as a general-purpose I/O signal or as a signal dedicated to supporting communications devices, such as SMCs, SCCs. MCCs, and FCCs.

Suggested Reading

This section lists additional reading that provides background for the information in this manual as well as general information about the PowerPC architecture.

MPC8xx Documentation

Supporting documentation for the MPC8260 can be accessed through the world-wide web at http://www.mot.com/netcomm. This documentation includes technical specifications, reference materials, and detailed applications notes.

PowerPC Documentation

The PowerPC documentation is organized in the following types of documents:

- Programming environments manuals These books provide information about resources defined by the PowerPC architecture that are common to PowerPC processors. There are two versions, one that describes the functionality of the combined 32- and 64-bit architecture models and one that describes only the 32-bit model.
 - PowerPC Microprocessor Family: The Programming Environments, Rev 1 (Motorola order #: MPCFPE/AD)
 - PowerPC Microprocessor Family: The Programming Environments for 32-Bit Microprocessors, Rev. 1 (Motorola order #: MPCFPE32B/AD)
- PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors (Motorola order #: MPCBUSIF/AD) provides a detailed functional description of the 60x bus interface, as implemented on the PowerPC 601[™], 603, and 604 family of PowerPC microprocessors. This document is intended to help system and chip set developers by providing a centralized reference source to identify the bus interface presented by the 60x family of PowerPC microprocessors.

Part IV. Communications Processor Module

• PowerPC Microprocessor Family: The Programmer's Reference Guide (Motorola order #: MPCPRG/D) is a concise reference that includes the register summary, memory control model, exception vectors, and the PowerPC instruction set.

For a current list of PowerPC documentation, refer to the world-wide web at http://www.mot.com/PowerPC.

Conventions

This document uses the following notational conventions:

Bold	Bold entries in figures and tables showing registers and parameter RAM should be initialized by the user.
mnemonics	Instruction mnemonics are shown in lowercase bold.
italics	Italics indicate variable command parameters, for example, bcctr <i>x</i> .
	Book titles in text are set in italics.
0x0	Prefix to denote hexadecimal number
0b0	Prefix to denote binary number
rA, rB	Instruction syntax used to identify a source GPR
rD	Instruction syntax used to identify a destination GPR
REG[FIELD]	Abbreviations or acronyms for registers or buffer descriptors are shown in uppercase text. Specific bits, fields, or numerical ranges appear in brackets. For example, MSR[LE] refers to the little-endian mode enable bit in the machine state register.
Х	In certain contexts, such as in a signal encoding or a bit field, indicates a don't care.
n	Indicates an undefined numerical value
-	NOT logical operator
&	AND logical operator
I	OR logical operator

Acronyms and Abbreviations

Table i contains acronyms and abbreviations used in this document. Note that the meanings for some acronyms (such as SDR1 and DSISR) are historical, and the words for which an acronym stands may not be intuitively obvious.

Term	Meaning
AAL	ATM adaptation layer
ABR	Availabe bit rate
ACR	Allowed cell rate
ALU	Arithmetic logic unit
APC	ATM pace control
ATM	Asynchronous transfer mode
BD	Buffer descriptor
BIST	Built-in self test
вт	Burst tolerance
CBR	Constant bit rate
CEPT	Conference des administrations Europeanes des Postes et Telecommunications (European Conference of Postal and Telecommunications Administrations).
C/I	Condition/indication channel used in the GCI protocol
CLP	Cell loss priority
CP	Communications processor
CP-CS	Common part convergence sublayer
СРМ	Communications processor module
CPS	Cells per slot
CSMA	Carrier sense multiple access
CSMA/CD	Carrier sense multiple access with collision detection
DMA	Direct memory access
DPLL	Digital phase-locked loop
DPR	Dual-port RAM
DRAM	Dynamic random access memory
DSISR	Register used for determining the source of a DSI exception
EA	Effective address
EEST	Enhanced Ethernet serial transceiver
EPROM	Erasable programmable read-only memory
FBP	Free buffer pool
FIFO	First-in-first-out (buffer)
GCI	General circuit interface
GCRA	Generic cell rate algorithm (leaky bucket)
GPCM	General-purpose chip-select machine

Table vii. Acronyms and Abbreviated Terms

Term	Meaning
GUI	Graphical user interface
HDLC	High-level data link control
l ² C	Inter-integrated circuit
IDL	Inter-chip digital link
IEEE	Institute of Electrical and Electronics Engineers
IrDA	Infrared Data Association
ISDN	Integrated services digital network
JTAG	Joint Test Action Group
JTAG	Joint Test Action Group
LAN	Local area network
LIFO	Last-in-first-out
LRU	Least recently used
LSB	Least-significant byte
lsb	Least-significant bit
MAC	Multiply accumulate or media access control
MBS	Maximum burst size
МІІ	Media-independent interface
MSB	Most-significant byte
msb	Most-significant bit
MSR	Machine state register
NaN	Not a number
NIC	Network interface card
NIU	Network interface unit
NMSI	Nonmultiplexed serial interface
NRT	Non-real time
OSI	Open systems interconnection
PCI	Peripheral component interconnect
PDU	Protocol data unit
PCR	Peak cell rate
PHY	Physical layer
РРМ	Pulse-position modulation
RM	Resource management

Table vii. Acronyms and Abbreviated Terms (Continued)

Term	Meaning
RT	Real-time
RTOS	Real-time operating system
Rx	Receive
SAR	Segmentation and reassembly
SCC	Serial communications controller
SCP	Serial control port
SCR	Sustained cell rate
SDLC	Synchronous Data Link Control
SDMA	Serial DMA
SI	Serial interface
SIU	System interface unit
SMC	Serial management controller
SNA	Systems network architecture
SPI	Serial peripheral interface
SRAM	Static random access memory
SRTS	Synchronous residual time stamp
TDM	Time-division multiplexed
TE	Terminal endpoint of an ISDN connection
TLB	Translation lookaside buffer
TSA	Time-slot assigner
Тх	Transmit
UBR	Unspecified bit rate
UBR+	Unspecified bit rate with minimum cell rate guarantee
UART	Universal asynchronous receiver/transmitter
UPM	User-programmable machine
USART	Universal synchronous/asynchronous receiver/transmitter
WAN	Wide area network

Table vii. Acronyms and Abbreviated Terms (Continued)

Part IV. Communications Processor Module

Chapter 13 Communications Processor Module Overview

The MPC8260's communications processor module (CPM) is a superset of the MPC860 PowerQUICC CPM, with enhancements in performance and the addition of hardware and microcode routines for supporting high bit-rate protocols like ATM and Fast Ethernet. The support for multiple HDLC channels is enhanced to support up to 256 HDLC channels.

13.1 Features

The CPM includes various blocks to provide the system with an efficient way to handle data communication tasks. The following is a list of the CPM's important features.

- Communications processor (CP)
 - One instruction per clock
 - Executes code from internal ROM or dual-port RAM
 - 32-bit RISC architecture
 - Tuned for communication environments: instruction set supports CRC computation and bit manipulation.
 - Internal timer
 - Interfaces with the PowerPC[™] embedded core processor through a 24-Kbyte dual-port RAM and virtual DMA channels for each peripheral controller
 - Handles serial protocols and virtual DMA.
- Three full-duplex fast serial communications controllers (FCCs) support the following protocols:
 - ATM protocol through UTOPIA interface (FCC1 and FCC2 only)
 - IEEE802.3/Fast Ethernet
 - HDLC
 - Totally transparent operation
- Two multi-channel controllers (MCCs) that together can handle up to 256 HDLC/ transparent channels at 64 Kbps each, multiplexed on up to eight TDM interfaces

- Four full-duplex serial communications controllers (SCCs) support the following protocols:
 - IEEE802.3/Ethernet
 - High level/synchronous data link control (HDLC/SDLC)
 - LocalTalk (HDLC-based local area network protocol)
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART (1x clock mode)
 - Binary synchronous communication (BISYNC)
 - Totally transparent operation
- Two full-duplex serial management controllers (SMCs) support the following protocols:
 - GCI (ISDN interface) monitor and C/I channels
 - UART
 - Transparent operation
- Serial peripheral interface (SPI) support for master or slave
- I²C bus controller
- Time-slot assigner supports multiplexing of data from any of the SCCs, FCCs, SMCs, and MCCs onto eight time-division multiplexed (TDM) interfaces. The timeslot assigner supports the following TDM formats:
 - T1/CEPT lines
 - T3/E3
 - Pulse code modulation (PCM) highway interface
 - ISDN primary rate
 - Motorola interchip digital link (IDL)
 - General circuit interface (GCI)
 - User-defined interfaces
- Eight independent baud rate generators (BRGs)
- Four general-purpose 16-bit timers or two 32-bit timers
- General-purpose parallel ports-sixteen parallel I/O lines with interrupt capability

Figure 13-1 shows the MPC8260's CPM block diagram.

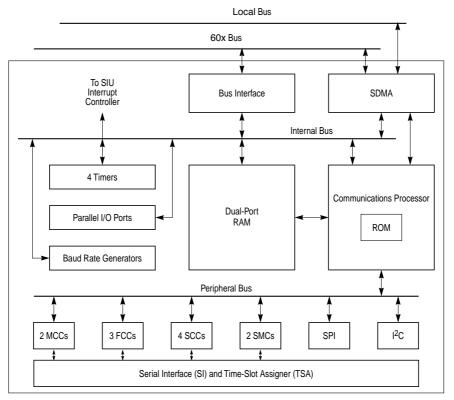


Figure 13-1. MPC8260 CPM Block Diagram

13.2 MPC8260 Serial Configurations

The MPC8260 offers a flexible set of communications capabilities. A subset of the possible configurations using an MPC8260 is shown in Table 13-1.

Application	MCC1	MCC2	FCC1	FCC2	FCC3	SCC1	SCC2	SCC3	SCC4	SMC1	SMC2
ISDN router	4 E1	4 E1	FEnet or ATM	FEnet		UART	UART	UART	UART		
ATM switch			ATM	FEnet		UART					
ATM access			ATM	FEnet	FEnet						
	E3 or E1's	E3 or E1's	ATM			UART					
GSM mobile switching center	E1's		FEnet or ATM Backbone	10 M HDLC	10 M HDLC						

Table 13-1. Possible MPC8260 Applications

13.3 Communications Processor (CP)

The communications processor (CP), also called the RISC microcontroller, is a 32-bit controller for the CPM that resides on a separate bus from the core and, therefore, can perform tasks independent of the PowerPC core. The CP handles lower-layer communications tasks and DMA control, freeing the core to handle higher-layer activities. The CP works with the peripheral controllers and parallel port to implement user-programmable protocols and manage the serial DMA (SDMA) channels that transfer data between the I/O channels and memory. It also manages the IDMA (independent DMA) channels and contains an internal timer used to implement up to 16 additional software timers.

The CP's architecture and instruction set are optimized for data communications and data processing required by many wire-line and wireless communications standards.

13.3.1 Features

The following is a list of the CP's important features.

- One system clock cycle per instruction
- 32-bit instruction object code
- Executes code from internal ROM or RAM
- 32-bit ALU data path
- 64-bit dual-port RAM access
- Optimized for communications processing
- Performs DMA bursting of serial data from/to dual-port RAM to/from external memory

13.3.2 CP Block Diagram

The CP contains the following functional units:

- Scheduler and sequencer
- Instruction decoder
- Execution unit
- Load/store unit (LSU)
- Block transfer unit (BTM)-moves data between serial FIFO and RAM
- Eight general purpose registers (GPRs)
- Special registers, CRC machine, HDLC framer

The CP also gives SDMA commands to the SDMA. The CP interfaces with the dual-port RAM for loading and storing data and for fetching instructions while running microcode from dual-port RAM.

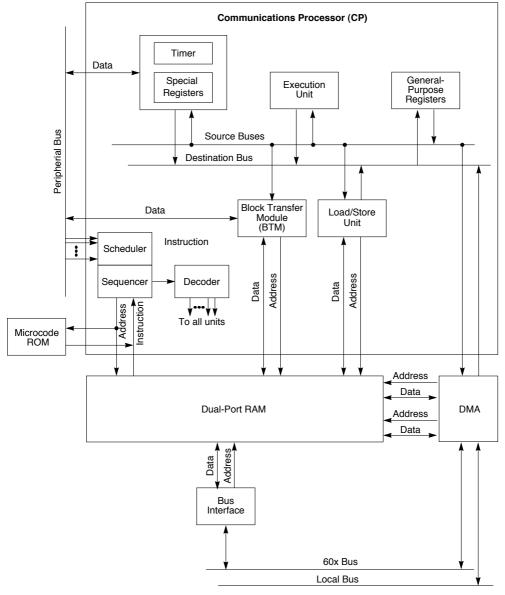


Figure 13-2 shows the CP block diagram.

Figure 13-2. Communications Processor (CP) Block Diagram

13.3.3 PowerPC Core Interface

The CP communicates with the PowerPC core in several ways:

- Many parameters are exchanged through the dual-port RAM.
- The CP can execute special commands issued by the core. These commands should only be issued in special situations like exceptions or error recovery.
- The CP generates interrupts through the SIU interrupt controller.
- The PowerPC core can read the CPM status/event registers at any time.

13.3.4 Peripheral Interface

The CP uses the peripheral bus to communicate with all of its peripherals. Each FCC and each SCC has a separate receive and transmit FIFOs. The FCC FIFOs are 192 bytes. The SCC FIFOs are 32 bytes. The SMCs, SPI, and I²C are all double-buffered, creating effective FIFO sizes of two characters.

Table 13-2 shows the order in which the CP handles requests from peripherals from highest to lowest priority.

Priority	Request						
1	Reset in the CPCR or SRESET						
2	SDMA bus error						
3	Commands issued to the CPCR						
4	Emergency (from FCCs, MCCs, and SCCs)						
5	DMA[1-4] emulation (default-option 1) ¹						
6	FCC1 receive						
7	FCC1 transmit						
8	MCC1 receive						
9	MCC2 receive						
10	MCC1 transmit						
11	MCC2 transmit						
12	FCC2 receive						
13	FCC2 transmit						
14	FCC3 receive						
15	FCC3 transmit						
16	SCC1 receive						
17	SCC1 transmit						
18	SCC2 receive						

Table 13-2. Peripheral Prioritization

Priority	Request						
19	SCC2 transmit						
20	SCC3 receive						
21	SCC3 transmit						
22	SCC4 receive						
23	SCC4 transmit						
24	DMA[1–4] emulation (option 2) ¹						
25	SMC1 receive						
26	SMC1 transmit						
27	SMC2 receive						
28	SMC2 transmit						
29	SPI receive						
30	SPI transmit						
31	I ² C receive						
32	I ² C transmit						
33	RISC timer table						
34	IDMA[1–4] emulation (option 3) ¹						

Table 13-2. Peripheral Prioritization (Continued)

¹The priority of each IDMA channel is programmed independently. See the RCCR[DRxQP] description in Section 13.3.6, "RISC Controller Configuration Register (RCCR)."

13.3.5 Execution from RAM

The CP has an option to execute microcode from a portion of user RAM located in the dualport RAM. In this mode, the CP fetches instructions from both the dual-port RAM and its own private ROM. This mode allows Motorola to add new protocols or enhancements to the MPC8260 in the form of RAM microcode packages. If preferred, the user can obtain binary microcode from Motorola and load it into the dual-port RAM.

13.3.6 RISC Controller Configuration Register (RCCR)

The RISC controller configuration register (RCCR) configures the CP to run microcode from ROM or RAM and controls the CP's internal timer.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	TIME	- TIMEP DR1M DR2M DR1QP EIE SCD DR2C									2QP					
Reset		0000_0000_0000														
R/W	R/W															
Addr	0x119C4															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	E	ERAM		_	EDM1	EDM2	EDM3	EDM4	DR3M	DR4M	DR	BQP	DEM12	DEM34	DR4	IQP
Reset	0000_0000_0000															
R/W	R/W															
Addr								0X	119C6							

Figure 13-3. RISC Controller Configuration Register (RCCR)

RCCR bit fields are described in Table 13-3.

Table 13-3. RISC Controller Configuration Register Field Descriptions

Bits	Name	Description
0	TIME	Timer enable. Enables the CP internal timer that generates a tick to the CP based on the value programmed into the TIMEP field. TIME can be modified at any time to start or stop the scanning of the RISC timer tables.
1	-	Reserved
2–7	TIMEP	Timer period controls the CP timer tick. The RISC timer tables are scanned on each timer tick and the input to the timer tick generator is the general system clock (133/166MHZ) divided by 1,024. The formula is (TIMEP + 1) × 1,024 = (general system clock period). Thus, a value of 0 stored in these bits gives a timer tick of $1 \times (1,024) = 1,024$ general system clocks and a value of 63 (decimal) gives a timer tick of $64 \times (1,024) = 65,536$ general system clocks.
8, 9, 24, 25	DRxM	IDMAx request mode. Controls the IDMA request x (DREQx) sensitivity mode. DREQx is used to activate IDMA channel x. See Section 18.7, "IDMA Interface Signals." 0 DREQx is edge sensitive (according to EDMx). 1 DREQx is level sensitive.
10–11, 14–15, 26–27, 30–31	DRxQP	IDMAx request priority. Controls the priority of DREQx relative to the communications controllers. See Section 18.7, "IDMA Interface Signals." 00 DREQx has more priority than the communications controllers (default). 01 DREQx has less priority than the communications controllers (option 2). 10 DREQx has the lowest priority (option 3). 11 Reserved
12	EIE	External interrupt enable. When EIE is set, DREQ1 acts as an external interrupt to the CP. Configure as instructed in the download process of a Motorola-supplied RAM microcode package. 0 DREQ1 cannot interrupt the CP. 1 DREQ1 will interrupt the CP.
13	SCD	Scheduler configuration. Configure as instructed in the download process of a Motorola-supplied RAM microcode package. 0 Normal operation. 1 Alternate configuration of the scheduler.

Bits	Name	Description
16–18	ERAM	Enable RAM microcode. Configure as instructed in the download process of a Motorola-supplied RAM microcode package. 000 Disable microcode program execution from the dual-port RAM. 001 Microcode uses the first 2 Kbytes of the dual-port RAM. 010 Microcode uses the first 4 Kbytes of the dual-port RAM. 011 Microcode uses the first 6 Kbytes of the dual-port RAM. 100 Microcode uses the first 8 Kbytes of the dual-port RAM. 101 Microcode uses the first 10 Kbytes of the dual-port RAM. 101 Microcode uses the first 12 Kbytes of the dual-port RAM. 110 Microcode uses the first 12 Kbytes of the dual-port RAM.
19	-	Reserved
20, 21, 22, 23	EDMx	Edge detect mode. DREQx asserts as follows: 0 Low-to-high change 1 High-to-low change
28	DEM12	Edge detect mode for DONE[1, 2] for IDMA[1, 2]. See Section 18.7.2, "DONEx." DONE[1, 2] asserts as follows: 0 High-to-low change 1 Low-to-high change
29	DEM34	Edge detect mode for DONE[3, 4] for IDMA[3, 4]. See Section 18.7.2, "DONEx." DONE[3, 4] asserts as follows: 0 High-to-low change 1 Low-to-high change

13.3.7 RISC Time-Stamp Control Register (RTSCR)

The RISC time-stamp control register (RTSCR), shown in Figure 13-4, configures the RISC time-stamp timer (RTSR). The time-stamp timer is used by the ATM and the HDLC controllers. For application examples, see Section 29.5.3, "ABR Flow Control Setup," and Section 31.6, "HDLC Mode Register (FPSMR)."

Bits	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14							14	15							
Field			_			RTE	RTPS (Timer Prescale)									
Reset		0000_0000_0000														
R/W		R/W														
Addr		0x119DC														

Figure 13-4. RISC Time-Stamp Control Register (RTSCR)

Table 13-4 describes RTSCR fields.

Bits	Name	Description
0–4	-	Reserved
5	RTE	Time stamp enable. 0 Disable time-stamp timer. 1 Enable time-stamp timer.
6–15	RTPS	Time-stamp timer pre-scale. Must be programmed to generate a $1-\mu$ s period input clock to the time-stamp timer. (Time-stamp frequency = (CPM frequency)/(RTPS+2)

Table 13-4. RTSCR Field Descriptions

13.3.8 RISC Time-Stamp Register (RTSR)

The RISC time-stamp register (RTSR), shown in Figure 13-5, contains the time stamp.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field		Time Stamp														
Reset		_														
R/W		R														
Addr		0x119E0														
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field								Time \$	Stamp							
Reset		-														
R/W		R														
Addr		0X119E2														

Figure 13-5. RISC Time-Stamp Register (RTSR)

After reset, setting RTSCR[RTE] causes the time stamp to start counting microseconds from zero.

13.3.9 RISC Microcode Revision Number

The CP writes a revision number stored in its ROM to an dual-port RAM location called REV_NUM that resides in the miscellaneous parameter RAM. The other locations are reserved for future use.

Address	Name	Width	Description
RAM Base + 0x8AF0	REV_NUM	Hword	Microcode revision number
RAM Base + 0x8AF2	_	Hword	Reserved

13.4 Command Set

The core issues commands to the CP by writing to the CP command register (CPCR). The CPCR rarely needs to be accessed. For example, to terminate the transmission of an SCC's frame without waiting until the end, a STOP TX command must be issued through the CP command register (CPCR).

13.4.1 CP Command Register (CPCR)

The core should set CPCR[FLG], shown in Figure 13-6, when it issues a command and the CP clears FLG after completing the command, thus indicating to the core that it is ready for the next command. Subsequent commands to the CPCR can be given only after FLG is clear. However, the software reset command issued by setting RST does not depend on the state of FLG, but the core should still set FLG when setting RST.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	RST			PAGE			S	ub-blo	ck cod	e (SBC	C)		-		FLG	
Reset							0000	_0000_	_0000_	0000						
R/W	R/W															
Addr	0x119CE															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	-	-		N	ICC ch	annel	numbe	r (MCN	1)		-	-		OPC	ODE	
Reset							0000	_0000_	_0000_	0000						
R/W								R/	W							
Addr								0x11	9D0							

Figure 13-6. CP Command Register (CPCR)

Table 13-6 describes CPCR fields.

Bit	Name	Description
0	RST	Software reset command. Set by the core and cleared by the CP. When this command is executed, RST and FLG bit are cleared within two general system clocks. The CPM reset routine is approximately 60 clocks long, but the user can begin initialization of the CPM immediately after this command is issued. RST is useful when the core wants to reset the registers and parameters for all the channels (FCCs, SCCs, SMCs, SPI, I ² C, MCC) as well as the CP and RISC timer tables. However, this command does not affect the serial interface (SIx) or parallel I/O registers.
1–5	PAGE	Indicates the parameter RAM page number associated with the sub-block being served. See the SBC description for page numbers.

Bit	Name	Description										
6–10	SBC	Sub-block code.	Set by the core to s	pecify the s	ub-block on whi	ich the comn	nand is to oper	rate.				
		Sub-block	Code	Page	Sub-block	Code	Page					
		FCC1	10000 (for ATM: 01110)	00100	SPI	01010	01001					
		FCC2	10001 (for ATM: 01110)	00101	l ² C	01011	01010					
		FCC3	10010	00110	Timer	01111	01010					
		SCC1	00100	00000	MCC1	11100	00111					
		SCC2	00101	00001	MCC2	11101	01000					
		SCC3	00110	00010	IDMA1	10100	00111					
		SCC4	00111	00011	IDMA2	10101	01000					
		SMC1	01000	00111	IDMA3	10110	01001					
		SMC2	01001	01000	IDMA4	10111	01010					
		RAND	01110	01010								
11–14	-	Reserved										
15	FLG	0 The CP is read 1 The CPCR con	ohore flag. Set by the y to receive a new of tains a command the mand execution or	command. hat the CP is	-		CP clears this	bit at				
16–17	-	Reserved										
18–25	MCN		x0A ATM x0C Ethernet									
26-27	-	Reserved										
28–31	OPCODE	Operation code.	Settings are listed ir	n Table 13-7	below.							

Table 13-6. CP Command Register Field Descriptions (Continued)

13.4.1.1 CP Commands

The CP command opcodes are shown in Table 13-7.

		Channel														
Opcode	FCC	scc	SMC (UART/ Transparent)	SMC (GCI)	SPI	I ² C	IDMA	мсс	Timer	Special						
0000	INIT RX AND TX PARAMS	INIT RX AND TX PARAMS	INIT RX AND TX PARAMS	INIT RX AND TX PARAMS	INIT RX AND TX PARAMS	INIT RX AND TX PARAMS	-	INIT RX AND TX PARAMS	_	_						
0001	INIT RX PARAMS	INIT RX PARAMS	INIT RX PARAMS	_	INIT RX PARAMS	INIT RX PARAMS	-	INIT RX PARAMS	_	-						
0010	INIT TX PARAMS	INIT TX PARAMS	INIT TX PARAMS	_	INIT TX PARAMS	INIT TX PARAMS	-	INIT TX PARAMS	-	-						
0011	ENTER HUNT MODE	ENTER HUNT MODE	ENTER HUNT MODE	_	_	_	-	_	-	-						
0100	STOP TX	STOP TX	STOP TX	_	-	_	-	MCC STOP TX	-	-						
0101	GRACEFUL STOP TX	GRACEFUL STOP TX	_	_	_	_			-	-						
0110	RESTART TX	RESTART TX	RESTART TX	_	_			_	-	_						
0111	CLOSE RX BD	CLOSE RX BD	CLOSE RX BD	_	CLOSE RX BD	CLOSE RX BD	-	_	_	-						
1000	SET GROUP ADDRESS	SET GROUP ADDRESS	_	_	_	_	-	-	SET TIMER	-						
1001	_	-	_	GCI TIMEOUT	_	_	START IDMA	MCC STOP RX	_	-						
1010	ATM TRANSMIT COMMAND	RESET BCS	-	GCI ABORT REQUEST	_	-	-	_	_	_						
1011	_	_	_	_	_	_	STOP IDMA	_	_	-						
1100	_	-	_	-	_	_	-	_	-	RANDON NUMBER						

Table 13-7. CP Command Opcodes

The commands in Table 13-7 are described in Table 13-8.

Table 13-8.	Command	Descriptions
-------------	---------	--------------

Command	Description
INIT TX AND RX PARAMS	Initialize transmit and receive parameters. Initializes the transmit and receive parameters in the parameter RAM to the values that they had after the last reset of the CP. This command is especially useful when switching protocols on a given peripheral controller.
INIT RX PARAMS	Initialize receive parameters. Initializes the receive parameters of the peripheral controller. Note that for the MCCs, issuing this command initializes only 32 channels at a time; see Section 27.9, "MCC Commands."
INIT TX PARAMS	Initialize transmit parameters. Initializes the transmit parameters of the peripheral controller. Note that for the MCCs, issuing this command initializes only 32 channels at a time; see Section 27.9, "MCC Commands."
ENTER HUNT MODE	Enter hunt mode. Causes the receiver to stop receiving and begin looking for a new frame. The exact operation of this command may vary depending on the protocol used.
STOP TX	Stop transmission. Aborts the transmission from this channel as soon as the transmit FIFO has been emptied. It should be used in cases where transmission needs to be stopped as quickly as possible. Transmission proceeds when the RESTART command is issued.
GRACEFUL STOP TX	Graceful stop transmission. Stops the transmission from this channel as soon as the current frame has been fully transmitted from the transmit FIFO. Transmission proceeds when the RESTART command is issued and the R-bit is set in the next TxBD.
RESTART TX	Restart transmission. Once the STOP TX command has been issued, this command is used to restart transmission at the current BD.
CLOSE RXBD	Close RxBD. Causes the receiver to close the current RxBD, making the receive buffer immediately available for manipulation by the user. Reception continues using the next available BD. Can be used to access the buffer without waiting until the buffer is completely filled by the SCC.
START IDMA	See Section 18.9, "IDMA Commands."
STOP IDMA	See Section 18.9, "IDMA Commands."
SET TIMER	Set timer. Activates, deactivates, or reconfigures one of the 16 timers in the RISC timer table.
SET GROUP ADDRESS	Set group address. Sets a bit in the hash table for the Ethernet logical group address recognition function.
GCI ABORT REQUEST	GCI abort request. The GCI receiver sends an abort request on the E-bit.
GCI TIMEOUT	GCI time-out. The GCI performs the timeout function.
RESET BCS	Reset block check sequence. Used in BISYNC mode to reset the block check sequence calculation.
MCC STOP TRANSMIT	See Section 27.9, "MCC Commands."
MCC STOP RECEIVE	See Section 27.9, "MCC Commands."
ATM TRANSMIT	See Section 29.14, "ATM Transmit Command."
RANDOM NUMBER	Generate a random number and put it in dual-port RAM; see RAND in Table 13-10.

13.4.2 Command Register Example

To perform a complete reset of the CP, the value $0x8001_0000$ should be written to the CPCR. Following this command, the CPCR returns the value $0x0000_0000$ after two clocks.

13.4.3 Command Execution Latency

The worst-case command execution latency is 200 clocks and the typical command execution latency is about 40 clocks.

13.5 Dual-Port RAM

The CPM has 24 Kbytes of static RAM. Figure 13-7 is a block diagram of the dual-port RAM.

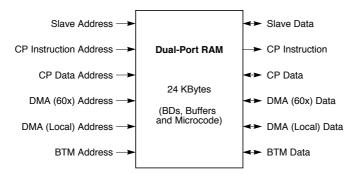


Figure 13-7. Dual-Port RAM Block Diagram

The dual-port RAM can be accessed by the following:

- CP load/store unit
- CP block transfer module (BTM)
- CP instruction fetcher (when executing microcode from RAM)
- PowerPC[™] 60x slave
- SDMA 60x bus
- SDMA local bus

Figure 13-8 shows the memory map of the dual-port RAM.

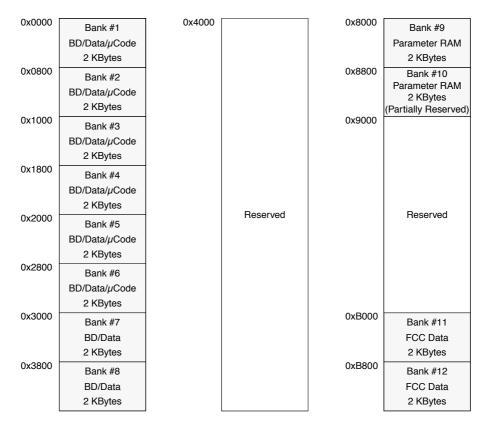


Figure 13-8. Dual-Port RAM Memory Map

The dual-port RAM data bus is 64-bits wide. The RAM is used for six possible tasks:

- To store parameters associated with the FCCs, SCCs, MCCs, SMCs, SPI, I²C, and IDMAs in the parameter RAM.
- To store buffer descriptors (BDs).
- To hold data buffers (optional because data can also be stored in external memory).
- For temporary storage of FCC data moving to/from an FCC FIFO (using the BTM) from/to external memory (using SDMA).
- To store RAM microcode for the CP. This feature allows Motorola to add protocols in the future.
- For additional scratch-pad RAM space for user software.

The RAM is designed to serve multiple requests at the same cycle, as long as they are not in the same bank.

Only the parameters in the parameter RAM and the microcode RAM option require fixed addresses to be used. The BDs, buffer data, and scratchpad RAM can be located in the dual-port system RAM or in any unused parameter RAM, such as, in the area made available when a peripheral controller or sub-block is not being used.

Microcode can be executed from the first 12 Kbytes. To ensure an uninterrupted instruction stream (one per cycle), no other agent is allowed to use a RAM bank used by the microcode. Since the first 12 Kbytes are divided to six 2-Kbyte banks, RAM microcode occupies 2, 4, 6, 8, 10, or 12 Kbytes of RAM, depending on RCCR[ERAM]; see Section 13.3.6, "RISC Controller Configuration Register (RCCR)."

13.5.1 Buffer Descriptors (BDs)

The peripheral controllers (FCCs, SCCs, SMCs, MCCs, SPI, and I²C) always use BDs for controlling buffers and their BD formats are all the same, as shown in Table 13-9.

Address	Descriptor
Offset + 0	Status and control
Offset + 2	Data length
Offset + 4	High-order buffer pointer
Offset + 6	Low-order buffer pointer

Table 13-9. Buffer Descriptor Format

If the IDMA is used in the buffer chaining or auto-buffer mode, the IDMA channel also uses BDs. They are described in Section 18.3, "IDMA Emulation."

13.5.2 Parameter RAM

The CPM maintains a section of RAM called the parameter RAM, which contains many parameters for the operation of the FCCs, SCCs, SMCs, SPI, I²C, and IDMA channels. An overview of the parameter RAM structure is shown in Table 13-10.

The exact definition of the parameter RAM is contained in each protocol subsection describing a device that uses a parameter RAM. For example, the Ethernet parameter RAM is defined differently in some locations from the HDLC-specific parameter RAM.

Page	Address ¹	Peripheral	Size (Bytes)		
1	0x8000	SCC1	256		
2	0x8100	SCC2	256		
3	0x8200	SCC3	256		
4	0x8300	SCC4	256		
5	0x8400	FCC1	256		
6	0x8500	FCC2	256		
7	0x8600	FCC3	256		
8	0x8700	MCC1	128		
	0x8780	Reserved	124		
	0x87FC	SMC1_BASE	2		
	0x87FE	IDMA1_BASE	2		
9	0x8800	MCC2	128		
	0x8880	Reserved	124		
	0x88FC	SMC2_BASE	2		
	0x88FE	IDMA2_BASE	2		
10	0x8900	Reserved	252		
	0x89FC	SPI_BASE	2		
	0x89FE	IDMA3_BASE	2		
11	0x8A00	Reserved	224		
	0x8AE0	RISC Timers	16		
	0x8AF0	REV_NUM	2		
	0x8AF2	Reserved	2		
	0x8AF4	Reserved	4		
	0x8AF8	RAND	4		
	0x8AFC	I ² C_BASE	2		
	0x8AFE	IDMA4_BASE	2		
12-16	0x8B00	Reserved	1280		

Table 13-10. Parameter RAM

¹Offset from RAM_BASE

13.6 RISC Timer Tables

The CP can control up to 16 software timers that are separate from the four general-purpose timers and the BRGs in the CPM. These timers are best used in protocols that do not require extreme precision, but in which it is preferable to free the core from scanning the software's

timer tables. These timers are clocked from an internal timer that only the CP uses. The following is a list of the RISC timer tables important features.

- Supports up to 16 timers.
- Two timer modes: one-shot and restart.
- Maskable interrupt on timer expiration.
- Programmable timer resolution as fine as 7.7μ s at 133 MHz (6.17 μ s at 166 MHz).
- Maximum timeout period of 31.8 seconds at 133 MHz (25.5 seconds at 166 MHz).
- Continuously updated reference counter.

All operations on the RISC timer tables are based on a fundamental tick of the CP's internal timer that is programmed in the RCCR. The tick is a multiple of 1,024 general system clocks; see Section 13.3.6, "RISC Controller Configuration Register (RCCR)."

The RISC timer tables have the lowest priority of all CP operations. Therefore, if the CP is so busy with other tasks that it does not have time to service the timer during a tick interval, one or more timer may not be updated accurately. This behavior can be used to estimate the worst-case loading of the CP; see Section 13.6.10, "Using the RISC Timers to Track CP Loading."

The timer table is configured using the RCCR, the timer table parameter RAM, and the RISC controller timer event/mask registers (RTER/RTMR), and by issuing SET TIMER to the CPCR.

13.6.1 RISC Timer Table Parameter RAM

Two areas of dual-port RAM, shown in Figure 13-9, are used for the RISC timer tables:

- The RISC timer table parameter RAM
- The RISC timer table entries

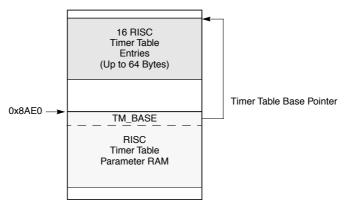


Figure 13-9. RISC Timer Table RAM Usage

The RISC timer table parameter RAM area begins at the RISC timer base address and is used for the general timer parameters; see Table 13-11.

Offset ¹	Name	Description
0x00	TM_BASE	RISC timer table base address. The actual timers are a small block of memory in the dual-port RAM. TM_BASE is the offset from the beginning of the dual-port RAM where that block resides. Four bytes must be reserved at the TM_BASE for each timer used, (64 bytes if all 16 timers are used). If fewer than 16 timers are used, timers should be allocated in ascending order to save space. For example, only 8 bytes are required if two timers are needed and RISC timers 0 and 1 are enabled. TM_BASE should be word-aligned.
0x02	TM_PTR	RISC timer table pointer. This value is used exclusively by the CP to point to the next timer accessed in the timer table. It should not be modified by the user.
0x04	R_TMR	RISC timer mode register. This value is used exclusively by the CP to store the mode of the timer—one-shot (bit is 0) or restart (bit is 1). R_TMR should not be modified by the user. The SET TIMER command should be used instead.
0x06	R_TMV	RISC timer valid register. Used exclusively by the CP to determine if a timer is currently enabled. If the corresponding timer is enabled, a bit is 1. R_TMV should not be modified by the user. The SET TIMER command should be used instead.
0x08	TM_CMD	RISC timer command register. Used as a parameter location when the SET TIMER command is issued. The user should write this location before issuing the SET TIMER command. This register is defined in Section 13.6.2, "RISC Timer Command Register (TM_CMD)."
0x0C	TM_CNT	RISC timer internal count. A tick counter that the CP updates after each tick. The update occurs after the CP complete scanning the timer table.All 16 timers are scanned every tick interval regardless of whether any of them is enabled. It is updated if the CP's internal timer is enabled, regardless of whether any of the 16 timers are enabled and it can be used to track the number of ticks the CP receives and responds to.TM_CNT is updated only after the last timer (timer 15) has been serviced. If the CP is so busy with other tasks that it does not have time to service all the timers during a tick interval, and timer 15 has not been serviced, then TM_CNT would not be updated in that tick interval.

Table 13-11. RISC Timer Table Parameter RAM

¹Offset from timer base address (0x8AE0)

13.6.2 RISC Timer Command Register (TM_CMD)

Figure 13-10 shows the RISC timer command register (TM_CMD).

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	v	R		<u> </u>										Т	N	

Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	TIMER PERIOD (TP)															

Figure 13-10. RISC Timer Command Register (TM_CMD)

TM_CMD fields are described in Figure 13-11.

Bits	Name	Description
0	v	Valid. This bit should be set to enable the timer and cleared to disable it.
1	R	Restart. Should be set for an automatic restart or cleared for a one-shot operation of the timer.
2–11	-	Reserved. These bits should be written with zeros.
12–15	TN	Timer number. A value from 0–15 signifying which timer to use – an offset into the timer table entries.
16–31	TP	Timer period. The 16-bit timeout value of the timer is zero-based. The minimum value is 1 and is programmed by writing 0x0000 to the timer period. The maximum value of the timer is 65,536 and is programmed by writing 0xFFFF.

Figure 13-11. TM_CMD Field Descriptions

13.6.3 RISC Timer Table Entries

The 16 timers are located in the block of memory following the TM_BASE location; each timer occupies 4 bytes. The first half-word forms the initial value of the timer written during the execution of the SET TIMER command and the next half-word is the current value of the timer that is decremented until it reaches zero. These locations should not be modified by the user. They are documented only as a debugging aid for user code. Use the SET TIMER command to initialize table values.

13.6.4 RISC Timer Event Register (RTER)/Mask Register (RTMR)

The RTER is used to report events recognized by the 16 timers and to generate interrupts. RTER can be read at any time. Bits are cleared by writing ones; writing zeros does not affect bit values.

The RISC timer mask register (RTMR) is used to enable interrupts that can be generated in the RTER. Setting an RTMR bit enables the corresponding interrupt in the RTER; clearing a bit masks the corresponding interrupt. An interrupt is generated only if the RISC timer table bit is set in the SIU interrupt mask register; see Section 4.3.1.5, "SIU Interrupt Mask Registers (SIMR_H and SIMR_L)."

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	TMR1 5	TMR1 4	TMR1 3	TMR1 2	TMR1 1	TMR1 0	TMR 9	TMR 8	TMR 7	TMR 6	TMR 5	TMR 4	TMR 3	TMR 2	TMR 1	TMR 0
Res et	0000_0000_0000															
R/W	R/W															
Addr	0x119D6 (RTER)/0x119DA (RTMR)															

Figure 13-12. RISC Timer Event Register (RTER)/Mask Register (RTMR)

13.6.5 SET TIMER Command

The SET TIMER command is used to enable, disable, and configure the 16 timers in the RISC timer table and is issued to the CPCR. This means the value 0x29E1008 should be written to CPCR. However, before writing this value, the user should program the TM_CMD fields. See Section 13.6.2, "RISC Timer Command Register (TM_CMD)."

13.6.6 RISC Timer Initialization Sequence

The following sequence initializes the RISC timers:

- 1. Configure RCCR to determine the preferred tick interval for the entire timer table. The TIME bit is normally set at this time but can be set later if all RISC timers need to be synchronized.
- 2. Determine the maximum number of timers to be located in the timer table. Configure the TM_BASE in the RISC timer table parameter RAM to point to a location in the dual-port RAM with $4 \times n$ bytes available, where *n* is the number of timers. If *n* is less than 16, use timer 0 through timer *n*-1 to save space.
- 3. Clear the TM_CNT field in the RISC timer table parameter RAM to show how many ticks elapsed since the RISC internal timer was enabled. This step is optional.
- 4. Clear RTER, if it is not already cleared. Write ones to clear this register.
- 5. Configure RTMR to enable the timers that should generate interrupts. Ones enable interrupts.
- 6. Set the RISC timer table bit in the SIU interrupt mask register (SIMR_L[RTT]) to generate interrupts to the system. The SIU interrupt controller may require other initialization not mentioned here.
- 7. Configure the TM_CMD field of the RISC timer table parameter RAM. At this point, determine whether a timer is to be enabled or disabled, one-shot or restart, and what its timeout period should be. If the timer is being disabled, the parameters (other than the timer number) are ignored.
- 8. Issue the SET TIMER command by writing 0x29E1_0008 to the CPCR.
- 9. Repeat the preceding two steps for each timer to be enabled or disabled.

13.6.7 RISC Timer Initialization Example

The following sequence initializes RISC timer 0 to generate an interrupt approximately every second using a 133-MHz general system clock:

- 1. Write 111111 to RCCR[TIMEP] to generate the slowest clock. This value generates a tick every 64,512 clocks, which is every 485 μ s at 133 MHz.
- 2. Configure the TM_BASE in the RISC timer table parameter RAM to point to a location in the dual-port RAM with 4 bytes available. Assuming the beginning of dual-port RAM is available, write 0x0000 to TM_BASE.

- 3. (Optional) Write 0x0000 to the TM_CNT field in the RISC timer table parameter RAM to see how many ticks elapsed since the RISC internal timer was enabled.
- 4. Write 0xFFFF to the RTER to clear any previous events.
- 5. Write 0x0001 to the RTMR to enable RISC timer 0 to generate an interrupt.
- 6. Write 0x0002_0000 to the SIU interrupt mask register (SIMR_L) to allow the RISC timers to generate a system interrupt. Initialize the SIU interrupt configuration register.
- 7. Write 0xC000_080D to the TM_CMD field of the RISC timer table parameter RAM. This enables RISC timer 0 to timeout after 2,061(decimal) ticks of the timer. The timer automatically restarts after it times out.
- 8. Write 0x29E1_0008 to the CPCR to issue the SET TIMER command.
- 9. Set RCCR[TIME] to enable the RISC timer to begin operation.

13.6.8 RISC Timer Interrupt Handling

The following sequence describes what normally would occur within an interrupt handler for the RISC timer tables:

- 1. Once an interrupt occurs, read RTER to see which timers have caused interrupts. The RISC timer event bits are usually cleared by this time.
- 2. Issue additional SET TIMER commands at this time or later, as preferred. Nothing needs to be done if the timer is being automatically restarted for a repetitive interrupt.
- 3. Clear the RTT bit in the SIU interrupt pending register (SIPNR_L).
- 4. Execute the RTE instruction.

13.6.9 RISC Timer Table Scan Algorithm

The CP scans the timer table once every tick. It handles each of the 16 timers at its turn and checks for other requests with higher priority to service, before handling the next one. For each valid timer in the table, the CP decrements the count and checks for a timeout. If none occurs, the CP moves to the next timer. If a timeout occurs, the CP sets the corresponding event bit in RTER. Then the CP checks to see if the timer is to be restarted and if it is, the CP leaves the timer's valid bit set in the R_TMV location and resets the current count to the initial count. Otherwise, it clears R_TMV. Once the timer table scanning has completed, the CP updates the TM_CNT value in the RISC timer table parameter RAM and stops working on the timer tables until the next tick.

If a SET TIMER command is issued, the CP makes the appropriate modifications to the timer table and parameter RAM, but does not scan the timer table until the next tick of the internal timer. It is important to use the SET TIMER command to properly synchronize timer table modifications to the execution of the CP.

13.6.10 Using the RISC Timers to Track CP Loading

The RISC timers can be used to track CP loading. The following sequence provides a way to use the 16 RISC timers to determine if the CP ever exceeds the 96% utilization level during any tick interval. Removing the timers adds a 4% margin to the CP utilization level, but the aggressive user can use this technique to push CP performance to its limit. The user should use the standard initialization sequence and incorporate the following differences:

- 1. Program the tick of the RISC timers to be every $1,024 \times 16 = 16,384$ system clocks.
- 2. Disable RISC timer interrupts, if preferred.
- 3. Using the SET TIMER command, initialize all 16 RISC timers to have a timer period of 0xFFFF, which equates to 65,536.
- 4. Program one of the four general-purpose timers to increment once every tick. The general-purpose timer should be free-running and should have a timeout of 65,536.
- 5. After a few hours of operation, compare the general-purpose timer to the current count of RISC timer 15. If it is more than two ticks different from the general-purpose timer, the CP has, during some tick interval, exceeded the 96% utilization level.

NOTE:

General-purpose timers are up counters, but RISC timers are down counters. The user should take this under consideration when comparing timer counts.

Chapter 14 Serial Interface with Time-Slot Assigner

Figure 14-1 shows a block diagram of the TSA. Two SI blocks in the MPC8260 (SI1 and SI2), can be programmed to handle eight TDM lines concurrently with the same flexibility described in this manual. TDM channels on SI1 are referred to as TDMa1, TDMb1, TDMc1, TDMd1; TDM channels on SI2 are TDMa2, TDMb2, TDMc2, TDMd2.

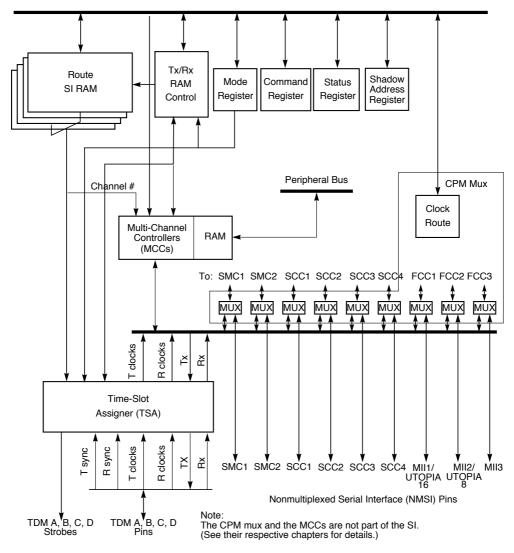


Figure 14-1. SI Block Diagram

If the time-slot assigner (TSA) is not used as intended, it can be used to generate complex wave forms on dedicated output pins. For instance, it can program these pins to implement stepper motor control or variable-duty cycle and period control on-the-fly.

14.1 Features

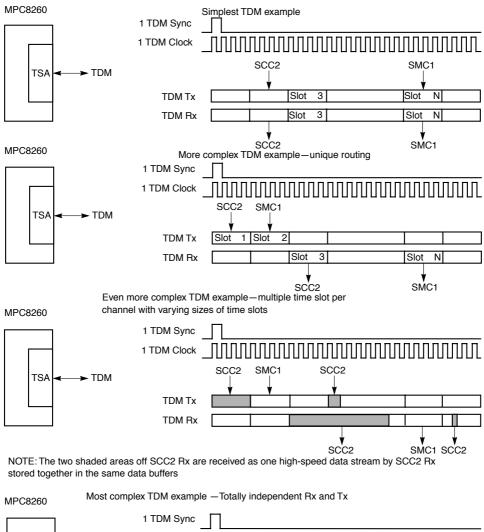
Each SI has the following features:

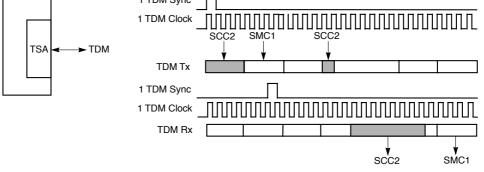
- Can connect to four independent TDM channels. Each TDM can be one of the following:
 - T1 or E1 line
 - Integrated services digital network primary rate (PRI)
 - An ISDN basic rate-interchip digital link (IDL) channel in up to four TDM channels—each IDL channel requires support from a separate SCC
 - ISDN basic rate-general circuit interface (GCI) in up to two TDM channels each GCI channel requires support from a separate SMC
 - E3 or DS3 clear channel (on TDMa only)
 - User-defined interfaces
- Independent, programmable transmit and receive routing paths
- Independent transmit and receive frame syncs allowed
- Independent transmit and receive clocks allowed
- Selection of rising/falling clock edges for the frame sync and data bits
- Supports 1× and 2× input clocks (1 or 2 clocks per data bit)
- Selectable delay (0–3 bits) between frame sync and frame start
- Four programmable strobe outputs and four (2×) clock output pins
- 1- or 8-bit resolution in routing, masking, and strobe selection
- Supports frames up to 16,384 bits long
- Internal routing and strobe selection can be dynamically programmed
- Supports automatic echo and loopback mode for each TDM
- Supports parallel-nibble interface for E3 or DS3 on TDMa channel

For the MCC route, the SI performs the following features:

- Up to 128 independent communication channels (64-Kbps per channel)
- Arbitrary mapping of any TDM time slots
- Can connect up to four independent TDM channels. Each TDM channel can support up to 128 channels (all four channels can support up to 128 channels together).
- Independent mapping for receive/transmit
- Individual channel echo or loop mode
- Global echo or loop mode through the SI

14.2 Overview

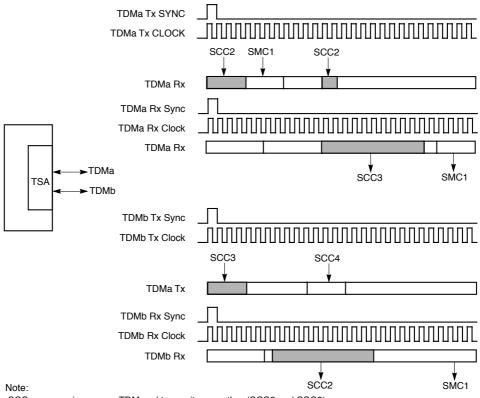

The TSA implements both internal route selection and time-division multiplexing (TDM) for multiplexed serial channels. The TSA supports the serial bus rate and format for most standard TDM buses, including T1 and E1 highways, pulse-code modulation (PCM) highway, and the ISDN buses in both basic and primary rates. The two popular ISDN basic rate buses (interchip digital link (IDL) and general-circuit interface (GCI), also known as IOM-2) are supported.


Because each SI supports four TDMs, it is possible to simultaneously support a combination of up to eight T1 or E1 lines, and basic rate or primary rate ISDN channels.

The TDMa channel can support E3 or DS-3 rates as a clear channel in either a parallelnibble or serial interface.

TSA programming is independent of the protocol used. The serial controllers can be programmed for any synchronous protocol without affecting TSA programming. The TSA simply routes programmed portions of the received data frame from the TDM pins to the target controller, while the target controller handles the received data in the actual protocol.

In its simplest mode, the TSA identifies the frame using one sync pulse and one clock signal provided externally by the user. This can be enhanced to allow independent routing of the receive and transmit data on the TDM. Additionally, the definition of a time-slot need not be limited to 8 bits or even to a single contiguous position within the frame. Finally, the user can provide separate receive and transmit syncs as well as clocks. Figure 14-2 shows example TSA configurations ranging from the simplest to the most complex.



Part IV. Communications Processor Module

At its most flexible, the TSA can provide four separate TDM channels, each with independent receive and transmit routing assignments and independent sync pulse and clock inputs. Thus, the TSA can support eight, independent, half-duplex TDM sources, four in reception and four in transmission, using eight sync inputs and eight clock inputs. Figure 14-3 shows a dual-channel example.

SCCs can receive on one TDM and transmit on another (SCC2 and SCC3).

Figure 14-3. Dual TDM Channel Example

In addition to channel programming, the TSA supports up to four strobe outputs that may be asserted on a bit or byte basis. These strobes are completely independent from the channel routing used by the SCCs and SMCs. The strobe outputs are useful for interfacing to other devices that do not support the multiplexed interface or for enabling/disabling three-state I/O buffers in a multiple-transmitter architecture. Notice that open-drain programming on the TXDx pins that supports a multiple-transmitter architecture occurs in the parallel I/O block. These strobes can also be used for generating output wave forms to support such applications as stepper-motor control.

Most TSA programming is done in the two 256- \times 16-bit SLx RAMs. These SLx RAMs are directly accessible by the core in the internal register section of the MPC8260 and are not

associated with the dual-port RAM. One SI*x* RAM is always used to program the transmit routing; the other is always used to program the receive routing. SI*x* RAMs can be used to define the number of bits/bytes to be routed to the MCC, FCC, SCC, or SMC and determine when external strobes are to be asserted and negated.

The size of the SIx RAM available for time-slot programming depends on the user's configuration. The user defines how many of the 256 entries are related to each TDM. The resolution of the division is by fractions of 32. If on-the-fly changes are allowed, the SIx RAM entries are reduced according to the user's programming. The maximum frame length that can be supported in any configuration is 16,384 bits.

The maximum external serial clock that may be an input to the TSA is CPM CLK/3.

The SI supports two testing modes—echo and loopback.

- The echo mode provides a return signal from the physical interface by retransmitting the signal it has received. The physical interface echo mode differs from the individual FCC or SCC echo mode in that it can operate on the entire TDM signal rather than just on a particular serial channel.
- Loopback mode causes the physical interface to receive the same signal it is sending. The SI loopback mode checks more than the individual serial loopback; it checks both the SI and the internal channel routes.

Note that the flexibility described in the preceding section can be applied to each of the four TDM channels and to all serial interfaces independently.

14.3 Enabling Connections to TSA

Each serial interface can be independently enabled to connect to one of the following: TSA, UTOPIA, MII, or dedicated external pins. Note the following:

- Each FCC can be connected to a dedicated MII or one of four TDMs. FCC1 can also be connected to a 8-/16-bit UTOPIA level-2 interface; FCC2 can also be connected to an 8-bit UTOPIA level-2 interface.
- Each SCC or SMC can be connected to one of four TDMs or to its own set of pins.
- The MCC can be connected to one of the four TDMs with different numbers of channels.

The four TDMs are connected to four independent TDM interfaces. Figure 14-4 illustrates the connection between the TSA and the serial interfaces. The connection is made by programming the CPM mux. See Chapter 15, "CPM Multiplexing." Once the connections are made, the exact routing decisions are made in the SLx RAM.

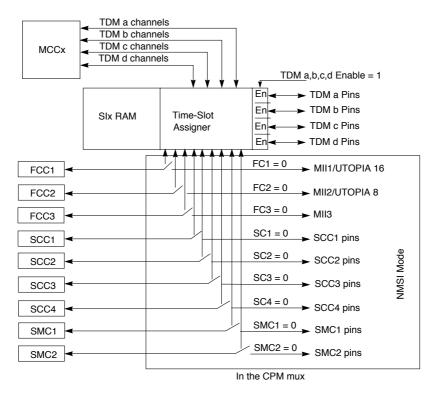


Figure 14-4. Enabling Connections to the TSA

14.4 Serial Interface RAM

Each SI has a transmit RAM and a receive RAM, each with four banks of 64 halfword entries that enable it to control TDM channel routing to all serial devices, including the MCCs. The SLx RAMs are uninitialized after power-on reset; unwanted results can occur if the user does not program them before enabling the multiplexed channels.

Each 16-bit SI RAM entry defines the routing of 1–8 bits or bytes at a time. In addition to the routing, up to four strobe pins (logic OR of four strobes in the transmit RAM and four in receive RAM) can be asserted according to the programming of the RAMs. The four SIx RAM banks can be configured in many different ways to support various TDM channels. The user can define the size of each SIx RAM that is related to a certain TDM channel by programming the starting bank of that TDM. Programming the starting shadow bank address, described in Section 14.5.3, "SIx RAM Shadow Address Registers (SIxRSR)," determines whether this RAM has a shadow for changing SIx RAM entries while the TDM channel is active. This reduces the number of available SIx RAM entries for that TDM.

14.4.1 One Multiplexed Channel with Static Frames

The example in Figure 14-5 shows one of many possible settings. With this configuration, the SLx RAM has 256 entries for transmit data and strobe routing and 256 entries for receive data and strobe routing. This configuration should be chosen only when one TDM is required and the routing on that TDM does not need to be dynamically changed. The number of entries available in the SLx RAM is determined by the user.

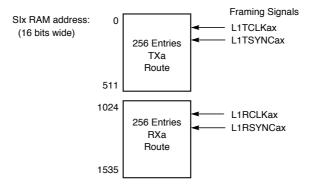
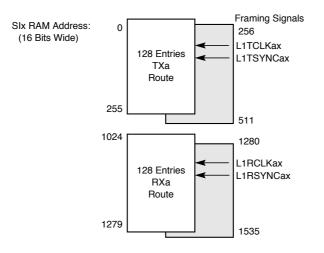



Figure 14-5. One TDM Channel with Static Frames and Independent Rx and Tx Routes

14.4.2 One Multiplexed Channel with Dynamic Frames

In the configuration shown in Figure 14-6, one multiplexed channel has 256 entries for transmit data and strobe routing and 256 entries for receive data and strobe routing. Each RAM has two sections, the current-route RAM and a shadow RAM for changing serial routing dynamically.

After programming the shadow RAM, the user sets SLxCMDR[CSR*xn*] for the associated channel. When the next frame sync arrives, the SI automatically exchanges the current-route RAM for the shadow RAM. See Section 14.4.5, "Static and Dynamic Routing."

Figure 14-6. One TDM Channel with Shadow RAM for Dynamic Route Change

This configuration should be chosen when only one TDM is needed, but dynamic rerouting may be needed on that TDM. Similarly, for two TDM channels, the number of SLx RAM entries are reduced for every TDM channel programmed for shadow mode.

14.4.3 Programming SIx RAM Entries

The programming of each entry in the SIx RAM determines the routing of the serial bits (or bit groups) and the assertion of strobe outputs. If MCC is set, the entry refers to the corresponding MCC; otherwise, it refers to other serial controllers. Figure 14-7 shows the entry fields for both cases.

Bits	0	1	2	3 4 5 6 7 8 9 10				11	12	13	14	15				
Field	MCC = 0	SWTR	SSEL1	SSEL2	SSEL2 SSEL3 SSEL4 0 CSEL								CNT			LST
	MCC = 1	LOOP/ECHO	SUPER		MCSEL								CNT			LST
R/W	R/W															
Addr	Ir See Chapter 3, "Memory Map."															

Figure 14-7. SIx RAM Entry Fields

When MCC = 0, the SIx RAM entry fields function as described in Table 14-1.

Bits	Name	Description
0	MCC	The entry controls the functionality of the other bits in the SIx RAM entry. 0 The entry refers to other serial controllers (FCCs, SCCs, SMC, according to the CSEL field). 1 The entry refers to the MCC.
1	SWTR	Switch Tx and Rx. Valid only in the receive route RAM and ignored in the transmit route RAM. SWTR affects the operation of both L1RXD and L1TXD. SWTR is set only in special situations where the user prefers to receive data from a transmit pin and transmit data on a receive pin. For instance, where devices A and B are connected to the same TDM, each with different time-slots. Normally, there is no opportunity for stations A and B to communicate with each other directly over the TDM, because they both receive the same TDM receive data and transmit on the same TDM transmit signal. 0 Normal operation of L1TXD and L1RXD. 1 Data for this entry is sent on L1RXD and received from L1TXD. See Figure 14-8 for details.
2–5	SSELx	Strobe select. There are four strobes available that can be assigned to the receive RAM and asserted/negated with the received clock of this TDM channel (L1RCLKx). They can also be assigned to the transmit RAM and asserted/negated with the transmit clock of this TDM channel (L1TCLKx). Each bit corresponds to the value the strobe should have during this bit/byte group. There are four strobe pins for all eight strobe bits in the Slx RAM entries, so the value on a strobe pin is the logical OR of the Rx and Tx RAM entry strobe bit.s Multiple strobes can be asserted simultaneously. A strobe configured to be asserted in consecutive Slx RAM entries remains continuously asserted for both entries. A strobe asserted on the last entry in a table is negated after the last entry is processed. Note: Each strobe is changed with the corresponding RAM clock and is output only if the corresponding parallel I/O is configured as a dedicated pin. If a strobe is programmed to be asserted in more than one set of entries (the SI route entries for more then one TDM channel select the same strobe), the assertion of the strobe corresponds to the logical OR of all possible sources. This use of strobes is not useful for most applications. A given strobe should be selected in only one set of SIx RAM entries.
6	_	Reserved, should be cleared.
7–10	CSEL	Channel select 0000 The bit/byte group is not supported by the MPC8260. The transmit data pin is three-stated and the receive data pin is ignored. 0001 The bit/byte group is routed to SCC1. 0010 The bit/byte group is routed to SCC2. 0011 The bit/byte group is routed to SCC3. 0100 The bit/byte group is routed to SCC4. 0101 The bit/byte group is routed to SMC1. 0110 The bit/byte group is not supported by the MPC8260. This code is also used in SCIT mode as the D channel grant. See Section 14.7.2.2, "SCIT Programming." 1000 Reserved. 1011 The bit/byte group is routed to FCC1. 1010 The bit/byte group is routed to FCC2. 1011 The bit/byte group is routed to FCC3. 111x Reserved.

Bits	Name	Description
11–13	CNT	Count. Indicates the number of bits/bytes (according to the BYT bit) that the routing and strobe select of this entry controls. 000 = 1 bit/byte; 111= 8 bits/bytes.
14	BYT	Byte resolution 0 Bit resolution. The CNT value indicates the number of bits in this group. 1 Byte resolution. The CNT value indicates the number of bytes in this group.
15	LST	Last entry in the RAM. Whenever SIx RAM is used, LST must be set in one of the Tx or Rx entries of each group. Even if all entries of a group are used, this bit must still be set in the last entry. 0 Not the last entry in this section of the route RAM. 1 Last entry in this RAM. After this entry, the SI waits for the sync signal to start the next frame. Note that there must be only an even number of entries in an SIx RAM frame, because LST is active only in odd-numbered entries (assuming the entry count starts with 0). Therefore, to obtain an even number of entries, an entry may need to be split into two entries.

Table 14-1. SIx RAM Entry (MCC = 0) (Continued)

Figure 14-8 shows how SWTR can be used.

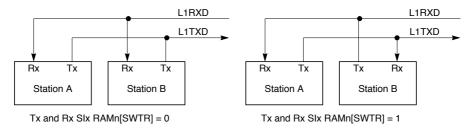


Figure 14-8. Using the SWTR Feature

The SWTR option lets station B listen to transmissions from station A and send data to station A. To do this, station B would set SWTR in its receive route RAM. For this entry, receive data is taken from the L1TXD pin and data is sent on the L1RXD pin. If the user wants to listen only to station A transmissions and not send data on L1RXD, the CSEL bits in the corresponding transmit route RAM entry should be cleared to prevent transmission on the L1RXD pin.

Station B can transmit data to station A by setting the SWTR bit of the entry in its receive route RAM. Data is sent on L1RXD rather than L1TXD, according to the transmit route RAM. Note that this configuration could cause collisions with other data on L1RXD unless an available (quiet) time slot is used. To transmit on L1RXD and not receive data on L1TXD, clear the CSEL bits in the receive route RAM.

Note that if the transmit and receive sections of the TDM do not use a common clock source, the SWTR feature can cause erratic behavior. Note also this feature does not work with nibble operation.

When MCC = 1, the SLx RAM entry fields function as described in Table 14-2.

Table 14-2. SIx RAM Entry (MCC = 1)

Bits	Name	Description
0	MCC	If MCC =1, the other SIx RAM entries in this table are valid:
1	LOOP/ ECHO	Channel loopback or echo. 0 Normal mode of operation. 1 Operation depends on the following configurations: In the receive SIx RAM, this bit selects loopback mode for this MCC channel. The channel's transmit data is sent to both the receiver's input and to the data output line. In the transmit SIx RAM, this bit selects echo mode for this MCC channel. The channel's receive data is sent both to the transmitter's line and to the receiver's input. To use the loop/echo modes, program the receive and transmit SIx RAMs identically, except that the LOOP/ECHO bit should be set in only one of the entry pairs; that is, select only one of the modes (echo or loopback, not both) per MCC slot. Also, the receive and transmit clocks must be identical.
2	SUPER	MCC super channel enable. See Section 27.5, "Super-Channel Table." 0 The current entry refers to a regular channel. 1 The current entry refers to a super channel.
3–10	MCSEL	MCC channel select. Indicates the MCC channel the bit/byte group is routed to. 0000_0000 selects channel 0; 1111_1111, selects channel 255. For SI1 use values 0–127 and for SI2 use values 128–255. Note that the channel programming must be coherent with the MCCF; see Section 27.8, "MCC Configuration Registers (MCCFx)."
11–13	CNT	Count. If SUPER = 0 (normal mode), CNT indicates the number of bits/bytes (according to the BYT bit) that the routing select of this entry controls. 000 = 1 bit/byte; 111 = 8 bits/bytes. If SUPER = 1 (MCC super channel), CNT and BYT together indicate whether the current entry is the first byte of the MCC super channel. CNT= 000 and BYT = 1—The current entry is the first byte of this MCC super channel. CNT= 111 and BYT = 0—The current entry is not the first byte of this MCC super channel. Note that because all SIx RAM entries relating to super channels must be 1-byte in resolution, only the above two combinations of CNT and BYT are allowed when SUPER = 1.
14	BYT	Byte resolution 0 Bit resolution. The CNT value indicates the number of bits in this group. 1 Byte resolution. The CNT value indicates the number of bytes in this group.
15	LST	Last entry in the RAM. Whenever the SIx RAM is used, LST must be set in one of the Tx or Rx entries of each group. Even if all entries of a group are used, LST must still be set in the last entry. 0 Not the last entry in this section of the route RAM. 1 Last entry in this RAM. After this entry, the SI waits for the sync signal to start the next frame. Note that there must be only an even number of entries in an SIx RAM frame, because LST is active only in odd-numbered entries (assuming the entry count starts with 0). Therefore, to obtain an even number of entries.

14.4.4 SIx RAM Programming Example

This example shows how to program the RAM to support the 10-bit IDL bus. Figure 14-23 shows the 10-bit IDL bus format. In this example, the TSA supports the B1 channel with SCC2, the D channel with SCC1, the first 4 bits of the B2 channel with an external device (using a strobe to enable the external device), and the last 4 bits of B2 with SMC1. Additionally, the TSA marks the D channel with another strobe signal.

Part IV. Communications Processor Module

First, divide the frame from the start (the sync) to the end of the frame according to the support that is required:

- 8 bits (B1)-SCC2
- 1 bit (D)-SCC1 + strobe 1
- 1 bit—no support
- 4 bits (B2)—strobe 2
- 4 bits (B2)—SMC1
- 1 bit (D)-SCC1 + strobe 1

Each of these six divisions can be supported by a single SLx RAM entry. Thus, six SLx RAM entries are needed. See Table 14-3.

Entry Number	Six RAM Entry											
	мсс	SWTR	SSEL	CSEL	CNT	ВҮТ	LST	Description				
0	0	0	0000	0010	000	1	0	8-bit SCC2				
1	0	0	1000	0001	000	0	0	1-bit SCC1 strobe1				
2	0	0	0000	0000	000	0	0	1-bit no support				
3	0	0	0100	0000	011	0	0	4-bit strobe2				
4	0	0	0000	0101	011	0	0	4-bit SMC1				
5	0	0	1000	0001	000	0	1	1-bit SCC1 strobe1				

Table 14-3. SIx RAM Entry Descriptions

Note that because IDL requires the same routing for both receive and transmit, an exact duplicate of the above entries should be written to both the receive and transmit sections of the SIx RAM. Then SIxMR[CRTx] can be used to instruct the SIx RAM to use the same clock and sync to simultaneously control both sets of SIx RAM entries.

14.4.5 Static and Dynamic Routing

The SI*x* RAM has two operating modes for the TDMs:

- Static routing. The number of SLx RAM entries is determined by the banks the user relates to the corresponding TDM and is divided into two parts (Rx and Tx). Three requirements must be met before the new routing takes effect.
 - All serial devices connected to the TSA must be disabled.
 - SI routing can be modified.
 - All appropriate serial devices connected to the TSA must be reenabled.

• Dynamic routing. A TDM's routing definition can be modified while FCCs, MCCs, SCCs, or SMCs are connected to the TDM. The number of SLx RAM entries is determined by the banks the user relates to the corresponding TDM channel and is divided into four parts (Rx, Rx shadow, Tx, and Tx shadow).

Dynamic changes divide portions of the SI*x* RAM into current-route and shadow RAM. Once the current-route RAM is programmed, the TSA and SI channels are enabled, and TSA operation begins. When a change in routing is required, the shadow RAM must be programmed with the new route and SI*x*CMDR[CSR*xn*] must be set. As a result, as soon as the corresponding sync arrives the SI exchanges the shadow RAM with the current-route RAM and resets CSR*xn* to indicate that the operation is complete. At this time, the user may change the routing again. Notice that the original current-route RAM is now the shadow RAM and vice versa. Figure 14-9 shows an example of the shadow RAM exchange process for two TDM channels both with half of the RAM as a shadow.

If for instance one TDM with dynamic changes is programmed to own all four banks, and the shadow is programmed to the last two banks, the initial current-route RAM addresses in the SIx RAM are as follows.

- 0–255: TXa route
- 1024–1279: RXa route

The initial shadow RAMs are at addresses:

- 256–511: TXa route
- 1280–1535: RXa route

The user can read any RAM at any time, but for proper SI operation the user must not attempt to write the current-route RAM. The SLx status register (SLxSTR) can be read to find out which part of the RAM is the current-route RAM. The user can also externally connect one of the strobes to an interrupt pin to generate an interrupt on a particular SLx RAM entry starting or ending execution by the TSA.

An example is shown in Figure 14-9.

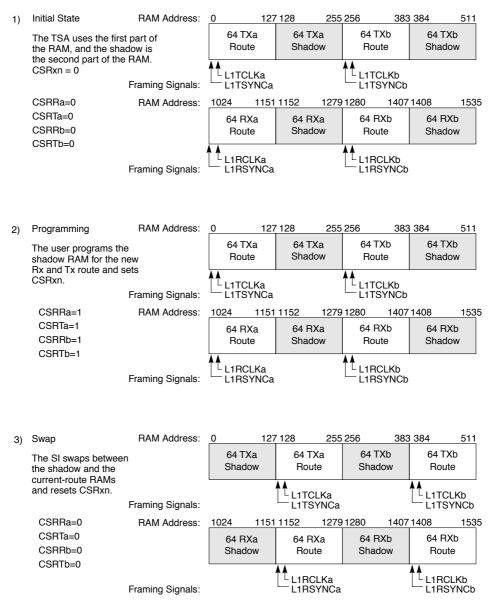


Figure 14-9. Example: SIx RAM Dynamic Changes, TDMa and b, Same SIx RAM Size

14.5 Serial Interface Registers

The serial interface registers are described in the following sections. The MCC configuration registers, which define the TDM mapping of the MCC channels, are described in Section 27.8, "MCC Configuration Registers (MCCFx)." Note that the programming of SI registers and SLx RAM must be coherent with the MCCF programming.

14.5.1 SI Global Mode Registers (SIxGMR)

The SI global mode registers (SIxGMR), shown in Figure 14-10, defines the activation state of the TDM channels for each SI.

Bits	0	1	2	3	4	5	6	7		
Field	STZD STZC STZB STZA END ENC ENB ENA									
Reset	0000_0000									
R/W	R/W									
Addr			0x11B	28 (SI1GMR),	0x11B48 (SI	2GMR)				

Figure 14-10. SI Global Mode Registers (SIxGMR)

Table 14-4 describes SLxGMR.

Table 14-4. SIxGMR Field Descriptions

Bit	Name	Description
0–3	STZx	Program L1TXDx to zero for TDM a, b, c or d 0 Normal operation 1 L1TXDx = 0 until serial clocks are available, which is useful for GCI activation. See Section 14.7.1, "SI GCI Activation/Deactivation Procedure."
4–7	ENx	 Enable TDMx. Note that enabling a TDM is the last step in initialization. 0 TDM channel x is disabled. The SIx RAMs and routing for TDMx are in a state of reset, but all other SI functions still operate. 1 All TDMx functions are enabled.

14.5.2 SI Mode Registers (SIxMR)

There are eight SI mode registers (SLxMR), shown in Figure 14-11, one for each TDM channel (SLxAMR, SLxBMR, SLxCMR, and SLxDMR). They are used to define SI operation modes and allow the user (with SLx RAM) to support any or all of the ISDN channels independently when in IDL or GCI mode. Any extra serial channel can then be used for other purposes.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	—		SADx	SD	Mx	x RFSDx		DSCx	CRTx	SLx	CEx	FEx	GMx	TFS	SDx	
Reset	0000_0000_0000															
R/W	R/W															
Addr	0x11B20 (SI1AMR), 0x11B22 (SI1BMR), 0x11B24 (SI1CMR), 0x11B26 (SI1DMR)/ 0x11B40 (SI2AMR), 0x11B42 (SI2BMR), 0x11B44 (SI2CMR), 0x11B46 (SI2DMR)															

Figure 14-11. SI Mode Registers (SIxMR)

Table 14-5 describes SIxMR fields.

Table 14-5. SIxMR Field Descriptions

Bits	Name	Description
0	-	Reserved. Should be cleared.
1–3	SADx	Starting bank address for the RAM of TDM a, b, c or d. These three bits define the starting bank address of the SIx RAM section that belongs to TDMx channel. Note: As noted previously, the SIx RAM contains four banks of 64 entries for receive and four banks of 64 entries for transmit. The starting bank address of each TDM can be programmed with a granularity of 32 entries. The user can put the shadow RAM section of the same TDM on the same bank, but the user cannot put two different TDMs on the same bank. The last entry of a certain TDM is determined by the LST bit in the SIx RAM entry. The user must set LST within the entries of SIx RAM blocks for every TDM used, that is, before the starting address of the next TDM. 000 first bank, first 32 entries 011 first bank, second 32 entries 011 second bank, first 32 entries 100 third bank, first 32 entries 101 third bank, second 32 entries 101 third bank, second 32 entries 103 third bank, first 32 entries 104 third bank, first 32 entries 105 fourth bank, first 32 entries 106 third bank, first 32 entries 107 fourth bank, first 32 entries 108 fourth bank, first 32 entries 109 third bank, first 32 entries 100 third bank, first 32 entries
4-5	SDMx	 SI Diagnostic Mode for TDM a, b, c or d Normal operation. Automatic echo. In this mode, the TDM transmitter automatically retransmits the TDM received data on a bit-by-bit basis. The receive section operates normally, but the transmit section can only retransmit received data. In this mode, the L1GRx line is ignored. Internal loopback. In this mode, the TDM transmitter output is internally connected to the TDM receiver input (L1TXDx is connected to L1RXDx). The receiver and transmitter operate normally. The data appears on the L1TXDx pin and in this mode, L1RQx is asserted normally. The L1GRx line is ignored. Loopback control. In this mode, the TDM transmitter output is internally connected to the TDM receiver input (L1TXDx is connected to L1RXDx). The transmitter output is internally connected to the TDM receiver input (L1TXDx is connected to L1RXDx). The transmitter output is internally connected to the TDM receiver input (L1TXDx is connected to L1RXDx). The transmitter output (L1TXDx) and L1RQx are inactive. This mode is used to accomplish loopback testing of the entire TDM without affecting the external serial lines. Note: In modes 01, 10, and 11, the receive and transmit clocks should be identical.

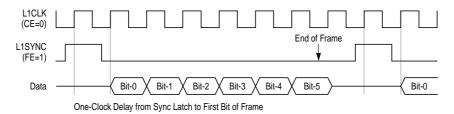

Bits	Name	Description
6–7	RFSDx	 Receive frame sync delay for TDM a, b, c, or d. Determines the number of clock delays between the receive sync and the first bit of the receive frame. Even if CRTx is set, these bits do not control the delay for the transmit frame. 00 No bit delay. The first bit of the frame is transmitted/received on the same clock as the sync; use for GCI. 01 1-bit delay. Use for IDL 10 2-bit delay 11 3-bit delay Figure 14-12 and Figure 14-13 show how these bits are used.
8	DSCx	 Double speed clock for TDM a, b, c or d. Some TDMs, such as GCI, define the input clock to be twice as fast as the data rate and this bit controls this option. 0 The channel clock (L1RCLKx and/or L1TCLKx) is equal to the data clock. Use for IDL and most TDM formats. 1 The channel clock rate is twice the data rate. Use for GCI.
9	CRTx	 Common receive and transmit pins for TDM a, b, c or d. Useful when the transmit and receive sections of a given TDM use the same clock and sync signals. In this mode, L1TCLKx and L1TSYNCx pins can be used as general-purpose I/O pins. O Separate pins. The receive section of this TDM uses L1RCLKx and L1RSYNCx pins for framing and the transmit section uses L1TCLKx and L1TSYNCx for framing. 1 Common pins. The receive and transmit sections of this TDM use L1RCLKx as clock pin of channel x and L1RSYNCx as the receive and transmit sync pin. Use for IDL and GCI. RFSD and TFSD are independent of one another in this mode.
10	SLx	Sync level for TDM a, b, c, or d. 0 The L1RSYNCx and L1TSYNCx signals are active on logic "1". 1 The L1RSYNCx and L1TSYNCx signals are active on logic "0".
11	CEx	Clock edge for TDM a, b, c or d. The function depends on DSCx. When DSCx = 0: 0 The data is sent on the rising edge of the clock and received on the falling edge (use for IDL). 1 The data is sent on the falling edge of the clock and received on the rising edge. When DSCx = 1: 0 The data is sent on the rising edge of the clock and received on the rising edge. 1 The data is sent on the falling edge of the clock and received on the rising edge. 2 See Figure 14-14 and Figure 14-15.
12	FEx	Frame sync edge for TDM a, b, c or d. Determines whether L1RSYNCx and L1TSYNCx pulses are sampled with the falling/rising edge of the channel clock. See Figure 14-13, Figure 14-14, Figure 14-15, and Figure 14-16. 0 Falling edge. Use for IDL and GCI. 1 Rising edge.

Table 14-5. SIxMR Field Descriptions (Continued)

Bits	Name	Description
13	GMx	 Grant mode for TDM a, b, c or d O GCI/SCIT mode. The GCI/SCIT D channel grant mechanism for transmission is internally supported. The grant is one bit from the receive channel. This bit is marked by programming the channel select bits of the SIx RAM with 0111 to assert an internal strobe on it. See Section 14.7.2.2, "SCIT Programming." 1 IDL mode. A grant mechanism is supported if the corresponding CMXSCR[GRx] bit is set. The grant is a sample of L1GRx while L1TSYNCx is asserted. This grant mechanism implies the IDL access controls for transmission on the D channel. See Section 14.6.2, "IDL Interface Programming."
14–15	TFSDx	Transmit frame sync delay for TDM a, b, c or d. Determines the number of clock delays between the transmit sync and the first bit of the transmit frame. See Figure 14-16. 00 No bit delay. The first bit of the frame is transmitted/received on the same clock as the sync. 01 1-bit delay 10 2-bit delay 11 3-bit delay

Table 14-5. SIxMR Field Descriptions (Continued)

Figure 14-12 shows the one-clock delay from sync to data when xFSD = 01.

Figure 14-12. One-Clock Delay from Sync to Data (xFSD = 01)

Figure 14-13 shows the elimination of the single-clock delay shown in Figure 14-12 by clearing xFSD.

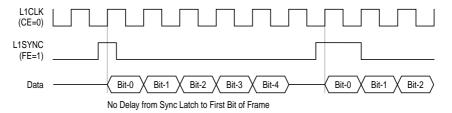


Figure 14-13. No Delay from Sync to Data (xFSD = 00)

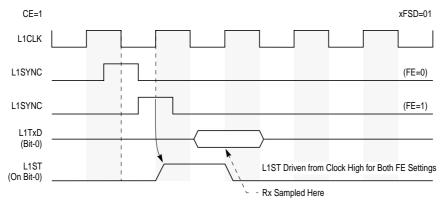


Figure 14-14 shows the effects of changing FE when CE = 1 with a 1-bit frame sync delay.

Figure 14-14. Falling Edge (FE) Effect When CE = 1 and xFSD = 01

Figure 14-15 shows the effects of changing FE when CE = 0 with a 1-bit frame sync delay.

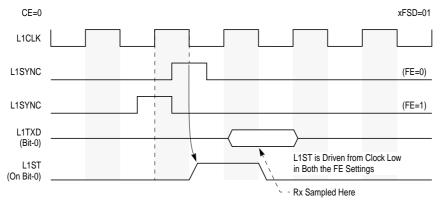


Figure 14-15. Falling Edge (FE) Effect When CE = 0 and xFSD = 01

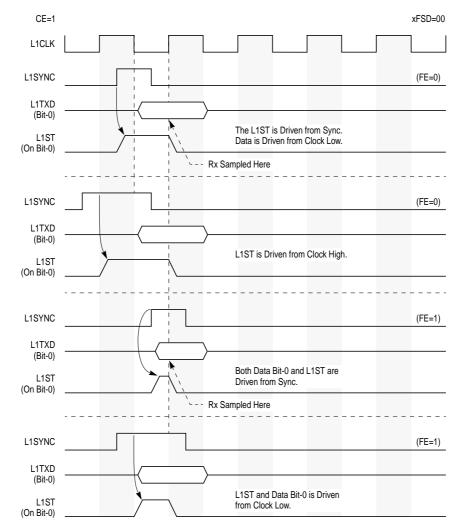


Figure 14-16 shows the effects of changing FE when CE = 1 with no frame sync delay.

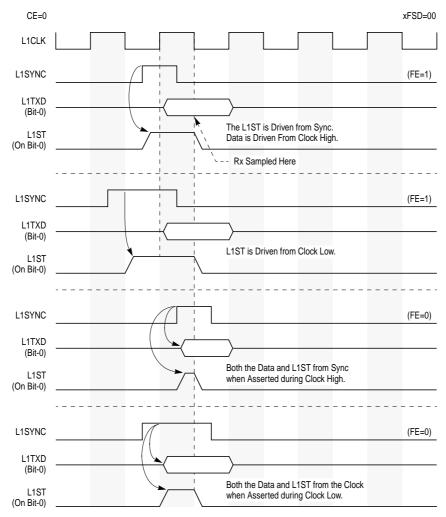


Figure 14-17 shows the effects of changing FE when CE = 0 with no frame sync delay.

14.5.3 SIx RAM Shadow Address Registers (SIxRSR)

The SLx RAM shadow address registers (SLxRSR), shown in Figure 14-18, define the starting addresses of the shadow section in the SLx RAM for each of the TDM channels.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	—	:	SSADA	1	—	:	SSADE	3	—		SSADC			SSADD		
Reset	0000_0000_0000															
R/W	R/W															
Addr		0x11B2E (SI1RSR), 0x11B4E (SI2RSR)														

Figure 14-18. SIx RAM Shadow Address Registers (SIxRSR)

Table 14-6 describes SLxRSR fields.

Table 14-6.	SIxRSR	Field	Descriptions	
-------------	--------	-------	--------------	--

Bits	Name	Description
0, 4, 8, 12	_	Reserved. Should be cleared.
1–3, 5–7, 9–11, 13–15	SSADx	Starting bank address for the shadow RAM of TDM a, b, c, or d. Defines the starting bank address of the shadow SIx RAM section that belongs to the corresponding TDM channel. Note: As noted before, the SIx RAM contain four banks of 64 entries for receive and four banks of 64 entries for transmit. In spite of the above, the starting bank address of each TDM can be programmed by the user in a granularity of 32 entries, but the user cannot put two different TDMs on the same bank. The user can put the shadow RAM section of the same TDM on the same bank. The last entry of a certain TDM frame is determined by the LST bit in the SIx RAM entry. The user must set this bit within the entries of SIx RAM shadow blocks for every TDM used. That means before the starting address of the next TDM.

14.5.4 SI Command Register (SIxCMDR)

The SI command registers (SIxCMDR), shown in Figure 14-19, allow the user to dynamically program the SIx RAM. When the user sets bits in the SIxCMDR, the SIx switches to the shadow SIx RAM at the end of the current-route RAM programming frame. For more information about dynamic programming, see Section 14.4.5, "Static and Dynamic Routing."

Bits	0	1	2	3	4	5	6	7			
Field	CSRRA CSRTA CSRRB CSRTB CSRRC CSRTC CSRRD CSRTD										
Reset	0000_0000										
R/W	R/W										
Addr			0x11B2A	(SI1CMDR),	0x11B4A (SI	2CMDR)					

Figure 14-19. SI Command Register (SIxCMDR)

Table 14-7 describes SIxCMDR fields.

Bits	Name	Description
0, 2, 4, 6	CSRRx	 Change shadow RAM for TDM a, b, c, or d receiver. Set CSRRx causes the SI receiver to replace the current route RAM with the shadow RAM. Set by the user and cleared by the SI. 0 The receiver shadow RAM is not valid. The user can write into the shadow RAM to program a new routing. 1 The receiver shadow RAM is valid. The SI exchanges between the RAMs and take the new receiver routing from the receiver shadow RAM. Cleared as soon as the switch has completed.
1, 3, 5, 7	CSRTx	 Change shadow RAM for TDM a, b, c, or d transmitter. Set CRSTx causes the SI transmitter to replace the current route RAM with the shadow RAM. Set by the user and cleared by the SI. 0 The transmitter shadow RAM is not valid. The user can write into the shadow RAM to program a new routing. 1 The transmitter shadow RAM is valid. The SI exchanges between the RAMs and take the new transmitter routing from the receiver shadow RAM. Cleared as soon as the switch has completed.

Table 14-7. SIxCMDR Field Description

14.5.5 SI Status Registers (SIxSTR)

The SI status register (SLxSTR), shown in Figure 14-20, identifies the current-route RAM. SLxSTR values are valid only when the corresponding SLxCMDR bit = 0.

Bits	0	1	2	3	4	5	6	7			
Field	CRORA	A CROTA CRORB CROTB CRORC CROTC CRORD CRO									
Reset	0000_0000										
R/W	R										
Addr		0x11B2C (SI1STR), 0x11B4C (SI2STR)									

Figure 14-20. SI Status Registers (SIxSTR)

Table 14-8 describes SIxSTR fields.

Table 14-8. SIxSTR Field Descriptions

Bits	Name	Description
0, 2, 4, 6	CRORx	Current-route original receiver. Determines whether the current-route receiver RAM is the original or the shadow. 0 The current-route receiver RAM is the original one. 1 The current-route receiver RAM is the shadow.
1, 3, 5, 7	CROTx	Current-route original transmitter. Determines whether the current-route transmitter RAM is the original or the shadow. 0 The current-route transmitter RAM is the original one. 1 The current-route transmitter RAM is the shadow.

14.6 Serial Interface IDL Interface Support

The IDL interface is a full-duplex ISDN interface used to connect a physical layer device to the MPC8260. The MPC8260 supports both the basic and primary rate of the IDL bus.

In the basic rate of IDL, data on three channels (B1, B2, and D) is transferred in a 20-bit frame, providing a full-duplex bandwidth of 160 Kbps. The MPC8260 is an IDL slave device that is clocked by the IDL bus master (physical layer device) and has separate receive and transmit sections. Although the MPC8260 has eight TDMs, it can support only four independent IDL buses (limited by the number of serials that support IDL) using separate clocks and sync pulses. Figure 14-21 shows an application with two IDL buses.

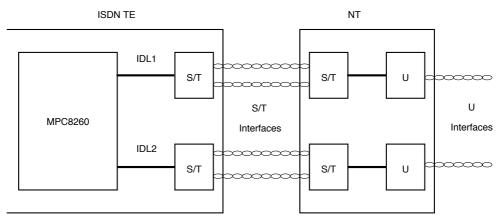
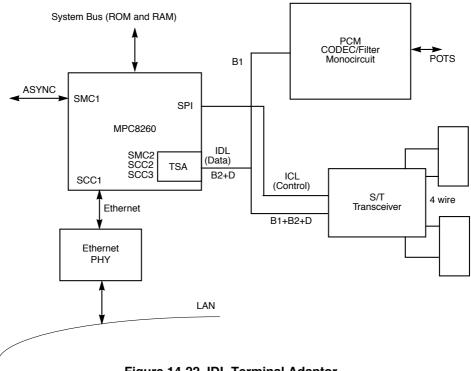



Figure 14-21. Dual IDL Bus Application Example

14.6.1 IDL Interface Example

An example of the IDL application is the ISDN terminal adaptor shown in Figure 14-22. In such an application, the IDL interface is used to connect the 2B+D channels between the MPC8260, CODEC, and S/T transceiver. One of the MPC8260's SCCs is configured to HDLC mode to handle the D channel; another MPC8260's SCC is used to rate adapt the terminal data stream over the first B channel. That SCC is configured for HDLC mode if V.120 rate adoption is required. The second B channel is then routed to the CODEC as a digital voice channel, if preferred. The SPI is used to send initialization commands and periodically check status from the S/T transceiver. The SMC connected to the terminal is configured for UART.

Figure	14-22.	IDL	Terminal	Adaptor
--------	--------	-----	----------	---------

The MPC8260 can identify and support each IDL channel or can output strobe lines for interfacing devices that do not support the IDL bus. The IDL signals for each transmit and receive channel are described in Table 14-9.

Description
IDL clock; input to the MPC8260.
IDL sync signal; input to the MPC8260. This signal indicates that the clock periods following the pulse designate the IDL frame.
IDL receive data; input to the MPC8260. Valid only for the bits supported by the IDL; ignored for any other signals present.
IDL transmit data; output from the MPC8260. Valid only for the bits that are supported by the IDL; otherwise, three-stated.
IDL request permission to transmit on the D channel; output from the MPC8260 on the $\overline{L1RQx}$ pin.
IDL grant permission to transmit on the D Channel; input to the MPC8260 on the L1TSYNCx pin.

Table 14-9. IDL Signal Descriptions

Note: x = a, b, c, and d for TDMa, TDMb, TDMc, and TDMd (for SI1 and SI2).

The basic rate IDL bus has the three following channels:

- B1 is a 64-Kbps bearer channel
- B2 is a 64-Kbps bearer channel
- D is a 16-Kbps signaling channel

There are two definitions of the IDL bus frame structure -8 and 10 bits. The only difference between them is the channel order within the frame. See Figure 14-23.

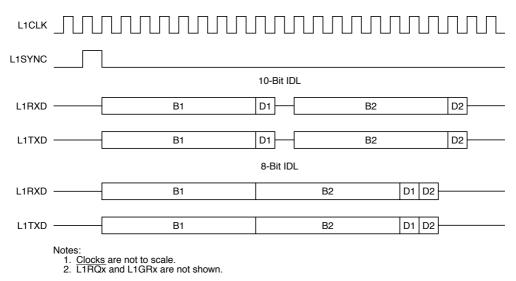


Figure 14-23. IDL Bus Signals

Note that previous versions of Motorola IDL-defined bit functions called auxiliary (A) and maintenance (M) were removed from the IDL definition when it was concluded that the IDL control channel would be out-of-band. These functions were defined as a subset of the Motorola SPI format called serial control port (SCP). To implement the A and M bits as originally defined, program the TSA to access these bits and route them transparently to an SCC or SMC. Use the SPI to perform out-of-band signaling.

The MPC8260 supports all channels of the IDL bus in the basic rate. Each bit in the IDL frame can be routed to any SCC and SMC or can assert a strobe output for supporting an external device. The MPC8260 supports the request-grant method for contention detection on the D channel of the IDL basic rate and when the MPC8260 has data to transmit on the D channel, it asserts $\overline{L1RQx}$. The physical layer device monitors the physical layer bus for activity on the D channel and indicates that the channel is free by asserting L1GRx. The MPC8260 samples the L1GRx signal when the IDL sync signal (L1RSYNCx) is asserted. If L1GRx is asserted, the MPC8260 sends the first zero of the opening flag in the first bit

of the D channel. If a collision is detected on the D channel, the physical layer device negates L1GRx. The MPC8260 then stops sending and retransmits the frame when L1GRx is reasserted. This procedure is handled automatically for the first two buffers of a frame.

For the primary rate IDL, the MPC8260 supports up to four 8-bit channels in the frame, determined by the SLx RAM programming. To support more channels, the user can route more than one channel to each SCC and the SCC treats it as one high-speed stream and store it in the same data buffers (appropriate only for transparent data). Additionally, the MPC8260 can be used to assert strobes for support of additional external IDL channels.

The IDL interface supports the CCITT I.460 recommendation for data-rate adaptation since it separately accesses each bit of the IDL bus. The current-route RAM specifies which bits are supported by the IDL interface and by which serial controller. The receiver only receives bits that are enabled by the receiver route RAM. Otherwise, the transmitter sends only bits that are enabled by the transmitter route RAM and three-states L1TXDx.

14.6.2 IDL Interface Programming

To program an IDL interface, first program SIxMR[GMx] to the IDL grant mode for that channel. If the receive and transmit sections interface to the same IDL bus, set SIxMR[CRTx] to internally connect the Rx clock and sync signals to the transmit section. Then, program the SIx RAM used for the IDL channels to the preferred routing. See Section 14.4.4, "SIx RAM Programming Example."

Define the IDL frame structure by programming SIxMR[xFSDx] to have a 1-bit delay from frame sync to data, SIxMR[FEx] to sample on the falling edge, and SIxMR[CEx] to transmit on the rising edge of the clock. Program the parallel I/O open-drain register so that L1TXDx is three-stated when inactive; see Section 35.2.1, "Port Open-Drain Registers (PODRA–PODRD)." To support the D channel, program the appropriate CMXSCR[GRx] bit, as described in Section 15.4.5, "CMX SCC Clock Route Register (CMXSCR)," and program the SIx RAM entry to route data to the chosen serial controller. The two definitions of IDL, 8 or 10 bits, are implemented by simply modifying the SIx RAM programming. In both cases, L1GRx is sampled with L1TSYNCx and transferred to the D-channel SCC as a grant indication.

For example, based on the same 10-bit format as in Section 14.4.4, "SIx RAM Programming Example," implement an IDL bus using SCC1, SCC2, and SMC1 connected to TDMa1 as follows:

Entry	Six RAM Entry												
Number	мсс	SWTR	SSEL	CSEL	CNT	ВҮТ	LST	Description					
0	0	0	0000	0010	000	1	0	8-bit SCC2					
1	0	0	0000	0001	000	0	0	1-bit SCC1					
2	0	0	0000	0000	000	0	0	1-bit no support					
3	0	0	0000	0101	011	1	0	4-bit SMC1					
4	0	0	0000	0101	011	1	0	4-bit SMC1					
5	0	0	1000	0001	000	0	1	1-bit SCC1 strobe1					

1. Program both the Tx and Rx sections of the SLx RAM as in Table 14-10.

Table 14-10. SIx RAM Entries for an IDL Interface

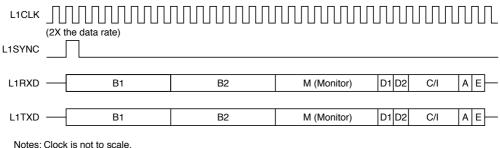
- 2. CMXSI1CR = 0x00. TDMA receive clock is CLK1.
- 3. CMXSMR = 0x80. SMC1 is connected to the TSA.
- 4. CMXSCR = 0xC040_0000. SCC1 and SCC2 are connected to the TSA. SCC1 supports the grant mechanism because it handles the D channel.
- 5. SI1AMR = 0x0145. TDMA grant mode is used with 1-bit frame sync delay in Tx and Rx and common receive-transmit mode.
- 6. Set PPARA[6–9]. Configures L1TXDa[0], L1RXDa[0], L1TSYNCa, and L1RSYNCa.
- 7. Set PSORA[6–9]. Configures L1TXDa[0], L1RXDa[0], L1TSYNCa, and L1RSYNCa.
- 8. Set PDIRA[9]. Configures L1TXDa[0].
- 9. Set PODRA[9]. Configures L1TXDa[0] to an open-drain output.
- 10. Set PPARC[30,31]. Configures L1TCLKa and L1RCLKa.
- 11. Clear PDIRC[30,31] Configures L1TCLKa and L1RCLKa.
- 12. Clear PSORC[30,31]. Configures L1TCLKa and L1RCLKa.
- 13. Set PPARB[17]. Configures $\overline{L1RQa}$.
- 14. Clear PSORB[17]. Configures $\overline{L1RQa}$.
- 15. Set PDIRB[17]. Configures $\overline{L1RQa}$.
- 16. Set PPARD[13]. Configures L1ST1.
- 17. Clear PSORD[13]. Configures L1ST1.
- 18. Set PDIRD[13]. Configures L1ST1.

- 19. SI1CMDR is not used.
- 20. SI1STR does not need to be read.
- 21. Configure the SCC1 for HDLC operation (to handle the LAPD protocol of the D channel), and configure SCC2 and SMC1 as preferred.
- 22. SI1GMR = 0x01. Enable TDM A (one static TDM).
- 23. Enable SCC1, SCC2 and SMC1.

14.7 Serial Interface GCI Support

The MPC8260 fully supports the normal mode of the GCI, also known as the ISDNoriented modular revision 2.2 (IOM-2), and the SCIT. The MPC8260 also supports the Dchannel access control in S/T interface terminals using the command/indication (C/I) channel.

The GCI bus consists of four lines—two data lines, a clock, and a frame synchronization line. Usually, an 8-kHz frame structure defines the various channels within the 256-kbps data rate. The MPC8260 supports two (limited by the number of SMCs) independent GCI buses, each with independent receive and transmit sections. The interface can also be used in a multiplexed frame structure on which up to eight physical layer devices multiplex their GCI channels. In this mode, the data rate would be 2,048 kbps.


In the GCI bus, the clock rate is twice the data rate. The SI divides the input clock by two to produce the data clock. The MPC8260 also has data strobe lines and the 1× data rate clock L1CLKOx output pins. These signals are used for interfacing devices to GCI that do not support the GCI bus. Table 14-11 describes GCI signals for each transmit and receive channel.

Signal	Description
L1RSYNCx	Used as a GCI sync signal; input to the MPC8260. This signal indicates that the clock periods following the pulse designate the GCI frame.
L1RCLKx	Used as a GCI clock; input to the MPC8260. The L1RCLKx signal frequency is twice the data clock.
L1RXDx	Used as a GCI receive data; input to the MPC8260.
L1TXDx	Used as a GCI transmit data; open-drain output. Valid only for the bits that are supported by the IDL; otherwise, three-stated.
L1CLKOx	Optional signal; output from the MPC8260. This 1× clock output is used to clock devices that do not interface directly to the GCI. If the double-speed clock is used, (DSCx bit is set in the SIxMR), this output is the L1RCLKx divided by 2; otherwise, it is simply a 1× output of the L1RCLKx signal.

Table 14-11.	GCI Signals
--------------	-------------

Note: x = a, b, c, and d for TDMa, TDMb, TDMc, and TDMd (for SI1 and SI2).

The GCI bus signals are shown in Figure 14-24.

^{1 1}CLKO is not shown

Figure 14-24. GCI Bus Signals

In addition to the 144-Kbps ISDN 2B+D channels, the GCI provides five channels for maintenance and control functions:

- B1 is a 64-Kbps bearer channel
- B2 is a 64-Kbps bearer channel
- M is a 64-Kbps monitor channel
- D is a 16-Kbps signaling channel
- C/I is a 48-Kbps C/I channel (includes A and E bits)

The M channel is used to transfer data between layer 1 devices and the control unit (the CPU); the C/I channel is used to control activation/deactivation procedures or to switch test loops by the control unit. The M and C/I channels of the GCI bus should be routed to SMC1 or SMC2, which have modes to support the channel protocols. The MPC8260 can support any channel of the GCI bus in the primary rate by modifying SIx RAM programming.

The GCI supports the CCITT I.460 recommendation as a method for data rate adaptation since it can access each bit of the GCI separately. The current-route RAM specifies which bits are supported by the interface and which serial controller support them. The receiver only receives the bits that are enabled by the SIx RAM and the transmitter only transmits the bits that are enabled by the SIx RAM and does not drive L1TXDx. Otherwise, L1TXDx is an open-drain output and should be pulled high externally.

The MPC8260 supports contention detection on the D channel of the SCIT bus. When the MPC8260 has data to transmit on the D channel, it checks a SCIT bus bit that is marked with a special route code (usually, bit 4 of C/I channel 2). The physical layer device monitors the physical layer bus for activity on the D channel and indicates on this bit that the channel is free. If a collision is detected on the D channel, the physical layer device sets bit 4 of C/I channel 2 to logic high. The MPC8260 then aborts its transmission and retransmits the frame when this bit is set again. This procedure is automatically handled for the first two buffers of a frame.

14.7.1 SI GCI Activation/Deactivation Procedure

In the deactivated state, the clock pulse is disabled and the data line is at a logic one. The layer 1 device activates the MPC8260 by enabling the clock pulses and by an indication in the channel 0 C/I channel. The MPC8260 reports to the core (via a maskable interrupt) that a valid indication is in the SMC RxBD.

When the core activates the line, the data output of L1TXDn is programmed to zero by setting SLxGMR[STZx]. Code 0 (command timing TIM) is transmitted on channel 0 C/I channel to the layer 1 device until STZx is reset. The physical layer device resumes the clock pulses and gives an indication in the channel 0 C/I channel. The core should reset STZx to enable data output.

14.7.2 Serial Interface GCI Programming

The following sections describe serial interface GCI programming.

14.7.2.1 Normal Mode GCI Programming

The user can program and configure the channels used for the GCI bus interface. First, the SIxMR register to the GCI/SCIT mode for that channel must be programmed, using the DSCx, FEx, CEx, and RFSDx bits. This mode defines the sync pulse to GCI sync for framing and data clock as one-half the input clock rate. The user can program more than one channel to interface to the GCI bus. Also, if the receive and transmit section are used for interfacing the same GCI bus, the user internally connects the receive clock and sync signals to the SIx RAM transmit section, using the CRTx bits. The user should then define the GCI frame routing and strobe select using the SIx RAM.

When the receive and transmit section uses the same clock and sync signals, these sections should be programmed to the same configuration. Also, the L1TXDx pin in the I/O register should be programmed to be an open-drain output. To support the monitor and the C/I channels in GCI, those channels should be routed to one of the SMCs. To support the D channel when there is no possibility of collision, the user should clear the SIxMR[GRx] bit corresponding to the SCC that supports the D channel.

14.7.2.2 SCIT Programming

For interfacing the GCI/SCIT bus, SI*x*MR must be programmed to the GCI/SCIT mode. The SI*x* RAM is programmed to support a 96-bit frame length and the frame sync is programmed to the GCI sync pulse. Generally, the SCIT bus supports the D channel access collision mechanism. For this purpose, the user should program the CRT*x* bits so the receive and transmit sections use the same clock and sync signals and program the GR*x* bits to transfer the D channel grant to the SCC that supports this channel. The received (grant) bit should be marked by programming the channel select bits of the SI*x* RAM to 0b0111 for an internal assertion of a strobe on this bit. This bit is sampled by the SI and transferred to the D-channel SCC as the grant. The bit is generally bit 4 of the C/I in channel 2 of the GCI, but any other bit can be selected using the SI*x* RAM.

For example, assuming that SCC1 is connected to the D channel, SCC2 to the B1 channel, and SMC2 to the B2 channel, SMC1 is used to handle the C/I channels, and the D-channel grant is on bit 4 of the C/I on SCIT channel 2, the initialization sequence is as follows:

1. Program both the Tx and Rx sections of the SIx RAM as in Table 14-12 beginning at addresses 0 and 1024, respectively.

Entry		SIx RAM Entry												
Number	мсс	SWTR	SSEL	CSEL	CNT	ВҮТ	LST	Description						
0	0	0	0000	0010	000	1	0	8 Bits SCC2						
1	0	0	0000	0110	000	1	0	8 Bits SMC2						
2	0	0	0000	0101	000	1	0	8 Bits SMC1						
3	0	0	0000	0001	001	0	0	2 Bits SCC1						
4	0	0	0000	0101	101	0	0	6 Bits SMC1						
5	0	0	0000	0000	110	1	0	Skip 7 bytes						
6	0	0	0000	0000	001	0	0	Skip 2 bits						
7	0	0	0000	0111	000	0	1	D grant bit						

Table 14-12. SIx RAM Entries for a GCI Interface (SCIT Mode)

2. SI1AMR = 0x00c0. TDMa is used in double speed clock and common Rx/Tx modes. SCIT mode is used in this example.

Note: If SCIT mode is not used, delete the last three entries of the SLx RAM, divide one entry into two and set the LST bit in the new last entry.

- 3. CMXSMR = 0x88. SMC1 and SMC2 are connected to the TSA.
- 4. CMXSCR = 0xC040_0000. SCC2 and SCC1 are connected to the TSA. SCC1 supports the grant mechanism since it is on the D channel.
- 5. CMXSI1CR = 0x00. TDMa uses CLK1.
- 6. Set PPARA[6–9]. Configures L1TXDa[0], L1RXDa[0], L1TSYNCa and L1RSYNCa.
- 7. Set PSORA[6–9]. Configures L1TXDa[0], L1RXDa[0], L1TSYNCa and L1RSYNCa.
- 8. Set PDIRA[9]. Configures L1TXDa[0].
- 9. Set PODRA[9]. Configures L1TXDa[0] to an open-drain output.
- 10. Set PPARC[30,31]. Configures L1TCLKa and L1RCLKa.
- 11. Clear PDIRC[30,31]. Configures L1TCLKa and L1RCLKa.
- 12. Clear PSORC[30,31]. Configures L1TCLKa and L1RCLKa.
- 13. Set PPARB[17]. Configures L1CLKO and $\overline{L1RQa}$.

- 14. Clear PSORB[17]. Configures L1CLKO and $\overline{L1RQa}$.
- 15. Set PDIRB[17]. Configures L1CLKO and $\overline{L1RQa}$.
- 16. If the 1x GCI data clock is required, set PBPAR bit 16 and PBDIR bit 16 and clear PSORB 16, which configures L1CLKOa as an output.
- 17. Configure SCC1 for HDLC operation (to handle the LAPD protocol of the D channel). Configure SMC1 for SCIT operation and configure SCC2 and SMC2 as preferred.
- 18. SI1GMR = 0x11. Enable TDMa (one static TDM), STZ for TDMa.
- 19. SI1CMDR is not used.
- 20. SI1STR does not need to be read.
- 21. Enable the SCC1, SCC2, SMC1 and SMC2.

Chapter 15 CPM Multiplexing

The CPM multiplexing logic (CMX) connects the physical layer—UTOPIA, MII, modem lines, TDM lines and proprietary serial lines to the FCCs, SCCs and SMCs. The CMX features the following two modes:

- In NMSI mode, the CMX allows all serial devices to be connected to their own set of individual pins. Each serial device that connects to the external world in this way is said to connect to a nonmultiplexed serial interface (NMSI). In the NMSI configuration, the CMX provides a flexible clocking assignment for each FCC, SCC and SMC from a bank of external clock pins and/or internal BRGs.
- In TDM mode, the CMX performs the connection of the serial devices to the SIs for using the time-slot assigner (TSA). This allows any combination of MCCs, FCCs, SCCs, and SMCs to multiplex data on any of the eight TDM channels. The CMX connects the serial device only to the TSA in the SI*x*. The actual multiplexing of the TDM is made by programming the SI*x* RAM. In TDM mode, all other pins used in NMSI mode are available for other purposes. See Chapter 14, "Serial Interface with Time-Slot Assigner."

The CMX also allows the user to route the multiple-PHY address to FCC1 or to FCC2 in various combinations, allowing the use of both FCCs in multiple-PHY mode.

NOTE

The CMX serves both SI1 and SI2. When the user programs the CMX to connect a serial device to the SI, the CMX connects that serial device to both SIs. Programming both SIs to use one serial device in the same time slot causes erratic behavior.

Figure 15-1 shows a block diagram of the CMX.

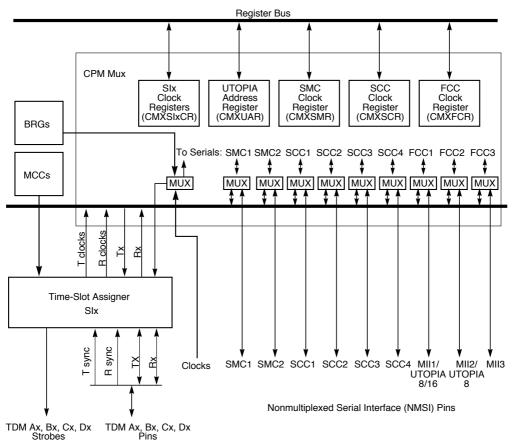


Figure 15-1. CPM Multiplexing Logic (CMX) Block Diagram

15.1 Features

The NMSI mode supports the following:

- Each FCC, SCC, and SMC can be programmed independently to work with a serial device's own set of pins in a non-multiplexed manner.
- Each FCC can be connected to its own MII (media-independent interface).
- FCC1 can also be connected to an 8- or 16-bit ATM UTOPIA level-2 interface.
- FCC2 can also be connected also to an 8-bit ATM UTOPIA level-2 interface.
- Each SCC can have its own set of modem control pins.
- Each SMC can have its own set of four pins.
- Each FCC, SCC, and SMC can be driven from a bank of twenty clock pins or a bank of eight BRGs.

The multiple-PHY addressing selection supports the following options for FCC1 and FCC2:

- In master mode:
 - FCC1 connect up to 31 PHYs and FCC2 connect up to 7 PHYs.
 - FCC1 connect up to 15 PHYs and FCC2 connect up to 15 PHYs.
 - FCC1 connect up to 7 PHYs and FCC2 connect up to 31 PHYs.
- In slave mode:
 - FCC1 connect up to 31 PHYs and FCC2 connect to 0 PHYs.
 - FCC1 connect up to 15 PHYs and FCC2 connect up to 1 PHYs.
 - FCC1 connect up to 7 PHYs and FCC2 connect up to 3 PHYs.
 - FCC1 connect up to 3 PHYs and FCC2 connect up to 7 PHYs.
 - FCC1 connect up to 1 PHYs and FCC2 connect up to 15 PHYs.
 - FCC1 connect to 0 PHYs and FCC2 connect up to 31 PHYs.

15.2 Enabling Connections to TSA or NMSI

Each serial device can be independently enabled to connect to the TSA or to dedicated external pins, as shown in Figure 15-2. Each FCC can be connected to a dedicated MII or to the eight TDMs. FCC1 can also be connected to an 8- or 16-bit UTOPIA level-2 interface. FCC2 can also be connected to an 8-bit UTOPIA level-2 interface. Each SCC or SMC can be connected to the eight TDMs or to its own set of pins. Once connections are made to the TSA, the exact routing decisions are made in the SIx RAMs.

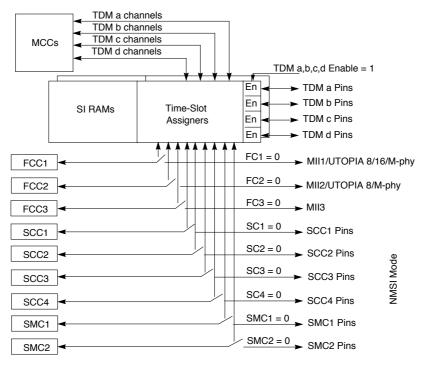


Figure 15-2. Enabling Connections to the TSA

15.3 NMSI Configuration

The CMX supports an NMSI mode for each of the FCCs, SCCs, and SMCs. Each serial device is connected independently either to the NMSI or to the TSA using the clock route registers. The user should note, however, that NMSI pins are multiplexed with other functions at the parallel I/O lines. Therefore, if a combination of TDM and NMSI channels are used, consult the MPC8260's pinout to determine which FCC, SCC, and SMC to connect and where to connect them.

The clocks provided to the FCCs, SCCs, and SMCs are derived from a bank of 8 internal BRGs and 20 external CLK pins; see Figure 15-3. There are two main advantages to the bank-of-clocks approach. First, a serial device is not forced to choose a serial device clock from a predefined pin or BRG; this allows a flexible pinout-mapping strategy. Second, a group of serial receivers and transmitters that needs the same clock rate can share the same pin. This configuration leaves additional pins for other functions and minimizes potential skew between multiple clock sources.

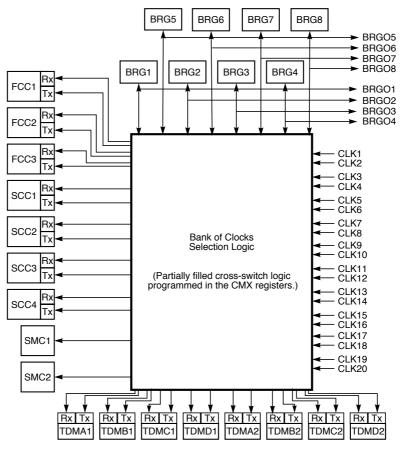


Figure 15-3. Bank of Clocks

The eight BRGs also make their clocks available to external logic, regardless of whether the BRGs are being used by a serial device. Notice that the BRG outputs are multiplexed with other functions; thus, all BRGOx pins may not always be available. Chapter 35, "Parallel I/O Ports," shows the function multiplexing.

There are two restrictions in the bank-of-clocks mapping:

- Only four of the twenty sources can be connected to any given FCC or SCC receiver or transmitter.
- The SMC transmitter and receiver share the same clock source when connected to the NMSI.

Table 15-1 shows the clock source options for the serial controllers and TDM channels.

Clock										CI	LK													BF	RG			
CIUCK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	1	2	3	4	5	6	7	8
SCC1 Rx			V	V							V	V									V	V	V	V				
SCC1 Tx			V	V							V	V									٧	V	V	V				
SCC2 Rx			V	V							V	V									٧	V	V	V				
SCC2 Tx			V	V							V	V									V	V	V	V				
SCC3 Rx					V	V	V	V													V	V	V	V				
SCC3 Tx					V	V	V	V													٧	V	V	V				
SCC4 Rx					V	V	V	V													۷	V	V	V				
SCC4 Tx					V	V	V	V													V	V	V	V				
FCC1 Rx									V	V	V	V													V	V	V	V
FCC1 Tx									V	V	V	V													V	V	V	V
FCC2 Rx													V	V	V	V									V	V	V	V
FCC2 Tx													V	V	V	V									V	V	V	V
FCC3 Rx													V	V	V	V									V	V	V	V
FCC3 Tx													V	V	V	V									V	V	V	V
TDMA1 Rx	V																		V									
TDMA1 Tx		V																		V								
TDMB1 Rx			V						V																			
TDMB1 Tx				V						V																		
TDMC1 Rx					V								V															
TDMC1 Tx						V								V								-						
TDMD1 Rx							V								V													
TDMD1 Tx								V								V												
TDMA2 Rx					V		-						V															
TDMA2 Tx						V								V														
TDMB2 Rx															V		V											
TDMB2 Tx																V		V										
TDMC2 Rx			V														V											
TDMC2 Tx				V														V										
TDMD2 Rx	V																		V									
TDMD2 Tx		V																		V								
SMC1 Rx							V		V												V						V	
SMC1 Tx							V		V												V						V	
SMC2 Rx																			V	V		V						V
SMC2 Tx																			V	V		V						V

Note that after a clock source is selected, the clock is given an internal name. For the FCCs and SCCs, the names are RCLK*x* and TCLK*x*; for SMCs, the name is simply SMCLK*x*. These internal names are used only in NMSI mode to specify the clocks sent to the FCCs, SCCs or SMCs. These names do not correspond to any MPC8260 pins.

15.4 CMX Registers

The following sections describe the CMX registers.

15.4.1 CMX UTOPIA Address Register (CMXUAR)

The CMX UTOPIA address register (CMXUAR), shown in Figure 15-4, defines the connection of FCC1 and FCC2 UTOPIA multiple-PHY addresses to the twenty UTOPIA address pins of the MPC8260; it also defines the connection of a BRG to the FCCs when an internal rate feature is used. This enables the user to implement a multiple-PHY UTOPIA master or slave on both FCC1 and FCC2 using only twenty pins. The user chooses how many PHYs to use with each interface and how many address lines are needed for each FCC.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12 13 14 1					
Field	SAD0	SAD1	SAD2	SAD3	SAD4	_	MAD4 MAD3 F1IRB F2IRB —											
Reset		0000_0000_0000																
R/W		R/W																
Addr		0x11B0E																

Figure 15-4. CMX UTOPIA Address Register (CMXUAR)

Table 15-2 describes CMXUAR fields.

Table 15-2. CMXUAR Field Descriptions

Bits	Name	Description
0–4	SADx	Slave address input pin x connection. Note that the address indexes are relative to FCC1; see Figure 15-7. 0 This address input pin is used by FCC2 in slave mode. 1 This address input pin is used by FCC1 in slave mode.
5	-	Reserved, should be cleared.
6–7	MADx	Master address output pin x connection. Note that the address indexes are relative to FCC1; see Figure 15-7. 0 This address output pin is used by FCC2 in master mode. 1 This address output pin is used by FCC1 in master mode.
8–9	F1IRB	FCC1 internal rate BRG selection. Selects the BRG to be connected to FCC 1 for internal rate operation. Used by the ATM controller; see Section 29.2.1.4, "Transmit External Rate and Internal Rate Modes." 00 FCC1 internal rate clock is BRG5. 01 FCC1 internal rate clock is BRG6. 10 FCC1 internal rate clock is BRG7. 11 FCC1 internal rate clock is BRG8.
10–11	F12IRB	FCC2 internal rate BRG selection. Selects the BRG to be connected to FCC 2 for internal rate operation. Used by the ATM controller; see Section 29.2.1.4, "Transmit External Rate and Internal Rate Modes." 00 FCC2 internal rate clock is BRG5. 01 FCC2 internal rate clock is BRG6. 10 FCC2 internal rate clock is BRG7. 11 FCC2 internal rate clock is BRG8.
12–15	-	Reserved, should be cleared.

Note that each SADx and MADx corresponds to a pair of separate receive and transmit address pins.

The MPC8260 has 16 output address pins and 10 input address pins dedicated for the UTOPIA interface. However, it has two FCCs with two parts each—receiver and transmitter that can be ether master or slave concurrently. The MPC8260 allows both FCC1 and FCC2 to connect to the address lines without putting limitations on being a master or slave, as described in the following:

• For master mode: The user has two groups of eight address pins each. Three pins from each group are always connected to FCC1 and three are always connected to FCC2. The user decides which FCC uses the remaining two pins by programming CMXUAR[MADx]. See Figure

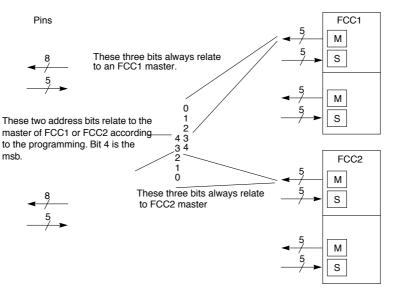


Figure 15-5. Connection of the Master Address

• For slave mode—The user has two groups of five address pins each. The user decides which FCC uses each pin by programming CMXUAR[SADx]. Connect any UTOPIA pins that are not connected to MPC8260 pins to GND. See Figure 15-6.

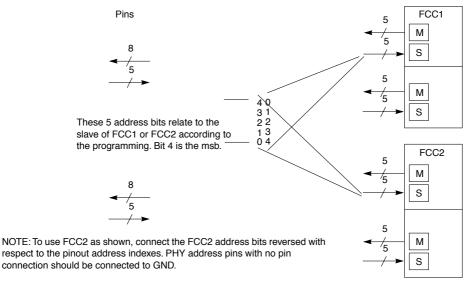


Figure 15-6. Connection of the Slave Address

Note that the user must program the addresses of the PHYs to be consecutive for each FCC; that is, the address lines connected to each FCC must be consecutive.

Figure 15-7 describes the interconnection between the receive external multi-PHY bus and the internal FCC1 and FCC2 receive multi-PHY addresses. The same diagram applies to the transmit multi-PHY bus using different dedicated parallel I/O pins.

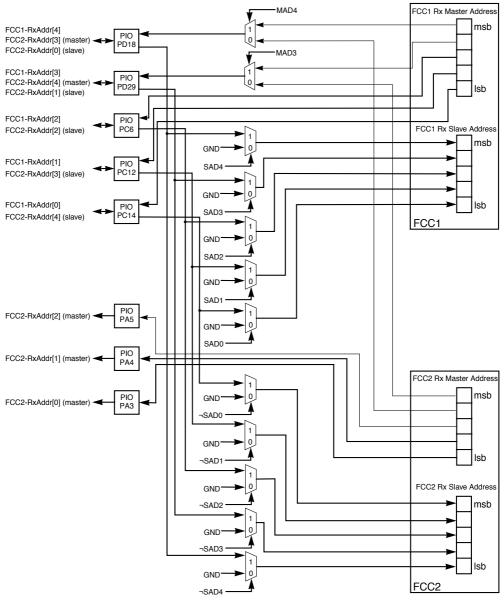


Figure 15-7. Multi-PHY Receive Address Multiplexing

15.4.2 CMX SI1 Clock Route Register (CMXSI1CR)

The CMX SI1 clock route register (CMXSI1CR) defines the connection of SI1 to the clock sources that can be input from the bank of clocks.

Bits	0	1	6	7									
Field	RTA1CS	RTB1CS RTC1CS RTD1CS TTA1CS TTB1CS TTC1CS TT											
Reset	0000_0000												
R/W		R/W											
Addr				0x11	B00								

Figure 15-8. CMX SI1 Clock Route Register (CMXSI1CR)

Table 15-3 describes CMXSI1CR fields.

Table 15-3	. CMXSI1CR	Field Descript	tions
------------	------------	----------------	-------

Bits	Name	Description
0	RTA1CS	Receive TDM A1 clock source 0 TDM A1 receive clock is CLK1. 1 TDM A1 receive clock is CLK19.
1	RTB1CS	Receive TDM B1 clock source 0 TDM B1 receive clock is CLK3. 1 TDM B1 receive clock is CLK9.
2	RTC1CS	Receive TDM C1 clock source 0 TDM C1 receive clock is CLK5. 1 TDM C1 receive clock is CLK13.
3	RTD1CS	Receive TDM D1 clock source 0 TDM D1 receive clock is CLK7. 1 TDM D1 receive clock is CLK15.
4	TTA1CS	Transmit TDM A1 clock source 0 TDM A1 transmit clock is CLK2. 1 TDM A1 transmit clock is CLK20.
5	TTB1CS	Transmit TDM B1 clock source 0 TDM B1 transmit clock is CLK4. 1 TDM B1 transmit clock is CLK10.
6	TTC1CS	Transmit TDM C1 clock source 0 TDM C1 transmit clock is CLK6. 1 TDM C1 transmit clock is CLK14.
7	TTD1CS	Transmit TDM D1 clock source 0 TDM D1 transmit clock is CLK8. 1 TDM D1 transmit clock is CLK16.

15.4.3 CMX SI2 Clock Route Register (CMXSI2CR)

The CMX SI2 clock route register (CMXSI2CR) defines the connection of SI2 to the clock sources that can be input from the bank of clocks.

Bits	0	1	2	3	4	5	6	7		
Field	RTA2CS	RTA2CS RTB2CS RTC2CS RTD2CS TTA2CS		TTB2CS	TTC2CS	TTD2CS				
Reset		0000_0000								
R/W		R/W								
Addr	0x11B02									

Figure 15-9. CMX SI2 Clock Route Register (CMXSI2CR)

Table 15-4 describes CMXSI2CR fields.

Table 15-4	. CMXSI2CR	Field	Descriptions
------------	------------	-------	--------------

Bits	Name	Description
0	RTA2CS	Receive TDM A2 clock source 0 TDM A2 receive clock is CLK13. 1 TDM A2 receive clock is CLK5.
1	RTB2CS	Receive TDM B2 clock source 0 TDM B2 receive clock is CLK15. 1 TDM B2 receive clock is CLK17.
2	RTC2CS	Receive TDM C2 clock source 0 TDM C2 receive clock is CLK3. 1 TDM C2 receive clock is CLK17.
3	RTD2CS	Receive TDM D2 clock source 0 TDM D2 receive clock is CLK1. 1 TDM D2 receive clock is CLK19.
4	TTA2CS	Transmit TDM A2 clock source 0 TDM A2 transmit clock is CLK14. 1 TDM A2 transmit clock is CLK6.
5	TTB2CS	Transmit TDM B2 clock source 0 TDM B2 transmit clock is CLK16. 1 TDM B2 transmit clock is CLK18.
6	TTC2CS	Transmit TDM C2 clock source 0 TDM C2 transmit clock is CLK4. 1 TDM C2 transmit clock is CLK18.
7	TTD2CS	Transmit TDM D2 clock source 0 TDM D2 transmit clock is CLK2. 1 TDM D2 transmit clock is CLK20.

15.4.4 CMX FCC Clock Route Register (CMXFCR)

The CMX FCC clock route register (CMXFCR) defines the connection of the FCCs to the TSA and to the clock sources from the bank of clocks.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	—	FC1		RF1CS	5		TF1CS – FC2 RI			RF2CS	S TF2CS					
Reset		0000_0000_0000														
R/W		R/W														
Addr		0x11B04														
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	—	– FC3 RF3CS TF3CS –														
Reset	0000_0000_0000															
R/W		R/W														
Addr	0x11B06															

Figure 15-10. CMX FCC Clock Route Register (CMXFCR)

Table 15-5 describes CMXFCR fields.

Table 15-5. CMXFCR Field Descriptions

Bits	Name	Description
0	-	Reserved, should be cleared
1	FC1	 Defines the FCC1 connection 0 FCC1 is not connected to the TSA and is either connected directly to the NMSIx pins or is not used. The choice of general-purpose I/O port pins versus FCCn pins is made in the parallel I/O control register. 1 FCC1 is connected to the TSA of the SIs. The NMSIx pins are available for other purposes.
2–4	RF1CS	Receive FCC1 clock source (NMSI mode). Ignored if FCC1 is connected to the TSA (FC1 = 1). 000 FCC1 receive clock is BRG5. 001 FCC1 receive clock is BRG7. 011 FCC1 receive clock is BRG8. 100 FCC1 receive clock is CLK9. 101 FCC1 receive clock is CLK10. 110 FCC1 receive clock is CLK11. 111 FCC1 receive clock is CLK12.
5–7	TF1CS	Transmit FCC1 clock source (NMSI mode). Ignored if FCC1 is connected to the TSA (FC1 = 1). 000 FCC1 transmit clock is BRG5. 001 FCC1 transmit clock is BRG6. 010 FCC1 transmit clock is BRG7. 011 FCC1 transmit clock is BRG8. 100 FCC1 transmit clock is CLK9. 101 FCC1 transmit clock is CLK10. 110 FCC1 transmit clock is CLK11. 111 FCC1 transmit clock is CLK12.
8	-	Reserved, should be cleared
9	FC2	 Defines the FCC2 connection 0 FCC2 is not connected to the TSA and is either connected directly to the NMSIx pins or is not used. The choice of general-purpose I/O port pins versus FCCn pins is made in the parallel I/O control register. 1 FCC2 is connected to the TSA of the SIs. The NMSIx pins are available for other purposes.

Bits	Name	Description				
10–12	RF2CS	Receive FCC2 clock source (NMSI mode). Ignored if FCC2 is connected to the TSA (FC2 = 1). 000 FCC2 receive clock is BRG5. 001 FCC2 receive clock is BRG6. 010 FCC2 receive clock is BRG7. 011 FCC2 receive clock is BRG8. 100 FCC2 receive clock is CLK13. 101 FCC2 receive clock is CLK14. 110 FCC2 receive clock is CLK15. 111 FCC2 receive clock is CLK16.				
13–15	TF2CS	Transmit FCC2 clock source (NMSI mode). Ignored if FCC2 is connected to the TSA (FC2 = 1). 000 FCC2 transmit clock is BRG5. 001 FCC2 transmit clock is BRG6. 010 FCC2 transmit clock is BRG7. 011 FCC2 transmit clock is BRG8. 100 FCC2 transmit clock is CLK13. 101 FCC2 transmit clock is CLK14. 110 FCC2 transmit clock is CLK15. 111 FCC2 transmit clock is CLK16.				
16	-	Reserved, should be cleared				
17	FC3	 Defines the FCC3 connection 0 FCC3 is not connected to the TSA and is either connected directly to the NMSIx pins or is not used. The choice of general-purpose I/O port pins versus FCCn pins is made in the parallel I/O control register. 1 FCC3 is connected to the TSA of the SIs. The NMSIx pins are available for other purposes. 				
18–20	RF3CS	Receive FCC3 clock source (NMSI mode). Ignored if FCC3 is connected to the TSA (FC3 = 1). 000 FCC3 receive clock is BRG5. 001 FCC3 receive clock is BRG6. 010 FCC3 receive clock is BRG7. 011 FCC3 receive clock is BRG8. 100 FCC3 receive clock is CLK13. 101 FCC3 receive clock is CLK14. 110 FCC3 receive clock is CLK15. 111 FCC3 receive clock is CLK16.				
21–23	TF3CS	Transmit FCC3 clock source (NMSI mode). Ignored if FCC3 is connected to the TSA (FC3 = 1). 000 FCC3 transmit clock is BRG5. 001 FCC3 transmit clock is BRG6. 010 FCC3 transmit clock is BRG7. 011 FCC3 transmit clock is BRG8. 100 FCC3 transmit clock is CLK13. 101 FCC3 transmit clock is CLK14. 110 FCC3 transmit clock is CLK15. 111 FCC3 transmit clock is CLK16.				
24–31	_	Reserved, should be cleared				

Table 15-5. CMXFCR Field Descriptions (Continued)

15.4.5 CMX SCC Clock Route Register (CMXSCR)

The CMX SCC clock route register (CMXSCR) defines the connection of the SCCs to the TSA and to the clock sources from the bank of clocks. This register also enables the use of the external grant pin.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	GR1	SC1		RS1CS	6		TS1CS	6	GR2	SC2	I	RS2CS	6	TS2CS		
Reset		0000_0000_0000														
R/W		R/W														
Addr		0x11B08														
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	GR3	SC3		RS3CS	3		твзсе	6	GR4	SC4	I	RS4CS	3	-	TS4CS	
Reset		0000_0000_0000														
R/W		R/W														
Addr								0x11	B0A							

Figure 15-11. CMX SCC Clock Route Register (CMXSCR)

Table 15-6 describes CMXSCR fields.

Table 15-6. CMXSCR Field Descriptions

Bits	Name	Description
0	GR1	 Grant support of SCC1 O SCC1 transmitter does not support the grant mechanism. The grant is always asserted internally. 1 SCC1 transmitter supports the grant mechanism as determined by the GMx bit of a serial device channel.
1	SC1	 SCC1 connection 0 SCC1 is not connected to the TSA and is either connected directly to the NMSIx pins or is not used. The choice of general-purpose I/O port pins versus SCCn pins is made in the parallel I/O control register. 1 SCC1 is connected to TSA of the SIs. The NMSIx pins are available for other purposes.
2-4	RS1CS	Receive SCC1 clock source (NMSI mode). Ignored if SCC1 is connected to the TSA (SC1 = 1). 000 SCC1 receive clock is BRG1. 001 SCC1 receive clock is BRG2. 010 SCC1 receive clock is BRG3. 011 SCC1 receive clock is BRG4. 100 SCC1 receive clock is CLK11. 101 SCC1 receive clock is CLK12. 110 SCC1 receive clock is CLK3. 111 SCC1 receive clock is CLK4.
5–7	TS1CS	Transmit SCC1 clock source (NMSI mode). Ignored if SCC1 is connected to the TSA (SC1 = 1). 000 SCC1 transmit clock is BRG1. 001 SCC1 transmit clock is BRG2. 010 SCC1 transmit clock is BRG3. 011 SCC1 transmit clock is BRG4. 100 SCC1 transmit clock is CLK11. 101 SCC1 transmit clock is CLK12. 110 SCC1 transmit clock is CLK3. 111 SCC1 transmit clock is CLK4.

Bits	Name	Description
8	GR2	 Grant support of SCC2 0 SCC2 transmitter does not support the grant mechanism. The grant is always asserted internally. 1 SCC2 transmitter supports the grant mechanism as determined by the GMx bit of a serial device channel.
9	SC2	 SCC2 connection SCC2 is not connected to the TSA and is either connected directly to the NMSIx pins or is not used. The choice of general-purpose I/O port pins versus SCCn pins is made in the parallel I/O control register. SCC2 is connected to TSA of the SIs. The NMSIx pins are available for other purposes.
10–12	RS2CS	Receive SCC2 clock source (NMSI mode). Ignored if SCC2 is connected to the TSA (SC2 = 1). 000 SCC2 receive clock is BRG1. 001 SCC2 receive clock is BRG2. 010 SCC2 receive clock is BRG3. 011 SCC2 receive clock is BRG4. 100 SCC2 receive clock is CLK11. 101 SCC2 receive clock is CLK12. 110 SCC2 receive clock is CLK3. 111 SCC2 receive clock is CLK3.
13–15	TS2CS	Transmit SCC2 clock source (NMSI mode). Ignored if SCC2 is connected to the TSA (SC2 = 1). 000 SCC2 transmit clock is BRG1. 001 SCC2 transmit clock is BRG2. 010 SCC2 transmit clock is BRG3. 011 SCC2 transmit clock is BRG4. 100 SCC2 transmit clock is CLK11. 101 SCC2 transmit clock is CLK12. 110 SCC2 transmit clock is CLK3. 111 SCC2 transmit clock is CLK4.
16	GR3	 Grant support of SCC3 0 SCC3 transmitter does not support the grant mechanism. The grant is always asserted internally. 1 SCC3 transmitter supports the grant mechanism as determined by the GMx bit of a serial device channel.
17	SC3	 SCC3 connection 0 SCC3 is not connected to the TSA and is either connected directly to the NMSIx pins or is not used. The choice of general-purpose I/O port pins versus SCCn pins is made in the parallel I/O control register. 1 SCC3 is connected to TSA of the SIs. The NMSIx pins are available for other purposes.
18–20	RS3CS	Receive SCC3 clock source (NMSI mode). Ignored if SCC3 is connected to the TSA (SC3 = 1). 000 SCC3 receive clock is BRG1. 001 SCC3 receive clock is BRG2. 010 SCC3 receive clock is BRG3. 011 SCC3 receive clock is BRG4. 100 SCC3 receive clock is CLK5. 101 SCC3 receive clock is CLK6. 110 SCC3 receive clock is CLK7. 111 SCC3 receive clock is CLK8.

Table 15-6. CMXSCR Field Descriptions (Continued)

Bits	Name	Description
21–23	TS3CS	Transmit SCC3 clock source (NMSI mode). Ignored if SCC3 is connected to the TSA (SC3 = 1). 000 SCC3 transmit clock is BRG1. 001 SCC3 transmit clock is BRG2. 010 SCC3 transmit clock is BRG3. 011 SCC3 transmit clock is BRG4. 100 SCC3 transmit clock is CLK5. 101 SCC3 transmit clock is CLK6. 110 SCC3 transmit clock is CLK7. 111 SCC3 transmit clock is CLK8.
24	GR4	 Grant support of SCC4 0 SCC4 transmitter does not support the grant mechanism. The grant is always asserted internally. 1 SCC4 transmitter supports the grant mechanism as determined by the GMx bit of a serial device channel.
25	SC4	 SCC4 connection SCC4 is not connected to the TSA and is either connected directly to the NMSIx pins or is not used. The choice of general-purpose I/O port pins versus SCCn pins is made in the parallel I/O control register. SCC4 is connected to TSA of the SIs. The NMSIx pins are available for other purposes.
26–28	RS4CS	Receive SCC4 clock source (NMSI mode). Ignored if SCC4 is connected to the TSA (SC4 = 1). 000 SCC4 receive clock is BRG1. 001 SCC4 receive clock is BRG2. 010 SCC4 receive clock is BRG3. 011 SCC4 receive clock is BRG4. 100 SCC4 receive clock is CLK5. 101 SCC4 receive clock is CLK6. 110 SCC4 receive clock is CLK7. 111 SCC4 receive clock is CLK8
29–31	TS4CS	Transmit SCC4 clock source (NMSI mode). Ignored if SCC4 is connected to the TSA (SC4 = 1). 000 SCC4 transmit clock is BRG1. 001 SCC4 transmit clock is BRG2. 010 SCC4 transmit clock is BRG3. 011 SCC4 transmit clock is BRG4. 100 SCC4 transmit clock is CLK5. 101 SCC4 transmit clock is CLK6. 110 SCC4 transmit clock is CLK7. 111 SCC4 transmit clock is CLK8

Table 15-6. CMXSCR Field Descriptions (Continued)

15.4.6 CMX SMC Clock Route Register (CMXSMR)

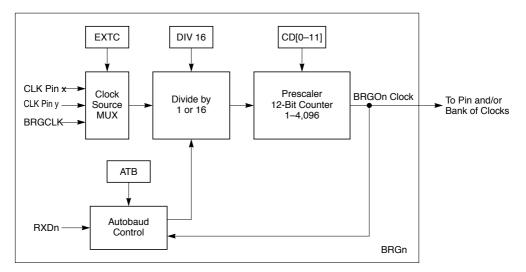
The CMX SMC clock route register (CMXSMR) defines the connection of the SMCs to the TSA and to the clock sources from the bank of clocks.

Bits	0	1	2 3		4	5	6	7			
Field	SMC1	_	SMC	1CS	SMC2	_	SMC2CS				
Reset	0000_0000										
R/W		R/W									
Addr		0x11B0C									

Figure 15-12. CMX SMC Clock Route Register (CMXSMR)

Table 15-7 describes CMXSMR fields.

Table 15-7	CMXSMR Fiel	d Descriptions
------------	-------------	----------------


Name	Name	Description
0	SMC1	 SMC1 connection 0 SMC1 is not connected to the TSA and is either connected directly to the NMSIx pins or is not used. The choice of general-purpose I/O port pins versus SMCn pins is made in the parallel I/O control register. 1 SMC1 is connected to the TSA of the SIs. The NMSIx pins are available for other purposes.
1	_	Reserved, should be cleared
2–3	SMC1CS SMC2	SMC1 clock source (NMSI mode). SMC1 can take its clocks from one of the two BRGs or one of two pins from the bank of clocks. However, the SMC1 transmit and receive clocks must be the same when it is connected to the NMSI. 00 SMC1 transmit and receive clocks are BRG1. 01 SMC1 transmit and receive clocks are BRG7. 10 SMC1 transmit and receive clocks are CLK7. 11 SMC1 transmit and receive clocks are CLK9. SMC2 connection 0 SMC2 is not connected to the TSA and is either connected directly to the NMSIx pins or is not
		 used. The choice of general-purpose I/O port pins versus SMCn pins is made in the parallel I/O control register. 1 SMC2 is connected to the TSA of the SIs. The NMSIx pins are available for other purposes.
5	_	Reserved, should be cleared
6–7	SMC2CS	 SMC2 clock source (NMSI mode). SMC2 can take its clocks from one of the eight BRGs or one of eight pins from the bank of clocks. However, the SMC2 transmit and receive clocks must be the same when it is connected to the NMSI. 00 SMC2 transmit and receive clocks are BRG2. 01 SMC2 transmit and receive clocks are BRG8. 10 SMC2 transmit and receive clocks are CLK19. 11 SMC2 transmit and receive clocks are CLK20.

Chapter 16 Baud-Rate Generators (BRGs)

The CPM contains eight independent, identical baud-rate generators (BRGs) that can be used with the FCCs, SCCs, and SMCs. The clocks produced by the BRGs are sent to the bank-of-clocks selection logic, where they can be routed to the controllers. In addition, the output of a BRG can be routed to a pin to be used externally. The following is a list of BRGs' main features:

- Eight independent and identical BRGs
- On-the-fly changes allowed
- Each BRG can be routed to one or more FCCs, SCCs, or SMCs
- A 16x divider option allows slow baud rates at high system frequencies
- Each BRG contains an autobaud support option
- Each BRG output can be routed to a pin (BRGO*n*)

Figure 16-1 shows a BRG.

Each BRG clock source can be BRGCLK, or a choice of two external clocks (selected in BRGC*x*[EXTC]). The BRGCLK is an internal signal generated in the MPC8260 clock synthesizer specifically for the BRGs, the SPI, and the I²C internal BRG. Alternatively, external clock pins can be configured as clock sources. The external source option allows flexible baud-rate frequency generation, independent of the system frequency. Additionally, the external source option allows a single external frequency to be the source for multiple BRGs. The external source signals are not synchronized internally before being used by the BRG.

The BRG provides a divide-by-16 option (BRGCx[DIV16]) and a 12-bit prescaler (BRGCx[CD]) to divide the source clock frequency. The combined source-clock divide factor can be changed on-the-fly; however, two changes should not occur within two source clock periods.

The prescaler output is sent internally to the bank of clocks and can also be output externally on BRGO*n* through the parallel I/O ports. If the BRG divides the clock by an even value, the transitions of BRGO*n* always occur on the falling edge of the source clock. If the divide factor is odd, the transitions alternate between the falling and rising edges of the source clock. Additionally, the output of the BRG can be sent to the autobaud control block.

16.1 BRG Configuration Registers 1-8 (BRGCx)

The BRG configuration registers (BRGC*x*) are shown in Figure 16-2. A reset disables the BRG and drives the BRGO output clock high. The BRGC can be written at any time with no need to disable the SCCs or external devices that are connected to BRGO. Configuration changes occur at the end of the next BRG clock cycle (no spikes occur on the BRGO output clock). BRGC can be changed on-the-fly; however, two changes should not occur within a time equal to two source clock periods.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field		– RST EN										EN				
Reset		0000_0000_0000														
R/W		R/W														
Addr	0x119F0 (BRGC1), 0x119F4 (BRGC2), 0x119F8 (BRGC3), 0x119FC (BRGC4), 0x115F0 (BRGC5), 0x115F4 (BRGC6), 0x115F8 (BRGC7), 0x115FC (BRGC8)															
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	EX	тс	ATB						С	D						DIV16
Reset							0000	_0000	_0000	_0000						
R/W		R/W														
Addr		0x119F22 (BRGC1), 0x119F6 (BRGC2), 0x119FA (BRGC3), 0x119FE (BRGC4), 0x115F2 (BRGC5), 0x115F6 (BRGC6), 0x115FA (BRGC7), 0x115FE (BRGC8)														

Figure 16-2. Baud-Rate Generator Configuration Registers (BRGCx)

Table 16-1 describes the BRGC*x* fields.

Bits	Name	Description
0–13	-	Reserved, should be cleared.
14	RST	Reset BRG. Performs a software reset of the BRG identical to that of an external reset. A reset disables the BRG and drives BRGO high. This is externally visible only if BRGO is connected to the corresponding parallel I/O pin. 0 Enable the BRG. 1 Reset the BRG (software reset).
15	EN	Enable BRG count. Used to dynamically stop the BRG from counting—useful for low-power modes. 0 Stop all clocks to the BRG. 1 Enable clocks to the BRG.
16–17	EXTC	 External clock source. Selects the BRG input clock. See Table 16-2. 00 The BRG input clock comes from the BRGCLK (internal clock generated from the CPM clock); see Section 9.8, "System Clock Control Register (SCCR)." 01 If BRG1, 2, 5, 6: The BRG input clock comes from the CLK3 pin. If BRG3, 4, 7, 8: The BRG input clock comes from the CLK9 pin 10 If BRG1, 2, 5, 6: The BRG input clock comes from the CLK5 pin. If BRG3, 4, 7, 8: The BRG input clock comes from the CLK5 pin. 11 BRG3, 4, 7, 8: The BRG input clock comes from the CLK15 pin 11 Reserved.
18	ATB	 Autobaud. Selects autobaud operation of the BRG on the corresponding RXD. ATB must remain zero until the SCC receives the three Rx clocks. Then the user must set ATB to obtain the correct baud rate. After the baud rate is obtained and locked, it is indicated by setting AB in the UART event register. 0 Normal operation of the BRG. 1 When RXD goes low, the BRG determines the length of the start bit and synchronizes the BRG to the actual baud rate.
19–30	CD	Clock divider. CD presets an internal 12-bit counter that is decremented at the DIV16 output rate. When the counter reaches zero, it is reloaded with CD. $CD = 0xFFF$ produces the minimum clock rate for BGRO (divide by 4,096); CD = 0x000 produces the maximum rate (divide by 1). When dividing by an odd number, the counter ensures a 50% duty cycle by asserting the terminal count once on clock low and next on clock high. The terminal count signals counter expiration and toggles the clock. See Section 16.3, "UART Baud Rate Examples."
31	DIV16	Divide-by-16. Selects a divide-by-1 or divide-by-16 prescaler before reaching the clock divider. See Section 16.3, "UART Baud Rate Examples." 0 Divide by 1. 1 Divide by 16.

Table 16-1. BRGCx Field Descriptions

Table 16-2 shows the possible external clock sources for the BRGs.

BRG	CLK																			
bha	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
BRG1			V		V															
BRG2			V		V															
BRG3									V						V					
BRG4									V						V					
BRG5			V		V															
BRG6			V		V															
BRG7									V						V					
BRG8									V						V					

Table 16-2. BRG External Clock Source Options

16.2 Autobaud Operation on a UART

During the autobaud process, a UART deduces the baud rate of its received character stream by examining the received pattern and its timing. A built-in autobaud control function automatically measures the length of a start bit and modifies the baud rate accordingly.

If the autobaud bit BRGCx[ATB] is set, the autobaud control function starts searching for a low level on the corresponding RXD*n* input, which it assumes marks the beginning of a start bit, and begins counting the start bit length. During this time, the BRG output clock toggles for 16 BRG clock cycles at the BRG source clock rate and then stops with BRGO*n* in the low state.

When RXD*n* goes high again, the autobaud control block rewrites BRGC*x*[CD, DIV16] to the divide ratio found, which at high baud rates may not be exactly the final rate desired (for example, 56,600 may result rather than 57,600). An interrupt can be enabled in the UART SCC event register to report that the autobaud controller rewrote BRGC*x*. The interrupt handler can then adjust BRGC*x*[CD, DIV16] (see Table 16-3) for accuracy before the first character is fully received, ensuring that the UART recognizes all characters.

After a full character is received, the software can verify that the character matches a predefined value (such as 'a' or 'A'). Software should then check for other characters (such as 't' or 'T') and program the preferred parity mode in the UART's protocol-specific mode register (PSMR).

Note that the SCC associated with this BRG must be programmed to UART mode and select the 16x option for TDCR and RDCR in the general SCC mode register low. Input frequencies such as 1.8432, 3.68, 7.36, and 14.72 MHz should be used. The SCC performing the autobaud function must be connected to that SCC's BRG; that is, SCC2 must be clocked by BRG2, and so on.

Also, to detect an autobaud lock and generate an interrupt, the SCC must receive three full Rx clocks from the BRG before the autobaud process begins. To do this, first clear BRGC*x*[ATB] and enable the BRG Rx clock to the highest frequency. Then, immediately before the autobaud process starts (after device initialization), set BRGC*x*[ATB].

16.3 UART Baud Rate Examples

For synchronous communication using the internal BRG, the BRGO output clock must not exceed the system frequency divided by 2. So, with a 66-MHz system frequency, the maximum BRGO rate is 33 MHz. Program the UART to 16× oversampling when using the SCC as a UART. Rates of 8× and 32× are also available. Assuming 16× oversampling is chosen in the UART, the maximum data rate is 66 MHz \div 16 = 4.125 Mbps. Keeping the above in mind, use the following formula to calculate the bit rate based on a particular BRG configuration for a UART:

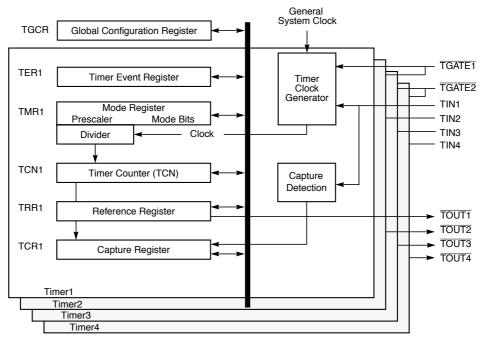
Async Baud Rate =
$$\frac{BRGCLK \text{ or External Clock Source}}{(Prescale Divider) \bullet (Clock Divider + 1) \bullet (Sampling Rate)}$$
$$= \frac{BRGCx[EXTC]}{(BRGCx[DIV16]) \bullet (BRGCx[CD] + 1) \bullet (GSMRx_L[xDCR])}$$

Table 16-3 lists typical bit rates of asynchronous communication. Note that here the internal clock rate is assumed to be $16\times$ the baud rate; that is, $GSMRx_L[TDCR] = GSMRx_L[RDCR] = 0b10$.

Baud Rate		Using 66-MHz S	System Clock		
Bauu nale	BRGCx[DIV16]	BRGCx[CD]	Actual Frequency (Hz)		
75	1	3436	75.01		
150	1	1718	149.98		
300	1	858	300.13		
600	1	429	599.56		
1200	0	3436	1200.2		
2400	0	1718	2399.7		
4800	0	858	4802.1		
9600	0	429	9593.0		
19,200	0	214	19,186		
38,400	0	106	38,551		
57,600	0	71	57,292		
115,200	0	35	114,583		
460,000	0	8	458,333		

For synchronous communication, the internal clock is identical to the baud-rate output. To get the preferred rate, select the system clock according to the following:

Sync Baud Rate = $\frac{BRGCLK \text{ or External Clock Source}}{(Prescale Divider) \bullet (Clock Divider + 1)}$


 $= \frac{BRGCx[EXTC]}{(BRGCx[DIV16]) \bullet (BRGCx[CD] + 1)}$

For example, to get a rate of 64 kbps, the system clock can be 24.96 MHz, BRGCx[DIV16] = 0, and BRGCx[CD] = 389.

Chapter 17 Timers

The CPM includes four identical 16-bit general-purpose timers or two 32-bit timers. Each general-purpose timer consists of a timer mode register (TMR), a timer capture register (TCR), a timer counter (TCN), a timer reference register (TRR), a timer event register (TER), and a timer global configuration register (TGCR). The TMRs contain the prescaler values programmed by the user.

Figure 17-1 shows the timer block diagram.

Pin assignments for TIN*x*, $\overline{\text{TGATE}x}$, and $\overline{\text{TOUT}x}$ are described in Section 35.5, "Ports Tables."

17.1 Features

The key features of the timer include the following:

- The maximum input clock is the bus clock
- Maximum period of 4 seconds (at 66 MHz)
- 16-nanosecond resolution (at 66 MHz)
- Programmable sources for the clock input
- Input capture capability
- Output compare with programmable mode for the output pin
- Two timers cascade internally or externally to form a 32-bit timer
- Free run and restart modes
- Functional compatibility with timers on the MC68360 and MPC860

17.2 General-Purpose Timer Units

The clock input to the prescaler can be selected from three sources:

- The bus clock (CLKIN)
- The bus clock divided by 16 (CLKIN/16)
- The corresponding TIN*x*, programmed in the parallel port registers

The general system clock is generated in the clock synthesizer and defaults to the system frequency. However, the general system clock has the option to be divided before it leaves the clock synthesizer. This mode, called slow go, is used to save power. Whatever the resulting frequency of the general system clock, the user can either choose that frequency or the frequency divided by 16 as the input to the prescaler of each timer. Alternatively, the user may prefer TINx to be the clock source. TINx is internally synchronized to the internal clock. If the user has chosen to internally cascade two 16-bit timers to a 32-bit timer, then a timer can use the clock generated by the output of another timer.

The clock input source is selected by the corresponding TMR[ICLK] bits. The prescaler is programmed to divide the clock input by values from 1 to 256 and the output of the prescaler is used as an input to the 16-bit counter. The best resolution of the timer is one clock cycle (16 ns at 66 MHz). The maximum period (when the reference value is all ones) is 268,435,456 cycles (4 seconds at 66 MHz).

Each timer can be configured to count until a reference is reached and then either begin a new time count immediately or continue to run. The FRR bit of the corresponding TMR selects each mode. Upon reaching the reference value, the corresponding TER bit is set and an interrupt is issued if TMR[ORI] = 1. The timers can output a signal on the timer outputs (TOUT1–TOUT4) when the reference value is reached (selected by the corresponding TMR[OM]). This signal can be an active-low pulse or a toggle of the current output. The

output can also be connected internally to the input of another timer, resulting in a 32-bit timer.

In addition, each timer has a 16-bit TCR used to latch the value of the counter when a defined transition of TIN1, TIN2, TIN3, or TIN4 is sensed by the corresponding input capture edge detector. The type of transition triggering the capture is selected by the corresponding TMR[CE] bits. Upon a capture or reference event, the corresponding TER bit is set and a maskable interrupt request is issued to the interrupt controller. The timers may be gated/restarted by an external gate signal. There are two gate signals— $\overline{TGATE1}$ controls timer 1 and/or 2 and $\overline{TGATE2}$ controls timer 3 and/or 4. Normal gate mode enables the count on a falling edge of \overline{TGATEx} and disables the count on the rising edge of \overline{TGATEx} .

The restart gate mode performs the same function as normal mode, except it also resets the counter on the falling edge of $\overline{\text{TGATEx}}$. This mode has applications in pulse interval measurement and bus monitoring as follows:

- Pulse measurement—The restart gate mode can measure a low $\overline{\text{TGATE}x}$. The rising edge of $\overline{\text{TGATE}x}$ completes the measurement and if $\overline{\text{TGATE}x}$ is connected externally to $\overline{\text{TIN}x}$, it causes the timer to capture the count value and generate a rising-edge interrupt.
- Bus monitoring The restart gate mode can detect a signal that is abnormally stuck low. The bus signal should be connected to TGATEx. The timer count is reset on the falling edge of the bus signal and if the bus signal does not go high again within the number of user-defined clocks, an interrupt can be generated.

The gate function is enabled in the TMR; the gate operating mode is selected in the TGCR.

NOTE

 $\overrightarrow{\text{TGATE}x}$ is internally synchronized to the system clock. If $\overrightarrow{\text{TGATE}x}$ meets the asynchronous input setup time, the counter begins counting after one system clock when working with the internal clock.

17.2.1 Cascaded Mode

In this mode, two 16-bit timers can be internally cascaded to form a 32-bit counter. Timer 1 may be internally cascaded to timer 2, and timer 3 can be internally cascaded to timer 4. Because the decision to cascade timers is made independently, the user can select two 16-bit timers or one 32-bit timer. TGCR is used to put the timers into cascaded mode, as shown in Figure 17-2.

Figure 17-2. Timer Cascaded Mode Block Diagram

If TGCR[CAS] = 1, the two timers function as a 32-bit timer with a 32-bit TRR, TCR, and TCN. In this case, TMR1 and/or TMR3 are ignored, and the modes are defined using TMR2 and/or TMR4. The capture is controlled from TIN2 or TIN4 and the interrupts are generated from TER2 or TER4. In cascaded mode, the combined TRR, TCR, and TCN must be referenced with 32-bit bus cycles.

17.2.2 Timer Global Configuration Registers (TGCR1 and TGCR2)

The timer global configuration registers (TGCR1 and TGCR2), shown in Figure 17-3 and Figure 17-4, contain configuration parameters used by the timers. These registers allow simultaneous starting and stopping of a pair of timers (1 and 2 or 3 and 4) if one bus cycle is used.

Bits	0	1	2	3	4	5	6	7						
Field	CAS2	-	STP2	RST2	GM1	_	STP1	RST1						
Reset	0000_0000													
R/W				R/	W									
Addr				0x10)D80									

Figure 17-3. Timer Global Configuration Register 1 (TGCR1)

Table 17-1 describes TGCR1 fields.

Table 17-1. TGCR1 Field Descriptions

Bits	Name	Description
0	CAS2	Cascade timers. 0 Normal operation. 1 Timers 1 and 2 cascade to form a 32-bit timer.
1	-	Reserved, should be cleared.
2	STP 2	 Stop timer. 0 Normal operation. 1 Reduce power consumption of the timer. This bit stops all clocks to the timer, except the clock from the internal bus interface, which allows the user to read and write timer registers. The clocks to the timer remain stopped until the user clears this bit or a hardware reset occurs.

Bits	Name	Description
3	RST2	Reset timer. 0 Reset the corresponding timer (a software reset is identical to an external reset). 1 Enable the corresponding timer if the STP bit is cleared.
4	GM1	 Gate mode for TGATE1. This bit is valid only if the gate function is enabled in TMR1 or TMR2. 0 Restart gate mode. TGATE1 is used to enable/disable count. A falling TGATE1 enables and restarts the count and a rising edge of TGATE1 disables the count. 1 Normal gate mode. This mode is the same as 0, except the falling edge of TGATE1 does not restart the count value in TCN.
5	-	Reserved, should be cleared.
6	STP1	 Stop timer. 0 Normal operation. 1 Reduce power consumption of the timer. This bit stops all clocks to the timer, except the clock from the internal bus interface, which allows the user to read and write timer registers. The clocks to the timer remain stopped until the user clears this bit or a hardware reset occurs.
7	RST1	Reset timer. 0 Reset the corresponding timer (a software reset is identical to an external reset). 1 Enable the corresponding timer if STP = 0.

Table 17-1. TGCR1 Field Descriptions (Continued)

The TGCR2 register is shown in Figure 17-4.

Bits	0	1	2	3	4	5	6	7						
Field	CAS4	-	STP4	RST4	GM2	_	STP3	RST3						
Reset	0000_0000													
R/W				R/	W									
Addr				0x10	D84									

Figure 17-4. Timer Global Configuration Register 2 (TGCR2)

Table 17-2 describes TGCR2 fields.

Table 17-2. TGCR2 Field Descriptions

Bit	Name	Description
0	CAS4	Cascade timers. 0 Normal operation. 1 Timers 3 and 4 cascades to form a 32-bit timer.
1	-	Reserved, should be cleared.
2	STP 4	 Stop timer. 0 Normal operation. 1 Reduce power consumption of the timer. This bit stops all clocks to the timer, except the clock from the internal bus interface, which allows the user to read and write timer registers. The clocks to the timer remain stopped until the user clears this bit or a hardware reset occurs.
3	RST4	Reset timer. 0 Reset the corresponding timer (a software reset is identical to an external reset). 1 Enable the corresponding timer if the STP bit is cleared.

Bit	Name	Description
4	GM2	Gate mode for TGATE2. This bit is valid only if the gate function is enabled in TMR3 or TMR4. 0 Restart gate mode. TGATE2 is used to enable/disable the count. The falling edge of TGATE2 enables and restarts the count and the rising edge of TGATE2 disables the count. 1 Normal gate mode. This mode is the same as 0, except the falling edge of TGATE2 does not restart the count value in TCN.
5	-	Reserved, should be cleared.
6	STP3	 Stop timer. O Normal operation. 1 Reduce power consumption of the timer. This bit stops all clocks to the timer, however it is possible to read the values while the clock is stopped. The clocks to the timer remain stopped until the user clears this bit or a hardware reset occurs.
7	RST3	Reset timer. 0 Reset the corresponding timer (a software reset is identical to an external reset). 1 Enable the corresponding timer if STP = 0.

Table 17-2. TGCR2 Field Descriptions (Continued)

17.2.3 Timer Mode Registers (TMR1–TMR4)

The four timer mode registers (TMR1–TMR4) are shown in Figure 17-5.

Erratic behavior may occur if TGCR1 and TGCR2 are not initialized before the TMRs. Only TGCR[RST] can be modified at any time.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field				Р	s			С	E	ОМ	ORI	FRR	IC	LK	GE	
Reset		0000_0000_0000														
R/W								R/	W							
Addr		0x10D90 (TMR1); 0x10D92 (TMR2); 0x10DA0 (TMR3); 0x10DA2 (TMR4)														

Figure 17-5. Timer Mode Registers (TMR1–TMR4)

Table 17-3 describes TMR1-TMR4 register fields.

Table 17-3. TMRI–TMR4 Field Descriptions

Bits	Name	Description
0–7	PS	Prescaler value. The prescaler is programmed to divide the clock input by values from 1 to 256. The value 00000000 divides the clock by 1 and 11111111 divides the clock by 256.
8–9	CE	 Capture edge and enable interrupt. Disable interrupt on capture event; capture function is disabled. Capture on rising TINx edge only and enable interrupt on capture event. Capture on falling TINx edge only and enable interrupt on capture event. Capture on any TINx edge and enable interrupt on capture event.

Bits	Name	Description
10	ОМ	Output mode 0 Active-low pulse on TOUTx for one timer input clock cycle as defined by the ICLK bits. Thus, TOUTx may be low for one general system clock period, one general system clock/16 period, or one TINx clock cycle period. TOUTx changes occur on the rising edge of the system clock. 1 Toggle TOUTx. TOUTx changes occur on the rising edge of the system clock.
11	ORI	Output reference interrupt enable. 0 Disable interrupt for reference reached (does not affect interrupt on capture function). 1 Enable interrupt upon reaching the reference value.
12	FRR	Free run/restart. 0 Free run. The timer count continues to increment after the reference value is reached. 1 Restart. The timer count is reset immediately after the reference value is reached.
13–14	ICLK	 Input clock source for the timer. Internally cascaded input. For TMR1, the timer 1 input is the output of timer 2. For TMR3, the timer 3 input is the output of timer 4. For TMR2 and TMR4, this selection means no input clock is provided to the timer. Internal general system clock. Internal general system clock divided by 16. Corresponding TINx: TIN1, TIN2, TIN3, or TIN4 (falling edge).
15	GE	Gate enable. 0 TGATEx is ignored. 1 TGATEx is used to control the timer.

Table 17-3. TMRI–TMR4 Field Descriptions (Continued)

17.2.4 Timer Reference Registers (TRR1–TRR4)

Each timer reference register (TRR1–TRR4), shown in Figure 17-6, contains the timeout's reference value. The reference value is not reached until TCNx increments to equal the timeout reference value.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field		Timeout reference value														
Reset		0xFFFF														
R/W								R/	W							
Addr			0x	10D94	(TRR1	I), 0x1()D96 (TRR2),	0x10D	A4 (TF	R3), 0	x10DA	6 (TRR	4)		

Figure 17-6. Timer Reference Registers (TRR1–TRR4)

17.2.5 Timer Capture Registers (TCR1-TCR4)

Each timer capture register (TCR1–TCR4), shown in Figure 17-7, is used to latch the value of the counter according to TMRx[CE].

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field		Latched counter value														
Reset		0x0000														
R/W								R/	w							
Addr			0x	10D98	(TCR1), 0x10	D9A (FCR2),	0x10D	A8 (TC	CR3), 0	x10DA	A (TCF	R4)		

Figure 17-7. Timer Capture Registers (TCR1–TCR4)

17.2.6 Timer Counters (TCN1–TCN4)

Each timer counter register (TCN1–TCN4), shown in Figure 17-8, is an up-counter. A read cycle to TCNx yields the current value of the timer but does not affect the counting operation. A write cycle to TCNx sets the register to the written value, thus causing its corresponding prescaler, TMRx[PS], to be reset.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field		Up counter														
Reset		0x0000														
R/W								R/	W							
Addr			0x	10D9C	(TCN1), 0x10)D9E (TCN2),	0x10D	AC (T	CN3), C	x10DA	E (TCI	V4)		

Figure 17-8. Timer Counter Registers (TCN1–TCN4)

Note that the counter registers may not be updated correctly if a write is made while the timer is not running. Use TRRx to define the preferred count value.

17.2.7 Timer Event Registers (TER1-TER4)

Each timer event register (TER*x*), shown in Figure 17-9, reports events recognized by the timers. When an output reference event is recognized, the timer sets TERx[REF] regardless of the corresponding TMRx[ORI]. The capture event is set only if it is enabled by TMRx[CE]. TER1–TER4 can be read at any time.

Writing ones clears event bits; writing zeros has no effect. Both event bits must be cleared before the timer negates the interrupt.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	_									REF	CAP					
Reset		0x0000														
Addr		0x10DB0 (TER1); 0x10DB2 (TER2); 0x10DB4 (TER3); 0x10DB6 (TER4)														

Figure 17-9. Timer Event Registers (TER1-TER4)

Table 17-4 describes TER fields.

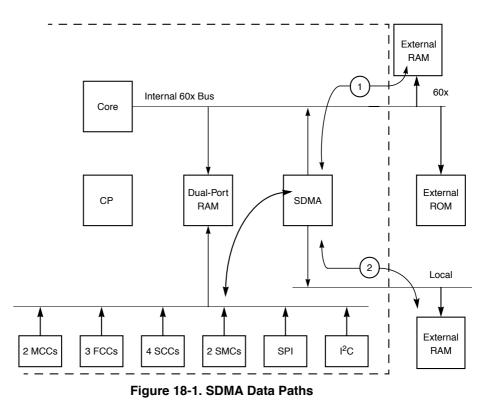

Bits	Name	Description					
0–13	-	Reserved, should be cleared.					
14	REF	Output reference event. The counter has reached the TRR value. TMR[ORI] is used to enable the interrupt request caused by this event.					
15	CAP	Capture event. The counter value has been latched into the TCR. TMR[CE] is used to enable generation of this event.					

Table 17-4. TER Field Descriptions

Chapter 18 SDMA Channels and IDMA Emulation

The MPC8260 has two physical serial DMA (SDMA) channels. The CP implements two dedicated virtual SDMA channels for each FCC, MCC, SCC, SMC, SPI, and I²C—one for each transmitter and receiver. An additional four virtual SDMA channels are assigned to the programmable independent DMA (IDMA) channels.

Figure 18-1 shows data flow paths. Data from the peripheral controllers can be routed to external RAM using the 60x bus (path 1) or the local bus (path 2).

On a path 1 access, the SDMA channel must acquire the external system bus. On a path 2 access, the local bus is acquired and the access is not seen on the external system bus. Thus, the local bus transfer occurs at the same time as other operations on the external 60x system bus.

The SDMA channel can be assigned abig-endian (Motorola) or little-endian format for accessing buffer data. These features are programmed in the receive and transmit registers associated with the FCCs, MCCs, SCCs, SMCs, SPI, and I²C.

If a 60x or local bus error occurs on a CP-related access by the SDMA, the CP generates a unique interrupt in the SDMA status register (SDSR). The interrupt service routine then reads the appropriate DMA transfer error address register (PDTEA for the 60x bus or LDTEA for the local bus) to determine the address the bus error occurred on. The channel that caused the bus error is determined by reading the channel number from PDTEM or LDTEM. If an SDMA bus error occurs on a CP-related transaction, all CPM activity stops and the entire CPM must be reset in the CP command register (CPCR). See Section 18.2, "SDMA Registers."

18.1 SDMA Bus Arbitration and Bus Transfers

On the MPC8260, the core and SDMA can become external bus masters. (The relative priority of these masters is programmed by the user; see Section 4.3.2, "System Configuration and Protection Registers" for programming bus arbitration.) Therefore, any SDMA channel can arbitrate for the bus against the other internal devices and any external devices present. Once an SDMA channel becomes system bus master, it remains bus master for one transaction (which can be a byte, half-word, word, burst, or extended special burst) before releasing the bus. This feature, in combination with the zero-clock arbitration overhead provided by the 60x bus, increases bus efficiency and lowers bus latency.

To minimize the latency associated with slower, character-oriented protocols, an SDMA writes each character to memory as it arrives without waiting for the next character, and always reads using 16-bit half-word transfers.

The SDMA can access the 60x bus either at the regular 60x transactions (single-beat accesses, four-beat bursts) or special two- and three-beat burst accesses. For a further description of this feature see Section 8.4.3.8, "Extended Transfer Mode."

A transfer may take multiple bus transactions if the memory provides a less than 64-bit 60x port size or less than 32-bit local bus port size. An SDMA uses back-to-back bus transactions for the entire transfer—4-word bursts, 64-bit reads, and 8-, 16-, 32-, or 64-bit writes—before relinquishing the bus. For example, a 64-bit word 60x-bus read from a 32-bit memory takes two consecutive SDMA bus transactions.

An SDMA can steal transactions with no arbitration overhead when the MPC8260 is bus master. Figure 18-2 shows an SDMA stealing a transaction from an internal bus master.

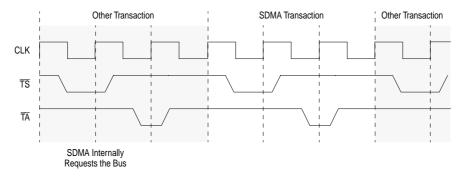


Figure 18-2. SDMA Bus Arbitration (Transaction Steal)

18.2 SDMA Registers

The only user-accessible registers associated with the SDMA are the SDMA address registers, read-only register used for diagnostics in case of an SDMA bus error, the SDMA status register and the SDMA mask register.

18.2.1 SDMA Status Register (SDSR)

The SDMA status register (SDSR) reports bus error events recognized by the SDMA controller for all 26 SDMA channels and 4 IDMA channels. On recognition of a bus error on the local or 60x buses, the SDMA sets its corresponding SDSR bit. The SDSR is a memory-mapped register that can be read at any time. Bits are cleared by writing ones to them; writing zeros has no effect.

Bits	0	1	2	3	4	5	6	7	
Field	SBER_P	SBER_L	-						
Reset			0000_0000						
Addr	0x11018								

Figure 18-3. SDMA Status Register (SDSR)

Table 18-1 describes SDSR fields.

Table 18-1. SDSR Field Descriptions

Bits	Name	Description
0	SBER_P	SDMA channel 60x bus error. Indicates that the SDMA channel on the 60x bus had terminated with an error during a read or write transaction. This bit is cleared writing a 1; writing a zero has no effect. The SDMA transfer error address is read from PDTEA. The channel number is read from PDTEM.
1	SBER_L	SDMA channel local bus error. Indicates that the SDMA channel on the local bus had terminated with an error during a read or write transaction. This bit is cleared writing a 1; writing a zero has no effect. The SDMA transfer error address can be read from LDTEA, and the channel number from LDTEM.
2–7	-	Reserved, should be cleared.

18.2.2 SDMA Mask Register (SDMR)

The SDMA mask register (SDMR) is an 8-bit read/write register with the same bit format as the SDMA status register. If an SDMR bit is 1, the corresponding interrupt in SDSR is enabled. If the bit is zero, the corresponding interrupt in the status register is masked. SDMR is cleared at reset. SDMR can be accessed at 0x1101C.

18.2.3 SDMA Transfer Error Address Registers (PDTEA and LDTEA)

There are two 32-bit, read-only SDMA address registers. The PDTEA holds the system address accessed during an SDMA transfer error on the 60x bus. The LDTEA holds the system address accessed during an SDMA transfer error on the local bus. Both registers are undefined at reset. PDTEA can be accessed at 0x10050; LDTEA can be accessed at 0x10058.

18.2.4 SDMA Transfer Error MSNUM Registers (PDTEM and LDTEM)

There are two SDMA transfer error MSNUM registers (PDTEM and LDTEM). MSNUM[0–4] contains the sub-block code (SBC) used to identify the current peripheral controller accessing the bus. MSNUM[5] identifies which half of the controller is transferring (transmitter or receiver). The MSNUM of each transaction is held in these registers until the transaction is complete.

PDTEM is for SDMA transfer errors on the 60x bus, and LDTEM is for errors on the local bus. Both registers are undefined at reset. See Figure 18-4.

Bits	0	1	2	3	4	5	6	7	
Field	MSNUM —								
Reset	_								
R/W	R								
Addr	0x10054 (PDTEM); 0x1005C (LDTEM)								

Figure 18-4. SDMA Transfer Error MSNUM Registers (PDTEM/LDTEM)

Table 18-2 describes PDTEM and LDTEM fields.

Table 18-2. PDTEM and LDTEM Field Descriptions

Bits	Name	Description
0–4	MSNUM [0-4]	Bits 0–4 of MSNUM is the sub-block code of the current peripheral controller accessing the bus. See the SBC field description of the CPCR in Section 13.4.1, "CP Command Register (CPCR)."
5	MSNUM [5]	Bit 5 of MSNUM indicates which section of the peripheral controller is accessing the bus. 0 Transmit section 1 Receive section
6–7	_	Reserved, should be cleared.

18.3 IDMA Emulation

The CPM can be configured to provide general-purpose DMA functionality through the SDMA channel. Four general-purpose independent DMA (IDMA) channels are supported. In this special emulation mode, the user can specify any memory-to-memory or peripheral-to/from-memory transfers as if using dedicated DMA hardware.

The general-purpose IDMA channels can operate in different user-programmable data transfer modes. The IDMA can transfer data between any combination of memory and I/O. In addition, data may be transferred in either byte, half-word, word, double-word or burst quantities and the source and destination addresses may be odd or even. The most efficient packing algorithms are used in the IDMA transfers. The single-address mode (fly-by mode) gives the highest performance, allowing data to be transferred between memory and a peripheral in a single bus transaction. The chip-select and wait-state generation logic on the MPC8260 can be used with the IDMA.

The bus bandwidth occupied by the IDMA can be programmed in the IDMA parameter RAM to achieve maximum system performance.

The IDMA supports two buffer handling modes — auto buffer and buffer chaining. The auto buffer mode allows blocks of data to be repeatedly moved from one location to another without user intervention. The buffer chaining mode allows a chain of blocks to be moved. The user specifies the data movement using BD tables like those used by other peripheral controllers. The BD tables reside in the dual-port RAM.

Each IDMA has three signals ($\overline{\text{DREQx}}$, $\overline{\text{DACKx}}$ and $\overline{\text{DONEx}}$) for peripheral handshaking.

18.4 IDMA Features

The main IDMA features are as follows:

- Four independent, fully programmable DMA channels
- Dual- or single-address transfers with 32-bit address and 64-bit data capability
- Memory-to-memory, memory-to-peripheral, and peripheral-to-memory modes
- 4-Gbyte maximum block length for each buffer
- 32-bit address pointers that can be optionally incremented
- Two buffer handling modes—auto buffer and buffer chaining
- Interrupts are optionally generated for BD transfer completion, external DONE assertion, and STOP_IDMA command completion.
- Any channel is independently configurable for data transfer from any 60x, local bus source to any 60x, local bus destination
- Programmable byte-order conversion is supported independently for each DMA channel
- Supports programmable 60x-bus bandwidth usage for system performance optimization

Peripheral to/from memory features include the following:

- External DREQ, DACK, and DONE signals for each channel simplifies the peripheral interface for memory-to/from-peripheral transfers
- Supports 1-, 2-, 4-, and 8-byte peripheral port sizes
- Supports standard 60x burst accesses (four consecutive 64-bit data phases) to/from peripherals

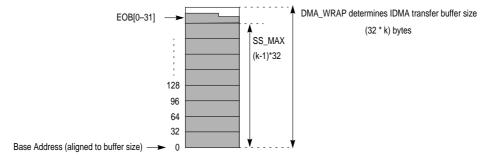
18.5 IDMA Transfers

The IDMA channel transfers data from a source to a destination using an intermediate transfer buffer (of programmable size) in the dual-port RAM. An efficient data-packing algorithm bursts data through the IDMA transfer buffer to minimize the bus cycles needed for the transfer. In single-address peripheral transfers, however, data is transferred directly between memory and a peripheral device without using the IDMA transfer buffer.

Unaligned data is transferred in single accesses until alignment is achieved. Then, burst transactions are used (if allowed by the user) to transfer the bulk of the data buffer. Single accesses are used again for any remaining non-burstable data at the end of the transfer.

18.5.1 Memory-to-Memory Transfers

For memory-to-memory transfers, the IDMA first fills the IDMA transfer buffer in the dualport RAM by initiating read accesses on the source bus. It then empties the data from the internal transfer buffer to the destination bus by initiating write accesses. The transfer sizes for the source and destination buses are programmed in the IDMA parameter RAM.


For the DMA to generate bursts on the 60x bus, the address boundaries of each burst transfer must be 32-byte aligned. If the transfer does not start on a burst boundary, the IDMA controller transfers the end-of-burst (EOB) data (1–31 bytes) in non-burst transactions on the source bus and on the destination bus until reaching the next boundary. When alignment is achieved, subsequent data is bursted until the remainder of the data in the buffer is less than a burst size (32 bytes). The remaining data is transferred using non-burst transactions.

Data transfers use the parameters described in Table 18-3.

Parameter	Description
DMA_WRAP	Determines the size of the dedicated IDMA transfer buffer in dual-port RAM. The buffer size is a multiple of a 60x burst size (k*32 bytes).
SS_MAX	Initialized to (IDMA_transfer_buffer_size - 32) bytes, which is the steady-state maximum transfer size of IDMA transfer. This condition ensures that the transfer buffer is either filled by one SS_MAX bytes transfer and emptied in one or several transfers, or filled by one or several transfers to be emptied in one SS_MAX bytes transfer. In terms of bursts, if the transfer buffer contains k bursts (each is 32 bytes long), then SS_MAX equals to k-1 bursts which is (k-1)*32 bytes.
STS/DTS	Source/destination transfer size. These parameters determine the access sizes in which the source/ destination is accessed in steady state of work. At least one of these values (DTS/STS) must be initialized to the value of SS_MAX.

Table 18-3. IDMA Transfer Parameters

Figure 18-5 shows the IDMA transfer buffer.

Figure 18-5. IDMA Transfer Buffer in the Dual-Port RAM

Each buffer's contents are transferred in three phases:

- First phase. The internal transfer buffer is filled with [EOB(alignment to source address) + SS_MAX] bytes, read from the source bus. Then, if EOB(alignment to destination address) ≤ EOB(alignment to source address), [EOB(destination) + SS_MAX] bytes are written from the transfer buffer to the destination bus; or if EOB(destination) > EOB(source), [EOB(destination) + (k-2)*32] bytes are written bytes are written. This write transfer size leaves a remainder of 0–31 bytes in the transfer buffer after the last write burst of the steady-state phase. After the first phase, burst alignment is ensured.
- Steady-state phase. The transfer buffer is filled with SS_MAX bytes (k-1 bursts), read from the source bus in STS units. Then, SS_MAX bytes are written to the destination bus, in DTS units, from the transfer buffer. Because alignment is ensured from first phase, all bus transfers are bursts. This sequence is repeated until there are no more than SS_MAX bytes to be transferred. A remainder of 0–31 bytes is left in the transfer buffer after the last burst write.

• Last phase. The remaining data is read into the transfer buffer in bursts, with the last 1–31 bytes read in single accesses. All data in the transfer buffer is written to the destination bus in bursts, with the last 1–31 bytes written in single accesses. The last transfers, read/write or both can be accompanied with DONE assertion, if programmed.

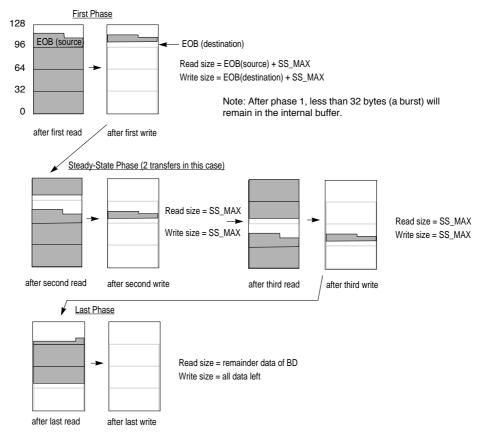
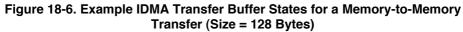



Figure 18-6 shows an example of the three IDMA transfer stages.

18.5.1.1 External Request Mode

Memory-to-memory transfers can be configured to operate in external request mode (DCM[ERM] = 1). In external request mode, every read transfer is triggered by the assertion of \overline{DREQ} . When the transfer buffer is full, the first write transfer is done automatically. Additional write transfers, if needed, are triggered by \overline{DREQ} assertions.

Because at least one of the transfer sizes (STS or DTS) equals SS_MAX, every $\overline{\text{DREQ}}$ assertion causes one transfer to the smaller (in STS/DTS terms) bus. If STS = DTS, asserting $\overline{\text{DREQ}}$ triggers one read transfer automatically followed by one write transfer.

NOTE

External request mode does not support external $\overline{\text{DONE}}$ signaling from a device and $\overline{\text{DACK}}$ signaling from an IDMA channel.

18.5.1.2 Normal Mode

When external request mode is not selected (DCM[ERM] = 0), the IDMA channel operates automatically, ignoring \overline{DREQ} .

18.5.2 Memory to/from Peripheral Transfers

Working with peripheral devices requires the external signals $\overline{\text{DONE}}$, $\overline{\text{DREQ}}$, $\overline{\text{DACK}}$ to control the data transfer using the following rules:

- The peripheral sets a request for data to be read-from/write-to by asserting DREQ as configured, falling or rising edge sensitive.
- The peripheral transfers/samples the data when $\overline{\text{DACK}}$ is asserted.
- The peripheral asserts $\overline{\text{DONE}}$ to stop the current transfer.
- The peripheral terminates the current transfer when DONE is asserted, combined with DACK, by the IDMA.

Peripherals are usually accessed with fixed port-size transfers. The transfer sizes (STS/DTS) related to the peripheral must be programmed to its port size; thus, every access to a peripheral yields a single bus transaction. The maximum peripheral port size is (bus_width - 8) bytes and also should evenly divide the buffer length, BD[Data Length].

A peripheral can also be configured to accept a burst per $\overline{\text{DREQ}}$ assertion. In this case, the transfer size parameter should be initialized to 32, and the accesses are made in bursts. See Table 18-8.

A peripheral can be accessed at a fixed address location or at incremental addresses. Setting DCM[SINC, DINC] in the DMA channel mode register causes the address to be incremented before the next transfer; see Section 18.8.2.1, "DMA Channel Mode (DCM)." This allows the IDMA to access a FIFO buffer the same way it does peripherals.

DCM[S/D] determines whether the peripheral is the source or destination.

Data can be transferred between a peripheral and memory in single- or dual-address accesses:

- For dual-address accesses, the data is read from the source, temporarily stored in the IDMA transfer buffer in the dual-port RAM, and then written to the destination.
- For single-address accesses (fly-by mode), the data is transferred directly between memory and the peripheral. Memory responds to the address phase, while the peripheral ignores it and responds to DACK assertions.

Any IDMA access to a peripheral uses the highest arbitration priority allowed for the DMA, providing faster bus access by bypassing other pending DMA requests.

18.5.2.1 Dual-Address Transfers

The following sections discuss various dual-address transfers.

18.5.2.1.1 Peripheral to Memory

Dual-address peripheral-to-memory data transfers are similar to memory-to-memory transfers using the three-phase algorithm; see Section 18.5.1, "Memory-to-Memory Transfers." When a peripheral asserts $\overline{\text{DREQ}}$, data is loaded from the peripheral in port-size units to the internal transfer buffer. When the transfer buffer reaches the steady-state level, it is automatically written to the memory destination in one transfer. The source transfer size (STS) is initialized to the peripheral port size, and the destination transfer size (DTS) is initialized to SS_MAX.

External requests must be enabled (DCM[ERM] = 1) for dual-address peripheral-tomemory transfers. If $\overline{\text{DONE}}$ is asserted externally by the peripheral or if a STOP_IDMA command is issued, the current transfer stops. All data in the internal transfer buffer is written to memory in one transfer before its BD is closed, and the IDSR[EDN] or IDSR[SC] event bits are set; see Section 18.8.4, "IDMA Event Register (IDSR) and Mask Register (IDMR)."

When the peripheral controls a transfer of unknown length, initialize a large enough buffer so that the peripheral will most likely assert $\overline{\text{DONE}}$ before overflowing the buffer. When $\overline{\text{DONE}}$ is asserted, the BD is closed and interrupts are generated (if enabled). The next $\overline{\text{DREQ}}$ assertion opens the next BD if DCM[DT] is set; see Section 18.8.2.1, "DMA Channel Mode (DCM)."

18.5.2.1.2 Memory to Peripheral

Dual-address memory-to-peripheral data transfers are similar to memory-to-memory transfers using the three-phase algorithm; see Section 18.5.1, "Memory-to-Memory Transfers." STS is initialized to SS_MAX and DTS is initialized to the peripheral port size. The first \overline{DREQ} peripheral assertion triggers a read of SS_MAX (or more in the first phase) bytes from the memory into the internal transfer buffer, automatically followed by a write of DTS bytes to the peripheral. Subsequent \overline{DREQ} assertions trigger writes to the

peripheral. When the transfer buffer has fewer than DTS bytes left, the next \overline{DREQ} assertion triggers a read of SS_MAX bytes from memory, automatically followed by a write to the peripheral, and the sequence begins again.

External requests must be enabled (DCM[ERM] = 1) for dual-address peripheral-tomemory transfers. If $\overline{\text{DONE}}$ is asserted externally by the peripheral or if a STOP_IDMA command is issued, the current transfer is stopped, its BD is closed, and the IDSR[EDN] or IDSR[SC] event bits are set; see Section 18.8.4, "IDMA Event Register (IDSR) and Mask Register (IDMR)."

18.5.2.2 Single Address (Fly-By) Transfers

When DCM[FB] = 1, both peripheral-to-memory and memory-to-peripheral transfers occur in fly-by mode; see Section 18.8.2.1, "DMA Channel Mode (DCM)." In fly-by mode, an internal transfer buffer is not needed because the data is transferred directly between memory and the peripheral. Also, parameters related to the dual-port RAM bus are not relevant in fly-by mode. Each DREQ assertion triggers a transfer the size of the peripheral port. All transfers are made in single memory accesses accompanied by DACK assertion. When DONE is asserted externally or a STOP_IDMA command is issued, the current transfer is stopped, its BD is closed, and the IDSR[EDN] or IDSR[SC] event bits are set; see Section 18.8.4, "IDMA Event Register (IDSR) and Mask Register (IDMR)."

In fly-by mode, a peripheral can be configured to handle a burst per $\overline{\text{DREQ}}$ assertion if STS is programmed to 32. The first phase of the transfer aligns the data to the burst boundary so that subsequent accesses can be performed in bursts.

18.5.2.2.1 Peripheral-to-Memory Fly-By Transfers

During peripheral-to-memory fly-by transfers, the IDMA controller writes to memory while simultaneously asserting \overline{DACK} . The constant assertion of \overline{DACK} enables the controller to write to memory as soon as the peripheral outputs data to the bus. Thus, data is transferred from a peripheral to memory in one data phase instead of two, increasing throughput.

For proper operation, STS must equal the peripheral port size.

18.5.2.2.2 Memory-to-Peripheral Fly-By Transfers

During memory-to-peripheral fly-by transfers, the IDMA controller reads from memory while simultaneously asserting DACK.

The constant assertion of \overline{DACK} enables the controller to read from memory as soon as the peripheral samples the data bus. Thus, data is transferred from memory to a peripheral in one data phase instead of two, increasing throughput.

For proper operation, DTS must equal the peripheral port size.

18.5.3 Controlling 60x Bus Bandwidth

STS, DTS, and SS_MAX can be used to control the 60x bus bandwidth occupied by the IDMA channel. In every mode except fly-by mode, at least one transfer size parameter (STS/DTS) must be initialized to the SS_MAX value. For memory-to-memory transfers, the other transfer size parameter can be initialized to a smaller value used to control the 60x bus bandwidth. For example, if the transfer size is N*32 bytes, each time the DMA controller wins arbitration, it transfers N bursts before releasing the bus. When SS_MAX bytes have been transferred, the controller reverts to single transactions (double-word, word, half-word, or byte).

Memory-to-memory transfer sizes must evenly divide into SS_MAX and also be a multiple of 32 (for bursting); see Table 18-7.

The size of the IDMA transfer buffer in the dual-port RAM should be determined by the largest transfer (usually $SS_MAX + 32$ bytes) needed by one of the buses, while the other transfer size can be programmed to control the bandwidth of the other bus.

Summarizing the above, a larger DMA transfer size provides for greater microcode efficiency and lower DMA bus latency, because the DMA controller does not release the 60x bus until the transfer is completed. If the DMA priority on the 60x bus is high, however, other 60x masters may experience a high bus latency. Conversely, if the transfer size is small, the DMA requests the 60x bus more often, DMA latency increases and microcode efficiency decreases.

The IDMA transfer size parameters give high flexibility, but it is recommended to check overall system performance with different IDMA parameter settings for maximum throughput.

Note that the memory priority parameter DCM[LP] should be considered when dealing with bus bandwidth usage.

18.6 IDMA Priorities

Each IDMA channel can be programmed to have a higher or lower priority relative to the serial controllers or to have the lowest overall priority when requesting service from the CP. The IDMA priorities are programmed in RCCR[DRxQP]; see Section 13.3.6, "RISC Controller Configuration Register (RCCR)." Take care to avoid overrun or underrun errors in the serial controllers when selecting high priorities for IDMA.

Additional priority over all serial controllers can be selected by setting DCM[LP]; see Section 18.8.2.1, "DMA Channel Mode (DCM)."

18.7 IDMA Interface Signals

Each IDMA has three dedicated handshake control signals for transfers involving an external peripheral device: DMA request ($\overline{DREQ[1-4]}$), DMA acknowledge ($\overline{DACK[1-4]}$)

and DMA done ($\overline{\text{DONE}[1-4]}$). $\overline{\text{DREQ}x}$ may also be used to control the transfer pace of memory-to-memory transfers.

- $\overline{\text{DREQx}}$ is the external DMA request signal.
- $\overline{\text{DACKx}}$ is the DMA acknowledge.
- $\overline{\text{DONE}x}$ marks the end of an IDMA transfer.

The IDMA signals are multiplexed with other internal controller signals at the parallel I/O ports. To enable the IDMA signals, the corresponding bits in the parallel I/O registers should be set. See Chapter 35, "Parallel I/O Ports."

18.7.1 DREQx and DACKx

When the peripheral requires IDMA service, it asserts $\overline{\text{DREQx}}$ and the MPC8260 begins the IDMA process. When the IDMA service is in progress, $\overline{\text{DACKx}}$ is asserted during accesses to the peripheral. A peripheral must validate the transfer by asserting $\overline{\text{TA}}$ or signal an error by asserting $\overline{\text{TEA}}$.

 $\overline{\text{DREQ}x}$ may be configured as either edge- or level-sensitive by programming the RCCR[DRxM]. When $\overline{\text{DREQ}x}$ is configured as edge-sensitive, RCCR[EDMx] controls whether the request is generated on the rising or falling edge; see Section 13.3.6, "RISC Controller Configuration Register (RCCR)."

 $\overline{\text{DREQ}x}$ is sampled at each rising edge of the clock to determine when a valid request is asserted by the device.

18.7.1.1 Level-Sensitive Mode

For external devices requiring very high data transfer rates, level-sensitive mode allows the IDMA to use a maximum bandwidth to service the device. The device requests service by asserting \overline{DREQx} and leaving it asserted as long as it needs service. This mode is selected by setting the corresponding RCCR[DRxM].

The IDMA asserts $\overline{\text{DACK}}$ each time it issues a bus transaction to either read or write the peripheral. The peripheral must use $\overline{\text{TA}}$ and $\overline{\text{TEA}}$ for data validation. $\overline{\text{DACK}}$ is the acknowledgment of the original burst request given on $\overline{\text{DREQx}}$. $\overline{\text{DREQx}}$ should be negated during the $\overline{\text{DACK}}$ active period to ensure that no further transactions are performed.

18.7.1.2 Edge-Sensitive Mode

For external devices that generate a pulsed signal for each operand to be transferred, edgesensitive mode should be used. In edge-sensitive mode, the IDMA controller moves one operand for each falling/rising (as configured by RCCR[EDMx]) edge of \overline{DREQx} . This mode is selected by clearing the corresponding RCCR[DRxM] and programming the corresponding RCCR[EDMx] to the proper edge.

When the IDMA controller detects a valid edge on $\overline{\text{DREQx}}$, a request becomes pending and remains pending until it is serviced by the IDMA. Subsequent changes on $\overline{\text{DREQx}}$ are

ignored until the request begins to be serviced. The servicing of the request results in one operand being transferred. Each time the IDMA issues a bus transaction to either read or write the device, the IDMA asserts \overline{DACK} . The device must use \overline{TA} and \overline{TEA} for data validation. Thus, \overline{DACK} is the acknowledgment of the original transaction request given on \overline{DREQx} .

18.7.2 **DONEx**

This bidirectional open-drain signal is used to indicate the last IDMA transfer. $\overline{\text{DONE}}$ can be an output of the IDMA in the source or destination bus transaction if the transfer count is exhausted. This function is controlled by BD[SDN, DDN].

 $\overline{\text{DONE}}$ can also operate as an input. When operating in external request modes, $\overline{\text{DONE}}$ may be used as an input to the IDMA controller to indicate that the device being serviced requires no more transfers. In that case, the transfer is terminated, the current BD is closed, and an interrupt is generated (if enabled).

NOTE

 $\overline{\text{DONE}}$ is ignored if it is asserted externally during internal request mode (DCM[ERM] = 0).

 $\overline{\text{DONE}}$ must not be asserted externally during memory-tomemory transfers if external request mode is enabled (DCM[ERM] = 1).

18.8 IDMA Operation

Every IDMA operation involves the following steps—IDMA channel initialization, data transfer, and block termination.

- During initialization, the core initializes the IDMA_BASE register in the internal parameter RAM to point to the IDMA-specific table in RAM. This table contains control information for the IDMA operation. In addition the core initializes the parallel I/O registers to enable IDMA external signals, if needed, and other registers related to the channel priority and operation modes; see Section 18.11, "Programming the Parallel I/O Registers." The core initiates the IDMA BDs to point to the data for the transfer and/or a free space for data to be transferred to, and starts the transfer by issuing the START_IDMA command.
- During data transfer, the IDMA accepts requests for data transfers and provides addressing and bus control for the transfers.
- Termination occurs when the IDMA operation completes or the peripheral asserts DONE externally. The core can initiate termination by using the STOP_IDMA command. The IDMA can interrupt the core if interrupts are enabled to signal for operation termination and other events related to the data transfer.

The IDMA uses a data structure, which, as with serial controller BDs, allows flexible data

allocation and eliminates the need for core intervention between transfers. BDs contain information describing the data block and special control options for the DMA operation while transferring the data block.

18.8.1 Auto Buffer and Buffer Chaining

The core processor should initialize the IDMA BD table with the appropriate buffer handling mode, source address, destination address, and block length. See Figure 18-7.

Figure 18-7. IDMAx Channel's BD Table

Data associated with each IDMA channel is stored in buffers and each buffer is referenced by a BD that uses a circular table structure in the dual-port RAM. Control options such as interrupt and $\overline{\text{DONE}}$ assertion are also programmed on a per-buffer basis in each BD.

Data may be transferred in the two following modes:

- Auto buffer mode. The IDMA continuously transfers data to/from the location programmed in the BD until a STOP_IDMA command is issued or DONE is asserted externally.
- Buffer chaining mode. Data is transferred according to the first BD parameters, then the second BD and so forth. The first BD is reused (if ready) until the BD with the last bit set is reached. IDMA transfers stop and restarts when the BD table is reinitialized and a START_IDMA command is issued.

18.8.2 IDMAx Parameter RAM

.

When an IDMAx channel is configured to auto buffer or buffer chaining mode, the MPC8260 uses the IDMAx parameters listed in the Table 18-4. Parameters should be modified only while the channel is disabled, that is, before the first START_IDMA command or when the event register's stop-completed bit (IDSR[SC]) is set following a STOP_IDMA command.

Each IDMA*x* channel parameter table can be placed at any 64-byte aligned address in the dual-port RAM's general-purpose area (banks 1–8). The CP accesses each IDMA*x* channel parameter table using a user-programmed pointer (IDMA*x*_BASE) located in the parameter RAM; see Section 13.5.2, "Parameter RAM." For example, if the IDMA1 channel parameter table is to be placed at address offset 0x2000 in the dual-port RAM, write 0x2000 to IDMA1_BASE.

Offset ¹	Name	Width	Description
0x00	IBASE	Hword	IDMA BD table base address. Defines the starting location in the dual-port RAM for the set of IDMA BDs. It is an offset from the beginning of the dual-port RAM. The user must initialize IBASE before enabling the IDMA channel and should not overlap BD tables of two enabled serial controllers or IDMA channels or erratic operation results. The IBASE value should be 16-bit aligned.
0x02	DCM	Hword	DMA channel mode. See Section 18.8.2.1, "DMA Channel Mode (DCM)."
0x04	IBDPTR	Hword	IDMA BD pointer. Points to the current BD during transfer processing. Points to the next BD to be processed when an idle channel is restarted. Initialize to IBASE before the first START_IDMA command. If BD[W] = 1, the CP initializes IBPTR to IBASE When the end of an IDMA BD table is reached. After a STOP_IDMA command is issued, IBDPTR points to the next BD to be processed. It can be modified after SC interrupt is set and before a START_IDMA command is reissued.
0x06	DPR_BUF	Hword	IDMA transfer buffer base address. The base address should be aligned according to the buffer size determined by DCM[DMA_WRAP]. The transfer buffer size should be consistent with DCM[DMA_WRAP]; that is, DPR_BUF = (64 X 2 ^{DMA_WRAP}) - 32. See Section 18.8.2.1, "DMA Channel Mode (DCM)."
0x08	BUF_INV	Hword	Internal buffer inventory. Indicates the quantity of data inside the internal buffer.
0x0A	SS_MAX	Hword	Steady-state maximum transfer size in bytes. User-defined parameter to increase microcode efficiency. Initialize to internal_buffer_size - 32, that is, $SS_MAX = (64 \times 2^{DMA_WRAP}) - 32$. If possible, SS_MAX is used as the transfer size on transfers to/from memory in memory-to-peripheral mode or in peripheral-to-memory mode. For memory-to-memory mode, SS_MAX is used as the transfer size for at least one of the devices. SS_MAX should be consistent with STS, DTS, and DCM[S/D]. See Table 18-7 and Table 18-8.
0x0C	DPR_IN_PTR	Hword	Write pointer inside the internal buffer.

Table 18-4. I	IDMAx Pa	arameter RAM
---------------	-----------------	--------------

Offset 1	Name	Width	Description
0x0E	STS	Hword	Source transfer size in bytes. All transfers from the source (except the start alignment and the end) are written to the bus using this parameter. In memory-to-peripheral mode, STS should be initialized to SS_MAX.
			In peripheral-to-memory mode, STS should be initialized to the peripheral port size or peripheral transfer size (if the peripheral accepts bursts). See Table 18-8 for valid STS values for peripherals.
			In fly-by mode, STS is initialized to the peripheral port size.
			In memory-to-memory mode:
			 STS should be initialized to SS_MAX. DTS value should be initialized to SS_MAX. STS can be initialized to values other than SS_MAX in the following conditions: STS must divide SS_MAX. STS must be divided by 32 to enable bursts during the steady-state phase. See Table 18-7 for memory-to-memory valid STS values.
0x10	DPR_OUT_PTR	Hword	Read pointer inside the internal buffer.
0x12	SEOB	Hword	Source end of burst. Used for alignment of the first read burst.
0x14	DEOB	Hword	Destination end of burst. Used for alignment of the first write burst.
0x16	DTS	Hword	Destination transfer size in bytes. All transfers to destination (except the start alignment and the tail) are written to the bus using this parameter. In peripheral-to-memory mode, DTS should equal SS_MAX.
			In memory-to-peripheral modes, initialize DTS to the peripheral port size if transfer's destination is a peripheral. Valid sizes for peripheral destination is 1, 2, 4, and 8 bytes, or peripheral transfer size (if the peripheral accepts bursts). See Table 18-8 for valid STS values for peripherals.
			In fly-by mode, DTS is initialized to the peripheral port size.
			 In memory-to-memory mode: DTS value is initialized to SS_MAX. STS value is initialized to SS_MAX. DTS can be initialized to values other than SS_MAX in the following conditions: DTS must divide SS_MAX. DTS must be divided by 32, to enable bursts in steady-state phase. See Table 18-8 for valid memory-to-memory DTS values.
0x18	RET_ADD	Hword	Used to save return address when working in ERM = 1 mode.
0x1A	-	Hword	Reserved, should be cleared.
0x1C	BD_CNT	Word	Internal byte count.
0x20	S_PTR	Word	Source internal data pointer.
0x24	D_PTR	Word	Destination internal data pointer.
0x28	ISTATE	Word	Internal. Should be cleared before every START_IDMA command.
	•		нн

Table 18-4. IDMAx Parameter RAM (Continued)

¹From the pointer value programmed in IDMAx_BASE: IDMA1_BASE at 0x87FE, IDMA2_BASE at 0x88FE, IDMA3_BASE at 0x89FE, and IDMA4_BASE at 0x8AFE; see Section 13.5.2, "Parameter RAM."

18.8.2.1 DMA Channel Mode (DCM)

The IDMA channel mode (DCM) is a 16-bit field within the IDMA parameter RAM, that controls the operation modes of the IDMA channel. As are all other IDMA parameters, the DCM is undefined at reset.

bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
field	FB	LP		_		TC2	_	DM	A_WR	AP	SINC	DINC	ERM	DT	S	/D
Reset		_														
R/W		R/W														

Figure 18-8. DCM Parameters

Table 18-5 describes DCM bits.

Table 18-5. DCM Field Descriptions

Bits	Name	Description
0	FB	Fly-by mode. See Table 18-6. 0 Dual-address mode. 1 Fly-by (single-address) mode. The internal IDMA transfer buffer is not used. Valid only in peripheral-to-memory (S/D=10) or memory-to-peripheral (S/D=01) modes.
1	LP	Low priority. Applies to memory-to-memory accesses only. See Section 4.3.2, "System Configuration and Protection Registers." 0 The IDMA transaction to memory is in middle CPM request priority. 1 The IDMA transaction to memory is in low CPM request priority. Note that IDMA single-address (fly-by) transfers with external peripherals are always high priority, ignoring this bit and bypassing other pending SDMA requests.
2–4	-	Reserved, should be cleared.
5	TC2	Driven on TC[2] during IDMA transactions. The TC[0–1] signals are always driven to 0b11 during IDMA transactions.
6	-	Reserved, should be cleared.
7–9	DMA_WRAP	DMA wrap. Defines the size of the IDMA transfer buffer. The IDMA pointer wraps to the beginning of the buffer whenever DMA_WRAP bytes have been transferred to/from the buffer. 000 64 byte 001 128 byte 001 256 byte 001 512 byte 100 1024 byte 101 2048 byte 11x Reserved Table 18-7 and Table 18-8 describes the relations between the parameter's initial value and SS_MAX, STS, DTD and DCM[S/D] parameters. The IDMA transfer buffer (DPR_BUF) size should be consistent with DCM[DMA_WRAP]; that is DPR_BUF = 64 X 2 ^(DMA_WRAP) - 32

Bits	Name	Description
10	SINC	 Source increment address. Source address pointer (S_PTR) is not incremented in the source read transaction. Should be cleared for peripheral-to-memory transfers if the peripheral has a fixed address. 1 CP increments the source address pointer (S_PTR) with the number of bytes transferred in the source read transaction. Used for memory-to-memory and memory-to-peripheral transfers. In fly-by mode, SINC controls the memory address increment and should equal DINC.
11	DINC	 Destination increment address. Destination address pointer (D_PTR) is not changed in the destination write transaction. Used for memory-to-peripheral transfers if the peripheral has a fixed address. 1 CP increments the destination pointer (D_PTR) with the number of bytes transferred in the destination write transaction. Used for memory-to-memory and memory-to-peripheral transfers. In fly-by mode, DINC should equal SINC.
12	ERM	 External request mode. 0 The CP transfers continuously, as if an external level request is asserted, regardless of the DREQ signal assertion. The CP stops the transfer when there are no more valid BDs or after a STOP_IDMA command is issued. DONE assertion by a external device is ignored. 1 The CP responds to DREQ as configured (edge/level) by performing single- or dual-address transfers. The CP also responds to DONE assertions. Note: Memory-to-memory transfers (S/D=00) with external request (ERM=1) is allowed, but DONE assertion is not supported in this mode (DONE should be disabled).
13	DT	DONE treatment: 0 After external DONE assertion, the IDMA ignores further DREQ assertions. The CP closes the current BD and IDMA stops. START_IDMA command should be issued before assertion of another DREQ. 1 After external DONE assertion, the CP closes the current BD. The IDMA continues to the next BD when DREQ is asserted.
14–15	S/D	Source/destination is a peripheral device or memory. See Table 18-6. 00 Read from memory, write to memory. 10 Read from peripheral, write to memory. 01 Read from memory, write to peripheral. 11 Reserved When a device is a peripheral: • DACK is asserted during transfers to/from it. • It may assert DONE to terminate all accesses to/from it. • It can be operated in fly-by mode—respond to DACK ignoring the address. • It gets highest DMA priority on the bus arbiter and the lowest DMA latency available.

Table 18-5. DCM Field Descriptions (Continued)

18.8.2.2 Data Transfer Types as Programmed in DCM

Table 18-6 summarizes the types of data transfers according to the DCM programming.

S/D	FB	Read From	Write To	Description (Steady-State Operation)
01	0	Memory (STS = SS_MAX)	Peripheral (DTS = port size	Read from memory: Filling internal buffer in one DMA transfer. On the bus: one burst or more, depends on STS
			or 32)	Write to peripheral: In smaller transfers until internal buffer empties. On the bus: singles or burst, depends on DTS
10	0	Peripheral (STS = port size or 32)	Memory (DTS = SS_MAX)	Read from peripheral: Filling internal buffer in several DMA transfers. On the bus: singles or burst, depends on STS
				Write to memory: in one DMA transfer, internal buffer empties. On the bus: one burst or more, depends on DTS
00	0 Memory (STS = SS_MAX)		Memory (DTS =	Read from memory: Filling internal buffer in one DMA transfer. On the bus: one burst or more, depends on STS
			SS_MAX or less)	Write to memory: in one transfer or more until internal buffer empties. On the bus: singles or bursts, depends on DTS
00	0	Memory (STS = SS_MAX or less)	Memory (DTS = SS_MAX)	Read from memory: Filling internal buffer in one or more DMA transfers. On the bus: singles or bursts, depends on STS
				Write to memory: in one DMA transfer, internal buffer empties. On the bus: one burst or more, depends on DTS
01	1	Memory to peripheral (DTS = port size or 32)	-	Read transaction from memory while asserting DACK to peripheral. Peripheral samples the data read from memory. On the bus: singles or bursts, depends on DTS
10	1	_	Peripheral to memory (STS = port size or 32)	Write transaction to memory while asserting $\overline{\text{DACK}}$ to peripheral. Peripheral provides the data that is written to the memory. On the bus: singles or bursts, depends on STS

Table 18-6. IDMA Channel Data Transfer Operation

18.8.2.3 Programming DTS and STS

The options for setting STS and DTS depend on (DCM[DMA_WRAP]) and are described in the following tables for memory/memory and memory/peripheral transfers.

DMA_WRAP	Internal Buffer	SS_MAX	STS (in Bytes)	DTS (in Bytes)	Number of Transfers to Fill Internal Buffer			
	Size				STS Size	DTS Size		
		4 * 00	1 * 32	32	1	1		
000	64	1 * 32	32	1 * 32	1	1		
	100	0 + 00	3 * 32	3 * 32, 32	1	1, 3		
001	128	3 * 32	3 * 32, 32	3 * 32	1, 3	1		
010	256	7 + 00	7 * 32	7 * 32, 32	1	1, 7		
010		7 * 32	7 * 32, 32	7 * 32	1, 7	1		
	540	15 + 00	15 * 32	15 * 32, 3 * 32, 5 * 32, 32	1	1, 5, 3, 15		
011	512	15 * 32	15 * 32, 3 * 32, 5 * 32, 32	15 * 32	1, 5, 3, 15	1		
100	1004	01 + 00	31 * 32	31 * 32, 32	1	1, 31		
100	1024	31 * 32	31 * 32, 32	31 * 32	1, 31	1		
	00.40	63 * 32	63 * 32	63 * 32, 9 * 32, 7 * 32, 32	1	1, 7, 9, 63		
101	2048		63 * 32, 9 * 32, 7 * 32, 32	63 * 32	1, 7, 9, 63	1		

Table 18-7 describes valid STS/DTS values for memory-to-memory operations.

Table 18-7. Valid Memory-to-Memory STS/DTS Values

Table 18-8 describes valid STS/DTS values for memory/peripheral operations.

 Table 18-8. Valid STS/DTS Values for Peripherals

DMA_WRAP	Internal Buffer Size	SS_MAX	S/D Mode	STS (in Bytes)	DTS (in Bytes)
000	64	1 * 32 01 1 * 32		1 * 32	1, 2, 4, 8 (single) ¹ ; 32 (burst) ²
			10	1, 2, 4, 8 (single); 32 (burst)	1 * 32
001	128	3 * 32	01	3 * 32	1, 2, 4, 8 (single); 32 (burst)
			10	1, 2, 4, 8 (single); 32 (burst)	3 * 32
010	256	7 * 32	01	7 * 32	1, 2, 4, 8 (single); 32 (burst)
			10	1, 2, 4, 8 (single); 32 (burst)	7 * 32

DMA_WRAP	Internal Buffer Size	SS_MAX	S/D Mode	STS (in Bytes)	DTS (in Bytes)
011	512	15 * 32	01	15 * 32	1, 2, 4, 8 (single); 32 (burst)
			10	1, 2, 4, 8 (single); 32 (burst)	15 * 32
100	1024	31 * 32	01	31 * 32	1, 2, 4, 8 (single); 32 (burst)
			10	1, 2, 4, 8 (single); 32 (burst)	31 * 32
101	2048	63 * 32	01	63 * 32	1, 2, 4, 8 (single); 32 (burst)
			10	1, 2, 4, 8 (single); 32 (burst)	63 * 32

 Table 18-8. Valid STS/DTS Values for Peripherals (Continued)

¹These values come out as a single transaction on the bus.

²Peripherals that can accept bursts of 32 bytes are supported.

18.8.3 IDMA Performance

The transfer parameters STS, DTS, SS_MAX, and DMA_WRAP determine the amount of data transferred for each START_IDMA command issued. Using large internal IDMA transfer buffers and the maximum transfer sizes allows longer transfers to memory devices, optimizes bus usage and thus reduces the overall load on the CP.

For example, 2,016 bytes can be transferred by issuing one START_IDMA command using a 2-Kbyte internal transfer buffer, or by issuing 63 START_IDMA commands using a 64-byte buffer. The load on the CP in the second case is about 63 times more than the first.

18.8.4 IDMA Event Register (IDSR) and Mask Register (IDMR)

The IDMA event (status) register (IDSR) is used to report events recognized by the IDMA controller. On recognition of an event, the controller sets the corresponding IDSR bit. Each IDMA event bit can generate a maskable interrupt to the core. Even bits are cleared by writing ones; writing zeros has no effect.

The IDMA mask register (IDMR) has the same format as IDSR. Setting IDMR bits enables, and clearing IDMR bits disables, the corresponding interrupts in the event register.

Figure 18-9 shows the bit format for IDSR and IDMR.

Bits	0	1	2	3	4	5	6	7			
Field		-	_		SC	OB	EDN	BC			
Reset		0000_0000									
R/W		F	3		R/W						
Addr	0x11020 (IDSR1), 0x11028 (IDSR2), 0x11030 (IDSR3), 0x11038 (IDSR4)/ 0x11024 (IDMR1), 0x1102C (IDMR2), 0x11034 (IDMR3), 0x1103C (IDMR4)										

Figure 18-9. IDMA Event/Mask Registers (IDSR/IDMR)

Table 18-9 describes IDSR/IDMR fields.

Table 18-9. IDSR/IDMR Field Descriptions

Bits	Name	Description
0–3	_	Reserved, should be cleared.
4	SC	Stop completed. Set after the IDMA channel completes processing the STOP_IDMA command. Do not change channel parameters until SC is set.
5	OB	Out of buffers. Set to indicate that the IDMA channel encountered no valid BDs for the transfer.
6	EDN	External DONE was asserted by device. Set to indicate that the IDMA channel terminated a transfer because DONE was asserted by an external device, on the former SDMA transaction.
7	BC	BD completed. Set only after all data of a BD whose I (interrupt) bit is set has completed transfer to the destination.

18.8.5 IDMA BDs

Source addresses, destination addresses, and byte counts are presented to the CP using the special IDMA BDs. The CP reads the BDs, programs the SDMA channel, and notifies the core about the completion of a buffer transfer using the IDMA BDs. This concept is similar to the one used for the serial controllers on the MPC8260 except that the BD is larger because it contains additional information.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	۷	-	w	I	L	-	СМ	– SDN DDN DGBL DBO – D				DDTB				
Offset + 2	– SGBL SBO – SDTB –															
Offset + 4		Data Length														
Offset + 6																
Offset + 8							Source	Data	Buffe	r Point	er					
Offset + A																
Offset + C		Destination Data Buffer Pointer														
Offset + E																

Figure 18-10. IDMA BD Structure

Table 18-10 describes IDMA BD fields.

Table 18-10. IDMA BD Field Descriptions

Offset	Bits	Name	Description
0x00	0	v	Valid 0 This BD does not contain valid data for transfer. 1 This BD contain valid data for transfer. The CP checks this bit before starting a BD service. If this bit is cleared when the CP accesses the BD, an interrupt IDSR[OB] is issued to the core, the IDMA channel is stopped until a START_IDMA command is issued. After the BD is serviced this bit is cleared by CP unless CM = 1.
	1	-	Reserved, should be cleared.
	2	W	 Wrap (final BD in table) 0 This is not the last BD in the BD table. 1 Last BD in the table. After the associated buffer has been used, the CP transfers data from the first BD in the table, which is pointed by IBASE. The number of BDs in this table is programmable and determined by W bit and the overall space constraints of the dual-port RAM.
	3	I	Interrupt 0 No interrupt is generated after this buffer is serviced. 1 When the CP services all the buffer's data, IDSR[BC] is set, which generates a maskable interrupt.
	4	L	 Last 0 Not the last buffer of a chain to be transferred in buffer chaining mode. The I bit can be used to generate an interrupt when this buffer service is complete. 1 Last buffer of a chain to be transferred in buffer chaining mode. When this BD service is complete the channel is stopped by CP until START_IDMA command is issued. This bit should be set only in buffer chaining mode (CM bit 6 = 0).
	5	_	Reserved, should be cleared.
	6	СМ	 Continuous mode Buffer chaining mode. The CP clears V after this BD is serviced. Buffer chaining mode is used to transfer large quantities of data into non-contiguous buffer areas. The user can initialize BDs ahead of time, if needed. The CP automatically loads the IDMA registers from the next BD values when the transfer is terminated. 1 Auto buffer mode (continuous mode). The CP does not clear V after this BD is serviced. This is the only difference between auto buffer mode and buffer chaining mode. Auto buffer mode transfers multiple groups of data to/from a buffer table and does not require BD reprogramming. The CP automatically reloads the IDMA registers from the next BD values when the transfer is terminated. Either a single BD or multiple BDs can be used to create an infinite loop of repeated data moves. Note that the I bit can still be used to generate an interrupt in this mode.
	7-8	_	Reserved, should be cleared.
	9	SDN	Source done 0 DONE is inactive during this BD. 1 The IDMA asserts DONE at the last read data phase of the BD. In fly-by mode (DCM[FB] = 1), SDN should be same as DDN.
	10	DDN	Destination done 0 DONE is inactive during this BD. 1 The IDMA asserts DONE at the last write data phase of the BD. In fly-by mode (DCM[FB] = 1), DDN should be same as SDN.

Offset	Bits	Name	Description								
	11	DGBL	Destination global 0 Snooping is not activated. 1 Snooping is activated for write transactions to the destination. In fly-by mode, should be the same as SGBL.								
	12-13	DBO	Destination byte ordering: 01 PowerPC little Endian. 1x Big endian (Motorola). 00 Reserved In fly-by mode, should be the same as SBO.								
	14	-	Reserved, should be cleared.								
	15	DDTB	Destination data bus. 0 The destination address lies within the 60x bus. 1 The destination address lies within the local bus. In fly-by mode, should be the same as SDTB.								
0x02	0-1	-	Reserved, should be cleared.								
	2	SGBL	Source global 0 Snooping is not activated. 1 Snooping is activated for read transactions from the source. In fly-by mode, should be the same as DGBL.								
	3-4	SBO	Source byte ordering: 01 PowerPC little endian 1x Big endian (Motorola) 00 Reserved In fly-by mode, should be the same as DBO.								
	5	_	Reserved, should be cleared.								
	6	SDTB	Source data bus. 0 The source address lies within the 60x bus. 1 The source address lies within the local bus. In fly-by mode, should be the same as DDTB.								
	7-15	_	Reserved, should be cleared.								
0x04	0–31	Data Length	Number of bytes the IDMA transfers. Should be programmed to a value greater than zero. Notes: When operating with a peripheral that accepts only single bus transactions (transfer size < 32), data length should be a multiple of the peripheral transfer size (STS for S/D = 10, or DTS for S/D = 01). Also, there is no error notification if the data length does not match the buffer sizes.								
0x08	0–31	Source Buffer Pointer	Holds the address of the associated buffer. Buffers may reside in internal or external memory. Note that if the source/destination is a device, the pointer should contain the device address.								
0x0C	0–31	Destination Buffer Pointer	In fly-by mode, the pointers should contain the memory address.								

Table 18-10. IDMA BD Field Descriptions (Continued)

18.9 IDMA Commands

The user has two commands to control each IDMA channel. These commands are executed through the CP command register (CPCR); see Section 13.4, "Command Set."

18.9.1 START_IDMA Command

The START_IDMA command is used to start a transfer on an IDMA channel. The user must initialize all parameters relevant for the correct operation of the channel (IDMAx_BASE and IDMA channel parameter table) before issuing this command.

To restart the channel operation, the START_IDMA command can be reissued after every pause in channel activity. The user must ensure that parameters are correct for the channel to continue operation correctly.

The parameter ISTATE of the IDMA parameter RAM should be cleared before every issue of a START_IDMA command.

An IDMA pause may occur for one of the following reasons:

- The channel is out of buffers—IDSR[OB] event is set and an interrupt is generated to the core, if enabled.
- DONE was asserted externally and DCM[DT] = 0 (see Table 18-5). An IDSR[EDN] event is set and an interrupt is generated to the core, if enabled.
- STOP_IDMA command was issued.
- The channel has finished a transfer of a BD with the last bit (L) set.

If the START_IDMA command is reissued and channel has more buffers to transfer, it restarts transferring data according to the next BD in the buffer table.

In external request mode (ERM=1), the START_IDMA command initializes the channel, but the first data transfer is performed after external \overline{DREQx} assertion.

In internal request mode (ERM=0), the START_IDMA command starts the data transfer almost immediately, with a delay which depends on the CP load.

18.9.2 STOP_IDMA Command

The STOP_IDMA command is issued to stop the transfer of an IDMA channel.

When a STOP_IDMA command is issued, the CP terminates current IDMA transfers and the current BD is closed (if it was open). If memory is the destination, all data in the IDMA internal buffer is transferred to memory before termination.

At the end of the stop process, the stop-completed event (SC) is set and a maskable interrupt is generated to the core. The user should not modify channel parameters until SC = 1. When the channel is stopped, it does not respond to external requests. If a START_IDMA command is reissued, the next BD in the BD table is processed (if it is valid).

In external request mode (ERM = 1), STOP_IDMA command processing has priority over a peripheral asserting $\overline{\text{DONE}}$.

Note: In memory-to-peripheral, peripheral-to-memory, and fly-by modes, if a STOP_IDMA command is issued with no data in the internal buffer, the BD is immediately closed and the channel is stopped. In this case, a peripheral expecting DONE to be asserted is not notified because the last transfer of the buffer (with BD[DDN or SDN] set) is not performed.

18.10 IDMA Bus Exceptions

Bus exceptions can occur while the IDMA has the bus and is transferring operands. In any computer system, a hardware failure can cause an error during a bus transaction due to random noise or an illegal access. When a synchronous bus structure (like those supported by the MPC8260) is used, it is easy to make provisions for a bus master to detect and respond to errors during a bus transaction. The IDMA recognizes the same bus exceptions as the core, reset and transfer error, as described in Table 18-11.

Exception	Description									
Reset	On an external reset, the IDMA immediately aborts the channel operation, returns to the idle state, and clears IDSR. If reset is detected when a bus transaction is in progress, the transaction is terminated, th control and address/data pins are three-stated, and bus mastership is released.									
Transfer Error	When a fatal error occurs during a bus transaction, a bus error exception is used to abort the transaction and systematically terminate channel operation. The IDMA terminates the current bus transaction, signals an error in the SDSR, and signals an interrupt if the corresponding bit in the SDMR is set. The CPM must be reset before IDMA operation is restarted. Any data previously read from the source into the internal storage is lost, however, issuing a START_IDMA command transfers the last BD again. Note: Any source or destination device for an operand under IDMA handshake control for single-address transfers may need to monitor TEA to detect a bus exception for the current bus transaction. TEA terminates the transaction immediately and negates DACK, which is used to control the transfer to/from the device.									

Table 18-11. IDMA Bus Exceptions

18.10.1 Externally Recognizing IDMA Operand Transfers

The following ways can be used determine externally that the IDMA is executing a bus transaction:

- The TC[2] signal (programmed in DCM[TC2]) or SDMA channels can be programmed to a unique code that identifies an IDMA transfer.
- The DACK signal shows accesses to the peripheral device. DACK activates on either the source or destination bus transactions, depending on DCM[S/D].

18.11 Programming the Parallel I/O Registers

The parallel I/O registers control the use of the external pins of the chip. Each pin can be used for different purposes. See Table 18-12, Table 18-13 and Table 18-14 (optional) for the proper parallel I/O register programming dedicating the proper external ports to the four IDMA channels' external I/O signals.

Each port is controlled by five I/O registers: PPAR, PSOR, PDIR, PODR, and PDAT. Each bit in these registers controls the external pin of the same location.

- PPARC selects the pins general purpose(0)/dedicated(1) mode for port C.
- PDIRC select the pins input or inout (0)/output(1) mode for port C.
- PODRC selects the open drain pins for port C.
- PSORC selects the pins dedicated1(0)/dedicated2(1) mode for port C.
- PPARA, PDIRA, PODRA, and PSORA control port A in the same way.
- PPARD, PDIRD, PODRD, and PSORD control port D in the same way.
- The default is the value that is seen by the IDMA channel on the pin (input or inout mode only—PDIR[PN] = 0) if a PSOR*x* register bit is set to the complement value of the value in Table 18-12, Table 18-13 and Table 18-14. See Section 35.2, "Port Registers."

Channel	Signal	Pin	PPARC	PDIRC	PODRC	PSORC	Default
IDMA1	DREQ1 (I)	PC[0]	1	0	0	0	GND
	DACK1 (O)	PC[23]	1	1	0	1	_
	DONE1 (I/O)	PC[22]	1	0	1	1	VDD
IDMA2	DREQ2 (I)	PC[1]	1	0	0	0	GND
	DACK2 (O)	PC[3]	1	1	0	1	_
	DONE2 (I/O)	PC[2]	1	0	1	1	VDD

Table 18-12. Parallel I/O Register Programming—Port C

Table 18-13 describes parallel I/O register programming for port A.

Table 18-13. Parallel I/O Register Programming—Port A

Channel	Signal	Pin	PPARA	PDIRA	PODRA	PSORA	Default
IDMA3	DREQ3 (I)	PA[0]	1	0	0	1	GND
	DACK3 (O)	PA[2]	1	1	0	1	_
	DONE3 (I/O)	PA[1]	1	0	1	1	VDD
IDMA4	DREQ4 (I)	PA[5]	1	0	0	1	GND
	DACK4 (O)	PA[3]	1	1	0	1	—
	DONE4 (I/O)	PA[4]	1	0	1	1	VDD

Table 18-14 describes parallel I/O register programming for port D (optional).

Channel	Signal	Pin	PPARD	PDIRD	PODRD	PSORD	Default
IDMA1	DACK1 (O) PD[6		1	1	0	1	_
	DONE1 (I/O)	PD[5]	1	0	1	1	VDD

Table 18-14. Parallel I/O Register Programming—Port D

18.12 IDMA Programming Examples

These programming examples demonstrate the use of most of the different modes and configurations of the IDMA channels.

18.12.1 Peripheral-to-Memory Mode (60x Bus to Local Bus)-IDMA2

In the example in Table 18-15, the IDMA2 channel reads 8 bytes per $\overline{\text{DREQ}}$ assertion from a fixed address peripheral located on the 60x bus into the internal buffer. When there is enough data in the internal buffer, it writes one burst to the memory located on the local bus. The internal buffer size is set to 64 bytes to handle maximum transfer of a single burst. The IDMA2 channel asserts $\overline{\text{DONE}}$ on the last read transfer of the last BD to notify the peripheral that there is no data left to transfer.

Important Init Values	Description
DCM(FB) = 0	Not in fly-by mode.
DCM(LP) = 0	Transfers to memory have middle CPM request priority. The destination bus is not overloaded.
DCM(DMA_WRAP) = 000	The internal buffer is 64 bytes long to support 32-byte transfers to memory on the destination bus (one 60x burst) on steady-state of work.
DCM(ERM) = 1	Transfers from peripheral are initiated by DREQ. DONE assertion is supported.
DCM(DT) = 0	Assertion of DONE by the peripheral causes the transfer to be terminated, after writing all the data in the internal buffer to memory, interrupt EDN is set to the core, IDMA channel is stopped. additional DREQ assertions are ignored, until START_IDMA command is issued.
DCM(S/D) = 10	Peripheral-to-memory mode. DONE DREQ and DACK are connected to the peripheral.
DCM(SINC) = 0	The peripheral address are not incremented after transfers, fixed location.
DCM(DINC) = 1	The memory address is incremented after every transfer.
DPR_BUF = 0x0DC0	Initiated to address aligned to 64 (bit[5-0]= 00000).
IBASE = IBDPTR = 0x0030	The current BD pointer is set to the BD table base address (aligned 16 -bits[3–0] = 0).
STS = 8 (0x0008)	Transfers from peripheral are always single 8-byte accesses.
DTS = 32 (0x0020)	Transfers to memory are 32 bytes long (60x bursts) on steady-state of work.
Every BD(SDTB) = 1	Peripheral is on the 60x bus.
Every BD(DDTB) = 0	Memory is on the local bus.

Table 18-15. Example: Peripheral-to-Memory Mode—IDMA2

Important Init Values	Description
Last BD(SDN) = 1	DONE is asserted on the last transfer from peripheral.
Last BD(DDN) = 0	DONE is not asserted on the last transfer to memory.
Every BD(DL) = k*STS	Data length must be STS modular (divided by STS without residue).
IDMR2 = 0x0300_0000	IDMA2 Mask register is programmed to enable EDN and BC interrupts only.
SIMR_L = 0x0000_0200	Interrupt controller is programmed to enable interrupts from IDMA2.
PDIRC = 0x1000_0000 PPARC = 0x7000_0000 PSORC = 0x3000_0000 PODRC = 0x2000_0000	Parallel I/O registers are programmed to enable: $PC[1] = \overline{DREQ2}$; $PC[3] = \overline{DACK2}$; $PC[2] = \overline{DONE2}$. The peripheral signals are to be connected to these lines accordingly.
RCCR = 0x0000_0000	IDMA2 configuration: DREQ is edge low-to-high. DONE is high-to-low. Request priority is higher than the SCCs.
88FE = 0x0300	IDMA2_BASE points to 0x0300 where the parameter table base address is located for IDMA2.
CPCR = 0x22A1_0009	START_IDMA command. IDMA2 page-01000 SBC-10101 op-1001 FLG=1. This write starts the channel operation.

DMA operation description:

START_IDMA: Initialize all parameter RAM values, wait for DREQ to open the first BD. The four first DREQs trigger single, 8byte read transactions from the peripheral until data in the internal buffer is 32 bytes long. Then, a write transaction to memory is done with the size needed for alignment.

Steady state: Every DREQ assertion triggers a read transaction of 8 bytes from the peripheral. If the data in the internal buffer is more than 31 bytes a write transaction to memory of 32 bytes (one local burst) follows immediately. Memory address is incremented constantly. Last read transaction of the last BD from the peripheral is combined with DONE assertion.

STOP_IDMA: After all data in internal buffer is written to memory in one transfer, SC bit is set in IDSR (SC interrupt to the core is not enabled) and BD is closed. Channel is stopped until START_IDMA command is reissued.

DONE assertion by the peripheral: All data in internal buffer is written to memory in one transfer. At the end of the transfer, EDN interrupt is set to hos. Additional DREQ assertions are ignored. IDMA2 channel is stopped until START_IDMA command is issued.

18.12.2 Memory-to-Peripheral Fly-By Mode (Both on 60x Bus)-IDMA3

In the example in Table 18-16, IDMA3 transfers data from a memory device to a 4-byte wide peripheral, both on the 60x bus. The transfers are made by issuing 4-byte read transactions to the memory and asserting \overline{DACK} so the peripheral samples the data from the bus directly. No address is dedicated for the peripheral, and no internal buffer is defined in this mode. The IDMA3 channel asserts \overline{DONE} on the last read transfer of the last BD to notify the peripheral that there is no data left to transfer.

Important Init Values	Description
DCM[FB] = 1	Fly-by mode.
DCM[LP] = x	Don't care. Transfer from memory to peripheral on the 60x bus is high priority.
DCM[DMA_WRAP] = DC	Don't care. No internal buffer is used.

Table 18-16. Example: Memory-to-Peripheral Fly-By Mode (on 60x)–IDMA3

Important Init Values	Description									
DCM[ERM] = 1	Transfers from peripheral are initiated by DREQ.									
DCM[DT] = 1	Assertion of DONE by the peripheral terminates the transfer, interrupt EDN is set to the core, Current BD is closed and the next BD if valid is opened. Additional DREQ assertions cause the new BD to be transferred.									
DCM[S/D] = 01	Memory-to-peripheral mode. DONE, DREQ, and DACK are connected to the peripheral.									
DCM[SINC] = 1.	The memory address is incremented after every transfer.									
DCM[DINC] = 1	The memory address is incremented after every transfer.									
DPR_BUF	The IDMA transfer buffer is not used.									
IBASE = IBDPTR = 0x0030	The current BD pointer is set to the BD table base address (aligned 16 -bits[3–0]=0000).									
STS = 0x0004	Transfers from memory to peripheral are always 4 bytes long (60x singles).									
DTS = 0x0004	Transfers from memory to peripheral are always 4 bytes long (60x singles).									
Every BD[SDTB] = 1	Memory and peripheral are on the 60x bus.									
Every BD[DDTB] = 1	Memory and peripheral are on the 60x bus.									
Last BD[SDN] = 1	DONE is asserted on the last transfer.									
Last BD[DDN] = 1	DONE is asserted on the last transfer.									
IDMR3 = 0x0400_0000	The IDMA3 mask register is programmed to enable the IDSR[OB] interrupt only.									
SIMR_L = 0x0000_0100	The interrupt controller is programmed to enable interrupts from IDMA3.									
PDIRA = 0x2000_0000 PPARA = 0xE000_0000 PSORA = 0xE000_0000 PODRA = 0x4000_0000	Parallel I/O registers are programmed to enable: $PA[0] = \overline{DREQ3}$; $PA[2] = \overline{DACK3}$; $PA[1] = \overline{DONE3}$. The peripheral signals are to be connected to these lines accordingly.									
RCCR = 0x0000_0080	IDMA3 configuration: DREQ is level high. DONE is high to low. request priority is higher than the SCCs.									
89FE = 0x0300	IDMA3_BASE points to 0x0300 where the parameter table base address is located for IDMA3.									
CPCR = 0x26C1_0009	START_IDMA command. IDMA3 page-01001 SBC-10110 op-1001 FLG=1.This write starts the channel operation.									

Table 18-16. Exam	ple: Memor	v-to-Peri	pheral Flv	/-Bv	Mode (on 60x	-IDMA3	Continued))
		,		,		0	,	•••••••••••••••••••••••••••••••••••••••	

DMA operation description:

START_IDMA: Initialize all parameter RAM values, wait for DREQ to open the first BD.

Steady state: Every DREQ triggers a 4-byte transfer in single address transaction. DMA performs a memory read transaction combined with DACK assertion. Memory address is incremented constantly. Last transaction of the last BD is combined with DONE assertion. Another DREQ assertion after last BD complete will issue IDSR[OB] interrupt to the core. STOP_IDMA: BD is closed. SC bit is set in IDSR (SC interrupt to the core is not enabled). Channel is stopped until START IDMA command is issued.

DONE assertion by the peripheral: current BD is closed. IDSR[EDN] is set (but the interrupt to the core is not enabled). The next BD is open with the next DREQ assertion (or IDSR[OB] interrupt is set to the core if there is no other valid BDs).

Part IV. Communications Processor Module

Chapter 19 Serial Communications Controllers (SCCs)

The MPC8260 has four serial communications controllers (SCCs), which can be configured independently to implement different protocols for bridging functions, routers, and gateways, and to interface with a wide variety of standard WANs, LANs, and proprietary networks. An SCC has many physical interface options such as interfacing to TDM buses, ISDN buses, and standard modem interfaces.

The SCCs are independent from the physical interface, but SCC logic formats and manipulates data from the physical interface. Furthermore, the choice of protocol is independent from the choice of interface. An SCC is described in terms of the protocol it runs. When an SCC is programmed to a certain protocol or mode, it implements functionality that corresponds to parts of the protocol's link layer (layer 2 of the OSI reference model). Many SCC functions are common to protocols of the following controllers:

- UART, described in Chapter 20, "SCC UART Mode."
- HDLC and HDLC bus, described in Chapter 21, "SCC HDLC Mode."
- AppleTalk/LocalTalk, described in Chapter 25, "SCC AppleTalk Mode."
- BISYNC, described in Chapter 22, "SCC BISYNC Mode."
- Transparent, described in Chapter 23, "SCC Transparent Mode."
- Ethernet, described in Chapter 24, "SCC Ethernet Mode."

Although the selected protocol usually applies both to the SCC transmitter and receiver, one half of an SCC can run transparent operations while the other runs a standard protocol (except Ethernet).

Each Rx and Tx internal clock can be programmed with either an external or internal source. Internal clocks originate from one of eight baud rate generators (BRGs) or an external clock pin; see Section 15.3, "NMSI Configuration," for each SCC's available clock sources. These clocks can be as fast as a 1:2 ratio of the system clock. (For example, an SCC internal clock can run at 12.5 MHz in a 25-MHz system.) However, an SCC's ability to support a sustained bit stream depends on the protocol as well as other factors.

Part IV. Communications Processor Module

Associated with each SCC is a digital phase-locked loop (DPLL) for external clock recovery, which supports NRZ, NRZI, FM0, FM1, Manchester, and Differential Manchester. If the clock recovery function is not required (that is, synchronous communication), then the DPLL can be disabled, in which case only NRZ and NRZI are supported.

An SCC can be connected to its own set of pins on the MPC8260. This configuration is called the non-multiplexed serial interface (NMSI) and is described in Chapter 14, "Serial Interface with Time-Slot Assigner." Using NMSI, an SCC can support standard modem interface signals, RTS, CTS, and CD. If required, software and additional parallel I/O lines can be used to support additional handshake signals. Figure 19-1 shows the SCC block diagram.

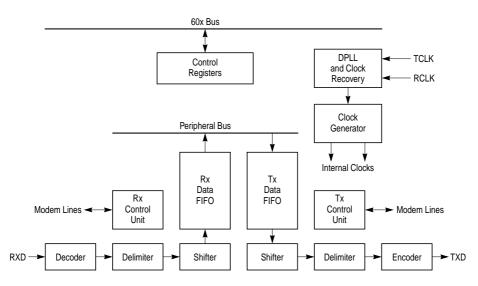


Figure 19-1. SCC Block Diagram

19.1 Features

The following is a list of the main SCC features. (Performance figures assume a 25-MHz system clock.)

- Implements HDLC/SDLC, HDLC bus, synchronous start/stop, asynchronous start/ stop (UART), AppleTalk/LocalTalk, and totally transparent protocols
- Supports 10-Mbps Ethernet/IEEE 802.3 (half- or full-duplex) on all SCCs
- Additional protocols supported through Motorola-supplied RAM microcodes: Profibus, Signaling System#7 (SS7), ATM over T1/E1 (ATOM1)
- Additional protocols can be added in the future through the use of RAM microcodes.

- DPLL circuitry for clock recovery with NRZ, NRZI, FM0, FM1, Manchester, and Differential Manchester (also known as Differential Bi-phase-L)
- Clocks can be derived from a baud rate generator, an external pin, or DPLL
- Data rate for asynchronous communication can be as high as 16.62 Mbps at 133 MHz
- Supports automatic control of the $\overline{\text{RTS}}$, $\overline{\text{CTS}}$, and $\overline{\text{CD}}$ modem signals
- Multi-buffer data structure for receive and send (the number of buffer descriptors (BDs) is limited only by the size of the internal dual-port RAM-8 bytes per BD)
- Deep FIFOs (SCC send and receive FIFOs are 32 bytes each.)
- Transmit-on-demand feature decreases time to frame transmission (transmit latency)
- Low FIFO latency option for send and receive in character-oriented and totally transparent protocols
- Frame preamble options
- Full-duplex operation
- Fully transparent option for one half of an SCC (Rx/Tx) while another protocol executes on the other half (Tx/Rx)
- · Echo and local loopback modes for testing

19.1.1 The General SCC Mode Registers (GSMR1–GSMR4)

Each SCC contains a general SCC mode register (GSMR) that defines options common to each SCC regardless of the protocol. GSMR_L contains the low-order 32 bits; GSMR_H, shown in Figure 19-2, contains the high-order 32 bits. Some GSMR operations are described in later sections.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	_															GDE
Reset	0000_0000_0000															
R/W	R/W															
Addr	0x11A04 (GSMR1); 0x11A24 (GSMR2); 0x11A44 (GSMR3); 0x11A64 (GSMR4)															
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	тс	RC	REVD	TRX	ттх	CDP	CTSP	CDS	CTSS	TFL	RFW	TXSY	SYNL		RTSM	RSYN
Reset	0000_0000_0000															
R/W	R/W															
Addr			0x1 ⁻	1A06 (GSMF	R1); 0x1	1A26 (G	SMR2	2); 0x11A	446 (G	SMR3)	; 0x11A	66 (G	SMR4	·)	

Figure 19-2. GSMR_H—General SCC Mode Register (High Order)

Table 19-1 describes GSMR_H fields.

Bit	Name	Description
0–14	_	Reserved, should be cleared.
15	GDE	 Glitch detect enable. Determines whether the SCC searches for glitches on the external Rx and Tx serial clock lines. Regardless of the GDE setting, a Schmitt trigger on the input lines is used to reduce signal noise. 0 No glitch detection. Clear GDE if the external serial clock exceeds the limits of glitch detection logic (6.25 MHz assuming a 25-MHz system clock), if an internal BRG supplies the SCC clock, or if external clocks are used and glitch detection matters less than power consumption. 1 Glitches can be detected and reported as maskable interrupts in the SCC event register (SCCE).
16–17	TCRC	Transparent CRC (valid for totally transparent channel only). Selects the frame checking provided on transparent channels of the SCC (either the receiver, transmitter, or both, as defined by TTX and TRX). Although this configuration selects a frame check type, the decision to send the frame check is made in the TxBD. Thus, frame checks are not needed in transparent mode and frame check errors generated on the receiver can be ignored. 00 16-bit CCITT CRC (HDLC). (X16 + X12 + X5 + 1). 01 CRC16 (BISYNC). (X16 + X15 + X2 + 1). 10 32-bit CCITT CRC (Ethernet and HDLC). (X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + 1). 11 Reserved.
18	REVD	 Reverse data (valid for a totally transparent channel only) 0 Normal operation. 1 Reverses the bit order for totally transparent channels on this SCC (either the receiver, transmitter, or both) and sends the msb of each byte first. Section 22.11, "BISYNC Mode Register (PSMR)," describes reversing bit order in a BISYNC protocol.
19–20	TRX, TTX	Transparent receiver/transmitter. The receiver, transmitter, or both can use totally transparent operation, regardless of GSMR_L[MODE]. For example, to configure the transmitter as a UART and the receiver for totally transparent operations, set MODE = 0b0100 (UART), TTX = 0, and TRX = 1. 0 Normal operation. 1 The channel uses totally transparent mode, regardless of the protocol chosen in GSMR_L[MODE]. For full-duplex totally transparent operation, set both TTX and TRX. Note that an SCC cannot operate with half in Ethernet mode and half in transparent mode. That is, if MODE = 0b1100 (Ethernet), erratic operation occurs unless TTX = TRX.
21, 22	CDP, CTSP	CD/CTS pulse. If this SCC is used in the TSA and is programmed in transparent mode, set CTSP and refer to Section 23.4.2, "Synchronization and the TSA," for options on programming CDP. 0 Normal operation (envelope mode). CD/CTS should envelope the frame. Negating CD/CTS during reception causes a CD/CTS lost error. 1 Pulse mode. Synchronization occurs when CD/CTS is asserted; further CD/CTS transitions do not affect reception.
23, 24	CDS, CTSS	 CD/CTS sampling. Determine synchronization characteristics of CD and CTS. If the SCC is in transparent mode and is used in the TSA, CDS and CTSS must be set. Also, CDS and CTSS must be set for loopback testing in transparent mode. 0 CD/CTS is assumed to be asynchronous with data. It is internally synchronized by the SCC, then data is received (CD) or sent (CTS) after several clock delays. 1 CD/CTS is assumed to be synchronous with data, which speeds up operation. CD or CTS must transition while the Rx/Tx clock is low, at which time, the transfer begins. Useful for connecting MPC8260 in transparent mode since the RTS of one MPC8260 can connect directly to the CD/CTS of another.

Table 19-1. GSMR_H Field Descriptions

Bit	Name	Description
25	TFL	 Transmit FIFO length. 0 Normal operation. The transmit FIFO is 32 bytes. 1 The Tx FIFO is 1 byte. This option is used with character-oriented protocols, such as UART, to ensure a minimum FIFO latency at the expense of performance.
26	RFW	 Rx FIFO width. 0 Receive FIFO is 32 bits wide for maximum performance; the Rx FIFO is 32 bytes. Data is not normally written to receive buffers until at least 32 bits are received. This configuration is required for HDLC-type protocols and Ethernet and is recommended for high-performance transparent protocols. 1 Low-latency operation. The receive FIFO is 8 bits wide, reducing the Rx FIFO to a quarter its normal size. This allows data to be written to the buffer as soon as a character is received, instead of waiting to receive 32 bits. This configuration must be chosen for character-oriented protocols, such as UART. It can also be used for low-performance, low-latency, transparent operation. However, it must not be used with HDLC, HDLC Bus, AppleTalk, or Ethernet because it causes erratic behavior.
27	TXSY	 Transmitter synchronized to the receiver. Intended for X.21 applications where the transmitted data must begin an exact multiple of 8-bit periods after the received data arrives. 0 No synchronization between receiver and transmitter (default). 1 The transmit bit stream is synchronized to the receiver. Additionally, if RSYN = 1, transmission in totally transparent mode does not occur until the receiver synchronizes with the bit stream and CTS is asserted to the SCC. Assuming CTS is asserted, transmission begins 8 clocks after the receiver starts receiving data.
28–29	SYNL	 Sync length (BISYNC and transparent mode only). See the data synchronization register (DSR) definition in Section 22.9, "Sending and Receiving the Synchronization Sequence," (BISYNC) and Section 23.4.1.1, "In-Line Synchronization Pattern," (transparent). On An external sync (CD) is used instead of the sync pattern in the DSR. O1 4-bit sync. The receiver synchronizes on a 4-bit sync pattern stored in the DSR. This sync and additional syncs can be stripped by programming the SCC's parameter RAM for character recognition. O8 -bit sync. Should be chosen along with the BISYNC protocol to implement mono-sync. The receiver synchronizes on an 8-bit sync pattern in the DSR. 11 16-bit sync. Also called BISYNC. The receiver synchronizes on a 16-bit sync pattern stored in the DSR.
30	RTSM	 RTS mode. Determines whether flags or idles are to be sent. Can be changed on-the-fly. 0 Send idles between frames as defined by the protocol and the TEND bit. RTS is negated between frames (default). 1 Send flags/syncs between frames according to the protocol. RTS is always asserted whenever the SCC is enabled.
31	RSYN	Receive synchronization timing (totally transparent mode only). 0 Normal operation. 1 If CDS = 1, CD should be asserted on the second bit of the Rx frame rather than on the first.

Table 19-1. GSMR_H Field Descriptions (Continued)

Part IV. Communications Processor Module

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	—	ED	DGE TCI TS			NC	RINV	TINV	TPL			TPP		TEND	TDCR	
Reset	0000_0000_0000															
R/W	R/W															
Addr	0x11A00 (SCC1); 0x11A20 (SCC2); 0x11A40 (SCC3); 0x11A60 (SCC4)															
Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	RD	CR		RENC			TENC		DI	٩G	ENR	ENT		MO	DE	
Reset							000	00_000	0_000	0000_0)					
R/W									R/W							
Addr			C	x11A0	2 (SC	C1); 0	x11A22	(SCC2	2); 0x11	IA42 (\$	SCC3);	0x11A	62 (SC	CC4)		

Figure 19-3 shows GSMR_L.

Figure 19-3. GSMR_L-General SCC Mode Register (Low Order)

Table 19-2 describes GSMR_L fields.

Table 19-2. GSMR_L Field Descriptions

Bit	Name	Description
0	-	Reserved, should be cleared.
1–2	EDGE	Clock edge. Determines the clock edge the DPLL uses to adjust the receive sample point due to jitter in the received signal. Ignored in UART protocol or if the 1x clock mode is selected in RDCR. 00 Both the positive and negative edges are used for changing the sample point (default). 01 Positive edge. Only the positive edge of the received signal is used to change the sample point. 10 Negative edge. Only the negative edge of the received signal is used to change the sample point. 11 No adjustment is made to the sample point.
3	ТСІ	 Transmit clock invert. 0 Normal operation. 1 Before it is used, the internal Tx clock (TCLK) is inverted by the SCC so it can clock data out one-half clock earlier (on the rising rather than the falling edge). In this case, the SCC offers a minimum and maximum rising clock edge-to-data specification. Data output by the SCC after the rising edge of an external Tx clock can be latched by the external receiver one clock cycle later on the next rising edge of the same Tx clock. Recommended for Ethernet, HDLC, and transparent operation when clock rates exceed 8 MHz to improve data setup time for the external transceiver.
4–5	TSNC	Transmit sense. Determines the amount of time the internal carrier sense signal stays active after the last transition on RXD, indicating that the line is free. For instance, AppleTalk can use TSNC to avoid a spurious CS-changed (SCCE[DCC]) interrupt that would otherwise occur during the frame sync sequence before the opening flags. If RDCR is configured to 1× clock mode, the delay is the greater of the two numbers listed. If RDCR is configured to 8×, 16×, or 32× mode, the delay is the smaller number. 00 Infinite. Carrier sense is always active (default). 01 14- or 6.5-bit times as determined by RDCR. 10 4- or 1.5-bit times as determined by RDCR. 11 3- or 1-bit times as determined by RDCR.
6	RINV	 DPLL Rx input invert data. Must be zero in HDLC bus mode or asynchronous UART mode. 0 Do not invert. 1 Invert data before sending it to the DPLL for reception. Used to produce FM1 from FM0 and NRZI space from NRZI mark or to invert the data stream in regular NRZ mode.

Bit	Name	Description
7	TINV	 DPLL Tx input invert data. Must be zero in HDLC bus mode. 0 Do not invert. 1 Invert data before sending it to the DPLL for transmission. Used to produce FM1 from FM0 and NRZI space from NRZI mark and to invert the data stream in regular NRZ mode. In T1 applications, setting TINV and TEND creates a continuously inverted HDLC data stream.
8–10	TPL	Tx preamble length. Determines the length of the preamble configured by the TPP bits. 000 No preamble (default). 001 8 bits (1 byte). 010 16 bits (2 bytes). 011 32 bits (4 bytes). 100 48 bits (6 bytes). Select this setting for Ethernet operation. 101 64 bits (8 bytes). 110 128 bits (16 bytes). 111 Reserved.
11–12	TPP	 Tx preamble pattern. Determines what, if any, bit pattern should precede each Tx frame. The preamble pattern is sent before the first flag/sync of the frame. TPP is ignored in UART mode. The preamble length is programmed in TPL; the preamble pattern is typically sent to a receiving station that uses a DPLL for clock recovery. The receiving DPLL uses the regular preamble pattern to help it lock onto the received signal in a short, predictable time period. 00 All zeros. 01 Repetitive 10s. Select this setting for Ethernet operation. 10 Repetitive 01s. 11 All ones. Select this setting for LocalTalk operation.
13	TEND	 Transmitter frame ending. Intended for NMSI transmitter encoding of the DPLL. TEND determines whether TXD should idle in a high state or in an encoded ones state (high or low). It can, however, be used with other encodings besides NMSI. 0 Default operation. TXD is encoded only when data is sent, including the preamble and opening and closing flags/syncs. When no data is available to send, the signal is driven high. 1 TXD is always encoded, even when idles are sent.
14–15 16–17	TDCR RDCR	Transmitter/receiver DPLL clock rate. If the DPLL is not used, choose 1× mode except in asynchronous UART mode where 8x, 16x, or 32× must be chosen. TDCR should match RDCR in most applications to allow the transmitter and receiver to use the same clock source. If an application uses the DPLL, the selection of TDCR/RDCR depends on the encoding/decoding. If communication is synchronous, select 1×. FM0/FM1, Manchester, and Differential Manchester require 8×, 16×, or 32×. If NRZ- or NRZI-encoded communication is asynchronous (that is, clock recovery required), select 8×, 16×, or 32×. The 8× option allows highest speed, whereas the 32× option provides the greatest resolution. 00 1× clock mode. Only NRZ or NRZI encodings/decodings are allowed. 01 8× clock mode. Normally chosen for UART and AppleTalk. 11 32× clock mode.
	RENC	 Receiver decoding/transmitter encoding method. Select NRZ if DPLL is not used. RENC should equal TENC in most applications. However, do not use this internal DPLL for Ethernet. 000 NRZ (default setting if DPLL is not used). Required for UART (synchronous or asynchronous). 001 NRZI Mark (set RINV/TINV also for NRZI space). 010 FM0 (set RINV/TINV also for FM1). 011 Reserved. 100 Manchester. 101 Reserved. 110 Differential Manchester (Differential Bi-phase-L). 111 Reserved.

Bit	Name	Description
24-25	DIAG	 Diagnostic mode. ON Normal operation, CTS and CD are under automatic control. Data is received through RXD and transmitted through TXD. The SCC uses modem signals to enable or disable transmission and reception. These timings are shown in Section 19.3.5, "Controlling SCC Timing with RTS, CTS, and CD." O1 Local loopback mode. Transmitter output is connected internally to the receiver input, while the receiver and the transmitter operate normally. The value on RXD is ignored. If enabled, data appears on TXD, or the parallel I/O registers can be programmed to make TXD high. RTS can also be programmed to be disabled in the appropriate parallel I/O register. The transmitter and receiver must share the same clock source, but separate CLKx pins can be used if connected to the same external clock source. If external loopback is preferred, program DIAG for normal operation and externally connect TXD and RXD. Then, physically connect the control signals (RTS connected to CD, and CTS grounded) or set the parallel I/O registers so CD and CTS are permanently asserted to the SCC by configuring the associated CTS and CD pins as general-purpose I/O. 10 Automatic echo mode. The transmitter automatically resends received data bit-by-bit using the Rx clock provided. The receiver operates normally and receives data if CD is asserted. CTS is ignored. 11 Loopback and echo mode. Loopback and echo operation occur simultaneously. CD and CTS are ignored. See the loopback bit description above for clocking requirements. For TDM operation, the diagnostic mode is selected by SIxMR[SDMx]; see Section 14.5.2, "SI Mode Registers (SIxMR)."
26	ENR	Enable receive. Enables the receiver hardware state machine for this SCC. 0 The receiver is disabled and data in the Rx FIFO is lost. If ENR is cleared during reception, the receiver aborts the current character. 1 The receiver is enabled. ENR can be set or cleared, regardless of whether serial clocks are present. Section 19.3.8, "Reconfiguring the SCCs," describes how to disable/enable an SCC. Note that other tools, including the ENTER HUNT MODE and CLOSE RXBD commands and the E bit of the Rx BD, data provide the capability to control the receiver.
27	ENT	Enable transmit. Enables the transmitter hardware state machine for this SCC. 0 The transmitter is disabled. If ENT is cleared during transmission, the current character is aborted and TXD returns to the idle state. Data already in the Tx shift register is not sent. 1 The transmitter is enabled. ENT can be set or cleared, regardless of whether serial clocks are present. Section 19.3.8, "Reconfiguring the SCCs," describes how to disable/enable an SCC. Note that other tools, such as the STOP TRANSMIT, GRACEFUL STOP TRANSMIT, and RESTART TRANSMIT commands, the freeze option and CTS flow control option in UART mode, and the R bit of the TxBD, also provide the capability to control the transmitter.
28–31	MODE	Channel protocol mode. See also GSMR_H[TTX, TRX]. 0000 HDLC 0001 Reserved 0010 AppleTalk/LocalTalk 0011 SS7—reserved for RAM microcode 0100 UART 0101 Profibus—reserved for RAM microcode 0110 Reserved 0110 Reserved 1000 BISYNC 1001 Reserved 1011 Reserved 1011 Reserved 1011 Reserved 1011 Reserved 1012 Reserved 1013 Reserved 1014 Reserved 1015 Reserved 1016 Ethernet 1117 Reserved

Table 19-2. GSMR_L Field Descriptions (Continued)

19.1.2 Protocol-Specific Mode Register (PSMR)

The protocol implemented by an SCC is selected by its GSMR_L[MODE]. Each SCC has an additional protocol-specific mode register (PSMR) that configures it specifically for the chosen protocol. The PSMR fields are described in the specific chapters that describe each protocol. PSMRs are cleared at reset. PSMRs reside at the following addresses: 0x11A08 (PSMR1), 0x11A28 (PSMR2), 0x11A48 (PSMR3), and 0x11A68 (PSMR4).

19.1.3 Data Synchronization Register (DSR)

Each SCC has a data synchronization register (DSR) that specifies the pattern used for frame synchronization. The programmed value for DSR depends on the protocol:

- UART-DSR is used to configure fractional stop bit transmission.
- BISYNC and transparent—DSR should be programmed with the sync pattern.
- Ethernet—DSR should be programmed with 0xD555.
- HDLC—At reset, DSR defaults to 0x7E7E (two HDLC flags), so it does not need to be written.

Figure 19-4 shows the sync fields.

Bit	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14											14	15					
Field				SY	N2				SYN1									
Reset				0111_	_1110				0111_1110									
R/W	R/W																	
Addr			0>	(11A0E	(DSR	1); 0x1 ⁻	1A2E (I	DSR2);	0x11A	4E (D8	SR3); 0	x11A6	E (DSR	4)				

Figure 19-4. Data Synchronization Register (DSR)

19.1.4 Transmit-on-Demand Register (TODR)

In normal operation, if no frame is being sent by an SCC, the CP periodically polls the R bit of the next TxBD to see if a new frame/buffer is requested. Depending on the SCC configuration, this polling occurs every 8–32 serial Tx clocks. The transmit-on-demand option, selected in the transmit-on-demand register (TODR) shown in Figure 19-5, shortens the latency of the Tx buffer/frame and is useful in LAN-type protocols where maximum inter-frame gap times are limited by the protocol specification.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	TOD	TOD –														
Reset		0000_0000_0000														
R/W								R/	W							
Addr		0x11A0C (TODR1); 0x11A2C (TODR2); 0x11A4C (TODR3); 0x11A6C (TODR4)														

Figure 19-5. Transmit-on-Demand Register (TODR)

Part IV. Communications Processor Module

The CP can be configured to begin processing a new frame/buffer without waiting the normal polling time by setting TODR[TOD] after TxBD[R] is set. Because this feature favors the specified TxBD, it may affect servicing of other SCC FIFOs. Therefore, transmitting on demand should only be used when a high-priority TxBD has been prepared and enough time has passed since the last g transmission. Table 19-3 describes TODR fields.

Bits	Name	Description
0	TOD	 Transmit on demand. Normal operation. The CP gives high priority to the current TxBD and begins sending the frame without waiting the normal polling time to check the TxBD's R bit. TOD is cleared automatically after one serial clock, but transmitting on demand continues until an unprepared (R = 0) BD is reached. TOD does not need to be set again if new TxBDs are added to the BD table as long as older TxBDs are still being processed. New TxBDs are processed in order. The first bit of the frame is typically clocked out 5-6 bit times after TOD is set.
1–15	—	Reserved, should be cleared.

19.2 SCC Buffer Descriptors (BDs)

Data associated with each SCC channel is stored in buffers and each buffer is referenced by a buffer descriptor (BD) that can reside anywhere in dual-port RAM. The total number of 8-byte BDs is limited only by the size of the dual-port RAM (128 BDs/1 Kbyte). These BDs are shared among all serial controllers—SCCs, SMCs, SPI, and I²C. The user defines how the BDs are allocated among the controllers.

Each 64-bit BD has the following structure:

- The half word at offset + 0x0 contains status and control bits that control and report on the data transfer. These bits vary from protocol to protocol. The CPM updates the status bits after the buffer is sent or received.
- The half word at offset + 0x2 (data length) holds the number of bytes sent or received.
 - For an RxBD, this is the number of bytes the controller writes into the buffer. The CPM writes the length after received data is placed into the associated buffer and the buffer closed. In frame-based protocols (but not including SCC transparent operation), this field contains the total frame length, including CRC bytes. Also, if a received frame's length, including CRC, is an exact multiple of MRBLR, the last BD holds no actual data but does contain the total frame length.
 - For a TxBD, this is the number of bytes the controller should send from its buffer. Normally, this value should be greater than zero. The CPM never modifies this field.

- The word at offset + 0x4 (buffer pointer) points to the beginning of the buffer in memory (internal or external).
 - For an RxBD, the value must be a multiple of four. (word-aligned)
 - For a TxBD, this pointer can be even or odd.

Shown in Figure 19-6, the format of Tx and Rx BDs is the same in each SCC mode. Only the status and control bits differ for each protocol.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0		Status and Control														
Offset + 2		Data Length														
Offset + 4							High-0	Order E	Buffer F	ointer						
Offset + 6		Low-Order Buffer Pointer														

Figure 19-6. SCC Buffer Descriptors (BDs)

For frame-oriented protocols, a message can reside in as many buffers as necessary. Each buffer has a maximum length of 65,535 bytes. The CPM does not assume that all buffers of a single frame are currently linked to the BD table. The CPM does assume, however, that the unlinked buffers are provided by the core in time to be sent or received; otherwise, an error condition is reported—an underrun error when sending and a busy error when receiving. Figure 19-7 shows the SCC BD table and buffer structure.

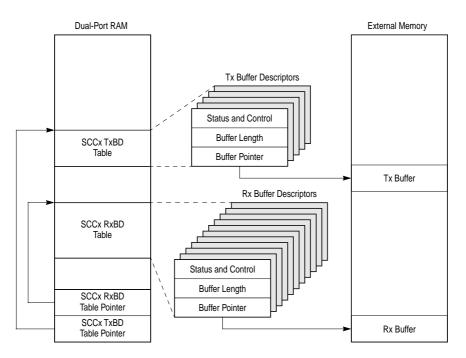


Figure 19-7. SCC BD and Buffer Memory Structure

In all protocols, BDs can point to buffers in the internal dual-port RAM. However, because dual-port RAM is used for descriptors, buffers are usually put in external RAM, especially if they are large.

The CPM processes TxBDs straightforwardly; when the transmit side of an SCC is enabled, the CPM starts with the first BD in that SCC TxBD table. Once the CPM detects that the R bit is set in the TxBD, it starts processing the buffer. The CPM detects that the BD is ready when it polls the R bit or when the user writes to the TODR. After data from the BD is put in the Tx FIFO, if necessary the CPM waits for the next descriptor's R bit to be set before proceeding. Thus, the CPM does no look-ahead descriptor processing and does not skip BDs that are not ready. When the CPM sees a BD's W bit (wrap) set, it returns to the start of the BD table after this last BD of the table is processed. The CPM clears R (not ready) after using a TxBD, which keeps it from being retransmitted before it is confirmed by the core. However, some protocols support a continuous mode (CM), for which R is not cleared (always ready).

The CPM uses RxBDs similarly. When data arrives, the CPM performs required processing on the data and moves resultant data to the buffer pointed to by the first BD; it continues until the buffer is full or an event, such as an error or end-of-frame detection, occurs. The buffer is then closed; subsequent data uses the next BD. If E = 0, the current buffer is not empty and it reports a busy error. The CPM does not move from the current BD until E is set by the core (the buffer is empty). After using a descriptor, the CPM clears E (not empty) and does not reuse a BD until it has been processed by the core. However, in continuous mode (CM), E remains set. When the CPM discovers a descriptor's W bit set (indicating it is the last BD in the circular BD table), it returns to the beginning of the table when it is time to move to the next buffer.

19.3 SCC Parameter RAM

Each SCC parameter RAM area begins at the same offset from each SCC base area. Section 19.3.1, "SCC Base Addresses," describes the SCC's base addresses. The protocol-specific portions of the SCC parameter RAM are discussed in the specific protocol descriptions and the part that is common to all SCC protocols is shown in Table 19-4.

Some parameter RAM values must be initialized before the SCC can be enabled. Other values are initialized or written by the CPM. Once initialized, most parameter RAM values do not need to be accessed because most activity centers around the descriptors rather than the parameter RAM. However, if the parameter RAM is accessed, note the following:

- Parameter RAM can be read at any time.
- Tx parameter RAM can be written only when the transmitter is disabled—after a STOP TRANSMIT command and before a RESTART TRANSMIT command or after the buffer/frame finishes transmitting after a GRACEFUL STOP TRANSMIT command and before a RESTART TRANSMIT command.
- Rx parameter RAM can be written only when the receiver is disabled. Note the CLOSE RXBD command does not stop reception, but it does allow the user to extract data from a partially full Rx buffer.
- See Section 19.3.8, "Reconfiguring the SCCs."

Table 19-4 shows the parameter RAM map for all SCC protocols. Boldfaced entries must be initialized by the user.

Offset 1	Name	Width	Description					
0x00	RBASE	Hword	Rx/TxBD table base address-offset from the beginning of dual-port RAM. The BD					
0x02	TBASE	Hword	tables can be placed in any unused portion of the dual-port RAM. The CPM starts BD processing at the top of the table. (The user defines the end of the BD table by setting the W bit in the last BD to be processed.) Initialize these entries before enabling the corresponding channel. Erratic operations occur if BD tables of active SCCs overlap. Values in RBASE and TBASE should be multiples of eight.					
0x04	RFCR	Byte	Rx function code. See Section 19.3.2, "Function Code Registers (RFCR and TFCR)."					
0x05	TFCR	Byte	Tx function code. See Section 19.3.2, "Function Code Registers (RFCR and TFCR)."					

 Table 19-4. SCC Parameter RAM Map for All Protocols

0x06	MRBLR	Hword	Maximum receive buffer length. Defines the maximum number of bytes the MPC8260 writes to a receive buffer before it goes to the next buffer. The MPC8260 can write fewer bytes than MRBLR if a condition such as an error or end-of-frame occurs. It never writes more bytes than the MRBLR value. Therefore, user-supplied buffers should be no smaller than MRBLR. MRBLR should be greater than zero for all modes. It should be a multiple of 4 for Ethernet and HDLC modes, and in totally transparent mode unless the Rx FIFO is 8-bits wide (GSMR_H[RFW] = 1). Note that although MRBLR is not intended to be changed while the SCC is operating, it can be changed dynamically in a single-cycle, 16-bit move (not two 8-bit cycles). Changing MRBLR has no immediate effect. To guarantee the exact Rx BD on which the change occurs, change MRBLR only while the receiver is disabled. Transmit buffer length is programmed in TxBD[Data Length] and is not affected by MRBLR.
0x08	RSTATE	Word	Rx internal state ³
0x0C		Word	Rx internal buffer pointer ² . The Rx and Tx internal buffer pointers are updated by the SDMA channels to show the next address in the buffer to be accessed.
0x10	RBPTR	Hword	Current RxBD pointer. Points to the current BD being processed or to the next BD the receiver uses when it is idling. After reset or when the end of the BD table is reached, the CPM initializes RBPTR to the value in the RBASE. Although most applications do not need to write RBPTR, it can be modified when the receiver is disabled or when no Rx buffer is in use.
0x12		Hword	Rx internal byte count ² . The Rx internal byte count is a down-count value initialized with MRBLR and decremented with each byte written by the supporting SDMA channel.
0x14		Word	Rx temp ³
0x18	TSTATE	Word	Tx internal state ³
0x1C		Word	Tx internal buffer pointer ² . The Rx and Tx internal buffer pointers are updated by the SDMA channels to show the next address in the buffer to be accessed.
0x20	TBPTR	Hword	Current TxBD pointer. Points to the current BD being processed or to the next BD the transmitter uses when it is idling. After reset or when the end of the BD table is reached, the CPM initializes TBPTR to the value in the TBASE. Although most applications do not need to write TBPTR, it can be modified when the transmitter is disabled or when no Tx buffer is in use (after a STOP TRANSMIT OF GRACEFUL STOP TRANSMIT command is issued and the frame completes its transmission).
0x22		Hword	Tx internal byte count ² . A down-count value initialized with TxBD[Data Length] and decremented with each byte read by the supporting SDMA channel.
0x24		Word	Tx temp ³
0x28	RCRC	Word	Temp receive CRC ²
0x2C	TCRC	Word	Temp transmit CRC ²
0x30			Protocol-specific area. (The size of this area depends on the protocol chosen.)

Table 19-4. SCC Parameter RAM Map for All Protocols (Continued)

¹From SCC base. See Section 19.3.1, "SCC Base Addresses." ²These parameters need not be accessed for normal operation but may be helpful for debugging. ³ For CP use only

19.3.1 SCC Base Addresses

The CPM maintains a section of RAM called the parameter RAM, which contains many parameters for the operation of the FCCs, SCCs, SMCs, SPI, I²C, and IDMA channels. SCC base addresses are described in Table 19-5.

The exact definition of the parameter RAM is contained in each protocol subsection describing a device that uses a parameter RAM. For example, the Ethernet parameter RAM is defined differently in some locations from the HDLC-specific parameter RAM.

Page	Address ¹	Peripheral	Size (Bytes)	
1	0x8000	SCC1	256	
2	0x8100	SCC2	256	
3	0x8200	SCC3	256	
4	0x8300	SCC4	256	

 Table 19-5. Parameter RAM—SCC Base Addresses

¹Offset from RAM_Base

19.3.2 Function Code Registers (RFCR and TFCR)

There are eight separate function code registers for the four SCC channels, four for Rx buffers (RFCR1–RFCR4) and four for Tx buffers (TFCR1–TFCR4). The function code registers contain the transaction specification associated with SDMA channel accesses to external memory. Figure 19-8 shows the register format.

Bit	0	1	2	3	4	5	6	7
Field	_		GBL	В	0	TC2	DTB	-
Reset	0000_0000_0000							
R/W	R/W							
Addr	SCCx base + 0x04 (RFCRx); SCCx base + 0x05 (TFCRx)							

Figure 19-8. Function Code Registers (RFCR and TFCR)

Table 19-6 describes RFCR*x*/TFCR*x* fields.

Bits	Name	Description		
0–1	_	Reserved, should be cleared.		
2	GBL	Global 0 Snooping disabled. 1 Snooping enabled.		
3–4	BO	Byte ordering. Set BO to select the required byte ordering for the buffer. If BO is changed on-the-fly, it takes effect at the beginning of the next frame (Ethernet, HDLC, and transparent) or at the beginning of the next BD. 00 Reserved 01 PowerPC little-endian. 1x Big-endian or true little-endian.		
5	TC2	Transfer code. Contains the transfer code value of TC[2], used during this SDMA channel memory access. TC[0–1] is driven with a 0b11 to identify this SDMA channel access as a DMA-type access.		
6	DTB	Data bus indicator 0 Use 60x bus for SDMA operation 1 Use local bus for SDMA operation		
7	_	Reserved, should be cleared.		

Table 19-6. RFCRx /TFCRx Field Descriptions

19.3.3 Handling SCC Interrupts

To allow interrupt handling for SCC-specific events, event, mask, and status registers are provided within each SCC's internal memory map area; see Table 19-7. Because interrupt events are protocol-dependent, event descriptions are found in the specific protocol chapters.

Table 19-7. SCC	k Event, Mas	sk, and Status	s Registers
-----------------	--------------	----------------	-------------

Register & IMMR Offset	Description
SCCEx 0x11A10 (SCCE1); 0x11A30 (SCCE2); 0x11A50 (SCCE3); 0x11A70 (SCCE4)	SCC event register. This 16-bit register reports events recognized by any of the SCCs. When an event is recognized, the SCC sets its corresponding bit in SCCE, regardless of the corresponding mask bit. When the corresponding event occurs, an interrupt is signaled to the SIVEC register. Bits are cleared by writing ones (writing zeros has no effect). SCCE is cleared at reset and can be read at any time.
SCCMx 0x11A14 (SCCM1); 0x11A34 (SCCM2); 0x11A54 (SCCM3); 0x11A74 (SCCM4)	SCC mask register. The 16-bit, read/write register allows interrupts to be enabled or disabled using the CPM for specific events in each SCC channel. An interrupt is generated only if SCC interrupts in this channel are enabled in the SIU interrupt mask register (SIMR). If an SCCM bit is zero, the CPM does not proceed with interrupt handling when that event occurs. The SCCM and SCCE bit positions are identical.
SCCSx 0x11A17 (SCCS1); 0x11A37 (SCCS2); 0x11A57 (SCCS3); 0x11A77 (SCCS4)	SCC status register. This 8-bit, read-only register allows monitoring of the real-time status of RXD.

Follow these steps to handle an SCC interrupt:

- 1. When an interrupt occurs, read SCCE to determine the interrupt sources and clear those SCCE bits (in most cases).
- 2. Process the TxBDs to reuse them if SCCE[TX] or SCCE[TXE] = 1. If the transmit speed is fast or the interrupt delay is long, the SCC may have sent more than one Tx buffer. Thus, it is important to check more than one TxBD during interrupt handling. A common practice is to process all TxBDs in the handler until one is found with its R bit set.
- 3. Extract data from the RxBD if SCCE[RX], SCCE[RXB], or SCCE[RXF] is set. As with transmit buffers, if the receive speed is fast or the interrupt delay is long, the SCC may have received more than one buffer and the handler should check more than one RxBD. A common practice is to process all RxBDs in the interrupt handler until one is found with RxBD[E] set.
- 4. Execute the **rfi** instruction.

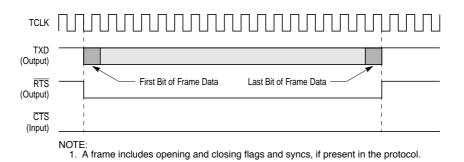
Additional information about interrupt handling can be found in Section 4.2, "Interrupt Controller."

19.3.4 Initializing the SCCs

The SCCs require that a number of registers and parameters be configured after a power-on reset. Regardless of the protocol used, follow these steps to initialize SCCs:

- 1. Write the parallel I/O ports to configure and connect the I/O pins to the SCCs.
- 2. Configure the parallel I/O registers to enable RTS, CTS, and CD if these signals are required.
- 3. If the time-slot assigner (TSA) is used, the serial interface (SL*x*) must be configured. If the SCC is used in NMSI mode, CMXSCR must still be initialized.
- 4. Write all GSMR bits except ENT or ENR.
- 5. Write the PSMR.
- 6. Write the DSR.
- 7. Initialize the required values for this SCC's parameter RAM.
- 8. Initialize the transmit/receive parameters via the CP command register (CPCR).
- 9. Clear out any current events in SCCE (optional).
- 10. Write ones to SCCM register to enable interrupts.
- 11. Set GSMR_L[ENT] and GSMR_L[ENR].

Descriptors can have their R or E bits set at any time. Notice that the CPCR does not need to be accessed after a hardware reset. An SCC should be disabled and reenabled after any dynamic change to its parallel I/O ports or serial channel physical interface configuration. A full reset can also be implemented using CPCR[RST].


19.3.5 Controlling SCC Timing with $\overline{\text{RTS}}$, $\overline{\text{CTS}}$, and $\overline{\text{CD}}$

When GSMR_L[DIAG] is programmed to normal operation, \overline{CD} and \overline{CTS} are controlled by the SCC. In the following subsections, it is assumed that GSMR_L[TCI] is zero, implying normal transmit clock operation.

19.3.5.1 Synchronous Protocols

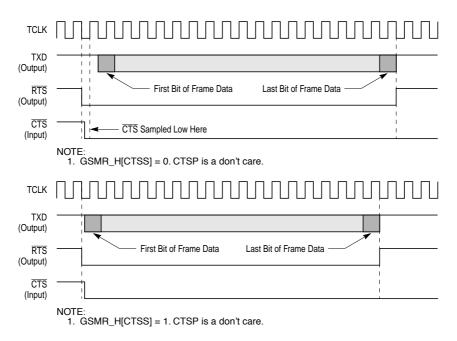

 $\overline{\text{RTS}}$ is asserted when the SCC data is loaded into the Tx FIFO and a falling Tx clock occurs. At this point, the SCC starts sending data once appropriate conditions occur on $\overline{\text{CTS}}$. In all cases, the first data bit is the start of the opening flag, sync pattern, or preamble.

Figure 19-9 shows that the delay between $\overline{\text{RTS}}$ and data is 0 bit times, regardless of GSMR_H[CTSS]. This operation assumes that $\overline{\text{CTS}}$ is already asserted to the SCC or that $\overline{\text{CTS}}$ is reprogrammed to be a parallel I/O line, in which case $\overline{\text{CTS}}$ to the SCC is always asserted. $\overline{\text{RTS}}$ is negated one clock after the last bit in the frame.

Figure 19-9. Output Delay from RTS Asserted for Synchronous Protocols

When $\overline{\text{RTS}}$ is asserted, if $\overline{\text{CTS}}$ is not already asserted, delays to the first data bit depend on when $\overline{\text{CTS}}$ is asserted. Figure 19-10 shows that the delay between $\overline{\text{CTS}}$ and the data can be approximately 0.5 to 1 bit times or 0 bit times, depending on GSMR_H[CTSS].

Figure 19-10. Output Delay from CTS Asserted for Synchronous Protocols

If $\overline{\text{CTS}}$ is programmed to envelope data, negating it during frame transmission causes a $\overline{\text{CTS}}$ lost error. Negating $\overline{\text{CTS}}$ forces $\overline{\text{RTS}}$ high and Tx data to become idle. If $GSMR_H[CTSS]$ is zero, the SCC must sample $\overline{\text{CTS}}$ before a $\overline{\text{CTS}}$ lost is recognized; otherwise, the negation of $\overline{\text{CTS}}$ immediately causes the $\overline{\text{CTS}}$ lost condition. See Figure 19-11.

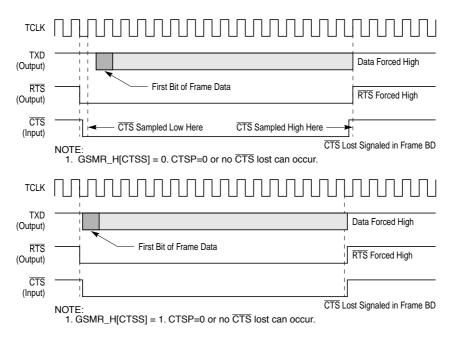


Figure 19-11. CTS Lost in Synchronous Protocols

Note that if $GSMR_H[CTSS] = 1$, \overline{CTS} transitions must occur while the Tx clock is low.

Reception delays are determined by \overline{CD} as shown in Figure 19-12. If GSMR_H[CDS] is zero, \overline{CD} is sampled on the rising Rx clock edge before data is received. If GSMR_H[CDS] is 1, \overline{CD} transitions cause data to be immediately gated into the receiver.

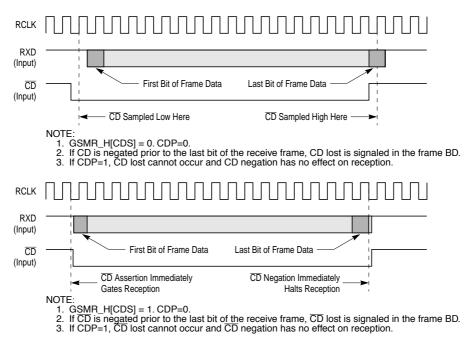


Figure 19-12. Using CD to Control Synchronous Protocol Reception

If \overline{CD} is programmed to envelope the data, it must remain asserted during frame transmission or a \overline{CD} lost error occurs. Negation of \overline{CD} terminates reception. If GSMR_H[CDS] is zero, \overline{CD} must be sampled by the SCC before a \overline{CD} lost error is recognized; otherwise, the negation of \overline{CD} immediately causes the \overline{CD} lost condition.

If GSMR_H[CDS] is set, all \overline{CD} transitions must occur while the Rx clock is low.

19.3.5.2 Asynchronous Protocols

In asynchronous protocols, $\overline{\text{RTS}}$ is asserted when SCC data is loaded into the Tx FIFO and a falling Tx clock occurs. $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ can be used to control reception and transmission in the same manner as the synchronous protocols. The first bit sent in an asynchronous protocol is the start bit of the first character. In addition, the UART protocol has an option for $\overline{\text{CTS}}$ flow control as described in Chapter 20, "SCC UART Mode."

- If <u>CTS</u> is already asserted when <u>RTS</u> is asserted, transmission begins in two additional bit times.
- If $\overline{\text{CTS}}$ is not already asserted when $\overline{\text{RTS}}$ is asserted and $\overline{\text{GSMR}}_{\text{H}}[\text{CTSS}] = 0$, transmission begins in three additional bit times.
- If CTS is not already asserted when RTS is asserted and GSMR_H[CTSS] = 1, transmission begins in two additional bit times.

19.3.6 Digital Phase-Locked Loop (DPLL) Operation

Each SCC channel includes a digital phase-locked loop (DPLL) for recovering clock information from a received data stream. For applications that provide a direct clock source to the SCC, the DPLL can be bypassed by selecting 1x mode for GSMR_L[RDCR, TDCR]. If the DPLL is bypassed, only NRZ or NRZI encodings are available. The DPLL must not be used when an SCC is programmed to Ethernet and is optional for other protocols. Figure 19-13 shows the DPLL receiver block; Figure 19-14 shows the transmitter block diagram.

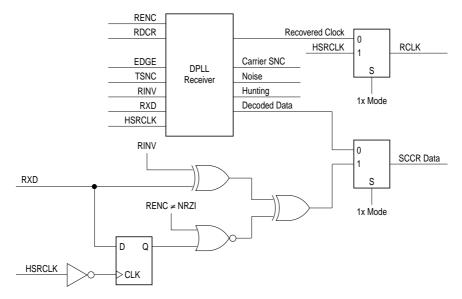


Figure 19-13. DPLL Receiver Block Diagram

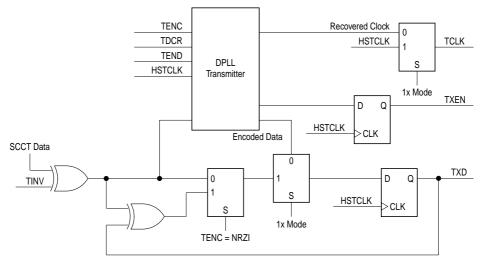


Figure 19-14. DPLL Transmitter Block Diagram

The DPLL can be driven by one of the baud rate generator outputs or an external clock, CLK*x*. In the block diagrams, this clock is labeled HSRCLK/HSTCLK. The HSRCLK/HSTCLK should be approximately 8x, 16x, or 32x the data rate, depending on the coding chosen. The DPLL uses this clock, along with the data stream, to construct a data clock that can be used as the SCC Rx and/or Tx clock. In all modes, the DPLL uses the input clock to determine the nominal bit time. If the DPLL is bypassed, HSRCLK/HSTCLK is used directly as RCLK/TCLK.

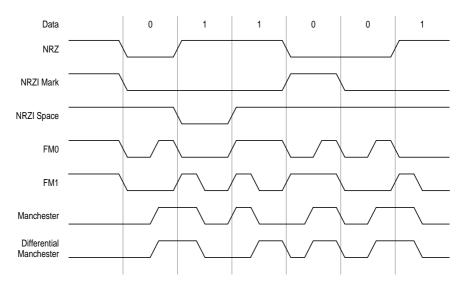
At the beginning of operation, the DPLL is in search mode, whereas the first transition resets the internal DPLL counter and begins DPLL operation. While the counter is counting, the DPLL watches the incoming data stream for transitions; when one is detected, the DPLL adjusts the count to produce an output clock that tracks incoming bits.

The DPLL has a carrier-sense signal that indicates when data transfers are on RXD. The carrier-sense signal asserts as soon as a transition is detected on RXD; it negates after the programmed number of clocks in GSMR_L[TSNC] when no transitions are detected.

To prevent itself from locking on the wrong edges and to provide fast synchronization, the DPLL should receive a preamble pattern before it receives the data. In some protocols, the preceding flags or syncs can function as a preamble; others use the patterns in Table 19-8. When transmission occurs, the SCC can generate preamble patterns, as programmed in GSMR_L[TPP, TPL].

Decoding Method	Preamble Pattern	Minimum Preamble Length Required
NRZI Mark	All zeros	8-bit
NRZI Space	All ones	8-bit
FM0	All ones	8-bit
FM1	All zeros	8-bit
Manchester	10101010	8-bit
Differential Manchester	All ones	8-bit

Table 19-8. Preamble Requirements


The DPLL can also be used to invert the data stream of a transfer. This feature is available in all encodings, including standard NRZ format. Also, when the transmitter is idling, the DPLL can either force TXD high or continue encoding the data supplied to it.

The DPLL is used for UART encoding/decoding, which gives the option of selecting the divide ratio in the UART decoding process $(8\times, 16\times, \text{ or } 32\times)$. Typically, $16\times$ is used.

Note the 1:2 system clock/serial clock ratio does not apply when the DPLL is used to recover the clock in the $8\times$, $16\times$, or $32\times$ modes. Synchronization occurs internally after the DPLL generates the Rx clock. Therefore, even the fastest DPLL clock generation (the $8\times$ option) easily meets the required 1:2 ratio clocking limit.

19.3.6.1 Encoding Data with a DPLL

Each SCC contains a DPLL unit that can be programmed to encode and decode the SCC data as NRZ, NRZI Mark, NRZI Space, FM0, FM1, Manchester, and Differential Manchester. Figure 19-15 shows the different encoding methods.

Figure 19-15. DPLL Encoding Examples

If the DPLL is not needed, NRZ or NRZI codings can be selected in GSMR_L[RENC, TENC]. Coding definitions are shown in Table 19-9.

Coding	Description
NRZ	A one is represented by a high level for the duration of the bit and a zero is represented by a low level.
NRZI Mark	A one is represented by no transition at all. A zero is represented by a transition at the beginning of the bit (the level present in the preceding bit is reversed).
NRZI Space	A one is represented by a transition at the beginning of the bit (the level present in the preceding bit is reversed). A zero is represented by no transition at all.
FM0	A one is represented by a transition only at the beginning of the bit. A zero is represented by a transition at the beginning of the bit and another transition at the center of the bit.
FM1	A one is represented by a transition at the beginning of the bit and another transition at the center of the bit. A zero is represented by a transition only at the beginning of the bit.
Manchester	A one is represented by a high-to-low transition at the center of the bit. A zero is represented by a low to high transition at the center of the bit. In both cases there may be a transition at the beginning of the bit to set up the level required to make the correct center transition.
Differential Manchester	A one is represented by a transition at the center of the bit with the opposite direction from the transition at the center of the preceding bit. A zero is represented by a transition at the center of the bit with the same polarity from the transition at the center of the preceding bit.

Table 19-9. DPLL Codings

19.3.7 Clock Glitch Detection

Clock glitches cause problems for many communications systems, and they may go undetected by the system. Systems that supply an external clock to a serial channel are often susceptible to glitches from noise, connecting or disconnecting the physical cable from the application board, or excessive ringing on a clock line. A clock glitch occurs when more than one edge occurs in a time period that violates the minimum high or low time specification of the input clock.

The SCCs on the MPC8260 have a special circuit designed to detect glitches and alert the system of a problem at the physical layer. The glitch-detect circuit is not a specification test; if a circuit does not meet the SCC's input clocking specifications, erroneous data may not be detected or false glitch indications can occur. Regardless of whether the DPLL is used, the received clock is passed through a noise filter that eliminates any noise spikes that affect a single sample. This sampling is enabled using GSMR_H[GDE].

If a spike is detected, a maskable Rx or Tx glitched clock interrupt is generated in SCCEx[GLR,GLT]. Although the receiver or transmitter can be reset or allowed to continue operation, statistics on clock glitches should be kept for evaluation to help in debugging, especially during prototype testing.

19.3.8 Reconfiguring the SCCs

The proper reconfiguration sequence must be followed for SCC parameters that cannot be changed dynamically. For instance, the internal baud rate generators allow on-the-fly changes, but the DPLL-related GSMR does not. The steps in the following sections show how to disable, reconfigure and re-enable an SCC to ensure that buffers currently in use are properly closed before reconfiguring the SCC and that subsequent data goes to or from new buffers according to the new configuration.

Modifying parameter RAM does not require the SCC to be fully disabled. See the parameter RAM description for when values can be changed. To disable all peripheral controllers, set CPCR[RST] to reset the entire CPM.

19.3.8.1 General Reconfiguration Sequence for an SCC Transmitter

An SCC transmitter can be reconfigured by following these general steps:

- 1. If the SCC is sending data, issue a STOP TRANSMIT command. Transmission should stop smoothly. If the SCC is not transmitting (no TxBDs are ready or the GRACEFUL STOP TRANSMIT command has been issued and completed) or the INIT TX PARAMETERS command is issued, the STOP TRANSMIT command is not required.
- 2. Clear GSMR_L[ENT] to disable the SCC transmitter and put it in reset state.
- 3. Modify SCC Tx parameters or parameter RAM. To switch protocols or restore the initial Tx parameters, issue an INIT TX PARAMETERS command.

- 4. If an INIT TX PARAMETERS command was not issued in step 3, issue a RESTART TRANSMIT command.
- 5. Set GSMR_L[ENT]. Transmission begins using the TxBD pointed to by TBPTR, assuming the R bit is set.

19.3.8.2 Reset Sequence for an SCC Transmitter

The following steps reinitialize an SCC transmit parameters to the reset state:

- 1. Clear GSMR_L[ENT].
- 2. Make any modifications then issue the INIT TX PARAMETERS command.
- 3. Set GSMR_L[ENT].

19.3.8.3 General Reconfiguration Sequence for an SCC Receiver

An SCC receiver can be reconfigured by following these steps:

- 1. Clear GSMR_L[ENR]. The SCC receiver is now disabled and put in a reset state.
- 2. Modify SCC Rx parameters or parameter RAM. To switch protocols or restore Rx parameters to their initial state, issue an INIT RX PARAMETERS command.
- 3. If the INIT RX PARAMETERS command was not issued in step 2, issue an ENTER HUNT MODE command.
- 4. Set GSMR_L[ENR]. Reception begins using the RxBD pointed to by RBPTR, assuming the E bit is set.

19.3.8.4 Reset Sequence for an SCC Receiver

To reinitialize the SCC receiver to the state it was in after reset, follow these steps:

- 1. Clear GSMR_L[ENR].
- 2. Make any modifications then issue the INIT RX PARAMETERS command.
- 3. Set GSMR_L[ENR].

19.3.8.5 Switching Protocols

To switch an SCC's protocol without resetting the board or affecting other SCCs, follow these steps:

- 1. Clear GSMR_L[ENT, ENR].
- 2. Make protocol changes in the GSMR and additional parameters then issue the INIT TX and RX PARAMETERS command to initialize both Tx and Rx parameters.
- 3. Set GSMR_L[ENT, ENR] to enable the SCC with the new protocol.

19.3.9 Saving Power

To save power when not in use, an SCC can be disabled by clearing GSMR_L[ENT, ENR].

Part IV. Communications Processor Module

Chapter 20 SCC UART Mode

The universal asynchronous receiver transmitter (UART) protocol is commonly used to send low-speed data between devices. The term asynchronous is used because it is not necessary to send clocking information along with the data being sent. UART links are typically 38400 baud or less and are character-based. Asynchronous links are used to connect terminals with other devices. Even where synchronous communications are required, the UART is often used as a local port to run board debugger software. The character format of the UART protocol is shown in Figure 20-1.

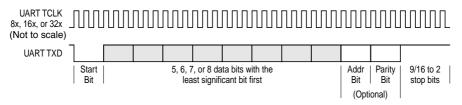


Figure 20-1. UART Character Format

Because the transmitter and receiver operate asynchronously, there is no need to connect the transmit and receive clocks. Instead, the receiver oversamples the incoming data stream (usually by a factor of 16) and uses some of these samples to determine the bit value. Traditionally, the middle 3 of the 16 samples are used. Two UARTs can communicate using this system if the transmitter and receiver use the same parameters, such as the parity scheme and character length.

When data is not sent, a continuous stream of ones is sent (idle condition). Because the start bit is always a zero, the receiver can detect when real data is once again on the line. UART specifies an all-zeros break character, which ends a character transfer sequence.

The most popular protocol that uses asynchronous characters is the RS-232 standard, which specifies baud rates, handshaking protocols, and mechanical/electrical details. Another popular format is RS-485, which defines a balanced line system allowing longer cables than RS-232 links. Even synchronous protocols like HDLC are sometimes defined to run over asynchronous links. The Profibus standard extends UART protocol to include LAN-oriented features such as token passing.

Part IV. Communications Processor Module

All standards provide handshaking signals, but some systems require only three physical lines—Tx data, Rx data, and ground. Many proprietary standards have been built around the UART's asynchronous character frame, some of which implement a multidrop configuration where multiple stations, each with a specific address, can be present on a network. In multidrop mode, frames of characters are broadcast with the first character acting as a destination address. To accommodate this, the UART frame is extended one bit to distinguish address characters from normal data characters.

In synchronous UART (isochronous operation), a separate clock signal is explicitly provided with the data. Start and stop bits are present in synchronous UART, but oversampling is not required because the clock is provided with each bit.

The general SCC mode register (GSMR) is used to configure an SCC channel to function in UART mode, which provides standard serial I/O using asynchronous character-based (start-stop) protocols with RS-232C-type lines. Using standard asynchronous bit rates and protocols, an SCC UART controller can communicate with any existing RS-232-type device and provides a serial communications port to other microprocessors and terminals (either locally or via modems). The independent transmit and receive sections, whose operations are asynchronous with the core, send data from memory (either internal or external) to TXD and receive data from RXD. The UART controller supports a multidrop mode for master/slave operations with wake-up capability on both the idle signal and address bit. It also supports synchronous operation where a clock (internal or external) must be provided with each bit received.

20.1 Features

The following list summarizes main features of an SCC UART controller:

- Flexible message-based data structure
- Implements synchronous and asynchronous UART
- Multidrop operation
- Receiver wake-up on idle line or address bit
- Receive entire messages into buffers as indicated by receiver idle timeout or by control character reception
- Eight control character comparison
- Two address comparison in multidrop configurations
- Maintenance of four 16-bit error counters
- Received break character length indication
- Programmable data length (5–8 bits)
- Programmable fractional stop bit lengths (from 9/16 to 2 bits) in transmission
- Capable of reception without a stop bit
- Even/odd/force/no parity generation and check

- Frame error, noise error, break, and idle detection
- Transmit preamble and break sequences
- Freeze transmission option with low-latency stop

20.2 Normal Asynchronous Mode

In normal asynchronous mode, the receive shift register receives incoming data on RXD*x*. Control bits in the UART mode register (PSMR) define the length and format of the UART character. Bits are received in the following order:

- 1. Start bit
- 2. 5–8 data bits (lsb first)
- 3. Address/data bit (optional)
- 4. Parity bit (optional)
- 5. Stop bits

The receiver uses a clock $8\times$, $16\times$, or $32\times$ faster than the baud rate and samples each bit of the incoming data three times around its center. The value of the bit is determined by the majority of those samples; if all do not agree, the noise indication counter (NOSEC) in parameter RAM is incremented. When a complete character has been clocked in, the contents of the receive shift register are transferred to the receive FIFO before proceeding to the receive buffer. The CPM flags UART events, including reception errors, in SCCE and the RxBD status and control fields.

The SCC can receive fractional stop bits. The next character's start bit can begin any time after the three middle samples are taken. The UART transmit shift register sends outgoing data on TXDx. Data is then clocked synchronously with the transmit clock, which may have either an internal or external source. Characters are sent lsb first. Only the data portion of the UART frame is stored in the buffers because start and stop bits are generated and stripped by the SCC. A parity bit can be generated in transmission and checked during reception; although it is not stored in the buffer, its value can be inferred from the buffer's reporting mechanism. Similarly, the optional address bit is not stored in the transmit or receive buffer, but is supplied in the BD itself. Parity generation and checking includes the optional address bit. GSMR_H[RFW] must be set for an 8-bit receive FIFO in the UART receiver.

20.3 Synchronous Mode

In synchronous mode, the controller uses a $1 \times$ data clock for timing. The receive shift register receives incoming data on RXDx synchronous with the clock. The bit length and format of the serial character are defined by the control bits in the PSMR in the same way as in asynchronous mode. When a complete byte has been clocked in, the contents of the

receive shift register are transferred to the receive FIFO before proceeding to the receive buffer. The CPM flags UART events, including reception errors, in SCCE and the RxBD status and control fields. GSMR_H[RFW] must be set for an 8-bit receive FIFO.

The synchronous UART transmit shift register sends outgoing data on TXD*x*. Data is then clocked synchronously with the transmit clock, which can have an internal or external source.

20.4 SCC UART Parameter RAM

For UART mode, the protocol-specific area of the SCC parameter RAM is mapped as in Table 20-1.

Offset 1	Name	Width	Description					
0x30	_	DWord	Reserved					
0x38	MAX_IDL	Hword	Maximum idle characters. When a character is received, the receiver begins counting idle characters. If MAX_IDL idle characters are received before the next data character, an idle timeout occurs and the buffer is closed, generating a maskable interrupt request to the core to receive the data from the buffer. Thus, MAX_IDL offers a way to demarcate frames. To disable the feature, clear MAX_IDL. The bit length of an idle character is calculated as follows: 1 + data length (5–9) + 1 (if parity is used) + number of stop bits (1–2). For 8 data bits, no parity, and 1 stop bit, the character length is 10 bits.					
0x3A	IDLC	Hword	Temporary idle counter. Holds the current idle count for the idle timeout process. IDLC is a down-counter and does not need to be initialized or accessed.					
0x3C	BRKCR	Hword	Break count register (transmit). Determines the number of break characters the transmitter sends. The transmitter sends a break character sequence when a STOI TRANSMIT command is issued. For 8 data bits, no parity, 1 stop bit, and 1 start bit, each break character consists of 10 zero bits.					
0x3E	PAREC	Hword	User-initialized,16-bit (modulo–2 ¹⁶) counters incremented by the CP.					
0x40	FRMEC	Hword	PAREC counts received parity errors. FRMEC counts received characters with framing errors.					
0x42	NOSEC	Hword	NOSEC counts received characters with noise errors. BRKEC counts break conditions on the signal. A break condition can last for					
0x44	BRKEC	Hword	hundreds of bit times, yet BRKEC is incremented only once during that period.					
0x46	BRKLN	Hword	Last received break length. Holds the length of the last received break character sequence measured in character units. For example, if RXDx is low for 20 bit tim and the defined character length is 10 bits, BRKLN = 0x002, indicating that the break sequence is at least 2 characters long. BRKLN is accurate to within one character length.					
0x48	UADDR1	Hword	UART address character 1/2. In multidrop mode, the receiver provides automatic					
0x4A	UADDR2	Hword	address recognition for two addresses. In this case, program the lower order b of UADDR1 and UADDR2 with the two preferred addresses.					
0x4C	RTEMP	Hword	Temp storage					

Table 20-1. UART-Specific SCC Parameter RAM Memory Map

0x4E	TOSEQ	Hword	Transmit out-of-sequence character. Inserts out-of-sequence characters, such as XOFF and XON, into the transmit stream. The TOSEQ character is put in the Tx FIFO without affecting a Tx buffer in progress. See Section 20.11, "Inserting Control Characters into the Transmit Data Stream."						
0x50	CHARACTER1	Hword	Control character 1–8. These characters define the Rx control characters on which						
0x52	CHARACTER2	Hword	interrupts can be generated.						
0x54	CHARACTER3	Hword							
0x56	CHARACTER4	Hword							
0x58	CHARACTER5	Hword							
0x5A	CHARACTER6	Hword							
0x5C	CHARACTER7	Hword							
0x5E	CHARACTER8	Hword							
0x60	RCCM	Hword	Receive control character mask. Used to mask comparison of CHARACTER1–8 so classes of control characters can be defined. A one enables the comparison, and a zero masks it.						
0x62	RCCR	Hword	Receive control character register. Used to hold the last rejected control character (not written to the Rx buffer). Generates a maskable interrupt. If the core does not process the interrupt and read RCCR before a new control character arrives, the previous control character is overwritten.						
0x64	RLBC	Hword	Receive last break character. Used in synchronous UART when PSMR[RZS] = 1; holds the last break character pattern. By counting zeros in RLBC, the core can measure break length to a one-bit resolution. Read RLBC by counting the zeros written from bit 0 to where the first one was written. RLBC = 0b001xxxxxxxxx indicates two zeros; 0b1xxxxxxxxx indicates no zeros. Note that RLBC can be used in combination with BRKLN above to calculate the number of bits in the break sequence: (BRKLN * character length) + (number of zeros in RLBC).						

Table 20-1. UART-Specific SCC Parameter	RAM Memory Map (Continued)
---	----------------------------

¹From SCC base. See Section 19.3.1, "SCC Base Addresses."

20.5 Data-Handling Methods: Character- or Message-Based

An SCC UART controller uses the same BD table and buffer structures as the other protocols and supports both multibuffer, message-based and single-buffer, character-based operation.

For character-based transfers, each character is sent with stop bits and parity and received into separate 1-byte buffers. A maskable interrupt is generated when each buffer is received.

In a message-based environment, transfers can be made on entire messages rather than on individual characters. To simplify programming and save processor overhead, a message is transferred as a linked list of buffers without core intervention. For example, before handling input data, a terminal driver may wait for an end-of-line character or an idle timeout rather than be interrupted when each character is received. Conversely, ASCII files can be sent as messages ending with an end-of-line character.

When receiving messages, up to eight control characters can be configured to mark the end of a message or generate a maskable interrupt without being stored in the buffer. This option is useful when flow control characters such as XON or XOFF are needed but are not part of the received message. See Section 20.9, "Receiving Control Characters."

20.6 Error and Status Reporting

Overrun, parity, noise, and framing errors are reported via the BDs and/or error counters in the UART parameter RAM. Signal status is indicated in the status register; a maskable interrupt is generated when status changes.

20.7 SCC UART Commands

The transmit commands in Table 20-2 are issued to the CP command register (CPCR).

Command	Description
STOP TRANSMIT	After a hardware or software reset and a channel is enabled in the GSMR, the transmitter starts polling the first BD in the TxBD table every 8 Tx clocks. STOP TRANSMIT disables character transmission. If the SCC receives STOP TRANSMIT as a message is being sent, the message is aborted. The transmitter finishes sending data transferred to its FIFO and stops. The TBPTR is not advanced. The UART transmitter sends a programmable break sequence and starts sending idles. The number of break characters in the sequence (which can be zero) should be written to BRKCR in the parameter RAM before issuing this command.
GRACEFUL STOP TRANSMIT	Used to stop transmitting smoothly. The transmitter stops after the current buffer has been completely sent or immediately if no buffer is being sent. SCCE[GRA] is set once transmission stops, then the UART Tx parameters, including the TxBD, can be modified. TBPTR points to the next TxBD in the table. Transmission begins once the R bit of the next BD is set and a RESTART TRANSMIT command is issued.
RESTART TRANSMIT	Enables transmission. The controller expects this command after it disables the channel in its PSMR, after a STOP TRANSMIT command, after a GRACEFUL STOP TRANSMIT command, or after a transmitter error. Transmission resumes from the current BD.
INIT TX PARAMETERS	Resets the transmit parameters in the parameter RAM. Issue only when the transmitter is disabled. Note that INIT TX AND RX PARAMETERS resets both Tx and Rx parameters.

Table 20-2. Transmit Commands

Receive commands are described in Table 20-3.

Command	Description
ENTER HUNT MODE	Forces the receiver to close the RxBD in use and enter hunt mode. After a hardware or software reset, once an SCC is enabled in the GSMR, the receiver is automatically enabled and uses the first BD in the RxBD table. If a message is in progress, the receiver continues receiving in the next BD. In multidrop hunt mode, the receiver continually scans the input data stream for the address character. When it is not in multidrop mode, it waits for the idle sequence (one character of idle). Data present in the Rx FIFO is not lost when this command is executed.
CLOSE RXBD	Forces the SCC to close the RxBD in use and use the next BD for subsequent received data. If the SCC is not in the process of receiving data, no action is taken. Note that in an SCC UART controller, CLOSE RXBD functions like ENTER HUNT MODE but does not need to receive an idle character to continue receiving.
INIT RX PARAMETERS	Resets the receive parameters in the parameter RAM. Should be issued when the receiver is disabled. Note that INIT TX AND RX PARAMETERS resets both Tx and Rx parameters.

Table 20-3. Receive Commands

20.8 Multidrop Systems and Address Recognition

In multidrop systems, more than two stations can be on a network, each with a specific address. Figure 20-2 shows two examples of this configuration. Frames made up of many characters can be broadcast as long as the first character is the destination address. The UART frame is extended by one bit to distinguish an address character from standard data characters. Programmed in PSMR[UM], the controller supports the following two multidrop modes:

- Automatic multidrop mode The controller checks the incoming address character and accepts subsequent data only if the address matches one of two user-defined values. The two 16-bit address registers, UADDR1 and UADDR2, support address recognition. Only the lower 8 bits are used so the upper 8 bits should be cleared; for addresses less than 8 bits, unused high-order bits should also be cleared. The incoming address is checked against UADDR1 and UADDR2. When a match occurs, RxBD[AM] indicates whether UADDR1 or UADDR2 matched.
- Manual multidrop mode—The controller receives all characters. An address character is always written to a new buffer and can be followed by data characters. User software performs the address comparison.

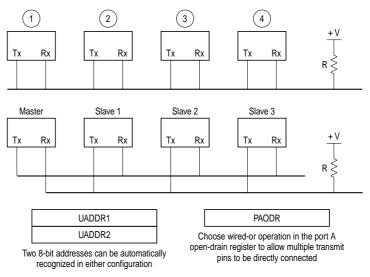


Figure 20-2. Two UART Multidrop Configurations

20.9 Receiving Control Characters

The UART receiver can recognize special control characters used in a message-based environment. Eight control characters can be defined in a control character table in the UART parameter RAM. Each incoming character is compared to the table entries using a mask (the received control character mask, RCCM) to strip don't cares. If a match occurs, the received control character can either be written to the receive buffer or rejected.

If the received control character is not rejected, it is written to the receive buffer. The receive buffer is then automatically closed to allow software to handle end-of-message characters. Control characters that are not part of the actual message, such as XOFF, can be rejected. Rejected characters bypass the receive buffer and are written directly to the received control character register (RCCR), which triggers maskable interrupt.

The 16-bit entries in the control character table support control character recognition. Each entry consists of the control character, a valid bit (end of table), and a reject bit. See Figure 20-3.

Offset ¹	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0x50	Е	R								CHARACTER1						
0x52	Е	R		_						CHARACTER2						
•	•	•		•					•							
•	•	•				•			•							
•	•	•	•										•			
0x5E	Е	R	-							C	HARA	CTER	8			
0x60	1	1	-								RC	СМ				
0x62			_									RC	CR			

¹ From SCCx base address

Figure 20-3. Control Character Table

Table 20-4 describes the data structure used in control character recognition.

Table 20-4. Control Character Table, RCCM, and RCCR Descriptions

Offset	Bits	Name	Description
0x50– 0x5E	0	E	End of table. In tables with eight control characters, E is always 0. 0 This entry is valid. 1 The entry is not valid and is not used.
	1	R	 Reject character. 0 A matching character is not rejected but is written into the Rx buffer, which is then closed. If RxBD[I] is set, the buffer closing generates a maskable interrupt through SCCE[RX]. A new buffer is opened if more data is in the message. 1 A matching character is written to RCCR and not to the Rx buffer. A maskable interrupt is generated through SCCE[CCR]. The current Rx buffer is not closed.
	2–7	-	Reserved
	8–15	CHARACTERn	Control character values 1–8. Defines control characters to be compared to the incoming character. For characters smaller than 8 bits, the most significant bits should be zero.
0x60	0–1	0b11	Must be set. Used to mark the end of the control character table in case eight characters are used. Setting these bits ensures correct operation during control character recognition.
	2–7	-	Reserved
	8–15	RCCM	Received control character mask. Used to mask the comparison of CHARACTERn. Each RCCM bit corresponds to the respective bit of CHARACTERn and decodes as follows. 0 Ignore this bit when comparing the incoming character to CHARACTERn. 1 Use this bit when comparing the incoming character to CHARACTERn.
0x62	0–7	-	Reserved
	8–15	RCCR	Received control character register. If the newly arrived character matches and is rejected from the buffer (R = 1), the PIP controller writes the character into the RCCR and generates a maskable interrupt. If the core does not process the interrupt and read RCCR before a new control character arrives, the previous control character is overwritten.

20.10 Hunt Mode (Receiver)

A UART receiver in hunt mode remains deactivated until an idle or address character is recognized, depending on PSMR[UM]. A receiver is forced into hunt mode by issuing an ENTER HUNT MODE command.

The receiver aborts any message in progress when ENTER HUNT MODE is issued. When the message is finished, the receiver is reenabled by detecting the idle line (one idle character) or by the address bit of the next message, depending on PSMR[UM]. When a receiver in hunt mode receives a break sequence, it increments BRKEC and generates a BRK interrupt condition.

20.11 Inserting Control Characters into the Transmit Data Stream

The SCC UART transmitter can send out-of-sequence, flow-control characters like XON and XOFF. The controller polls the transmit out-of-sequence register (TOSEQ), shown in Figure 20-4, whenever the transmitter is enabled for UART operation, including during a UART freeze operation, UART buffer transmission, and when no buffer is ready for transmission. The TOSEQ character (in CHARSEND) is sent at a higher priority than the other characters in the transmit buffer, but does not preempt characters already in the transmit FIFO. This means that the XON or XOFF character may not be sent for eight or four (SCC) character times. To reduce this latency, set GSMR_H[TFL] to decrease the FIFO size to one character before enabling the transmitter.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	- REA I CT - A						CHARSEND									
Reset		0000_0000_0000														
R/W		R/W														
Addr		SCC base + 0x4E														

Figure 20-4. Transmit Out-of-Sequence Register (TOSEQ)

Table 20-5 describes TOSEQ fields.

Bit	Name	Description
0–1	_	Reserved, should be cleared.
2	REA	Ready. Set when the character is ready for transmission. Remains 1 while the character is being sent. The CP clears this bit after transmission.
3	I	Interrupt. If this bit is set, transmission completion is flagged in the event register (SCCE[TX] is set), triggering a maskable interrupt to the core.
4	СТ	Clear-to-send lost. Operates only if the SCC monitors $\overline{\text{CTS}}$ (GSMR_L[DIAG]). The CP sets this bit if $\overline{\text{CTS}}$ negates when the TOSEQ character is sent. If $\overline{\text{CTS}}$ negates and the TOSEQ character is sent during a buffer transmission, the TxBD[CT] status bit is also set.

Table 20-5. TOSEQ Field Descriptions

Bit	Name	Description
5–6	_	Reserved, should be cleared.
7	Α	Address. Setting this bit indicates an address character for multidrop mode.
8–15	CHARSEND	Character send. Contains the character to be sent. Any 5- to 8-bit character value can be sent in accordance with the UART configuration. The character should be placed in the lsbs of CHARSEND. This value can be changed only while $REA = 0$.

Table 20-5. TOSEQ Field Descriptions (Continued)

20.12 Sending a Break (Transmitter)

A break is an all-zeros character with no stop bit that is sent by issuing a STOP TRANSMIT command. The SCC finishes transmitting outstanding data, sends a programmable number of break characters (determined by BRKCR), and reverts to idle or sends data if a RESTART TRANSMIT command is given before completion. When the break code is complete, the transmitter sends at least one high bit before sending more data, to guarantee recognition of a valid start bit. Because break characters do not preempt characters in the transmit FIFO, they may not be sent for eight (SCC) or four (SCC) character times. To reduce this latency, set GSMR_H[TFL] to decrease the FIFO size to one character before enabling the transmitter.

20.13 Sending a Preamble (Transmitter)

Sending a preamble sequence of consecutive ones ensures that a line is idle before sending a message. If the preamble bit TxBD[P] is set, the SCC sends a preamble sequence (idle character) before sending the buffer. For example, for 8 data bits, no parity, 1 stop bit, and 1 start bit, a preamble of 10 ones is sent before the first character in the buffer.

20.14 Fractional Stop Bits (Transmitter)

The asynchronous UART transmitter, shown in Figure 20-5, can be programmed to send fractional stop bits. The FSB field in the data synchronization register (DSR) determines the fractional length of the last stop bit to be sent. FSB can be modified at any time. If two stop bits are sent, only the second is affected. Idle characters are always sent as full-length characters.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	-		FS	SВ			-	Ι	-	-	-	-	-	-	-	-
Reset	0		11	11		1	1	0	0	1	1	1	1	1	1	0
R/W	R/W															
Addr																

Figure 20-5. Asynchronous UART Transmitter

Part IV. Communications Processor Module

Table 20-6 describes DSR fields.

Bit	Name	Description
0	-	0b0
1-4	FSB	Fractional stop bits. For 16× oversampling: 1111 Last transmitted stop bit 16/16. Default value after reset. 1110 Last transmitted stop bit 15/16. 1000 Last transmitted stop bit 9/16. 0xxx Invalid. Do not use. For 32× oversampling: 1111 Last transmitted stop bit 32/32. Default value after reset. 1110 Last transmitted stop bit 31/32. 0000 Last transmitted stop bit 17/32. For 8× oversampling: 1111 Last transmitted stop bit 8/8. Default value after reset. 1110 Last transmitted stop bit 8/8. Default value after reset. 1110 Last transmitted stop bit 6/8. 1100 Last transmitted stop bit 6/8. 1100 Last transmitted stop bit 5/8. 100x Invalid. Do not use. 0xxx Invalid. Do not use. The UART receiver can always receive fractional stop bits. The next character's start bit can begin any time after the three middle samples have been taken.
5–6	-	0b11
7–8	-	0b00
9–14	-	0b111111
15	-	0b0

Table 20-6. DSR Fields Descriptions

20.15 Handling Errors in the SCC UART Controller

The UART controller reports character reception and transmission error conditions via the BDs, the error counters, and the SCCE. Modem interface lines can be monitored by the port C pins. Transmission errors are described in Table 20-7.

Table 20-7. Transmission Errors

Error	Description
CTS Lost during Character Transmission	When $\overline{\text{CTS}}$ negates during transmission, the channel stops after finishing the current character. The CP sets TxBD[CT] and generates the TX interrupt if it is not masked. The channel resumes transmission after the RESTART TRANSMIT command is issued and $\overline{\text{CTS}}$ is asserted. Note that if $\overline{\text{CTS}}$ is used, the UART also offers an asynchronous flow control option that does not generate an error. See the description of PSMR[FLC] in Table 20-9.

Reception errors are described in Table 20-8.

Error	Description
Overrun	Occurs when the channel overwrites the previous character in the Rx FIFO with a new character, losing the previous character. The channel then writes the new character to the buffer, closes it, sets RxBD[OV], and generates an RX interrupt if not masked. In automatic multidrop mode, the receiver enters hunt mode immediately.
CD Lost during Character Reception	If this error occurs and the channel is using this pin to automatically control reception, the channel terminates character reception, closes the buffer, sets RxBD[CD], and generates the RX interrupt if not masked. This error has the highest priority. The last character in the buffer is lost and other errors are not checked. In automatic multidrop mode, the receiver enters the hunt mode immediately.
Parity	When a parity error occurs, the channel writes the received character to the buffer, closes the buffer, sets RxBD[PR], and generates the RX interrupt if not masked. The channel also increments the parity error counter PAREC. In automatic multidrop mode, the receiver enters hunt mode immediately.
Noise	A noise error occurs when the three samples of a bit are not identical. When this error occurs, the channel writes the received character to the buffer, proceeds normally, but increments the noise error counter NOSEC. Note that this error does not occur in synchronous mode.
Idle Sequence Receive	If the UART is receiving data and gets an idle character (all ones), the channel begins counting consecutive idle characters received. If MAX_IDL is reached, the buffer is closed and an RX interrupt is generated if not masked. If no buffer is open, this event does not generate an interrupt or any status information. The internal idle counter (IDLC) is reset every time a character is received. To disable the idle sequence function, clear MAX_IDL.
Framing	The UART reports a framing errors when it receives a character with no stop bit, regardless of the mode. The channel writes the received character to the buffer, closes it, sets RxBD[FR], generates the RX interrupt if not masked, increments FRMEC, but does not check parity for this character. In automatic multidrop mode, the receiver immediately enters hunt mode. If the UART allows data with no stop bits (PSMR[RZS] = 1) when in synchronous mode (PSMR[SYN] = 1), framing errors are reported but reception continues assuming the unexpected zero is the start bit of the next character; in this case, the user may ignore a reported framing error until multiple framing errors occur within a short period.
Break Sequence	When the first break sequence is received, the UART increments the break error counter BRKEC. It updates BRKLN when the sequence completes. After the first 1 is received, the UART sets SCCE[BRKE], which generates an interrupt if not masked. If the UART is receiving characters when it receives a break, it closes the Rx buffer, sets RxBD[BR], and sets SCCE[RX], which can generate an interrupt if not masked. If PSMR[RZS] = 1 when the UART is in synchronous mode, a break sequence is detected after two successive break characters are received.

20.16 UART Mode Register (PSMR)

For UART mode, the SCC protocol-specific mode register (PSMR) is called the UART mode register. Many bits can be modified while the receiver and transmitter are enabled. Figure 20-6 shows the PSMR in UART mode.

Part IV. Communications Processor Module

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	FLC	SL	С	L	U	М	FRZ	RZS	SYN	DRT	-	PEN	RPM		TPM	
Reset		0														
R/W								R/	W							
Addr		0x11A08 (PSMR1); 0x11A28 (PSMR2); 0x11A48 (PSMR3); 0x11A68 (PSMR4)														

Figure 20-6. Protocol-Specific Mode Register for UART (PSMR)

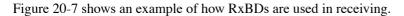
Table 20-9 describes PSMR UART fields.

Table 20-9. PSMR UART Field Descriptions

Bit	Name	Description
0	FLC	 Flow control. 0 Normal operation. The GSMR and port C registers determine the mode of CTS. 1 Asynchronous flow control. When CTS is negated, the transmitter stops at the end of the current character. If CTS is negated past the middle of the current character, the next full character is sent before transmission stops. When CTS is asserted again, transmission continues where it left off and no CTS lost error is reported. Only idle characters are sent while CTS is negated.
1	SL	 Stop length. Selects the number of stop bits the SCC sends. SL can be modified on-the-fly. The receiver is always enabled for one stop bit unless the SCC UART is in synchronous mode and PSMR[RZS] is set. Fractional stop bits are configured in the DSR. 0 One stop bit. 1 Two stop bits.
2–3	CL	Character length. Determines the number of data bits in the character, not including optional parity or multidrop address bits. If a character is less than 8 bits, most-significant bits are received as zeros and are ignored when the character is sent. CL can be modified on-the-fly. 00 5 data bits 01 6 data bits 10 7 data bits 11 8 data bits
4-5	UM	 UART mode. Selects the asynchronous channel protocol. UM can be modified on-the-fly. 00 Normal UART operation. Multidrop mode is disabled and idle-line wake-up mode is selected. The UART receiver leaves hunt mode by receiving an idle character (all ones). 01 Manual multidrop mode. An additional address/data bit is sent with each character. Multidrop asynchronous modes are compatible with the MC68681 DUART, MC68HC11 SCI, DSP56000 SCI, and Intel 8051 serial interface. The receiver leaves hunt mode when the address/data bit is a one, indicating the received character is an address that all inactive processors must process. The controller receives the address character and writes it to a new buffer. The core then compares the written address with its own address and decides whether to ignore or process subsequent characters. 10 Reserved. 11 Automatic multidrop mode. The CPM compares the address of an incoming address character with UADDRx parameter RAM values; subsequent data is accepted only if a match occurs.
6	FRZ	 Freeze transmission. Allows the UART transmitter to pause and later continue from that point. 0 Normal operation. If the buffer was previously frozen, it resumes transmission from the next character in the same buffer that was frozen. 1 The SCC completes transmission of any data already transferred to the Tx FIFO (the number of characters depends on GSMR_H[TFL]) and then freezes. After FRZ is cleared, transmission resumes from the next character.

Bit	Name	Description
7	RZS	 Receive zero stop bits. The receiver operates normally, but at least one stop bit is needed between characters. A framing error is issued if a stop bit is missing. Break status is set if an all-zero character is received with a zero stop bit. Configures the receiver to receive data without stop bits. Useful in V.14 applications where SCC UART controller data is supplied synchronously and all stop bits of a particular character can be omitted for cross-network rate adaptation. RZS should be set only if SYN is set. The receiver continues if a stop bit is missing. If the stop bit is a zero, the next bit is considered the first data bit of the next character. A framing error is issued if a stop bit is missing, but a break status is reported only after two consecutive break characters have no stop bits.
8	SYN	 Synchronous mode. 0 Normal asynchronous operation. GSMR_L[TENC,RENC] must select NRZ and GSMR_L[TDCR, RDCR] select either 8×, 16×, or 32×. 16× is recommended for most applications. 1 Synchronous SCC UART controller using 1× clock (isochronous UART operation). GSMR_L[TENC, RENC] must select NRZ and GSMR_L[RDCR, TDCR] select 1× mode. A bit is transferred with each clock and is synchronous to the clock, which can be internal or external.
9	DRT	 Disable receiver while transmitting. 0 Normal operation. 1 While the SCC is sending data, the internal RTS disables and gates the receiver. Useful for a multidrop configuration in which the user does not want to receive its own transmission. For multidrop UART mode, set the BDs' preamble bit, TxBD[P].
10	-	Reserved, should be cleared.
11	PEN	Parity enable. 0 No parity. 1 Parity is enabled and determined by the parity mode bits.
12–13, 14–15	RPM, TPM	 Receiver/transmitter parity mode. Selects the type of parity check the receiver/transmitter performs; can be modified on-the-fly. Receive parity errors can be ignored but not disabled. Od da parity. If a transmitter counts an even number of ones in the data word, it sets the parity bit so an odd number is sent. If a receiver receives an even number, a parity error is reported. Low parity (space parity). A transmitter sends a zero in the parity bit position. If a receiver does not read a 0 in the parity bit, a parity error is reported. Even parity. Like odd parity, the transmitter adjusts the parity bit, as necessary, to ensure that the receiver receives an even number of one bits; otherwise, a parity error is reported. High parity (mark parity). The transmitter sends a one in the parity bit position. If the receiver does not read a 1 in the parity bit, a parity error is reported.

Table 20-9. PSMR UART Field Descriptions (Continued)


20.17 SCC UART Receive Buffer Descriptor (RxBD)

The CPM uses RxBDs to report on each buffer received. The CPM closes the current buffer, generates a maskable interrupt, and starts receiving data into the next buffer after one of the following occurs:

- A user-defined control character is received.
- An error occurs during message processing.
- A full receive buffer is detected.
- A MAX_IDL number of consecutive idle characters is received.

Part IV. Communications Processor Module

- An ENTER HUNT MODE or CLOSE RXBD command is issued.
- An address character is received in multidrop mode. The address character is written to the next buffer for a software comparison.

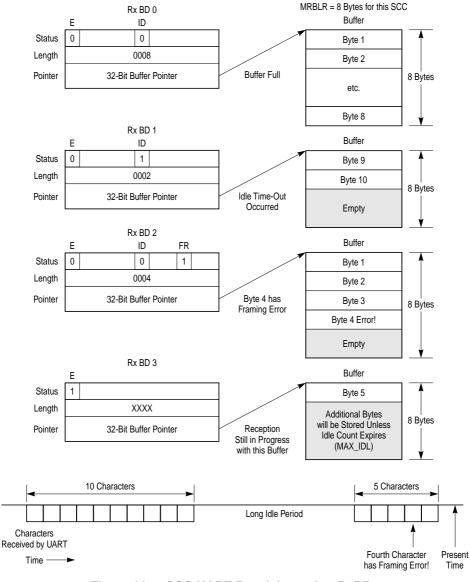


Figure 20-8 shows the SCC UART RxBD.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	Е	-	w	I	С	А	СМ	ID	AM	_	BR	FR	PR	_	ov	CD
Offset + 2	Data Length															
Offset + 4	Rx Buffer Pointer															
Offset + 6																

Figure 20-8. SCC UART Receive Buffer Descriptor (RxBD)

Table 20-10 describes RxBD status and control fields.

Table 20-10. SCC UART RxBD Status and Control Field Descriptions

Name	Description
E	 Empty. 0 The buffer is full or reception was aborted due to an error. The core can read or write to any fields of this BD. The CPM does not reuse this BD while E = 0. 1 The buffer is not full. The CPM controls this BD and buffer. The core should not modify this BD.
_	Reserved, should be cleared.
w	 Wrap (last buffer descriptor in the BD table). 0 Not the last descriptor in the table. 1 Last descriptor in the table. After this buffer is used, the CPM receives incoming data using the BD pointed to by RBASE. The number of BDs in this table is programable and determined only by the W bit and overall space constraints of the dual-port RAM.
1	Interrupt. 0 No interrupt is generated after this buffer is filled. 1 The CP sets SCCE[RX] when this buffer is completely filled by the CPM, indicating the need for the core to process the buffer. Setting SCCE[RX] causes an interrupt if not masked.
С	Control character. 0 This buffer does not contain a control character. 1 The last byte in this buffer matches a user-defined control character.
A	 Address. 0 The buffer contains only data. 1 For manual multidrop mode, A indicates the first byte of this buffer is an address byte. Software should perform address comparison. In automatic multidrop mode, A indicates the buffer contains a message received immediately after an address matched UADDR1 or UADDR2. The address itself is not written to the buffer but is indicated by the AM bit.
СМ	Continuous mode. 0 Normal operation. The CPM clears E after this BD is closed. 1 The CPM does not clear E after this BD is closed, allowing the buffer to be overwritten when the CPM accesses this BD again. E is cleared if an error occurs during reception, regardless of CM.
ID	Buffer closed on reception of idles. The buffer is closed because a programmable number of consecutive idle sequences (MAX_IDL) was received.
AM	Address match. Significant only if the address bit is set and automatic multidrop mode is selected in PSMR[UM]. After an address match, AM identifies which user-defined address character was matched. 0 The address matched the value in UADDR2. 1 The address matched the value in UADDR1.
—	Reserved, should be cleared.
	E

Bits	Name	Description
10	BR	Break received. Set when a break sequence is received as data is being received into this buffer.
11	FR	Framing error. Set when a character with a framing error (a character without a stop bit) is received and located in the last byte of this buffer. A new Rx buffer is used to receive subsequent data.
12	PR	Parity error. Set when a character with a parity error is received and located in the last byte of this buffer. A new Rx buffer is used to receive subsequent data.
13	_	Reserved, should be cleared.
14	OV	Overrun. Set when a receiver overrun occurs during reception.
15	CD	Carrier detect lost. Set when the carrier detect signal is negated during reception.

Table 20-10. SCC UART RxBD Status and Control Field Descriptions (Continued)

Section 19.2, "SCC Buffer Descriptors (BDs)," describes the data length and buffer pointer fields.

20.18 SCC UART Transmit Buffer Descriptor (TxBD)

The CPM uses BDs to confirm transmission and indicate error conditions so the core knows that buffers have been serviced. Figure 20-9 shows the SCC UART TxBD.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
Offset + 0	R	-	w	I	CR	Α	СМ	Р	NS	_									
Offset + 2		Data Length																	
Offset + 4		Tx Buffer Pointer																	
Offset + 6																			

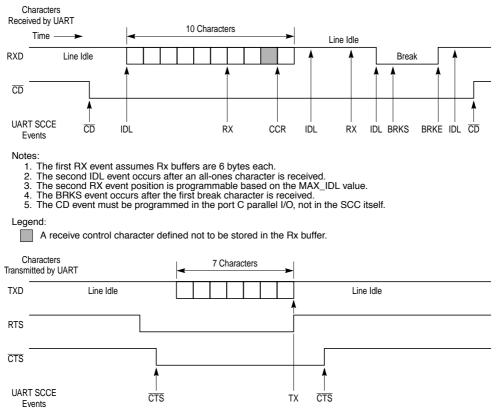
Figure 20-9. SCC UART Transmit Buffer Descriptor (TxBD)

Table 20-11 describes TxBD status and control fields.

Table 20-11. SCC UART TxBD Status and Control Field Descriptions

Bit	Name	Description
0	R	 Ready. 0 The buffer is not ready. This BD and buffer can be modified. The CPM automatically clears R after the buffer is sent or an error occurs. 1 The user-prepared buffer is waiting to begin transmission or is being transmitted. Do not modify the BD once R is set.
1	-	Reserved, should be cleared.
2	W	 Wrap (last buffer descriptor in TxBD table). 0 Not the last BD in the table. 1 Last BD in the table. After this buffer is used, the CPM sends data using the BD pointed to by TBASE. The number of TxBDs in this table is determined only by the W bit and space constraints of the dual-port RAM.

Table 20-11. SCC UART TxBD Status and Control Field Descriptions (Continued)


Bit	Name	Description
3	I	Interrupt. 0 No interrupt is generated after this buffer is processed. 1 SCCE[TX] is set after this buffer is processed by the CPM, which can cause an interrupt.
4	CR	 Clear-to-send report. 0 The next buffer is sent with no delay (assuming it is ready), but if a CTS lost condition occurs, TxBD[CT] may not be set in the correct TxBD or may not be set at all. Asynchronous flow control, however, continues to function normally. 1 Normal CTS lost error reporting and three bits of idle are sent between consecutive buffers.
5	A	Address. Valid only in multidrop mode—automatic or manual. 0 This buffer contains only data. 1 This buffer contains address characters. All data in this buffer is sent as address characters.
6	СМ	Continuous mode. 0 Normal operation. The CPM clears R after this BD is closed. 1 The CPM does not clear R after this BD is closed, allowing the buffer to be resent next time the CPM accesses this BD. However, R is cleared by transmission errors, regardless of CM.
7	Ρ	Preamble.0 No preamble sequence is sent.1 Before sending data, the controller sends an idle character consisting of all ones. If the data length of this BD is zero, only a preamble is sent.
8	NS	No stop bit or shaved stop bit sent. 0 Normal operation. Stop bits are sent with all characters in this buffer. 1 If PSMR[SYN] = 1, data in this buffer is sent without stop bits. If SYN = 0, the stop bit is shaved, depending on the DSR setting; see Section 20.14, "Fractional Stop Bits (Transmitter)."
9–14	-	Reserved, should be cleared.
15	СТ	CTSlost. The CPM writes this status bit after sending the associated buffer.0CTS remained asserted during transmission.1CTS negated during transmission.

The data length and buffer pointer fields are described in Section 19.2, "SCC Buffer Descriptors (BDs)."

20.19 SCC UART Event Register (SCCE) and Mask Register (SCCM)

The SCC event register (SCCE) is used to report events recognized by the UART channel and to generate interrupts. When an event is recognized, the controller sets the corresponding SCCE bit. Interrupts can be masked in the UART mask register (SCCM), which has the same format as SCCE. Setting a mask bit enables the corresponding SCCE interrupt; clearing a bit masks it. Figure 20-10 shows example interrupts that can be generated by the SCC UART controller.

Part IV. Communications Processor Module

Notes:

TX event assumes all seven characters were put into a single buffer and TxBD[CR]=1.
 The CTS event must be programmed in the port C parallel I/O, not in the SCC itself.

Figure 20-10. SCC UART Interrupt Event Example

SCCE bits are cleared by writing ones; writing zeros has no effect. Unmasked bits must be cleared before the CPM clears an internal interrupt request. Figure 20-11 shows SCCE/ SCCM for UART operation.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field		_		GLR	GLT	_	AB	IDL	GRA	BRKE	BRKS	_	CCR	BSY	ΤХ	RX
Reset		0000_0000_0000														
R/W		R/W														
Addr	0x11A10 (SCCE1); 0x11A30 (SCCE2); 0x11A50 (SCCE3); 0x11A70 (SCCE4) 0x11A14 (SCCM1); 0x11A34 (SCCM2); 0x11A54 (SCCM3); 0x11A74 (SCCM4)															

Figure 20-11. SCC UART Event Register (SCCE) and Mask Register (SCCM)

Table 20-12 describes SCCE fields for UART mode.

Table 20-12. SCCE/SCCM Field Descriptions for UART Mode

Bit	Name	Description
0–2	-	Reserved, should be cleared.
3	GLR	Glitch on receive. Set when the SCC encounters an Rx clock glitch.
4	GLT	Glitch on transmit. Set when the SCC encounters a Tx clock glitch.
5	-	Reserved, should be cleared.
6	AB	Autobaud. Set when an autobaud lock is detected. The core should rewrite the baud rate generator with the precise divider value. See Chapter 16, "Baud-Rate Generators (BRGs)."
7	IDL	Idle sequence status changed. Set when the channel detects a change in the serial line. The line's real- time status can be read in SCCS[ID]. Idle is entered when a character of all ones is received; it is exited when a zero is received.
8	GRA	Graceful stop complete. Set as soon as the transmitter finishes any buffer in progress after a GRACEFUL STOP TRANSMIT command is issued. It is set immediately if no buffer is in progress.
9	BRKE	Break end. Set when an idle bit is received after a break sequence.
10	BRKS	Break start. Set when the first character of a break sequence is received. Multiple BRKS events are not received if a long break sequence is received.
11	-	Reserved, should be cleared.
12	CCR	Control character received and rejected. Set when a control character is recognized and stored in the receive control character register RCCR.
13	BSY	Busy. Set when a character is received and discarded due to a lack of buffers. In multidrop mode, the receiver automatically enters hunt mode; otherwise, reception continues when a buffer is available. The latest point that an RxBD can be changed to empty and guarantee avoiding the busy condition is the middle of the stop bit of the first character to be stored in that buffer.
14	тх	Tx event. Set when a buffer is sent. If TxBD[CR] = 1, TX is set no sooner than when the last stop bit of the last character in the buffer begins transmission. If TxBD[CR] = 0, TX is set after the last character is written to the Tx FIFO. TX also represents a \overline{CTS} lost error; check TxBD[CT].
15	RX	Rx event. Set when a buffer is received, which is no sooner than the middle of the first stop bit of the character that caused the buffer to close. Also represents a general receiver error (overrun, CD lost, parity, idle sequence, and framing errors); the RxBD status and control fields indicate the specific error.

20.20 SCC UART Status Register (SCCS)

The SCC UART status register (SCCS), shown in Figure 20-12, monitors the real-time status of RXD.

Bit	0	1	2	3	4	5	6	7		
Field	— — II									
Reset	0000_0000_0000									
R/W		R								
Addr		0x11A17 (SCCS1); 0x11A37 (SCCS2); 0x11A57 (SCCS3); 0x11A77 (SCCS4)								

Figure 20-12. SCC Status Register for UART Mode (SCCS)

Table 20-13 describes UART SCCS fields.

Bits	Name	Description
0–6	-	Reserved, should be cleared.
7	ID	Idle status. Set when RXD has been a logic one for at least a full character time. 0 The line is not idle. 1 The line is idle.

Table 20-13. UART SCCS Field Descriptions

20.21 SCC UART Programming Example

The following initialization sequence is for the 9,600 baud, 8 data bits, no parity, and stop bit of an SCC in UART mode assuming a 66-MHz system frequency. BRG1 and SCC2 are used. The controller is configured with $\overline{\text{RTS2}}$, $\overline{\text{CTS2}}$, and $\overline{\text{CD2}}$ active; $\overline{\text{CTS2}}$ acts as an automatic flow-control signal.

- 1. Configure port D pins to enable TXD2 and RXD2. Set PPARD[27,28] and PDIRD[27] and clear PDIRD[28] and PSORD[27,28].
- 2. Configure ports C and D pins to enable RTS2, CTS2 and CD2. Set PPARD[26], PPARC[12,13] and PDIRD[26] and clear PDIRC[12,13], PSORC[12,13] and PSORD[26].
- 3. Configure BRG1. Write BRGC1 with 0x0001_035A. The DIV16 bit is not used and the divider is 429 (decimal). The resulting BRG1 clock is 16x the preferred bit rate.
- 4. Connect BRG1 to SCC2 using the CPM mux. Clear CMXSCR[RS2CS,TS2CS].
- 5. Connect the SCC2 to the NMSI. Clear CMXSCR[SC2].
- 6. Write RBASE and TBASE in the SCC2 parameter RAM to point to the RxBD and TxBD tables in dual-port RAM. Assuming one RxBD at the start of dual-port RAM followed by one TxBD, write RBASE with 0x0000 and TBASE with 0x0008.
- 7. Write 0x04A1_0000 to CPCR to execute the INIT RX AND TX PARAMS command for SCC2. This command updates RBPTR and TBPTR of the serial channel with the new values of RBASE and TBASE.
- 8. Write RFCR with 0x10 and TFCR with 0x10 for normal operation.
- 9. Write MRBLR with the maximum number of bytes per Rx buffer. For this case, assume 16 bytes, so MRBLR = 0x0010.
- 10. Write MAX_IDL with 0x0000 in the parameter RAM to disable the maximum idle functionality for this example.
- 11. Set BRKCR to 0x0001 so STOP TRANSMIT commands send only one break character.
- 12. Clear PAREC, FRMEC, NOSEC, and BRKEC in parameter RAM.
- 13. Clear UADDR1 and UADDR2. They are not used.
- 14. Clear TOSEQ. It is not used.

- 15. Write CHARACTER1-8 with 0x8000. They are not used.
- 16. Write RCCM with 0xC0FF. It is not used.
- 17. Initialize the RxBD. Assume the Rx buffer is at 0x0000_1000 in main memory. Write 0xB000 to the RxBD[Status and Control], 0x0000 to RxBD[Data Length] (optional), and 0x0000_1000 to RxBD[Buffer Pointer].
- 18. Initialize the TxBD. Assume the buffer is at 0x0000_2000 in main memory and contains sixteen 8-bit characters. Write 0xB000 to the TxBD[Status and Control], 0x0010 to TxBD[Data Length], and 0x00002000 to TxBD[Buffer Pointer].
- 19. Write 0xFFFF to SCCE2 to clear any previous events.
- 20. Write 0x0003 to SCCM2 to allow the TX and RX interrupts.
- 21. Write 0x0040_0000 to the SIMR_L so SMC1 can generate a system interrupt. Initialize SIPNR_L by writing 0xFFFF_FFFF to it.
- 22. Write 0x0000_0020 to GSMR_H2 to configure a small Rx FIFO width.
- 23. Write 0x0002_8004 to GSMR_L2 to configure 16x sampling for transmit and receive, CTS and CD to automatically control transmission and reception (DIAG bits), and the SCC for UART mode. Notice that the transmitter (ENT) and receiver (ENR) have not been enabled yet.
- 24. Set PSMR2 to 0xB000 to configure automatic flow control using CTS, 8-bit characters, no parity, 1 stop bit, and asynchronous SCC UART operation.
- 25. Write 0x0002_8034 to GSMR_L2 to enable the transmitter and receiver. This ensures that ENT and ENR are enabled last.

Note that after 16 bytes are sent, the transmit buffer is closed. Additionally, the receive buffer is closed after 16 bytes are received. Data received after 16 bytes causes a busy (out-of-buffers) condition because only one RxBD is prepared.

20.22 S-Records Loader Application

This section describes a downloading application that uses an SCC UART controller. The application performs S-record downloads and uploads between a host computer and an intelligent peripheral through a serial asynchronous line. S-records are strings of ASCII characters that begin with 'S' and end in an end-of-line character. This characteristic is used to impose a message structure on the communication between the devices. For flow control, each device can transmit XON and XOFF characters, which are not part of the program being uploaded or downloaded.

For simplicity, assume that the line is not multidrop (no addresses are sent) and that each S-record fits into a single buffer. Follow the basic UART initialization sequence above in Section 20.21, "SCC UART Programming Example," except allow for more and larger buffers and create the control character table as described in Table 20-14.

Character	Description
Line Feed	Both the E and R bits should be cleared. When an end-of-line character is received, the current buffer is closed and made available to the core for processing. This buffer contains an entire S record that the processor can now check and copy to memory or disk as required.
XOFF	E should be cleared; R should be set. Whenever the core receives a control-character-received (CCR) interrupt and the RCCR contains XOFF, the software should immediately stop transmitting by setting PSMR[FRZ]. This keeps the other station from losing data when it runs out of Rx buffers.
XON	XON should be received after XOFF. E should be cleared and R should be set. PSMR[FRZ] on the transmitter should now be cleared. The CPM automatically resumes transmission of the serial line at the point at which it was previously stopped. Like XOFF, the XON character is not stored in the receive buffer.

Table 20-14. UART Control Characters for S-Records Example

To receive S-records, the core must wait for an RX interrupt, indicating that a complete S-record buffer was received. Transmission requires assembling S-records into buffers and linking them to the TxBD table; transmission can be paused when an XOFF character is received. This scheme minimizes the number of interrupts the core receives (one per S-record) and relieves it from continually scanning for control characters.

Chapter 21 SCC HDLC Mode

High-level data link control (HDLC) is one of the most common protocols in the data link layer, layer 2 of the OSI model. Many other common layer 2 protocols, such as SDLC, SS#7, AppleTalk, LAPB, and LAPD, are based on HDLC and its framing structure in particular. Figure 21-1 shows the HDLC framing structure.

HDLC uses a zero insertion/deletion process (bit-stuffing) to ensure that a data bit pattern matching the delimiter flag does not occur in a field between flags. The HDLC frame is synchronous and relies on the physical layer for clocking and synchronization of the transmitter/receiver.

An address field is needed to carry the frame's destination address because the layer 2 frame can be sent over point-to-point links, broadcast networks, packet-switched or circuit-switched systems. An address field is commonly 0, 8, or 16 bits, depending on the data link layer protocol. SDLC and LAPB use an 8-bit address. SS#7 has no address field because it is always used in point-to-point signaling links. LAPD divides its 16-bit address into different fields to specify various access points within one device. LAPD also defines a broadcast address. Some HDLC-type protocols permit addressing beyond 16 bits.

The 8- or 16-bit control field provides a flow control number and defines the frame type (control or data). The exact use and structure of this field depends on the protocol using the frame. The length of the data in the data field depends on the frame protocol. Layer 3 frames are carried in this data field. Error control is implemented by appending a cyclic redundancy check (CRC) to the frame, which in most protocols is 16 bits long but can be as long as 32 bits. In HDLC, the lsb of each octet is sent first; the msb of the CRC is sent first.

HDLC mode is selected for an SCC by writing $GSMR_L[MODE] = 0b0000$. In a nonmultiplexed modem interface, SCC outputs connect directly to external pins. Modem signals can be supported through port C. The Rx and Tx clocks can be supplied from either the bank of baud rate generators, by the DPLL, or externally. An SCC can also be connected through the TDM channels of the serial interface (SI). In HDLC mode, an SCC becomes an HDLC controller, and consists of separate transmit and receive sections whose operations are asynchronous with the core and can either be synchronous or asynchronous with respect to other SCCs.

21.1 SCC HDLC Features

The main features of an SCC in HDLC mode are follows:

- Flexible buffers with multiple buffers per frame
- Separate interrupts for frames and buffers (Rx and Tx)
- Received-frames threshold to reduce interrupt overhead
- Can be used with the SCC DPLL
- Four address comparison registers with mask
- Maintenance of five 16-bit error counters
- Flag/abort/idle generation and detection
- Zero insertion/deletion
- 16- or 32-bit CRC-CCITT generation and checking
- Detection of nonoctet aligned frames
- Detection of frames that are too long
- Programmable flags (0–15) between successive frames
- Automatic retransmission in case of collision

21.2 SCC HDLC Channel Frame Transmission

The HDLC transmitter is designed to work with little or no core intervention. Once enabled by the core, a transmitter starts sending flags or idles as programmed in the HDLC mode register (PSMR). The HDLC polls the first BD in the TxBD table. When there is a frame to transmit, the SCC fetches the data (address, control, and information) from the first buffer and starts sending the frame after inserting the minimum number of flags specified between frames. When the end of the current buffer is reached and TxBD[L] (last buffer in frame) is set, the SCC appends the CRC and closing flag. In HDLC mode, the lsb of each octet and the msb of the CRC are sent first. Figure 21-1 shows a typical HDLC frame.

Opening Flag	Address	Control	Information (Optional)	CRC	Closing Flag
8 bits	16 bits	8 bits	8n bits	16 bits	8 bits

Figure 21-1. HDLC Framing Structure

After a closing flag is sent, the SCC updates the frame status bits of the BD and clears TxBD[R] (buffer ready). At the end of the current buffer, if TxBD[L] is not set (multiple buffers per frame), only TxBD[R] is cleared. Before the SCC proceeds to the next TxBD in the table, an interrupt can be issued if TxBD[I] is set. This interrupt programmability allows the core to intervene after each buffer, after a specific buffer, or after each frame.

The STOP TRANSMIT command can be used to expedite critical data ahead of previously linked buffers or to support efficient error handling. When the SCC receives a STOP TRANSMIT command, it sends idles or flags instead of the current frame until it receives a RESTART TRANSMIT command. The GRACEFUL STOP TRANSMIT command can be used to insert a high-priority frame without aborting the current one—a graceful-stop-complete event is generated in SCCE[GRA] when the current frame is finished. See Section 21.6, "SCC HDLC Commands."

21.3 SCC HDLC Channel Frame Reception

The HDLC receiver is designed to work with little or no core intervention to perform address recognition, CRC checking, and maximum frame length checking. Received frames can be used to implement any HDLC-based protocol.

Once enabled by the core, the receiver waits for an opening flag character. When it detects the first byte of the frame, the SCC compares the frame address with four user-programmable, 16-bit address registers and an address mask. The SCC compares the received address field with the user-defined values after masking with the address mask. To detect broadcast (all ones) address frames, one address register must be written with all ones.

If an address match is detected, the SCC fetches the next BD and SCC starts transferring the incoming frame to the buffer if it is empty. When the buffer is full, the SCC clears RxBD[E] and generates a maskable interrupt if RxBD[I] is set. If the incoming frame is larger than the current buffer, the SCC continues receiving using the next BD in the table.

During reception, the SCC checks for frames that are too long (using MFLR). When the frame ends, the CRC field is checked against the recalculated value and written to the buffer. RxBD[Data Length] of the last BD in the HDLC frame contains the entire frame length. This also enables software to identify the frames in which the maximum frame length violations occur. The SCC sets RxBD[L] (last buffer in frame), writes the frame status bits, and clears RxBD[E]. It then generates a maskable event (SCCE[RXF]) to indicate a frame was received. The SCC then waits for a new frame. Back-to-back frames can be received with only one shared flag between frames.

The received frames threshold parameter (RFTHR) can be used to postpone interrupts until a specified number of frames is received. This function can be combined with a timer to implement a timeout if fewer than the specified number of threshold frames is received.

Note that SCCs in HDLC mode, or any other synchronous mode, must receive a minimum of eight clocks after the last bit arrives to account for Rx FIFO delay.

21.4 SCC HDLC Parameter RAM

For HDLC mode, the protocol-specific area of the SCC parameter RAM is mapped as in Table 21-1.

Offset 1	Name	Width	Description					
0x30	-	Word	Reserved					
0x34	C_MASK	Word	CRC mask. For the 16-bit CRC-CCITT, initialize with 0x0000_F0B8. For 32-bit CRC-CCITT, initialize with 0xDEBB_20E3.					
0x38	C_PRES	Word	CRC preset. For the 16-bit CRC-CCITT, initialize with 0x0000_FFFF. For 32-bit C CCITT, initialize with 0xFFF_FFFF.					
0x3C	DISFC	Hword	Modulo 2 ¹⁶ counters maintained by the CP. Initialize them while the channel is					
0x3E	CRCEC	Hword	disabled. DISFC (Discarded frame counter) Counts error-free frames discarded due to lack of					
0x40	ABTSC	Hword	free buffers. CRCEC (CRC error counter) Includes frames not addressed to the user or frames					
0x42	NMARC	Hword	received in the BSY condition, but does not include overrun errors. ABTSC (Abort sequence counter)					
0x44	RETRC	Hword	NMARC (Nonmatching address received counter) Includes error-free frames only. RETRC (Frame retransmission counter) Counts number of frames resent due to collision.					
0x46	MFLR	Hword	Max frame length register. The HDLC compares the incoming HDLC frame's length with the user-defined limit in MFLR. If the limit is exceeded, the rest of the frame is discarded and RxBD[LG] is set in the last BD of that frame. At the end of the frame the SCC reports frame status and frame length in the last RxBD. The MFLR is defined as all in-frame bytes between the opening and closing flags.					
0x48	MAX_CNT	Hword	Maximum length counter. A temporary down-counter used to track frame length.					
0x4A	RFTHR	Hword	Received frames threshold. Used to reduce potential interrupt overhead when each in a series of short HDLC frames causes an SCCE[RXF] event. Setting RFTHR determines the frequency of RXF interrupts, which occur only when the RFTHR limit is reached. Provide enough empty RxBDs for the number of frames specified in RFTHR.					
0x4C	RFCNT	Hword	Received frames count. RFCNT is a down-counter used to implement RFTHR.					
0x4E	HMASK	Hword	Mask register (HMASK) and four address registers (HADDRn) for address					
0x50	HADDR1	Hword	recognition. The SCC reads the frame address from the HDLC receiver, compares it with the HADDRs, and masks the result with HMASK. Setting an HMASK bit enables					
0x52	HADDR2	Hword	the corresponding comparison bit, clearing a bit masks it. When a match occurs, the frame address and data are written to the buffers. When no match occurs and a					
0x54	HADDR3	Hword	frame is error-free, the nonmatching address received counter (NMARC) is incremented.					
0x56	HADDR4	Hword	The eight low-order bits of HADDRn should contain the first address byte after the opening flag. For example, to recognize a frame that begins 0x7E (flag), 0x68, 0xAA, using 16-bit address recognition, HADDRn should contain 0xAA68 and HMASK should contain 0xFFFF. For 8-bit addresses, clear the eight high-order HMASK bits. See Figure 21-2.					
0x58	TMP	Hword	Temporary storage.					
0x5A	TMP_MB	Hword	Temporary storage.					
			*					

¹From SCC base. See Section 19.3.1, "SCC Base Addresses."

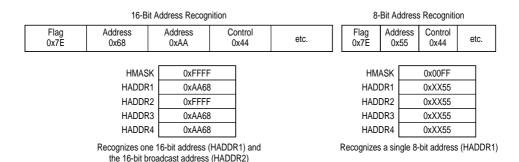


Figure 21-2 shows 16- and 8-bit address recognition.

Figure 21-2. HDLC Address Recognition

21.5 Programming the SCC in HDLC Mode

HDLC mode is selected for an SCC by writing $GSMR_L[MODE] = 0b0000$. The HDLC controller uses the same buffer and BD data structure as other modes and supports multibuffer operation and address comparisons. Receive errors are reported through the RxBD; transmit errors are reported through the TxBD.

21.6 SCC HDLC Commands

The transmit and receive commands are issued to the CP command register (CPCR). Transmit commands are described in Table 21-2.

Command	Description
STOP TRANSMIT	After a hardware or software reset and a channel is enabled in the GSMR, the transmitter starts polling the first BD in the TxBD table every 64 Tx clocks, or immediately if TODR[TOD] = 1, and begins sending data if TxBD[R] is set. If the SCC receives the STOP TRANSMIT command while not transmitting, the transmitter stops polling the BDs. If the SCC receives the command during transmission, transmission is aborted after a maximum of 64 additional bits, the Tx FIFO is flushed, and the current BD pointer TBPTR is not advanced (no new BD is accessed). The transmitter then sends an abort sequence (0x7F) and stops polling the BDs. When not transmitting, the channel sends flags or idles as programmed in the GSMR. Note that if PSMR[MFF] = 1, multiple small frames could be flushed from the Tx FIFO; a GRACEFUL STOP TRANSMIT command prevents this.
GRACEFUL STOP TRANSMIT	Stops transmission smoothly. Unlike a STOP TRANSMIT command, it stops transmission after the current frame is finished or immediately if no frame is being sent. SCCE[GRA] is set when transmission stops. HDLC Tx parameters and Tx BDs can then be updated. TBPTR points to the next TxBD. Transmission begins once TxBD[R] of the next BD is set and a RESTART TRANSMIT command is issued.
RESTART TRANSMIT	Enables frames to be sent on the transmit channel. The HDLC controller expects this command after a STOP TRANSMIT is issued and the channel in its GSMR is disabled, after a GRACEFUL STOP TRANSMIT command, or after a transmitter error. The transmitter resumes from the current BD.
INIT TX PARAMETERS	Resets the Tx parameters in the parameter RAM. Issue only when the transmitter is disabled. INIT TX AND RX PARAMETERS resets both Tx and Rx parameters.

Table 21-2.	Transmit	Commands
-------------	----------	----------

Part IV. Communications Processor Module

Receive commands are described in Table 21-3.

Command	Description
ENTER HUNT MODE	After a hardware or software reset, once an SCC is enabled in the GSMR, the receiver is automatically enabled and uses the first BD in the RxBD table. While the SCC is looking for the beginning of a frame, that SCC is in hunt mode. The ENTER HUNT MODE command is used to force the HDLC receiver to stop receiving the current frame and enter hunt mode, in which the HDLC continually scans the input data stream for a flag sequence. After receiving the command, the buffer is closed and the CRC is reset. Further frame reception uses the next BD.
CLOSE RXBD	Should not be used in the HDLC protocol.
INIT RX PARAMETERS	Resets the Rx parameters in the parameter RAM.; issue only when the receiver is disabled. Note that INIT TX AND RX PARAMETERS resets both Tx and Rx parameters.

21.7 Handling Errors in the SCC HDLC Controller

The SCC HDLC controller reports frame reception and transmission errors using BDs, error counters, and the SCCE. Transmission errors are described in Table 21-4.

Table 21-4. Transmit Errors

Error	Description
Transmitter Underrun	The channel stops transmitting, closes the buffer, sets TxBD[UN], and generates a TXE interrupt if not masked. Transmission resumes when a RESTART TRANSMIT command is issued. The SCC send and receive FIFOs are 32 bytes each.
U U	The channel stops transmitting, closes the buffer, sets TxBD[CT], and generates the TXE interrupt if not masked. Transmission resumes after a RESTART TRANSMIT command. If this error occurs on the first or second buffer of the frame and PSMR[RTE] = 1, the channel resends the frame when CTS is reasserted and no error is reported. If collisions are possible, to ensure proper retransmission of multibuffer frames, the first two buffers of each frame should in total contain more than 36 bytes for SCC or 20 bytes for SCC. The channel also increments the retransmission counter RETRC in the parameter RAM.

Reception errors are described in Table 21-5.

Table 21-5. Receive Errors

Error	Description
Overrun	Each SCC maintains an internal FIFO for receiving data. The CP begins programming the SDMA channel (if the buffer is in external memory) and updating the CRC when a full or partial FIFO's worth of data (according to GSMR_H[RFW]) is received in the Rx FIFO. When an Rx FIFO overrun occurs, the previous byte is overwritten by the next byte. The previous data byte and the frame status are lost. The channel closes the buffer with RxBD[OV] set and generates an RXF interrupt if not masked. The receiver then enters hunt mode. Even if an overrun occurs during a frame whose address is not recognized, an RxBD with data length two is opened to report the overrun and the interrupt is generated.
CD Lost during Frame Reception	Highest priority error. The channel stops frame reception, closes the buffer, sets RxBD[CD], and generates the RXF interrupt if not masked. The rest of the frame is lost and other errors are not checked in that frame. At this point, the receiver enters hunt mode.

Error		Description									
Abort Sequence	the c also	Occurs when seven or more consecutive ones are received. When this occurs while receiving a frame, the channel closes the buffer, sets RxBD[AB] and generates a maskable RXF interrupt. The channel also increments the abort sequence counter ABTSC. The CRC and nonoctet error status conditions are not checked on aborted frames. The receiver then enters hunt mode.									
Nonoctet Aligned Frame	masi align rece	The channel writes the received data to the buffer, closes the buffer, sets RxBD[NO], and generates a maskable RXF interrupt. CRC error status should be disregarded on nonoctet frames. After a nonoctet aligned frame is received, the receiver enters hunt mode. An immediate back-to-back frame is still received. The nonoctet data may be derived from the last word in the buffer as follows:									
		msb			lsb						
			1	0	0						
		Valid Data		Nonvalid	Data						
	Note that if buffer swapping is used (RFCR[BO] = 0b0x), the figure above refers to the last byte, rather than the last word, of the buffer. The lsb of each octet is sent first while the msb of the CRC is sent first.										
CRC	The channel writes the received CRC to the buffer, closes the buffer, sets RxBD[CR], generates a maskable RXF interrupt, and increments the CRC error counter CRCEC. After receiving a frame with a CRC error, the receiver enters hunt mode. An immediate back-to-back frame is still received. CRC checking cannot be disabled, but the CRC error can be ignored if checking is not required.										

Table 21-5. Receive Errors (Continued)

21.8 HDLC Mode Register (PSMR)

The protocol-specific mode register (PSMR), shown in Figure 21-3, functions as the HDLC mode register.

Bit	0 1 2 3		4	5	6	7	8	9	10	11	12	13	14	15		
Field	NOF			CF	RC	RTE	—	FSE	DRT	BUS	BRM	MFF		_		
Reset		0														
R/W								R/	W							
Address		0x11A08 (PSMR1); 0x11A28 (PSMR2); 0x11A48 (PSMR3); 0x11A68 (PSMR4)														

Figure 21-3. HDLC Mode Register (PSMR)

Table 21-6 describes PSMR HDLC fields.

Table 21-6. PSMR HDLC Field Descriptions

Bits	Name	Description
0-3	NOF	Number of flags. Minimum number of flags between or before frames. If NOF = 0b0000, no flags are inserted between frames and the closing flag of one frame is followed by the opening flag of the next frame in the case of back-to-back frames. NOF can be modified on-the-fly.
4–5	CRC	CRC selection. 00 16-bit CCITT-CRC (HDLC). X16 + X12 + X5 + 1. x1 Reserved. 10 32-bit CCITT-CRC (Ethernet and HDLC). X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + 1.

Bits	Name	Description
6	RTE	 Retransmit enable. 0 No retransmission. 1 Automatic frame retransmission is enabled. Particularly useful in the HDLC bus protocol and ISDN applications where multiple HDLC controllers can collide. Note that retransmission occurs only if a lost CTS occurs on the first or second buffer of the frame.
7	_	Reserved, should be cleared.
8	FSE	 Flag sharing enable. Valid only if GSMR_H[RTSM] = 1. Can be modified on-the-fly. 0 Normal operation. 1 If NOF[0-3] = 0b0000, a single shared flag is sent between back-to-back frames. Other values of NOF[0-3] are decremented by 1. Useful in signaling system #7 applications.
9	DRT	Disable receiver while transmitting. 0 Normal operation. 1 As the SCC sends data, the receiver is disabled and gated by the internal RTS. This helps if the HDLC channel is on a multidrop line and the SCC does not need to receive its own transmission.
10	BUS	HDLC bus mode. 0 Normal HDLC operation. 1 HDLC bus operation is selected. See Section 21.14, "HDLC Bus Mode with Collision Detection."
11	BRM	 HDLC bus RTS mode. Valid only if BUS = 1. Otherwise, it is ignored. 0 Normal RTS operation during HDLC bus mode. RTS is asserted on the first bit of the Tx frame and negated after the first collision bit is received. 1 Special RTS operation during HDLC bus mode. RTS is delayed by one bit with respect to the normal case, which helps when the HDLC bus protocol is being run locally and sent over a long-distance line at the same time. The one-bit delay allows RTS to be used to enable the transmission line buffers so that the electrical effects of collisions are not sent over the transmission line.
12	MFF	 Multiple frames in Tx FIFO. The receiver is not affected. Normal operation. The Tx FIFO must never contain more than one HDLC frame. The CTS lost status is reported accurately on a per-frame basis. 1 The Tx FIFO can hold multiple frames, but lost CTS may not be reported on the buffer/frame it occurred on. This can improve performance of HDLC transmissions of small back-to-back frames or when the number of flags between frames should be limited.
13–15	-	Reserved, should be cleared.

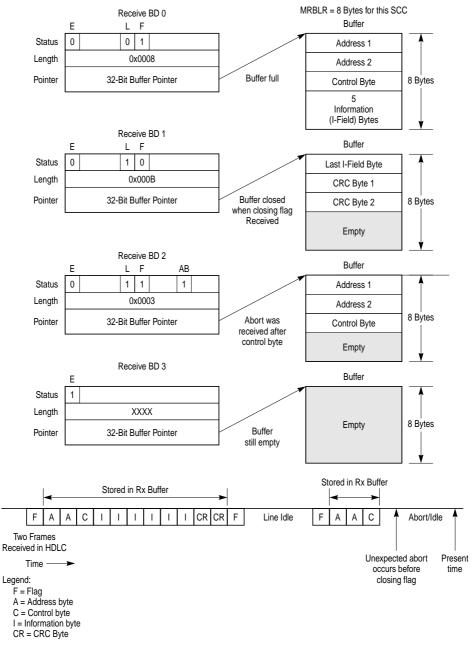
Table 21-6. PSMR HDLC Field Descriptions (Continued)

21.9 SCC HDLC Receive Buffer Descriptor (RxBD)

The CP uses the RxBD, shown in Figure 21-4, to report on data received for each buffer.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	Е	-	W	I	L	F	СМ	-	DE	_	LG	NO	AB	CR	OV	CD
Offset + 2		Data Length														
Offset + 4		Rx Buffer Pointer														
Offset + 6																

Table 21-7 describes HDLC RxBD status and control fields.


Table 21-7. SCC HDLC RxBD Status and Control Field Descriptions

Bits	Name	Description
0	E	 Empty. 0 The buffer is full or reception stopped because of an error. The core can read or write to any fields of this RxBD. The CP does not use this BD while E = 0. 1 The buffer is not full. The CP controls the BD and buffer. The core should not update the BD.
1	-	Reserved, should be cleared.
2	w	 Wrap (last BD in the RxBD table). 0 Not the last BD in the table. 1 Last BD in the table. After this buffer is used, the CP receives incoming data using the BD pointed to by RBASE. The number of BDs in this table are programmable and determined only by RxBD[W] and overall space constraints of the dual-port RAM.
3	I	Interrupt. 0 SCCE[RXB] is not set after this buffer is used; SCCE[RXF] is unaffected. 1 SCCE[RXB] or SCCE[RXF] is set when the SCC uses this buffer.
4	L	Last buffer in frame. 0 Not the last buffer in frame. 1 Last buffer in frame. Indicates reception of a closing flag or an error, in which case one or more of the CD, OV, AB, and LG bits are set. The SCC writes the number of frame octets to the data length field.
5	F	First in frame. 0 Not the first buffer in a frame. 1 First buffer in a frame.
6	СМ	 Continuous mode. Note that RxBD[E] is cleared if an error occurs during reception, regardless of CM. 0 Normal operation. 1 RxBD[E] is not cleared by the CP after this BD is closed, allowing the associated buffer to be overwritten next time the CP accesses it.
7	_	Reserved, should be cleared.
8	DE	DPLL error. Set when a DPLL error occurs while this buffer is being received. DE is also set due to a missing transition when using decoding modes in which a transition is required for every bit. Note that when a DPLL error occurs, the frame closes and error checking halts.
9	-	Reserved, should be cleared.
10	LG	Rx frame length violation. Set when a frame larger than the maximum defined for this channel is recognized. Only the maximum-allowed number of bytes (MFLR) is written to the buffer. This event is not reported until the buffer is closed, SCCE[RXF] is set, and the closing flag is received. The total number of bytes received between flags is still written to the data length field.
11	NO	Rx nonoctet aligned frame. Set when a received frame contains a number of bits not divisible by eight.
12	AB	Rx abort sequence. Set when at least seven consecutive ones are received during frame reception.
13	CR	Rx CRC error. Set when a frame contains a CRC error. CRC bytes received are always written to the Rx buffer.
14	ov	Overrun. Set when a receiver overrun occurs during frame reception.
15	CD	Carrier detect lost (NMSI mode only). Set when $\overline{\text{CD}}$ is negated during frame reception.

Data length and buffer pointer fields are described in Section 19.2, "SCC Buffer Descriptors (BDs)." Because HDLC is a frame-based protocol, RxBD[Data Length] of the

Part IV. Communications Processor Module

last buffer of a frame contains the total number of frame bytes, including the 2 or 4 bytes for CRC. Figure 21-5 shows an example of how RxBDs are used in receiving.

21.10 SCC HDLC Transmit Buffer Descriptor (TxBD)

The CP uses the TxBD, shown in Figure 21-6, to confirm transmissions and indicate error conditions.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	R	_	w	I	L	тс	СМ				_				UN	СТ
Offset + 2	Data Length															
Offset + 4		Tx Buffer Pointer														
Offset + 6																

Figure 21-6. SCC HDLC Transmit Buffer Descriptor (TxBD)

Table 21-8 describes HDLC TxBD status and control fields.

Table 21-8. SCC HDLC TxBD Status and Control Field Descriptions

Bits	Name	Description
0	R	Ready. 0 The buffer is not ready for transmission. Both the buffer and the BD can be updated. The CP clears R after the buffer is sent or an error is encountered. 1 The buffer has not been sent or is being sent and the BD cannot be updated.
1	-	Reserved, should be cleared.
2	w	 Wrap (last BD in TxBD table). 0 Not the last BD in the table. 1 Last BD in the BD table. After this buffer is used, the CP sends data using the BD pointed to by TBASE. The number of TxBDs in this table is determined by TxBD[W] and the space constraints of the dual-port RAM.
3	I	Interrupt. 0 No interrupt is generated after this buffer is processed. 1 SCCE[TXB] or SCCE[TXE] is set when this buffer is processed, causing interrupts if not masked.
4	L	Last. 0 Not the last buffer in the frame. 1 Last buffer in the frame.
5	тс	 Tx CRC. Valid only when TxBD[L] = 1. Otherwise, it is ignored. 0 Transmit the closing flag after the last data byte. This setting can be used to send a bad CRC after the data for testing purposes. 1 Transmit the CRC sequence after the last data byte.
6	СМ	 Continuous mode. 0 Normal operation. 1 The CP does not clear TxBD[R] after this BD is closed allowing the buffer to be resent the next time the CP accesses this BD. However, TxBD[R] is cleared if an error occurs during transmission, regardless of CM.
7–13	-	Reserved, should be cleared.
14	UN	Underrun. Set after the SCC sends a buffer and a transmitter underrun occurred.
15	СТ	$\overline{\text{CTS}}$ lost. Indicates when $\overline{\text{CTS}}$ in NMSI mode or layer 1 grant is lost in GCI or IDL mode during frame transmission. If data from more than one buffer is currently in the FIFO when this error occurs, the HDLC writes CT in the current BD after sending the buffer.

The data length and buffer pointer fields are described in Section 19.2, "SCC Buffer Descriptors (BDs)."

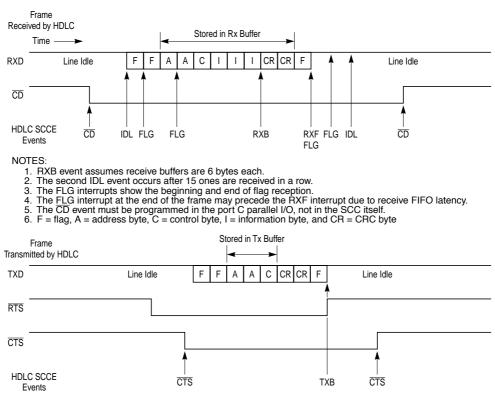
21.11 HDLC Event Register (SCCE)/HDLC Mask Register (SCCM)

The SCC event register (SCCE) is used as the HDLC event register to report events recognized by the HDLC channel and to generate interrupts. When an event is recognized, the SCC sets the corresponding SCCE bit. Interrupts generated through SCCE can be masked in the SCC mask register (SCCM) which has the same bit format as the SCCE. Setting an SCCM bit enables the corresponding interrupt; clearing a bit masks it. SCCE bits are cleared by writing ones; writing zeros has no effect. All unmasked bits must be cleared before the CP clears the internal interrupt request. Figure 21-7 shows SCCE/SCCM for HDLC operation.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field		_ GLR GLT DCC FLG IDL GRA _ TXE RXF BSY TXB R							RXB							
Reset		0000_0000_0000														
R/W		R/W														
Addr				A10 (S A14 (SC												

Figure 21-7. HDLC Event Register (SCCE)/HDLC Mask Register (SCCM)

Table 21-9 describes SCCE/SCCM fields.


Table 21-9. SCCE/SCCM Fie	eld Descriptions
---------------------------	------------------

Bits	Name	Description
0–2	-	Reserved, should be cleared.
3, 4	GLR/ GLT	Glitch on Rx/Tx. Set when the SCC detects a clock glitch on the receive/transmit clock. See Section 19.3.7, "Clock Glitch Detection."
5	DCC	DPLL carrier sense changed. Set when the carrier sense status generated by the DPLL changes. Real-time status can be read in SCCS[CS]. This is not the CD status reported in port C. Valid only when the DPLL is used.
6	FLG	Flag status. Set when the SCC stops or starts receiving HDLC flags. Real-time status can be read in SCCS[FG].
7	IDL	Idle sequence status changed. Set when HDLC line status changes. Real-time status of the line can be read in SCCS[ID].
8	GRA	Graceful stop complete. A GRACEFUL STOP TRANSMIT command completed execution. Set as soon as the transmitter has sent a frame in progress when the command was issued. Set immediately if no frame was in progress when the command was issued.
9–10	_	Reserved, should be cleared.
11	TXE	Tx error. Indicates an error (CTS lost or underrun) has occurred on the transmitter channel.

Bits	Name	Description
12	RXF	Rx frame. Set when the number of receive frames specified in RFTHR are received on the HDLC channel. It is set no sooner than two clocks after the last bit of the closing flag is received. This event is not maskable via the RxBD[I] bit.
13	BSY	Busy condition. Indicates a frame arrived but was discarded due to a lack of buffers.
14	ТХВ	Transmit buffer. Enabled by setting TxBD[I]. TXB is set when a buffer is sent on the HDLC channel. For the last buffer in the frame, TXB is not set before the last bit of the closing flag begins its transmission; otherwise, it is set after the last byte of the buffer is written to the Tx FIFO.
15	RXB	Receive buffer. Enabled by setting RxBD[I]. RXB is set when the HDLC channel receives a buffer that is not the last in a frame.

Table 21-9. SCCE/SCCM Field Descriptions (Continued)

Figure 21-8 shows interrupts that can be generated using the HDLC protocol.

NOTES:

1. TXB event shown assumes all three bytes were put into a single buffer.

Example shows one additional opening flag. This is programmable.
 The CTS event must be programmed in the port C parallel I/O, not in the SCC itself.

Figure 21-8. SCC HDLC Interrupt Event Example

21.12 SCC HDLC Status Register (SCCS)

The SCC status register (SCCS), shown in Figure 21-9, permits monitoring of real-time status conditions on RXD. The real-time status of $\overline{\text{CTS}}$ and $\overline{\text{CD}}$ are part of the port C parallel I/O.

Bit	0	1	2	3	4	5	6	7			
Field	– FG CS ID										
Reset		0000_0000									
R/W		R									
Addr		0x11A17 (SCCS1); 0x11A37 (SCCS2); 0x11A57 (SCCS3); 0x11A77 (SCCS4)									

Figure 21-9. SCC HDLC Status Register (SCCS)

Table 21-10 describes HDLC SCCS fields.

Table 21-10. HDLC SCCS Field Descriptions

Bits	Name	Description
0–4	-	Reserved, should be cleared.
5	FG	 Flags. The line is checked after the data has been decoded by the DPLL. 0 HDLC flags are not being received. The most recently received 8 bits are examined every bit time to see if a flag is present. 1 HDLC flags are being received. FG is set as soon as an HDLC flag (0x7E) is received on the line. Once it is set, it remains set at least 8 bit times and the next eight received bits are examined. If another flag occurs, FG stays set for at least another eight bits. If not, it is cleared and the search begins again.
6	CS	Carrier sense (DPLL). Shows the real-time carrier sense of the line as determined by the DPLL. 0 The DPLL does not sense a carrier. 1 The DPLL senses a carrier.
7	ID	Idle status. 0 The line is busy. 1 Set when RXD is a logic 1 (idle) for 15 or more consecutive bit times. It is cleared after a single logic 0 is received.

21.13 SCC HDLC Programming Examples

The following sections show examples for programming SCCs in HDLC mode. The first example uses an external clock. The second example implements Manchester encoding.

21.13.1 SCC HDLC Programming Example #1

The following initialization sequence is for an SCC HDLC channel with an external clock. SCC2 is used with $\overline{\text{RTS2}}$, $\overline{\text{CTS2}}$, and $\overline{\text{CD2}}$ active; CLK3 is used for both the HDLC receiver and transmitter.

- 1. Configure port D pins to enable TXD2 and RXD2. Set PPARD[27,28] and PDIRD[27] and clear PDIRD[28] and PSORD[27,28].
- 2. Configure ports C and D pins to enable RTS2, CTS2 and CD2. Set PPARD[26], PPARC[12,13] and PDIRD[26] and clear PDIRC[12,13], PSORC[12,13] and PSORD[26].
- 3. Configure port C pin 29 to enable the CLK3 pin. Set PPARC[29] and clear PDIRC[29] and PSORC[29].
- 4. Connect CLK3 to SCC2 using the CPM mux. Write 0b110 to CMXSCR[R2CS] and CMXSCR[T2CS].
- 5. Connect the SCC2 to the NMSI (its own set of pins). clear CMXSCR[SC2].
- 6. Write RBASE and TBASE in the SCC2 parameter RAM to point to the RxBD and TxBD tables in dual-port RAM. Assuming one RxBD at the start of dual-port RAM and one TxBD following it, write RBASE with 0x0000 and TBASE with 0x0008.
- 7. Write RBASE and TBASE in the SCC2 parameter RAM to point to the RxBD and TxBD tables in dual-port RAM. Assuming one RxBD at the start of dual-port RAM and one TxBD following it, write RBASE with 0x0000 and TBASE with 0x0008.
- 8. Write 0x04A1_0000 to CPCR to execute the INIT RX AND TX PARAMS command for SCC2. This command updates RBPTR and TBPTR of the serial channel with the new values of RBASE and TBASE.
- 9. Write RFCR with 0x10 and TFCR with 0x10 for normal operation.
- 10. Write MRBLR with the maximum number of bytes per Rx buffer. Choose 256 bytes (MRBLR = 0x0100) so an entire Rx frame can fit in one buffer.
- 11. Write C_MASK with 0x0000F0B8 to comply with 16-bit CCITT-CRC.
- 12. Write C_PRES with 0x0000FFFF to comply with 16-bit CCITT-CRC.
- 13. Clear DISFC, CRCEC, ABTSC, NMARC, and RETRC for clarity.
- 14. Write MFLR with 0x0100 so the maximum frame size is 256 bytes.
- 15. Write RFTHR with 0x0001 to allow interrupts after each frame.
- 16. Write HMASK with 0x0000 to allow all addresses to be recognized.
- 17. Clear HADDR1-HADDR4 for clarity.
- 18. Initialize the RxBD. Assume the buffer is at 0x0000_1000 in main memory. RxBD[Status and Control]= 0xB000, RxBD[Data Length] = 0x0000 (not required), and RxBD[Buffer Pointer] = 0x0000_1000.

- 19. Initialize the TxBD. Assume the Tx data frame is at 0x0000_2000 in main memory and contains five 8-bit characters. TxBD[Status and Control] = 0xBC00, TxBD[Data Length] = 0x0005, and TxBD[Buffer Pointer] = 0x0000_2000.
- 20. Write 0xFFFF to SCCE to clear any previous events.
- 21. Write 0x001A to SCCM to enable TXE, RXF, and TXB interrupts.
- 22. Write 0x0040_0000 to the SIU interrupt mask register low (SIMR_L) so the SMC1 can generate a system interrupt. Initialize SIU interrupt pending register low (SIPNR_L) by writing 0xFFF_FFFF to it.
- 23. Write $0x0000_0000$ to GSMR_H2 to enable normal $\overline{\text{CTS}}$ and $\overline{\text{CD}}$ behavior with idles (not flags) between frames.
- 24. Write 0x0000_0000 to GSMR_L2 to configure CTS and CD to control transmission and reception in HDLC mode. Normal Tx clock operation is used. Notice that the transmitter (ENT) and receiver (ENR) have not been enabled. If inverted HDLC operation is preferred, set RINV and TINV.
- 25. Write 0x0000 to PSMR2 to configure one opening and one closing flag, 16-bit CCITT-CRC, and prevent multiple frames in the FIFO.
- 26. Write 0x00000030 to GSMR_L2 to enable the SCC2 transmitter and receiver. This additional write ensures that ENT and ENR are enabled last.

Note that after 5 bytes and CRC have been sent, the Tx buffer is closed; the Rx buffer is closed after a frame is received. Frames larger than 256 bytes cause a busy (out-of-buffers) condition because only one RxBD is prepared.

21.13.2 SCC HDLC Programming Example #2

The following sequence initializes an HDLC channel that uses the DPLL in a Manchester encoding. Provide a clock which is $16 \times$ the chosen bit rate of CLK3. Then connect CLK3 to the HDLC transmitter and receiver. (A baud rate generator could be used instead.) Configure SCC2 to use $\overline{\text{RTS2}}$, $\overline{\text{CTS2}}$, and $\overline{\text{CD2}}$.

- 1. Follow steps 1–22 in example #1 above.
- 2. Write 0x004A_A400 to GSMR_L2 to make carrier sense always active, a 16-bit preamble of '01' patterns, 16× operation of the DPLL and Manchester encoding for the receiver and transmitter, and HDLC mode. CTS and CD should be configured to control transmission and reception. Do not set GSMR[ENT, ENR].
- 3. Write 0x0000 to PSMR2 to use one opening and one closing flag and 16-bit CCITT-CRC and to reject multiple frames in the FIFO.
- 4. Write 0x004A_A430 to GSMR_L2 to enable the SCC2 transmitter and receiver. This additional write to GSMR_L2 ensures that ENT and ENR are enabled last.

21.14 HDLC Bus Mode with Collision Detection

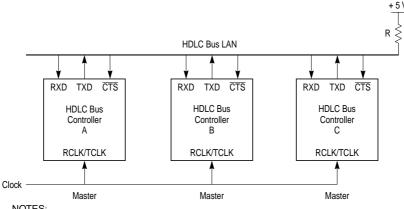
The HDLC controller includes an option for hardware collision detection and retransmission on an open-drain connected HDLC bus, referred to as HDLC bus mode. Most HDLC-based controllers provide only point-to-point communications; however, the HDLC bus enhancement allows implementation of an HDLC-based LAN and other point-to-multipoint configurations. The HDLC bus is based on techniques used in the CCITT ISDN I.430 and ANSI T1.605 standards for D-channel point-to-multipoint operation over the S/T interface. However, the HDLC bus does not fully comply with I.430 or T1.605 and cannot replace devices that implement these protocols. Instead, it is more suited to non-ISDN LAN and point-to-multipoint configurations.

Review the basic features of the I.430 and T1.605 before learning about the HDLC bus. The I.430 and T1.605 define a way to connect eight terminals over the D-channel of the S/T ISDN bus. The layer 2 protocol is a variant of HDLC, called LAPD. However, at layer 1, a method is provided to allow the eight terminals to send frames to the switch through the physical S/T bus.

To determine whether a channel is clear, the S/T interface device looks at an echo bit on the line designed to echo the last bit sent on the D channel. Depending on the class of terminal and the context, an S/T interface device waits for 7–10 ones on the echo bit before letting the LAPD frame begin transmission, after which the S/T interface monitors transmitted data. As long as the echo bit matches the sent data, transmission continues. If the echo bit is ever 0 when the transmit bit is 1, a collision occurs between terminals; the station(s) that sent a zero stops transmitting. The station that sent a 1 continues as normal.

The I.430 and T1.605 standards provide a physical layer protocol that allows multiple terminals to share one physical connection. These protocols handle collisions efficiently because one station can always complete its transmission, at which point, it lowers its own priority to give other devices fair access to the physical connection.

The HDLC bus differs from the I.430 and T1.605 standards as follows:


- The HDLC bus uses a separate input signal rather than the echo bit to monitor data; the transmitted data is simply connected to the CTS input.
- The HDLC bus is a synchronous, digital open-drain connection for short-distance configurations, rather than the more complex S/T interface.
- Any HDLC-based frame protocol can be used at layer 2, not just LAPD.
- HDLC bus devices wait 8–10 rather than 7–10 bit times before transmitting. (HDLC bus has only one class.)

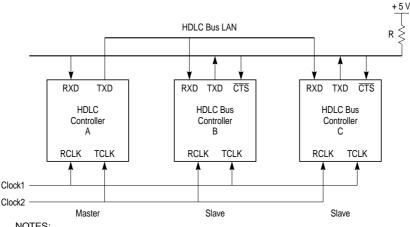
The collision-detection mechanism supports only:

- NRZ-encoded data
- A common synchronous clock for all receivers and transmitters
- Non-inverted data (GSMR[RINV, TINV] = 0)
- Open-drain connection with no external transceivers

Part IV. Communications Processor Module

Figure 21-10 shows the most common HDLC bus LAN configuration, a multimaster configuration. A station can transfer data to or from any other LAN station. Transmissions are half-duplex, which is typical in LANs.

NOTES:


1. Transceivers may be used to extend the LAN size.

2. The TXD pins of slave devices should be configured to open-drain in the port C parallel I/O port.

3. Clock is a common RCLK/TCLK for all stations.

Figure 21-10. Typical HDLC Bus Multimaster Configuration

In single-master configuration, a master station transmits to any slave station without collisions. Slaves communicate only with the master, but can experience collisions in their access over the bus. In this configuration, a slave that communicates with another slave must first transmit its data to the master, where the data is buffered in RAM and then resent to the other slave. The benefit of this configuration, however, is that full-duplex operation can be obtained. In a point-to-multipoint environment, this is the preferred configuration. Figure 21-11 shows the single-master configuration.

NOTES:

- 1. Transceivers may be used to extend the LAN size.
- 2. The TXD pins of slave devices should be configured to open-drain in the port C parallel I/O port.
- 3. Clock1 is the master RCLK and the slave TCLK.
- 4. Clock2 is the master TCLK and the slave RCLK.

Figure 21-11. Typical HDLC Bus Single-Master Configuration

21.14.1 HDLC Bus Features

The main features of the HDLC bus are as follows:

- Superset of the HDLC controller features
- Automatic HDLC bus access
- Automatic retransmission in case of collision
- May be used with the NMSI or a TDM bus
- Delayed RTS mode •

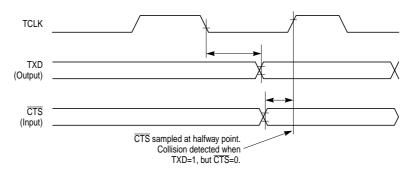
21.14.2 Accessing the HDLC Bus

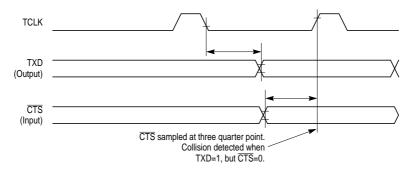
The HDLC bus protocol ensures orderly bus control when multiple transmitters attempt simultaneous access. The transmitter sending a zero bit at the time of collision completes the transmission. If a station sends out an opening flag (0x7E) while another station is already sending, the collision is always detected within the first byte, because the transmission in progress is using zero bit insertion to prevent flag imitation.

While in the active condition (ready to transmit), the HDLC bus controller monitors the bus using $\overline{\text{CTS}}$. It counts the one bits on $\overline{\text{CTS}}$. When eight consecutive ones are counted, the HDLC bus controller starts transmitting on the line; if a zero is detected, the internal counter is cleared. During transmission, data is continuously compared with the external bus using $\overline{\text{CTS}}$. $\overline{\text{CTS}}$ is sampled halfway through the bit time using the rising edge of the Tx clock. If the transmitted bit matches the received $\overline{\text{CTS}}$ bus sample, transmission continues. However, if the received $\overline{\text{CTS}}$ sample is 0 and the transmitted bit is 1,

Part IV. Communications Processor Module

transmission stops after that bit and waits for an idle line before attempting retransmission. Since the HDLC bus uses a wired-OR scheme, a transmitted zero has priority over a transmitted 1. Figure 21-12 shows how $\overline{\text{CTS}}$ is used to detect collisions.




Figure 21-12. Detecting an HDLC Bus Collision

If both the destination address and source address are included in the HDLC frame, then a predefined priority of stations results; if two stations begin to transmit simultaneously, they necessarily detect a collision no later than the end of the source address.

The HDLC bus priority mechanism ensures that stations share the bus equally. To minimize idle time between messages, a station normally waits for eight one bits on the line before attempting transmission. After successfully sending a frame, a station waits for 10 rather than eight consecutive one bits before attempting another transmission. This mechanism ensures that another station waiting to transmit acquires the bus before a station can transmit twice. When a low priority station detects 10 consecutive ones, it tries to transmit; if it fails, it reinstates the high priority of waiting for only eight ones.

21.14.3 Increasing Performance

Because it uses a wired-OR configuration, HDLC bus performance is limited by the rise time of the one bit. To increase performance, give the one bit more rise time by using a clock that is low longer than it is high, as shown in Figure 21-13.

21.14.4 Delayed RTS Mode

Figure 21-14 shows local HDLC bus controllers using a standard transmission line and a local bus. The controllers do not communicate with each other but with a station on the transmission line; yet the HDLC bus protocol controls access to the transmission line.

1. The TXD pins of slave devices should be configured to open-drain in the port C parallel I/O port.

2. The RTS pins of each HDLC bus controller are configured to delayed RTS mode.

Figure 21-14. HDLC Bus Transmission Line Configuration

Normally, $\overline{\text{RTS}}$ goes active at the beginning of the opening flag's first bit. Setting PSMR[BRM] delays $\overline{\text{RTS}}$ by one bit, which is useful when the HDLC bus connects multiple local stations to a transmission line. If the transmission line driver has a one-bit delay, the delayed $\overline{\text{RTS}}$ can be used to enable the output of the line driver. As a result, the electrical effects of collisions are isolated locally. Figure 21-15 shows $\overline{\text{RTS}}$ timing.

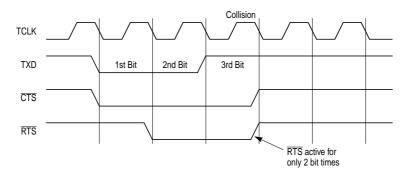
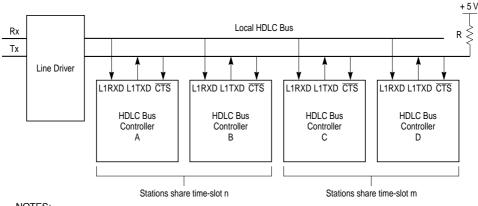



Figure 21-15. Delayed RTS Mode

21.14.5 Using the Time-Slot Assigner (TSA)

HDLC bus controllers can be used with a time-division multiplexed transmission line and a local bus, as shown in Figure 21-16. Local stations use time slots to communicate over the TDM transmission line; stations that share a time slot use the HDLC bus protocol to control access to the local bus.

NOTES:

1. All TXD pins of slave devices should be configured to open-drain in the port C parallel I/O port.

2. The TSA in the SI of each station is used to configure the preferred time slot.

3. The choice of the number of stations to share a time slot is user-defined. It is two in this example.

Figure 21-16. HDLC Bus TDM Transmission Line Configuration

The local SCCs in HDLC bus mode communicate only with the transmission line and not with each other. The SCCs use the TSA of the serial interface, receiving and sending data over L1TXD*x* and L1RXD*x*. Because collisions are still detected from the individual SCC $\overline{\text{CTS}}$ pin, it must be configured to connect to the chosen SCC. Because the SCC only receives clocks during its time slot, $\overline{\text{CTS}}$ is sampled only during the Tx clock edges of the particular SCC time slot.

21.14.6 HDLC Bus Protocol Programming

The HDLC bus on the MPC8260 is implemented using the SCC in HDLC mode with busspecific options selected in the PSMR and GSMR, as outlined below. See also Section 21.5, "Programming the SCC in HDLC Mode."

21.14.6.1 Programming GSMR and PSMR for the HDLC Bus Protocol

To program the protocol-specific mode register (PSMR), set the bits as described below:

- Configure NOF as preferred
- Set RTE and BUS to 1
- Set BRM to 1 if delayed $\overline{\text{RTS}}$ is desired
- Configure CRC to 16-bit CRC CCITT (0b00).
- Configure other bits to zero or default.

To program the general SCC mode register (GSMR), set the bits as described below:

- Set MODE to HDLC mode (0b0000).
- Configure CTSS to 1 and all other bits to zero or default.
- Configure the DIAG bits for normal operation (0b00).
- Configure RDCR and TDCR for 1× clock (0b00).
- Configure TENC and RENC for NRZ (0b000).
- Clear RTSM to send idles between frames.
- Set GSMR_L[ENT, ENR] as the last step to begin operation.

21.14.6.2 HDLC Bus Controller Programming Example

Except for the above discussion in Section 21.14.6.1, "Programming GSMR and PSMR for the HDLC Bus Protocol," use the example in Section 21.13.1, "SCC HDLC Programming Example #1."

Part IV. Communications Processor Module

Chapter 22 SCC BISYNC Mode

The byte-oriented BISYNC protocol was developed by IBM for use in networking products. There are three classes of BISYNC frames—transparent, nontransparent with header, and nontransparent without header, shown in Figure 22-1. The transparent frame type in BISYNC is not related to transparent mode, discussed in Chapter 23, "SCC Transparent Mode." Transparent BISYNC mode allows full binary data to be sent with any possible character pattern. Each class of frame starts with a standard two-octet synchronization pattern and ends with a block check code (BCC). The end-of-text character (ETX) is used to separate the text and BCC fields.

			Nontranspare	nt with Header							
SYN1	SYN2	SOH	Header	ader STX Text			BCC				
Nontransparent without Header											
SYN1	SYN2	STX		ETX	BCC						
	Transparent										
SYN1	SYN2	DLE	STX	Transparent Text	DLE	ETX	BCC				

Figure 22-1. Classes of BISYNC Frames

The bulk of a frame is divided into fields whose meaning depends on the frame type. The BCC is a 16-bit CRC format if 8-bit characters are used; it is a combination longitudinal (sum check) and vertical (parity) redundancy check if 7-bit characters are used. In transparent operation, a special character (DLE) is defined that tells the receiver that the next character is text, allowing BISYNC control characters to be valid text data in a frame. A DLE sent as data must be preceded by a DLE character. This is sometimes called byte-stuffing. The physical layer of the BISYNC communications link must synchronize the receiver and transmitter, usually by sending at least one pair of synchronization characters before each frame.

BISYNC protocol is unusual in that a transmit underrun need not be an error. If an underrun occurs, a synchronization pattern is sent until data is again ready. In nontransparent operation, the receiver discards additional synchronization characters (SYNCs) as they are received. In transparent mode, DLE-SYNC pairs are discarded. Normally, for proper

transmission, an underrun must not occur between the DLE and its following character. This failure mode cannot occur with the MPC8260.

An SCC can be configured as a BISYNC controller to handle basic BISYNC protocol in normal and transparent modes. The controller can work with the time-slot assigner (TSA) or nonmultiplexed serial interface (NMSI). The controller has separate transmit and receive sections whose operations are asynchronous with the core and either synchronous or asynchronous with other SCCs.

22.1 Features

The following list summarizes features of the SCC in BISYNC mode:

- Flexible data buffers
- Eight control character recognition registers
- Automatic SYNC1–SYNC2 detection
- 16-bit pattern (bisync)
- 8-bit pattern (monosync)
- 4-bit pattern (nibblesync)
- External SYNC pin support
- SYNC/DLE stripping and insertion
- CRC16 and LRC (sum check) generation/checking
- VRC (parity) generation/checking
- Supports BISYNC transparent operation
- Maintains parity error counter
- Reverse data mode capability

22.2 SCC BISYNC Channel Frame Transmission

The BISYNC transmitter is designed to work with almost no core intervention. When the transmitter is enabled, it starts sending SYN1–SYN2 pairs in the data synchronization register (DSR) or idles as programmed in the PSMR. The BISYNC controller polls the first BD in the channel's TxBD table. If there is a message to send, the controller fetches the message from memory and starts sending it after the SYN1–SYN2 pair. The entire pair is always sent, regardless of GSMR[SYNL].

After a buffer is sent, if the last (TxBD[L]) and the Tx block check sequence (TxBD[TB]) bits are set, the BISYNC controller appends the CRC16/LRC and then writes the message status bits in TxBD status and control fields and clears the ready bit, TxBD[R]. It then starts sending the SYN1–SYN2 pairs or idles, according to GSMR[RTSM]. If the end of the current BD is reached and TxBD[L] is not set, only TxBD[R] is cleared. In both cases, an interrupt is issued according to TxBD[I]. TxBD[I] controls whether interrupts are generated after transmission of each buffer, a specific buffer, or each block. The controller then proceeds to the next BD.

If no additional buffers have been sent to the controller for transmission, an in-frame underrun is detected and the controller starts sending syncs or idles. If the controller is in transparent mode, it sends DLE-sync pairs. Characters are included in the block check sequence (BCS) calculation on a per-buffer basis. Each buffer can be programmed independently to be included or excluded from the BCS calculation; thus, excluded characters must reside in a separate buffer. The controller can reset the BCS generator before sending a specific buffer. In transparent mode, the controller inserts a DLE before sending a DLE character, so that only one DLE is used in the calculation.

22.3 SCC BISYNC Channel Frame Reception

Although the receiver is designed to work with almost no core intervention, the user can intervene on a per-byte basis if necessary. The receiver performs CRC16, longitudinal (LRC) or vertical redundancy (VRC) checking, sync stripping in normal mode, DLE-sync stripping, stripping of the first DLE in DLE-DLE pairs in transparent mode, and control character recognition. Control characters are discussed in Section 22.6, "SCC BISYNC Control Character Recognition."

When enabled, the receiver enters hunt mode where the data is shifted into the receiver shift register one bit at a time and the contents of the shift register are compared to the contents of DSR[SYN1, SYN2]. If the two are unequal, the next bit is shifted in and the comparison is repeated. When registers match, hunt mode is terminated and character assembly begins. The controller is character-synchronized and performs SYNC stripping and message reception. It reverts to hunt mode when it receives an ENTER HUNT MODE command, an error condition, or an appropriate control character.

When receiving data, the controller updates the BCS bit in the BD for each byte transferred. When the buffer is full, the controller clears the E bit in the BD and generates an interrupt if the I bit in the BD is set. If incoming data exceeds the buffer length, the controller fetches the next BD; if E is zero, reception continues to its buffer.

When a BCS is received, it is checked and written to the buffer. The BISYNC controller sets the last bit, writes the message status bits into the BD, clears the E bit, and then generates a maskable interrupt, indicating that a block of data was received and is in memory. The BCS calculations do not include SYNCs (in nontransparent mode) or DLE-SYNC pairs (in transparent mode).

Note that GSMR_H[RFW] should be set for an 8-bit-wide receive FIFO for the BISYNC receiver. See Section 19.1.1, "The General SCC Mode Registers (GSMR1–GSMR4)."

22.4 SCC BISYNC Parameter RAM

For BISYNC mode, the protocol-specific area of the SCC parameter RAM is mapped as in Table 22-1.

Offset 1	Name	Width	Description					
0x30	_	Word	Reserved					
0x34	CRCC	Word	CRC constant temp value.					
0x38	PRCRC	Hword	Preset receiver/transmitter CRC16/LRC. These values should be preset to all					
0x3A	PTCRC	Hword	ones or zeros, depending on the BCS used.					
0x3C	PAREC	Hword	Receive parity error counter. This 16-bit (modulo 2 ¹⁶) counter maintained by the CP counts parity errors on receive if the parity feature of BISYNC is enabled. Initialize PAREC while the channel is disabled.					
0x3E	BSYNC	Hword	BISYNC SYNC register. Contains the value of the SYNC to be sent as the second byte of a DLE–SYNC pair in an underrun condition and stripped from incoming data on receive once the receiver synchronizes to the data using the DSR and SYN1–SYN2 pair. See Section 22.7, "BISYNC SYNC Register (BSYNC)."					
0x40	BDLE	Hword	BISYNC DLE register. Contains the value to be sent as the first byte of a DLE– SYNC pair and stripped on receive. See Section 22.8, "SCC BISYNC DLE Register (BDLE)."					
0x42	CHARACTER1	Hword	Control character 1–8. These values represent control characters that the					
0x44	CHARACTER2	Hword	BISYNC controller recognizes. See Section 22.6, "SCC BISYNC Control Character Recognition."					
0x46	CHARACTER3	Hword						
0x48	CHARACTER4	Hword						
0x4A	CHARACTER5	Hword						
0x4C	CHARACTER6	Hword						
0x4E	CHARACTER7	Hword						
0x50	CHARACTER8	Hword						
0x52	RCCM	Hword	Receive control character mask. Masks CHARACTERn comparison so control character classes can be defined. Setting a bit enables and clearing a bit masks comparison. See Section 22.6, "SCC BISYNC Control Character Recognition."					

Table 22-1. SCC BISYNC Parameter RAM Memory Map

¹From SCCx base address. See Section 19.3.1, "SCC Base Addresses."

GSMR[MODE] determines the protocol for each SCC. The SYN1–SYN2 synchronization characters are programmed in the DSR (see Section 19.1.3, "Data Synchronization Register (DSR).") The BISYNC controller uses the same basic data structure as other modes; receive and transmit errors are reported through their respective BDs. There are two basic ways to handle BISYNC channels:

- The controller can inspect data on a per-byte basis and interrupt the core each time a byte is received.
- The controller can be programmed so software handles the first two or three bytes. The controller directly handles subsequent data without interrupting the core.

22.5 SCC BISYNC Commands

Transmit and receive commands are issued to the CP command register (CPCR). Transmit commands are described in Table 22-2.

Command	Description
STOP TRANSMIT	After hardware or software is reset and the channel is enabled in the GSMR, the channel is in transmit enable mode and starts polling the first BD every 64 transmit clocks. This command stops transmission after a maximum of 64 additional bits without waiting for the end of the buffer and the transmit FIFO to be flushed. TBPTR is not advanced, no new BD is accessed, and no new buffers are sent for this channel. SYNC–SYNC or DLE–SYNC pairs are sent continually until a RESTART TRANSMIT is issued. A STOP TRANSMIT can be used when an EOT sequence should be sent and transmission should stop. After transmission resumes, the EOT sequence should be the first buffer sent to the controller. Note that the controller remains in transparent or normal mode after it receives a STOP TRANSMIT or RESTART TRANSMIT command.
GRACEFUL STOP TRANSMIT	Stops transmission after the current frame finishes sending or immediately if there is no frame being sent. SCCE[GRA] is set once transmission stops. Then BISYNC transmit parameters and TxBDs can be modified. The TBPTR points to the next TxBD. Transmission resumes when the R bit of the next BD is set and a RESTART TRANSMIT is issued.
RESTART TRANSMIT	Lets characters be sent on the transmit channel. The BISYNC controller expects it after a STOP TRANSMIT or a GRACEFUL STOP TRANSMIT command is issued, after a transmitter error occurs, or after a STOP TRANSMIT is issued and the channel is disabled in its SCCM. The controller resumes transmission from the current TBPTR in the channel's TxBD table.
INIT TX PARAMETERS	Initializes all transmit parameters in the serial channel's parameter RAM to their reset state. Issue only when the transmitter is disabled. INIT TX AND RX PARAMETERS resets transmit and receive parameters.

Table 22-2. Transmit Commands

Receive commands are described in Table 22-2.

Table 22-3. Receive Commands

Command	Description
RESET BCS CALCULATION	Immediately resets the receive BCS accumulator. It can be used to reset the BCS after recognizing a control character, thus signifying that a new block is beginning.
ENTER HUNT MODE	After hardware or software is reset and the channel is enabled in SCCM, the channel is in receive enable mode and uses the first BD. This command forces the controller to stop receiving and enter hunt mode, during which the controller continually scans the data stream for an SYN1–SYN2 sequence as programmed in the DSR. After receiving the command, the current receive buffer is closed and the BCS is reset. Message reception continues using the next BD.
CLOSE RXBD	Used to force the SCC to close the current RxBD if it is in use and to use the next BD for subsequent data. If data is not being received, no action is taken.
INIT RX PARAMETERS	Initializes receive parameters in this serial channel's parameter RAM to reset state. Issue only when the receiver is disabled. An INIT TX AND RX PARAMETERS resets transmit and receive parameters.

22.6 SCC BISYNC Control Character Recognition

The BISYNC controller recognizes special control characters that customize the protocol implemented by the BISYNC controller and aid its operation in a DMA-oriented environment. They are used for receive buffers longer than one byte. In single-byte buffers, each byte can be easily inspected so control character recognition should be disabled.

The control character table lets the BISYNC controller recognize the end of the current block. Because the controller imposes no restrictions on the format of BISYNC blocks, software must respond to received characters and inform the controller of mode changes and of certain protocol events, such as resetting the BCS. Using the control character table correctly allows the remainder of the block to be received without interrupting software.

Up to eight control characters can be defined to inform the BISYNC controller that the end of the current block is reached and whether a BCS is expected after the character. For example, the end-of-text character (ETX) implies an end-of-block (ETB) with a subsequent BCS. An enquiry (ENQ) character designates an end of block without a subsequent BCS. All the control characters are written into the data buffer. The BISYNC controller uses a table of 16-bit entries to support control character recognition. Each entry consists of the control character, an end-of-table bit (E), a BCS expected bit (B), and a hunt mode bit (H). The RCCM entry defines classes of control characters that support masking option.

Offset from SCCx Base	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
0x42	Е	В	н			_			CHARACTER1									
0x44	Е	В	н			_			CHARACTER2									
0x46	Е	В	н			_					C	HARA	CTER	3				
0x48	Е	В	н			_			CHARACTER4									
0x4A	Е	В	н			_			CHARACTER5									
0x4D	Е	В	н			-			CHARACTER6									
0x4E	Е	В	н			_					C	HARA	CTER	7				
0x50	Е	В	н			_			CHARACTER8									
0x52	1	1	1			_					MAS	K VAL	UE(RC	CCM)				

Table 22-4 describes control character table and RCCM fields.

Offset	Bit	Name	Description
0x42– 0x50	0	E	 End of table. 0 This entry is valid. The lower eight bits are checked against the incoming character. In tables with eight control characters, E should be zero in all eight positions. 1 The entry is not valid. No other valid entries exist beyond this entry.
	1	В	 BCS expected. A maskable interrupt is generated after the buffer is closed. 0 The character is written into the receive buffer and the buffer is closed. 1 The character is written into the receive buffer. The receiver waits for one LRC or two CRC bytes of BCS and then closes the buffer. This should be used for ETB, ETX, and ITB.
	2	Н	 Hunt mode. Enables hunt mode when the current buffer is closed. 0 The BISYNC controller maintains character synchronization after closing this buffer. 1 The BISYNC controller enters hunt mode after closing the buffer. When the B bit is set, the controller enters hunt mode after receiving the BCS.
	3–7	-	Reserved
	8–15	CHARACTERn	Control character 1–8. When using 7-bit characters with parity, include the parity bit in the character value.
0x52	0–2	-	All ones.
	3–7	_	Reserved
	8–15	RCCM	 Received control character mask. Masks comparison of CHARACTERn. Each bit of RCCM masks the corresponding bit of CHARACTERn. 0 Mask this bit in the comparison of the incoming character and CHARACTERn. 1 The address comparison on this bit proceeds normally and no masking occurs. If RCCM is not set, erratic operation can occur during control character recognition.

Table 22-4. Control Character Table and RCCM Field Descriptions

22.7 BISYNC SYNC Register (BSYNC)

The BSYNC register defines BISYNC stripping and SYNC character insertion. When an underrun occurs, the BISYNC controller inserts SYNC characters until the next buffer is available for transmission. If the receiver is not in hunt mode when a SYNC character is received, it discards this character if the valid bit (BSYNC[V]) is set. When using 7-bit characters with parity, the parity bit should be included in the SYNC register value.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15				
Field	v	DIS	0	0	0	0	0	0	SYNC											
Reset		Undefined																		
R/W		R/W																		
Address		SCC Base + 0x3E																		

Figure 22-3. BISYNC SYNC (BSYNC)

Table 22-5 describes BSYNC fields.

Bits	Name	Description
0	V	Valid. If $V = 1$ and the receiver is not in hunt mode when a SYNC character is received, this character is discarded.
1	DIS	Disable BSYNC stripping 0 Normal mode. 1 BSYNC stripping disabled (BISYNC transparent mode only).
2–7	-	All zeroes
8–15	SYNC	SYNC character

Table 22-5. BSYNC Field Descriptions

22.8 SCC BISYNC DLE Register (BDLE)

The BDLE register is used to define the BISYNC stripping and insertion of DLE characters. When an underrun occurs while a message is being sent in transparent mode, the BISYNC controller inserts DLE-SYNC pairs until the next buffer is available for transmission.

In transparent mode, the receiver discards any DLE character received and excludes it from the BCS if the valid bit (BDLE[V]) is set. If the second character is SYNC, the controller discards it and excludes it from the BCS. If it is a DLE, the controller writes it to the buffer and includes it in the BCS. If it is not a DLE or SYNC, the controller examines the control character table and acts accordingly. If the character is not in the table, the buffer is closed with the DLE follow character error bit set. If the valid bit is not set, the receiver treats the character as a normal character. When using 7-bit characters with parity, the parity bit should be included in the DLE register value.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	V	V DIS 0 0 0 0 0 DLE														
Reset		Undefined														
R/W								R/	W							
Address							S	CC Bas	se + 0x	40						

Figure 22-4. BISYNC DLE (BDLE)

Table 22-6 describes BDLE fields.

Bits	Name	Description
0	v	Valid. If $V = 1$ and the receiver is not in hunt mode when a SYNC character is received, this character is discarded.
1	DIS	 Disable DLE stripping 0 Normal mode. 1 DLE stripping disabled. When DIS is enabled in BDLE and on BSYNC the following cases occur: DLE-DLE sequence. Both characters are written to the memory. The BCS is calculated only on the second DLE. DLE-SYNC sequence. Both characters are written to the memory, but neither are included in the BCS calculation. DLE-ETX, DLE-ITB, DLE-ETB sequence, both characters are written to memory. The BCS is calculated only on the second character.
2–7	-	All zeroes
8–15	SYNC	SYNC character

Table 22-6. BDLE Field Descriptions

22.9 Sending and Receiving the Synchronization Sequence

The BISYNC channel can be programmed to send and receive a synchronization pattern defined in the DSR. GSMR_H[SYNL] defines pattern length, as shown in Table 22-7. The receiver synchronizes on this pattern. Unless SYNL is zero (external sync), the transmitter always sends the entire DSR contents, lsb first, before each frame—the chosen 4- or 8-bit pattern can be repeated in the lower-order bits.

Table 22-7. Receiver SYNC Pattern Lengths of the DSR

GSMR_H[SYNL]							Bit	Assi	gnme	ents						
Setting	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
00	A	n ext	ernal	SYN	C sig	nal is	suse	d inst	ead	of the	SYN	IC pa	ttern	in the	e DSF	٦.
01		4-	Bit													
10				8-	Bit											
11		16-Bit														

22.10 Handling Errors in the SCC BISYNC

The controller reports message transmit and receive errors using the channel BDs, error counters, and the SCCE. Modem lines can be directly monitored via the parallel port pins.

Part IV. Communications Processor Module

Table 22-8 describes transmit errors.

Error	Description
Transmitter Underrun	The channel stops sending the buffer, closes it, sets TxBD[UN], and generates aTXE interrupt if it is enabled. The channel resumes transmission after a RESTART TRANSMIT command is received. Underrun cannot occur between frames or during a DLE–XXX pair in transparent mode.
CTS Lost during Message Transmission	The channel stops sending the buffer, closes it, sets TxBD[CT], and generates a TXE interrupt if not masked. Transmission resumes when a RESTART TRANSMIT command is received.

Table 22-8. Transmit Errors

Table 22-9 describes receive errors.

Table 22-9. Receive Errors

Error	Description
Overrun	The controller maintains a receiver FIFO for receiving data. The CP begins programming the SDMA channel (if the buffer is in external memory) and updating the CRC when the first byte is received in the Rx FIFO. If an Rx FIFO overrun occurs, the controller writes the received byte over the previously received byte. The previous character and its status bits are lost. The channel then closes the buffer, sets RxBD[OV], and generates the RXB interrupt if it is enabled. Finally, the receiver enters hunt mode.
CD Lost during Message Reception	The channel stops receiving, closes the buffer, sets RxBD[CD], and generates the RXB interrupt if not masked. This error has the highest priority. If the rest of the message is lost, no other errors are checked in the message. The receiver immediately enters hunt mode.
Parity	The channel writes the received character to the buffer and sets RxBD[PR]. The channel stops receiving, closes the buffer, sets RxBD[PR], and generates the RXB interrupt if it is enabled. The channel also increments PAREC and the receiver immediately enters hunt mode.
CRC	The channel updates the CR bit in the BD every time a character is received with a byte delay of eight serial clocks between the status update and the CRC calculation. When control character recognition is used to detect the end of the block and cause CRC checking, the channel closes the buffer, sets the CR bit in the BD, and generates the RXB interrupt if it is enabled.

22.11 BISYNC Mode Register (PSMR)

The PSMR is used as the BISYNC mode register, shown in Figure 22-5. PSMR[RBCS, RTR, RPM, TPM] can be modified on-the-fly.

Bit	0	1 2 3 4		4	5	6	7	8	9	10	11	12	13	14	15		
Field		NC	DS		CF	RC	RBCS	RTR	RVD	DRT	– RPM TPI						
Reset	0																
R/W								R/	N								
Addr	0x11A08 (PSMR1); 0x11A28 (PSMR2); 0x11A48 (PSMR3); 0x11A68 (PSMR4)																

Figure 22-5. Protocol-Specific Mode Register for BISYNC (PSMR)

Table 22-10 describes PSMR fields.

Bits	Name	Description
0–3	NOS	Minimum number of SYN1–SYN2 pairs (defined in DSR) sent between or before messages. If NOS = 0000, one pair is sent. If NOS = 1111, 16 pairs are sent. The entire pair is always sent, regardless of how GSMR[SYNL) is set. NOS can be modified on-the-fly.
4–5	CRC	 CRC selection. x0 Reserved. 01 CRC16 (BISYNC). X16 + X15 + X2 + 1. PRCRC and PTCRC should be initialized to all zeros or all ones before the channel is enabled. In either case, the transmitter sends the calculated CRC noninverted and the receiver checks the CRC against zero. Eight-bit data characters (without parity) are configured when CRC16 is chosen. 11 LRC (sum check). (BISYNC). For even LRC, initialize PRCRC and PTCRC to zeroes before the channel is enabled; for odd LRC, they should be initialized to ones. Note that the receiver checks character parity when BCS is programmed to LRC and the receiver is not in transparent mode. The transmitter sends character parity when BCS is programmed to LRC and the transmitter is not in transparent mode. Use of parity in BISYNC assumes that 7-bit data characters are being used.
6	RBCS	 Receive BCS. The receiver internally stores two BCS calculations separated by an eight serial clock delay to allow examination of a received byte to determine whether it should used in BCS calculation. 0 Disable receive BCS. 1 Enable receive BCS. Should be set (or reset) within the time taken to receive the following data byte. When RBCS is reset, BCS calculations exclude the latest fully received data byte. When RBCS is set, BCS calculations continue as normal.
7	RTR	 Receiver transparent mode. 0 Normal receiver mode with SYNC stripping and control character recognition. 1 Transparent receiver mode. SYNCs, DLEs, and control characters are recognized only after a leading DLE character. The receiver calculates the CRC16 sequence even if it is programmed to LRC while in transparent mode. Initialize PRCRC to the CRC16 preset value before setting RTR.
8	RVD	 Reverse data. Normal operation. Any portion of this SCC defined to operate in BISYNC mode operates by reversing the character bit order and sending the msb first.
9	DRT	Disable receiver while sending. DRT should not be set for typical BISYNC operation. 0 Normal operation. 1 As the SCC sends data, the receiver is disabled and gated by the internal RTS signal. This helps if the BISYNC channel is being configured onto a multidrop line and the user does not want to receive its own transmission. Although BISYNC usually uses a half-duplex protocol, the receiver is not actually disabled during transmission.
10–11		Reserved, should be cleared.

Table 22-10. PSMR Field Descriptions

Bits	Name	Description
12–13	RPM	 Receiver parity mode. Selects the type of parity check that the receiver performs. RPM can be modified on-the-fly and is ignored unless CRC = 11 (LRC). Receive parity errors cannot be disabled but can be ignored. O0 Odd parity. The transmitter counts ones in the data word. If the sum is not odd, the parity bit is set to ensure an odd number. An even sum indicates a transmission error. O1 Low parity. If the parity bit is not low, a parity error is reported. 10 Even parity. An even number must result from the calculation performed at both ends of the line. 11 High parity. If the parity bit is not high, a parity error is reported.
14–15	ТРМ	 Transmitter parity mode. Selects the type of parity the transmitter performs and can be modified on-the-fly. TPM is ignored unless CRC = 11 (LRC). O Odd parity. O1 Force low parity (always send a zero in the parity bit position). 10 Even parity. 11 Force high parity (always send a one in the parity bit position).

Table 22-10. PSMR Field Descriptions (Continued)

22.12 SCC BISYNC Receive BD (RxBD)

The CP uses BDs to report on each buffer received. It closes the buffer, generates a maskable interrupt, and starts receiving data into the next buffer after any of the following:

- A user-defined control character is received.
- An error is detected.
- A full receive buffer is detected.
- The ENTER HUNT MODE command is issued.
- The CLOSE RX BD command is issued.

Figure 22-6 shows the SCC BISYNC RxBD.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	E - W I L F CM - DE - NO PR CR OV (CD				
Offset + 2		Data Length														
Offset + 4		Rx Data Buffer Pointer														
Offset + 6																

Figure 22-6. SCC BISYNC RxBD

Table 22-11 describes SCC BISYNC RxBD status and control fields.

Table 22-11. SCC BISYNC RxBD Status and Control Field Descriptions

Bit	s Name	Description
0	E	 Empty. 0 The buffer is full or stopped receiving because of an error. The core can read or write any fields of this RxBD. The CP does not use this BD as long as the E bit is zero. 1 The buffer is not full. The CP controls this BD and buffer. The core should not update this BD.

Bits	Name	Description
1	-	Reserved, should be cleared.
2	w	 Wrap (last BD in table). 0 Not the last BD in the table. 1 Last BD in the table. After this buffer is used, the CP receives incoming data into the first BD that RBASE points to. The number of BDs in this table is determined by the W bit and by overall space constraints of the dual-port RAM.
3	1	Interrupt. 0 No interrupt is generated after this buffer is used. 1 SCCE[RXB] is set when the controller closes this buffer, which can cause an interrupt if it is enabled.
4	L	Last in frame. Set when this buffer is the last in a frame. If $\overline{\text{CD}}$ is negated in envelope mode or an error is received, one or more of the OV, CD, and DE bits are set. The controller writes the number of frame octets to the data length field. 0 Not the first buffer in the frame. 1 The first buffer in the frame.
5	F	First in frame. Set when this is the first buffer in a frame. 0 Not the first buffer in a frame. 1 First buffer in a frame
6	СМ	Continuous mode. 0 Normal operation. 1 The CP does not clear E after this BD is closed; the buffer is overwritten when the CP accesses this BD next. However, E is cleared if an error occurs during reception, regardless of how CM is set.
7	-	Reserved, should be cleared.
8	DE	DPLL error. Set when a DPLL error occurs during reception. In decoding modes where a transition is should occur every bit, the DPLL error is set when a transition is missing.
9–10	-	Reserved, should be cleared.
11	NO	Rx non-octet-aligned frame. Set when a frame is received containing a number of bits not evenly divisible by eight.
12	PR	Parity error. Set when a character with parity error is received. Upon a parity error, the buffer is closed; thus, the corrupted character is the last byte of the buffer. A new Rx buffer receives subsequent data.
13	CR	Rx CRC error. Set when this frame contains a CRC error. Received CRC bytes are always written to the receive buffer.
14	ov	Overrun. Set when a receiver overrun occurs during frame reception.
15	CD	Carrier detect lost. Indicates when the carrier detect signal, CD, is negated during frame reception.

Table 22-11. SCC BISYNC RxBD Status and Control Field Descriptions (Continued)

Data length and buffer pointer fields are described in Section 19.2, "SCC Buffer Descriptors (BDs)." Data length represents the number of octets the CP writes into this buffer, including the BCS. For BISYNC mode, clear these bits. It is incremented each time a received character is written to the buffer.

22.13 SCC BISYNC Transmit BD (TxBD)

The CP arranges data to be sent on an SCC channel in buffers referenced by the channel TxBD table. The CP uses BDs to confirm transmission or indicate errors so the core knows buffers have been serviced. The user configures status and control bits before transmission, but the CP sets them after the buffer is sent.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	R - W I L TB CM BR TD TR B - UN											СТ				
Offset + 2		Data Length														
Offset + 4	Tx Data Buffer Pointer															
Offset + 6	+ 6															

Figure 22-7. SCC BISYNC Transmit BD (TxBD)

Table 22-12 describes SCC BISYNC TxBD status and control fields.

Table 22-12. SCC BISYNC TxBD Status and Control Field Descriptions

Bits	Name	Description
0	R	 Ready. 0 The buffer is not ready for transmission. The current BD and buffer can be updated. The CP clears R after the buffer is sent or after an error condition. 1 The user-prepared buffer has not been sent or is being sent. This BD cannot be updated while R = 1.
1	-	Reserved, should be cleared.
2	w	 Wrap (last BD in table). 0 Not the last BD in the table. 1 Last BD in the table. After this buffer is used, the CP receives incoming data into the first BD that TBASE points to. The number of TxBDs in this table is determined only by the W bit and overall space constraints of the dual-ported RAM.
3	I	Interrupt. 0 No interrupt is generated after this buffer is serviced. 1 SCCE[TXB] or SCCE[TXE] is set after the CP services this buffer, which can cause an interrupt.
4	L	Last in message. 0 The last character in the buffer is not the last character in the current block. 1 The last character in the buffer is the last character in the current block. The transmitter enters and stays in normal mode after sending the last character in the buffer and the BCS, if enabled.
5	тв	 Transmit BCS. Valid only when the L bit is set. 0 Send an SYN1–SYN2 or idle sequence (specified in GSMR[RTSM]) after the last character in the buffer. 1 Send the BCS sequence after the last character. The controller also resets the BCS generator after sending the BCS.
6	СМ	Continuous mode. 0 Normal operation. 1 The CP does not clear R after this BD is closed, so the buffer is resent when the CP next accesses this BD. However, R is cleared if an error occurs during transmission, regardless of how CM is set.
7	BR	BCS reset. Determines whether transmitter BCS accumulation is reset before sending the data buffer.0 BCS accumulation is not reset.1 BCS accumulation is reset before sending the data buffer.

Bits	Name	Description
8	TD	 Transmit DLE. 0 No automatic DLE transmission can occur before the data buffer. 1 The transmitter sends a DLE character before sending the buffer, which saves writing the first DLE to a separate buffer in transparent mode. See TR for information on control characters.
9	TR	 Transparent mode. The transmitter enters and stays in normal mode after sending the buffer. The transmitter automatically inserts SYNCs if an underrun condition occurs. The transmitter enters or stays in transparent mode after sending the buffer. It automatically inserts DLE–SYNC pairs if an underrun occurs (the controller finishes a buffer with L = 0 and the next BD is not available). It also checks all characters before sending them. If a DLE is detected, another DLE is sent automatically. Insert a DLE or program the controller to insert one before each control character. The transmitter calculates the CRC16 BCS even if PSMR[BCS] is programmed to LRC. Initialize PTCRC to CRC16 before setting TR.
10	В	BCS enable. 0 The buffer consists of characters that are excluded from BCS accumulation. 1 The buffer consists of characters that are included in BCS accumulation.
11–13	-	Reserved, should be cleared.
14	UN	Underrun. Set when the BISYNC controller encounters a transmitter underrun error while sending the associated data buffer. The CPM writes UN after it sends the associated buffer.
15	СТ	$\overline{\text{CTS}}$ lost. The CP sets CT when $\overline{\text{CTS}}$ is lost during message transmission after it sends the data buffer.

Table 22-12. SCC BISYNC TxBD Status and Control Field Descriptions (Continued)

Data length and buffer pointer fields are described in Section 19.2, "SCC Buffer Descriptors (BDs)." Although it is never modified by the CP, data length should be greater than zero. The CPM writes these fields after it finishes sending the buffer.

22.14 BISYNC Event Register (SCCE)/BISYNC Mask Register (SCCM)

The BISYNC controller uses the SCC event register (SCCE) to report events recognized by the BISYNC channel and to generate interrupts. When an event is recognized, the controller sets the corresponding SCCE bit. Interrupts are enabled by setting, and masked by clearing, the equivalent bits in the BISYNC mask register (SCCM). SCCE bits are reset by writing ones; writing zeros has no effect. Unmasked bits must be reset before the CP negates the internal interrupt request signal.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	_ GLR GLT DCC _ GRA _ TXE RCH BSY TX										тхв	RXB				
Reset	0000_0000_0000															
R/W		R/W														
Addr						0x11A 0x11A										

Figure 22-8. BISYNC Event Register (SCCE)/BISYNC Mask Register (SCCM)

Table 22-13 describes SCCE and SCCM fields.

Bits	Name	Description
0–2	_	Reserved, should be cleared.
3	GLR	Glitch on receive. Set when the SCC finds an Rx clock glitch.
4	GLT	Glitch on transmit. Set when the SCC finds a Tx clock glitch.
5	DCC	DPLL CS changed. Set when carrier sense status generated by the DPLL changes. Real-time status can be found in SCCS. This is not the \overline{CD} status discussed elsewhere. Valid only when DPLL is used.
6–7	_	Reserved, should be cleared.
8	GRA	Graceful stop complete. Set as soon the transmitter finishes any message in progress when a GRACEFUL STOP TRANSMIT is issued (immediately if no message is in progress).
9–10	_	Reserved, should be cleared.
11	TXE	Tx Error. Set when an error occurs on the transmitter channel.
12	RCH	Receive character. Set when a character is received and written to the buffer.
13	BSY	Busy. Set when a character is received and discarded due to a lack of buffers. The receiver resumes reception after an ENTER HUNT MODE command.
14	тхв	Tx buffer. Set when a buffer is sent. TXB is set as the last bit of data or the BCS begins transmission.
15	RXB	Rx buffer. Set when the CPM closes the receive buffer on the BISYNC channel.

Table 22-13. SCCE/SCCM Field Descriptions

22.15 SCC Status Registers (SCCS)

The SCC status (SCCS) register allows real-time monitoring of RXD. The real-time status of $\overline{\text{CTS}}$ and $\overline{\text{CD}}$ are part of the parallel I/O.

Bit	0	1	6	7									
Field	– CS –												
Reset	0000_0000												
R/W	R												
Addr		0x11A17 (S0	CCS1); 0x11A	A37 (SCCS2);	0x11A57 (SC	CCS3); 0x11A	77 (SCCS4)						

Figure 22-9. SCC Status Registers (SCCS)

Table 22-14 describes SCCS fields.

Bit	Name	Description
0–5	-	Reserved, should be cleared.
6	CS	Carrier sense (DPLL). Shows the real-time carrier sense of the line as determined by the DPLL. 0 The DPLL does not sense a carrier. 1 The DPLL senses a carrier.
7	-	Reserved, should be cleared.

Table 22-14. SCCS Field Descriptions

22.16 Programming the SCC BISYNC Controller

Software has two ways to handle data received by the BISYNC controller. The simplest is to allocate single-byte receive buffers, request an interrupt on reception of each buffer, and implement BISYNC protocol entirely in software on a byte-by-byte basis. This flexible approach can be adapted to any BISYNC implementation. The obvious penalty is the overhead caused by interrupts on each received character.

A more efficient method is to prepare and link multi-byte buffers in the RxBD table and use software to analyze the first two to three bytes of the buffer to determine the type of block received. When this is determined, reception continues without further software intervention until it encounters a control character, which signifies the end of the block and causes software to revert to byte-by-byte reception.

To accomplish this, set SCCM[RCH] to enable an interrupt on every received byte so software can analyze each byte. After analyzing the initial characters of a block, either set PSMR[RTR] or issue a RESET BCS CALCULATION command. For example, if a DLE-STX is received, enter transparent mode. By setting the appropriate PSMR bit, the controller strips the leading DLE from DLE-character sequences. Thus, control characters are recognized only when they follow a DLE character. PSMR[RTR] should be cleared after a DLE-ETX is received.

Alternatively, after an SOH is received, a RESET BCS CALCULATION should be issued to exclude SOH from BCS accumulation and reset the BCS. Notice that PSMR[RBCS] is not needed because the controller automatically excludes SYNCs and leading DLEs.

After the type of block is recognized, SCCE[RCH] should be masked. The core does not interrupt data reception until the end of the current block, which is indicated by the reception of a control character matching the one in the receive control character table. Using Table 22-15, the control character table should be set to recognize the end of the block.

Control Characters	Е	в	н
ETX	0	1	1
ITB	0	1	0
ETB	0	1	1
ENQ	0	0	0
Next entry	0	Х	Х

Table 22-15. Control Characters

After ETX, a BCS is expected; then the buffer should be closed. Hunt mode should be entered when a line turnaround occurs. ENQ characters are used to stop sending a block and to designate the end of the block for a receiver, but no CRC is expected. After control character reception, set SCCM[RCH] to reenable interrupts for each byte of data received.

22.17 SCC BISYNC Programming Example

This BISYNC controller initialization example for SCC2 uses an external clock. The controller is configured with RTS2, CTS2, and CD2 active. Both the receiver and transmitter use CLK3.

- 1. Configure port D pins to enable TXD2 and RXD2. Set PPARD[27,28] and PDIRD[27] and clear PDIRD[28] and PSORD[27,28].
- 2. Configure ports C and D pins to enable RTS2, CTS2 and CD2. Set PPARD[26], PPARC[12,13] and PDIRD[26] and clear PDIRC[12,13], PSORC[12,13], and PSORD[26].
- 3. Configure port C pin 29 to enable the CLK3 pin. Set PPARC[29] and clear PDIRC[29] and PSORC[29].
- 4. Connect CLK3 to SCC2 using the CPM mux. Write 0b110 to CMXSCR[R2CS] and CMXSCR[T2CS].
- 5. Connect the SCC2 to the NMSI (its own set of pins). Clear CMXSCR[SC2].
- 6. Assuming one RxBD at the beginning of dual-port RAM followed by one TxBD, write RBASE with 0x0000 and TBASE with 0x0008.
- 7. Write 0x04a1_0000 to CPCR to execute INIT RX AND TX PARAMETERS. This updates RBPTR and TBPTR to the new values of RBASE and TBASE.
- 8. Write RFCR and TFCR with 0x10 for normal operation.
- 9. Write MRBLR with the maximum number of bytes per receive buffer. For this case, assume 16 bytes, so MRBLR = 0x0010.
- 10. Write PRCRC with 0x0000 to comply with CRC16.
- 11. Write PTCRC with 0x0000 to comply with CRC16.
- 12. Clear PAREC for clarity.

- 13. Write BSYNC with 0x8033, assuming a SYNC value of 0x33.
- 14. Write DSR with 0x3333.
- 15. Write BDLE with 0x8055, assuming a DLE value of 0x55.
- 16. Write CHARACTER1 with 0x6077, assuming ETX = 0x77.
- 17. Write CHARACTER2-8 with 0x8000. They are not used.
- 18. Write RCCM with 0xE0FF. It is not used.
- 19. Initialize the RxBD and assume the data buffer is at 0x00001000 in main memory. Then write 0xB000 to RxBD[Status and Control], 0x0000 to RxBD[Data Length] (optional), and 0x00001000 to RxBD[Buffer Pointer].
- 20. Initialize the TxBD and assume the Tx data buffer is at 0x00002000 in main memory and contains five 8-bit characters. Then write 0xBD20 to TxBD[Status and Control] 0x0005 to TxBD[Data Length], and 0x00002000 to TxBD[Buffer Pointer]. Note that ETX character should be written at the end of user's data.
- 21. Write 0xFFFF to SCCE to clear any previous events.
- 22. Write 0x0013 to SCCM to enable the TXE, TXB, and RXB interrupts.
- 23. Write 0x0040_0000 to the SIU interrupt mask register low (SIMR_L) so the SMC1 can generate a system interrupt. Initialize SIU interrupt pending register low (SIPNR_L) by writing 0xFFF_FFFF to it.
- 24. Write 0x0000002C to GSMR_H2 to configure a small receive FIFO width.
- 25. Write 0x0000008 to GSMR_L2 to configure CTS and CD to automatically control transmission and reception (DIAG bits) and the BISYNC mode. Notice that the transmitter (ENT) and receiver (ENR) are not yet enabled.
- 26. Set PSMR to 0x0600 to configure CRC16, CRC checking on receive, and normal operation (not transparent).
- 27. Write 0x00000038 to GSMR_L2 to enable the SCC2 transmitter and receiver. This additional write ensures that ENT and ENR are enabled last.

Write 0x00000038 to GSMR_L2 to enable the SCC2 transmitter and receiver. This additional write ensures that ENT and ENR are enabled last. After 5 bytes are sent, the TxBD is closed. The buffer is closed after 16 bytes are received. Any received data beyond 16 bytes causes a busy (out-of-buffers) condition since only one RxBD is prepared.

Chapter 23 SCC Transparent Mode

Transparent mode (also called totally transparent or promiscuous mode) provides a clear channel on which the SCC can send or receive serial data without bit-level manipulation. Software implements protocols run over transparent mode. An SCC in transparent mode functions as a high-speed serial-to-parallel and parallel-to-serial converter.

Transparent mode can be used for serially moving data that requires no superimposed protocol, for applications that require serial-to-parallel and parallel-to-serial conversion for communication among chips on the same board, and for applications that require data to be switched without interfering with the protocol encoding itself, such as when data from a high-speed time-multiplexed serial stream is multiplexed into low-speed data streams. The concept is to switch the data path without altering the protocol encoded on that data path.

Transparent mode is configured in the GSMR; see Section 19.1.1, "The General SCC Mode Registers (GSMR1–GSMR4)." Transparent mode is selected in GSMR_H[TTX, TRX] for the transmitter and receiver, respectively. Setting both bits enables full-duplex transparent operation. If only one is set, the other half of the SCC uses the protocol specified in GSMR_L[MODE]. This allows loop-back modes to DMA data from one memory location to another while data is converted to a specific serial format.

The SCC operations are asynchronous with the core and can be synchronous or asynchronous with other SCCs. Each clock can be supplied from the internal baud rate generator bank, DPLL output, or external pins.

The SCC can work with the time-slot assigner (TSA) or nonmultiplexed serial interface (NMSI) and supports modem lines with the general-purpose I/O pins. Data can be transferred either the msb or lsb first in each octet.

23.1 Features

The following list summarizes the main features of the SCC in transparent mode:

- Flexible buffers
- Automatic SYNC detection on receive
- CRCs can be sent and received
- Reverse data mode

- Another protocol can be performed on the other half of the SCC
- MC68360-compatible SYNC options

23.2 SCC Transparent Channel Frame Transmission Process

The transparent transmitter is designed to work almost no intervention from the core. When the core enables the SCC transmitter in transparent mode, it starts sending idles, which are logic high or encoded ones, as programmed in GSMR_L[TEND]. The SCC polls the first BD in the TxBD table. When there is a message to send, the SCC fetches data from memory, loads the transmit FIFO, and waits for transmitter synchronization, which is achieved with CTS or by waiting for the receiver to achieve synchronization, depending on GSMR_H[TXSY]. Transmission begins when transmitter synchronization is achieved.

When all BD data has been sent, if TxBD[L] is set, the SCC writes the message status bits into the BD, clears TxBD[R], and sends idles until the next BD is ready. If it is ready, some idles are still sent. The transmitter resumes sending only after it achieves synchronization.

If TxBD[L] is cleared when the end of the BD is reached, only TxBD[R] is cleared and the transmitter moves immediately to the next buffer to begin transmission with no gap on the serial line between buffers. Failure to provide the next buffer in time causes a transmit underrun which sets SCCE[TXE].

In both cases, an interrupt is issued according to TxBD[I]. By appropriately setting TxBD[I] in each BD, interrupts are generated after each buffer or group of buffers is sent. The SCC then proceeds to the next BD in the table and any whole number of bytes can be sent. If GSMR_H[REVD] is set, the bit order of each byte is reversed before being sent; the msb of each octet is sent first.

Setting GSMR_H[TFL] makes the transmit FIFO smaller and reduces transmitter latency, but it can cause transmitter underruns at higher transmission speeds. An optional CRC, selected in GSMR_H[TCRC], can be appended to each transparent frame if it is enabled in the TxBD.

When the time-slot assigner (TSA) is used with a transparent-mode channel, synchronization is provided by the TSA. There is a start-up delay for the transmitter, but delays will always be some whole number of complete TSA frames. This means that n-byte transmit buffers can be mapped directly into n-byte time slots in the TSA frames.

23.3 SCC Transparent Channel Frame Reception Process

When the core enables the SCC receiver in transparent mode, it waits to achieve synchronization before data is received. The receiver can be synchronized to the data by a synchronization pulse or SYNC pattern.

After a buffer is full, the SCC clears RxBD[E] and generates a maskable interrupt if RxBD[I] is set. It moves to the next RxBD in the table and begins moving data to its buffer. If the next buffer is not available, SCCE[BSY] signifies a busy signal that can generate a maskable interrupt. The receiver reverts to hunt mode when an ENTER HUNT MODE command or an error is received. If GSMR_H[REVD] is set, the bit order of each byte is reversed before it is written to memory.

Setting GSMR_H[RFW] reduces receiver latency by making the receive FIFO smaller, which may cause receiver overruns at higher transmission speeds. The receiver always checks the CRC of the received frame, according to GSMR_H[TCRC]. If a CRC is not required, resulting errors can be ignored.

23.4 Achieving Synchronization in Transparent Mode

Once the SCC transmitter is enabled for transparent operation, the TxBD is prepared and the transmit FIFO is preloaded by the SDMA channel, another process must occur before data can be sent. It is called transmit synchronization. Similarly, once the SCC receiver is enabled for transparent operation in the GSMR and the RxBD is made empty for the SCC, receive synchronization must occur before data can be received. An in-line synchronization pattern or an external synchronization signal can provide bit-level control of the synchronization process when sending or receiving.

23.4.1 Synchronization in NMSI Mode

This section describes synchronization in NMSI mode.

23.4.1.1 In-Line Synchronization Pattern

The transparent channel can be programmed to receive a synchronization pattern. This pattern is defined in the data synchronization register, DSR; see Section 19.1.3, "Data Synchronization Register (DSR)." Pattern length is specified in GSMR_H[SYNL], as shown in Table 23-1. See also Section 19.1.1, "The General SCC Mode Registers (GSMR1–GSMR4)."

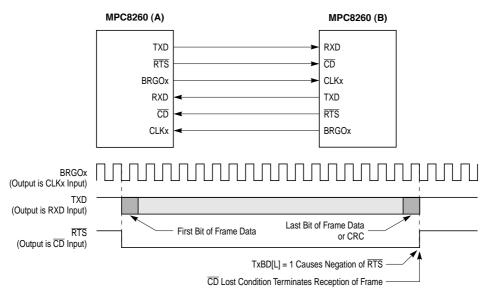
GSMR_H[SYNL]	Bit Assignments															
Setting	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
00	A	An external SYN		C sig	C signal is used instead of the SYNC pattern in the D								e DSI	٦.		
01		4-bit														
10	8-		bit	Dit												
11								16	-bit							

Table 23-1. Receiver SYNC Pattern Lengths of the DSR

If a 4-bit SYNC is selected, reception begins as soon as these four bits are received, beginning with the first bit following the 4-bit SYNC. The transmitter synchronizes on the receiver pattern if $GSMR_H[RSYN] = 1$.

Note that the transparent controller does not automatically send the synchronization pattern; therefore, the synchronization pattern must be included in the transmit buffer.

23.4.1.2 External Synchronization Signals


If GSMR_H[SYNL] is 0b00, the transmitter uses $\overline{\text{CTS}}$ and the receiver uses $\overline{\text{CD}}$ to begin the sequence. These signals share two options—pulsing and sampling.

GSMR_H[CDP] and GSMR_H[CTSP] determine whether $\overline{\text{CD}}$ or $\overline{\text{CTS}}$ need to be asserted only once to begin reception/transmission or whether they must remain asserted for the duration of the transparent frame. Pulse operation allows an uninterrupted stream of data. However, use envelope mode to identify frames of transparent data.

The sampling option determines the delay between \overline{CD} and \overline{CTS} being asserted and the resulting action by the SCC. Assume either that these signals are asynchronous to the data and internally synchronized by the SCC or that they are synchronous to the data with faster operation. This option allows \overline{RTS} of one SCC to be connected to \overline{CD} of another SCC and to have the data synchronized and bit aligned. It is also an option to link the transmitter synchronization to the receiver synchronization. Diagrams for the pulse/envelope and sampling options are shown in Section 23.4, "Achieving Synchronization in Transparent Mode."

23.4.1.2.1 External Synchronization Example

Figure shows synchronization using external signals.

Notes:

- 1. Each MPC8260 generates its own transmit clocks. If the transmit and receive clocks are the same, one MPC8260 can generate transmit and receive clocks for the other MPC8260. For example, CLKx on MPC8260 (B) could be used to clock the transmitter and receiver.
- 2. CTS should be configured as always asserted in the parallel I/O or connected to ground externally.
- 3. The required GSMR configurations are DIAG= 00, CTSS=1, CTSP is a "don't care", CDS=1, CDP=0, TTX=1, and TRX=1. REVD and TCRC are application-dependent.
- 4. The transparent frame contains a CRC if TxBD[TC] is set.

Figure 23-1. Sending Transparent Frames between MPC8260s

MPC8260(A) and MPC8260(B) exchange transparent frames and synchronize each other using $\overline{\text{RTS}}$ and $\overline{\text{CD}}$. However, $\overline{\text{CTS}}$ is not required because transmission begins at any time. Thus, $\overline{\text{RTS}}$ is connected directly to the other MPC8260 $\overline{\text{CD}}$ pin. GSMR_H[RSYN] is not used and transmission and reception from each MPC8260 are independent.

23.4.1.3 Transparent Mode without Explicit Synchronization

If there is no need to synchronize the transparent controller at a specific point, the user can 'fake' synchronization in one of the following ways:

- Tie a parallel I/O pin to the CTS and CD lines. Then, after enabling the receiver and transmitter, provide a falling edge by manipulating the I/O pin in software.
- Enable the receiver and transmitter for the SCC in loopback mode and then change GSMR_L[DIAG] to 0b00 while the transmitter and receiver and enabled.

23.4.2 Synchronization and the TSA

A transparent-mode SCC using the time-slot assigner can synchronize either on a userdefined inline pattern or by inherent synchronization.

Note that when using the TSA, a newly-enabled transmitter sends from 10 to 15 frames of idles before sending the actual transparent data due to startup requirements of the TDM. Therefore, when loopback testing through the TDM, expect to receive several bytes of 0xFF before the actual data.

23.4.2.1 Inline Synchronization Pattern

The receiver can be programmed to begin receiving data into the receive buffers only after a specified data pattern arrives. To synchronize on an inline pattern:

- Set GSMR_H[SYNL].
- Program the DSR with the desired pattern.
- Clear GSMR_H[CDP].
- Set GSMR_H[CTSP, CTSS, CDS].

If GSMR_H[TXSY] is also used, the transmitter begins transmission eight clocks after the receiver achieves synchronization.

23.4.2.2 Inherent Synchronization

Inherent synchronization assumes synchronization by default when the channel is enabled; all data sent from the TDM to the SCC is received. To implement inherent synchronization:

• Set GSMR_H[CDP, CDS, CTSP, CTSS].

If these bits are not set, the received bit stream will be bit-shifted. The SCC loses the first received bit because \overline{CD} and \overline{CTS} are treated as asynchronous signals.

23.4.3 End of Frame Detection

An end of frame cannot be detected in the transparent data stream since there is no defined closing flag in transparent mode. Therefore, if framing is needed, the user must use the $\overline{\text{CD}}$ line to alert the transparent controller of an end of frame.

23.5 CRC Calculation in Transparent Mode

The CRC calculations follow the ITU/IEEE standard. The CRC is calculated on the transmitted data stream; that is, from lsb to msb for non-bit-reversed ($GSMR_H[REVD] = 0$) and from msb to lsb for bit-reversed ($GSMR_H[REVD] = 1$) transmission. The appended CRC is sent msb to lsb. When receiving, the CRC is calculated as the incoming bits arrive. The optional reversal of data ($GSMR_H[REVD] = 1$) is done just before data is stored in memory (after the CRC calculation).

23.6 SCC Transparent Parameter RAM

For transparent mode, the protocol-specific area of the SCC parameter RAM is mapped as in Table 23-2.

Offset ¹	Name	Width	Description
0x 30	CRC_P	Long	CRC preset for totally transparent. For the 16-bit CRC-CCITT, initialize with 0x0000_FFFF. For the 32-bit CRC-CCITT, initialize with 0xFFF_FFFF and for the CRC-16, initialize with ones (0x0000_FFFF) or zeros (0x0000_0000).
0x 34	CRC_C	Long	CRC constant for totally transparent receiver. For the 16-bit CRC-CCITT, initialize with 0x0000_F0B8. For the 32-bit CRC-CCITT, CRC_C initialize with 0xDEBB_20E3 and for the CRC-16, which is normally used with BISYNC, initialize with 0x0000_0000.

Table 23-2. SCC Transparent Parameter RAM Memory Map

¹From SCC base address. See Section 19.3.1, "SCC Base Addresses."

CRC_P and CRC_C overlap with the CRC parameters for the HDLC-based protocols. However, this overlap is not detrimental since the CRC constant is used only for the receiver and the CRC preset is used only for the transmitter, so only one entry is required for each. Thus, the user can choose an HDLC transmitter with a transparent receiver or a transparent transmitter with an HDLC receiver.

23.7 SCC Transparent Commands

The following transmit and receive commands are issued to the CP command register. Table 23-3 describes transmit commands.

Command	Description
STOP TRANSMIT	After hardware or software is reset and the channel is enabled in the GSMR, the channel is in transmit enable mode and starts polling the first BD every 64 clocks (or immediately if TODR[TOD] = 1). STOP TRANSMIT disables frame transmission on the transmit channel. If the transparent controller receives the command during frame transmission, transmission is aborted after a maximum of 64 additional bits and the transmit FIFO is flushed. The current TxBD pointer (TBPTR) is not advanced, no new BD is accessed and no new buffers are sent for this channel. The transmitter will send idles.
GRACEFUL STOP TRANSMIT	Stops transmission smoothly, rather than abruptly, in much the same way that the regular STOP TRANSMIT command stops. It stops transmission after the current frame finishes or immediately if no frame is being sent. A transparent frame is not complete until a BD with TxBD[L] set has its buffer completely sent. SCCE[GRA] is set once transmission stops; transmit parameters and their BDs can then be modified. The current TxBD pointer (TBPTR) advances to the next TxBD in the table. Transmission resumes once TxBD[R] is set and a RESTART TRANSMIT command is issued.
RESTART TRANSMIT	Reenables transmission of characters on the transmit channel. The transparent controller expects it after a STOP TRANSMIT command is issued (at which point the channel is disabled in SCCM), after a GRACEFUL STOP TRANSMIT command is issued, or after a transmitter error. The transparent controller resumes transmission from the current TBPTR in the channel TxBD table.
INIT TX PARAMETERS	Initializes all transmit parameters in the serial channel parameter RAM to reset state. Issue only when the transmitter is disabled. INIT TX AND RX PARAMETERS resets receive and transmit parameters.

Table 23-3. Transmit Commands

Table 23-4 describes receive commands.

Command	Description
ENTER HUNT MODE	After hardware or software is reset and the channel is enabled, the channel is in receive enable mode and uses the first BD in the table. ENTER HUNT MODE forces the transparent receiver to the current frame and enter hunt mode where the transparent controller waits for the synchronization sequence. After receiving the command, the current buffer is closed. Further data reception uses the next BD.
CLOSE RXBD	Forces the SCC to close the RxBD if it is being used and to use the next BD for any subsequently received data. If the SCC is not receiving data, no action is taken by this command.
INIT RX PARAMETERS	Initializes all receive parameters in this serial channel parameter RAM to reset state. Issue only when the receiver is disabled. INIT TX AND RX PARAMETERS resets receive and transmit parameters.

Table 23-4. Receive Commands

23.8 Handling Errors in the Transparent Controller

The SCC reports message reception and transmission errors using the channel buffer descriptors, the error counters, and SCCE. Table 23-5 describes transmit errors.

Table	23-5.	Transmit Errors
-------	-------	------------------------

Error	Description
Transmitter Underrun	When this occurs, the channel stops sending the buffer, closes it, sets TxBD[UN], and generates a TXE interrupt if it is enabled. Transmission resumes after a RESTART TRANSMIT command is received. Underrun occurs after a transmit frame for which TxBD[L] was not set. In this case, only SCCE[TXE] is set. Underrun cannot occur between transparent frames.
CTS Lost During Message Transmission	When this occurs, the channel stops sending the buffer, closes it, sets TxBD[CT], and generates the TXE interrupt if it is enabled. The channel resumes sending after RESTART TRANSMIT is received.

Table 23-6 describes receive errors.

Table 23-6. Receive Errors

Error	Description
Overrun	The SCC maintains a receive FIFO. The CPM starts programming the SDMA channel if the buffer is in external memory and updating the CRC when 8 or 32 bits are received in the FIFO as determined by GSMR_H[RFW]. If a FIFO overrun occurs, the SCC writes the received byte over the previously received byte. The previous character and its status bits are lost. Afterwards, the channel closes the buffer, sets OV in the BD, and generates the RXB interrupt if it is enabled. The receiver immediately enters hunt mode.
CD Lost During Message Reception	When this occurs, the channel stops receiving messages, closes the buffer, sets RxBD[CD], and generates the RXB interrupt if it is enabled. This error has highest priority. The rest of the message is lost, and no other errors are checked in the message. The receiver immediately enters hunt mode.

23.9 Transparent Mode and the PSMR

The protocol-specific mode register (PSMR) is not used by the transparent controller because all transparent mode selections are made in the GSMR. If only half of an SCC (transmitter or receiver) is running the transparent protocol, the other half (receiver or transmitter) can support another protocol. In such a case, use the PSMR for the non-transparent protocol.

23.10 SCC Transparent Receive Buffer Descriptor (RxBD)

The CPM reports information about the received data for each buffer using an RxBD, closes the current buffer, generates a maskable interrupt, and starts receiving data into the next buffer after one of the following occurs:

- An error is detected.
- A full receive buffer is detected.
- An ENTER HUNT MODE command is Issued.
- A CLOSE RXBD command is issued.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	Е	_	w	Т	L	F	СМ	_	DE	-	_	NO	_	CR	OV	CD
Offset + 2		Data Length														
Offset + 4		Rx Buffer Pointer														
Offset + 6																

Figure 23-2. SCC Transparent Receive Buffer Descriptor (RxBD)

Table 23-7 describes RxBD status and control fields.

Table 23-7. SCC Transparent RxBD Status and Control Field Descriptions

Bits	Name	Description
0	E	 Empty. 0 The buffer is full or stopped receiving data because an error occurred. The core can read or write to any fields of this RxBD. The CPM does not use this BD when RxBD[E] is zero. 1 The buffer is not full. This RxBD and buffer are owned by the CPM. Once E is set, the core should not write any fields of this RxBD.
1	_	Reserved, should be cleared.
2	w	 Wrap (final BD in table). Not the last BD in the table. 1 Last BD in the table. After this buffer is used, the CPM receives data into the first BD that RBASE points to. The number of BDs in this table is determined only by RxBD[W] and overall space constraints of the dual-port RAM.

Table 23-7. SCC Transparent RxBD Status and Control Field Descriptions (Continued)

Bits	Name	Description
3	I	Interrupt. 0 No interrupt is generated after this buffer is used. 1 When this buffer is closed by the transparent controller, the SCCE[RXB] is set. SCCE[RXB] can cause an interrupt if it is enabled.
4	L	Last in frame. Set by the transparent controller when this buffer is the last in a frame, which occurs when \overline{CD} is negated (if GSMR_H[CDP] = 0) or an error is received. If an error is received, one or more of RxBD[OV, CD, DE] are set. Note that the SCC transparent controller writes the number of buffer (not frame) octets to the last BD's data length field. 0 Not the last buffer in a frame. 1 Last buffer in a frame.
5	F	First in frame. The transparent controller sets F when this buffer is the first in the frame: 0 Not the first buffer in a frame. 1 First buffer in a frame.
6	СМ	 Continuous mode. 0 Normal operation. 1 The CPM does not clear RxBD[E] after this BD is closed, letting the buffer be overwritten when the CPM next accesses this BD. However, RxBD[E] is cleared if an error occurs during reception, regardless of how CM is set.
7	_	Reserved, should be cleared.
8	DE	DPLL error. Set by the transparent controller when a DPLL error occurs as this buffer is received. In decoding modes, where a transition is promised every bit, DE is set when a missing transition occurs. If a DPLL error occurs, no other error checking is performed.
9–10	-	Reserved, should be cleared.
11	NO	Rx non-octet. Set when a frame containing a number of bits not exactly divisible by eight is received.
12	_	Reserved, should be cleared.
13	CR	CRC error indication bits. Indicates that this frame contains a CRC error. The received CRC bytes are always written to the receive buffer. CRC checking cannot be disabled, but it can be ignored.
14	OV	Overrun. Indicates that a receiver overrun occurred during buffer reception.
15	CD	Carrier detect lost. Indicates when $\overline{\text{CD}}$ is negated during buffer reception.

Data length and buffer pointer fields are described in Section 19.2, "SCC Buffer Descriptors (BDs)." The Rx buffer pointer must be divisible by four, unless GSMR_H[RFW] is set to 8 bits wide, in which case the pointer can be even or odd. The buffer can reside in internal or external memory.

23.11 SCC Transparent Transmit Buffer Descriptor (TxBD)

Data is sent to the CPM for transmission on an SCC channel by arranging it in buffers referenced by the TxBD table. The CPM uses BDs to confirm transmission or indicate error conditions so the processor knows buffers have been serviced. Prepare status and control bits before transmission; they are set by the CPM after the buffer is sent.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	R	_	w	Т	L	тс	СМ				_				UN	СТ
Offset + 2								Data L	.ength							
Offset + 4							Тх	Buffe	r Point	ter						
Offset + 6																

Figure 23-3. SCC Transparent Transmit Buffer Descriptor (TxBD)

Table 23-8 describes SCC Transparent TxBD status and control fields.

Table 23-8. SCC Transparent TxBD Status and Control Field Descriptions

Bit	Name	Description
0	R	 Ready. 0 The buffer is not ready for transmission. The BD and buffer can be updated. The CPM clears R after the buffer is sent or after an error is encountered. 1 The user-prepared buffer is not sent yet or is being sent. This BD cannot be updated while R = 1.
1	-	Reserved, should be cleared.
2	w	 Wrap (final BD in table). 0 Not the last BD in the table. 1 Last BD in the table. After this buffer is used, the CPM receives incoming data into the first BD that TBASE points to. The number of TxBDs in this table is determined only by TxBD[W] and overall space constraints of the dual-port RAM.
3	1	Interrupt. Note that clearing this bit does not disable all SCCE[TXE] events. 0 No interrupt is generated after this buffer is serviced. 1 When the CPM services this buffer, SCCE[TXB] or SCCE[TXE] is set. These bits can cause interrupts if they are enabled.
4	L	 Last in message. 0 The last byte in the buffer is not the last byte in the transmitted transparent frame. Data from the next transmit buffer is sent immediately after the last byte of this buffer. 1 The last byte in the buffer is the last byte in the transmitted transparent frame. After this buffer is sent, the transmitter requires synchronization before the next buffer is sent.
5	тс	Transmit CRC. 0 No CRC sequence is sent after this buffer. 1 A frame check sequence defined by GSMR_H[TCRC] is sent after the last byte of this buffer.
6	СМ	Continuous mode. 0 Normal operation. 1 The CPM does not clear TxBD[R] after this BD is closed, so the buffer is automatically resent when the CPM accesses this BD next. However, TxBD[R] is cleared if an error occurs during transmission, regardless of how CM is set.
7–13	-	Reserved, should be cleared.
14	UN	Underrun. Set when the SCC encounters a transmitter underrun condition while sending the buffer.
15	СТ	CTS lost. Indicates the CTS was lost during frame transmission.

Data length and buffer pointer fields are described in Section 19.2, "SCC Buffer Descriptors (BDs)." Although it is never modified by the CP, data length should be greater than zero. The buffer pointer can be even or odd and can reside in internal or external memory.

23.12 SCC Transparent Event Register (SCCE)/Mask Register (SCCM)

When the SCC is in transparent mode, the SCC event register (SCCE) functions as the transparent event register to report events recognized by the transparent channel and to generate interrupts. When an event is recognized, the transparent controller sets the corresponding SCCE bit. Interrupts are enabled by setting, and masked by clearing, the equivalent bits in the transparent mask register (SCCM).

Event bits are reset by writing ones; writing zeros has no effect. All unmasked bits must be reset before the CP clears the internal interrupt request to the SIU interrupt controller. Figure 23-4 shows the event and mask registers.

Bit	0	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15									15					
Field		_		GLR	GLT	DCC	-	_	GRA	-	_	TXE		BSY	тхв	RXB
Reset		0000_0000_0000														
R/W		R/W														
Address				A10 (S0 14 (SC										,		

Figure 23-4. SCC Transparent Event Register (SCCE)/Mask Register (SCCM)

Table 23-9 describes SCCE/SCCM fields.

Table 23-9. SCCE/SCCM Field Descriptions

Bit	Name	Description
0–2	_	Reserved, should be cleared.
3	GLR	Glitch on Rx. Set when the SCC finds a glitch on the receive clock.
4	GLT	Glitch on Tx. Set when the SCC finds a glitch on the transmit clock.
5	DCC	DPLL CS changed. Set when the DPLL-generated carrier sense status changes (valid only when the DPLL is used). Real-time status can be read in SCCS. This is not the $\overline{\text{CD}}$ status mentioned elsewhere.
6–7	-	Reserved, should be cleared.
8	GRA	Graceful stop complete. Set when a graceful stop initiated by completes as soon as the transmitter finishes any frame in progress when the GRACEFUL STOP TRANSMIT command was issued. Immediately if no frame was in progress when the command was issued.
9–10	-	Reserved, should be cleared.
11	TXE	Tx error. Set when an error occurs on the transmitter channel.
12	_	Reserved, should be cleared.

Bit	Name	Description
13	BSY	Busy condition. Set when a byte or word is received and discarded due to a lack of buffers. The receiver resumes reception after it gets an ENTER HUNT MODE command.
14	ТХВ	Tx buffer. Set no sooner than when the last bit of the last byte of the buffer begins transmission, assuming L is set in the TxBD. If it is not, TXB is set when the last byte is written to the transmit FIFO.
15	RXB	Rx buffer. Set when a complete buffer was received on the SCC channel, no sooner than two serial clocks after the last bit of the last byte in which the buffer is received on RXD.

Table 23-9. SCCE/SCCM Field Descriptions (Continued)

23.13 SCC Status Register in Transparent Mode (SCCS)

The SCC status register (SCCS) allows monitoring of real-time status conditions on the RXD line. The real-time status of $\overline{\text{CTS}}$ and $\overline{\text{CD}}$ are part of the parallel I/O.

Bit	0	0 1 2 3 4 5 6 7							
Field			-	_			CS	-	
Reset		0000_0000							
R/W		R							
Address		0x11A17 (S0	CCS1); 0x11A	37 (SCCS2);	0x11A57 (SC	CCS3); 0x11A	77 (SCCS4)		

Figure 23-5. SCC Status Register in Transparent Mode (SCCS)

Table 23-10 describes SCCS fields.

Table 23-10. SCCS Field Descriptions

Bit	Name	Description
0–5	-	Reserved, should be cleared.
6	CS	Carrier sense (DPLL). Shows the real-time carrier sense of the line as determined by the DPLL. 0 The DPLL does not sense a carrier. 1 The DPLL senses a carrier.
7		Reserved, should be cleared.

23.14 SCC2 Transparent Programming Example

The following initialization sequence enables the transmitter and receiver, which operate independently of each other. They implement the connection shown on MPC8260(B) in Figure 23-1.

The transmit and receive clocks are externally provided to MPC8260(B) using CLK3. SCC2 is used. The transparent controller is configured with the $\overline{\text{RTS2}}$ and $\overline{\text{CD2}}$ pins active and $\overline{\text{CTS2}}$ is configured to be grounded internally. A 16-bit CRC-CCITT is sent with each transparent frame. The FIFOs are configured for fast operation.

- 1. Configure port D pins to enable TXD2 and RXD2. Set PPARD[27,28] and PDIRD[27] and clear PDIRD[28] and PSORD[27,28].
- 2. Configure ports C and D pins to enable RTS2, CTS2 and CD2. Set PPARD[26], PPARC[12,13] and PDIRD[26] and clear PDIRC[12,13], PSORC[12,13] and PSORD[26].
- 3. Configure port C pin 29 to enable the CLK3 pin. Set PPARC[29] and clear PDIRC[29] and PSORC[29].
- 4. Connect CLK3 to SCC2 using the CPM mux. Program CMXSCR[R2CS] and CMXSCR[T2CS] to 0b110.
- 5. Connect the SCC2 to the NMSI and clear CMXSCR[SC2].
- 6. Write RBASE with 0x0000 and TBASE with 0x0008 in the SCC2 parameter RAM to point to one RxBD at the beginning of dual-port RAM followed by one TxBD.
- 7. Write 0x04A1_0000 to the CPCR to execute INIT RX AND TX PARAMETERS for SCC2.
- 8. Write 0x0041 to the CPCR to execute INIT RX AND TX PARAMETERS for SCC2.
- 9. Write RFCR and TFCR with 0x10 for normal operation.
- 10. Write MRBLR with the maximum number of bytes per receive buffer and assume 16-bytes, so MRBLR = 0x0010.
- 11. Write CRC_P with 0x0000_FFFF to comply with the 16-bit CRC-CCITT.
- 12. Write CRC_C with 0x0000_F0B8 to comply with the 16-bit CRC-CCITT.
- 13. Initialize the RxBD. Assume the Rx buffer is at 0x0000_1000 in main memory. Write 0xB000 to RxBD[Status and Control], 0x0000 to RxBD[Data Length] (optional), and 0x0000_1000 to RxBD[Buffer Pointer].
- 14. Initialize the TxBD. Assume the Tx buffer is at 0x0000_2000 in main memory and contains five 8-bit characters. Write 0xBC00 to TxBD[Status and Control], 0x0005 to TxBD[Data Length], and 0x0000_2000 to TxBD[Buffer Pointer].
- 15. Write 0xFFFF to SCCE to clear any previous events.
- 16. Write 0x0013 to SCCM to enable the TXE, TXB, and RXB interrupts.
- 17. Write 0x0040_0000 to the SIU interrupt mask register low (SIMR_L) so SMC1 can generate a system interrupt. Initialize SIU interrupt pending register low (SIPNR_L) by writing 0xFFFF_FFFF to it.
- 18. Write 0x0000_1980 to GSMR_H2 to configure the transparent channel.
- 19. Write 0x0000_0000 to GSMR_L2 to configure $\overline{\text{CTS}}$ and $\overline{\text{CD}}$ to automatically control transmission and reception (DIAG bits). Normal operation of the transmit clock is used. Note that the transmitter (ENT) and receiver (ENR) are not enabled yet.
- 20. Write 0x0000_0030 to GSMR_L2 to enable the SCC2 transmitter and receiver. This additional write ensures that the ENT and ENR bits are enabled last.

Note that after 5 bytes are sent, the Tx buffer is closed and after 16 bytes are received the Rx buffer is closed. Any data received after 16 bytes causes a busy (out-of-buffers) condition since only one RxBD is prepared.

Chapter 24 SCC Ethernet Mode

The Ethernet IEEE 802.3 protocol is a widely used LAN protocol based on the carrier sense multiple access/collision detect (CSMA/CD) approach. Because Ethernet and IEEE 802.3 protocols are similar and can coexist on the same LAN, both are referred to as Ethernet in this manual, unless otherwise noted. Figure 24-1 shows Ethernet and IEEE 802.3 frame structure.

				Frame Length is	s 64–1518 Bytes	
Preamble	Start Frame Delimiter	Destination Address	Source Address	Type/ Length	Data	Frame Check Sequence
7 Bytes	1 Byte	6 Bytes	6 Bytes	2 Bytes	46-1500 Bytes	4 Bytes

NOTE: The lsb of each octet is transmitted first.

Figure 24-1. Ethernet Frame Structure

The frame begins with a 7-byte preamble of alternating ones and zeros. Because the frame is Manchester encoded, the preamble gives receiving stations a known pattern on which to lock. The start frame delimiter follows the preamble, signifying the beginning of the frame. The 48-bit destination address is next, followed by the 48-bit source address. Original versions of the IEEE 802.3 specification allowed 16-bit addressing, but this addressing has never been widely used and is not supported.

The next field is the Ethernet type field/IEEE 802.3 length field. The type field signifies the protocol used in the rest of the frame and the length field specifies the length of the data portion of the frame. For Ethernet and IEEE 802.3 frames to coexist on the same LAN, the length field of the frame must always be different from any type fields used in Ethernet. This limits the length of the data portion of the frame to 1,500 bytes and total frame length to 1,518 bytes. The last 4 bytes of the frame are the frame check sequence (FCS), a standard 32-bit CCITT-CRC polynomial used in many protocols.

When a station needs to transmit, it checks for LAN activity. When the LAN is silent for a specified period, the station starts sending. At that time, the station continually checks for collisions on the LAN; if one is found, the station forces a jam pattern (all ones) on its frame and stops sending. Most collisions occur close to the beginning of a frame. The station waits

a random period of time, called a backoff, before trying to retransmit. Once the backoff time expires, the station waits for silence on the LAN before retransmitting, which is called a retry. If the frame cannot be sent within 15 retries, an error occurs

10-Mbps Ethernet transmits at 0.8 μ s per byte. The preamble plus start frame delimiter is sent in 6.4 μ s. The minimum 10-Mbps Ethernet interframe gap is 9.6 μ s and the slot time is 52 μ s.

24.1 Ethernet on the MPC8260

Setting GSMR[MODE] to 0b1100 selects Ethernet. The SCC performs the full set of IEEE 802.3/Ethernet CSMA/CD media access control and channel interface functions.

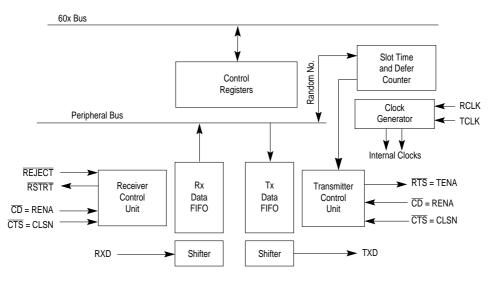


Figure 24-2. Ethernet Block Diagram

The MPC8260 Ethernet controller requires an external serial interface adaptor (SIA) and transceiver function to complete the interface to the media.

Although the MPC8260 contains DPLLs that allow Manchester encoding and decoding, these DPLLs were not designed for Ethernet rates. Therefore, the MPC8260 Ethernet controller bypasses the on-chip DPLLs and uses the external system interface adaptor on the EEST instead. The on-chip DPLL cannot be used for low-speed (1-Mbps) Ethernet either because it cannot properly detect start-of-frame or end-of-frame.

Note that the CPM of the MPC8260 requires a minimum system clock frequency of 24 MHz to support Ethernet.

24.2 Features

The following list summarizes the main features of the SCC in Ethernet mode:

- Performs MAC layer functions of Ethernet and IEEE 802.3
- Performs framing functions
 - Preamble generation and stripping
 - Destination address checking
 - CRC generation and checking
 - Automatically pads short frames on transmit
 - Framing error (dribbling bits) handling
- Full collision support
 - Enforces the collision (jamming)
 - Truncated binary exponential backoff algorithm for random wait
 - Two nonaggressive backoff modes
 - Automatic frame retransmission (until the attempt limit is reached)
 - Automatic discard of incoming collided frames
 - Delay transmission of new frames for specified interframe gap
- Maximum 10 Mbps bit rate
- Optional full-duplex support
- Back-to-back frame reception
- Detection of receive frames that are too long
- Multibuffer data structure
- Supports 48-bit addresses in three modes
 - Physical–One 48-bit address recognized or 64-bin hash table for physical addresses
 - Logical-64-bin group address hash table plus broadcast address checking
 - Promiscuous-Receives all addresses, but discards frame if REJECT is asserted
- External content-addressable memory (CAM) support on serial bus interfaces
- Up to eight parallel I/O pins can be sampled and appended to any frame
- Optional heartbeat indication
- Transmitter network management and diagnostics
 - Lost carrier sense
 - Underrun
 - Number of collisions exceeded the maximum allowed

- Number of retries per frame
- Deferred frame indication
- Late collision
- Receiver network management and diagnostics
 - CRC error indication
 - Nonoctet alignment error
 - Frame too short
 - Frame too long
 - Overrun
 - Busy (out of buffers)
- Error counters
 - Discarded frames (out of buffers or overrun occurred)
 - CRC errors
 - Alignment errors
- Internal and external loopback mode

24.3 Connecting the MPC8260 to Ethernet

The basic interface to the external SIA chip consists of the following Ethernet signals:

- Receive clock (RCLK)—a CLK*x* signal routed through the bank of clocks on the MPC8260.
- Transmit clock (TCLK)—a CLK*x* signal routed through the bank of clocks on the MPC8260. Note that RCLK and TCLK should not be connected to the same CLK*x* since the SIA provides separate transmit and receive clock signals.
- Transmit data (TXD)—the MPC8260 TXD signal.
- Receive data (RXD)—the MPC8260 RXD signal.

The following signals take on different functionality when the SCC is in Ethernet mode:

- Transmit enable (TENA)—<u>RTS</u> becomes TENA. The polarity of TENA is active high, whereas the polarity of <u>RTS</u> is active low.
- Receive enable (RENA) $-\overline{\text{CD}}$ becomes RENA.
- Collision (CLSN)—CTS becomes CLSN. The carrier sense signal is referenced in Ethernet descriptions because it indicates when the LAN is in use. Carrier sense is defined as the logical OR of RENA and CLSN.

Figure 24-3 shows the basic components and signals required to make an Ethernet connection between the MPC8260 and EEST.

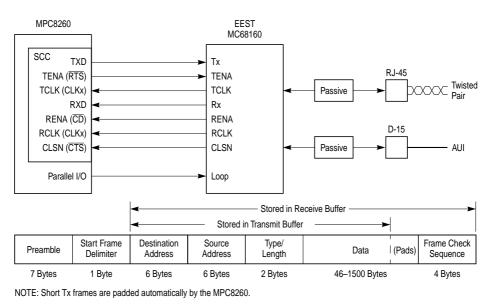


Figure 24-3. Connecting the MPC8260 to Ethernet

The EEST has similar names for its connection to the above seven MPC8260 signals. The EEST also provides a loopback input so the MPC8260 can perform external loopback testing, which can be controlled by any available MPC8260 parallel I/O signal. The passive components needed to connect to AUI or twisted-pair media are external to the EEST. The MC68160 documentation describes EEST connection circuits.

The MPC8260 uses SDMA channels to store bytes received after the start frame delimiter in system memory. When sending, provide the destination address, source address, type/ length field, and the transmit data. To meet minimum frame requirements, the MPC8260 pads frames with fewer than 46 bytes in the data field and appends the FCS to the frame.

24.4 SCC Ethernet Channel Frame Transmission

The Ethernet transmitter works with almost no core intervention. When the core enables the transmitter, the SCC polls the first TxBD in the table every 128 serial clocks. Setting TODR[TOD] lets the next frame be sent without waiting for the next poll.

To begin transmission, the SCC in Ethernet mode (called the Ethernet controller) fetches data from the buffer, asserts TENA to the EEST, and starts sending the preamble sequence, the start frame delimiter, and frame information. If the line is busy, it waits for carrier sense to remain inactive for 6.0 μ s, at which point it waits an additional 3.6 μ s before it starts sending (9.6 μ s after carrier sense originally became inactive).

If a collision occurs during frame transmission, the Ethernet controller follows a specified backoff procedure and tries to retransmit the frame until the retry limit threshold is reached.

The Ethernet controller stores the first 5 to 8 bytes of the transmit frame in dual-port RAM so they need not be retrieved from system memory in case of a collision. This improves bus usage and latency when the backoff timer output requires an immediate retransmission. If a collision occurs during frame transmission, the controller returns to the first buffer for a retransmission. The only restriction is that the first buffer must contain at least 9 bytes.

Note that if an Ethernet frame consists of multiple buffers, do not reuse the first BD until the CPM clears the R bit of the last BD.

When the end of the current BD is reached and TxBD[L] is set, the FCS bytes are appended (if the TC bit is set in the TxBD), and TENA is negated. This notifies the EEST of the need to generate the illegal Manchester encoding that marks the end of an Ethernet frame. After CRC transmission, the Ethernet controller writes the frame status bits into the BD and clears the R bit. When the end of the current BD is reached and the L bit is not set, only the R bit is cleared.

In either mode, whether an interrupt is issued depends on how the I bit is set in the TxBD. The Ethernet controller proceeds to the next TxBD. Transmission can be interrupted after each frame, after each buffer, or after a specific buffer is sent. The Ethernet controller can pad characters to short frames. If TxBD[PAD] is set, the frame is padded up to the value of the minimum frame length register (MINFLR).

To send expedited data before previously linked buffers or for error situations, the GRACEFUL STOP TRANSMIT command can be used to rearrange transmit queue before the CPM sends all the frames; the Ethernet controller stops immediately if no transmission is in progress or it will keep sending until the current frame either finishes or terminates with a collision. When the Ethernet controller receives a RESTART TRANSMIT command, it resumes transmission. The Ethernet controller sends bytes least-significant bit first.

24.5 SCC Ethernet Channel Frame Reception

The Ethernet receiver handles address recognition and performs CRC, short frame, maximum DMA transfer, and maximum frame length checking with almost no core intervention. When the core enables the Ethernet receiver, it enters hunt mode as soon as RENA is asserted while CLSN is negated. In hunt mode, as data is shifted into the receive shift register one bit at a time, the register contents are compared to the contents of the SYN1 field in the data synchronization register (DSR). This compare function becomes valid a certain number of clocks after the start of the frame (depending on PSMR[NIB]). If the two are not equal, the next bit is shifted in and the comparison is repeated. If a double-zero or double-one fault is detected between bits 14 to 21 from the first received preamble bit, the frame is rejected. If a double-zero fault is detected after 21 bits from the first received preamble bit and before detection of the start frame delimiter (SFD), the frame is also rejected. When the incoming pattern is not rejected and matches the DSR, the SFD has been detected; hunt mode is terminated and character assembly begins.

When the receiver detects the first bytes of the frame, the Ethernet controller performs

address recognition on the frame. The receiver can receive physical (individual), group (multicast), and broadcast addresses. Ethernet receive frame data is not written to memory until the internal address recognition process completes, which improves bus usage with frames not addressed to this station.

If a match is found, the Ethernet controller fetches the next RxBD and, if it is empty, starts transferring the incoming frame to the RxBD associated data buffer. If a collision is detected during the frame, the RxBDs associated with this frame are reused. Thus, there will be no collision frames presented to you except late collisions, which indicate serious LAN problems. When the data buffer has been filled, the Ethernet controller clears the E bit in the RxBD and generates an interrupt if the I bit is set. If the incoming frame exceeds the length of the data buffer, the Ethernet controller fetches the next RxBD in the table and, if it is empty, continues transferring the rest of the frame to this buffer. The RxBD length is determined by MRBLR in the SCC general-purpose parameter RAM, which should be at least 64 bytes.

During reception, the Ethernet controller checks for a frame that is either too short or too long. When the frame ends, the receive CRC field is checked and written to the buffer. The data length written to the last BD in the Ethernet frame is the length of the entire frame and it enables the software to correctly recognize the frame-too-long condition.

The Ethernet controller then sets the L bit in the RxBD, writes the other frame status bits into the RxBD, and clears the E bit. Then it generates a maskable interrupt, which indicates that a frame has been received and is in memory. The Ethernet controller then waits for a new frame. It receives serial data least-significant bit first.

24.6 The Content-Addressable Memory (CAM) Interface

The Ethernet controller has one option for connecting to an external CAM—a serial interface. The reject signal ($\overline{\text{REJECT}}$) is used to signify that the current frame should be discarded. The MPC8260's internal address recognition logic can be used in combination with an external CAM. See Section 24.10, "SCC Ethernet Address Recognition."

The MPC8260 outputs a receive start ($\overline{\text{RSTRT}}$) signal when the start frame delimiter is recognized. This signal is asserted for one bit time on the second destination address bit. The CAM control logic uses $\overline{\text{RSTRT}}$ (in combination with the RXD and RCLK signals) to store the destination or source address and generate writes to the CAM for address recognition. In addition, the RENA signal supplied from the SIA can be used to abort the comparison if a collision occurs on the receive frame.

After the comparison, the CAM control logic asserts the receive reject signal (REJECT), if the current receive frame is rejected. The MPC8260's Ethernet controller then immediately stops writing data to system memory and reuses the buffer(s) for the next frame. If the CAM accepts the frame, the CAM control logic does nothing (REJECT is not asserted). However, if \overrightarrow{REJECT} is asserted, it must be done prior to the end of the receive frame.

24.7 SCC Ethernet Parameter RAM

For Ethernet mode, the protocol-specific area of the SCC parameter RAM is mapped as in Table 24-1.

Offset ¹	Name	Width	Description			
0x30	C_PRES	Word	Preset CRC. For the 32-bit CRC-CCITT, initialize to 0xFFFFFFFF.			
0x34	C_MASK	Word	Constant mask for CRC. For the 32-bit CRC-CCITT, initialized to 0xDEBB20E3.			
0x38	CRCEC	Word	CRC error, alignment error, and discard frame counters. The CPM maintains the			
0x3C	ALEC		32-bit (modulo 2 ³²) counters that can be initialized while the channel is disabled. CRCEC is incremented for each received frame with a CRC error, not including			
0x40	DISFC		frames not addressed to the controller, frames received in the out-of-buffers condition, frames with overrun errors, or frames with alignment errors. ALEC is incremented for frames received with dribbling bits, but does not include frames not addressed to the controller, frames received in the out-of-buffers condition, or frames with overrun errors. DISFC is incremented for frames discarded because of the out-of-buffers condition or an overrun error. The CRC does not have to be correct for DISFC to be incremented.			
0x44	PADS	Hword	Short frame PAD character. Write the pad character pattern to be sent when short frame padding is implemented into PADS. The pattern may be of any value, but both the high and low bytes should be the same.			
0x46	RET_LIM	Hword	Retry limit. Number of retries (typically 15 decimal) that can be made to send a frame. An interrupt can be generated if the limit is reached.			
0x48	RET_CNT	Hword	Retry limit counter. Temporary down-counter for counting retries.			
0x4A	MFLR	Hword	Maximum frame length register (Typically 1518 decimal). The Ethernet controller checks the length of an incoming Ethernet frame against this limit. If it is exceeded, the rest of the frame is discarded and LG is set in the last BD of that frame. The controller reports frame status and length in the last BD. MFLR is defined as all inframe bytes between the start frame delimiter and the end of the frame.			
0x4C	MINFLR	Hword	Minimum frame length register. The Ethernet controller checks the incoming frame's length against MINFLR (typically 64 decimal). If the received frame is smaller than MINFLR, it is discarded unless PSMR[RSH] is set, in which case, SH is set in the last BD for the frame. For transmitting a frame that is too short, the Ethernet controller pads the frame to make it MINFLR bytes long, depending on how PAD is set in the TxBD and on the PAD value in the parameter RAM.			
0x4E	MAXD1	Hword				
0x50	MAXD2	Hword	frame exceeds a certain size. However, this value is valid only if an address match is found. The Ethernet controller checks the length of an incoming Ethernet frame against this user-defined value (usually 1520 decimal). If this limit is exceeded, the rest of the incoming frame is discarded. The Ethernet controller waits until the end of the frame or until MFLR bytes are received and reports the frame status and the frame length in the last RxBD. MAXD1 is used when an address matches an individual or group address. MAXD2 is used in promiscuous mode when no address match is detected. In a monitor station, MAXD2 can be much less than MAXD1 to receive entire frames addressed to this station, but only the headers of the other frames are received.			
0x52	MAXD	Hword	Rx max DMA.			
0x54	DMA_CNT	1	Rx DMA counter. A temporary down-counter used to track frame length.			

Table 24-1. SCC Ethernet Parameter RAM Memory Map

Table 24-1. SCC Ethernet Parameter RAM Memory Map (Continued)

Offset 1	Name	Width	Description
0x54	MAX_B	Hword	Maximum BD byte count.
0x58	GADDR1	Hword	Group address filter 1-4. Used in the hash table function of the group addressing
0x5A	GADDR2		mode. Write zeros to these values after reset and before the Ethernet channel is enabled to disable all group hash address recognition functions. The SET GROUP ADDRESS command is used to enable the hash table.
0x5C	GADDR3		
0x5E	GADDR4		
0x60	TBUF0_DATA0	Word	Save area 0-current frame.
0x64	TBUF0_DATA1	Word	Save area 1-current frame.
0x68	TBUF0_RBA0	Word	
0x6C	TBUF0_CRC	Word	
0x70	TBUF0_BCNT	Hword	
0x72	PADDR1_H	Hword	The 48-bit individual address of this station into this location. PADDR1_L is the
0x74	PADDR1_M		lowest order hword and PADDR1_H is the highest order hword.
0x76	PADDR1_L		
0x78	P_PER	Hword	Persistence. Lets the Ethernet controller be less aggressive after a collision. Normally, 0x0000. It can be a value between 1 and 9 (1 is most aggressive). The value is added to the retry count in the backoff algorithm to reduce the chance of transmission on the next time slot. Note: Using P_PER is fully allowed in the Ethernet/802.3 specifications. A less aggressive backoff algorithm used by multiple stations on a congested Ethernet LAN increases overall throughput by reducing the chance of collision. PSMR[SBT] offers another way to reduce the aggressiveness of the Ethernet controller.
0x7A	RFBD_PTR	Hword	Rx first BD pointer.
0x7C	TFBD_PTR	Hword	Tx first BD pointer.
0x7E	TLBD_PTR	Hword	Tx last BD pointer.
0x80	TBUF1_DATA0	Word	Save area 0-next frame.
0x84	TBUF1_DATA1	Word	Save area 1-next frame.
0x88	TBUF1_RBA0	Word	
0x8C	TBUF1_CRC	Word	
0x90	TBUF1_BCNT	Hword	
0x92	TX_LEN	Hword	Tx frame length counter.
0x94	IADDR1	Hword	Individual address filter 1–4. Used in the hash table function of the individual
0x96	IADDR2		addressing mode. Zeros can be written to these values after reset and before the Ethernet channel is enabled to disable all individual hash address recognition
0x98	IADDR3		functions. The SET GROUP ADDRESS command is used to enable the hash table.
0x9A	IADDR4		
0x9C	BOFF_CNT	Hword	Backoff counter.

Offset 1	Name	Width	Description			
0x9E	TADDR_H	Hword	Allows addition and deletion of addresses from individual and group hash tables.			
0x A0	TADDR_M		After placing an address in TADDR, issue a SET GROUP ADDRESS command. TADDR_L (temp address low) is the least-significant half word and TADDR_H			
0x A2	TADDR_L		(temp address high) is the most-significant half word.			

Table 24-1. SCC Ethernet Parameter RAM Memory Map (Continued)

¹From SCC base address. See Section 19.3.1, "SCC Base Addresses."

24.8 Programming the Ethernet Controller

The core configures the SCC to operate as an Ethernet controller by setting GSMR[MODE] to 0b1100. Receive and transmit errors are reported through RxBD and TxBD. Several GSMR fields must be programmed to special values for Ethernet. Set DSR[SYN1] to 0x55 and DSR[SYN2] to 0xDE. The 6 bytes of preamble programmed in the GSMR, in combination with the DSR programming, causes 8 bytes of preamble on transmit (including the 1-byte start delimiter with the value 0xD5).

24.9 SCC Ethernet Commands

Transmit and receive commands are issued to the CP command register (CPCR). Table 24-2 describes transmit commands.

Command	Description
STOP TRANSMIT	When used with the Ethernet controller, this command violates a specific behavior of an Ethernet/IEEE 802.3 station. It should not be used.
GRACEFUL STOP TRANSMIT	Used to ensure that transmission stops smoothly after the current frame finishes or has a collision. SCCE[GRA] is set once transmission stops, at which point Ethernet transmit parameters and their BDs can be updated. TBPTR points to the next TxBD. Transmission begins once the R bit of the next BD is set and a RESTART TRANSMIT command is issued. Note that if GRACEFUL STOP TRANSMIT is issued and the current frame ends in a collision, TBPTR points to the start of the collided frame with the R bit still set in the BD. The frame looks as if it was never sent.
RESTART TRANSMIT	Enables transmission of characters on the transmit channel. The Ethernet controller expects it after a GRACEFUL STOP TRANSMIT command is issued or a transmitter error. The Ethernet controller resumes transmission from the current TBPTR in the channel TxBD table.
INIT TX PARAMETERS	Initializes transmit parameters in this serial channel parameter RAM to reset state. Issue only when the transmitter is disabled. INIT TX and RX PARAMETERS resets both transmit and receive parameters.

Table 24-2.	Transmit	Commands
-------------	----------	----------

Table 24-3 describes receive commands.

Command	Description
ENTER HUNT MODE	After hardware or software is reset and the channel is enabled in GSMR_L, the channel is in receive enable mode and uses the first BD in the table. The receiver then enters hunt mode, waiting for an incoming frame. The ENTER HUNT MODE command is generally used to force the Ethernet receiver to stop receiving the current frame and enter hunt mode, in which the Ethernet controller continually scans the input data stream for a transition of carrier sense from inactive to active and then a preamble sequence followed by the start frame delimiter. After receiving the command, the buffer is closed and the CRC calculation is reset. The next RxBD is used to receive more frames.
CLOSE RXBD	Should not be used with the Ethernet controller.
INIT RX PARAMETERS	Initializes receive parameters in this serial channel parameter RAM to their reset state. Issue it only when the receiver is disabled. INIT TX and RX PARAMETERS resets receive and transmit parameters.
SET GROUP ADDRESS	Used to set one of the 64 bits of the four individual/group address hash filter registers. The address to be added to the hash table should be written to TADDR_L, TADDR_M, and TADDR_H in the parameter RAM before executing this command. The CP uses an individual address if the I/G bit in the address stored in TADDR is 0; otherwise, it uses a group address. This command can be executed at any time, regardless of whether the Ethernet channel is enabled. To delete an address from the hash table, disable the Ethernet channel, clear the hash table registers, and execute this command for the remaining addresses. Do not simply clear the channel's associated hash table bit because the hash table may have multiple addresses mapped to the same hash table bit.

Table 24-3. Receive Commands

Note that after a CPM reset via CPCR[RST], the Ethernet transmit enable (TENA) signal defaults to its $\overline{\text{RTS}}$, active-low functionality. To prevent false TENA assertions to an external transceiver, configure TENA as an input before issuing a CPM reset. See step 3 in Section 24.21, "SCC Ethernet Programming Example."

24.10 SCC Ethernet Address Recognition

The Ethernet controller can filter received frames based on different addressing types physical (individual), group (multicast), broadcast (all-ones group address), and promiscuous. The difference between an individual address and a group address is determined by the I/G bit in the destination address field. A flowchart for address recognition on received frames is shown in Figure 24-4.

In the physical type of address recognition, the Ethernet controller compares the destination address field of the received frame with the user-programmed physical address in PADDR1. Address recognition can be performed on multiple individual addresses using the IADDR1–4 hash table.

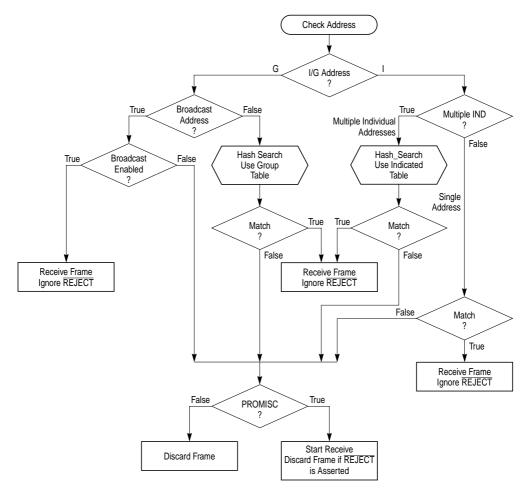


Figure 24-4. Ethernet Address Recognition Flowchart

In group address recognition, the controller determines whether the group address is a broadcast address. If broadcast addresses are enabled, the frame is accepted, but if the group address is not a broadcast address, address recognition can be performed on multiple group addresses using the GADDRn hash table. In promiscuous mode, the controller receives all incoming frames regardless of their address, unless REJECT is asserted.

If an external CAM is used for address recognition, select promiscuous mode; the frame can be rejected by asserting $\overline{\text{REJECT}}$ while the frame is being received. The on-chip address recognition functions can be used in addition to the external CAM address recognition functions.

If the external CAM stores addresses that should be rejected rather than accepted, the use of $\overline{\text{REJECT}}$ by the CAM should be logically inverted.

24.11 Hash Table Algorithm

Individual and group hash filtering operate using certain processes. The Ethernet controller maps any 48-bit address into one of 64 bins, each represented by a bit stored in GADDRx or IADDRx. When a SET GROUP ADDRESS command is executed, the Ethernet controller maps the selected 48-bit address into one of the 64 bits by passing the 48-bit address through the on-chip 32-bit CRC generator and selecting 6 bits of the CRC-encoded result to generate a number between 1 and 64. Bits 31-30 of the CRC result select one of the GADDRs or IADDRs; bits 29-26 of the CRC result indicate the bit in that register.

When the Ethernet controller receives a frame, the same process is used. If the CRC generator selects a bit that is set in the group/individual hash table, the frame is accepted. Otherwise, it is rejected. So, if eight group addresses are stored in the hash table and random group addresses are received, the hash table prevents roughly 56/64 (87.5%) of the group address frames from reaching memory. Frames that reach memory must be further filtered by the processor to determine if they contain one of the eight preferred addresses.

Better performance is achieved by using the group and individual hash tables simultaneously. For instance, if eight group and eight physical addresses are stored in their respective hash tables, 87.5% of all frames are prevented from reaching memory. The effectiveness of the hash table declines as the number of addresses increases. For instance, with 128 addresses stored in a 64-bin hash table, the vast majority of the hash table bits are set, thus preventing a small fraction of the frames from reaching memory.

Hash tables cannot be used to reject frames that match a set of entered addresses because unintended addresses are mapped to the same bit in the hash table.

24.12 Interpacket Gap Time

The receiver receives back-to-back frames with a minimum interpacket spacing of 9.6 μ s. In addition, after the backoff algorithm, the transmitter waits for carrier sense to be negated before resending the frame. Retransmission begins 9.6 μ s after carrier sense is negated if it stays negated for at least 6.4 μ s.

24.13 Handling Collisions

If a collision occurs as a frame is being sent, the Ethernet controller continues sending for at least 32 bit times, thus sending a JAM pattern of 32 ones. If a collision occurs during the preamble sequence, the JAM pattern is sent at the end of the sequence.

If a collision occurs within 64 byte times, the retry process is initiated. The transmitter waits a random number of slot times (512 bit times or 52 μ s). If a collision occurs after 64 byte times, no retransmission is performed and the buffer is closed with an LC error indication.

If a collision occurs while a frame is being received, reception stops. This error is reported only in the BD if the length of the frame exceeds MINFLR or if PSMR[RSH] = 1.

24.14 Internal and External Loopback

Both internal and external loopback are supported by the Ethernet controller. In loopback mode, both of the SCC FIFOs are used and the channel actually operates in a full-duplex fashion. Both internal and external loopback are configured using combinations of PSMR[LPB] and GSMR[DIAG]. Because of the full-duplex nature of the loopback operation, the performance of other SCCs is degraded.

Internal loopback disconnects the SCC from the serial interface. Receive data is connected to the transmit data and the receive clock is connected to the transmit clock. Both FIFOs are used. Data from the transmit FIFO is received immediately into the receive FIFO. There is no heartbeat check in this mode; configure TENA as a general-purpose output.

In external loopback operation, the Ethernet controller listens for data being received from the EEST at the same time that it is sending.

24.15 Full-Duplex Ethernet Support

To run full-duplex Ethernet, select loopback and full-duplex Ethernet modes in the SCC's protocol-specific mode register, (PSMR[LPB, FDE] = 1). The loopback mode tells the Ethernet controller to accept received frames without signaling a collision. Setting PSMR[FDE] tells the controller that it can send while receiving without waiting for a clear line (carrier sense).

24.16 Handling Errors in the Ethernet Controller

The Ethernet controller reports frame reception and transmission error conditions using channel BDs, error counters, and SCCE. Table 24-4 describes transmission errors.

Error	Description
Transmitter underrun	If this error occurs, the channel sends 32 bits that ensures a CRC error, stops sending the buffer, closes it, sets the UN bit in the TxBD and SCCE[TXE]. The channel resumes transmission after it receives a RESTART TRANSMIT command.
Carrier sense lost during frame transmission	When this error occurs and no collision is found in the frame, the channel sets the CSL bit in the TxBD, sets SCCE[TXE], and continues sending the buffer normally. No retries are performed after this error occurs. Carrier sense is the logical OR of RENA and CLSN.
Retransmission attempts limit expired	The channel stops sending the buffer, closes it, sets the RL bit in the TxBD and SCCE[TXE]. The channel resumes transmission after it receives a RESTART TRANSMIT command.
Late collision	When this error occurs, the channel stops sending the buffer, closes it, sets SCCE[TXE] and the LC bit in the TxBD. The channel resumes transmission after it receives the RESTART TRANSMIT command. This error is discussed further in the definition of PSMR[LCW].

Table 24-4. Transmission Errors

Error	Description
Heartbeat	Some transceivers have a heartbeat (signal-quality error) self-test. To signify a good self-test, the transceiver indicates a collision to the MPC8260 within 20 clocks after the Ethernet controller sends a frame. This heartbeat condition does not imply a collision error, but that the transceiver seems to be functioning properly. If SCCE[HBC] = 1 and the MPC8260 does not detect a heartbeat condition after sending a frame, a heartbeat error occurs; the channel closes the buffer, sets the HB bit in the TxBD, and generates the TXE interrupt if it is enabled.

Table 24-4. Transmission Errors (Continued)

Table 24-4 describes reception errors.

Table 24-5. Reception Errors

Error	Description
Overrun	The Ethernet controller maintains an internal FIFO for receiving data. When it overruns, the channel writes the received byte over the previously received byte. The previous byte and frame status are lost. The channel closes the buffer, sets RxBD[OV] and SCCE[RXF], and increments the discarded frame counter (DISFC). The receiver then enters hunt mode.
Busy	A frame was received and discarded because of a lack of buffers. The channel sets SCCE[BSY] and increments DISFC. The receiver then enters hunt mode.
Non-Octet Error (Dribbling Bits)	The Ethernet controller handles up to seven dribbling bits when the receive frame terminates nonoctet aligned. It checks the CRC of the frame on the last octet boundary. If there is a CRC error, a frame nonoctet aligned error is reported, SCCE[RXF] is set, and the alignment error counter is incremented. If there is no CRC error, no error is reported. The receiver then enters hunt mode.
CRC	When a CRC error occurs, the channel closes the buffer, sets SCCE[RXF] and CR in the RxBD, and increments the CRC error counter (CRCEC). After receiving a frame with a CRC error, the receiver enters hunt mode. CRC checking cannot be disabled, but CRC errors can be ignored if checking is not required.

24.17 Ethernet Mode Register (PSMR)

In Ethernet mode, the protocol-specific mode register (PSMR), shown in Figure 24-5, is used as the Ethernet mode register.

Bit	0	1	2	3	4	4 5		7	8	9	10	11	12	13	14	15
Field	HBC	FC	RSH	IAM	IAM CRC PRO BRO SBT LPB - LCW							NIB		FDE		
Reset		0000_0000_0000														
R/W		R/W														
Addr		0x11A08 (PSMR1); 0x11A28 (PSMR2); 0x11A48 (PSMR3); 0x11A68 (PSMR4)														

Figure 24-5. Ethernet Mode Register (PSMR)

Table 24-6 describes PSMR fields.

Bits	Name	Description							
0	HBC	 Heartbeat checking. 0 No heartbeat checking is performed. Do not wait for a collision after transmission. 1 Wait 20 transmit clocks or 2 μs for a collision asserted by the transceiver after transmission. The HB bit in the TxBD is set if the heartbeat is not heard within 20 transmit clocks. 							
1	FC	Force collision. Normal operation. The channel forces a collision when each frame is sent. To test collision logic configure the MPC8260 in loopback operation. In the end, the retry limit for each transmit frame is exceeded.							
2	RSH	Receive short frames. 0 Discard short frames that are not as long as MINFLR. 1 Receive short frames.							
3	IAM	Individual address mode. 0 Normal operation. A single 48-bit physical address in PADDR1 is checked when it is received. 1 The individual hash table is used to check all individual addresses that are received.							
4–5	CRC	CRC selection. Only CRC = 10 is valid. Complies with Ethernet specifications. 32-bit CCITT-CRC. X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + 1.							
6	PRO	Promiscuous. 0 Check the destination address of incoming frames. 1 Receive the frame regardless of its address unless REJECT is asserted as it is being received.							
7	BRO	Broadcast address. 0 Receive all frames containing the broadcast address. 1 Reject all frames containing the broadcast address, unless PRO = 1.							
8	SBT	 Stop backoff timer. 0 The backoff timer is functioning normally. 1 The backoff timer for the random wait after a collision is stopped when carrier sense is active. Retransmission is less aggressive than the maximum allowed in IEEE 802.3. The persistence (P_PER) feature in the parameter RAM can be used in combination with or in place of SBT. 							
9	LPB	 Local protect bit Receiver is blocked when transmitter sends (default). Receiver is not blocked when transmitter sends. Must be set for full-duplex operation. For loopback operation, GSMR[DIAG] must be programmed also; see Section 19.1.1, "The General SCC Mode Registers (GSMR1–GSMR4)." 							
10	-	Reserved. Should be cleared.							
11	LCW	Late collision window. 0 A late collision is any collision that occurs at least 64 bytes from the preamble. 1 A late collision is any collision that occurs at least 56 bytes from the preamble.							

Table 24-6. PSMR Field Descriptions

Bits	Name	Description
12–14	NIB	Number of ignored bits. Determines how soon after RENA assertion the Ethernet controller should begin looking for the start frame delimiter. Typically NIB = 101 (22 bits). 000 Begin searching 13 bits after the assertion of RENA. 001 Begin searching 14 bits after the assertion of RENA. 111 Begin searching 24 bits after the assertion of RENA.
15	FDE	Full duplex Ethernet. 0 Disable full-duplex Ethernet mode. 1 Enable full-duplex Ethernet mode. Note: When FDE = 1, PSMR[LPB] must be set also.

Table 24-6. PSMR Field Descriptions

24.18 SCC Ethernet Receive BD

The Ethernet controller uses the RxBD to report on the received data for each buffer.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	Е		w	I	L	F	-	М	-	_	LG	NO	SH	CR	OV	CL
Offset + 2		Data Length														
Offset + 4		Rx Data Buffer Pointer														
Offset + 6																

Figure 24-6. SCC Ethernet Receive RxBD

Table 24-7 describes RxBD status and control fields.

Table 24-7. SCC Ethernet Receive RxBD Status and Control Field Descriptions

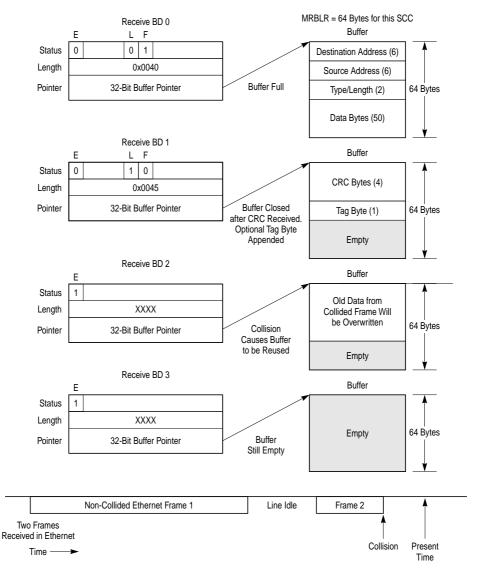

Bits	Name	Description
0	E	 Empty. 0 The buffer is full or stopped receiving data because an error occurred. The core can read or write any fields of this RxBD. The CPM does not use this BD as long as the E bit is zero. 1 The buffer is not full. The CPM controls this BD and its buffer; do not modify this BD.
1	-	Reserved, should be cleared.
2	w	 Wrap (final BD in table). 0 Not the last BD in the table. 1 Last BD in the table. After this buffer is used, the CPM receives incoming data into the first BD that RBASE points to. The number of BDs is determined only by the W bit and overall space constraints of the dual-port RAM.
3	I	Interrupt. Note that this bit does not mask SCCE[RXF] interrupts. 0 No SCCE[RXB] interrupt is generated after this buffer is used. 1 SCCE[RXB] or SCCE[RXF] is set when this buffer is used by the Ethernet controller. These two bits can cause interrupts if they are enabled.

Table 24-7. SCC Ethernet Receive RxBD Status and Control Field Descriptions (Continued)

Bits	Name	Description
4	L	Last in frame. The Ethernet controller sets this bit when this buffer is the last one in a frame, which occurs when the end of a frame is reached or an error is received. In the case of error, one or more of the CL, OV, CR, SH, NO, and LG bits are set. The Ethernet controller writes the number of frame octets to the data length field. 0 The buffer is not the last one in a frame. 1 The buffer is the last one in a frame.
5	F	First in frame. The Ethernet controller sets this bit when this buffer is the first one in a frame. 0 The buffer is not the first one in a frame. 1 The buffer is the first one in a frame.
6	-	Reserved, should be cleared.
7	М	 Miss. (valid only if L = 1) The Ethernet controller sets M for frames that are accepted in promiscuous mode, but are flagged as a miss by internal address recognition. Thus, in promiscuous mode, M determines whether a frame is destined for this station. 0 The frame is received because of an address recognition hit. 1 The frame is received because of promiscuous mode.
8–9	-	Reserved, should be cleared.
10	LG	Rx frame length violation. Set when a frame length greater than the maximum defined for this channel has been recognized. Only the maximum number of bytes allowed is written to the buffer.
11	NO	Rx nonoctet-aligned frame. Set when a frame containing a number of bits not divisible by eight is received. Also, the CRC check that occurs at the preceding byte boundary generated an error.
12	SH	Short frame. Set if a frame smaller than the minimum defined for this channel was recognized. Occurs if PSMR[RSH] = 1.
13	CR	Rx CRC error. set when a frame contains a CRC error.
14	OV	Overrun. Set when a receiver overrun occurs during frame reception.
15	CL	Collision. This frame is closed because a collision occurred during frame reception. CL is set only if a late collision occurs or if PSMR[RSH] is enabled. Late collisions are better defined in PSMR[LCW].

Data length and buffer pointer fields are described in Section 19.2, "SCC Buffer Descriptors (BDs)." Data length includes the total number of frame octets (including four bytes for CRC).

Figure 24-7 shows an example of how RxBDs are used in receiving.

24.19 SCC Ethernet Transmit Buffer Descriptor

Data is sent to the Ethernet controller for transmission on an SCC channel by arranging it in buffers referenced by the channel TxBD table. The Ethernet controller uses TxBDs to

Part IV. Communications Processor Module

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	R	PAD	w	Т	L	тс	DEF	HB	LC	RL		RC				CSL
Offset + 2		Data Length														
Offset + 4		Tx Data Buffer Pointer														
Offset + 6																

confirm transmission or indicate errors so the core knows buffers have been serviced.

Figure 24-8. SCC Ethernet TxBD

Table 24-8 describes TxBD status and control fields.

Table 24-8. SCC Ethernet Transmit TxBD Status and Control Field Descriptions

Bits	Name	Description
0	R	 Ready. 0 The buffer is not ready for transmission. The user can update this BD or its data buffer. The CPM clears R after the buffer has been sent or after an error occurs. 1 The user-prepared buffer has not been sent or is currently being sent. Do not modify this BD.
1	PAD	 Short frame padding. Valid only when L is set. Otherwise, it is ignored. 0 Do not add PADs to short frames. 1 Add PADs to short frames. Pad bytes are inserted until the length of the sent frame equals the MINFLR and they are stored in PADs in the parameter RAM.
2	w	 Wrap (final BD in table). 0 Not the last BD in the table. 1 Last BD in the table. After this buffer is used, the CPM receives incoming data into the first BD that TBASE points to in the table. The number of TxBDs in this table is determined only by the W bit and overall space constraints of the dual-port RAM. Note: The TxBD table must contain more than one BD in Ethernet mode.
3	I	Interrupt. 0 No interrupt is generated after this buffer is serviced. 1 SCCE[TXB] or SCCE[TXE] is set after this buffer is serviced. These bits can cause interrupts if they are enabled.
4	L	Last. 0 Not the last buffer in the transmit frame. 1 Last buffer in the transmit frame.
5	тс	 Tx CRC. Valid only when L = 1. Otherwise, it is ignored. 0 End transmission immediately after the last data byte. 1 Transmit the CRC sequence after the last data byte.
6	DEF	Defer indication. The frame was deferred before being sent successfully, that is, the transmitter had to wait for carrier sense before sending because the line was busy. This is not a collision indication; collisions are indicated in RC.
7	HB	Heartbeat. Set when the collision input was not asserted within 20 transmit clocks after transmission. HB cannot be set unless PSMR[HBC] = 1. The SCC writes HB after it finishes sending the buffer.
8	LC	Late collision. Set when a collision occurred after the number of bytes defined for PSMR[LCW] are sent. The Ethernet controller stops sending and writes this bit after it finishes sending the buffer.

Table 24-8. SCC Ethernet Transmit TxBD Status and Control Field Descriptions (Continued)

Bits	Name	Description
9	RL	Retransmission limit. Set when the transmitter fails (Retry Limit + 1) attempts to successfully transmit a message because of repeated collisions on the medium. The Ethernet controller writes this bit after it finishes attempting to send the buffer.
10–13	RC	Retry count. Indicates the number of retries required before the frame was sent successfully. If RC = 0, the frame was sent correctly the first time. If RC = 15 and RET_LIM = 15 in the parameter RAM, 15 retries were required. Because the counter saturates at 15, if RC = 15 and RET_LIM > 15, then 15 or more retries were required. The controller writes this field after it successfully sends the buffer.
14	UN	Underrun. Set when the Ethernet controller encounters a transmitter underrun while sending the buffer. The Ethernet controller writes UN after it finishes sending the buffer.
15	CSL	Carrier sense lost. Set when carrier sense is lost during frame transmission. The Ethernet controller writes CSL after it finishes sending the buffer.

Data length and buffer pointer fields are described in Section 19.2, "SCC Buffer Descriptors (BDs)."

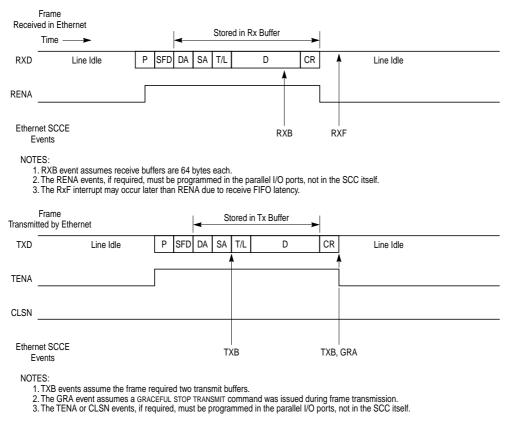
24.20 SCC Ethernet Event Register (SCCE)/Mask Register (SCCM)

The SCC event register (SCCE) is used as the Ethernet event register to generate interrupts and report events recognized by the Ethernet channel. When an event is recognized, the Ethernet controller sets the corresponding SCCE bit. Interrupts are enabled by setting, and masked by clearing, the equivalent bits in the Ethernet mask register (SCCM). SCCE bits are cleared by writing ones; writing zeros has no effect. All unmasked bits must be cleared before the CPM clears the internal interrupt request.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	– GRA – TXE RXF BSY TXB										RXB					
Reset		0000_0000_0000														
R/W		R/W														
Addr		0x11A10 (SCCE1); 0x11A30 (SCCE2); 0x11A50 (SCCE3); 0x11A70 (SCCE4) 0x11A14 (SCCM1); 0x11A34 (SCCM2); 0x11A54 (SCCM3); 0x11A74 (SCCM4)														

Figure 24-9. SCC Ethernet Event Register (SCCE)/Mask Register (SCCM)

Table 24-9 describes SCCE and SCCM fields.


Table 24-9. SCCE/SCCM Field Descriptions

Bits	Name	Description
0–7	-	Reserved, should be cleared.
8		Graceful stop complete. Set as soon the transmitter finishes any frame that was in progress when a GRACEFUL STOP TRANSMIT command was issued. It is set immediately if no frame was in progress.

Bits	Name	Description
9–10	-	Reserved, should be cleared.
11	TXE	Set when an error occurs on the transmitter channel.
12	RXF	Rx frame. Set when a complete frame has been received on the Ethernet channel.
13	BSY	Busy condition. Set when a frame is received and discarded due to a lack of buffers.
14	тхв	Tx buffer. Set when a buffer has been sent on the Ethernet channel.
15	RXB	Rx buffer. Set when a buffer that was not a complete frame was received on the Ethernet channel.

Table 24-9. SCCE/SCCM Field Descriptions (Continued)

Figure 24-10 shows an example of interrupts that can be generated in Ethernet protocol.

LEGEND:

P = Preamble, SFD = Start frame delimiter, DA and SA = Source/Destination address,

T/L = Type/Length, D = Data, CR = CRC bytes

Figure 24-10. Ethernet Interrupt Events Example

Note that the SCC status register (SCCS) cannot be used with the Ethernet protocol. The current state of the RENA and CLSN signals can be found in the parallel I/O ports.

24.21 SCC Ethernet Programming Example

The following is an initialization sequence for the SCC2 in Ethernet mode. The CLK3 pin is used for the Ethernet receiver and CLK4 is used for the transmitter.

- 1. Configure port D pins to enable TXD2 and RXD2. Set PPARD[27,28] and PDIRD[27] and clear PDIRD[28] and PSORD[27,28].
- 2. Configure ports C and D pins to enable TENA2 (RTS2), CLSN2 (CTS2) and RENA2 (CD2). Set PPARD[26], PPARC[12,13] and PDIRD[26] and clear PDIRC[12,13], PSORC[12,13] and PSORD[26].
- 3. Configure port C pins to enable CLK3 and CLK4. Set PPARC[28,29] and clear PDIRC[28,29] and PSORC[28,29].
- 4. Connect CLK3 to the SCC2 receiver and CLK4 to the transmitter using the CPM mux. Program CMXSCR[R2CS] to 0b110 and CMXSCR[T2CS] to 0b111.
- 5. Connect the SCC2 to the NMSI and clear CMXSCR[SC2].
- 6. Write RBASE and TBASE in the SCC2 parameter RAM to point to the RxBD and TxBD in the dual-port RAM. Assuming one RxBD at the beginning of the dual-port RAM and one TxBD following that RxBD, write RBASE with 0x0000 and TBASE with 0x0008.
- 7. Write 0x04A1_0000 to the CPCR to execute an INIT RX AND TX PARAMETERS command for this channel.
- 8. Clear CRCEC, ALEC, and DISFC for clarity.
- 9. Write PAD with 0x8888 for the PAD value.
- 10. Write RET_LIM with 0x000F.
- 11. Write MFLR with 0x05EE to make the maximum frame size 1518 bytes.
- 12. Write MINFLR with 0x0040 to make the minimum frame size 64 bytes.
- 13. Write MAXD1 and MAXD2 with 0x05F0 to make the maximum DMA count 1520 bytes.
- 14. Clear GADDR1-GADDR4. The group hash table is not used.
- 15. Write PADDR1_H with 0x0000, PADDR1_M with 0x0000, and PADDR1_L with 0x0040 to configure the physical address.
- 16. Clear P_PER. It is not used.
- 17. Clear IADDR1–IADDR4. The individual hash table is not used.
- 18. Clear TADDR_H, TADDR_M, and TADDR_L for clarity.
- 19. Initialize the RxBD and assume the Rx data buffer is at 0x0000_1000 in main memory. Write 0xB000 to RxBD[Status and Control], 0x0000 to RxBD[Data Length] (optional), and 0x0000_1000 to RxBD[Buffer Pointer].

- 20. Initialize the TxBD and assume the Tx data frame is at 0x0000_2000 in main memory and contains fourteen 8-bit characters (destination and source addresses plus the type field). Write 0xFC00 to TxBD[Status and Control], add PAD to the frame and generate a CRC. Then write 0x000D to TxBD[Data Length] and 0x0000_2000 to TxBD[Buffer Pointer].
- 21. Write 0xFFFF to the SCCE register to clear any previous events.
- 22. Write 0x001A to the SCCM register to enable the TXE, RXF, and TXB interrupts.
- 23. Write 0x0040_0000 to the SIU interrupt mask register low (SIMR_L) so the SMC1 can generate a system interrupt. Initialize SIU interrupt pending register low (SIPNR_L) by writing 0xFFF_FFFF to it.
- 24. Write 0x0000_0000 to GSMR_H2 to enable normal operation of all modes.
- 25. Write 0x1088_000C to the GSMR_L2 register to configure CTS (CLSN) and CD (RENA) to automatically control transmission and reception (DIAG bits) and the Ethernet mode. TCI is set to allow more setup time for the EEST to receive the MPC8260 transmit data. TPL and TPP are set for Ethernet requirements. The DPLL is not used with Ethernet. Note that the ENT and ENR are not enabled yet.
- 26. Write 0xD555 to the DSR.
- 27. Set the PSMR2 to 0x0A0A to configure 32-bit CRC, promiscuous mode, and begin searching for the start frame delimiter 22 bits after RENA2 (CD2).
- 28. Write 0x1088_003C to GSMR_L2 to enable the SCC2 transmitter and receiver. This additional write ensures that ENT and ENR are enabled last.

After 14 bytes and the 46 bytes of automatic pad (plus the 4 bytes of CRC) are sent, the TxBD is closed. Additionally, the receive buffer is closed after a frame is received. Any data received after 1520 bytes or a single frame causes a busy (out-of-buffers) condition because only one RxBD is prepared.

Chapter 25 SCC AppleTalk Mode

AppleTalk is a set of protocols developed by Apple Computer, Inc. to provide a LAN service between Macintosh computers and printers. Although AppleTalk can be implemented over a variety of physical and link layers, including Ethernet, AppleTalk protocols have been most closely associated with the LocalTalk physical and link-layer protocol, an HDLC-based protocol that runs at 230.4 kbps. In this manual, the term 'AppleTalk controller' refers to the support that the MPC8260 provides for LocalTalk protocol. The AppleTalk controller provides required frame synchronization, bit sequence, preamble, and postamble onto standard HDLC frames. These capabilities, with the use of the HDLC controller in conjunction with DPLL operation in FM0 mode, provide the proper connection formats to the LocalTalk bus.

25.1 Operating the LocalTalk Bus

A LocalTalk frame, shown in Figure , is basically a modified HDLC frame.

Sync	HDLC	Destination	Source	Control	Data	CRC-16	Closing	Abort
Sequence	Flags	Address	Address	Byte	(Optional)		Flag	Sequence
> 3 bits	2 or more bytes	1 byte	1 byte	1 byte	0-600 bytes	2 bytes	1 byte	12–18 ones

Figure 25-1. LocalTalk Frame Format

First, a synchronization sequence of more than three bits is sent. This sequence consists of at least one logical one bit (FM0 encoded) followed by two bit times or more of line idle with no particular maximum time specified. The idle time allows LocalTalk equipment to sense a carrier by detecting a missing clock on the line. The remainder of the frame is a typical half-duplex HDLC frame. Two or more flags are sent, allowing bit, byte, and frame delineation or detection. Two bytes of address, destination, and source are sent next, followed by a byte of control and 0–600 data bytes. Next, two bytes of CRC (the common 16-bit CRC-CCITT polynomial referenced in the HDLC standard protocol) are sent. The LocalTalk frame is then terminated by a flag and a restricted HDLC abort sequence. Then the transmitter's driver is disabled.

Part IV. Communications Processor Module

The control byte within the LocalTalk frame indicates the type of frame. Control byte values from 0x01-0x7F are data frames; control byte values from 0x80-0xFF are control frames. Four control frames are defined:

- ENQ—Enquiry
- ACK—Enquiry acknowledgment
- RTS-Request to send a data frame
- CTS-Clear to send a data frame

Frames are sent in groups known as dialogs, which are handled by the software. For instance, to transfer a data frame, three frames are sent over the network. An RTS frame (not to be confused with the RS-232 $\overline{\text{RTS}}$ pin) is sent to request the network, a CTS frame is sent by the destination node, and the data frame is sent by the requesting node. These three frames comprise one possible type of dialog. After a dialog begins, other nodes cannot start sending until the dialog is complete. Frames within a dialog are sent with a maximum interframe gap (IFG) of 200 μ s. Although the LocalTalk specification does not state it, there is also a minimum recommended IFG of 50 μ s. Dialogs must be separated by a minimum interdialog gap (IDG) of 400 μ s. In general, these gaps are implemented by the software.

Depending on the protocol, collisions should be encountered only during RTS and ENQ frames. Once frame transmission begins, it is fully sent, regardless of whether it collides with another frame. ENQ frames are infrequent and are sent only when a node powers up and enters the network. A higher-level protocol controls the uniqueness and transmission of ENQ frames.

In addition to the frame fields, LocalTalk requires that the frame be FM0 (differential Manchester space) encoded, which requires one level transition on every bit boundary. If the value to be encoded is a logical zero, FM0 requires a second transition in the middle of the bit time. The purpose of FM0 encoding is to avoid having to transmit clocking information on a separate wire. With FM0, the clocking information is present whenever valid data is present.

25.2 Features

The following list summarizes the features of the SCC in AppleTalk mode:

- Superset of the HDLC controller features
- FM0 encoding/decoding
- Programmable transmission of sync sequence
- Automatic postamble transmission
- Reception of sync sequence does not cause extra SCCE[DCC] interrupts
- Reception is automatically disabled while sending a frame
- Transmit-on-demand feature expedites frames
- Connects directly to an RS-422 transceiver

25.3 Connecting to AppleTalk

As shown in Figure , the MPC8260 connects to LocalTalk, and, using TXD, $\overline{\text{RTS}}$, and RXD, is an interface for the RS-422 transceiver. The RS-422, in turn, is an interface for the LocalTalk connector. Although it is not shown, a passive RC circuit is recommended between the transceiver and connector.

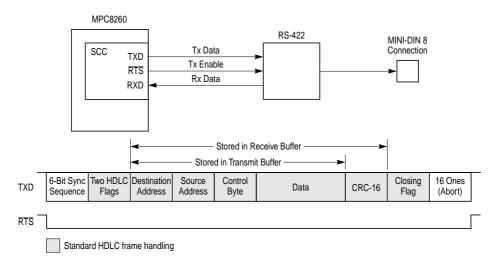


Figure 25-2. Connecting the MPC8260 to LocalTalk

The 16x overspeed of a 3.686-MHz clock can be generated from an external frequency source or from one of the baud rate generators if the resulting output frequency is close to a multiple of the 3.686 MHz frequency. The MPC8260 asserts $\overline{\text{RTS}}$ throughout the duration of the frame so that $\overline{\text{RTS}}$ can be used to enable the RS-422 transmit driver.

25.4 Programming the SCC in AppleTalk Mode

The AppleTalk controller is implemented by setting certain bits in the HDLC controller. Otherwise, Chapter 21, "SCC HDLC Mode," describes how to program the HDLC controller. Use GSMR, PSMR, or TODR to program the AppleTalk controller.

25.4.1 Programming the GSMR

Program the GSMR as described below:

- 1. Set MODE to 0b0010 (AppleTalk).
- 2. Set DIAG to 0b00 for normal operation, with $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ grounded or configured for parallel I/O. This causes $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ to be internally asserted to the SCC.
- 3. Set RDCR and TDCR to (0b10) a 16× clock.
- 4. Set the TENC and RENC bits to 0b010 (FM0).

- 5. Clear TEND for default operation.
- 6. Set TPP to 0b11 for a preamble pattern of all ones.
- 7. Set TPL to 0b000 to transmit the next frame with no synchronization sequence and to 001 to transmit the next frame with the LocalTalk synchronization sequence. For example, data frames do not require a preceding synchronization sequence. These bits may be modified on-the-fly if the AppleTalk protocol is selected.
- 8. Clear TINV and RINV so data will not be inverted.
- 9. Set TSNC to 1.5 bit times (0b10).
- 10. Clear EDGE. Both the positive and negative edges are used to change the sample point (default).
- 11. Clear RTSM (default).
- 12. Set all other bits to zero or default.
- 13. Set ENT and ENR as the last step to begin operation.

25.4.2 Programming the PSMR

Follow these steps to program the protocol-specific mode register:

- 1. Set NOF to 0b0001 giving two flags before frames (one opening flag, plus one additional flag).
- 2. Set CRC 16-bit CRC-CCITT.
- 3. Set DRT.
- 4. Set all other bits to zero or default.

For the PSMR definition, see Section 21.8, "HDLC Mode Register (PSMR)."

25.4.3 Programming the TODR

Use the transmit-on-demand (TODR) register to expedite a transmit frame. See Section 19.1.4, "Transmit-on-Demand Register (TODR)."

25.4.4 SCC AppleTalk Programming Example

Except for the previously discussed register programming, use the example in Section 21.14.6, "HDLC Bus Protocol Programming."

Chapter 26 Serial Management Controllers (SMCs)

The two serial management controllers (SMCs) are full-duplex ports that can be configured independently to support one of three protocols or modes—UART, transparent, or generalcircuit interface (GCI). Simple UART operation is used to provide a debug/monitor port in an application, which allows the SCCs to be free for other purposes. The SMC in UART mode is not as complex as that of the SCC in UART mode. The SMC clock can be derived from one of the internal baud rate generators or from an external clock signal. However, the clock should be a 16× clock.

In totally transparent mode, the SMC can be connected to a TDM channel (such as a T1 line) or directly to its own set of signals. The receive and transmit clocks are derived from the TDM channel, the internal baud rate generators, or from an external $1 \times$ clock. The transparent protocol allows the transmitter and receiver to use the external synchronization signal. The SMC in transparent mode is not as complex as that of the SCC in transparent mode.

Each SMC supports the C/I and monitor channels of the GCI bus, for which the SMC connects to a time-division multiplex (TDM) channel in a serial interface (SLx). SMCs support loopback and echo modes for testing. The SMC receiver and transmitter are double-buffered, corresponding to an effective FIFO size (latency) of two characters. Chapter 14, "Serial Interface with Time-Slot Assigner," describes GCI interface configuration.

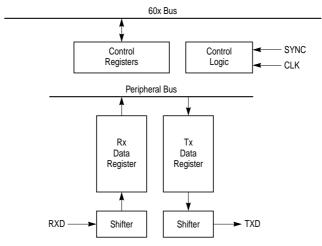


Figure 26-1. SMC Block Diagram

The receive data source can be L1RXD if the SMC is connected to a TDM channel of an SI*x*, or SMRXD if it is connected to the NMSI. The transmit data source can be L1TXD if the SMC is connected to a TDM or SMTXD if it is connected to the NMSI.

If the SMC is connected to a TDM, the SMC receive and transmit clocks can be independent from each other, as defined in Chapter 14, "Serial Interface with Time-Slot Assigner." However, if the SMC is connected to the NMSI, receive and transmit clocks must be connected to a single clock source (SMCLK), an internal signal name for a clock generated from the bank of clocks. SMCLK originates from an external signal or one of the four internal baud rate generators.

An SMC connected to a TDM derives a synchronization pulse from the TSA. An SMC connected to the NMSI using transparent protocol can use $\overline{\text{SMSYN}}$ for synchronization to determine when to start a transfer. $\overline{\text{SMSYN}}$ is not used when the SMC is in UART mode.

26.1 Features

The following is a list of the SMC's main features:

- Each SMC can implement the UART protocol on its own signals
- Each SMC can implement a totally transparent protocol on a multiplexed or nonmultiplexed line. This mode can also be used for a fast connection between MPC8260s.
- Each SMC channel fully supports the C/I and monitor channels of the GCI (IOM-2) in ISDN applications
- Two SMCs support the two sets of C/I and monitor channels in the SCIT channels 0 and 1

- Full-duplex operation
- Local loopback and echo capability for testing

26.2 Common SMC Settings and Configurations

The following sections describe settings and configurations that are common to the SMCs.

26.2.1 SMC Mode Registers (SMCMR1/SMCMR2)

The SMC mode registers (SMCMR1 and SMCMR2), shown in Figure 26-2, selects the SMC mode as well as mode-specific parameters. The functions of SMCMR[8–15] are the same for each protocol. Bits 0–7 vary according to protocol selected by the SM bits.

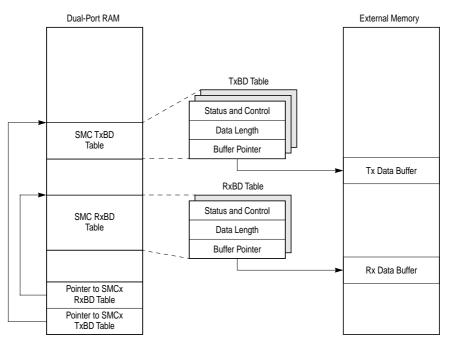
Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field: UART	—		CL	EN		SL	PEN	PM	_		S	М	D	М	TEN	REN
Transparent					-	BS	REVD									
GCI					ME	-	C#									
Reset		0000_0000_0000														
R/W	R/W															
Address	0x11A82 (SMCMR1), 0x11A92 (SMCMR2)															

Figure 26-2. SMC Mode Registers (SMCMR1/SMCMR2)

Table 26-1 describes SMCMR fields.

Т

Bits	Name	Description
0	-	Reserved, should be cleared.
1–4	CLEN	Character length (UART). Number of bits in the character minus one. The total is the sum of 1 (start bit always present) + number of data bits $(5-14)$ + number of parity bits $(0 \text{ or } 1)$ + number of stop bits $(1 \text{ or } 2)$. For example, for 8 data bits, no parity, and 1 stop bit, the total number of bits in the character is $1 + 8 + 0 + 1 = 10$. So, CLEN should be programmed to 9. Characters range from 5–14 bits. If the data bit length is less than 8, the msbs of each byte in memory are not used on transmit and are written with zeros on receive. If the length is more than 8, the msbs of each 16-bit word are not used on transmit and are written with zeros on receive. The character must not exceed 16 bits. For a 14-bit data length, set SL to one stop bit and disable parity. For a 13-bit data length with parity enabled, set SL to one stop bit. Writing values 0 to 3 to CLEN causes erratic behavior.
		Character length (transparent). The values 3–15 specify 4–16 bits per character. If a character is less than 8 bits, the most-significant bits of the byte in buffer memory are not used on transmit and are written with zeros on receive. If character length is more than 8 bits but less than 16, the most-significant bits of the half-word in buffer memory are not used on transmit and are written with zeros on receive. Using values 0–2 causes erratic behavior. Larger character lengths increase an SMC channel's potential performance and lowers the performance impact of other channels. For instance, using 16-rather than 8-bit characters is encouraged if 16-bit characters are acceptable in the end application.
		Character length (GCl). Number of bits in the C/I and monitor channels of the SCIT channels 0 or 1. (values 0–15 correspond to 1–16 bits) CLEN should be 13 for SCIT channel 0 or GCI (8 data bits, plus A and E bits, plus 4 C/I bits = 14 bits). It should be 15 for the SCIT channel 1 (8 data, bits, plus A and E bits, plus 6 C/I bits = 16 bits).
5	SL	Stop length. (UART) 0 One stop bit. 1 Two stop bits.
	-	Reserved, should be cleared. (transparent)
	ME	Monitor enable. (GCI) 0 The SMC does not support the monitor channel. 1 The SMC supports the monitor channel.
6	PEN	Parity enable. (UART) 0 No parity. 1 Parity is enabled for the transmitter and receiver as determined by the PM bit.
	BS	Byte sequence(transparent). Controls the byte transmission sequence if REVD is set for a character length greater than 8 bits. Clear BS to maintain behavior compatibility with MC68360 QUICC. 0 Normal mode. This should be selected if the character length is not larger than 8 bits. 1 Transmit lower address byte first.
	-	Reserved, should be cleared. (GCI)
7	PM	Parity mode. (UART) 0 Odd parity. 1 Even parity.
	REVD	Reverse data. (transparent) 0 Normal mode. 1 Reverse the character bit order. The msb is sent first.
	C#	SCIT channel number. (GCI) 0 SCIT channel 0 1 SCIT channel 1. Required for Siemens ARCOFI and SGS S/T chips.
8–9	_	Reserved, should be cleared.


Table 26-1. SMCMR1/SMCMR2 Field Descriptions

Bits	Name	Description
10–11	SM	SMC mode. 00 GCI or SCIT support. 01 Reserved. 10 UART (must be selected for SMC UART operation). 11 Totally transparent operation.
12–13	DM	Diagnostic mode. 00 Normal operation. 01 Local loopback mode. 10 Echo mode. 11 Reserved.
14	TEN	SMC transmit enable. 0 SMC transmitter disabled. 1 SMC transmitter enabled.
15	REN	SMC receive enable. 0 SMC receiver disabled. 1 SMC receiver enabled.

Table 26-1. SMCMR1/SMCMR2 Field Descriptions (Continued)

26.2.2 SMC Buffer Descriptor Operation

In UART and transparent modes, the SMC's memory structure is like the SCC's, except that SMC-associated data is stored in buffers. Each buffer is referenced by a BD and organized in a BD table located in the dual-port RAM. See Figure 26-3.

The BD table allows buffers to be defined for transmission and reception. Each table forms a circular queue. The CP uses BDs to confirm reception and transmission so that the processor knows buffers have been serviced. The data resides in external or internal buffers.

When SMCs are configured to operate in GCI mode, their memory structure is predefined to be one half-word long for transmit and one half-word long for receive. For more information on these half-word structures, see Section 26.5, "The SMC in GCI Mode."

26.2.3 SMC Parameter RAM

The CP accesses each SMC's parameter table using a user-programmed pointer (SMCx_BASE) located in the parameter RAM; see Section 13.5.2, "Parameter RAM." Each SMC parameter RAM table can be placed at any 64-byte aligned address in the dual-port RAM's general-purpose area (banks #1–#8). The protocol-specific portions of the SMC parameter RAM are discussed in the sections that follow. The SMC parameter RAM shared by the UART and transparent protocols is shown in Table 26-2. Parameter RAM for GCI protocol is described in Table 26-17.

Table 26-2. SMC UART and Transparent Parameter RAM Memory Map

Offset 1	Name	Width	Description
0x00	RBASE	Hword	RxBDs and TxBDs base address. (BD table pointer) Define starting points in the dual-
0x02	TBASE	Hword	port RAM of the set of BDs for the SMC send and receive functions. They allow flexible partitioning of the BDs. By selecting RBASE and TBASE entries for all SMCs and by setting W in the last BD in each list, BDs are allocated for the send and receive side of every SMC. Initialize these entries before enabling the corresponding channel. Configuring BD tables of two enabled SMCs to overlap causes erratic operation. RBASE and TBASE should be a multiple of eight.
0x04	RFCR	Byte	Rx/Tx function code. The two SMC channels have four RFCRs for receive data buffers
0x05	TFCR	Byte	and four TFCRs for transmit data buffers. See Section 26.2.3.1, "SMC Function Code Registers (RFCR/TFCR)."
0x06	MRBLR	Hword	Maximum receive buffer length. The most bytes the MPC8260 writes to a receive buffer before moving to the next buffer. It can write fewer bytes than MRBLR if a condition like an error or end-of-frame occurs, but it cannot exceed MRBLR. MPC8260 buffers should not be smaller than MRBLR. SMC transmit buffers are unaffected by MRBLR. Transmit buffers can be individually given varying lengths through the data length field. MRBLR can be changed while an SMC is operating only if it is done in a single bus cycle with one 16-bit move (not two 8-bit bus cycles back-to-back). This occurs when the CP shifts control to the next RxBD, so the change does not take effect immediately. To guarantee the exact RxBD on which the change occurs, change MRBLR only while the SMC receiver is disabled. MRBLR should be greater than zero and should be even if character length exceeds 8 bits.
0x08	RSTATE	Word	Rx internal state. ² Can be used only by the CP.
0x0C	-	Word	Rx internal data pointer. ² Updated by the SDMA channels to show the next address in the buffer to be accessed.
0x10	RBPTR	Hword	RxBD pointer. Points to the next BD for each SMC channel that the receiver transfers data to when it is in idle state, or to the current BD during frame processing. After a reset or when the end of the BD table is reached, the CP initializes RBPTR to the value in RBASE. Most applications never need to write RBPTR, but it can be written when the receiver is disabled or when no receive buffer is in use.

Table 26-2. SMC UART and Transparent Parameter RAM Memory M	Map	(Continued)
---	-----	-------------

Offset 1	Name	Width	Description
0x12	-	Hword	Rx internal byte count. ² A down-count value initialized with the MRBLR value and decremented with every byte the SDMA channels write.
0x14	_	Word	Rx temp ² Can be used only by the CP.
0x18	TSTATE	Word	Tx internal state. ² Can be used only by the CP.
0x1C	_	Word	Tx internal data pointer. ² Updated by the SDMA channels to show the next address in the buffer to be accessed.
0x20	TBPTR	Hword	TxBD pointer. Points to the next BD for each SMC channel the transmitter transfers data from when it is in idle state or to the current BD during frame transmission. After reset or when the end of the table is reached, the CP initializes TBPTR to the TBASE value. Most applications never need to write TBPTR, but it can be written when the transmitter is disabled or when no transmit buffer is in use. For instance, after a STOP TRANSMIT or GRACEFUL STOP TRANSMIT command is issued and the frame completes its transmission.
0x22	_	Hword	Tx internal byte count. ² A down-count value initialized with the TxBD data length and decremented with every byte the SDMA channels read.
0x24	_	Word	Tx temp. ² Can be used only by the CP.
0x28	MAX_IDL	Hword	Maximum idle characters. (UART protocol-specific parameter) When a character is received on the line, the SMC starts counting idle characters received. If MAX_IDL idle characters arrive before the next character, an idle time-out occurs and the buffer closes, which sends an interrupt request to the core to receive data from the buffer. MAX_IDL demarcates frames in UART mode. Clearing MAX_IDL disables the function so the buffer never closes, regardless of how many idle characters are received. An idle character is calculated as follows: 1 + data length (5 to 14) + 1 (if parity bit is used) + number of stop bits (1 or 2). For example, for 8 data bits, no parity, and 1 stop bit, character length is 10 bits.
0x2A	IDLC	Hword	Temporary idle counter. (UART protocol-specific parameter) Down-counter in which the CP stores the current idle counter value in the MAX_IDL time-out process.
0x2C	BRKLN	Hword	Last received break length. (UART protocol-specific parameter) Holds the length of the last received break character sequence measured in character units. For example, if the receive signal is low for 20 bit times and the defined character length is 10 bits, BRKLN = 0x002, indicating that the break sequence is at least 2 characters long. BRKLN is accurate to within one character length.
0x2E	BRKEC	Hword	Receive break condition counter. (UART protocol-specific parameter) Counts break conditions on the line. A break condition may last for hundreds of bit times, yet BRKEC increments only once during that period.
0x30	BRKCR	Hword	Break count register (transmit). (UART protocol-specific parameter) Determines the number of break characters the UART controller sends. Set when the SMC sends a break character sequence after a STOP TRANSMIT command. For 8 data bits, no parity, 1 stop bit, and 1 start bit, each break character is 10 zeros.
0x32	R_MASK	Hword	Temporary bit mask. (UART protocol-specific parameter)
0x34	_	Word	SDMA Temp

¹From the pointer value programmed in SMCx_BASE: SMC1_BASE at 0x87FC, SMC2_BASE at IMMR + 0x88FC. ²Not accessed for normal operation. May hold helpful information for experienced users and for debugging.

To extract data from a partially full receive buffer, issue a CLOSE RXBD command.

Certain parameter RAM values must be initialized before the SMC is enabled. Other values are initialized or written by the CP. Once values are initialized, software typically does not need to update them because activity centers mostly around transmit and receive BDs rather than parameter RAM. However, note the following:

- Parameter RAM can be read at any time.
- Values that pertain to the SMC transmitter can be written only if SMCMR[TEN] is zero or between the STOP TRANSMIT and RESTART TRANSMIT commands.
- Values for the SMC receiver can be written only when SMCMR[REN] is zero, or, if the receiver is previously enabled, after an ENTER HUNT MODE command is issued but before the CLOSE RXBD command is issued and REN is set.

26.2.3.1 SMC Function Code Registers (RFCR/TFCR)

Each SMC channel has four receive buffers (RFCRn) and four transmit buffers (TFCRn). The function code registers contain the transaction specification associated with SDMA channel accesses to external memory. Figure 26-4 shows the register format.

Bit	0	1	2	3	4	5	6	7
Field			GBL	BO		TC2	DTB	-
R/W				R/	W	•		
Address		SMC base + 0x04 (RFCR)/SMC base + 0x05 (TFCR)						

Figure 26-4. SMC Function Code Registers (RFCR/TFCR)

Table 26-3 describes FCR fields.

Bit	Name	Description
0–1	-	Reserved, should be cleared.
2	GBL	Global access bit 0 Disable memory snooping 1 Enable memory snooping
3–4	BO	 Byte ordering. Selects byte ordering of the data buffer. 00 The DEC/Intel convention (swapped operation or little-endian). The transmission order of bytes within a buffer word is opposite of Motorola mode. (32-bit port size memory only). 01 PowerPC little-endian. As data is sent onto the serial line from the buffer, the LSB of the buffer double word contains data to be sent earlier than the MSB of the same double word. 1x Motorola (big-endian) byte ordering (normal operation). As data is sent onto the serial line from the buffer, the MSB of the buffer word contains data to be sent earlier than the LSB of the same word.
5	TC2	Transfer code 2. Contains the transfer code value of TC[2], used during this SDMA channel memory access. TC[0–1] is driven with a 0b11 to identify this SDMA channel access as a DMA-type access.
6	DTB	Data bus indicator. 0 Use 60x bus for SDMA operation. 1 Use local bus for SDMA operation.
7	-	Reserved, should be cleared.

26.2.4 Disabling SMCs On-the-Fly

An SMC can be disabled and reenabled later by ensuring that buffers are closed properly and new data is transferred to or from a new buffer. Such a sequence is required if the parameters to be changed are not dynamic. If the register or bit description states that dynamic changes are allowed, the sequences need not be followed and the register or bits may be changed immediately.

Note that the SMC does not have to be fully disabled for parameter RAM to be modified. Table 26-2 describes when parameter RAM values can be modified. To disable all SCCs, SMCs, the SPI, and the I^2C , use the CPCR to reset the CPM with a single command.

26.2.4.1 SMC Transmitter Full Sequence

Follow these steps to fully enable or disable the SMC transmitter:

- 1. If the SMC is sending data, issue a STOP TRANSMIT command to stop transmission smoothly. If the SMC is not sending, if TBPTR is overwritten, or if an INIT TX PARAMETERS command is executed, this command is not required.
- 2. Clear SMCMR[TEN] to disable the SMC transmitter and put it in reset state.
- 3. Update SMC transmit parameters, including the parameter RAM. To switch protocols or reinitialize parameters, issue an INIT TX PARAMETERS command.
- 4. Issue a RESTART TRANSMIT if an INIT TX PARAMETERS was issued in step 3.
- 5. Set SMCMR[TEN]. Transmission now begins using the TxBD that the TBPTR value pointed to as soon as the R bit is set in the TxBD.

26.2.4.2 SMC Transmitter Shortcut Sequence

This shorter sequence reinitializes transmit parameters to the state they had after reset.

- 1. Clear SMCMR[TEN].
- 2. Issue an INIT TX PARAMETERS command and make any additional changes.
- 3. Set SMCMR[TEN].

26.2.4.3 SMC Receiver Full Sequence

Follow these steps to fully enable or disable the receiver:

- 1. Clear SMCMR[REN]. Reception is aborted immediately, which disables the SMC receiver and puts it in a reset state.
- 2. Modify SMC receive parameters, including parameter RAM. To switch protocols or reinitialize SMC receive parameters, issue an INIT RX PARAMETERS command.
- 3. Issue a CLOSE RXBD command if INIT RX PARAMETERS was not issued in step 2.
- 4. Set SMCMR[REN]. Reception immediately uses the RxBD that RBPTR pointed to if E is set in the RxBD.

26.2.4.4 SMC Receiver Shortcut Sequence

This shorter sequence reinitializes receive parameters to their state after reset.

- 1. Clear SMCMR[REN].
- 2. Issue an INIT RX PARAMETERS command and make any additional changes.
- 3. Set SMCMR[REN].

26.2.4.5 Switching Protocols

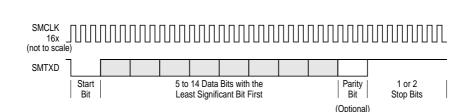
To switch the protocol that the SMC is executing without resetting the board or affecting any other SMC, use one command and follow these steps:

- 1. Clear SMCMR[REN] and SMCMR[TEN].
- 2. Issue an INIT TX AND RX PARAMETERS COMMAND to initialize transmit and receive parameters. Make any additional SMCMR changes.
- 3. Set SMCMR[REN, TEN]. The SMC is now enabled with the new protocol.

26.2.5 Saving Power

When SMCMR[TEN, REN] are cleared, the SMC consumes little power.

26.2.6 Handling Interrupts in the SMC


Follow these steps to handle an interrupt in the SMC:

- 1. Once an interrupt occurs, read SMCE to identify the interrupt source. The SMCE bits are usually cleared at this time.
- 2. Process the TxBD to reuse it if SMCE[TXB] is set. Extract data from the RxBD if SMCE[RXB] is set. To send another buffer, set TxBD[R].
- 3. Execute the **rfi** instruction.

26.3 SMC in UART Mode

SMCs generally offer less functionality and performance in UART mode than do SCCs, which makes them more suitable for simpler debug/monitor ports instead of full-featured UARTs. SMCs do not support the following features in UART mode.

- $\overline{\text{RTS}}$, $\overline{\text{CTS}}$, and $\overline{\text{CD}}$ signals
- Receive and transmit sections clocked at different rates
- Fractional stop bits
- Built-in multidrop modes
- Freeze mode for implementing flow control
- Isochronous operation (1× clock)
- Interrupts on special control character reception
- Ability to transmit data on demand using the TODR
- SCCS register to determine idle status of the receive signal
- Other features for the SCCs as described in the GSMR

However, SMCs allow a data length of up to 14 bits; SCCs support up to 8 bits.

26.3.1 Features

The following list summarizes the main features of the SMC in UART mode:

- Flexible message-oriented data structure
- Programmable data length (5–14 bits)
- Programmable 1 or 2 stop bits
- Even/odd/no parity generation and checking
- Frame error, break, and idle detection
- Transmit preamble and break sequences
- Received break character length indication
- Continuous receive and transmit modes

26.3.2 SMC UART Channel Transmission Process

The UART transmitter is designed to work with almost no intervention from the core. When the core enables the SMC transmitter, it starts sending idles. The SMC immediately polls the first BD in the transmit channel BD table and once every character time after that, depending on character length. When there is a message to transmit, the SMC fetches data from memory and starts sending the message.

When a BD data is completely written to the transmit FIFO, the SMC writes the message status bits into the BD and clears R. An interrupt is issued if the I bit in the BD is set. If the next TxBD is ready, the data from its buffer is appended to the previous data and sent over the transmit signal without any gaps between buffers. If the next TxBD is not ready, the SMC starts sending idles and waits for the next TxBD to be ready.

By appropriately setting the I bit in each BD, interrupts can be generated after each buffer, a specific buffer, or each block is sent. The SMC then proceeds to the next BD. If the CM bit is set in the TxBD, the R bit is not cleared, allowing a buffer to be automatically resent next time the CP accesses this buffer. For instance, if a single TxBD is initialized with the CM and W bits set, the buffer is sent continuously until R is cleared in the BD.

26.3.3 SMC UART Channel Reception Process

When the core enables the SMC receiver, it enters hunt mode and waits for the first character. The CP then checks the first RxBD to see if it is empty and starts storing characters in the buffer. When the buffer is full or the MAX_IDL timer expires (if enabled), the SMC clears the E bit in the BD and generates an interrupt if the I bit in the BD is set. If incoming data exceeds the buffer's length, the SMC fetches the next BD, and, if it is empty, continues transferring data to this BD's buffer. If CM is set in the RxBD, the E bit is not cleared, so the CP can overwrite this buffer on its next access.

26.3.4 Programming the SMC UART Controller

UART mode is selected by setting SMCMR[SM] to 0b10. See Section 26.2.1, "SMC Mode Registers (SMCMR1/SMCMR2)." UART mode uses the same data structure as other modes. This structure supports multibuffer operation and allows break and preamble sequences to be sent. Overrun, parity, and framing errors are reported via the BDs. At its simplest, the SMC UART controller functions in a character-oriented environment, whereas each character is sent with the selected stop bits and parity. They are received into separate 1-byte buffers. A maskable interrupt can be generated when each buffer is received.

Many applications can take advantage of the message-oriented capabilities that the SMC UART supports through linked buffers for sending or receiving. Data is handled in a message-oriented environment, so entire messages can be handled instead of individual characters. A message can span several linked buffers; each one can be sent and received as a linked list of buffers without core intervention, which simplifies programming and saves processor overhead. In a message-oriented environment, an idle sequence is used as the message delimiter. The transmitter can generate an idle sequence before starting a new message and the receiver can close a buffer when an idle sequence is found.

26.3.5 SMC UART Transmit and Receive Commands

Table 26-4 describes transmit commands issued to the CPCR.

Command	Description
STOP TRANSMIT	Disables transmission of characters on the transmit channel. If the SMC UART controller receives this command while sending a message, it stops sending. The SMC UART controller finishes sending any data that has already been sent to its FIFO and shift register and then stops sending data. The TBPTR is not advanced when this command is issued. The SMC UART controller sends a programmable number of break sequences and then sends idles. The number of break sequences, which can be zero, should be written to the BRKCR before this command is issued to the SMC UART controller.
RESTART TRANSMIT	Enables characters to be sent on the transmit channel. The SMC UART controller expects it after disabling the channel in its SMCMR and after issuing the STOP TRANSMIT command. The SMC UART controller resumes transmission from the current TBPTR in the channel's TxBD table.
INIT TX PARAMETERS	Initializes transmit parameters in this serial channel's parameter RAM to their reset state and should only be issued when the transmitter is disabled. The INIT TX and RX PARAMETERS command can also be used to reset the transmit and receive parameters.

Table 26-4. Transmit Commands

Table 26-5 describes receive commands issued to the CPCR.

Command	ommand Description			
ENTER HUNT MODE	Use the CLOSE RXBD command instead ENTER HUNT MODE for an SMC UART channel.			
CLOSE RXBD	Forces the SMC to close the current receive BD if it is currently being used and to use the next BD in the list for any subsequently received data. If the SMC is not receiving data, no action is taken.			
INIT RX PARAMETERS	Initializes receive parameters in this serial channel parameter RAM to reset state. Issue it only if the receiver is disabled. INIT TX AND RX PARAMETERS resets both receive and transmit parameters.			

Table 26-5. Receive Commands

26.3.6 Sending a Break

A break is an all-zeros character without stop bits. It is sent by issuing a STOP TRANSMIT command. After sending any outstanding data, the SMC sends a character of consecutive zeros, the number of which is the sum of the character length, plus the number of start, parity, and stop bits. The SMC sends a programmable number of break characters according to BRKCR and then reverts to idle or sends data if a RESTART TRANSMIT is issued before completion. When the break completes, the transmitter sends at least one idle character before sending any data to guarantee recognition of a valid start bit.

26.3.7 Sending a Preamble

A preamble sequence provides a way to ensure that the line is idle before a new message transfer begins. The length of the preamble sequence is constructed of consecutive ones that are one-character long. If the preamble bit in a BD is set, the SMC sends a preamble sequence before sending that buffer. For 8 data bits, no parity, 1 stop bit, and 1 start bit, a preamble of 10 ones would be sent before the first character in the buffer. If no preamble sequence is sent, data from two ready transmit buffers can be sent on the transmit signal with no delay between them.

26.3.8 Handling Errors in the SMC UART Controller

The SMC UART controller reports character reception error conditions via the channel BDs and the SMCE. The SMC UART controller has no transmission errors.

Error	Description
Overrun	The SMC maintains a two-character length FIFO for receiving data. Data is moved to the buffer after the first character is received into the FIFO; if a receiver FIFO overrun occurs, the channel writes the received character into the internal FIFO. It then writes the character to the buffer, closes it, sets the OV bit in the BD, and generates the RXB interrupt if it is enabled. Reception then resumes as normal. Overrun errors that occasionally occur when the line is idle can be ignored.
Parity	The channel writes the received character to the buffer, closes it, sets the PR bit in the BD, and generates the RXB interrupt if it is enabled. Reception then resumes as normal.
Idle Sequence Receive	An idle is found when a character of all ones is received, at which point the channel counts consecutive idle characters. If the count reaches MAX_IDL, the buffer is closed and an RXB interrupt is generated. If no receive buffer is open, this does not generate an interrupt or any status information. The idle counter is reset each time a character is received.

Table 26-6. SMC UART Errors

Error	Description
Framing	The SMC received a character with no stop bit. When it occurs, the channel writes the received character to the buffer, closes the buffer, sets FR in the BD, and generates the RXB interrupt if it is enabled. When this error occurs, parity is not checked for the character.
Break Sequence	The SMC receiver received an all-zero character with a framing error. The channel increments BRKEC, generates a maskable BRK interrupt in SMCE, measures the length of the break sequence, and stores this value in BRKLN. If the channel was processing a buffer when the break was received, the buffer is closed with the BR bit in the RxBD set. The RXB interrupt is generated if it is enabled.

Table 26-6. SMC UART Errors (Continued)

26.3.9 SMC UART RxBD

Using the BDs, the CP reports information about the received data on a per-buffer basis. Then it closes the current buffer, generates a maskable interrupt, and starts receiving data into the next buffer after one of the following occurs:

- An error is received during message processing
- A full receive buffer is detected
- A programmable number of consecutive idle characters are received

Figure 26-6 shows the format of the SMC UART RxBD.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	Е	_	w	I	-	_	СМ	ID	-	_	BR	FR	PR	_	OV	-
Offset + 2		Data Length														
Offset + 4		Rx Data Buffer Pointer														
Offset + 6																

Figure 26-6. SMC UART RxBD

Table 26-7 describes RxBD fields.

Bit	Name	Description
0	E	 Empty. 0 The buffer is full or data reception stopped due to an error. The core can read or write any fields of this RxBD. The CP does not use this BD while E is zero. 1 The buffer is empty or reception is in progress. This RxBD and its buffer are owned by the CP. Once E is set, the core should not write any fields of this RxBD.
1	-	Reserved, should be cleared.
2	w	 Wrap (last BD in RxBD table). 0 Not the last BD in the table. 1 Last BD in the table. After this buffer is used, the CP receives incoming data into the first BD that RBASE points to in the table. The number of RxBDs in this table is determined only by the W bit and overall space constraints of the dual-port RAM.
3	I	Interrupt. 0 No interrupt is generated after this buffer is filled. 1 The SMCE[RXB] is set when this buffer is completely filled by the CP, indicating the need for the core to process the buffer. RXB can cause an interrupt if it is enabled.

Bit	Name	Description
4–5	-	Reserved, should be cleared.
6	СМ	 Continuous mode. 0 Normal operation. 1 The CP does not clear the E bit after this BD is closed, allowing the CP to automatically overwrite the buffer when it next accesses the BD. However, E is cleared if an error occurs during reception, regardless of how CM is set.
7	ID	Buffer closed on reception of idles. Set when the buffer has closed because a programmable number of consecutive idle sequences is received. The CP writes ID after received data is in the buffer.
8–9	-	Reserved, should be cleared.
10	BR	Buffer closed on reception of break. Set when the buffer closes because a break sequence was received. The CP writes BR after the received data is in the buffer.
11	FR	Framing error. Set when a character with a framing error is received and located in the last byte of this buffer. A framing error is a character with no stop bit. A new receive buffer is used to receive additional data. The CP writes FR after the received data is in the buffer.
12	PR	Parity error. Set when a character with a parity error is received in the last byte of the buffer. A new buffer is used for additional data. The CP writes PR after received data is in the buffer.
13	-	Reserved, should be cleared.
14	OV	Overrun. Set when a receiver overrun occurs during reception. The CP writes OV after the received data is in the buffer.
15	-	Reserved, should be cleared.

Table 26-7. SMC UART RxBD Field Descriptions (Continued)

Data length represents the number of octets the CP writes into the buffer. After data is received in buffer, the CP only writes them once as the BD closes. Note that the memory allocated for this buffer should be no smaller than MRBLR. The Rx data buffer pointer points to the first location of the buffer and must be even. The buffer can be in internal or external memory. Figure 26-7 shows the UART RxBD process, showing RxBDs after they receive 10 characters, an idle period, and five characters (one with a framing error). The example assumes that MRBLR = 8.

Part IV. Communications Processor Module

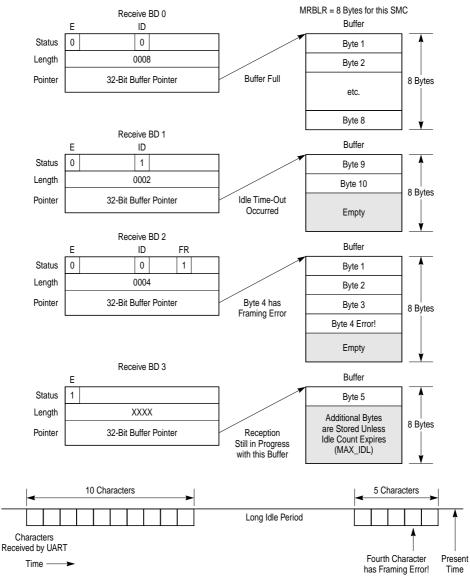


Figure 26-7. RxBD Example

26.3.10 SMC UART TxBD

Data is sent to the CP for transmission on an SMC channel by arranging it in buffers referenced by the channel TxBD table. Using the BDs, the CP confirms transmission or indicates error conditions so that the processor knows the buffers have been serviced.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	R	-	w	I	-	_	СМ	Р	_							
Offset + 2	2	Data Length														
Offset + 4	ł	Tx Data Buffer Pointer														
Offset + 6	;															

Figure 26-8. SMC UART TxBD

Table 26-8 describes SMC UART TxBD fields.

Table 26-8. SMC UART TxBD Field Descriptions

Bits	Name	Description
0	R	 Ready 0 The buffer is not ready for transmission; BD and its buffer can be altered. The CP clears R after the buffer has been sent or an error occurs. 1 The buffer has not been completely sent. This BD cannot updated while R is set.
1	-	Reserved, should be cleared.
2	w	 Wrap (final BD in the TxBD table) 0 Not the last BD in the table. 1 Last BD in the table. After this buffer is used, the CP receives incoming data into the first BD that TBASE points to. The number of TxBDs in this table is determined only by the W bit and overall space constraints of the dual-port RAM.
3	1	Interrupt 0 No interrupt is generated after this buffer is serviced. 1 The SMCE[TXB] is set when this buffer is serviced. TXB can cause an interrupt if it is enabled.
4–5	-	Reserved, should be cleared.
6	СМ	Continuous mode 0 Normal operation. 1 The CP does not clear R after this BD is closed and automatically retransmits the buffer when it accesses this BD next.
7	Ρ	 Preamble 0 No preamble sequence is sent. 1 The UART sends one all-ones character before it sends the data so that the other end detects an idle line before the data is received. If this bit is set and the data length of this BD is zero, only a preamble is sent.
8–15	—	Reserved, should be cleared.

Data length represents the number of octets that the CP should transmit from this BD data buffer. However, it is never modified by the CP and normally is greater than zero. It can be zero if P is set and only a preamble is sent. If there are more than 8 bits in the UART character, data length should be even. For example, to transmit three UART characters of 8-bit data, 1 start, and 1 stop, initialize the data length field to 3. To send three UART characters of 9-bit data, 1 start, and 1 stop, the data length field should 6, because the three 9-bit data fields occupy three half words in memory (the 9 least-significant bits of each half word).

Tx data buffer pointer points to the first location of the buffer. It can be even or odd, unless the number of data bits in the UART character is greater than 8 bits. Then the buffer pointer

Part IV. Communications Processor Module

must be even. For instance, the pointer to 8-bit data, 1 start, and 1 stop characters can be even or odd, but the pointer to 9-bit data, 1 start, and 1 stop characters must be even. The buffer can reside in internal or external memory.

26.3.11 SMC UART Event Register (SMCE)/Mask Register (SMCM)

The SMC event register (SMCE) generates interrupts and report events recognized by the SMC UART channel. When an event is recognized, the SMC UART controller sets the corresponding SMCE bit. Bits are cleared by writing a 1; writing 0 has no effect. The SMC mask register (SMCM) has the same bit format as SMCE. Setting an SMCM bit enables, and clearing it disables, the corresponding interrupt. All unmasked bits must be cleared before the CP clears the internal interrupt request.

Bit	0	1	2	3	4	5	6	7
Field	_	BRKE	-	BRK	_	BSY	ТХВ	RXB
Reset		0						
R/W		R/W						
Address	(0x11A86 (SMCE1), 0x11A96 (SMCE2)/ 0x11A8A (SMCM1), 0x11A9A (SMCM2)						

Figure 26-9. SMC UART Event Register (SMCE)/Mask Register (SMCM)

Table 26-9 describes SMCE/SMCM fields.

Bits	Name	Description
0	-	Reserved, should be cleared.
1	BRKE	Break end. Set no sooner than after one idle bit is received after the break sequence.
2	-	Reserved, should be cleared.
3	BRK	Break character received. Set when a break character is received. If a very long break sequence occurs, this interrupt occurs only once after the first all-zeros character is received.
4	-	Reserved, should be cleared.
5	BSY	Busy condition. Set when a character is received and discarded due to a lack of buffers. Set no sooner than the middle of the last stop bit of the first receive character for which there is no available buffer. Reception resumes when an empty buffer is provided.
6	ТХВ	Tx buffer. Set when the transmit data of the last character in the buffer is written to the transmit FIFO. Wait two character times to ensure that data is completely sent over the transmit signal.
7	RXB	Rx buffer. Set when a buffer is received and its associated RxBD is closed. Set no sooner than the middle of the last stop bit of the last character that is written to the receive buffer.

Table 26-9. SMCE/SMCM Field Descriptions

Figure 26-10 shows an example of the timing of various events in the SMCE.

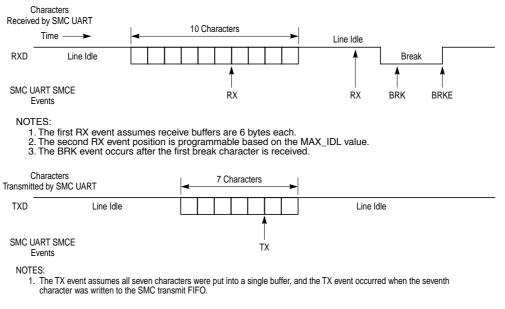


Figure 26-10. SMC UART Interrupts Example

26.3.12 SMC UART Controller Programming Example

The following initialization sequence assumes 9,600 baud, 8 data bits, no parity, and 1 stop bit in a 66-MHz system. BRG1 and SMC1 are used. (The SMC transparent programming example uses an external clock configuration; see Section 26.4.11, "SMC Transparent NMSI Programming Example.")

- 1. Configure the port D pins to enable SMTXD1 and SMRXD1. Set PPARD[8,9] and PDIRD[9]. Clear PDIRD[8] and PSORD[8,9].
- 2. Configure the BRG1. Write BRGC1 with 0x0001_035A. The DIV16 bit is not used and the divider is 429 (decimal). The resulting BRG1 clock is 16x the preferred bit rate.
- 3. Connect BRG1 to SMC1 using the CPM mux by clearing CMXSMR[SMC1, SMC1CS].
- 4. In address 0x87FC, assign a pointer to the SMC1 parameter RAM.
- 5. Assuming one RxBD at the beginning of dual-port RAM followed by one TxBD, write RBASE with 0x0000 and TBASE with 0x0008.
- 6. Write 0x1D01_0000 to CPCR to execute the INIT RX AND TX PARAMETERS command.
- 7. Write RFCR and TFCR with 0x10 for normal operation.
- 8. Write MRBLR with the maximum number of bytes per receive buffer. Assume 16 bytes, so MRBLR = 0x0010.

- 9. Write MAX_IDL with 0x0000 in the SMC UART-specific parameter RAM to disable the MAX_IDL functionality for this example.
- 10. Clear BRKLN and BRKEC in the SMC UART-specific parameter RAM.
- 11. Set BRKCR to 0x0001; if a STOP TRANSMIT COMMAND is issued, one break character is sent.
- 12. Initialize the RxBD. Assume the Rx data buffer is at 0x0000_1000 in main memory. Write 0xB000 to RxBD[Status and Control], 0x0000 to RxBD[Data Length] (not required), and 0x0000_1000 to RxBD[Buffer Pointer].
- 13. Assuming the Tx data buffer is at 0x0000_2000 in main memory and contains five 8-bit characters, write 0xB000 to TxBD[Status and Control], 0x0005 to TxBD[Data Length], and 0x0000_2000 to TxBD[Buffer Pointer].
- 14. Write 0xFF to the SMCE1 register to clear any previous events.
- 15. Write 0x57 to the SMCM1 register to enable all possible SMC1 interrupts.
- 16. Write 0x0000_1000 to the SIU interrupt mask register low (SIMR_L) so the SMC1 can generate a system interrupt. Write 0xFFFF_FFFF to the SIU interrupt pending register low (SIPNR_L) to clear events.
- 17. Write 0x4820 to SMCMR to configure normal operation (not loopback), 8-bit characters, no parity, 1 stop bit. The transmitter and receiver are not yet enabled.
- 18. Write 0x4823 to SMCMR to enable the SMC transmitter and receiver. This additional write ensures that the TEN and REN bits are enabled last.

After 5 bytes are sent, the TxBD is closed. The receive buffer closes after receiving 16 bytes. Subsequent data causes a busy (out-of-buffers) condition since only one RxBD is ready.

26.4 SMC in Transparent Mode

Compared to the SCC in transparent mode, the SMCs generally offer less functionality, which helps them provide simpler functions and slower speeds. Transparent mode is selected by programming SMCMR[SM] to 0b10. Section 26.2.1, "SMC Mode Registers (SMCMR1/SMCMR2)" describes other protocol-specific bits in the SMCMR. The SMC in transparent mode does not support the following features:

- Independent transmit and receive clocks, unless connected to a TDM channel of an SLx
- CRC generation and checking
- Full $\overline{\text{RTS}}$, $\overline{\text{CTS}}$, and $\overline{\text{CD}}$ signals (supports only one $\overline{\text{SMSYN}}$ signal)
- Ability to transmit data on demand using the TODR
- Receiver/transmitter in transparent mode while executing another protocol
- 4-, 8-, or 16-bit SYNC recognition
- Internal DPLL support

However, the SMC in transparent mode provides a data character length option of 4 to 16 bits, whereas the SCCs provide 8 or 32 bits, depending on GSMR[RFW]. The SMC in transparent mode is also referred to as the SMC transparent controller.

26.4.1 Features

The following list summarizes the features of the SMC in transparent mode:

- Flexible data buffers
- Connects to a TDM bus using the TSA in an SIx
- Transmits and receives transparently on its own set of signals using a sync signal to synchronize the beginning of transmission and reception to an external event
- Programmable character length (4–16)
- Reverse data mode
- Continuous transmission and reception modes
- Four commands

26.4.2 SMC Transparent Channel Transmission Process

The transparent transmitter is designed to work with almost no core intervention. When the core enables the SMC transmitter in transparent mode, it starts sending idles. The SMC immediately polls the first BD in the transmit channel BD table and once every character time, depending on the character length (every 4 to 16 serial clocks). When there is a message to transmit, the SMC fetches the data from memory and starts sending the message when synchronization is achieved.

Synchronization can be achieved in two ways. First, when the transmitter is connected to a TDM channel, it can be synchronized to a time slot. Once the frame sync is received, the transmitter waits for the first bit of its time slot before it starts transmitting. Data is sent only during the time slots defined by the TSA. Secondly, when working with its own set of signals, the transmitter starts sending when \overline{SMSYNx} is asserted.

When a BD data is completely written to the transmit FIFO, the L bit is checked and if it is set, the SMC writes the message status bits into the BD and clears the R bit. It then starts transmitting idles. When the end of the current BD is reached and the L bit is not set, only R is cleared. In both cases, an interrupt is issued according to the I bit in the BD. By appropriately setting the I bit in each BD, interrupts can be generated after each buffer, a specific buffer, or each block is sent. The SMC then proceeds to the next BD. If no additional buffers have been presented to the SMC for transmission and the L bit was cleared, an underrun is detected and the SMC begins sending idles.

If the CM bit is set in the TxBD, the R bit is not cleared, so the CP can overwrite the buffer on its next access. For instance, if a single TxBD is initialized with the CM and W bits set, the buffer is sent continuously until R is cleared in the BD.

26.4.3 SMC Transparent Channel Reception Process

When the core enables the SMC receiver in transparent mode, it waits for synchronization before receiving data. Once synchronization is achieved, the receiver transfers the incoming data into memory according to the first RxBD in the table. Synchronization can be achieved in two ways. First, when the receiver is connected to a TDM channel, it can be synchronized to a time slot. Once the frame sync is received, the receiver waits for the first bit of its time slot to occur before reception begins. Data is received only during the time slots defined by the TSA. Secondly, when working with its own set of signals, the receiver starts reception when \overline{SMSYNx} is asserted.

When the buffer full, the SMC clears the E bit in the BD and generates an interrupt if the I bit in the BD is set. If incoming data exceeds the data buffer length, the SMC fetches the next BD; if it is empty, the SMC continues transferring data to this BD's buffer. If the CM bit is set in the RxBD, the E bit is not cleared, so the CP can automatically overwrite the buffer on its next access.

26.4.4 Using SMSYN for Synchronization

The $\overline{\text{SMSYN}}$ signal offers a way to externally synchronize the SMC channel. This method differs somewhat from the synchronization options available in the SCCs and should be studied carefully. See Figure 26-11 for an example.

Once SMCMR[REN] is set, the first rising edge of SMCLK that finds SMSYN low causes the SMC receiver to achieve synchronization. Data starts being received or latched on the same rising edge of SMCLK that latched SMSYN. This is the first bit of data received. The receiver does not lose synchronization again, regardless of the state of SMSYN, until REN is cleared.

Once SMCMR[TEN] is set, the first rising edge of SMCLK that finds $\overline{\text{SMSYN}}$ low synchronizes the SMC transmitter which begins sending ones asynchronously from the falling edge of $\overline{\text{SMSYN}}$. After one character of ones is sent, if the transmit FIFO is loaded (the TxBD is ready with data), data starts being send on the next falling edge of SMCLK after one character of ones is sent. If the transmit FIFO is loaded later, data starts being sent after some multiple number of all-ones characters is sent.

Note that regardless of whether the transmitter or receiver uses $\overline{\text{SMSYN}}$, it must make glitch-free transitions from high-to-low or low-to-high. Glitches on $\overline{\text{SMSYN}}$ can cause errant behavior of the SMC.

The transmitter never loses synchronization again, regardless of the state of $\overline{\text{SMSYN}}$, until the TEN bit is cleared or an ENTER HUNT MODE command is issued.

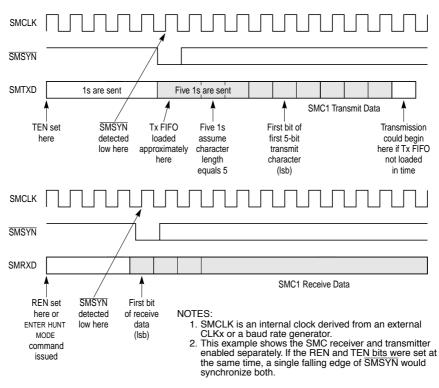


Figure 26-11. Synchronization with SMSYNx

If both SMCMR[REN] and SMCMR[TEN] are set, the first falling edge of $\overline{\text{SMSYN}}$ causes both the transmitter and receiver to achieve synchronization. The SMC transmitter can be disabled and reenabled and $\overline{\text{SMSYN}}$ can be used again to resynchronize the transmitter itself. Section 26.2.4, "Disabling SMCs On-the-Fly," describes how to safely disable and reenable the SMC. Simply clearing and setting TEN may be insufficient. The receiver can also be resynchronized this way.

26.4.5 Using the Time-Slot Assigner (TSA) for Synchronization

The TSA offers an alternative to using SMSYN to internally synchronize the SMC channel. This method is similar, except that the synchronization event is the first time-slot for this SMC receiver/transmitter after the frame sync indication rather than the falling edge of SMSYN. Chapter 14, "Serial Interface with Time-Slot Assigner," describes how to configure time slots. The TSA allows the SMC receiver and transmitter to be enabled simultaneously and synchronized separately; SMSYN does not provide this capability. Figure 26-12 shows synchronization using the TSA.

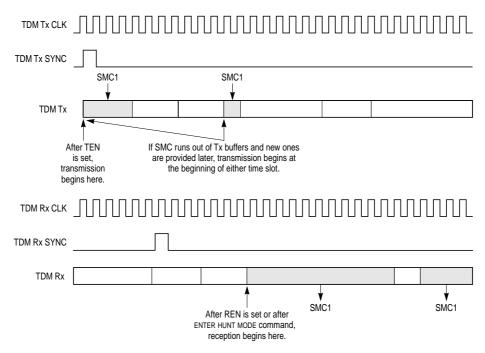


Figure 26-12. Synchronization with the TSA

Once SMCMR[REN] is set, the first time-slot after the frame sync causes the SMC receiver to achieve synchronization. Data is received immediately, but only during defined receive time slots. The receiver continues receiving data during its defined time slots until REN is cleared. If an ENTER HUNT MODE command is issued, the receiver loses synchronization, closes the buffer, and resynchronizes to the first time slot after the frame sync.

Once SMCMR[TEN] is set, the SMC waits for the transmit FIFO to be loaded before trying to achieve synchronization. When the transmit FIFO is loaded, synchronization and transmission begins depending on the following:

- If a buffer is made ready when the SMC2 is enabled, the first byte is placed in time slot 1 if CLSN is 8 and to slot 2 if CLSN is 16.
- If a buffer has its SMC enabled, then the first byte in the next buffer can appear in any time slot associated with this channel.
- If a buffer is ended with the L bit set, then the next buffer can appear in any time slot associated with this channel.

If the SMC runs out of transmit buffers and a new buffer is provided later, idles are sent in the gap between buffers. Data transmission from the later buffer begins at the start of an SMC time slot, but not necessarily the first time slot after the frame sync. So, to maintain a certain bit alignment beginning with the first time slot, make sure that at least one TxBD is

always ready and that underruns do not occur. Otherwise, the SMC transmitter should be disabled and reenabled. Section 26.2.4, "Disabling SMCs On-the-Fly," describes how to safely disable and reenable the SMC. Simply clearing and setting TEN may not be enough.

26.4.6 SMC Transparent Commands

Table 26-10 describes transmit commands issued to the CPCR.

Table 26-10. SMC Transparent Transmit Commands

Command	Description
STOP TRANSMIT	After hardware or software is reset and the channel is enabled in the SMCM, the channel is in transmit enable mode and polls the first BD. This command disables transmission of frames on the transmit channel. If the transparent controller receives this command while sending a frame, it stops after the contents of the FIFO are sent (up to 2 characters). The TBPTR is not advanced to the next BD, no new BD is accessed, and no new buffers are sent for this channel. The transmitter sends idles until a RESTART TRANSMIT command is issued.
RESTART TRANSMIT	Starts or resumes transmission from the current TBPTR in the channel TxBD table. When the channel receives this command, it polls the R bit in this BD. The SMC expects this command after a STOP TRANSMIT is issued. The channel in its mode register is disabled or after a transmitter error occurs.
INIT TX PARAMETERS	Initializes transmit parameters in this serial channel to reset state. Use only if the transmitter is disabled. The INIT TX AND RX PARAMETERS command resets transmit and receive parameters.

Table 26-11 describes receive commands issued to the CPCR.

Table 26-11. SMC Transparent Receive Commands

Command	Description
ENTER HUNT MODE	Forces the SMC to close the current receive BD if it is in use and to use the next BD for subsequent data. If the SMC is not receiving data, the buffer is not closed. Additionally, this command causes the receiver to wait for a resynchronization before reception resumes.
CLOSE RXBD	Forces the SMC to close the current receive BD if it in use and to use the next BD in the list for subsequent received data. If the SMC is not in the process of receiving data, no action is taken.
İNIT RX PARAMETERS	Initializes receive parameters in this serial channel to reset state. Use only if the receiver is disabled. The INIT TX AND RX PARAMETERS command resets receive and transmit parameters.

26.4.7 Handling Errors in the SMC Transparent Controller

The SMC uses BDs and the SMCE to report message send and receive errors.

Table 26-12. SMC Transparent Error Conditions

Error	Descriptions
Underrun	The channel stops sending the buffer, closes it, sets UN in the BD, and generates a TXE interrupt if it is enabled. The channel resumes sending after a RESTART TRANSMIT command. Underrun cannot occur between frames.
Overrun	The SMC maintains an internal FIFO for receiving data. If the buffer is in external memory, the CP begins programming the SDMA channel when the first character is received into the FIFO. If a FIFO overrun occurs, the SMC writes the received data character over the previously received character. The previous character and its status bits are lost. Then the channel closes the buffer, sets OV in the BD, and generates the RXB interrupt if it is enabled. Reception continues as normal.

26.4.8 SMC Transparent RxBD

Using BDs, the CP reports information about the received data for each buffer and closes the current buffer, generates a maskable interrupt, and starts to receive data into the next buffer after one of the following events:

- An overrun error occurs.
- A full receive buffer is detected.
- The ENTER HUNT MODE command is issued.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	Е	_	w	I	-	_	СМ				_				ov	_
Offset + 2		Data Length														
Offset + 4		Rx Data Buffer Pointer														
Offset + 6																

Figure 26-13. SMC Transparent RxBD

Table 26-13 describes SMC transparent RxBD fields.

Table 26-13. SMC Transparent RxBD Field Descriptions

Bits	Name	Description
0	E	 Empty. 0 The buffer is full or reception was aborted due to an error. The core can read or write any fields of this RxBD. The CP does not use this BD while E = 0. 1 The buffer is empty or is receiving data. The CP owns this RxBD and its buffer. Once E is set, the core should not write any fields of this RxBD.
1	-	Reserved, should be cleared.
2	W	 Wrap (last BD in RxBD table). 0 Not the last BD in the table. 1 Last BD in the table. After this buffer is used, the CP receives incoming data into the first BD that RBASE points to. The number of RxBDs is determined only by the W bit and overall space constraints of the dual-port RAM.
3	I	Interrupt. 0 No interrupt is generated after this buffer is filled. 1 SMCE[RXB] is set when the CP completely fills this buffer indicating that the core must process the buffer. The RXB bit can cause an interrupt if it is enabled.
4–5	_	Reserved, should be cleared.
6	СМ	 Continuous mode. 0 Normal operation. 1 The CP does not clear E after this BD is closed, allowing the buffer to be overwritten when the CP next accesses this BD. However, E is cleared if an error occurs during reception, regardless of how CM is set.
7–13	-	Reserved, should be cleared.
14	OV	Overrun. Set when a receiver overrun occurs during reception. The CP writes OV after the received data is placed into the buffer.
15	—	Reserved, should be cleared.

Data length and buffer pointer fields are described in Section 19.2, "SCC Buffer Descriptors (BDs)."

26.4.9 SMC Transparent TxBD

Data is sent to the CP for transmission on an SMC channel by arranging it in buffers referenced by the channel TxBD table. The CP uses BDs to confirm transmission or indicate error conditions so the processor knows buffers have been serviced.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	R	-	w	I	L	_	CM – l						UN	_		
Offset + 2		Data Length														
Offset + 4		Tx Data Buffer Pointer														
Offset + 6																

Table 26-14. SMC Transparent TxBD

Table 26-15 describes SMC transparent TxBD fields.

Table 26-15. SMC Transparent TxBD Field Descriptions

Bits	Name	Description
0	R	 Ready. 0 The buffer is not ready for transmission. The BD and buffer can be updated. The CP clears R after the buffer is sent or after an error occurs. 1 The user-prepared data buffer is not sent or is being sent. BD fields cannot be updated if R is set.
1	-	Reserved, should be cleared.
2	w	 Wrap (final BD in table). 0 Not the last BD in the table. 1 Last BD in the table. After this buffer is used, the CP receives incoming data into the first BD that TBASE points to. The number of TxBDs in this table is programmable and determined by theW bit and overall space constraints of the dual-port RAM.
3	I	Interrupt. 0 No interrupt is generated after this buffer is serviced. 1 SMCE[TXB] or SMCE[TXE] are set when the buffer is serviced. They can cause interrupts if they are enabled.
4	L	 Last in message. 0 The last byte in the buffer is not the last byte in the transmitted transparent frame. Data from the next transmit buffer (if ready) is sent immediately after the last byte of this buffer. 1 The last byte in this buffer is the last byte in the transmitted transparent frame. After this buffer is sent, the transmitter requires synchronization before the next buffer is sent.
5	-	Reserved, should be cleared.
6	СМ	 Continuous mode. 0 Normal operation. 1 The CP does not clear R after this BD is closed, allowing the buffer to be automatically resent when the CP accesses this BD again. However, the R bit is cleared if an error occurs during transmission, regardless of how CM is set.
7–13	-	Reserved, should be cleared.
14	UM	Underrun. Set when the SMC encounters a transmitter underrun condition while sending the buffer.
15	_	Reserved, should be cleared.

Part IV. Communications Processor Module

Data length represents the number of octets the CP should transmit from this buffer. It is never modified by the CP. The data length can be even or odd, but if the number of bits in the transparent character is greater than 8, the data length should be even. For example, to transmit three transparent 8-bit characters, the data length field should be initialized to 3. However, to transmit three transparent 9-bit characters, the data length field should be initialized to 4 be initialized to 6 because the three 9-bit characters occupy three half words in memory.

The data buffer pointer points to the first byte of the buffer. They can be even or odd, unless character length is greater than 8 bits, in which case the transmit buffer pointer must be even. For instance, the pointer to 8-bit transparent characters can be even or odd, but the pointer to 9-bit transparent characters must be even. The buffer can reside in internal or external memory.

26.4.10 SMC Transparent Event Register (SMCE)/Mask Register (SMCM)

The SMC event register (SMCE) generates interrupts and reports events recognized by the SMC channel. When an event is recognized, the SMC sets the corresponding SMCE bit. Interrupts are masked in the SMCM, which has the same format as the SMCE. SMCE bits are cleared by writing a 1 (writing 0 has no effect). Unmasked bits must be cleared before the CP clears the internal interrupt request.

Bit	0	1	2	3	4	5	6	7		
Field		_		TXE	_	BSY	ТХВ	RXB		
Reset		0								
R/W		R/W								
Address		0x11A86 (SMCE1), 0x11A96 (SMCE2)/ 0x11A8A (SMCM1), 0x11A9A (SMCM2)								

Figure 26-14. SMC Transparent Event Register (SMCE)/Mask Register (SMCM)

Table 26-16 describes SMCE/SMCM fields.

Bits	Name	Description
0–2	-	Reserved, should be cleared.
3	TXE	Tx error. Set when an underrun error occurs on the transmitter channel.
4	-	Reserved, should be cleared.
5	BSY	Busy condition. Set when a character is received and discarded due to a lack of buffers. Reception begins after a new buffer is provided. Executing an ENTER HUNT MODE command makes the receiver wait for resynchronization.
6	ТХВ	Tx buffer. Set after a buffer is sent. If the L bit of the TxBD is set, TXB is set when the last character starts being sent. A one character-time delay is required to ensure that data is completely sent over the transmit signal. If the L bit of the TxBD is cleared, TXB is set when the last character is written to the transmit FIFO. A two character-time delay is required to ensure that data is completely sent.
7	RXB	Rx buffer. Set when a buffer is received (after the last character is written) on the SMC channel and its associated RxBD is now closed.

26.4.11 SMC Transparent NMSI Programming Example

The following example initializes the SMC1 transparent channel over its own set of signals. The CLK9 signal supplies the transmit and receive clocks; the $\overline{\text{SMSYNx}}$ signal is used for synchronization. (The SMC UART programming example uses a BRG configuration; see Section 26.3.12, "SMC UART Controller Programming Example.")

- 1. Configure the port D pins to enable SMTXD1, SMRXD1, and SMSYN1. Set PPARD[7,8,9] and PDIRD[9]. Clear PDIRD[7,8] and PSORD[7,8,9].
- 2. Configure the port C pins to enable CLK9. Set PPARC[23]. Clear PDIRC[23] and PSORC[23].
- 3. Connect CLK9 to SMC1 using the CPM mux. Clear CMXSMR[SMC1] and program CMXSMR[SMC1CS] to 0b11.
- 4. In address 0x87FC, assign a pointer to the SMC1 parameter RAM.
- 5. Write RBASE and TBASE in the SMC parameter RAM to point to the RxBD and TxBD in the dual-port RAM. Assuming one RxBD at the beginning of the dual-port RAM followed by one TxBD, write RBASE with 0x0000 and TBASE with 0x0008.
- 6. Write 0x1D01_0000 to CPCR to execute the INIT RX AND TX PARAMETERS command.
- 7. Write RFCR and TFCR with 0x10 for normal operation.
- 8. Write MRBLR with the maximum bytes per receive buffer. Assuming 16 bytes MRBLR = 0x0010.
- 9. Initialize the RxBD assuming the buffer is at 0x0000_1000 in main memory. Write 0xB000 to RxBD[Status and Control], 0x0000 to RxBD[Data Length] (optional), and 0x0000_1000 to RxBD[Buffer Pointer].
- 10. Initialize the TxBD assuming the Tx buffer is at 0x0000_2000 in main memory and contains five 8-bit characters. Write 0xB800 to TxBD[Status and Control], 0x0005 to TxBD[Data Length], and 0x0000_2000 to TxBD[Buffer Pointer].
- 11. Write 0xFF to SMCE1 to clear any previous events.
- 12. Write 0x13 to SMCM1 to enable all possible SMC1 interrupts.
- 13. Write 0x0000_1000 to the SIU interrupt mask register low (SIMR_L) so the SMC1 can generate a system interrupt. Write 0xFFFF_FFFF to the SIU interrupt pending register low (SIPNR_L) to clear events.
- 14. Write 0x3830 to the SMCMR to configure 8-bit characters, unreversed data, and normal operation (not loopback). The transmitter and receiver are not enabled yet.
- 15. Write 0x3833 to the SMCMR to enable the SMC transmitter and receiver. This additional write ensures that TEN and REN are enabled last.

After 5 bytes are sent, the TxBD is closed; after 16 bytes are received the receive buffer is closed. Any data received after 16 bytes causes a busy (out-of-buffers) condition since only one RxBD is prepared.

26.5 The SMC in GCI Mode

The SMC can control the C/I and monitor channels of the GCI frame. When using the SCIT configuration of a GCI, one SMC can handle SCIT channel 0 and the other can handle SCIT channel 1. The main features of the SMC in GCI mode are as follows:

- Each SMC channel supports the C/I and monitor channels of the GCI (IOM-2) in ISDN applications
- Two SMCs support both sets of C/I and monitor channels in SCIT channels 0 and 1
- Full-duplex operation
- · Local loopback and echo capability for testing

To use the SMC GCI channels properly, the TSA must be configured to route the monitor and C/I channels to the preferred SMC. Chapter 14, "Serial Interface with Time-Slot Assigner," describes how to program this configuration. GCI mode is selected by setting SMCMR[SM] to 0b10. Section 26.2.1, "SMC Mode Registers (SMCMR1/SMCMR2)" describes other protocol-specific SMCMR bits.

26.5.1 SMC GCI Parameter RAM

The GCI parameter RAM differs from that for UART and transparent mode. The CP accesses each SMC's GCI parameter table using a user-programmed pointer (SMCx_BASE) located in the parameter RAM; see Section 13.5.2, "Parameter RAM." Each SMC GCI parameter RAM table can be placed at any 64-byte aligned address in the dual-port RAM's general-purpose area (banks #1–#8). In GCI mode, parameter RAM contains the BDs instead of pointers to them. Compare Table 26-17 with Table 26-2 to see the differences. (In GCI mode, the SMC has no extra protocol-specific parameter RAM.)

Offset 1	Name	Width	Description
0x00	M_RxBD	Half word	Monitor channel RxBD. See Section 26.5.5, "SMC GCI Monitor Channel RxBD."
0x02	M_TxBD	Half word	Monitor channel TxBD. See Section 26.5.6, "SMC GCI Monitor Channel TxBD."
0x04	CI_RxBD	Half word	C/I channel RxBD. See Section 26.5.7, "SMC GCI C/I Channel RxBD."
0x06	CI_TxBD	Half word	C/I channel TxBD. See Section 26.5.8, "SMC GCI C/I Channel TxBD."
0x08	RSTATE ²	Word	Rx/Tx Internal State
0x0C	M_RxD ²	Half word	Monitor Rx Data
0x0E	M_TxD ²	Half word	Monitor Tx Data
0x10	CI_RxD ²	Half word	C/I Rx Data
0x12	CI_TxD ²	Half word	C/I Tx Data

Table 26-17. SMC GCI Parameter RAM Memory Map

¹ From the pointer value programmed in SMCx_BASE: SMC1_BASE at 0x87FC, SMC2_BASE at 0x88FC.

² RSTATE, M_RxD, M_TxD, Cl_RxD, and Cl_TxD do not need to be accessed by the user in normal operation, and are reserved for RISC use only.

26.5.2 Handling the GCI Monitor Channel

The following sections describe how the GCI monitor channel is handled.

26.5.2.1 SMC GCI Monitor Channel Transmission Process

Monitor channel 0 is used to exchange data with a layer 1 device (reading and writing internal registers and transferring of the S and Q bits). Monitor channel 1 is used for programming and controlling voice/data modules such as CODECs. The core writes the byte into the TxBD. The SMC sends the data on the monitor channel and handles the A and E control bits according to the GCI monitor channel protocol. The TIMEOUT command resolves deadlocks when errors in the A and E bit states occur on the data line.

26.5.2.2 SMC GCI Monitor Channel Reception Process

The SMC receives data and handles the A and E control bits according to the GCI monitor channel protocol. When the CP stores a received data byte in the SMC RxBD, a maskable interrupt is generated. A TRANSMIT ABORT REQUEST command causes the MPC8260 to send an abort request on the E bit.

26.5.3 Handling the GCI C/I Channel

The C/I channel is used to control the layer 1 device. The layer 2 device in the TE sends commands and receives indication to or from the upstream layer 1 device through C/I channel 0. In the SCIT configuration, C/I channel 1 is used to convey real-time status information between the layer 2 device and nonlayer 1 peripheral devices (CODECs).

26.5.3.1 SMC GCI C/I Channel Transmission Process

The core writes the data byte into the C/I TxBD and the SMC transmits the data continuously on the C/I channel to the physical layer device.

26.5.3.2 SMC GCI C/I Channel Reception Process

The SMC receiver continuously monitors the C/I channel. When it recognizes a change in the data and this value is received in two successive frames, it is interpreted as valid data. This is called the double last-look method. The CP stores the received data byte in the C/I RxBD and a maskable interrupt is generated. If the SMC is configured to support SCIT channel 1, the double last-look method is not used.

26.5.4 SMC GCI Commands

The commands in Table 26-18 are issued to the CPCR.

Table 26-18. SMC GCI Commands

Command	Description
INIT TX AND RX PARAMETERS	Initializes transmit and receive parameters in the parameter RAM to their reset state. It is especially useful when switching protocols on a given serial channel.
TRANSMIT ABORT REQUEST	This receiver command can be issued when the MPC8260 implements the monitor channel protocol. When it is issued, the MPC8260 sends an abort request on the A bit.
TIMEOUT	This transmitter command can be issued when the MPC8260 implements the monitor channel protocol. It is usually issued because the device is not responding or A bit errors are detected. The MPC8260 sends an abort request on the E bit at the time this command is issued.

26.5.5 SMC GCI Monitor Channel RxBD

This BD is used by the CP to report information about the monitor channel receive byte.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	Е	Ι	ER	MS		-	_					DA	TA			

Figure 26-15. SMC Monitor Channel RxBD

Table 26-19 describes SMC monitor channel RxBD fields.

Table 26-19. SMC Monitor Channel RxBD Field Descriptions

Bits	Name	Description
0	E	Empty. 0 The CP clears E when the byte associated with this BD is available to the core. 1 The core sets E when the byte associated with this BD has been read.
1	L	Last (EOM). Valid only for monitor channel protocol and is set when the EOM indication is received on the E bit. Note that when this bit is set, the data byte is invalid.
2	ER	Error condition. Valid only for monitor channel protocol. Set when an error occurs on the monitor channel protocol. A new byte is sent before the SMC acknowledges the previous byte.
3	MS	Data mismatch. Valid only for monitor channel protocol. Set when two different consecutive bytes are received; cleared when the last two consecutive bytes match. The SMC waits for the reception of two identical consecutive bytes before writing new data to the RxBD.
4–7	-	Reserved, should be cleared.
8–15	DATA	Data field. Contains the monitor channel data byte that the SMC received.

26.5.6 SMC GCI Monitor Channel TxBD

The CP uses this BD to report about the monitor channel transmit byte.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	R	L	AR			-						DA	TA			

Figure 26-16. SMC Monitor Channel TxBD

Table 26-20 describes SMC monitor channel TxBD fields.

 Table 26-20. SMC Monitor Channel TxBD Field Descriptions

Bits	Name	Description
0	R	Ready. 0 Cleared by the CP after transmission. The TxBD is now available to the core. 1 Set by the core when the data byte associated with this BD is ready for transmission.
1	L	Last (EOM). Valid only for monitor channel protocol. When $L = 1$, the SMC first transmits the buffer data and then transmits the EOM indication on the E bit.
2	AR	Abort request. Valid only for monitor channel protocol. Set by the SMC when an abort request is received on the A bit. The transmitter sends the EOM on the E bit after receiving an abort request.
3–7	-	Reserved, should be cleared.
8–15	DATA	Data field. Contains the data to be sent by the SMC on the monitor channel.

26.5.7 SMC GCI C/I Channel RxBD

The CP uses this BD to report information about the C/I channel receive byte.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	Е				_						C/I E	DATA			-	-

Figure 26-17. SMC C/I Channel RxBD

Table 26-21 describes SMC C/I channel RxBD fields

Table 26-21. SMC C/I Channel RxBD Field Descriptions

Bits	Name	Description
0	E	Empty. 0 Cleared by the CP to indicate that the byte associated with this BD is available to the core. 1 The core sets E to indicate that the byte associated with this BD has been read. Note that additional data received is discarded until E bit is set.
1–7	-	Reserved, should be cleared.
8–13	C/I DATA	Command/indication data bits. For C/I channel 0, bits 10–13 contain the 4-bit data field and bits 8– 9 are always written with zeros. For C/I channel 1, bits 8–13 contain the 6-bit data field.
14–15	—	Reserved, should be cleared.

26.5.8 SMC GCI C/I Channel TxBD

The CP uses this BD to report about the C/I channel transmit byte.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	R				_						C/I [DATA			-	-

Figure 26-18. SMC C/I Channel TxBD

Table 26-22 describes SMC C/I channel TxBD fields.

Bits	Name	Description
0	R	Ready. 0 Cleared by the CP after transmission to indicate that the BD is available to the core. 1 Set by the core when data associated with this BD is ready for transmission.
1–7	-	Reserved, should be cleared.
8–13	C/I DATA	Command/indication data bits. For C/I channel 0, bits 10–13 hold the 4-bit data field (bits 8 and 9 are always written with zeros). For C/I channel 1, bits 8–13 contain the 6-bit data field.
14–15	-	Reserved, should be cleared.

Table 26-22. SMC C/I Channel TxBD Field Descriptions

26.5.9 SMC GCI Event Register (SMCE)/Mask Register (SMCM)

The SMCE generates interrupts and report events recognized by the SMC channel. When an event is recognized, the SMC sets its corresponding SMCE bit. SMCE bits are cleared by writing ones; writing zeros has no effect. SMCM has the same bit format as SMCE. Setting an SMCM bit enables, and clearing an SMCM bit disables, the corresponding interrupt. Unmasked bits must be cleared before the CP clears the internal interrupt request to the SIU interrupt controller.

Bit	0	1	2	3	4	5	6	7		
Field		– CTXB CRXB MTXB								
Reset		0000_0000								
R/W				R	W					
Address	(0x11A86 (SMCE1), 0x11A96 (SMCE2)/ 0x11A8A (SMCM1), 0x11A9A (SMCM2)								

Figure 26-19. SMC GCI Event Register (SMCE)/Mask Register (SMCM)

Table 26-23 describes SMCE/SMCM fields.

Table 26-23. SMCE/SMCM Field Descriptions

Bits	Name	Description
0–3	—	Reserved, should be cleared.
4	CTXB	C/I channel buffer transmitted. Set when the C/I transmit buffer is now empty.
5	CRXB	C/I channel buffer received. Set when the C/I receive buffer is full.
6	MTXB	Monitor channel buffer transmitted. Set when the monitor transmit buffer is now empty.
7	MRXB	Monitor channel buffer received. Set when the monitor receive buffer is full.

Chapter 27 Multi-Channel Controllers (MCCs)

The MPC8260's two multi-channel controllers (MCC1 and MCC2) each handle up to 128 serial, full-duplex data channels. The 128 channels are divided into four subgroups (of 32 channels each). One or more subgroups can be multiplexed through corresponding SI*x* TDM channels; MCC1 connects through SI1, and MCC2 uses SI2.

Each channel can be programmed separately either to perform HDLC formatting/ deformatting or to act as a transparent channel.

27.1 Features

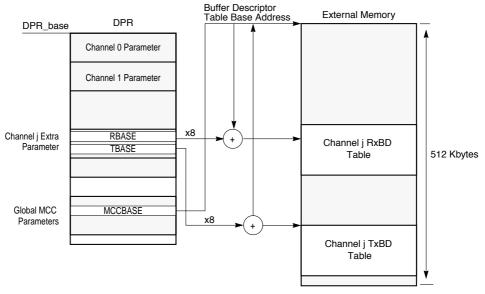
Each MCC has the following features:

- Up to 128 independent communication channels.
- Independent mapping for receive/transmit.
- Supports either transparent or HDLC protocols for each channel.
- Up to 256 DMA channels with independent buffer descriptor (BD) tables.
- Five interrupt circular tables with programmable size and overflow identification. One for transmit and four for receive.
- Global loop mode.
- Individual channel loop mode.
- Efficient bus usage (no bus usage for inactive channel or for active channels with nothing to transmit).
- Efficient control of the interrupts to the core.
- Supports external BD tables.
- Uses on-chip dual-port RAM (DPR) for parameter storage.
- Uses 64-bit data transactions for reading and writing data in BDs.
- Supports automatic routing in transparent mode using negative empty polarity.
- Supports inverted data per channel.
- Supports super channel synchronization in transparent mode (slot synchronization).
- Supports in-line synchronization in transparent mode (synchronization on a pattern of 2 bytes).

27.2 MCC Data Structure Organization

Each MCC uses the following data structures:

- Global MCC parameters (common to all the 128 channels) placed in the DPR from the offset (relative to the DPR base address) defined in Table 13-10.
- Channel-specific parameters. Each channel use 64 bytes of specific parameters placed in the DPR at offset 64*CH_NUM (relative to the DPR base address). CH_NUM is the channel number (0–127 for MCC1 and 128–255 for MCC2).


Channel-specific parameters are described in Section 27.6, "Channel-Specific HDLC Parameters," and Section 27.7, "Channel-Specific Transparent Parameters."

Note that the DPR memory corresponding to the inactive channels can be used for other purposes.

• Channel extra parameters. Each channel use 8 bytes of extra parameters placed in the DPR at offset XTRABASE + 8*CH_NUM (relative to the DPR base address). XTRABASE is one of the global MCC parameters.

Channel extra parameters are described in Section 27.4, "Channel Extra Parameters." Note that the DPR memory corresponding to the inactive channels can be used for other purposes.

- Super channel table (used only if super channels are defined). This table is placed in the DPR from the offset SCTPBASE (relative to the DPR base address). SCTPBASE is one of the global MCC parameters. The super channel tale is described in Section 27.5, "Super-Channel Table."
- BD tables placed in the external memory. All the BD tables associated with one MCC must reside in a 512-KByte segment. The absolute base addresses of a channel BD table is MCCBASE + 8*RBASE (for the receiver) and MCCBASE + 8*TBASE (for the transmitter). MCCBASE is one of the global MCC parameters and RBASE/ TBASE are channel extra parameters. Each BD table is a circular queue. One BD includes status bits, start address and length of a data buffer. Figure 27-1 shows the BD structure for one MCC.
- Circular interrupt tables placed in the external memory. There is one table for the transmitter interrupts (base address TINTBASE) and between one and four tables for receiver interrupts (base address RINTBASE0–RINTBASE4). TINTBASE and RINTBASE0–RINTBASE4 are global MCC parameters.
- Three registers (MCCE, MCCM, and MCCF) at described in Section 27.10.1, "MCC Event Register (MCCE)/Mask Register (MCCM)," and Section 27.8, "MCC Configuration Registers (MCCFx)."

27.3 Global MCC Parameters

The global MCC parameters are described in Table 27-1.

Table 27-1. Global	Multiple-Channel	Parameters
--------------------	------------------	------------

Offset ¹	Name	Width	Description
0x00	MCCBASE	Word	Multi-channel controller base pointer. User-initialized parameter points to the starting address of a 512-Kbyte BD segment in external memory.
0x04	MCCSTATE	Hword	Multi-channel controller state, used by the CP for global state definition (reserved for the user)
0x06	MRBLR	Hword	Maximum receive buffer length (user-initialized). Defines the maximum number of bytes written to a receive buffer before moving to the next buffer for this channel. This value must be a multiple of 8.
0x08	GRFTHR	Hword	Global receive frame threshold. Used to reduce interrupt overhead that can occur when many short HDLC frames arrive that each cause an RXF interrupt. Setting all bits enables every interrupt event. Setting a GRFTHR value can limit the frequency of RXF interrupts. Note that an RXF event is written to the interrupt queue on each received frame but GINT is set only when the number of RXF events (by all channels) reaches the GRFTHR value. This parameter does not need to be reset after an interrupt.
0x0A	GRFCNT	Hword	Global receive frame count. A decrementor counter used to implement the GRFTHR feature. It should be initialized to the GRFTHR value. Setting all bits enables every interrupt event. The CP writes an entry in a circular interrupt table and decrements GRFCNT each time a frame is received. When GRFCNT underflows the CP generates an interrupt and copy GRFTHR to GRFCNT. This parameter does not need to be reset after an interrupt.

Offset ¹	Name	Width	Description						
0x0C	RINTTMP	Word	Temporary location for holding the receive interrupt queue entry, used by the CP (reserved for the user)						
0x10	DATA0	Word	Temporary location for holding data, used by the CP (reserved for the user)						
0x14	DATA1	Word	Temporary location for holding data, used by the CP (reserved for the user)						
0x18	TINTBASE	Word	Multi-channel transmitter circular interrupt table base address. The interrupt circular table is a cyclic table (FIFO-like). Each table entry contains information about an interrupt request generated by the MCC to the host.						
0x1C	TINTPTR	Word	Pointer to the transmitter circular interrupt table. The CP writes the next interrupt information to this entry when an exception occurs. The user must copy the TINTBASE value to TINTPTR before enabling interrupts. Further updates of the TINTPTR are done by the CP.						
0x20	TINTTMP	Word	Temporary location for holding the transmit interrupt queue entry, used by the CP. The 60x initializes this field before initializing the MCC. The user must clear it before enabling interrupts.						
0x24	SCTPBASE	Hword	Internal pointer for the super channel transmit table, offset from the DPRAM address						
0x26	-	Hword							
0x28	C_MASK32	Word	CRC constant (user initialized to 0xDEBB20E3). Used for 32-bit CRC-CCITT calculation if HDLC mode is chosen for a selected channel. (This option is programmable. For each HDLC channel, one of two CRC-CCITT can be selected through the CHAMR.)						
0x2C	XTRABASE	Hword	Pointer the beginning of the extra parameters information, offset from the DPRAM address						
0x2E	C_MASK16	Hword	CRC constant (user initialized to 0xF0B8). Used for 16-bit CRC-CCITT calculation if HDLC mode is chosen for a selected channel. This option is programmable. For each HDLC channel, one of two CRC-CCITT can be selected through the CHAMR.						
0x30	RINTTMP0	Word	RINTTMPx. Temporary location for holding a receive circular interrupt table entry (for						
0x34	RINTTMP1	Word	tables 0–4), used by the CP. The user must clear it before enabling interrupts.See Section 27.10, "MCC Exceptions."						
0x38	RINTTMP2	Word							
0x3C	RINTTMP3	Word							
0x40	RINTBASE0	Word	RINTBASEx—Multi-channel receiver circular interrupt table base address. The						
0x44	RINTPTR0	Word	interrupt circular table is a cyclic table (FIFO-like). Each table entry contains information about an interrupt request generated by the MCC to the host.						
0x48	RINTBASE1	Word	RINTPTRx-Pointer to the receiver circular interrupt table. The CP writes the next						
0x4C	RINTPTR1	Word	- · · · · · · · · · · · · · · · · · · ·						
0x50	RINTBASE2	Word	RINTPTRx are done by the CP.						
0x54	RINTPTR2	Word							
0x58	RINTBASE3	Word							
0x5C	RINTPTR3	Word							
0x60	TS_TMP	Word	Temporary place for time stamp						

Table 27-1. Global Multiple-Channel Parameters (Continued)

¹Offset to MCC Base

27.4 Channel Extra Parameters

Table 27-2 describes extra parameters. This table is indexed by logical channel number.

Offset ¹	Name	Width	Description
0x00	TBASE	Hword	TxBD base address. Offset of the channel's TxBD table relative to the MCCBASE (The base address of the BD table for this channel MCCBASE+8*TBASE)
0x02	TBPTR	Hword	TxBD pointer. Offset of the current BD relative to the MCCBASE. TBPTR is user-initialized to TBASE before enabling the channel or after a fatal error before reinitializing the channel. (The address of the BD in use for this channel MCCBASE+8*TBPTR)
0x04	RBASE	Hword	RxBD base address. Offset of the channel's RxBD table relative to the MCCBASE. (The base address of the BD table for this channel MCCBASE+8*RBASE)
0x06	RBPTR	Hword	RxBD pointer. Offset of the current BD relative to the MCCBASE. RBPTR is user- initialized to RBASE before enabling the channel or after a fatal error before reinitializing the channel. (The address of the BD in use for this channel MCCBASE+8*RTBPTR)

Table 27-2. Channel Extra Parameters

¹The offset relative to dual-port RAM base address + XTRABASE + 8*CH_NUM

27.5 Super-Channel Table

The super channel t able entry redirects an MCC slot to a different channel number. For this reason, the transmitter super channel uses more FIFO (2 bytes—half of a single channel transmitter FIFO—multiplied by the number of the channels in the super channel) in the MCC hardware.

On the transmitter side, super channels must be defined in the SI RAM (see Section 14.4.3, "Programming SIx RAM Entries," for details) and a super-channel table must be created.

On the receiver side, the transparent super channels that require slot synchronization must be programmed in the SI RAM as super channels (the slot synchronization ensures that the data is aligned in the receiver buffer starting from the first time slot after a sync pulse). In this case, 1 byte of FIFO is allocated for each super channel. Transparent super channels that do not require slot synchronization and HDLC super channels can be programmed in the SI RAM as regular channels pointing to the same MCC channel. In this case the FIFO allocated for each super channel is 2 bytes (and the CP load will be lower).

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	0	0			Cł	nannel	Numb	0	0	0	0	0	0			
Address	(Virt	ual_ch	annel_	DPR numbe		_					_Chanr Id of th	_		ng SI I	RAM ei	ntry)

Figure 27-2. Super Channel Table Entry

The example in Figure 27-3 shows the SI RAM programming and the super-channel table for two transmitter super channels, one including slots 1, 6, and 7 and the second 2, 3, and 4. Figure 27-4 shows the SI RAM programming for the same transparent receiver super

Part IV. Communications Processor Module

channels which uses the slot synchronization. Figure 27-5 shows the SI RAM programming for the same transparent or HDLC receiver super channels that do not use slot synchronization.

		SI	RAM					Supe	r Channel Table	
0	1	2	3–10	11–13	14	15		0–1	2–9	10–15
MCC	LOOP	SUPER	MCSEL	CNT	BYT	LST			CHANNEL NO	
		SIF	RAM Addres	DPR_Base + SCTPBASE +						
1	0	0	0x0	0x1	1	0	0x0		-	
1	0	1	0x1	0x0 ¹	1	0	0x2		0x1	
1	0	1	0x2	0x0 ²	1	0	0x4		0x2	
1	0	1	0x3	0x7 ²	0	0	0x6		0x2	
1	0	1	0x4	0x7 ²	0	0	0x8		0x2	
1	0	0	0x5	0x1	1	0	0xA		_	
1	0	1	0x6	0x7 ²	0	0	0xC		0x1	
1	0	1	0x7	0x7 ²	0	0	0xE		0x1	
1	0	0	0x8	0x1	1	1	0x10		_	

¹First slot of the super channel

² Regular (not first) slot of the super channel

The super channel BD tables are associated with channels 1 and 2 (no BD tables are necessary for channels 3, 4, 6, and 7)

Figure 27-3. Transmitter Super Channel Example

The example in Figure 27-5 shows a receiver super channel with slot synchronization.

		5	SI RAM				
0	1	2	3–10	11–13	14	15	
MCC	LOOP	SUPER	MCSEL	CNT	BYT	LST]
		SIF	RAM Addres	SS			
1	0	0	0x0	0x1	1	0	Regular Channel
1	0	1	0x1	0x0 ¹	1	0	Super Channel 1
1	0	1	0x2	0x0 ¹	1	0	Super Channel 2
1	0	1	0x2	0x7 ²	0	0	Super Channel 2
1	0	1	0x2	0x7 ²	0	0	Super Channel 2
1	0	0	0x3	0x1	1	0	Regular Channel
1	0	1	0x1	0x7 ²	0	0	Super Channel 1
1	0	1	0x1	0x7 ²	0	0	Super Channel 1
1	0	0	0x1	0x1	1	1	Regular Channel

¹ First slot of the super channel

² Regular (not first) slot of the super channel

The super channel BD tables are associated with channels 1 and 2

Figure 27-4. Receiver Super Channel with Slot Synchronization Example

The example in Figure 27-5 shows a receiver super channel without slot synchronization.

			SI RAM				
0	1	2	3–10	11–13	14	15	
MCC	LOOP	SUPER	MCSEL	CNT	BYT	LST	
		SI F	RAM Addres	SS			-
1	0	0	0x0	0x1	1	0	Regular Channel
1	0	0	0x1	0x1	1	0	Super Channel 1
1	0	0	0x2	0x1	1	0	Super Channel 2
1	0	0	0x2	0x1	1	0	Super Channel 2
1	0	0	0x2	0x1	1	0	Super Channel 2
1	0	0	0x3	0x1	1	0	Regular Channel
1	0	0	0x1	0x1	1	0	Super Channel 1
1	0	0	0x1	0x1	1	0	Super Channel 1
1	0	0	0x4	0x1	1	1	Regular Channel

The super channel BD tables are associated with channels 1 and 2

Figure 27-5. Receiver Super Channel without Slot Synchronization Example

27.6 Channel-Specific HDLC Parameters

Table 27-3 describes channel-specific parameters for HDLC.

Offset ¹	Name	Width	Description
0x00	TSTATE	Word	Tx internal state. To start a transmitter channel the user must write to TSTATE 0xHH80_0000. HH is the TSTATE high byte described in Section 27.6.1, "Internal Transmitter State (TSTATE)."
0x04	ZISTATE	Word	Zero-insertion machine state.(User-initialized to 0x10000207 for regular channel, and 0x30000207 for inverted channel)
0x08	ZIDATA0	Word	Zero-insertion high word data buffer (User-initialized to 0xFFFFFFFF)
0x0C	ZIDATA1	Word	Zero-insertion low word data buffer (User-initialized to 0xFFFFFFF)
0x10	TBDFlags	Hword	TxDB flags, used by the CP (read-only for the user)
0x12	TBDCNT	Hword	Tx internal byte count. Number of remaining bytes in buffer, used by the CP (read-only for the user)
0x14	TBDPTR	Word	Tx internal data pointer. Points to current absolute data address of channel, used by the CP (read-only for the user)
0x18	INTMSK	Hword	Channel's interrupt mask flag. See Section 27.6.2, "Interrupt Mask (INTMSK)."
0x1A	CHAMR	Hword	Channel mode register. See Section 27.6.3, "Channel Mode Register (CHAMR)."
0x1C	TCRC	Word	Temp transmit CRC. Temp value of CRC calculation result, used by the CP (read-only for the user)
0x20	RSTATE	Word	Rx internal state. To start a receiver channel the user must write to RSTATE 0xHH80_0000. HH is the RSTATE high byte described in Section 27.6.4, "Internal Receiver State (RSTATE)."
0x24	ZDSTATE	Word	Zero-deletion machine state (User-initialized to 0x00FFFFE0 for regular channel and 0x20FFFFE0 for inverted channel)
0x28	ZDDATA0	Word	Zero-deletion high word data buffer (User-initialized to 0xFFFFFFF)
0x2C	ZDDATA1	Word	Zero-deletion low word data buffer (User-initialized to 0xFFFFFFFF)
0x30	RBDFlags	Hword	RxBD flags, used by the CP (read-only for the user)
0x32	RBDCNT	Hword	Rx internal byte count. Number of remaining bytes in buffer, used by the CP (read-only for the user)
0x34	RBDPTR	Word	Rx internal data pointer. Points to current absolute data address of channel, used by the CP (read-only for the user)
0x38	MFLR	Hword	Maximum frame length register. Defines the longest expectable frame for this channel. (64-Kbyte maximum). The remainder of a frame that is larger than MFLR is discarded and the LG flag is set in the last frame's BD. An interrupt request might be generated (RXF and RXB) depending on the interrupt mask. A frame's length is considered to be everything between flags, including CRC. No more data is written into the current buffer when the MFLR violation is detected.
0x3A	MAX_CNT	Hword	Max_length counter, used by the CP (read-only for the user)
0x3C	RCRC	Word	Temp receive CRC, used by the CP (read-only for the user)

Table 27-3. Channel-Specific Parameters for HDLC

¹The offset is relative to dual-port RAM base address + 64*CH_NUM

27.6.1 Internal Transmitter State (TSTATE)

Internal transmitter state (TSTATE) is a 4-byte register provides transaction parameters associated with SDMA channel accesses (like function code registers) and starts the transmitter channel.

To start the channel, write 0xHH800000 to TSTATE, where HH is the TSTATE high byte (see Figure 27-6). When the channel is active, the CP changes the value of the three LSBs, hence these 3 bytes must be masked if the user reads back the TSTATE.

Bits	0	1	2	3	3 4		6	7			
Field	-	_	GBL	В	0	TC2	DTB	BDB			
Reset		_									
R/W	R/W										

Figure 27-6. TSTATE High Byte

TSTATE high-byte fields are described in Table 27-4.

Table 27-4. TSTATE High-Byte Field Descriptions

Bits	Name	Description
0–1	-	Reserved, should be cleared.
2	GBL	Global. Setting GLB activates snooping (only the 60X bus can be snooped, this parameter is ignored for local bus transactions).
3–4	во	Byte ordering. Set BO to select the required byte ordering for the buffer. If BO is changed on-the-fly, it takes effect at the beginning of the next frame or at the beginning of the next BD. 00 Reserved 01 PowerPC little-endian. 1x Big-endian
5	TC2	Transfer code. Contains the transfer code value of TC[2], used during this SDMA channel memory access. TC[0–1] is driven with a 0b11 to identify this SDMA channel access as a DMA-type access.
6	DTB	Data bus indicator. Selects the bus that handles transfers to and from data buffers. 0 60x bus SDMA 1 Local bus SDMA
7	BDB	BD bus. Seects the bus that handles transfers to/from BD and interrupt circular tables. 0 60x bus SDMA used for accessing BDs 1 Local bus SDMA used for accessing BDs

27.6.2 Interrupt Mask (INTMSK)

The interrupt mask (INTMSK) provides in bits for enabling/disabling each event defined in the interrupt circular table entry.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Interrupt Entry		_				UN	ТХВ	-	_	NID	IDL	MRF	RXF	BSY	RXB	
INTMSK	-				Mask	Bits	-	_			Mask	Bits				

Figure 27-7. INTMSK Mask Bits

To enable an interrupt, set the corresponding bit. If a bit is cleared, no interrupt request is generated and no new entry is written in the circular interrupt table. The user must initialize INTMSK prior to operation. Reserved bits are cleared.

27.6.3 Channel Mode Register (CHAMR)

The channel mode register (CHAMR) is a user-initialized register, shown in Figure 27-8. This is a generalized representation of CHAMR. Section 27.7.1, "Channel Mode Register (CHAMR)—Transparent Mode," describes the CHAMR for transparent mode.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
Field	MODE	POL	1	IDLM		-	_		CRC	-	TS	RC	2N	NOF				
Reset		_																
R/W		R/W																
Offset		0x1A																

Figure 27-8. Channel Mode Register (CHAMR)

CHAMR fields are described in Table 27-5.

Table 27-5. CHAMR Field Descriptions

Bits	Name	Description
0	MODE	This mode bit determines whether the HDLC or transparent mode is used. It also determines how other CHAMR bits are interpreted. 0 Transparent mode. See Section 27.7.1, "Channel Mode Register (CHAMR)—Transparent Mode." 1 HDLC mode
1	POL	Enable polling. POL enables the transmitter to poll the TxBDs. 0 Polling is disabled (The CPM does not access the external bus to check the R bit in the TxBD). 1 Polling is enabled. POL can be used to optimize the use of the external bus. Software should always set POL at the beginning of a transmit sequence of one or more frames. The CP clears POL when no more buffers are ready in the transmit queue, i.e. when it finds a BD with R = 0 (for example, at the end of a frame or at the end of a multi-frame transmission). To minimize useless transactions on the external bus, software should always prepare the new BD, or multiple BDs, and set BD[R] before enabling polling.
2	1	Must be set.

Bits	Name	Description				
3	IDLM	Idle mode. 0 No idle patterns are sent between frames. After sending NOF+1 flags, the transmitter starts sending the data of the frame. If the transmission is between frames and the frame buffers are not ready, the transmitter sends flags until it can start transmitting the data. 1 At least one idle pattern is sent between adjacent frames. The NOF value shall be no smaller than the PAD setting, see TxBD. If NOF = 0, this is identical to flag sharing in HDLC. Mode flags precede the actual data. When IDLM = 1, at least one idle pattern is sent between adjacent frames. If the transmission is between frames and the frame buffer is not ready, the transmitter sends idle characters. When data is ready, the NOF+1 flags are sent followed by the data frame. If IDLE mode is selected and NOF = 1, the following sequence is sent: init value, FF, FF, flag, flag, data, The init value before the idle will be ones.				
4–7	-	These bits must be cleared.				
8	CRC	Selects the type of CRC when HDLC channel mode is used. 0 16-bit CCITT-CRC 1 32-bit CCITT-CRC				
9	-	This bit must be cleared.				
10	TS	Receive time stamp. If this bit is set a 4 byte time stamp is written at the beginning of every data buffer that the BD points to. If this bit is set the data buffer must start from an address equal to 8*n-4 (n is any integer larger than 0).				
11–12	RQN	Receive queue number. Specifies the receive interrupt queue number. 00 Queue number 0. 01 Queue number 1. 10 Queue number 2. 11 Queue number 3.				
13–15	NOF	Number of flags. NOF defines the minimum number of flags before frames: 000 At least 1 flag 001 At least 2 flags 111 At least 8 flags				

Table 27-5. CHAMR Field Descriptions (Continued)

27.6.4 Internal Receiver State (RSTATE)

Internal receiver state (RSTATE) is a 4-byte register that provides transaction parameters associated with SDMA channel accesses (like function code registers) and starts the receiver channel.

To start the channel the user must write 0xHH800000 to RSTATE, where HH is the RSTATE high byte (see Figure 27-9). When the channel is active the CP changes the value of the 3 LSBs, hence these 3 bytes must be masked if the user reads back the RSTATE.

Part IV. Communications Processor Module

Bits	0	0 1 2 3 4		5	6	7		
Field	_		GBL	во		TC2	DTB	BDB
Reset		_						
R/W		R/W						
Addr	0x20							

Figure 27-9. Rx Internal State (RSTATE) High Byte

RSTATE high-byte fields are described in Table 27-6.

Table 27-6. RSTATE High-Byte Field Descriptions

Bits	Name	Description
0–1	-	Reserved, should be cleared.
2	GBL	Global. Setting GLB activates snooping (only the 60X bus can be snooped, this parameter is ignored for local bus transactions).
3–4	во	Byte ordering. Set BO to select the required byte ordering for the buffer. If BO is changed on-the-fly, it takes effect at the beginning of the next frame or at the beginning of the next BD. 00 Reserved 01 PowerPC little-endian. 1x Big-endian
5	TC2	Transfer code. Contains the transfer code value of TC[2], used during this SDMA channel memory access. TC[0–1] is driven with a 0b11 to identify this SDMA channel access as a DMA-type access.
6	DTB	Data bus indicator. The transfers to data buffers are handled by the: 0 60x bus SDMA 1 Local bus SDMA
7	BDB	 BD and interrupt circular tables bus indicator. The transfers to/from BD and interrupt circular tables are handled by the: 0 60x bus SDMA 1 Local bus SDMA Note that the following restrictions result from the fact that there is a common bus selection bit for BDs and interrupt circular tables: The RxBDs of all the channels that use a particular interrupt table must reside on the same bus (60x or local). All TxBDs must reside on the same bus (60x or local).

27.7 Channel-Specific Transparent Parameters

Table 27-7 describes channel-specific parameters for transparent operation.

Table 27-7. Channel-Specific Parameters for Transparent Operation

Offset ¹	Name	Width	Description
0x00	TSTATE	Word	Tx internal state. To start a transmitter channel the user must write to TSTATE 0xHH80_0000. HH is the TSTATE high byte described in Section 27.6.1, "Internal Transmitter State (TSTATE)."

Offset ¹	Name	Width	Description
0x04	ZISTATE	Word	Zero-insertion machine state.(User-initialized to 0x10000207 for regular channel, and 0x30000207 for inverted channel)
0x08	ZIDATA0	Word	Zero-insertion high word data buffer (User-initialized to 0xFFFFFFF)
0x0C	ZIDATA1	Word	Zero-insertion low word data buffer (User-initialized to 0xFFFFFFFF)
0x10	TBDFlags	Hword	TxDB flags, used by the CP (read-only for the user)
0x12	TBDCNT	Hword	Tx internal byte count. Number of remaining bytes in buffer, used by the CP (read-only for the user)
0x14	TBDPTR	Word	Tx internal data pointer. Points to current absolute data address of channel, used by the CP (read-only for the user)
0x18	INTMSK	Hword	Channel's interrupt mask flag. See Section 27.6.2, "Interrupt Mask (INTMSK)."
0x1A	CHAMR	Hword	Channel mode register. See Section 27.7.1, "Channel Mode Register (CHAMR) – Transparent Mode."
0x1C	-	Word	Reserved
0x20	RSTATE	Word	Rx internal state. To start a receiver channel the user must write to RSTATE 0xHH80_0000. HH is the RSTATE high byte described in Section 27.6.4, "Internal Receiver State (RSTATE)."
0x24	ZDSTATE	Word	Zero-deletion machine state (User-initialized to 0x00FFFFE0 for regular channel and 0x20FFFFE0 for inverted channel)
0x28	ZDDATA0	Word	Zero-deletion high word data buffer (User-initialized to 0xFFFFFFFF)
0x2C	ZDDATA1	Word	Zero-deletion low word data buffer (User-initialized to 0xFFFFFFF)
0x30	RBDFlags	Hword	RxBD flags, used by the CP (read-only for the user)
0x32	RBDCNT	Hword	Rx internal byte count. Number of remaining bytes in buffer, used by the CP (read- only for the user)
0x34	RBDPTR	Word	Rx internal data pointer. Points to current absolute data address of channel, used by the CP (read-only for the user)
0x38	TMRBLR	Hword	Transparent maximum receive buffer length. Defines the maximum number of bytes written to a receiver buffer before moving to the next buffer for the respective channel. This value must be 8 byte aligned.
0x3A	RCVSYNC	Hword	Receive synchronization pattern. Defines the synchronization pattern when CHAMR[SYNC] is 0b1x. The two bytes are checked in reverse order (byte from address 0x3B first and byte from address 0x3A last). Non-inverted data is used for synchronization even if the channel is programmed to invert the data.
0x3C	-	Word	Reserved

Table 27-7. Channel-Specific Parameters for Transparent Operation (Continued)

¹The offset is relative to dual-port RAM address 64*CH_NUM

27.7.1 Channel Mode Register (CHAMR)-Transparent Mode

Figure 27-10 shows the user-initialized channel mode register, CHAMR, for transparent mode.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	MODE POL 1 1 EP RD S			SY	NC	c –		TS	RQN		-					
Reset		_														
R/W		R/W														
Offset		0x1A														

Figure 27-10. Channel Mode Register (CHAMR)-Transparent Mode

CHAMR fields are described in Table 27-5,

Table 27-8. CHAMR Field Descriptions—Transparent Mode

Bits	Name				Description					
0	MODE	0 Transp	Channel mode. Selects either HDLC or transparent mode.) Transparent mode. HDLC mode							
1	POL	0 Polling 1 Polling POL car beginnir are read or at the on the e	Enable polling. POL enables the transmitter to poll the TxBDs. D Polling is disabled (The CPM does not access the external bus to check the R bit in the TxBD). I Polling is enabled. POL can be used to optimize the use of the external bus. Software should always set POL at the beginning of a transmit sequence of one or more frames. The CP clears POL when no more buffers are ready in the transmit queue, i.e. when it finds a BD with $R = 0$ (for example, at the end of a frame or at the end of a multi-frame transmission). To prevent a significant number of useless transactions on the external bus, software should always prepare the new BD, or multiple BDs, and set BD[R] before enabling polling.							
2–3	0b11	Must be	set.							
4	EP	0 The POL 1 The	 Empty polarity and enable polling. The E bit in the RxBD is handled in positive logic (1 = empty; 0 = not empty). Polling occurs only if POL is set. The E bit in the RxBD is handled in negative logic (0 = empty, 1 = not empty). Polling occurs disregarding the value of POL. 							
5	RD				eceive the lsb of each octet first) ersed (transmit/receive the msb of each octet first).					
6–7	SYNC	Synchro	nization. S	YNC contro	ols synchronization of multi-channel operation in transparent mode.					
		SYNC	Receive	Transmit	Description					
		00	None	None	Transmitter and receiver operate with no synchronization algorithm					
		01	Slot	Slot	The first data is sent/received in the slot defined in the slot assignment table (for super channels only)					
		10	10 8-bit None Receive data synchronization uses an 8-bit pattern specified by the 8 MSB of RCVSYNC. The sync bytes will not be written to the receive buffer							
		11	16-bit	None	Receive data synchronization uses a 16-bit pattern specified by RCVSYNC. The first byte of the sync pattern will not be written to the receive buffer. The second byte of the sync pattern will be written to the receive buffer (first and second represent the order in which the two bytes of the sync pattern are received on the serial channel).					
8–9	_	Reserve	ed, must be	cleared.						

Bits	Name	Description
10	TS	Receive time stamp. If this bit is set a 4 byte time stamp is written at the beginning of every data buffer that the BD points to.If this bit is set the data buffer must start from an address equal to $8*N-4$ (N is any number larger than 0).
11–12	RQN	Receive queue number. Specifies the receive interrupt queue number. 00 Queue number 0. 01 Queue number 1. 10 Queue number 2. 11 Queue number 3.
13–15	-	Reserved, must be cleared.

Table 27-8. CHAMR Field Descriptions—Transparent Mode (Continued)

27.8 MCC Configuration Registers (MCCFx)

The MCC configuration register (MCCF), shown in Figure 27-11, defines the mapping of the MCC channels to the TDM channels. MCC1 can be connected to SI1 and MCC2 can be connected to SI2. For each MCC*x*-SI*x* pair, each of the four 32 channels subgroups can be connected to one of the four TDM highways (TDMA, TDMB, TDMC, and TDMD).

Bits	0	1	2	3	4	5	6	7	
Field	Group 1		Group 2		Group 3		Group 4		
Reset		0000_0000							
R/W		R/W							
Addr		0x11B38 (MCCF1), 0x11B58 (MCCF2)							

Figure 27-11. SI MCC Configuration Register (MCCF)

Table 27-9 describes MCCF fields.

Table 27-9. MCCF Field Descriptions

Bits	Name	Description
0–1, 2–3, 4–5, 6–7	GROUP x	Group x of channels is used by TDM y as shown in Table 27-10. 00 Group x is used by TDM A. 01 Group x is used by TDM B. 10 Group x is used by TDM C. 11 Group x is used by TDM D.

Table 27-10 describes group assignments.

Group	Channels
Group1 in MCCF1	0–31
Group2 in MCCF1	32–63
Group3 in MCCF1	64–95
Group4 in MCCF1	96–127
Group1 in MCCF2	128–159
Group2 in MCCF2	160–191
Group3 in MCCF2	192–223
Group4 in MCCF2	224–255

Table 27-10. Group Channel Assignments

Note that the TDM group channel assignments made in MCCF must be coherent with the SI register programming and SI RAM programming; see Section 14.5, "Serial Interface Registers," and Section 14.4.3, "Programming SIx RAM Entries." The user must also program MCCF before enabling the TDM channel in the SIGMR; see Section 14.5.1, "SI Global Mode Registers (SIxGMR)."

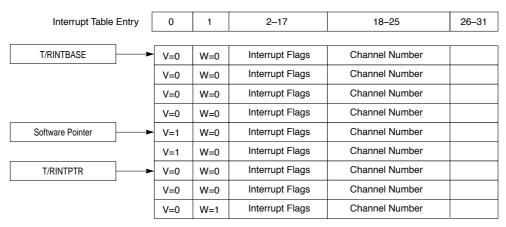
27.9 MCC Commands

The user starts channels by writing to the TSTATE/RSTATE registers as described in Section 27.6.4, "Internal Receiver State (RSTATE)," and Section 27.6.1, "Internal Transmitter State (TSTATE)."

The following commands, used to stop and initialize channels, are issued to the MCC by writing to CPCR as described in Section 13.4.1, "CP Command Register (CPCR)." Table 27-11 describes transmit commands.

Command	Description
STOP TRANSMIT	Disables the transmission on the selected channel and clears CHAMR[POL]. When this command is issued in the middle of a frame, the CP sends an ABORT indication and then idles/flags on the selected channel. If this command is issued between frames, the CP sends only idles or flags (depending on CHAMR[IDLM]). TBPTR points for the buffer that the CP was using when the STOP TRANSMIT command was issued.
INIT TX PARAMETERS	Initializes transmit parameters in this MCC parameter RAM to their reset state. This command should only be issued when the transmitter is disabled. Note that the MCC initialize commands initialize only the 32 consecutive channels starting with the channel number specified in CPCR[MCN]. To initialize more than 32 channels, reissue the command with the appropriate channel numbers. Note also the INIT TX AND RX PARAMETERS command can be used to reset both the receive and transmit parameters.

Table 27-11.	Transmit	Commands
--------------	----------	----------


Table 27-12 describes receive commands.

Command	Description
STOP RECEIVE	Forces the receiver of the selected channel to terminate reception. After this command is executed, the CP does not change the receive parameters in the dual-port RAM. The user must initialize the channel receive parameters in order to restart reception.
INIT RX PARAMETERS	Initializes all receive parameters in this MCC parameter RAM to their reset state. Should be issued only when the receiver is disabled. Note that the MCC initialize commands initialize only the 32 consecutive channels starting with the channel number specified in CPCR[MCN]. To initialize more than 32 channels, reissue the command with the appropriate channel numbers. Note also the INIT TX AND RX PARAMETERS command can be used to reset both the receive and transmit parameters.

Table 27-12. Receive Commands

27.10 MCC Exceptions

MCC interrupt handling involves two main data structures, the MCC event register (described in Section 27.10.1, "MCC Event Register (MCCE)/Mask Register (MCCM)) and the interrupt circular tables, shown in Figure 27-12.

Figure 27-12. Interrupt Circular Table

There is one table for transmitter interrupts and from one to four tables for receiver interrupts. Each channel is programmed to report receiver interrupts in one of the receiver tables. This way receiver interrupts can be sorted, for example, by priority. Each interrupt circular table must be least two entries long.

T/RINTBASE and T/RINTPTR, which are user-initialized global MCC parameters (See Section 27.3, "Global MCC Parameters"), point to the starting location of the table (in external memory) and the current empty position (initialized at the top of the table) available to the CP. All the entries in the table must be user-initialized with 0x00000000, except for the last one which must be initialized with 0x40000000 (W = 1, thus defining the

end of the table). When an MCC channel generates an interrupt request, the CP writes a new entry to the table (with V = 1) and increments T/RINTPTR (if W = 1 for the current entry, T/RINTPTR is loaded with T/RINTBASE).

An interrupt is issued to the core whenever an entry is added to an interrupt circular table, except for the RXF events (received complete HDLC frame), in which case an interrupt is issued after a total of GRFTHR entries were added to one or more of the receive interrupt circular tables. See Table 27-1 for the description of the GRFTHR.

In addition to the channel's number, this entry contains a description of the exception (see Section 27.10.1.1, "Interrupt Table Entry").

After an MCC interrupt, the user reads MCCE. MCCE[GINT] can be used to indicate that at least one new entry was added to one of the tables. After clearing GINT, the user starts processing the table(s) which contain pending events, as indicated by the bits MCCE[RINTx] and MCCE[TINT]. The user then clears this entry's valid bit (V) (see Section 27.10.1.1, "Interrupt Table Entry"). The user follows this procedure until it reaches an entry with V = 0.

27.10.1 MCC Event Register (MCCE)/Mask Register (MCCM)

The MCC event register (MCCE) is used to report events and generate interrupt requests. For each of its flags, a programmable mask/enable bit in MCCM determines whether an interrupt request is generated. The MCC mask register (MCCM) is used to enable/disable interrupt requests. For each flag in the MCCE there is a programmable mask/enable bit in MCCM which determines whether an interrupt request is generated. Setting an MCCM bit disables the corresponding interrupt.

MCCE bits are cleared by writing ones to them; writing zeros has no effect.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	QOV0	RINT0	QOV1	RINT1	QOV2	RINT2	QOV3	RINT3	G – TQOV TINT					GUN	GOV	
Reset	0000_0000_0000															
R/W	R/W															
Addr	0x11B30 (MCCE1), 0x11B50 (MCCE2)/0x11B34 (MCCM1), 0x11B54 (MCCM2)															

Figure 27-13 shows MCCE and MCCM bits,

Figure 27-13. MCC Event Register (MCCE)/Mask Register (MCCM)

Table 27-13 describes MCCE fields.

Bits	Name	Description
0	QOV0	QOVx-Receive interrupt queue overflow. IQOV is set (and an interrupt request generated) by the
1	RINT0	CP whenever an overflow occurs in the transmit circular interrupt table. This occurs if the CP tries to update an interrupt entry that was not handled by the user (such an entry is identified by $V = 1$).
2	QOV1	RINTx—Receive interrupt. When RINT = 1, the MCC generated at least one new entry in the receive interrupt circular table. After clearing it, the user reads the next entry from the receive interrupt
3	RINT1	circular table and starts processing a specific channel's exception. The user returns from the interrupt handler when it reaches a table entry with $V = 0$.
4	QOV2	interrupt nancier when it reaches a table entry with v = 0.
5	RINT2	
6	QOV3	
7	RINT3	
8–11	-	Reserved, should be cleared.
12	TQOV	Transmit interrupt queue overflow. TQOV is set (and interrupt request generated) by the CP whenever an overflow occurs in the transmit circular interrupt table. This condition occurs if the CP attempts to write a new interrupt entry into an entry that was not handled by the user. Such an entry is identified by $V = 1$.
13	TINT	Transmit interrupt. When TINT = 1, at least one new entry in the transmit interrupt circular table was generated by MCC. After clearing it, the user reads the next entry from the transmit interrupt circular table and starts processing a specific channel's exception. The user returns from the interrupt handler when it reaches a table entry with $V = 0$.
14	GUN	Global transmitter underrun. When set, this flag indicates that an underrun occured in the MCC's transmitter FIFO buffer. This error is fatal, since it is unknown which channels were affected. Following the assertion of GUN in the MCCE the MCC stops transmitting data in all channels. The TDM Tx line becomes idle. The MCC transmitters must be reinitialized after this error. If enabled in MCCM, an interrupt request is generated when GUN is set. The user must clear GUN.
15	GOV	Global receiver overrun. When GOV = 1, an overrun occured in the MCC's receiver FIFO buffer. This error is fatal, since it is unknown which channels were affected. When GOV = 1, the MCC stops receiving data in all channels. No more data is transferred to memory. The MCC receivers must be re-initialized after this error. If enabled in MCCM, an interrupt request is generated when GOV is set. The user must clear GOV bit.

Table 27-13. MCCE/MCCM Register Field Descriptions

27.10.1.1 Interrupt Table Entry

Each interrupt table entry, shown in Figure 27-14, contains information about channelspecific events. The transmit circular table shows only events caused by transmission; the receive circular tables shows only events caused by reception.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	v	w		_				тхв	-	_	NID	IDL	MRF	RXF	BSY	RXB
R/W		R/W														
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	- Channel Number									0	0	0	0	0	0	
R/W		R/W														

Figure 27-14. Interrupt Circular Table Entry

Table 27-14 describes interrupt circular table fields.

Table 27-14. Interrupt Circular Table Entry Field Descriptions

Name	Description
v	Valid bit. V = 1 indicates that this entry contains valid interrupt information. Upon generating a new entry, the CP sets V = 1. The user clears V immediately after it reads the interrupt flags of the entry (before processing the interrupt). The V bits in the table are user-initialized. During initialization, the user must clear those bits in all table entries.
W	Wrap bit. W = 1 indicates the last interrupt circular table entry. The next event's entry is written/read (by CP/user) from the address contained in INTBASE (see Table 27-1). During initialization, the user must clear all W bits in the table except for the last one which must be set.
_	Reserved, should be cleared.
UN	Tx no data. The CP sets this flag if there is no data available to be sent to the transmitter. The transmitter sends an ABORT indication and then sends idles.
ТХВ	Tx buffer. A buffer has been completely transmitted. TXB is set (and an interrupt request is generated) as soon as the programmed number of PAD characters (or the closing flag, for PAD = 0) is written to MCC transmit FIFO. This controls when the TXB interrupt is given in relation to the closing flag sent out at TXD. Section 27.11.2, "Transmit Buffer Descriptor (TxBD)" describes how PAD characters are used.
-	Reserved, should be cleared.
MRF	Maximum receive frame length violation. This interrupt occurs in HDLC mode when more bytes are received than the value specified in MFLR. This interrupt is generated as soon as the MFLR value is exceeded; the remainder of the frame is discarded
NID	Set whenever a pattern that is not an idle pattern is identified.
IDL	Idle. Set when the channel's receiver identifies the first occurrence of HDLC idle (0xFFFE) after any non-idle pattern.
RXF	Rx frame. A complete HDLC frame has been received.
BSY	Busy. A frame was received but was discarded due to lack of buffers.
RXB	Rx buffer. A buffer has been received on this channel that was not the last buffer in frame. This interrupt is also given for different error types that can happen during reception. Error conditions are reported in the RxBD.
_	Reserved, should be cleared.
CN	Channel number. Identifies the requests channel index (0-255).
_	Reserved, should be cleared.
	V UN TXB MRF MRF IDL BSY RXF RXB

27.11 MCC Buffer Descriptors

Each MCC channel requires two BD tables (one for transmit and one for receive). Each BD contains key information about the buffer it defines. The BDs are accessed by the MCC as needed; BDs can be added dynamically to the BDs chain. The RxBDs chain must include at least two BDs; the TxBD chain must include at least one BDs.

The MCC BDs are located in the external memory.

27.11.1 Receive Buffer Descriptor (RxBD)

Figure 27-15 shows the RxBD.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Offset + 0	Е	-	w	I	L	F	СМ	-	UB	-	LG	NO	AB	CR	-		
Offset + 2		Data Length															
Offset + 4		Rx Data Buffer Pointer															
Offset + 6																	

Figure 27-15. MCC Receive Buffer Descriptor (RxBD)

RxBD fields are described in Table 27-15.

Bits	Name	Description
0	E	 Empty The data buffer associated with this BD has been filled with received data, or data reception has been aborted due to an error condition. The user is free to examine or write to any fields of this RxBD. The CP does not use this BD again while the empty bit remains zero. The data buffer associated with this BD is empty, or reception is in progress. This RxBD and its associated receive buffer are in use by the CP. When E = 1, the user should not write any fields of this RxBD.
1	-	Reserved, should be cleared.
2	w	 Wrap (final BD in table) This is not the last BD in the RxBD table. This is the last BD in the RxBD table. After this buffer has been used, the CP receives incoming data into the first BD in the table (the BD pointed to by RBASE). The number of RxBDs in this table is programmable and is determined by the wrap bit.
3	I	 Interrupt The RXB bit is not set after this buffer has been used, but RXF operation remains unaffected. The RXB or RXF bit in the HDLC interrupt circular table entry is set when this buffer has been used by the HDLC controller. These two bits may cause interrupts (if enabled).
4	L	Last in frame (only for HDLC mode of operation). The HDLC controller sets L = 1, when this buffer is the last in a frame. This implies the reception either of a closing flag or of an error, in which case one or more of the CD, OV, AB, and LG bits are set. The HDLC controller writes the number of frame octets to the data length field. 0 This buffer is not the last in a frame. 1 This buffer is the last in a frame.

Bits	Name	Description								
5	F	First in frame. The HDLC controller sets F = 1 for the first buffer in a frame. In transparent mode, F indicates that there was a synchronization before receiving data in this BD. 0 This is not the first buffer in a frame. 1 This is the first buffer in a frame.								
6	СМ	 Continuous mode Normal operation (The empty bit (bit 0) is cleared by the CP after this BD is closed). The empty bit (bit 0) is not cleared by the CP after this BD is closed, allowing the associated data buffer to be overwritten automatically when the CP next accesses this BD. However, if an error occurs during reception, the empty bit is cleared regardless of the CM bit setting. 								
7	_	Reserved, should be cleared.								
8	UB	Jser bit. UB is a user-defined bit that the CPM never sets nor clears. The user determines how this bit is used.								
9	-	Reserved, should be cleared.								
10	LG	Rx frame length violation (HDLC mode only). Indicates that a frame length greater than the maximum value was received in this channel. Only the maximum-allowed number of bytes, MFLR rounded to the nearest higher word alignment, are written to the data buffer. This event is recognized as soon as the MFLR value is exceeded when data is word-aligned. When data is not word-aligned this interrupt occurs when the SDMA writes 64 bits to memory. The worst-case latency from MFLR violation until detected is 7 bytes timing for this channel. When MFLR violation is detected, the receiver is still receiving even though the data is discarded. The buffer is closed upon detecting a flag, and this is considered to be the closing flag for this buffer. At this point, LG is set (1) and an interrupt may be generated. The length field for this buffer is everything between the opening flag and this last identifying flag.								
11	NO	Rx nonoctet-aligned frame. A frame of bits not divisible exactly by eight was received. NO = 1 for any type of nonalignment regardless of frame length. The shortest frame that can be detected is of type FLAG-BIT-FLAG, which causes the buffer to be closed with NO error indicated. The following shows how the nonoctet alignment is reported and where data can be found. msb Isb xxxxx 1 0000 Valid data Invalid data To accommodate the extra word of data that may be written at the end of the frame, it is recommended to reserve MFLR + 8 bytes for each buffer data.								
12	AB	Rx abort sequence. A minimum of seven consecutive 1s was received during frame reception. Abort is not detected between frames. The sequence Closing-Flag, data, CRC, AB, data, opening-flag does not cause an abort error. If the abort is long enough to be an idle, an idle line interrupt may be generated. An abort within the frame is not reported by a unique interrupt but rather with a RXF interrupt and the user has to examine the BD.								
13	CR	Rx CRC error. This frame contains a CRC error. The received CRC bytes are always written to the receive buffer.								
14–15	_	Reserved, should be cleared.								

Table 27-15. RxBD Field Descriptions (Continued)

The data length and buffer pointer are described as follows:

- Data length. Data length is the number of octets written by the CP into this BD's data buffer. It is written by the CP when the BD is closed. When this is the last BD in the frame (L = 1), the data length contains the total number of frame octets (including two or four bytes for CRC). Note that memory allocated for buffers should be not smaller than the contents of the maximum receive buffer length register (MRBLR). The data length does not include the time stamp.
- Rx buffer pointer. The receive buffer pointer points to the first location of the associated data buffer. This value must be equal to 8*n if CHAMR[TS] = 0 and equal to 8*n 4 if CHAMR[TS] = 1 (where *n* is any integer larger than 0).

27.11.2 Transmit Buffer Descriptor (TxBD)

Figure 27-16 shows the TxBD.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	R	-	w	I	L	тс	СМ	-	UB	– PAD						
Offset + 2		Data Length														
Offset + 4							Tx D	ata Bu	ffer Po	inter						
Offset + 6																

Figure 27-16. MCC Transmit Buffer Descriptor (TxBD)

Table 27-16 describes TxBD fields.

Table 27-16. TxBD Field Descriptions

Bits	Name	Description
0	R	 Ready 0 The buffer associated with this BD is not ready for transmission. The user is free to manipulate this BD or its associated data buffer. The CP clears this bit after the buffer has been transmitted or after an error condition is encountered. 1 The data buffer is ready to be transmitted. The transmission may have begun, but it has not completed. The user cannot modify this BD once this bit is set.
1	-	Reserved, should be cleared.
2	w	 Wrap (final BD in table) This is not the last BD in the TxBD table. This is the last BD in the TxBD table. After this buffer is used, the CP receives incoming data into the first BD in the table (the BD pointed to by TBASE). The number of TxBDs in this table is programmable and is determined the wrap bit.
3	1	 Interrupt No interrupt is generated after this buffer has been serviced. TXB in the circular interrupt table entry is set when this buffer has been serviced by the MCC. This bit can cause an interrupt (if enabled).
4	L	Last 0 This is not the last buffer in the frame. 1 This is the last buffer in the current frame.

Bits	Name	Description
5	F	 Tx CRC. Valid only when L = 1. Otherwise it must be ignored. Transmit the closing flag after the last data byte. This setting can be used for testing purposes to send an erroneous CRC after the data. Transmit the CRC sequence after the last data byte.
6	СМ	 Continuous mode Normal operation. The CP does not clear the ready bit after this BD is closed, allowing the associated data buffer to be retransmitted automatically when the CP next accesses this BD. However, the R bit is cleared if an error occurs during transmission, regardless of the CM bit setting.
7	-	Reserved, should be cleared.
8	UB	User bit. UB is a user-defined bit that the CPM never sets nor clears. The user determines how this bit is used.
9–11	-	Reserved, should be cleared.
12–15	PAD	Pad characters. These four bits indicate the number of PAD characters (0x7E or 0xFF depending on the IDLM mode selected in the CHAMR register) that the transmitter sends after the closing flag. The transmitter issues a TXB interrupt only after sending the programmed number of pads to the Tx FIFO buffer. The user can use the PAD value to guarantee that the TXB interrupt occurs after the closing flag has been sent out on the TXD line. PAD = 0, means that the TXB interrupt is issued immediately after the closing flag is sent to the Tx FIFO buffer. The number of PAD characters depends on the FIFO size assigned to the channel in the MCC hardware. If the channel is not part of a super channel then the TXB interrupt is not given before the closing flag has been transmitted over the TXD line. For a super channel, FIFO length equals the number of channels included in the super channel multiplied by four.

Table 27-16. TxBD Field Descriptions (Continued)

The data length and buffer pointer are described below:

- Data length. The data length is the number of bytes the MCC should transmit from this BD's data buffer. It is never modified by the CP. The value of this field should be greater than zero.
- Tx buffer pointer. The transmit buffer pointer, which contains the address of the associated data buffer, may be even or odd. The buffer may reside in either internal or external memory. This value is never modified by the CP.

27.12 MCC Initialization and Start/Stop Sequence

The MCC must be initialized and started/stopped in relation with the corresponding TDMs. The following two sections present the initialization and start/stop sequences which must be followed for single and super channels.

27.12.1 Single-Channel Initialization

The following sequence must be followed to initialize and start a single channel (after reset or after a fatal error):

- 1. Program the SI. The entries the MCC channels uses must point to the null channel (set in the SI RAM entry MCC = 0, CSEL = 0 and the correct size 1 byte); entries used by other controllers (not MCC) can be activated at this time.
- 2. Initialize the MCC parameters (in DPR and external memory).
- 3. Enable the MCC channel as described in Section 27.6.1, "Internal Transmitter State (TSTATE)," and Section 27.6.4, "Internal Receiver State (RSTATE)."
- 4. Reprogram the SI RAM to point to the enabled channel(s).

The following sequence must be followed to stop a single channel in order to change the SI without using the shadow SI:

- 1. Issue a STOP command for the respective channel as described in Section 27.9, "MCC Commands."
- 2. Change the SI.
- 3. Enable the MCC channel(s) as described in Section 27.6.1, "Internal Transmitter State (TSTATE)," and Section 27.6.4, "Internal Receiver State (RSTATE)."

It is possible to change the SI using the SI shadow while the channel is active. Both the primary and the shadow configuration of the SI RAM must observe the configuration defined in MCCF (see Section 27.8, "MCC Configuration Registers (MCCFx)"). The MCCF cannot be changed while there are active channels.

The following sequence must be followed to stop a single channel in order to change the MCC parameters of the respective channel:

- 1. Issue a STOP command for the respective channel as described in Section 27.9, "MCC Commands," or change the associated SI RAM entry to point to a channel which is not active and wait for two frame periods in order to clear the internal FIFOs.
- 2. Change the channel parameters.
- 3. Enable the MCC channel(s) as described in Section 27.6.1, "Internal Transmitter State (TSTATE)," and Section 27.6.4, "Internal Receiver State (RSTATE)," or change the associated SI RAM entry to point to the respective channel.

27.12.2 Super Channel Initialization

The following steps initialize and start a super channel (after reset of after a fatal error):

- 1. Program the SI as required for a super channel but do not enable the TDM.
- 2. Issue a STOP command as described in Section 27.9, "MCC Commands."
- 3. Enable the TDM.
- 4. Initialize the MCC parameters (in DPR and external memory).
- 5. Enable the MCC channel(s) as described in Section 27.6.1, "Internal Transmitter State (TSTATE)," and Section 27.6.4, "Internal Receiver State (RSTATE)."

The following sequence must be followed to stop a super channel in order to change the SI:

- 1. Issue a STOP command for the respective channel as described in Section 27.9, "MCC Commands."
- 2. Disable the TDM.
- 3. Change the SI.
- 4. Enable the TDM.
- 5. If necessary, change the MCC parameters (in DPR and external memory).
- 6. Enable the MCC channel(s) as described in Section 27.6.1, "Internal Transmitter State (TSTATE)," and Section 27.6.4, "Internal Receiver State (RSTATE)."

Under the following restrictions, the SI can be changed using the SI shadow while the channel is active:

- Both the primary and the shadow configuration of the SI RAM must observe the configuration of the super channel. Note that the super-channel table and MCCF register cannot be changed dynamically.
- It is not possible to add dynamically to a super channel a time slot previously used by a single-channel and had a width different from 8 bits.
- A time slot that was previously used by a single channel and had a width different from 8 bits cannot be added dynamically to a super channel.

27.13 MCC Latency and Performance

The MCC transfers data to/from the memory 8 bytes at a time. Considering this and the internal receiver FIFO (of 2 bytes/channel), the receiver latency (time since data on a channel is serialized until the respective data is written to memory) can be from 8–10 frame periods.

If no super channels are active, the MCC can handle aggregate data rates of up to 16 Mbps on each of the four channel subgroups. If super channels are used this performance is limited to 8 Mbps.

If multiple synchronized channels are used (as an example 8 T1 with common clock/sync) it is recommended to start the channels out of phase in order to load uniformly the bus. This avoids bus activity peaks when all the channels have to transfer data to/from the memory simultaneously.

Chapter 28 Fast Communications Controllers (FCCs)

The MPC8260's fast communications controllers (FCCs) are serial communications controllers (SCCs) optimized for synchronous high-rate protocols. FCC key features include the following:

- Supports HDLC/SDLC and totally transparent protocols
- FCC clocks can be derived from a baud-rate generator or an external signal.
- Supports $\overline{\text{RTS}}$, $\overline{\text{CTS}}$, and $\overline{\text{CD}}$ modem control signals
- Use of bursts to improve bus usage
- Multibuffer data structure for receive and transmit, external buffer descriptors (BDs) anywhere in system memory
- 192-byte FIFO buffers
- Full-duplex operation
- Fully transparent option for one half of an FCC (receiver/transmitter) while HDLC/ SDLC protocol executes on the other half (transmitter/receiver)
- Echo and local loopback modes for testing
- Assuming a 100-MHz CPM clock, the FCCs support the following:
 - Full 10/100-Mbps Ethernet/IEEE 802.3x through an MII
 - Full 155-Mbps ATM segmentation and reassembly (SAR) through UTOPIA (on FCC1 and FCC2 only)
 - 45-Mbps (DS-3/E3 rates) HDLC and/or transparent data rates supported on each FCC

FCCs differ from SCCs as follows:

- No DPLL support.
- No BISYNC, UART, or AppleTalk/LocalTalk support.
- No HDLC bus.
- Ethernet support only through an MII.

28.1 Overview

MPC8260 FCCs can be configured independently to implement different protocols. Together, they can be used to implement bridging functions, routers, and gateways, and to interface with a wide variety of standard WANs, LANs, and proprietary networks. FCCs have many physical interface options such as interfacing to TDM buses, ISDN buses, standard modem interfaces, fast Ethernet interface (MII), and ATM interfaces (UTOPIA); see Chapter 14, "Serial Interface with Time-Slot Assigner," Chapter 30, "Fast Ethernet Controller," and Chapter 29, "ATM Controller." The FCCs are independent from the physical interface, but FCC logic formats and manipulates data from the physical interface. That is why the interfaces are described separately.

The FCC is described in terms of the protocol that it is chosen to run. When an FCC is programmed to a certain protocol, it implements a certain level of functionality associated with that protocol. For most protocols, this corresponds to portions of the link layer (layer 2 of the seven-layer OSI model). Many functions of the FCC are common to all of the protocols. These functions are described in the FCC description. Following that, the implementation details that differentiate protocols from one another are discussed, beginning with the transparent protocol. Thus, the reader should read from this point to the transparent protocol and then skip to the appropriate protocol. Since the FCCs use similar data structures across all protocols, the reader's learning time decreases dramatically after understanding the first protocol.

Each FCC supports a number of protocols—Ethernet, HDLC/SDLC, ATM, and totally transparent operation. Although the selected protocol usually applies to both the FCC transmitter and receiver, half of one FCC can run transparent operation while the other runs HDLC/SDLC protocol. The internal clocks (RCLK, TCLK) for each FCC can be programmed with either an external or internal source. The internal clocks originate from one of the baud-rate generators or one of the external clock signals. These clocks can be as fast as one-third the CPM clock frequency. See Chapter 14, "Serial Interface with Time-Slot Assigner." However, the FCC's ability to support a sustained bit stream depends on the protocol as well as on other factors.Each FCC can be connected to its own set of pins on the MPC8260. This configuration, the nonmultiplexed serial interface, or NMSI, is described in Chapter 14, "Serial Interface with Time-Slot Assigner." In this configuration, each FCC can support the standard modem interface signals (RTS, CTS, and CD) through the appropriate port pins and the interrupt controller. Additional handshake signals can be supported with additional parallel I/O lines. The FCC block diagram is shown in Figure 28-1.

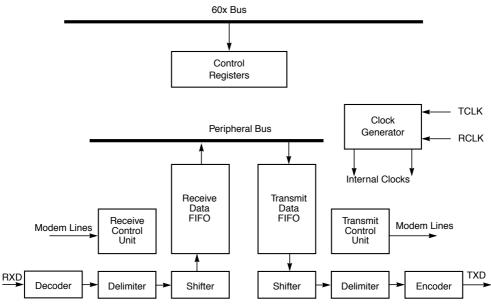


Figure 28-1. FCC Block Diagram

28.2 General FCC Mode Registers (GFMRx)

Each FCC contains a general FCC mode register (GFMRx) that defines all options common to every FCC, regardless of the protocol. Some GFMR operations are described in later sections. The GFMRx are read/write registers cleared at reset. Figure 28-2 shows the GFMR format.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	DIAG TCI TRX TTX CDP CTSP CDS CTSS –															
Reset	0000_0000_0000															
R/W		R/W														
Addr	0x11300 (GFMR1), 0x11320 (GFMR2), 0x11340 (GFMR3)															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	SY	'NL	RTSM	RE	NC	REVD	TEN	۱C	TCF	RC	ENR	ENT		MC	DE	
Reset							0000_0	0000_0	000_00	00						
	R/W															
R/W								R/W	/							

Figure 28-2. General FCC Mode Register (GFMR)

Table 28-1 describes GFMR fields.

Field	Name	Description
0–1	DIAG	 Diagnostic mode. O0 Normal operation—Receive data enters through RXD, and transmit data is shifted out through TXD. The FCC uses the modem signals (CD and CTS) to automatically enable and disable transmission and reception. Timings are shown in Section 28.11, "FCC Timing Control." O1 Local loopback mode—Transmitter output is connected internally to the receiver input, while the receiver and the transmitter operate normally. RXD is ignored. Data can be programmed to appear on TXD, or TXD can remain high by programming the appropriate parallel port register. RTS can be disabled in the appropriate parallel I/O register. The transmitter and receiver must use the same clock source, but separate CLKx pins can be used if connected to the same external clock source. If external loopback is preferred, program DIAG for normal operation and externally connect TXD and RXD. Then, physically connect the control signals (RTS connected to CD, and CTS grounded) or set the parallel I/O registers so CD and CTS are permanently asserted to the FCC by configuring the associated CTS and CD pins as general-purpose I/O.; see Chapter 35, "Parallel I/O Ports." 10 Automatic echo mode—The channel automatically retransmits received data, using the receive clock provided. The receiver operates normally and receives data if CD is asserted. The transmitter simply transmits received data. In this mode, CTS is ignored. The echo function can also be accomplished in software by receiving buffers from an FCC, linking them to TxBDs, and transmitting them back out of that FCC. 11 Loopback and echo mode—Loopback bit description for clocking requirements. For TDM operation, the diagnostic mode is selected by SIxMR[SDMx]; see Section 14.5.2, "SI Mode Registers (SIxMR)."
2	TCI	Transmit clock invert 0 Normal operation. 1 The FCC inverts the internal transmit clock.
3	TRX	Transparent receiver. The MPC8260 FCCs offer totally transparent operation. However, to increase flexibility, totally transparent operation is configured with the TTX and TRX bits instead of the MODE bits. This lets the user implement unique applications such as an FCC transmitter configured to HDLC and a receiver configured to totally transparent operation. To do this, program MODE = HDLC, TTX = 0, and TRX = 1. 0 Normal operation 1 The receiver operates in totally transparent mode, regardless of the protocol selected for the transmitter in the MODE bits. Note that full-duplex, totally transparent operation for an FCC is obtained by setting both TTX and TRX. Attempting to operate an FCC with Ethernet or ATM on its transmitter and transparent operation on its receiver causes erratic behavior. In other words, if the MODE = Ethernet or ATM, TTX must equal TRX.
4	TTX	Transparent transmitter. The MPC8260 FCCs offer totally transparent operation. However, to increase flexibility, totally transparent operation is configured with the TTX and TRX bits instead of the MODE bits. This lets the user implement unique applications, such as configuring an FCC receiver to HDLC and a transmitter to totally transparent operation. To do this, program MODE = HDLC, TTX = 1, and TRX = 0. 0 Normal operation. 1 The transmitter operates in totally transparent mode, regardless of the receiver protocol selected in the MODE bits. Note that full-duplex totally transparent operation for an FCC is obtained by setting both TTX and TRX. Attempting to operate an FCC with Ethernet or ATM on its receiver and transparent operation on its transmitter causes erratic behavior. In other words, if the GFMR MODE = Ethernet or ATM, TTX must equal TRX.

Table 28-1. GFMR Register Field Descriptions

Table 28-1. GFMR Register Field	Descriptions (Continued)
---------------------------------	--------------------------

Field	Name	Description
5	CDP	 CD pulse (transparent mode only) 0 Normal operation (envelope mode). CD should envelope the frame; to negate CD while receiving causes a CD lost error. 1 Pulse mode. Once CD is asserted (high to low transition), synchronization has been achieved, and further transitions of CD do not affect reception. This bit must be set if this FCC is used in the TSA.
6	CTSP	 CTS pulse 0 Normal operation (envelope mode). CTS should envelope the frame; to negate CTS while transmitting causes a CTS lost error. See Section 28.11, "FCC Timing Control." 1 Pulse mode. CTS is asserted when synchronization is achieved; further transitions of CTS do not affect transmission.
7	CDS	 CD sampling 0 The CD input is assumed to be asynchronous with the data. The FCC synchronizes it internally before data is received. (This mode is illegal in transparent mode when SYNL = 0b00.) 1 The CD input is assumed to be synchronous with the data, giving faster operation. In this mode, CD must transition while the receive clock is in the low state. When CD goes low, data is received. This is useful when connecting MPC8260s in transparent mode since it allows the RTS signal of one MPC8260 to be connected directly to the CD signal of another MPC8260.
8	CTSS	 CTS sampling The CTS input is assumed to be asynchronous with the data. When it is internally synchronized by the FCC, data is sent after a delay of no more than two serial clocks. The CTS input is assumed to be synchronous with the data, giving faster operation. In this mode, CTS must transition while the transmit clock is in the low state. As soon as CTS is low, data transmission begins. This mode is useful when connecting MPC8260 in transparent mode because it allows the RTS signal of one MPC8260 to be connected directly to the CTS signal of another MPC8260.
915	_	Reserved, should be 0.
16–17	SYNL	 Sync length (transparent mode only). Determines the operation of an FCC receiver configured for totally transparent operation only. See Section 32.3.1, "In-Line Synchronization Pattern." O0 The sync pattern in the FDSR is not used. An external sync signal is used instead (CD signal asserted: high to low transition). O1 Automatic sync (assumes always synchronized, ignores CD signal). 10 8-bit sync. The receiver synchronizes on an 8-bit sync pattern stored in the FDSR. Negation of CD causes CD lost error. 11 16-bit sync. The receiver synchronizes on a 16-bit sync pattern stored in the FDSR. Negation of CD causes CD lost error.
18	RTSM	RTS mode 0 Send idles between frames as defined by the protocol. RTS is negated between frames (default). 1 Send flags/syncs between frames according to the protocol. RTS is asserted whenever the FCC is enabled.
19–20	RENC	Receiver decoding method. The user should set RENC = TENC in most applications. 00 NRZ 01 NRZI (one bit mode HDLC or transparent only) 1x Reserved
21	REVD	 Reverse data (valid for a totally transparent channel only) 0 Normal operation 1 The totally transparent channels on this FCC (either the receiver, transmitter, or both, as defined by TTX and TRX) reverse bit order, transmitting the MSB of each octet first.

Field	Name	Description
22–23	TENC	Transmitter encoding method. The user should set TENC = RENC in most applications. 00 NRZ 01 NRZI (one bit mode HDLC or transparent only) 1x Reserved
24-25	TCRC	Transparent CRC (totally transparent channel only). Selects the type of frame checking provided on the transparent channels of the FCC (either the receiver, transmitter, or both, as defined by TTX and TRX). This configuration selects a frame check type; the decision to send the frame check is made in the TxBD. Thus, it is not required to send a frame check in transparent mode. If a frame check is not used, the user can ignore any frame check errors generated on the receiver. 00 16-bit CCITT CRC (HDLC). (X16 + X12 + X5 + 1) 01 Reserved 10 32-bit CCITT CRC (Ethernet and HDLC) (X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + 1) 11 Reserved
26	ENR	Enable receive. Enables the receiver hardware state machine for this FCC. 0 The receiver is disabled and any data in the receive FIFO buffer is lost. If ENR is cleared during reception, the receiver aborts the current character. 1 The receiver is enabled. ENR may be set or cleared regardless of whether serial clocks are present. Describes how to disable and reenable an FCC. Note that the FCC provides other tools for controlling reception—the ENTER HUNT MODE command, CLOSE RXBD command, and RxBD[E].
27	ENT	Enable transmit. Enables the transmitter hardware state machine for this FCC. 0 The transmitter is disabled. If ENT is cleared during transmission, the transmitter aborts the current character and TXD returns to idle state. Data in the transmit shift register is not sent. 1 The transmitter is enabled. ENT can be set or cleared, regardless of whether serial clocks are present. See Section 28.12, "Disabling the FCCs On-the-Fly," for a description of the proper methods to disable and reenable an FCC. Note that the FCC provides other tools for controlling transmission besides the ENT bit—the STOP TRANSMIT, GRACEFUL STOP TRANSMIT, and RESTART TRANSMIT commands, CTS flow control, and TXBD[R].
28–31	MODE	Channel protocol mode 0000 HDLC 0001 Reserved for RAM microcode 0010 Reserved 0011 Reserved for RAM microcode 0100 Reserved 0101 Reserved for RAM microcode 0110 Reserved 0111 Reserved for RAM microcode 1000 Reserved 1001 Reserved for RAM microcode 1001 ATM 1011 Reserved for RAM microcode 1100 Ethernet 11xx Reserved

Table 28-1. GFMR Register Field Descriptions (Continued)

28.3 FCC Protocol-Specific Mode Registers (FPSMRx)

The functionality of the FCC varies according to the protocol selected by GFMR[MODE]. Each FCC has an additional 32-bit, memory-mapped, read/write protocol-specific mode register (FPSMR) that configures them specifically for a chosen mode. The section for each specific protocol describes the FPSMR bits.

28.4 FCC Data Synchronization Registers (FDSRx)

Each FCC has a 16-bit, memory-mapped, read/write data synchronization register (FDSR) that specifies the pattern used in the frame synchronization procedure of the synchronous protocols. In the totally transparent protocol, the FDSR should be programmed with the preferred SYNC pattern. For Ethernet protocol, it should be programmed with 0xD555. At reset, it defaults to 0x7E7E (two HDLC flags), so it does not need to be written for HDLC mode. The FDSR contents are always sent lsb first.

Bits	0	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14												15		
Field				SY	'N2			SYN1								
Reset	0	0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0												0		
R/W								R/	w							
Address		0x1130C (FDSR1), 0x1132C (FDSR2), 0x1132C (FDSR3)														

Table 28-2. FCC Data Synchronization Register (FDSR)

28.5 FCC Transmit-on-Demand Registers (FTODRx)

If no frame is being sent by the FCC, the CP periodically polls the R bit of the next TxBD to see if the user has requested a new frame/buffer to be sent. The polling algorithm depends on the FCC configuration, but occurs every 256 serial transmit clocks. The user, however, can request that the CP begin processing the new frame/buffer without waiting the normal polling time. For immediate processing, set the transmit-on-demand (TOD) bit in the transmit-on-demand register (TODR) after setting TxBD[R].

This feature, which decreases the transmission latency of the transmit buffer/frame, is particularly useful in LAN-type protocols where maximum interframe GAP times are limited by the protocol specification. Since the transmit-on-demand feature gives a high priority to the specified TxBD, it can conceivably affect the servicing of the other FCC FIFO buffers. Therefore, it is recommended that the transmit-on-demand feature be used only for a high-priority TxBD and when transmission on this FCC has not occurred for a given time period, which is protocol-dependent.

If a new TxBD is added to the BD table while preceding TxBDs have not completed transmission, the new TxBD is processed immediately after the older TxBDs are sent.

Bits	0	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15														
Field	TOD															
Reset		0000_0000_0000														
R/W								R/	w							
Address		0x11308 (FTODR1), 0x11328 (FTODR2), 0x11328 (FTODR3)														

Table 28-3. FCC Transmit-on-Demand Register (TODR)

Fields in the TODR are described in Table 28-4

Table 28-4. TODR Field Descriptions

Field	Name	Description
0	TOD	 Transmit on demand Normal polling. The CP gives high priority to the current TxBD and begins sending the frame does without waiting for the normal polling time to check TxBD[R]. TOD is cleared automatically.
1–15		Reserved, should be cleared.

28.6 FCC Buffer Descriptors

Data associated with each FCC channel is stored in buffers. Each buffer is referenced by a buffer descriptor (BD) that can be anywhere in external memory.

The BD table forms a circular queue with a programmable length. The user can program the start address of each channel BD table anywhere in memory. See Figure 28-3.

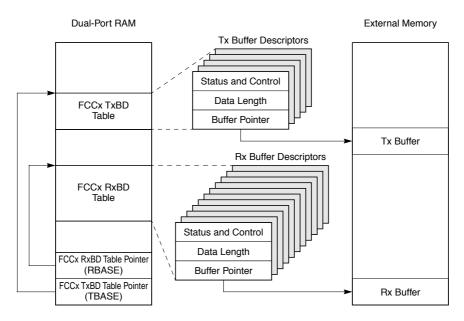


Figure 28-3. FCC Memory Structure

The format of transmit and receive BDs, shown in Figure 28-4, is the same for every FCC mode of operation except ATM mode; see Section 29.10.5, "ATM Controller Buffer Descriptors (BDs)." The first 16 bits in each BD contain status and control information, which differs for each protocol. The second 16 bits indicate the BD table length. The remaining 32-bits contain the 32-bit address pointer to the actual buffer in memory.

	0	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15													15	
offset + 0		Status and Control														
offset + 2		Data Length														
offset + 4						Н	igh-Oro	der Dat	a Buffe	er Point	er					
offset + 6		Low-Order Data Buffer Pointer														

Figure 28-4. Buffer Descriptor Format

For frame-based protocols, a message can reside in as many buffers as necessary (transmit or receive). Each buffer has a maximum length of (64K–1) bytes. The CP does not assume that all buffers of a single frame are currently linked to the BD table. It does assume, however, that unlinked buffers are provided by the core soon enough to be sent or received. Failure to do so causes an error condition being reported by the CP. An underrun error is reported in the case of transmit; a busy error is reported in the case of receive. Because BDs are prefetched, the receive BD table must always contain at least one empty BD to avoid a busy error; therefore, RxBD tables must always have at least two BDs.

The BDs and data buffers can be anywhere in the system memory.

The CP processes the TxBDs in a straightforward fashion. Once the transmit side of an FCC is enabled, it starts with the first BD in that FCC's TxBD table. When the CP detects that TxBD[R] is set, it begins processing the buffer. The CP detects that the BD is ready either by polling the R bit periodically or by the user writing to the TODR. When the data from the BD has been placed in the transmit FIFO buffer, the CP moves on to the next BD, again waiting for the R bit to be set. Thus, the CP does no look-ahead BD processing, nor does it skip over BDs that are not ready. When the CP sees the wrap (W) bit set in a BD, it goes back to the beginning of the BD table after processing of the BD is complete.

After using a BD, the CP normally clears R (not-ready); thus, the CP does not use a BD again until the BD has been prepared by the core. Some protocols support continuous mode, which allows repeated transmission and for which the R bit remains set (always ready).

The CP uses RxBDs in a similar fashion. Once the receive side of an FCC is enabled, it starts with the first BD in the FCC's RxBD table. Once data arrives from the serial line into the FCC, the CP performs the required protocol processing on the data and moves the resultant data to the buffer pointed to by the first BD. Use of a BD is complete when no room is left in the buffer or when certain events occur, such as the detection of an error or end-of-frame. Regardless of the reason, the buffer is then said to be closed and additional data is stored using the next BD. Whenever the CP needs to begin using a BD because new data is arriving, it checks the E bit of that BD. This check is made on a prefetched copy of the current BD. If the current BD is not empty, it reports a busy error. However, it does not move from the current BD until it is empty. Because there is a periodic prefetch of the RxBD, the busy error may recur if the BD is not prepared soon enough.

When the CP sees the W bit set in a BD, it returns to the beginning of the BD table after processing of the BD is complete. After using a BD, the CP clears the E bit (not empty) and does not use a BD again until the BD has been processed by the core. However, in continuous mode, available to some protocols, the E bit remains set (always empty).

28.7 FCC Parameter RAM

Each FCC parameter RAM area begins at the same offset from each FCC base area. The protocol-specific portions of the FCC parameter RAM are discussed in the specific protocol descriptions. Table 28-5 shows portions common to all FCC protocols.

Some parameter RAM values must be initialized before the FCC is enabled; other values are initialized/written by the CP. Once initialized, most parameter RAM values do not need to be accessed by user software because most activity centers around the TxBDs and RxBDs rather than the parameter RAM. However, if the parameter RAM is accessed, note the following:

- Parameter RAM can be read at any time.
- Tx parameter RAM can be written only when the transmitter is disabled—after a STOP TRANSMIT command and before a RESTART TRANSMIT command or after the buffer/frame finishes transmitting after a GRACEFUL STOP TRANSMIT command and before a RESTART TRANSMIT command.
- Rx parameter RAM can be written only when the receiver is disabled. Note the CLOSE RXBD command does not stop reception, but it does allow the user to extract data from a partially full Rx buffer.
- See Section 28.12, "Disabling the FCCs On-the-Fly."

Some parameters in Table 28-5 are not described and are listed only to provide information for experienced users and for debugging. The user need not access these parameters in normal operation.

Offset ¹	Name	Width	Description
0x00	RIPTR	Hword	Receive internal temporary data pointer. Used by microcode as a temporary buffer for data. Must be 32-byte aligned and the size of the internal buffer must be 32 bytes unless it is stated otherwise in the protocol specification. For best performance, it should be located in the following address ranges: 0x3000–0x4000 or 0xB000–0xC000.
0x02	TIPTR	Hword	Transmit internal temporary data pointer. Used by microcode as a temporary buffer for data. Must be 32-byte aligned and the size of the internal buffer must be 32 bytes unless it is stated otherwise in the protocol specification. For best performance it should be located in the following address ranges: 0x3000–0x4000 or 0xB000–0xC000.
0x04	_	Hword	Reserved, should be cleared.
0x06	MRBLR	Hword	Maximum receive buffer length (a multiple of 32 for all modes). The number of bytes that the FCC receiver writes to a receive buffer before moving to the next buffer. The receiver can write fewer bytes to the buffer than MRBLR if a condition such as an error or end-of- frame occurs, but it never exceeds the MRBLR value. Therefore, user-supplied buffers should be at least as large as the MRBLR. Note that FCC transmit buffers can have varying lengths by programming TxBD[Data Length], as needed, and are not affected by the value in MRBLR. MRBLR is not intended to be changed dynamically while an FCC is operating. Change MRBLR only when the FCC receiver is disabled.
0x08	RSTATE	Word	Receive internal state. The high byte, RSTATE[0–7], contains the function code register; see Section 28.7.1, "FCC Function Code Registers (FCRx)." RSTATE[8–31] is used by the CP and must be cleared initially.

Table 28-5. FCC Parameter RAM Common to All Protocols

Offset ¹	Name	Width	Description
0x0C	RBASE	Word	RxBD base address (must be divisible by eight). Defines the starting location in the memory map for the FCC RxBDs. This provides great flexibility in how FCC RxBDs are partitioned. By selecting RBASE entries for all FCCs and by setting the W bit in the last BD in each BD table, the user can select how many BDs to allocate for the receive side of every FCC. The user must initialize RBASE before enabling the corresponding channel. Furthermore, the user should not configure BD tables of two enabled FCCs to overlap or erratic operation occurs.
0x10	RBDSTAT	Hword	RxBD status and control. Reserved for CP use only.
0x12	RBDLEN	Hword	RxBD data length. A down-count value initialized by the CP with MRBLR and decremented with every byte written by the SDMA channels.
0x14	RDPTR	Word	RxBD data pointer. Updated by the SDMA channels to show the next address in the buffer to be accessed.
0x18	TSTATE	Word	Tx internal state. The high byte, TSTATE[0–7], contains the function code register; see Section 28.7.1, "FCC Function Code Registers (FCRx)." TSTATE[8–31] is used by the CP and must be cleared initially.
0x1C	TBASE	Word	TxBD base address (must be divisible by eight). Defines the starting location in the memory map for the FCC TxBDs. This provides great flexibility in how FCC TxBDs are partitioned. By selecting TBASE entries for all FCCs and by setting the W bit in the last BD in each BD table, the user can select how many BDs to allocate for the transmit side of every FCC. The user must initialize TBASE before enabling the corresponding channel. Furthermore, the user should not configure BD tables of two enabled FCCs to overlap or erratic operation occurs.
0x20	TBDSTAT	Hword	TxBD status and control. Reserved for CP use only.
0x22	TBDLEN	Hword	TxBD data length. A down-count value initialized with the TxBD data length and decremented with every byte read by the SDMA channels.
0x24	TDPTR	Word	TxBD data pointer. Updated by the SDMA channels to show the next address in the buffer to be accessed.
0x28	RBPTR	Word	RxBD pointer. Points to the next BD that the receiver transfers data to when it is in idle state or to the current BD during frame processing. After a reset or when the end of the BD table is reached, the CP sets RBPTR = RBASE. Although the user need never write to RBPTR in most applications, the user can modify it when the receiver is disabled or when no receive buffer is in use.
0x2C	TBPTR	Word	TxBD pointer. Points either to the next BD that the transmitter transfers data from when it is in idle state or to the current BD during frame transmission. After a reset or when the end of the BD table is reached, the CP sets TBPTR = TBASE. Although the user need never write to TBPTR in most applications, the user can modify it when the transmitter is disabled or when no transmit buffer is in use (after a STOP TRANSMIT or GRACEFUL STOP TRANSMIT command is issued and the frame completes transmission).
0x30	RCRC	Word	Temporary receive CRC
0x34	TCRC	Word	Temporary transmit CRC
0x38			First word of protocol-specific area

Table 28-5. FCC Parameter RAM Common to All Protocols (Continued)

¹ Offset from FCC base: 0x8400 (FCC1), 0x8500 (FCC2) and 0x8600 (FCC3); see Section 13.5.2, "Parameter RAM."

28.7.1 FCC Function Code Registers (FCRx)

The function code registers contain the transaction specification associated with SDMA channel accesses to external memory. Figure 28-5 shows the format of the transmit and receive function code registers, which reside at TSTATE[0–7] and RSTATE[0–7] in the FCC parameter RAM (see Table 28-5).

Bits	0	1	2	3	4	5	6	7
Field	-	_	GBL	В	0	TC2	DTB	BDB

Figure 28-5. Function Code Register (FCRx)

FCR*x* fields are described in Table 28-6.

Bits	Name	Description			
0–1	-	Reserved, should be cleared.			
2	GBL	Global. Indicates whether the memory operation should be snooped.) Snooping disabled. 1 Snooping enabled.			
3–4	во	 Byte ordering. Used to select the byte ordering of the buffer. If BO is modified on-the-fly, it takes effect at the start of the next frame (Ethernet, HDLC, and transparent) or at the beginning of the next BD. 01 PowerPC little-endian byte ordering. As data is sent onto the serial line from the data buffer, the LSB of the buffer double-word contains data to be sent earlier than the MSB of the same buffer double-word. 10 Motorola byte ordering (normal operation). It is also called big-endian byte ordering. As data is sent onto the serial line from the data buffer, the MSB of the same buffer than the LSB of the same buffer word. 			
5	TC2	Transfer code. Contains the transfer code value of TC[2], used during this SDMA channel memory access. TC[0–1] is driven with a 0b11 to identify this SDMA channel access as a DMA-type access.			
6	DTB	DTB Indicates on what bus the data is located. 0 On the 60x bus. 1 On the local.			
7	BDB	Indicates on what bus the BDs are located. 0 On the 60x bus. 1 On the local bus.			

28.8 Interrupts from the FCCs

Interrupt handling for each of the FCC channels is configured on a global (per channel) basis in the interrupt pending register (SIPNR_L) and interrupt mask register (SIMR_L). One bit in each register is used to either mask, enable, or report an interrupt in an FCC channel. The interrupt priority between the FCCs is programmable in the CPM interrupt priority register (SCPRR_H). The interrupt vector register (SIVEC) indicates which pending channel has highest priority. Registers within the FCCs manage interrupt handling for FCC-specific events.

Events that can cause the FCC to interrupt the processor vary slightly among protocols and are described with each protocol. These events are handled independently for each channel by the FCC event and mask registers (FCCE and FCCM).

28.8.1 FCC Event Registers (FCCEx)

Each FCC has a 24-bit FCC event register (FCCE) used to report events. On recognition of an event, the FCC sets its corresponding FCCE bit regardless of the corresponding mask bit. To the user it appears as a memory-mapped register that can be read at any time. Bits are cleared by writing ones; writing zeros has no effect on bit values. FCCE is cleared at reset. Fields of this register are protocol-dependent and are described in the respective protocol sections.

28.8.2 FCC Mask Registers (FCCMx)

Each FCC has a 24-bit, read/write FCC mask register (FCCM) used to enable or disable CP interrupts to the core for events reported in an event register (FCCE). Bit positions in FCCM are identical to those in FCCE. Note that an interrupt is generated only if the FCC interrupts are also enabled in the SIU; see Section 4.3.1.5, "SIU Interrupt Mask Registers (SIMR_H and SIMR_L)."

If an FCCM bit is zero, the CP does not proceed with its usual interrupt handling whenever that event occurs. Any time a bit in the FCCM register is set, a 1 in the corresponding bit in the FCCE register sets the FCC event bit in the interrupt pending register; see Section 4.3.1.4, "SIU Interrupt Pending Registers (SIPNR_H and SIPNR_L)."

28.8.3 FCC Status Registers (FCCSx)

Each FCC has an 8-bit, read/write FCC status register (FCCS) that lets the user monitor real-time status conditions (flags, idle) on the RXD line. It does not show the status of $\overline{\text{CTS}}$ and $\overline{\text{CD}}$; their real-time status is available in the appropriate parallel I/O port (see Chapter 35, "Parallel I/O Ports").

28.9 FCC Initialization

The FCCs require a number of registers and parameters to be configured after a power-on reset. The following outline gives the proper sequence for initializing the FCCs, regardless of the protocol used.

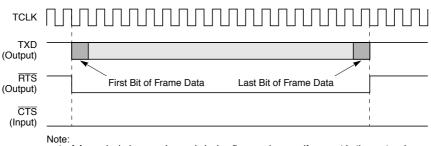
- 1. Write the parallel I/O ports to configure and connect the I/O pins to the FCCs.
- 2. Write the appropriate port registers to configure $\overline{\text{CTS}}$ and $\overline{\text{CD}}$ to be parallel I/O with interrupt capability or to connect directly to the FCC (if modem support is needed).
- 3. If the TSA is used, the SI must be configured. If the FCC is used in the NMSI mode, the CPM multiplexing logic (CMX) must still be initialized.
- 4. Write the GFMR, but do not write the ENT or ENR bits yet.
- 5. Write the FPSMR.

- 6. Write the FDSR.
- 7. Initialize the required values for this FCC in its parameter RAM.
- 8. Clear out any current events in FCCE, as needed.
- 9. Write the FCCM register to enable the interrupts in the FCCE register.
- 10. Write the SCPRR_H to configure the FCC interrupt priority.
- 11. Clear out any current interrupts in the SIPNR_L, if preferred.
- 12. Write the SIMR_L to enable interrupts to the CP interrupt controller.
- 13. Issue an INIT TX AND RX PARAMETERS command (with the correct protocol number).
- 14. Set GFMR[ENT] and GFMR[ENR].

The first RxBD's empty bit must be set before the INIT RX COMMAND. However TxBDs can have their ready bits set at any time. Notice that the CPCR does not need to be accessed after a power-on reset until an FCC is to be used. An FCC should be disabled and reenabled after any dynamic change in its parallel I/O ports or serial channel physical interface configuration. A full reset using CPCR[RST] is a comprehensive reset that also can be used.

28.10 FCC Interrupt Handling

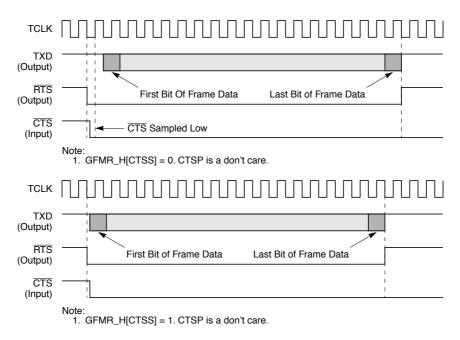
The following describes what usually occurs within an FCC interrupt handler:


- 1. When an interrupt occurs, read FCCE to determine interrupt sources. FCCE bits to be handled in this interrupt handler are normally cleared at this time.
- 2. Process the TxBDs to reuse them if the FCCE[TX,TXE] were set. If the transmit speed is fast or the interrupt delay is long, more than one transmit buffer may have been sent by the FCC. Thus, it is important to check more than just one TxBD during the interrupt handler. One common practice is to process all TxBDs in the interrupt handler until one is found with R set.
- 3. Extract data from the RxBD if FCCE[RX, RXB, or RXF] is set. If the receive speed is fast or the interrupt delay is long, the FCC may have received more than one receive buffer. Thus, it is important to check more than just one RxBD during interrupt handling. Typically, all RxBDs in the interrupt handler are processed until one is found with E set. Because the FCC prefetches BDs, the BD table must be big enough such that always there will be another empty BD to prefetch.
- 4. Clear FCCE.
- 5. Continue normal execution.

28.11 FCC Timing Control

When GFMR[DIAG] is programmed to normal operation, \overline{CD} and \overline{CTS} are automatically controlled by the FCC. GFMR[TCI] is assumed to be cleared, which implies normal transmit clock operation.

 $\overline{\text{RTS}}$ is asserted when FCC has data to transmit in the transmit FIFO and a falling transmit clock occurs. At this point, the FCC begins sending the data, once the appropriate conditions occur on $\overline{\text{CTS}}$. In all cases, the first bit of data is the start of the opening flag, or sync pattern.


Figure 28-6 shows that the delay between $\overline{\text{RTS}}$ and data is 0 bit times, regardless of the setting of GFMR[CTSS]. This operation assumes that $\overline{\text{CTS}}$ is either already asserted to the FCC or is reprogrammed to be a parallel I/O line, in which case the $\overline{\text{CTS}}$ signal to the FCC is always asserted. $\overline{\text{RTS}}$ is negated one clock after the last bit in the frame.

1. A frame includes opening and closing flags and syncs, if present in the protocol.

Figure 28-6. Output Delay from RTS Asserted

If $\overline{\text{CTS}}$ is not already asserted when $\overline{\text{RTS}}$ is asserted, the delays to the first bit of data depend on when $\overline{\text{CTS}}$ is asserted. Figure shows that the delay between $\overline{\text{CTS}}$ and the data can be approximately 0.5- to 1-bit time in asynchronous mode (if GFMR[CTSS] = 0) or 0 bit times (if GFMR[CTSS] = 1).

Figure 28-7. Output Delay from CTS Asserted

If it is programmed to envelope the data, $\overline{\text{CTS}}$ must remain asserted during frame transmission or a $\overline{\text{CTS}}$ lost error occurs. The negation of $\overline{\text{CTS}}$ forces $\overline{\text{RTS}}$ high and the transmit data to the idle state. If GFMR[CTSS] = 0, the FCC must sample $\overline{\text{CTS}}$ before a $\overline{\text{CTS}}$ lost is recognized. Otherwise, the negation of $\overline{\text{CTS}}$ immediately causes the $\overline{\text{CTS}}$ lost condition. See Figure 28-8.

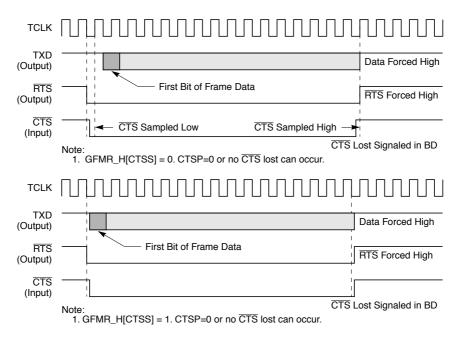


Figure 28-8. CTS Lost

Note that if GFMR[CTSS] = 1, all \overline{CTS} transitions must occur while the transmit clock is low.

Reception delays are determined by \overline{CD} as Figure 28-9 shows. If GFMR[CDS] = 0, \overline{CD} is sampled on the rising receive clock edge before data is received. If GFMR[CDS] = 1, \overline{CD} transitions immediately cause data to be gated into the receiver.

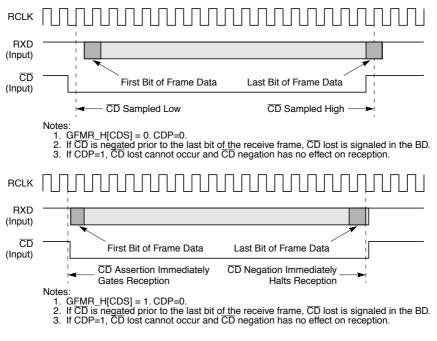


Figure 28-9. Using CD to Control Reception

If it is programmed to envelope data, \overline{CD} must remain asserted during frame transmission or a \overline{CD} lost error occurs. The negation of \overline{CD} terminates reception. If [CDS] = 0, \overline{CD} must be sampled by the FCC before a \overline{CD} lost is recognized. Otherwise, the negation of \overline{CD} immediately causes the \overline{CD} lost condition.

Note that if GFMR[CDS] = 1, all \overline{CD} transitions must occur while the receive clock is low.

28.12 Disabling the FCCs On-the-Fly

Unused FCCs can be temporarily disabled. In this case, a operation sequence is followed that ensures that any buffers in use are closed properly and that new data is transferred to or from a new buffer. Such a sequence is required if the parameters that must be changed are not allowed to be changed dynamically. If the register or bit description states that dynamic changes are allowed, the following sequences are not required and the register or bit may be changed immediately. In all other cases, the sequence should be used.

Modifying parameter RAM does not require the FCC to be fully disabled. See the parameter RAM description for when values can be changed. To disable all peripheral controllers, set CPCR[RST] to reset the entire CPM.

28.12.1 FCC Transmitter Full Sequence

For the FCC transmitter, the full disable and enable sequence is as follows.

- 1. Issue the STOP TRANSMIT command. This is recommended if the FCC is currently transmitting data because it stops transmission in an orderly way. If the FCC is not transmitting (no TxBDs are ready or the GRACEFUL STOP TRANSMIT command has been issued and completed), then the STOP TRANSMIT command is not required. Furthermore, if the TBPTR is overwritten by the user or the INIT TX PARAMETERS command is executed, this command is not required.
- 2. Clear GFMR[ENT]. This disables the FCC transmitter and puts it in a reset state.
- 3. Make changes. The user can modify FCC transmit parameters, including the parameter RAM. To switch protocols or restore the FCC transmit parameters to their initial state, the INIT TX PARAMETERS command must be issued.
- 4. If an INIT TX PARAMETERS command was not issued in step 3, issue a RESTART TRANSMIT command.
- 5. Set GFMR[ENT]. Transmission begins using the TxBD that the TBPTR points to as soon as TxBD[R] = 1.

28.12.2 FCC Transmitter Shortcut Sequence

A shorter sequence is possible if the user prefers to reinitialize the transmit parameters to the state they had after reset. This sequence is as follows:

- 1. Clear GFMR[ENT].
- 2. Issue the INIT TX PARAMETERS command. Any additional changes can be made now.
- 3. Set GFMR[ENT].

28.12.3 FCC Receiver Full Sequence

The full disable and enable sequence for the receiver is as follows:

- 1. Clear GFMR[ENR]. Reception is aborted immediately, which disables the receiver of the FCC and puts it in a reset state.
- 2. Make changes. The user can modify the FCC receive parameters, including the parameter RAM. If the user prefers to switch protocols or restore the FCC receive parameters to their initial state, the INIT RX PARAMETERS command must be issued.
- 3. Issue the ENTER HUNT MODE command. This command is required if the INIT RX PARAMETERS command was not issued in step 2.
- 4. Set GFMR[ENR]. Reception begins immediately using the RxBD that the RBPTR points to if RxBD[E] = 1.

28.12.4 FCC Receiver Shortcut Sequence

A shorter sequence is possible if the user prefers to reinitialize the receive parameters to the state they had after reset. This sequence is as follows:

- 1. Clear GFMR[ENR].
- 2. Issue the INIT RX PARAMETERS command. Any additional changes can be made now.
- 3. Set GFMR[ENR].

28.12.5 Switching Protocols

A user can switch the protocol that the FCC is executing (HDLC) without resetting the board or affecting any other FCC by taking the following steps:

- 1. Clear GFMR[ENT] and GFMR[ENR].
- 2. Issue the INIT TX AND RX PARAMETERS command. This command initializes both transmit and receive parameters. Additional changes can be made in the GFMR to change the protocol.
- 3. Set GFMR[ENT] and GFMR[ENR]. The FCC is enabled with the new protocol.

28.13 Saving Power

Clearing an FCC's ENT and ENR bits minimizes its power consumption.

Chapter 29 ATM Controller

The ATM controller provides the ATM and AAL layers of the ATM protocol using the universal test and operations physical layer (PHY) interface for ATM (UTOPIA level II) for both master and slave modes. It performs segmentation and reassembly (SAR) functions of AAL5, AAL1, and AAL0, and most of the common parts of the convergence sublayer (CP-CS) of these protocols.

For each virtual channel (VC), the controller's ATM pace control (APC) unit generates a cell transmission rate to implement constant bit rate (CBR), variable bit rate (VBR), available bit rate (ABR), unspecified bit rate (UBR) or UBR+ traffic. To regulate VBR traffic, the APC unit performs a continuous-state leaky bucket algorithm. The APC unit also uses up to eight priority levels to prioritize real-time ATM channels, such as CBR and real-time VBR, over non-real-time ATM channels such as VBR, ABR and UBR.

The ATM controller performs the ATM Forum (UNI-4.0) ABR flow control. To perform feedback rate adaptation, it supports forward and backward resource management (RM) cell generation and ATM Forum floating-point calculation. ABR flow control is implemented in hardware and firmware (without software intervention) to prevent potential delays during backward RM cell processing and feedback rate adaptation.

The MPC8260 supports a special mode for ATM/TDM interworking. The CPM performs automatic data forwarding between ATM channels and the MCCs' TDM channels without core intervention.

The MPC8260 ATM SAR controller applications are as follows:

- ATM line card controllers
- ATM-to-WAN interworking (frame relay, T1/E1 circuit emulation)
- Residential broadband network interface units (NIU) (ATM-to-Ethernet)
- High-performance ATM network interface cards (NIC)
- Bridges and routers with ATM interface

29.1 Features

The ATM controller has the following features:

- Full duplex segmentation and reassembly at 155 Mbps
- UTOPIA level II master and slave modes 8/16 bit
- AAL5, AAL1, AAL0 protocols
- Up to 255 active VCs internally, and up to 64K VCs using external memory
- TM 4.0 CBR, VBR, UBR, UBR+ traffic types
- VBR type 1 and 2 traffic using leaky buckets (GCRA)
- TM 4.0 ABR flow control (EFCI and ER)
- Idle/unassign cells screening/transmission option
- External and internal rate transmit modes
- Special mode for ATM-to-TDM or ATM-to-ATM data forwarding
- CLP and congestion indication marking
- User-defined cells up to 65 bytes
- Separate Tx and RxBD tables for each virtual channel (VC)
- Special mode of global free buffer pools for dynamic and efficient memory allocation with early packet discard (EPD) support
- Interrupt report per channel using four priority interrupt queues
- Compliant with ATMF UNI 4.0 and ITU specification
- AAL5 cell format
 - Reassembly
 - Reassemble PDU directly to external memory
 - CRC32 check
 - CLP and congestion report
 - CPCS_UU, CPI, and length check
 - Abort message report
 - Segmentation
 - Segment PDU directly from external memory
 - Performs PDU padding
 - CRC32 generation
 - Automatic last cell marking
 - Automatic CPCS_UU, CPI, and length insertion
 - Abort message option
- AAL1 cell format
 - Reassembly
 - Reassemble PDU directly to external memory
 - Support for partially filled cells (configurable on a per-VC basis)

- Sequence number check
- Sequence number protection (CRC-3 and parity) check
- Segmentation
 - Segment PDU directly from external memory
 - Partially filled cells support (configurable on a per-VC basis)
 - Sequence number generation
 - Sequence number protection (CRC-3 and even parity) generation
- Structured AAL1 cell format
 - Automatic synchronization using the structured pointer during reassembly
 - Structured pointer generation during segmentation
- Unstructured AAL1 cell format
 - Clock recovery using external SRTS (synchronous residual time stamp) logic during reassembly
 - SRTS generation using external logic during segmentation
- AAL0 format
 - Receive
 - Whole cell is put in memory
 - CRC10 pass/fail indication
 - Transmit
 - Reads a whole cell from memory
 - CRC10 insertion option
- Support for user-defined cells
 - Support cells up to 65 bytes
 - Extra header insert/load on a per-frame basis
 - Extra header size has byte resolution
 - Asymmetric cell size for send and receive
 - HEC octet insertion option
- PHY
 - UTOPIA level II supports 8/16 bits 25/50 MHz
 - Supports UTOPIA master and slave modes
 - Supports cell-level handshake
 - Supports multiple-PHY polling mode
- ATM pace control (APC) unit
 - Peak cell rate pacing on a per-VC basis
 - Peak-and-sustain cell rate pacing using GCRA on a per-VC basis
 - Peak-and-minimum cell rate pacing on a per-VC basis
 - Up to eight priority levels
 - Fully managed by CP with no host intervention

- Available bit rate (ABR)
 - Performs ATMF UNI 4.0 ABR flow control on a per-VC basis
 - Automatic forward-RM, backward-RM cells generation
 - Automatic feedback rate adaptation
 - Support for EFCI (explicit forward congestion indication) and ER (explicit rate)
 - RM cell floating-point calculations
 - Fully managed by CP with no host intervention
- Receive address look-up mechanism
 - Two modes of address look-up are supported
 - External CAM
 - Address compression
- OAM (operations and maintenance) cells
 - OAM filtering according to PTI field and reserved VCI field
 - Raw cell queues for transmission and reception
 - CRC-10 generation/check
 - Performance monitoring support
 - Support up to 64 bidirectional block tests simultaneously
 - Automatic FMC and BRC cell generation and termination
 - User transmit $cell_{0+1}$ count
 - User transmit $cell_0$ count
 - PM cells time stamp insertion
 - Block error detection code (BEDC $_{0+1}$) generation/check
 - Total receive $cell_{0+1}$ count
 - Total receive cell₀ count
 - Specifying channel code for F5 OAM cells
- ATM layer statistic gathering on a per PHY basis.
 - UTOPIA receiver error cells count (Rx parity error or short/long cells error)
 - Misinserted cell count
 - CRC-10 error cells count (ABR flow only)
- Memory management
 - RxBD table per VC with option of global free buffer pool for AAL5
 - TxBD table per VC

29.2 ATM Controller Overview

The following sections provide an overview of the transmitter and receiver portions of the ATM controller.

29.2.1 Transmitter Overview

Before the transmitter is enabled, the host must initialize the MPC8260 and create the transmit data structure, described in Section 29.10, "ATM Memory Structure." When data is ready for transmission, the host arranges the BD table and writes the pointer of the first BD in the transmit connection table (TCT). The host issues an ATM TRANSMIT command, which inserts the current channel to the ATM pace control (APC) unit. The APC unit controls the ATM traffic of the transmitter. It reads the traffic parameters of each channel and divides the total bandwidth among them. The APC unit can pace the peak cell rate, peak-and-sustain cell rate (GCRA traffic) or peak-and-minimum cell rate traffic. The APC implements up to eight priority levels for servicing real-time channels before non-real-time channels.

The transmitter ATM cell is 53-65 bytes and includes 4 bytes of ATM cell header, a 1-byte HEC, and 48 bytes of payload. The HEC is a constant taken from FDSRx[0–15] when using UTOPIA 16 and from FDSRx[8–15] when using UTOPIA 8; see Section 28.4, "FCC Data Synchronization Registers (FDSRx)." User-defined cells (UDC mode) include an extra header of 1–12 bytes with an optional HEC octet. Cell transfers use the UTOPIA level II, cell-level handshake.

Transmission starts when the APC schedules a channel. According to the channel code, the ATM controller reads the channel's entry in the TCT and opens the first BD for transmission.

29.2.1.1 AAL5 Transmitter Overview

The transmitter reads 48 bytes from the external buffer, adds the cell header, and sends the cell through the UTOPIA interface. The transmitter adds any padding needed and appends the AAL5 trailer in the last cell of the AAL5 frame. The trailer consists of CPCS-UU+CPI, data length, and CRC-32 as defined in ITU I.363. The CPCS-UU+CPI (2-byte entry) can be specified by the user or optionally cleared by the transmitter; see Section 29.10.2.3, "Transmit Connection Table (TCT)." The transmitter identifies the last cell of the AAL5 message by setting the last (L) indication bit in the PTI field of the cell header. An interrupt may be generated to indicate the end of the frame.

When the transmission of the current frame ends and no additional valid buffers are in the BD table, the transmit process ends. The transmitter keeps polling the BD table every time this channel is scheduled to transmit. In auto-VC-off mode, the APC automatically deactivates the current channel when no buffer is ready to transmit. In this case, a new ATM TRANSMIT command is needed for transmission of the VC to resume. Note that a buffer-not-ready indication during frame transmission aborts the frame transfer.

29.2.1.2 AAL1 Transmitter Overview

The MPC8260 supports both structured and unstructured AAL1 formats. For the unstructured format, the transmitter reads 47 bytes from the external buffer and inserts them into the AAL1 user data field. The AAL1 PDU header, which consists of the sequence number (SN) and the sequence number protection (SNP) (CRC-3 and parity bit), is

generated and inserted into the cell. The MPC8260 supports synchronous residual time stamp (SRTS) generation using external PLL. If this mode is enabled, the MPC8260 reads the SRTS code from the external logic and inserts it into four outgoing cells. See Section 29.15, "SRTS Generation and Clock Recovery Using External Logic."

For the structured format, the transmitter reads 47 or 46 bytes from the external buffer and inserts them into the AAL1 user data field. The CP generates the AAL1 PDU header and inserts it into the cell. The header consists of the SN, SNP, and the structured pointer.

The MPC8260 supports partially filled cells configured on a per-VC basis; only valid octets are copied from the TxBD to the ATM cell. The rest of the cell is filled with padding octets.

29.2.1.3 AAL0 Transmitter Overview

No specific adaptation layer is provided for AAL0. The ATM controller reads a whole cell from an external buffer, which always contains exactly one AAL0 cell. The ATM controller optionally generates CRC10 on the cell payload and places it at the end of the payload (CRC10 field). AAL0 mode can be used to send OAM cells or AAL3/4 raw cells.

29.2.1.4 Transmit External Rate and Internal Rate Modes

The ATM controller supports the following two rate modes:

- External rate mode—The total transmission rate is determined by the PHY transmission rate. The FCC sends cells to keep the PHY FIFOs full; the FCC inserts idle/unassign cells to maintain the transmission rate.
- Internal rate mode The total transmission rate is determined by the FCC internal rate timers. In this mode, the FCC does not insert idle/unassign cells. The internal rate mechanism is supported for the first four PHY devices (PHY address 00-03). Each PHY has its own FTIRR, described in Section 29.13.4, "FCC Transmit Internal Rate Registers (FTIRRx)." The FTIRR includes the initial value of the internal rate timer. A cell transmit request is sent when an internal rate timer expires. When using internal rate mode, the user assigns one of the baud-rate generators (BRGs) to clock the four internal rate timers.

29.2.2 Receiver Overview

Before the receiver is enabled, the host must initialize the MPC8260 and create the receive data structure described in Section 29.10, "ATM Memory Structure." The host arranges a BD table for each ATM channel. Buffers for each connection can be statically allocated (that is, each BD in the BD table is associated with a fixed buffer location) or in the case of AAL5, can be fetched by the CP from a global free buffer pool. See Section 29.10.5, "ATM Controller Buffer Descriptors (BDs)."

The receiver ATM cell size is 53-65 bytes. The cell includes: 4 bytes ATM cell header, 1 byte HEC, which is ignored, and 48 bytes payload. User-defined cells (UDC mode) include an extra header of 1-12 bytes with an optional HEC octet. Cell transfers use the UTOPIA level II, cell-level handshake.

Reception starts when the PHY asserts the receive cell available signal (RxCLAV) to indicate that the PHY has a complete cell in its receive FIFO. The receiver reads a complete cell from the UTOPIA interface and translates the header address (VP/VC) to a channel code by performing an address look-up. If no matches are found, the cell is discarded and the user-network interface (UNI) statistics tables are updated. The receiver uses the channel code to read the channel parameters from the receive connection table (RCT).

29.2.2.1 AAL5 Receiver Overview

The receiver copies the 48-byte cell payload to the external buffer and calculates CRC-32 on the entire CPCS-PDU. When the last AAL5 cell arrives, the receiver checks the length, CRC-32, and CPCS-UU+CPI fields and sets the corresponding RxBD status bits. An interrupt may be generated to one of the four interrupt queues. The receiver copies the last cell to memory including the padding and the AAL5 trailer. The CPCS-UU+CPI (16-bit entry) may be read directly from the AAL5 trailer.

The ATM controller monitors the CLP and CNG state of the incoming cells. When the message is closed, these events set RxBD[CLP] and RxBD[CNG].

When no buffer is ready to receive cells (busy state), the receiver switches to hunt state and drops all cells associated with the current frame (partial packet discard). The receiver tries to open new buffers for cell reception only after the last cell of the discarded AAL5 frame arrives.

29.2.2.2 AAL1 Receiver Overview

The ATM controller supports both AAL1 structured and unstructured formats. For the unstructured format, 47 octets are copied to the current receive buffer. The AAL1 PDU header, which consists of the sequence number (SN) and the sequence number protection (SNP) (CRC-3 and parity bit), is checked. The MPC8260 supports SRTS clock recovery using an external PLL. In this mode, the MPC8260 tracks the SRTS from the four incoming cells and writes the SRTS code to external logic. See Section 29.15, "SRTS Generation and Clock Recovery Using External Logic."

In the unstructured format, when the receive process begins, the receiver hunts for the first cell with a valid sequence number (SN field). When one arrives, the receiver leaves the hunt state and starts receiving. If an SN mismatch is detected, the receiver closes the RxBD, sets RxBD[SNE], and switches to hunt state, where it stays until a cell with a valid SN field is received.

For the structured format, 47 or 46 octets are copied to the current receive buffer. The AAL1 PDU header, which consists of SN and SNP, is checked and the PDU status is written to the BD.

In the structured format, when the receive process begins, the receiver hunts for the first cell with a valid structured pointer to gain synchronization. When one arrives, the receiver leaves the hunt state and starts receiving. Then the receiver opens a new buffer. The structured pointer points to the first octet of the structured block, which then becomes the

first byte of the new buffer. If an SN mismatch is detected, the ATM receiver closes the current RxBD, sets RxBD[SNE], and returns to the hunt state. The receiver then waits for a cell with a valid structured pointer to regain synchronization.

The MPC8260 supports partially filled cells configured on a per-VC basis. In this mode, the ATM controller copies only the valid octets from the cell user data field to the buffer.

29.2.2.3 AAL0 Receiver Overview

For AAL0, no specific adaptation layer processing is done. The ATM controller copies the whole cell to an external buffer. Each buffer contains exactly one AAL0 cell. The ATM controller calculates and checks the CRC10 of the cell payload and sets RxBD[CRE] if a CRC error occurs. AAL0 mode can be useful for receiving OAM cells or AAL3/4 raw cells.

29.2.3 Performance Monitoring

The ATM controller supports performance monitoring testing according to ITU I.610. When performance monitoring is enabled, the ATM controller automatically generates and terminates FMCs (forward monitoring cells) and BRCs (backward reporting cells). See Section 29.6.6, "Performance Monitoring."

29.2.4 ABR Flow Control

When AAL5-ABR is enabled, the ATM controller implements the ATM Forum TM 4.0 available-bit-rate flow. It automatically inserts forward- and backward-RM cells into the user cells stream and adjusts the transmission rate according to the backwards RM cell feedback; see Section 29.10.2.2.2, "AAL5-ABR Protocol-Specific RCT." The ABR flow is controlled on a per-VC basis.

29.3 ATM Pace Control (APC) Unit

The ATM pace control (APC) unit schedules the ATM channels for transmitting. While performing this task, the APC unit uses the following parameters:

- Frequency (bandwidth) of each ATM channel
- ATM traffic pacing—Peak cell rate (PCR), sustain cell rate (SCR), and minimum rate (MCR)
- Priority level—Real-time channels (CBR or VBR-RT) are scheduled at high-priority levels; non-real-time channels (VBR-NRT, ABR, UBR) are scheduled at low-priority levels. Up to eight priority levels are available.

29.3.1 APC Modes and ATM Service Types

The ATM Forum (http://www.atmforum.com) defines the service types described in Table 29-1.

Service Type	Cell Rate Pacing	Real-Time/ Non-Real-Time	Relative Priority
CBR	PCR	RT	1 (highest)
VBR-RT	PCR, SCR (peak-and-sustain)	RT	2
VBR-NRT	PCR, SCR (peak-and-sustain)	NRT	3
ABR ¹	PCR	NRT	4
UBR+	PCR, MCR (peak-and-minimum)	NRT	5
UBR	PCR	NRT	6 (lowest)

¹When ABR flow control is active, the CP automatically adapts the APC parameters PCR, PCR_FRACTION. These parameters function as the channel's allowed cell rate (ACR).

For information about cell rate pacing, see Section 29.3.5, "ATM Traffic Type." For information about prioritization, see Section 29.3.6, "Determining the Priority of an ATM Channel."

29.3.2 APC Unit Scheduling Mechanism

The APC unit consists of an APC data structure in the dual-port RAM for each PHY and a special scheduling algorithm performed by the CP. Each PHY's APC data structure includes three elements: an APC parameter table, an APC priority table, and cell transmission scheduling tables for each priority level. (See Section 29.10.4, "APC Data Structure.")

Each PHY's APC parameter table holds parameters that define the priority table location, the number of priority levels, and other APC parameters. The priority table holds pointers that define the location and size of each priority level's scheduling table.

Each scheduling table is divided into time slots, as shown in Figure 29-1. The user determines the number of ATM cells to be sent each time slot (cells per slot). After a channel is sent, it is removed from the current time slot and advanced to a future time slot according to the channel's assigned traffic rate (specified in time slots). The PCR parameter in the TCT, or the SCR or MCR parameters in the TCT extension (TCTE) determine the channel's actual rate.

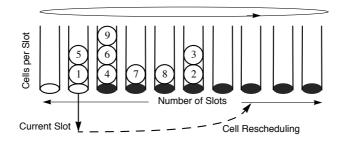


Figure 29-1. APC Scheduling Table Mechanism

Each 2-byte time-slot entry points to one ATM channel. Additional channels scheduled to transmit in the same slot are linked to each other using the APC linked-channel field in the TCT. The linked list is not limited; however, if the number of channels for the current slot exceeds the cells per slot parameter (CPS), the extra channels are sent in subsequent time slots. (The rescheduling of extra channels is based on the original slot to maintain each channel's pace.)

Note that a channel can appear only once in the scheduling table at a given time, because each channel has only one APC linked-channel field.

29.3.3 Determining the Scheduling Table Size

The following sections describe how to determine the number of cells sent per time slot and the total number of slots needed in a scheduling table.

29.3.3.1 Determining the Cells Per Slot (CPS) in a Scheduling Table

The number of cells sent per time slot is determined by the channel with the maximum bit rate; see equation A. The maximum bit rate is achieved when a channel is rescheduled to the next slot. For example, if the line rate is 155.52 Mbps and there are eight cells per slot, equation A yields a maximum VC rate of 19.44 Mbps.

(A) Max bit rate =
$$\frac{\text{line rate}}{\text{cells per slot}}$$

Note that a channel can appear only once per time slot; thus, 19.44 Mbps = 155.52Mbps/8.

The cells per slot parameter (CPS) affects the cell delay variation (CDV). Because the APC unit does not put cells in a definite order within each time slot (LIFO—last-in/first-out implementation), as CPS increases, the CDV increases. However as CPS decreases, the size of the scheduling table in the dual-port RAM increases and more CPM bandwidth is required.

29.3.3.2 Determining the Number of Slots in a Scheduling Table

The number of time slots in a scheduling table is determined by the channel with the minimum bit rate; see equation B. The minimum bit rate is achieved when the channel reschedules only once in a whole table scan. (The maximum schedule advance allowed is equal to number_of_slots-1.) For example, if the line rate is 155.52 Mbps, the minimum bit rate is 32 kbps and the CPS is 4, then, according to equation B, the number of slots should be 1,216.

(B) Min bit rate = (number_of_slots - 1) × cells per slot

For the above example, $32 \text{ kbps} = 155.52 \text{ Mbps/}((1216-1) \times 4)$.

Use equations (A) and (B) to obtain the maximum and minimum bit rates of a scheduling table. For example, given a line rate = 155.52 Mbps, number_of_slots = 1025, and CPS = 8:

Max bit rate = (155.52 Mbps)/8 = 19.44 Mbps

Min bit rate = $(155.52 \text{ Mbps})/(1024 \times 8) = 18.98 \text{ kbps}$.

29.3.4 Determining the Time-Slot Scheduling Rate of a Channel

The time-slot scheduling rate of each ATM channel is defined by equation C. The resulting number of APC slots is written in either TCT[PCR], TCTE[SCR] or TCTE[MCR], depending on the traffic type.

(C)

Rate [slots] = VC rate [bps] × cells per slot

29.3.5 ATM Traffic Type

The APC uses the cell rate pacing parameters (PCR, SCR, and MCR) to generate CBR, VBR, ABR, UBR+, and UBR traffic. The user determines the kind of traffic that is generated per VC by writing to TCT[ATT] (ATM traffic type); see Section 29.10.2.3, "Transmit Connection Table (TCT)."

29.3.5.1 Peak Cell Rate Traffic Type

When the peak cell rate traffic type is selected, the APC schedules channels to transmit according to the PCR and PCR_FRACTION traffic parameters. Other traffic parameters do not apply to this traffic type.

29.3.5.2 Determining the PCR Traffic Type Parameters

Suppose a VC uses 15.66 Mbps of the total 155.52 Mbps and CPS = 8. Equation C yields:

PCR [slots] = (155.52 Mbps)/(15.66 Mbps × 8) = 1.241

The resulting number of slots is written into TCT[PCR] and TCT[PCR_FRACTION]. Because PCR_FRACTION is in units of 1/256 slots, the fraction must be converted as follows:

1.241 = 1+0.241 × 256/256 =1+ 61.79/256 ~ 1 + 62/256 PCR = 1 PCR_FRACTION = 62

29.3.5.3 Peak and Sustain Traffic Type (VBR)

Variable bit rate (VBR) traffic can burst at the peak cell rate as long as the long-term average rate does not exceed the sustainable cell rate. To support VBR channels, the APC implements the GCRA (generic cell rate algorithm) using three parameters—the peak cell rate (PCR), the sustained cell rate (SCR), and burst tolerance (BT), as shown in Figure 29-2. (The GCRA is also known as the leaky bucket algorithm.)

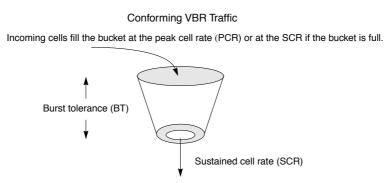


Figure 29-2. VBR Pacing Using the GCRA (Leaky Bucket Algorithm)

When a VBR channel is activated, it bursts at the peak cell rate (PCR) until reaching its initial burst tolerance (BT), which is the buffer length the network allocated for this VC. When the burst limit is reached, the APC reduces the VC's scheduling rate to the sustained cell rate (SCR). The VC continues sending at SCR as long as TxBDs are ready. However, as each SCR time allotment elapses with no TxBD ready to send, the APC grants the VC a credit for bursting at the peak cell rate (PCR). (Gaining credit implies that the buffer at the switch is not full and can tolerate a burst transmission.) If a TxBD becomes ready, the APC schedules the VC to burst at the PCR as long as credit remains. When the burst credit ends (the network's UPC leaky bucket reaches its limit), the APC schedules the VC according to SCR.

29.3.5.3.1 Example for Using VBR Traffic Parameters

Suppose the traffic parameters of a VBR channel are PCR = 6 Mbps, SCR = 2 Mbps, MBS (maximum burst size) = 1000 cells, and CPS = 8.

Equation C (see Section 29.3.4, "Determining the Time-Slot Scheduling Rate of a Channel") yields the APC parameters, PCR, PCR_FRACTION, SCR, and SCR_FRACTION, which the user writes to the channel's TCT.

PCR [slots] = (155.52 Mbps)/(6 Mbps × 8) = 3.24 3.24 = 3 + 0.24 × 256/256 = 3 + 61.44/256 ~ 3 + 62/256 PCR = 3 PCR_FRACTION = 62 SCR [slots] = (155.52 Mbps)/(2 Mbps × 8) = 9.72 9.72 = 9 + (0.72 × 256/256) = 9 + 184.32/256 ~ 9 + 185/256 SCR = 9 SCR_FRACTION = 185

Equation D yields the number of slots the user writes to the channel's TCT[BT].

(D) BT [slots] = (MBS[cells] - 2) × (SCR[slots] - PCR[slots]) + SCR[slots]
=
$$(1000 - 2) \times ((9+185/256) - (3+62/256)) + (9+185/256)$$

= 6477

29.3.5.3.2 Handling the Cell Loss Priority (CLP)-VBR Type 1 and 2

The MPC8260 supports two ways to schedule VBR traffic based on the cell loss priority (CLP). When TCTE[VBR2] is cleared, CLP_{0+1} cells are scheduled by PCR or SCR according to the GCRA state. When TCTE[VBR2] is set, CLP_0 cells are still scheduled by PCR or SCR according to the GCRA state, but CLP_1 cells are always scheduled by PCR. See Section 29.10.2.3.4, "VBR Protocol-Specific TCTE."

29.3.5.4 Peak and Minimum Cell Rate Traffic Type (UBR+)

To support UBR+ channels, the APC schedules transmission according to PCR and MCR. For each priority level, the APC maintains a parameter that monitors the traffic load measured as the time-slot delay between the service pointer (pointing to the current time slot waiting transmission) and a real-time slot pointer. If the transmission delay is greater than MDA (maximum delay allowed), the APC begins scheduling channels according to the MCR parameter. If the delay, however, drops below MDA, the APC again schedules channels according to the PCR. Note that in order to guarantee a minimum cell rate for UBR+ channels, there must be enough bandwidth to simultaneously send all possible channels at the MCR. See Section 29.10.2.3.5, "UBR+ Protocol-Specific TCTE."

29.3.6 Determining the Priority of an ATM Channel

The priority mechanism is implemented by adding priority table levels, which point to separate scheduling tables; see Section 29.10.4, "APC Data Structure." The APC flow control services the APC_LEVEL1 slots first. If there are no cells to send, the APC goes to the next priority level. The APC has up to eight priority levels with APC_LEVEL8 being the lowest. The user specifies the priority of an ATM channel when issuing the ATM TRANSMIT command; see Section 29.14, "ATM Transmit Command."

The real-time channels, CBR and VBR-RT, should be inserted in APC_LEVEL1; non-real-time channels, VBR-NRT, ABR, and UBR should be inserted in lower priority levels.

29.4 VCI/VPI Address Lookup Mechanism

The MPC8260 supports two ways to look up addresses for incoming cells:

- External CAM lookup
- Address compression

Writing to GMODE[ALM] (address-lookup-mechanism bit) in the parameter RAM selects the mechanism. Both mechanisms are described in the following sections.

29.4.1 External CAM Lookup

An external CAM is usually used when the range of VCI/VPI values varies widely or is unknown. Clearing GMODE[ALM] selects the external CAM address lookup mechanism. If there is no match in the external CAM, the cell is considered a misinserted cell. The external CAM can point to internal or external channels (channels whose connection table resides in external memory). The CAM input, shown in Figure 29-3, is the 32-bit cell address: PHY address, GFC + VPI, and VCI.

C)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
			Ado HY)						G	FC	+ VI	ΡI												V	CI							

Figure 29-3. External CAM Data Input Fields

The output of the CAM, shown in Figure 29-4, is a 32-bit entry (16-bit channel code and a match-status bit).

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
MS								-														Cha	anne	el C	ode						

Figure 29-4. External CAM Output Fields

The external CAM fields are described in Table 29-2

Field	Description
PHY Addr	In multiple PHY mode, this field contains the 4 least-significant bits of the current channel's physical address. Because this CAM comparison field is limited to 4 bits, two CAM devices are needed if using more than 16 PHYs. The msb of the PHY address lines (bit 4) selects between the two devices. If the msb is zero, the CP accesses the CAM whose address is written in the EXT_CAM_BASE parameter in the parameter RAM; if the msb is set, the CP uses EXT_CAM1_BASE. See Section 15.4.1, "CMX UTOPIA Address Register (CMXUAR)." In single PHY mode, clear this field.
GFC+VPI, VCI	The GFC, VPI, and VCI of the current channel.
Ch Code	Pointer to internal or external connection table.
_	Reserved, should be cleared.
MS	Match status. 0 Match was found. 1 Match was not found.

29.4.2 Address Compression

The address compression mechanism uses two levels of address translation to help minimize the memory space needed to cover the available address range. The first level of translation (VP-level) uses a look-up table based on the 4-bit PHY address and the 12-bit virtual path identifier; the second level (VC-level) uses the 16-bit virtual channel identifier. If there is no match during address compression, the cell is considered a misinserted cell.

During the VP-level translation, VP_MASK in the ATM parameter RAM compresses an incoming cell's PHY address and VPI to create an index into the VP-level table. The VP-level table entry consists of another mask (VC_MASK) and a pointer to one of the VC-level tables (VCOFFSET). Note that the VP table should reside in the dual-port RAM.

In the VC-level translation, the VCI is compressed with the VC_MASK to generate a pointer to the VC-level table entry containing the received cell's channel code. The VC table should reside in external memory.

Figure 29-5 shows an example of address compression.

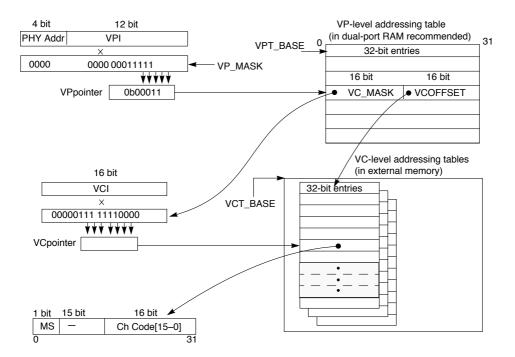


Figure 29-5. Address Compression Mechanism

Figure 29-5 shows VP_MASK selecting five VPI bits to index the VP-level table. The VP-level table entry contains the 16-bit mask (VC_MASK) and the VC-level table offset (VCOFFSET) for the next level of address mapping. The VC_MASK selects VCI bits 4–10, which is used with VCT_BASE and VCOFFSET to indicate the received cell's channel code.

Field	Description
PHY Addr	In multiple PHY mode, this field contains the 4 least-significant bits of the current channel's physical address. Because this comparison field is limited to 4 bits, two sets of look-up tables are needed if using more than 16 PHYs. The msb of the PHY address lines (bit 4) selects between the two sets of tables. If the msb is zero, the CP accesses the tables at VPT_BASE and VCT_BASE; if the msb is set, the CP uses VPT1_BASE and VCT1_BASE. See Section 15.4.1, "CMX UTOPIA Address Register (CMXUAR)." In single PHY mode, clear this field.
VCI, VPI	The VCI and VPI of the current channel.
Ch Code	Pointer to internal or external connection table.
_	Reserved, should be cleared.
MS	Match status. 0 Match was found. 1 Match was not found.

Table 29-3. Field Descriptions for Address Compression

29.4.2.1 VP-Level Address Compression Table (VPLT)

The size of the VP-level table depends on the number of mask bits in VP_MASK. For example, if only one PHY is available (PHY address = 0) and VPMASK = $0b11_1111_1111$, VP pointer contains ten bits and the table is 4 Kbytes. Because each VPLT entry is 4 bytes, the address of an entry is VPT_BASE + VP pointer × 4.

Each VPLT entry has two parameters:

- VC_MASK-A 16-bit VC-level mask for masking the incoming cell's VCI
- VCOFFSET—A 16-bit VC-level table offset from VC_BASE that points to the appropriate VC-level table's (VCLT) starting address. The address of the VCLT is VC_BASE + VCOFFSET × 4.

If the VCLTs are to be placed contiguously in memory, each table's VCOFFSET depends on the size of preceding tables. Each table's size depends on the number of ones in VC_MASK. Figure 29-6 gives the general formula for determining VCOFFSET.

General formula: VCOFFSET_(n+1) = VCOFFSET_n + $2^{(number of ones in VC_MASKn)}$

Figure 29-6. General VCOFFSET Formula for Contiguous VCLTs

Table 29-4 shows example VCOFFSET calculations for a VP-level table with four entries.

VP-Level Table Entry	VC_MASK	Number of Ones in VC_MASK	VC-Level Table Size	VCOFFSET
0	0x0237	6	2 ⁶ = 64 entries	0
1	0x0230	3	$2^3 = 8$ entries	64
2	0xA007	5	2 ⁵ = 32 entries	64 + 8 = 72
3	x	x	x	72 + 32 = 104

Table 29-4. VCOFFSET Calculation Examples for Contiguous VCLTs

The MPC8260 can check that all unallocated bits of the PHY + VPI are 0 by setting GMODE[CUAB] (check unallocated bits) in the parameter RAM. If they are not, the cell is considered a misinserted cell.

Table 29-5 gives an example of VP-level table entry address calculation.

Table 29-5. VP-Level Table Entry Address Calculation Example

VPT_BASE	VP-Level Table Size	VP_MASK	Phy+VPI	VP Pointer	VP Entry Address
0x0024_0000	64 entries	0x0237	0x0011	0x09	VP Base = 0x240000 0x09 x 4 = <u>0x000024</u> 0x240024

Figure 29-7 shows the VP pointer address compression from Table 29-5.

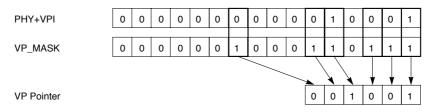
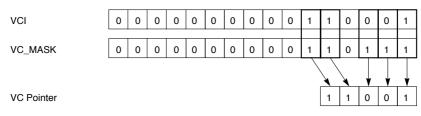


Figure 29-7. VP Pointer Address Compression

29.4.2.2 VC-Level Address Compression Tables (VCLTs)

Each VPLT entry points to a single VCLT. Like the VPLT, the size of each VCLT depends on VC_MASK. Because the VCLT contains word entries, if VC_MASK = $0b11_1111_1111$, the table is 4 Kbytes. The address of an entry in this table is VCT_BASE + VCOFFSET × 4 + VCpointer × 4.


The MPC8260 can check that all unallocated VCI bits are 0 by setting GMODE[CUAB] (check unallocated bits). If they are not, the cell is considered a misinserted cell.

An example of VC-level table entry address calculation is shown in Table 29-6. Note that VCOFFSET is assumed to be 0x100 for this example.

Table 29-6. VC-Level Table Entry Address Calculation Example

VCT_BASE	VCOffset	VC-Level Table Size	VC_MASK	VCI	VC Pointer	VC Entry Address
0x0084_0000	0x0100	32 entries	0x0037	0x0031	0x19	VC Base = 0x840000 0x100 x 4 = 0x000400 0x19 x 4 = <u>0x000064</u> 0x840464

Figure 29-8 shows the VC pointer address compression from Table 29-6.

Figure 29-8. VC Pointer Address Compression

29.4.3 Misinserted Cells

If the address lookup mechanism cannot find a match (MS=1), the cell is discarded and ATM layer statistics are updated, as described in Section 29.8, "ATM Layer Statistics."

29.4.4 Receive Raw Cell Queue

Channel one in the RCT is reserved as a raw cell queue. The user should program channel one to operate in AAL0 protocol. The receive raw cell queue is used for removing management cells from the regular cell flow to the host. When a management cell is sent to the receive raw cell queue, the CP sets RxBD[OAM]. The ALL0 BD specifies the channel code associated with the current OAM cell.

The following are optionally removed from the regular flow and sent to the raw cell queue:

- Segment F5 OAM (PTI = 0b100). To enable F5 segment filtering, set RCT[SEGF].
- End-to-end F5 OAM (PTI = 0b101). To enable F5 end-to-end filtering, set RCT[ENDF].
- RM cells (PTI = 0b110). When ABR flow is enabled the cells are terminated internally; otherwise, they are sent to the raw cell queue.
- Reserved PTI value (PTI = 0b111). Always sent to the raw cell queue.
- VCI value: 3, 4, 6, 7–15. To enable VCI filtering set the associated bit in the VCIF entry in the parameter RAM.

Figure 29-9 shows a flowchart of the ATM cell flow.

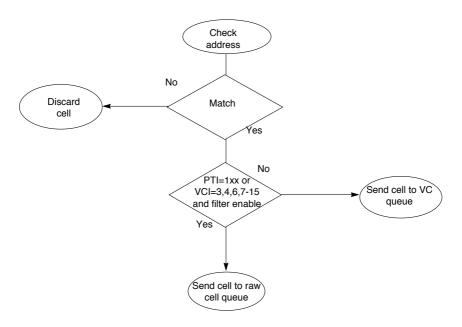


Figure 29-9. ATM Address Recognition Flowchart

Note that even reserved VCI channels should appear in the CAM or address compression tables; otherwise, a cell on a reserved channel will be considered misinserted.

29.5 Available Bit Rate (ABR) Flow Control

While CBR service provides a fixed bandwidth and is useful for real-time applications with strictly bounded end-to-end cell transfer delay and cell-delay variation, ABR service is intended for data applications that can adapt to time-varying bandwidth and can tolerate significant cell transfer delay and cell delay variation. The MPC8260 implements the two following mechanisms defined by the ATM Forum TM 4.0 rate-based flow control.

- Explicit forward congestion indication (EFCI). The network supplies binary indication of whether congestion occurred along the connection path. This information is carried in the PTI field of the ATM cell header (similar to that used in frame relay). The source initially clears each ATM cell's EFCI bit, but as the cell passes through the connection, any congested node can set it. The MPC8260 detects this indication and sets the congestion indication (CI) bit in the next backwards RM cell to signal the source end station to reduce its transmission rate.
- Explicit rate (ER) feedback. The network carries explicit bandwidth information, to allow the source to adjust its rate. The source sends forward RM cells specifying its chosen transmit rate (source ER). A congested switch along the network may decrease ER to the exact rate it can support. The destination receives forward RM cells and returns them to the source as backward RM cells. The MPC8260 implements source behavior by adjusting the rate according to each returning backward RM cell's ER.

Explicit rate feedback has several advantages over binary feedback (EFCI). Explicit rate feedback allows immediate source rate adaptation, eliminating rate oscillation caused by incremental rate changes. Using the information in RM cells, the network can allocate bandwidth evenly among active ABR channels.

29.5.1 The ABR Model

Figure 29-10 shows the MPC8260's ABR model.



Figure 29-10. MPC8260's ABR Basic Model

The MPC8260 ABR flow control implements both source and destination behavior. The MPC8260's ABR flowchart is described in Section 29.5.1.3, "ABR Flowcharts."

29.5.1.1 ABR Flow Control Source End-System Behavior

The MPC8260's implementation of ABR flow control for end-system sources is described in the following steps:

- 1. An ABR channel's allowed cell rate (ACR) lies between the minimum cell rate (MCR) and the peak cell rate (PCR).
- 2. ACR is initialized to the initial cell rate (ICR).
- 3. An F-RM (Forward-RM) cell is sent for every Nrm data cell sent. If more than Mrm cells are sent and the time elapsed since the last F-RM exceeds Trm, an F-RM cell is sent.
- 4. When sending an F-RM cell, the current ACR is written in the CCR (current cell rate) field of the RM cell.
- 5. When B-RM (backward-RM) cell is received with CI = 1 (congestion indication), ACR is reduced by ACR × RDF (rate decrease factor). After the reduction, the new ACR is determined first by letting ACRtemp be the min of (ACR, ER), and then taking the max of (ACRtemp, MCR).
- 6. When B-RM is received with CI=0 and NI=0 (no increase), ACR is increased by RIF × PCR (rate increase factor). The new ACR is determined first by letting ACRtemp be the min of (ACR, ER), and then taking the max of (ACRtemp, MCR).
- 7. Before sending an F-RM cell, if more than ADTF (ACR decrease time factor) has elapsed since sending the last F-RM cell, ACR is reduced to ICR. In other words, if the source does not fully use its gained bandwidth, it loses it and resumes sending at its initial cell rate.
- 8. Before sending an F-RM cell and after action 7, if more than Crm F-RM cells were sent since the last B-RM cell was received with BN=0 (backward notification), the ACR is reduced by ACR × CDF (cutoff decrease factor).
- 9. A source whose ACR is less than the tag cell rate (TCR) sends out-of-rate cells at the TCR. This behavior is intended for sources whose rates were set to zero by the network. These sources should periodically sense the network state by sending out-of-rate RM cells. In this case data cells will not be sent.
- 10. An RM cell with an incorrect CRC10 is discarded and the UNI statistics tables are updated.

29.5.1.2 ABR Flow Control Destination End-System Behavior

The MPC8260's implementation of ABR flow control for end-system destinations is described in the following steps:

- 1. A received F-RM cell is turned around and sent as a B-RM cells.
- 2. The DIR field of the received F-RM cell is changed from 0 to 1 (backward DIR).

- 3. The CCR and MCR fields are taken from the F-RM and is not changed.
- 4. The CI bit of the B-RM cell is set if the previous data cell arrived with EFCI = 1 (congestion bit in the ATM cell header).
- 5. The ER field of the turn around B-RM cells is limited by TCTE[ER-BRM].
- 6. If a F-RM cell arrives before the previous F-RM cell was turned around (for the same connection), the new RM cell overwrites the old RM cell.

29.5.1.3 ABR Flowcharts

The MPC8260's ABR transmit and receive flow control is described in the following flowcharts. See Figure 29-11, Figure 29-12, Figure 29-13, and Figure 29-14.

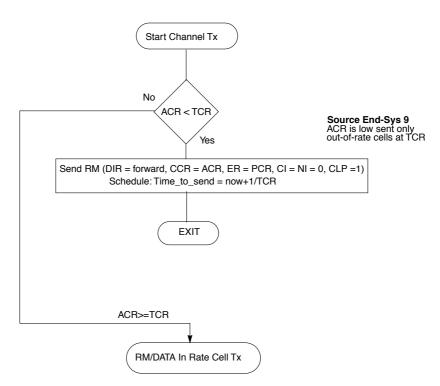


Figure 29-11. ABR Transmit Flow

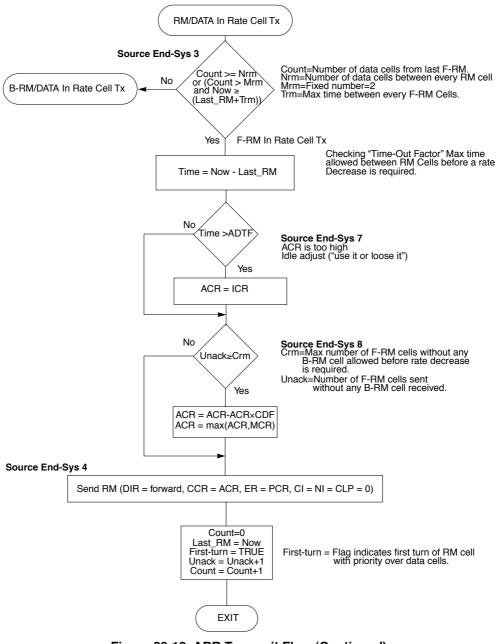


Figure 29-12. ABR Transmit Flow (Continued)

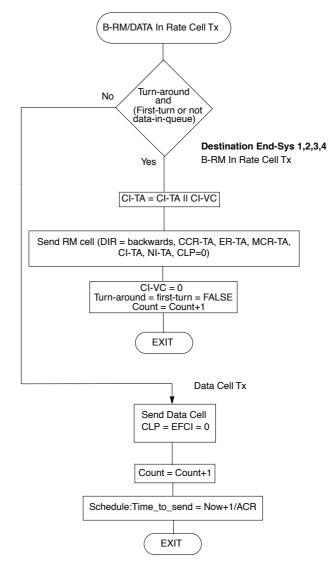


Figure 29-13. ABR Transmit Flow (Continued)

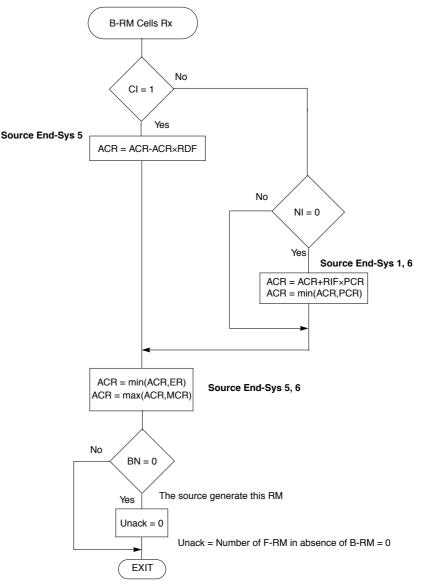


Figure 29-14. ABR Receive Flow

29.5.2 RM Cell Structure

Table 29-7 describes the structure of the RM cell supported by the MPC8260. For more information, see the ABR flow-control traffic management specification (TM 4.0) on the ATM Forum website at http://www.atmforum.com.

Fields	Octet	Bits	Description	Value
Header	1–5	All	ATM cell header	RM-VCC PTI=6
ID	6	All	Protocol ID	1
DIR	7	0	Direction of RM cell (0 = forward, 1 = backward)	
BN	7	1	Backward notification ($BN = 0$, the cell was generated by the source; $BN=1$, the cell was generated by the network or by the destination)	
CI	7	2	Congestion indication. (1 = congestion, 0 = otherwise)	
NI	7	3	No increase indication. (1 = no increase allowed, 0 = otherwise)	
RA	7	4	Not used (ATM Forum ABR)	0
-	7	5-7	Reserved, should be cleared.	0
ER	8–9	All	Explicit rate; see Section 29.5.2.1	
CCR	10–11	All	Current cell rate; see Section 29.5.2.1	
MCR	12–13	All	Min cell rate; see Section 29.5.2.1	
QL	14–17	All	Not used (ATM Forum ABR)	0
SN	18–21	All	Not used (ATM Forum ABR)	0
-	22–51	All	Reserved, should be cleared.	0x6A for each byte
-	52	0–5	Reserved, should be cleared.	0
CRC-10	52	6–7	CRC-10	
	53	All		

29.5.2.1 RM Cell Rate Representation

Rates in the RM cells are represented in a binary floating-point format using a 5-bit exponent (e), a 9-bit mantissa (m), and a 1-bit nonzero flag (nz), as shown in Figure 29-15.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	nz		E	xpone	nt					Ν	lantiss	a			

Figure 29-15. Rate Format for RM Cells

The rate (in cells/second) is calculated as in Figure 29-16.

Rate =
$$\left[2^{e} \times \left(1 + \frac{m}{512}\right)\right] \times nz$$

Figure 29-16. Rate Formula for RM Cells

Initialize the traffic parameters (ER, MCR, PCR, or ICR) in the ABR protocol-specific connection tables using the rate formula in Figure 29-16.

29.5.3 ABR Flow Control Setup

Follow these steps to setup ABR flow control:

- 1. Initialize the ABR data structure: RCT, TCT, RCT-ABR protocol-specific, TCTE-ABR protocol-specific.
- 2. Initialize ABR global parameters in the parameter RAM. See Section 29.10.1, "Parameter RAM."
- 3. Program the AAL-type in the RCT and TCT to AAL5 and set TCT[ABRF]. Note that the ABR flow control is available only with AAL5.
- 4. The time stamp timer generates the RM cell's time stamp, which the ABR flow control monitors to maintain source behavior in steps #3 and #7 of Section 29.5.1.1, "ABR Flow Control Source End-System Behavior." Enable the time stamp timer by writing to the RTSCR; see Section 13.3.7, "RISC Time-Stamp Control Register (RTSCR)."
- 5. Initialize the ABR parameters (CPS_ABR and LINE_RATE_ABR) in the APCT; see Section 29.10.4.1, "APC Parameter Tables." Note that when using ABR, the CPS (cells per slot) parameter in the APCPT should be a power of two.
- 6. Finally, send the ATM TRANSMIT command to restart channel transmission.

29.6 OAM Support

This section describes the MPC8260's support for ATM-layer (F4 out-of-band, and F5 inband) operations and maintenance (OAM) of connections. Alarm surveillance, continuity checking, remote defect indication, and loopback cells are supported using OAM receive and transmit AAL0 cell queues. Using dedicated support, performance management block tests can be performed on up to 64 connections simultaneously. The CP automatically inserts forward monitoring cells (FMC) and generates backward-reporting cells (BRC) as recommended by ITU I.610.

29.6.1 ATM-Layer OAM Definitions

Table 29-8 lists pre-assigned header values at the user-network interface (UNI).

Use	GFC	VPI	VCI	PTI	CLP
Segment OAM F4 flow cell	xxxx	aaaa_aaaa	0000_0000_0000_0011	0a0	а
End-to-end OAM F4 flow cell	хххх	aaaa_aaaa	0000_0000_0000_0100	0a0	а
Segment OAM F5 flow cell	xxxx	aaaa_aaaa	aaaa_aaaa_aaaa_aaaa	100	а
End-to-end OAM F5 flow cell	хххх	aaaa_aaaa	aaaa_aaaa_aaaa_aaaa	101	а

Table 29-8. Pre-Assigned Header Values at the UNI

a = available for use by the appropriate ATM layer function

Table 29-9 lists pre-assigned header values at the network-node interface (NNI).

Use	VPI	VCI	PTI	CLP
Segment OAM F4 flow cell	aaaa_aaaa_aaaa	0000_0000_0000_0011	0a0	а
End-to-end OAM F4 flow cell	aaaa_aaaa_aaaa	0000_0000_0000_0100	0a0	а
Segment OAM F5 flow cell	aaaa_aaaa_aaaa	aaaa_aaaa_aaaa_aaaa	100	а
End-to-end OAM F5 flow cell	aaaa_aaaa_aaaa	aaaa_aaaa_aaaa_aaaa	101	а

 Table 29-9. Pre-Assigned Header Values at the NNI

a= available for use by the appropriate ATM layer function

29.6.2 Virtual Path (F4) Flow Mechanism

The F4 flow is designated by pre-assigned virtual channel identifiers within the virtual path. The following two kinds of F4 flows can exist simultaneously:

- End-to-end (identified as VCI 4)—This flow is used for end-to-end VPC operations communications. Cells inserted into this flow can be removed only by the endpoints of the virtual path.
- Segment (identified as VCI 3)—This flow is used for communicating operations information within one VPC link or among multiple interconnected VPC links. The concatenation of VPC links is called a VPC segment. Cells inserted into this flow can be removed only by the segment endpoints, which must remove these cells to prevent confusion in adjacent segments.

29.6.3 Virtual Channel (F5) Flow Mechanism

The F5 flow is designated by pre-assigned payload type identifiers. The following two kinds of F5 flow can exist simultaneously:

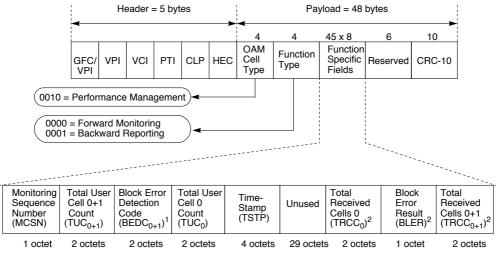
- End-to-end (identified by PTI = 5)—This flow is used for end-to-end VCC operations communications. Cells inserted into this flow can be removed only by VC endpoints.
- Segment (identified by PTI = 4)—This flow is used for communicating operations information with the bound of one VCC link or multiple interconnected VCC links. A concatenation of VCC links is called a VCC segment. Segment endpoints must remove these cells to prevent confusion in adjacent segments.

29.6.4 Receiving OAM F4 or F5 Cells

OAM F4/F5 flow cells are received using the raw cell queue, described in Section 29.4.4, "Receive Raw Cell Queue." An F4/F5 OAM cell which does not appear in the CAM or address compression tables is considered a misinserted cell.

29.6.5 Transmitting OAM F4 or F5 Cells

OAM F4/F5 flow cells are sent using the usual AAL0 transmit flow. For OAM F4/F5 cell transmission, program channel one in the TCT to operate in AAL0 mode. Enable the CR10 (CRC-10 insertion) mode as described in Section 29.10.2.3.3, "AAL0 Protocol-Specific TCT." Prepare the OAM F4/F5 flow cell and insert it in an AAL0 TxBD. Finally, issue a ATM TRANSMIT command to send the OAM cell. For multiple PHYs, use several AAL0 channels—each PHY should have one transmit raw cell queue that is associated with its scheduling table.


A series of OAM cells can be sent using one ATM TRANSMIT command by creating a table of AAL0 TxBDs. If the channel's TCT[AVCF] (auto VC off) is set, the transmitter automatically removes it from the APC (that is, it does not generate periodic transmit requests for this channel after all AAL0 BDs are processed).

29.6.6 Performance Monitoring

A connection's performance is monitored by inspecting blocks of cells (delimited by forward monitoring cells) sent between connection or segment endpoints. Each FMC contains statistics about the immediately preceding block of cells. When an endpoint receives an FMC, it adds the statistics generated locally across the same block to produce a backward reporting cell (BRC), which is then returned to the opposite endpoint.

The MPC8260 can run up to 64 bidirectional block tests simultaneously. When a bidirectional test is run, FMCs are generated for one direction and checked for the opposite.

Figure 29-17 shows the FMC and BRC cell structure.

1. BEDC₀₊₁ appears in FMCs only.

2. TRCC₀, BLER, and TRCC₀₊₁ appear in BRCs only.

Figure 29-17. Performance Monitoring Cell Structure (FMCs and BRCs)

Table 29-10 describes performance monitoring cell fields.

Field	Description	BRC	FMC
MCSN	Monitoring cell sequence number. The sequence number of the performance monitoring cell (modulo 256).	Yes	Yes
TUC ₀₊₁	Total user cell 0+1 count. Counts all user cells (modulo 65,536) sent before the FMC was inserted.	Yes	Yes
TUC ₀	Total user cell 0 count. Counts CLP = 0 user cells (modulo 65,536) sent before the FMC was inserted.	Yes	Yes
TSTP	Time stamp. Used to indicate when the cell was inserted.	Yes	Yes
BEDC ₀₊₁	Block error detection code. Even parity over the payload of the block of user cells sent since the last FMC.	No	Yes
TRCC ₀	Total received cell count 0. Counts CLP=0 user cells (modulo 65,536) received before the FMC was received.	Yes	No
BLER	Block error result. Counts error parity bits detected by the BEDC of the received FMC.	Yes	No
TRCC ₀₊₁	Total received cell count 0+1. Counts all user cells (modulo 65,536) received before the FMC was received.	Yes	No

Table 29-10. Performance Monitoring Cell Fields

29.6.6.1 Running a Performance Block Test

For bidirectional PM block tests, FMCs are monitored at the receive side and generated at the transmit side. The following setup is required to run a bidirectional PM block test on an active VCC:

- 1. Assign one of the available 64 performance monitoring tables by writing to both RCT[PMT] and TCT[PMT] and initializing the one chosen. See Section 29.10.3, "OAM Performance Monitoring Tables."
- 2. For PM F5 segment termination set RCT[SEGF]; for PM F5 end-to-end termination set RCT[ENDF].
- 3. Finally, set the channel's RCT[PM] and TCT[PM] and the receive raw cell's RCT[PM].

For unidirectional PM block tests:

- For PM block monitoring only, set only the RCT fields above.
- For PM block generation only, set only the TCT fields above.

To run a block test on a VPC, assign all the VCCs of the tested VPC to the same performance monitoring table. Configure RCT[PMT] and TCT[PMT] to specify the performance monitoring table associated with each F4 channel.

29.6.6.2 PM Block Monitoring

PM block monitoring is done by the receiver. After initialization (see Section 29.6.6.1), whenever a cell is received for a VCC or VPC, the TRCC counters are incremented and the

BEDC is calculated. When an FMC is received, the CP adds the BRC fields into the cell payload (TRCC₀, TRCC₀₊₁, BLER) and transfers the cell to the receive raw cell queue. The user can monitor the BRC cell results and transfer the cell to the transmit raw cell queue.

Before the BRC is transferred to the transmit raw cell queue, the PM function type should be changed to backward reporting and additional checking should be done regarding the BLER field. If the sequence numbers (MCSN) of the last two FMCs are not sequential or the differences between the last two TUCs and the last two TRCCs are not equal, BLER should be set to all ones (see the ITU I.610 recommendation).

Note that the TRCCs are free-running counters (modulo 65,536) that count user cells received. The total received cells of a particular block is the difference between TRCC values of two consecutive BRC cells. TRCC values are taken from a VC's performance monitoring table.

29.6.6.3 PM Block Generation

The transmitter generates the PM block. Each time the transmitted cell count parameter (TCC) in the performance monitoring table reaches zero, the CP inserts an FMC into the user cell stream. The CP copies the FMC header, SN-FMC, TUC_{0+1} , TUC_0 , $BEDC_{0+1}$ -Tx from the performance monitoring table and inserts them into the FMC payload. The TSTP value (FMC time stamp field) is taken from the MPC8260 time stamp timer; see Section 13.3.7, "RISC Time-Stamp Control Register (RTSCR)."

The TUCs are free-running counters (modulo 65,536) that count transmitted user cells. The total transmitted cells of a particular block is the difference between TUC values of two consecutive FMCs. The BEDC (BIP-16, bit interleaved parity) calculation is done on the payload of all user cells of the current tested block. The performance monitoring block can range from 1 to 2K cells, as specified in the BLCKSIZE parameter in the performance monitoring table; see Section 29.10.3, "OAM Performance Monitoring Tables."

In Figure 29-18, the performance monitoring block size is 512 cells. For every 512 user cells sent, the ATM controller automatically inserts an FMC into the regular cell stream as defined in ITU I.610. When an FMC is received, the ATM controller adds the BRC fields to the cell payload and sends the cell to the raw cell queue. The user can monitor the BRC cell results and transfer the cell to the transmit raw cell queue.

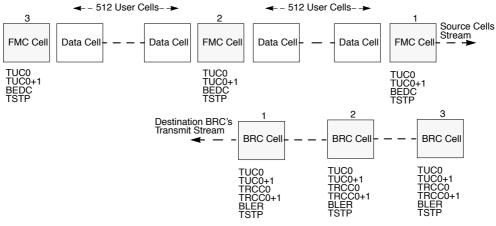


Figure 29-18. FMC, BRC Insertion

29.6.6.4 BRC Performance Calculations

BRC reception uses the regular AAL0 raw cell queue. On receiving two consecutive BRC cells, the management layer can calculate the following:

- The difference between two TUCs (Nt)
- The difference between two TRCCs (Nr)

Information about the connection can be gained by comparing Nt and Nr:

- If Nt > Nr, the difference indicates the number of lost cells of this block test.
- If Nt < Nr, the difference indicates the number of misinserted cells of this block test.
- When Nt = Nr, no cells are lost or misinserted.

29.7 User-Defined Cells (UDC)

Typical ATM cells are 53 bytes long and consist of a 4-byte header, 1-byte HEC, and 48byte payload. The MPC8260 also supports user-defined cells with up to 12 bytes of extra header fields for internal information for switching applications. This choice is made during initialization by writing to the FPSMR; see Section 29.13.2, "FCC Protocol-Specific Mode Register (FPSMR)." As shown in Figure 29-19, the extra header size can vary between 1 to 12 bytes (byte resolution) and the HEC octet is optional.

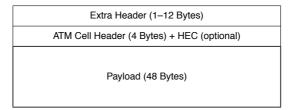


Figure 29-19. Format of User-Defined Cells

For AAL5 and AAL1 the extra header is taken from the Rx and Tx BDs. The transmitter reads the extra header from the UDC TxBD and adds it to each ATM cell associated with the current buffer. At the receive side, the extra header of the last cell in the current buffer is written to the UDC RxBD.

For AAL0 the extra header is attached to the regular ATM cell in the buffer. The transmitter reads the extra header and the ATM cell from the buffer. The receiver writes the extra header and the regular ATM cell to the buffer.

29.7.1 UDC Extended Address Mode (UEAD)

For external CAM accesses, the UDC extra header can be used to supply extra routing information; see Figure 29-20. If GMODE[UEAD] = 1, two bytes of the UDC header are used as extensions to the ATM address and the CAM match cycle performs a double-word access. UEAD_OFFSET in the parameter RAM determines the offset from the beginning of the UDC extra header to the UEAD entry. The offset should be half-word aligned (even address). See Section 29.10.1, "Parameter RAM."

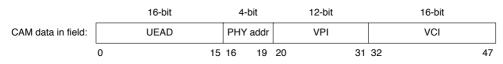


Figure 29-20. External CAM Address in UDC Extended Address Mode

29.8 ATM Layer Statistics

ATM layer statistics can be used to identify problems, such as the line-bit error rate, that affect the UNI performance. Statistics are kept in three 16-bit wrap-around counters:

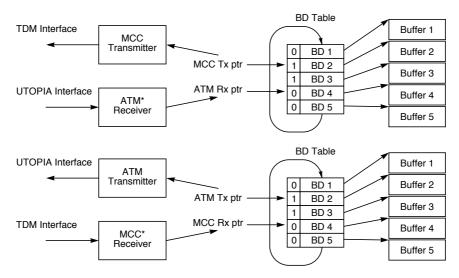
- UTOPIA error dropped cells count—Counts cells discarded due to UTOPIA errors: Rx parity errors and short or long cells.
- Misinserted dropped cell count—Counts cells discarded due to address look-up failure.
- CRC10 error dropped cell count—Counts cells discarded due to CRC10 errors. (ABR only).

Counters are implemented in the dual-port RAM for each PHY device. The counters of each PHY are located in the UNI statistics table, described in Section 29.10.7, "UNI Statistics Table."

29.9 ATM-to-TDM Interworking

The MPC8260 supports ATM and TDM interworking. The MCCs and their corresponding SIs handle the TDM data processing. (See Chapter 27, "Multi-Channel Controllers (MCCs)," and Chapter 14, "Serial Interface with Time-Slot Assigner.") The ATM controller processes the ATM data.

Possible interworking applications include the following:


- Circuit emulation service (CES)
- Carrying voice over ATM
- Multiplexing several low speed services, such as voice and data, onto one ATM connection

Data forwarding between the ATM controller and an MCC can be done in two ways:

- Core intervention. When an MCC receive buffer is full and its RxBD is closed, the MCC interrupts the core. The core copies the MCC's receive buffer pointer to an ATM TxBD and sets the ready bit (TxBD[R]). Similarly, when an ATM receive buffer is full and its RxBD is closed, the core services the ATM controller's interrupt by copying the ATM receive buffer pointer to an MCC TxBD and setting TxBD[R]. This mode is useful when additional core processing is required.
- Automatic data forwarding. This mode enables automatic data forwarding between AAL1/AAL0 and transparent mode over a TDM interface.

29.9.1 Automatic Data Forwarding

The basic concept of automatic data forwarding is to program the ATM controller and the MCC to process the same BD table, as shown in Figure 29-21.

* The MCC and ATM receivers should be programmed to operate in opposite polarity E (empty) bit.

Figure 29-21. ATM-to-TDM Interworking

When going from TDM to ATM, the MCC receiver routes data from the TDM line to a specific BD table. The ATM controller transmitter is programmed to operate on the same table. When the MCC fills a receive buffer, the ATM controller sends it. The two controllers synchronize on the MCC's RxBD[E] and the ATM controller's TxBD[R].

When going from ATM to TDM, the ATM receiver reassembles data received from a particular channel to a specific BD table. The MCC transmitter is programmed to operate on the same table. When the ATM controller fills a receive buffer, the MCC controller sends it. The controllers synchronize on the ATM controller's RxBD[E] and the MCC's TxBD[R].

The MCC and ATM receivers must be programmed to operate in opposite E-bit polarity. That is, both receivers receive data into buffers whose RxBD[E] = 0 and set RxBD[E] when a buffer is full. For the ATM receiver, set RCT[INVE] of the AAL1- and AAL0-specific areas of the receive connection table; see Section 29.10.2.2, "Receive Connection Table (RCT)." For the MCC receiver, set CHAMR[EP]; see Section 27.7.1, "Channel Mode Register (CHAMR)—Transparent Mode."

29.9.2 Using Interrupts in Automatic Data Forwarding

The core can program the MCC and ATM interrupt mechanism to trigger interrupts for events such as a buffer closing or transfer errors. The interrupt mechanism can be used to synchronize the start of the automatic bridging process. For example, to start the MCC transmitter after a specific buffer reaches the ATM receiver (the buffering is required to cope with the ATM network's CDV), set ATM RxBD[I]. When the receive buffer is full, the RxBD is closed, RxBD[E] is set (because it is operating in opposite E-bit polarity), and the core is interrupted. The core then starts the MCC transmitter.

29.9.3 Timing Issues

Use of the TDM interface assumes that all communicating entities are synchronized (that is, that they are using a synchronized serial clock). If the TDM interfaces are not synchronized, a slip can occur in the reassembly buffer. If a buffer-not-ready event occurs at the MCC transmitter, the user must restart the MCC transmit channel. If a buffer-not-ready event occurs at the ATM transmitter, the user must restart the ATM transmit channel.

29.9.4 Clock Synchronization (SRTS and Adaptive FIFOs)

Clock synchronization methods, such as using a time stamp (SRTS) or adaptive FIFOs, prevent buffer slipping during reassembly. The SRTS method may be implemented using external logic. The MPC8260 can read the SRTS from external logic and insert it into AAL1 cells, and can track the SRTS from AAL1 cells and deliver it to external logic. See Section 29.15, "SRTS Generation and Clock Recovery Using External Logic."

Alternatively, an adaptive FIFOs method can be implemented using the core to maintain the bridging buffer at a mid-level point. The difference between the MCC and ATM data pointers is a measure of buffer synchronization. The core calculates the difference between pointers at regular intervals and adapts the TDM clock accordingly to hold the difference constant.

29.9.5 Mapping TDM Time Slots to VCs

Using the MCC and the SI, any TDM time-slot combination can be routed to a specific data buffer. (See Chapter 27, "Multi-Channel Controllers (MCCs)," and Chapter 14, "Serial Interface with Time-Slot Assigner.") The same data buffers should be used by the ATM controller to route receive and transmit data. For information about ATM buffers see Section 29.10.5, "ATM Controller Buffer Descriptors (BDs)."

29.9.6 CAS Support

For applications requiring channel-associated signaling (CAS), circuit emulation with CAS requires additional core processing. External framers perform the CAS manipulation through a serial or parallel interface.

When the MCC receives a multi-frame block, it generates an interrupt to the core. The core reads the CAS block from the external framer and places it at the end of the ATM data buffer after the structured multi-frame block. The core then passes the buffer pointer to the ATM controller, and the controller packs the data and CAS block into AAL1 cells. All AAL1 functions, such as generating PDU-headers and structured pointers, operate normally.

When the ATM controller receives a multi-frame block, it generates an interrupt to the core. The core reads the CAS block from the data buffer and writes it to the external framer. The

core then moves the buffer pointer to the MCC. The buffer's data length should not include the CAS octets.

To optimize the process, the framer may interrupt the core only when the CAS information changes. (CAS information changes slowly.) The core can keep the CAS block in memory and connect to the framer only when the CAS changes. The core can use regular read and write cycles when connecting to the framer through a parallel interface.

The MCC and ATM controller should be synchronized with the framer's multi-frame block boundary. At the ATM side, the structured block size should equal the multi-frame block size plus the size of the CAS block so that the structured pointer, inserted by the ATM controller, points to the start of the structured data block. At the MCC side, the MCC must to be synchronized with the super frame sync signal. This synchronization can be achieved by external logic that triggers on the super frame sync signal and starts delivering the frame sync to the MCC. When loss of super frame synchronization occurs, this logic should reset and trigger again on the next super frame indication.

29.9.7 Trunk Condition

According to the Bellcore standard, the interworking function (IWF) should be able to transmit special payload on both ATM and TDM channels to signal alarm conditions (Bellcore TR-NWT-000170). The core can be used to generate the trunk condition payload in special buffers (or existing buffers) for the ATM controller or MCC.

29.9.8 ATM-to-ATM Data Forwarding

Automatic data forwarding can be used to switch ATM AAL0 cells from one ATM port to another without core intervention. The ATM receiver and transmitter should be programed to process the same BD table. When the ATM receiver fills an AAL0 buffer, the ATM transmitter sends it. The ATM receiver and transmitter are synchronized using the same mechanism as described for ATM-to-TDM automatic forwarding; see Section 29.9.1, "Automatic Data Forwarding."

29.10 ATM Memory Structure

The ATM memory structure, described in the following sections, includes the parameter RAM, the connection tables, OAM performance monitoring tables, the APC data structure, BD tables, the AAL1 sequence number protection table and the UNI statistics table.

29.10.1 Parameter RAM

When configured for ATM mode, the FCC parameter RAM is mapped as shown in Table 29-11.

Offset ¹	Name	Width	Description
0x00– 0x3F	_	_	Reserved, should be cleared.
0x40	RCELL_TMP_ BASE	Hword	Rx cell temporary base address. Points to a total of 52 bytes reserved dual- port RAM area used by the CP. Should be 64 byte aligned. User-defined offset from dual-port RAM base. (Recommended address space: 0x3000-0x4000 or 0xB000–0xC000)
0x42	TCELL_TMP_BASE	Hword	Tx cell temporary base address. Points to total of 52 bytes reserved dual-port RAM area used by the CP. Should be 64-byte aligned. User-defined offset from dual-port RAM base. (Recommended address space: 0x3000–0x4000 or 0xB000–0xC000)
0x44	UDC_TMP_BASE	Hword	UDC mode only. Points to a total of 32 bytes reserved dual-port RAM area used by the CP. Should be 64-byte aligned. User-defined offset from dual-port RAM base. (Recommended address space: 0x3000–0x4000 or 0xB000–0xC000)
0x46	INT_RCT_BASE	Hword	Internal receive connection table base. User-defined offset from dual-port RAM base.
0x48	INT_TCT_BASE	Hword	Internal transmit connection table base. User-defined offset from dual-port RAM base.
0x4A	INT_TCTE_BASE	Hword	Internal transmit connection table extension base. User-defined offset from dual-port RAM base.
0x4C	_	Word	Reserved, should be cleared.
0x50	EXT_RCT_BASE	Word	External receive connection table base. User-defined.
0x54	EXT_TCT_BASE	Word	External transmit connection table base. User-defined.
0x58	EXT_TCTE_BASE	Word	External transmit connection table extension base. User-defined.
0x5C	UEAD_OFFSET	Hword	User-defined cells mode only. Offset to the user-defined extended address (UEAD) in the UDC extra header. Must be an even address. See Section 29.10.1.1, "Determining UEAD_OFFSET (UEAD Mode Only)." If RCT[BO] = 01, UEAD_OFFSET should be in little-endian format. For example, if the UEAD entry is the first half word of the extra header in external memory, UEAD_OFFSET should be programmed to 2 (second half word entry in dual-port RAM).
0x5E	_	Hword	Reserved, should be cleared.
0x60	PMT_BASE	Hword	Performance monitoring table base. User-defined offset from dual-port RAM base.
0x62	APCP_BASE	Hword	APC parameter table base address. User-defined offset from dual-port RAM base.
0x64	FBT_BASE	Hword	Free buffer pool parameter table base. User-defined offset from dual-port RAM base.
0x66	INTT_BASE	Hword	Interrupt queue parameter table base. User-defined offset from dual-port RAM base.
0x68		_	Reserved, should be cleared.
0x6A	UNI_STATT_BASE	Hword	UNI statistics table base. User-defined offset from dual-port RAM base.

Table 29-11. ATM Parameter RAM Map

Offset ¹	Name	Width	Description
0x6C	BD_BASE_EXT	Word	BD table base address extension. BD_BASE_EXT[0–7] holds the 8 most- significant bits of the Rx/Tx BD table base address. BD_BASE_EXT[8–31] should be zero. User-defined.
0x70	VPT_BASE / EXT_CAM_BASE	Word	Base address of the address compression VP table/external CAM. User- defined.
0x74	VCT_BASE	Word	Base address of the address compression VC table. User-defined.
0x78	VPT1_BASE / EXT_CAM1_BASE	Word	Base address of the address compression VP1 table/EXT CAM1. User- defined.
0x7C	VCT1_BASE	Word	Base address of the address compression VC1 table. User-defined.
0x80	VP_MASK	Hword	VP mask for address compression lookup. User-defined.
0x82	VCIF	Hword	VCI filtering enable bits. When cells with VCI = 3, 4, 6, 7-15 are received and the associated VCIF bit = 1 the cell is sent to the raw cell queue. VCIF[0–2, 5] should be zero. See Section 29.10.1.2, "VCI Filtering (VCIF)."
0x84	GMODE	Hword	Global mode. User-defined. See Section 29.10.1.3, "Global Mode Entry (GMODE)."
0x86			The information field associated with the last host command. User-defined.
0x88			See Section 29.14, "ATM Transmit Command."
0x8A		Hword	
0x8C	_	Word	Reserved, should be cleared.
0x90	CRC32_PRES	Word	Preset for CRC32. Initialize to 0xFFFF_FFFF.
0x94	CRC32_MASK	Word	Constant mask for CRC32. Initialize to 0xDEBB_20E3.
0x98	AAL1_SNPT_BASE	Hword	AAL1 SNP protection look-up table base address. (AAL1 only.) The 32-byte table resides in dual-port RAM. AAL1_SNPT_BASE must be halfword-aligned. User-defined offset from dual-port RAM base. See Section 29.10.6, "AAL1 Sequence Number (SN) Protection Table (AAL1 Only)."
0x9A	_	Hword	Reserved, should be cleared.
0x9C	SRTS_BASE	Word	External SRTS logic base address. AAL1 only. Should be 16-byte aligned. The four least-significant bits are taken from SRTS_DEVICE in the AAL1-specific area of the connection table entries.
0xA0	IDLE/ UNASSIGN_BASE	Hword	Idle/unassign cell base address. Points to dual-port RAM area contains idle/ unassign cell template (little-endian format). Should be 64-byte aligned. User- defined offset from dual-port RAM base. The ATM header should be 0x0000_0000 or 0x0100_0000 (CLP=1).
0xA0	IDLE/ UNASSIGN_SIZE	Hword	Idle/unassign cell size. 52 in regular mode; 53–64 in UDC mode.
0xA4	EPAYLOAD	Word	Reserved payload. Initialize to 0x6A6A_6A6A.
0xA8	Trm	Word	(ABR only) The upper bound on the time between F-RM cells for an active source. TM 4.0 defines the Trm period as 100 msec. The Trm value is defined by the system clock and the time stamp timer prescaler; see Section 13.3.7, "RISC Time-Stamp Control Register (RTSCR)." For time stamp prescalar of 1μ s, program Trm to be 100 ms/ 1μ s = 100,000.

Table 29-11. ATM Parameter RAM Map (Continued)

Offset ¹	Name	Width	Description
0xAC	Nrm	Hword	(ABR only) Controls the maximum cells the source may send for each F-RM cell. Set to 32 cells.
0xAE	Mrm	Hword	(ABR only) Controls the bandwidth between F-RM, B-RM and user data cell. Set to 2 cells.
0xB0	TCR	Hword	(ABR only) Tag cell rate. The minimum cell rate allowed for all ABR channels. An ABR channel whose ACR is less than TCR sends only out-of-rate F-RM cells at TCR. Should be set to 10 cells/sec as defined in the TM 4.0. Uses the ATMF TM 4.0 floating-point format. Note that the APC minimum cell rate (MCR) should be at least TCR.
0xB2	ABR_RX_TCTE	Hword	(ABR only) Points to total of 16 bytes reserved dual-port RAM area used by the CP. Should be double-word aligned. User-defined offset from dual-port RAM base.

Table 29-11. ATM Parameter RAM Map (Continued)

¹ Offset from FCC base: 0x8400 (FCC1) and 0x8500 (FCC2); see Section 13.5.2, "Parameter RAM."

29.10.1.1 Determining UEAD_OFFSET (UEAD Mode Only)

The UEAD_OFFSET value is based on the position of the user-defined extended address (UEAD) in the UDC extra header. Table 29-12 shows how to determine UEAD_OFFSET: first determine the halfword-aligned location of the UEAD, and then read the corresponding UEAD_OFFSET value.

Table 29-12. UEAD_OFFSETs for Extended Addresses in the UDC Extra Header

Bits/ Header Offset	0–15	16–31
0x0	UEAD_OFFSET = 0x2	UEAD_OFFSET = 0x0
0x4	UEAD_OFFSET = 0x6	UEAD_OFFSET = 0x4
0x8	UEAD_OFFSET = 0xA	UEAD_OFFSET = 0x8

29.10.1.2 VCI Filtering (VCIF)

VCI filtering enable bits are shown in Figure 29-22.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	0	0	0	VC3	VC4	0	VC6	VC7	VC8	VC9	VC10	VC11	VC12	VC13	VC14	VC15

Figure 29-22. VCI Filtering Enable Bits

Table 29-13 describes the operation of the VCI filtering enable bits.

Table 29-13. VCI Filtering Enable Field Descriptions

Bits	Name	Description
0–2, 5	-	Clear these bits.
3, 4, 6, 7–15		VCI filtering enable 0 Do not send cells with this VCI to the raw cell queue. 1 Send cells with this VCI to the raw cell queue.

29.10.1.3 Global Mode Entry (GMODE)

Figure 29-23 shows the layout of the global mode entry (GMODE).

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	0	0	0	0	0	0	ALB	СТВ	REM	0	0	UEAD	CUAB	EVPT	0	ALM

Figure 29-23. Global Mode Entry (GMODE)

Table 29-14 describes GMODE fields.

Table 29-14. GMODE Field Descriptions

Bits	Name	Description
0–5	_	Reserved, should be cleared.
6	ALB	Address look up bus for CAM or address compression tables 0 Reside on the 60x bus. 1 Reside on the local bus.
7	СТВ	External connection tables bus 0 Reside on the 60x bus. 1 Reside on the local bus.
8	REM	 Receive emergency mode 0 Enable REM operation. When the receive FIFO is full, the ATM transmitter stops sending data cells until the receiver emergency state is cleared (FIFO not full). The transmitter pace is maintained, although a small CDV may be introduced. This mode enables the receiver to receive bursts of cells above the steady state performance. 1 Disable REM operation. Note that to check system performance the user may want to set this bit.
9–10	-	Reserved, should be cleared.
11	UEAD	User-defined cells extended address mode. See Section 29.7.1, "UDC Extended Address Mode (UEAD)." 0 Disable UEAD mode. 1 Enable UEAD mode.
12	CUAB	Check unallocated bits 0 Do not check unallocated bits during address compression. 1 Check unallocated bits during address compression.
13	EVPT	External address compression VP table 0 VP table resides in dual-port RAM. 1 VP table reside in external memory.
14	_	Reserved, should be cleared.
15	ALM	Address look-up mechanism. See Section 29.4, "VCI/VPI Address Lookup Mechanism." 0 External CAM lookup. 1 Address compression.

29.10.2 Connection Tables (RCT, TCT, and TCTE)

The receive and transmit connection tables, RCT and TCT, store host-initialized connection parameters after connection set-up. These include AAL type, connection traffic parameters, BD parameters and temporary parameters used during segmentation and reassembly (SAR). The transmit connection table extension (TCTE) supports special connections that

use ABR, VBR or UBR+ services. Each connection table entry resides in a 32-byte space. Table 29-15 lists sizes for RCT, TCT, and TCTE.

ATM Service Class	RCT	тст	TCTE
CBR, UBR service	32 bytes	32 bytes	_
ABR, VBR, UBR+ service	32 bytes	32 bytes	32 bytes

 Table 29-15. Receive and Transmit Connection Table Sizes

Note that an ATM channel is considered internal if its tables are in an internal dual-port RAM; it is considered external if its tables are in external memory.

Notes:

To improve performance, store parameters for fast channels in internal dual-port RAM and parameters for slower channels in external memory. Connection tables for external channels are read and written from external memory each time the CP processes a cell. The CP does, however, minimize memory access time by burst fetching the 32-byte entry and writing back only the first 24 bytes.

In all connection tables, fields which are not used must be cleared.

29.10.2.1 ATM Channel Code

Each ATM channel has a channel code used as an index to the channel's connection table entry. The first channel in the table has channel code one, the second has channel code two, and so on. Codes of 255 or less indicate internal channels; codes greater than 255 indicate external channels. Channel code one is reserved as the raw cell queue and cannot be used for another purpose. The channel code is used to specify a VC when sending a ATM TRANSMIT command, initiating the external CAM or address compression tables, and when the CP sends an interrupt to an interrupt queue.

Example:

Suppose a configuration supports 1,024 regular ATM channels. To allocate 4 Kbytes of dual-port RAM space to the internal connection table, determine that channel codes 0-63 are internal (64 VCs × 64 bytes (RCT and TCT) = 4 K). Channels 0-1 are reserved. The remaining 962 (1024 - 62) external channels are assigned channel codes 256–1217. See Figure 29-24.

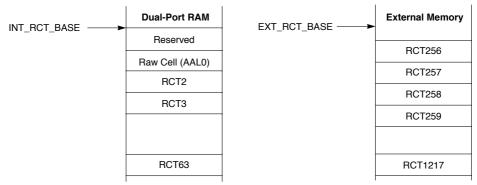


Figure 29-24. Example of a 1024-Entry Receive Connection Table

The general formula for determining the real starting address for all internal and external connection table entries is as follows:

connection table base address + (channel code \times 32)

Thus, the real starting address of the RCT entry associated with channel code 3 is as follows:

 $INT_RCT_BASE + (3 \times 32) = INT_RCT_BASE + 96$

Even though it produces a gap in the connection table, the first external channel's real starting address of the RCT entry (channel code 256) is as follows:

 $EXT_RCT_BASE + (256 \times 32) = EXT_RCT_BASE + 8192$

See Section 29.10.1, "Parameter RAM," to find all the connection table base address parameters. (The transmit connections table base address parameters are INT_TCT_BASE, EXT_TCT_BASE, INT_TCTE_BASE, and EXT_TCTE_BASE.)

29.10.2.2 Receive Connection Table (RCT)

Figure 29-25 shows the format of an RCT entry.

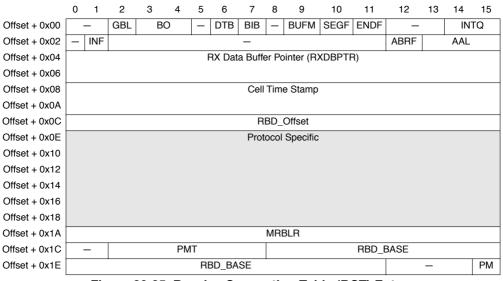


Figure 29-25. Receive Connection Table (RCT) Entry

Table 29-16 describes RCT fields.

Offset	Bits	Name	Description
0x00	0–1	_	Reserved, should be cleared.
	2	GBL	Global. Asserting GBL enables snooping of data buffers, BD, interrupt queues and free buffer pool.
	3–4	BO	Byte ordering—used for data buffers. 00 Reserved 01 PowerPC little endian 1x Big endian
	5	_	Reserved, should be cleared.
	6	DTB	Data buffers bus 0 Data buffers reside on the 60x bus. 1 Data buffers reside on the local bus.
	7	BIB	 BD, interrupt queues, free buffer pool and external SRTS logic bus 0 Reside on the 60x bus. 1 Reside on the local bus. Note: When using AAL5, AAL1 in UDC mode, BDs and data should be placed on the same bus (RCT[DTB]=RCT[BIB]).
	8	_	Reserved, should be cleared.
	9	BUFM	Buffer mode. (AAL5 only) See Section 29.10.5.3, "ATM Controller Buffers." 0 Static buffer allocation mode. Each BD is associated with a dedicated buffer. 1 Global buffer allocation mode. Free buffers are fetched from global free buffer pools.
	10	SEGF	OAM F5 segment filtering 0 Do not send cells with PTI=100 to the raw cell queue. 1 Send cells with PTI=100 to the raw cell queue.
	11	ENDF	OAM F5 end-to-end filtering 0 Do not send cells with PTI=101 to the raw cell queue. 1 Send cells with PTI=101 to the raw cell queue.
	12–13	_	Reserved, should be cleared.
	14–15	INTQ	Points to one of four interrupt queues available.
0x02	0	_	Internal use only. Initialize to 0.
	1	INF	(AAL5 only) Indicates the receiver state. Initialize to 00 In idle state.1 In AAL5 frame reception state.
	2–11	_	Internal use only. Initialize to 0.
	12	ABRF	(AAL5 only). Controls ABR flow. 0 ABR flow control is disabled. 1 ABR flow control is enabled.
	13–15	AAL	AAL type 000 AAL0—Reassembly with no adaptation layer 001 AAL1—ATM adaptation layer 1 protocol 010 AAL5—ATM adaptation layer 5 protocol All others reserved.

Table 29-16. RCT Field Descriptions

Offset	Bits	Name	Description
0x04	-	RxDBPTR	Receive data buffer pointer. Holds real address of current position in the Rx buffer.
0x08	_	Cell Time Stamp	Used for reassembly time-out. Whenever a cell is received, the MPC8260 time stamp timer is sampled and written to this field. See Section 13.3.7, "RISC Time-Stamp Control Register (RTSCR)."
0x0C	-	RBD_Offset	RxBD offset from RBD_BASE. Points to the channel's current BD. User-initialized to 0; updated by the CP.
0x0E- 0x18		_	Protocol-specific area.
0x1A	-	MRBLR	Maximum receive buffer length. Used in both static and dynamic buffer allocation.
0x1C	0–1	_	Reserved, should be cleared.
	2–7	PMT	Performance monitoring table. Points to one of the available 64 performance monitoring tables. The starting address of the table is PMT_BASE+PMT × 32. Can be changed on-the-fly.
	8–15	RBD_BASE	RxBD base. Points to the first BD in the channel's RxBD table. The 8 most-significant bits of the address are taken from BD_BASE_EXT in the parameter RAM. The four least-significant bits of the address are taken as zeros.
0x1E	0–11		
	12–14	_	Reserved, should be cleared.
	15	РМ	 Performance monitoring. Can be changed on-the-fly. 0 No performance monitoring for this VC. 1 Perform performance monitoring for this VC. Whenever a cell is received for this VC the performance monitoring table that its code is written in the PMT field is updated.

Table 29-16. RCT Field Descriptions (Continued)

29.10.2.2.1 AAL5 Protocol-Specific RCT

Figure 29-26 shows the AAL5 protocol-specific area of an RCT entry.

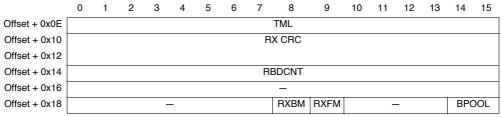


Figure 29-26. AAL5 Protocol-Specific RCT

Table 29-17 describes AAL5 protocol specific RCT fields.

Offset	Bits	Name	Description
0x0E	-	TML	Total message length. This field is used by the CP.
0x10	-	RxCRC CRC32 temporary result.	
0x14	-	RBDCNT RxBD count. Indicates how may bytes remain in the current Rx buffer. RBDCNT initialized with MRBLR whenever the CP opens a new buffer.	
0x16	-	_	Reserved, should be cleared.
	0–7	_	Reserved, should be cleared.
	8	RXBM	 Receive buffer interrupt mask. Determines whether the receive buffer event is disabled. Can be changed on-the-fly. 0 The event is disabled for this channel. (The RXB event is not sent to the interrupt queue when receive buffers are closed.) 1 The event is enabled for this channel.
	9	RXFM	Receive frame interrupt mask. Determines whether the receive frame event is disabled. Can be changed on-the-fly. 0 The event is disabled for this channel. (RXF event is not sent to the interrupt queue.) 1 The event is enabled for this channel.
	10–13	-	Reserved, should be cleared.
	14–15	BPOOL	Buffer pool. Global buffer allocation mode only. Points to one of four free buffer pools. See Section 29.10.5.2.4, "Free Buffer Pool Parameter Tables."

Table 29-17. RCT Settings (AAL5 Protocol-Specific)

29.10.2.2.2 AAL5-ABR Protocol-Specific RCT

Figure 29-27 shows the AAL5-ABR protocol-specific area of an RCT entry.

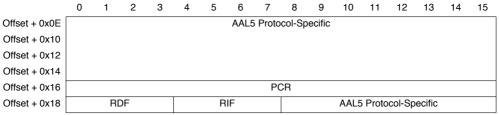


Table 29-18 describes AAL5-ABR protocol-specific RCT fields.

Offset	Bits	Name	Description
0x0E	-	-	AAL5 protocol-specific
0x16	_	PCR	Peak cell rate. The peak number of cells per second of the current ABR channel. The ACR (allowed cell rate) never exceeds this value. PCR uses the ATMF TM 4.0 floating-point format.
0x18 (0–3	RDF	Rate decrease factor for the current ABR channel. Controls the decrease in cell transmission rate upon receipt of a backward RM cell. RDF represents a negative exponent of two, that is, the decrease factor = 2^{-RDF} . The decrease factor ranges from 1/32768 (RDF=0xF) to 1 (RDF=0).
	4–7	RIF	Rate increase factor of the current ABR channel. Controls the increase in the cell transmission rate upon receipt of a backward RM cell. RIF represents a negative exponent of two, that is, the increase factor = 2^{-RIF} . The increase factor ranges from 1/32768 (RIF=0xF) to 1 (RIF=0).
	8–15	-	AAL5 protocol-specific

 Table 29-18. ABR Protocol-Specific RCT Field Descriptions

29.10.2.2.3 AAL1 Protocol-Specific RCT

Figure 29-28 shows the AAL1 protocol-specific area of an RCT entry.

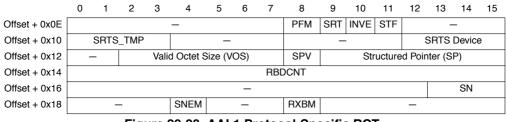
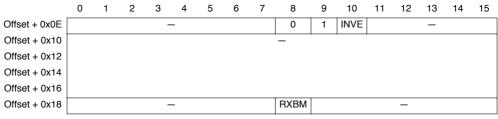


Figure 29-28. AAL1 Protocol-Specific RCT

Table 29-19 describes AAL1 protocol-specific RCT fields.

Offset	Bits	Name	Description				
0x0E	0–7	_	Reserved, should be cleared.				
	8	PFM	 Partially filled mode. Partially filled cells mode is not used. Partially filled cells mode is used. The receiver copies only valid octets from the AAL1 cell to the Rx buffer. The number of the valid octets from the beginning of the AAL1 user data field is specified in the VOS (valid octet size) field. 				
	9	SRT	Synchronous residual time stamp. Unstructured format only. The MPC8260 supports clock recovery using an external SRTS PLL. The MPC8260 tracks the SRTS from the incoming four cells with SN = 1, 3, 5, and 7 and writes it to the external SRTS device. Every eight cells the CP writes a valid SRTS to external logic. (See Section 29.15, "SRTS Generation and Clock Recovery Using External Logic.") 0 SRTS mode is not used. 1 SRTS mode is used.				
	10	INVE	Inverted empty. 0 RxBD[E] is interpreted normally (1 = empty, 0 = not empty). 1 RxBD[E] is handled in negative logic (0 = empty, 1 = not empty).				
	11	STF	Structured format 0 Unstructured format is used. 1 Structured format is used.				
	12–15	_	Reserved, should be cleared.				
0x10	0–3	SRTS_TMP	Used by the CP to store the received SRTS code. After a cell with $SN = 7$ is received, the CP writes the SRTS code to the external SRTS device.				
	4–11	_	Reserved, should be cleared.				
	12–15	SRTS Device	Selects an SRTS device, whose address is SRTS_BASE[0–27] + SRTS Device[28– 31]. The 16 byte-aligned SRTS_BASE is taken from the parameter RAM.				
0x12	0–1	_	Reserved, should be cleared.				
	2–7	VOS	Valid octet size. Specifies the number of valid octets from the beginning of the AAL1 user data field. For unstructured, service values 1–47 are valid; for structured service, values 1-46 are valid. Partially filled cell mode only.				
	8	SPV	Structured pointer valid. Should be user-initialized user to zero. Structured format only.				
	9–15	SP	Structured pointer. Used by the CP to calculate the structured pointer. This field should be initialized by the user to zero. Used in structured format only.				
0x14	-	RBDCNT	RxBD count. Indicates how may bytes remain in the current Rx buffer. Initialized with MRBLR whenever the CP opens a new buffer.				
0x16	0–12	_	Reserved, should be cleared.				
	13–15	SN	Sequence number. Used by the CP to check incoming cell's sequence number.				


Table 29-19. AAL1 Protocol-Specific RCT Field Descriptions

Offset	Bits	Name	Description
0x18	0–3	-	Reserved, should be cleared.
	4	SNEM	 Sequence number error flag interrupt mask 0 This mode is disabled. 1 When an out-of-sequence error occurs, an RXB interrupt is sent to the interrupt queue even if RCT[RXBM] is cleared. Note that this mode is the buffer error reporting mechanism during automatic data forwarding (ATM-to-TDM bridging) when no buffer processing is required (RCT[RXBM]=0).
	5–7	_	Reserved, should be cleared.
	8	RXBM	 Receive buffer interrupt mask 0 The receive buffer event of this channel is disabled. (The event is not sent to the interrupt queue.) 1 The receive buffer event of this channel is enabled.
	9–15	_	Reserved, should be cleared.

Table 29-19. AAL1 Protocol-Specific RCT Field Descriptions (Continued)

29.10.2.2.4 AAL0 Protocol-Specific RCT

Figure 29-29 shows the layout for the AAL0 protocol-specific RCT.

Figure 29-29. AAL0 Protocol-Specific RCT

Table 29-20 describes AAL0 protocol specific RCT fields.

Table 29-20. AAL0-Specific RCT Field Descriptions

Offset	Bits	Name	Description
0x0E	0-7	_	Reserved, should be cleared.
	8-9	0b01	Must be programmed to 0b01 for AAL0.
	10	INVE	Inverted empty. 0 RxBD[E] is interpreted normally (1 = empty, 0 = not empty). 1 RxBD[E] is handled in negative logic (0 = empty, 1 = not empty).
	11-15	_	Reserved, should be cleared.
0x10	_	_	Reserved, should be cleared.

Offset	Bits	Name	Description
0x18	0–7	_	Reserved, should be cleared.
	8	RXBM	 Receive buffer interrupt mask 0 The receive buffer event of this channel is masked. (The RXB event is not sent to the interrupt queue when receive buffers are closed.) 1 The receive buffer event of this channel is enabled.
	9–15	-	Reserved, should be cleared.

Table 29-20. AAL0-Specific RCT Field Descriptions (Continued)

29.10.2.3 Transmit Connection Table (TCT)

Figure 29-30 shows the format of an TCT entry.

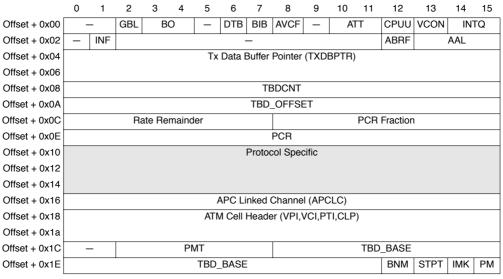


Figure 29-30. Transmit Connection Table (TCT) Entry

Table 29-21 describes general TCT fields.

Offset	Bits	Name	Description
0x00	0–1	_	Reserved, should be cleared.
	2	GBL	Global. Asserting GBL enables snooping of data buffers, BDs, interrupt queues and free buffer pool.
	3–4	BO	Byte ordering. This field is used for data buffers. 00 Reserved 01 Power PC little endian 1x Big endian
	5	_	Reserved, should be cleared.
	6	DTB	Data buffer bus 0 Reside on the 60x bus. 1 Reside on the local bus.
	7	BIB	BD, interrupt queue and external SRTS logic bus 0 Reside on the 60xbus. 1 Reside on the local bus. Note: When using AAL5, AAL1 in UDC mode, BDs and data should be placed on the same bus (TCT[DTB]=TCT[BIB]).
	8	AVCF	 Auto VC off. Determines APC behavior when the last buffer associated with this VC has been sent and no more buffers are in the VC's TxBD table, 0 The APC does not remove this VC from the schedule table and continues to schedule it to transmit. 1 The APC removes this VC from the schedule table. To continue transmission after the host adds buffers for transmission, a new ATM TRANSMIT command is needed, which can be issued only after the CP clears the VCON bit. (Bit 13)
	9	_	Reserved, should be cleared.
	10–11	ATT	 ATM traffic type 00 Peak cell-rate pacing. The host must initialize PCR and the PCR fraction. Other traffic parameters are not used. 01 Peak and sustain cell rate pacing (VBR traffic). The APC performs a continuous-state leaky bucket algorithm (GCRA) to pace the channel-sustain cell rate. The host must initialize PCR, PCR fraction, SCR, SCR fraction, and BT (burst tolerance). 10 Peak and minimum cell rate pacing (UBR+ traffic). The host must initialize PCR, PCR fraction, and MDA. 11 Reserved
	12	CPUU	CPCS-UU+CPI insertion (used for AAL5 only). 0 CPCS-UU+CPI insertion disabled. The transmitter clears the CPCS-UU+CPI fields. 1 CPCS-UU+CPI insertion enabled. The transmitter reads the CPCS-UU+CPI (16-bit entry) from external memory. It should be placed after the end of the last buffer (it should not be included in the buffer length).
	13	VCON	Virtual channel is on Should be set by the host before it issues an ATM TRANSMIT command. When the host sets TCT[STPS] (stop transmit), the CP deactivates this channel and clears VCON when the channel is next encountered in the APC scheduling table. The host can issue another ATM TRANSMIT command only after the CP clears VCON.
	14–15	INTQ	Points to one of four interrupt queues available.

Table 29-21	. TCT Fie	eld Descriptions
-------------	-----------	------------------

Offset	Bits	Name	Description					
0x02	0	_	Internal use only. Initialize to 0.					
	1	INF	Used for AAL5 Only. Indicates the transmitter state. Initialize to 0 0 In idle state. 1 In AAL5 frame transmission state.					
	2–11	_	Internal use only. Initialize to 0.					
	12	ABRF	Used for AAL5 Only. 0 ABR Flow control is disabled. 1 ABR Flow control is enabled.					
	13–15	AAL	AAL type 000 AAL0—Segmentation without any adaptation layer. 001 AAL1—ATM adaptation layer 1 protocol. 010 AAL5—ATM adaptation layer 5 protocol.					
0x04	-	TxDBPTR	Tx data buffer pointer. Holds the real address of the current position in the Tx buffer.					
0x08	-	TBDCNT	Transmit BD count. Counts the remaining data to transmit in the current transmit buffer. Its initial value is loaded from the data length field of the TxBD when a new buffer is open; its value is subtracted for any transmitted cell associated with this channel.					
0x0A	-	TBD_OffSet	Transmit BD offset. Holds offset from TBD_BASE of the current BD. Initialize to 0.					
0x0C	0–7	Rate Reminder	Rate remainder. Used by the APC to hold the rate remainder after adding the patraction to the additive channel rate. Initialize to 0.					
	8–15	PCR Fraction	Peak cell rate fraction. Holds the peak cell rate fraction of this channel in units of 1/256 slot. If this is an ABR channel, this field is automatically updated by the CP.					
0x0E	-	PCR	Peak cell rate. Holds the peak cell rate (in units of APC slots) permitted for this channel according to the traffic contract. Note that for an ABR channel, the CP automatically updates PCR to the ACR value.					
0x10	-	_	Protocol-specific					
0x16	-	APCLC	APC linked channel. Used by the CP. Initialize to 0 (null pointer).					
0x18	-	ATMCH	ATM cell header. Holds the full (4-byte) ATM cell header of the current channel. The transmitter appends ATMCH to the cell payload during transmission.					
0x1C	0–1	_	Reserved, should be cleared.					
	2–7	РМТ	Performance monitoring table. Points to one of the available 64 performance monitoring tables. The starting address of the table is PMT_BASE+PMT × 32. Can be changed on-the-fly.					
	8–15	TBD_BASE	TxBD base. Points to the first BD in the channel's TxBD table. The 8 most-sign					
0x1E	0–11		bits of the address are taken from BD_BASE_EXT in the parameter RAM. The f least-significant bits of the address are taken as zero.					
	12	BNM	 Buffer-not-ready interrupt mask. Can be changed on-the-fly. 0 The transmit buffer-not-ready event of this channel is masked. (TBNR event is not sent to the interrupt queue.) 1 The buffer-not-ready event of this channel is enabled. 					
	13	STPT	Stop transmit. Initialize to 0. When the host sets this bit, the CP deactivates this channel and clears TCT[VCON] when the channel is next encountered in the APC scheduling table. Note that for AAL5 if STPT is set and frame transmission is already started (TCT[INF]=1), an abort indication will be sent (last cell with zero length field).					

Table 29-21. TCT Field Descriptions (Continued)

Offset	Bits	Name	Description
0x1E	14	ІМК	 Interrupt mask. Can be changed on-the-fly. 0 The transmit buffer event of this channel is masked. (TXB event is not sent to the interrupt queue.) 1 The transmit buffer event of this channel is enabled.
	15	РМ	 Performance monitoring. Can be changed on-the-fly. 0 No performance monitoring for this VC. 1 Performance is monitored for this VC. When a cell is sent for this VC, the performance monitoring table indicated in PMT field is updated.

Table 29-21. TCT Field Descriptions (Continued)

29.10.2.3.1 AAL5 Protocol-Specific TCT

Figure 29-31 shows the AAL5 protocol-specific TCT.

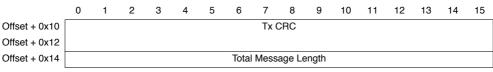


Figure 29-31. AAL5 Protocol-Specific TCT

Table 29-22 describes AAL5 protocol-specific TCT fields.

Table 29-22. AAL5-Specific	TCT Field Descriptions
----------------------------	-------------------------------

Offset	Name	Description					
0x10	Tx CRC	CRC32 temporary result.					
0x14	Total Message Length	This field is used by the CP.					

29.10.2.3.2 AAL1 Protocol-Specific TCT

Figure 29-32 shows the AAL1 protocol-specific TCT.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0x10	-	-		Valid	Octet	Size (VOS)		PFM	SRT	SPF	STF	_		SN	
Offset + 0x12	;	SRTS	Device)						Block	Size					
Offset + 0x14	SRTS_TMP			Structured Pointer (SP)												

Figure 29-32. AAL1 Protocol-Specific TCT

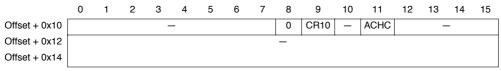
Table 29-23 describes AAL1 protocol-specific TCT fields.

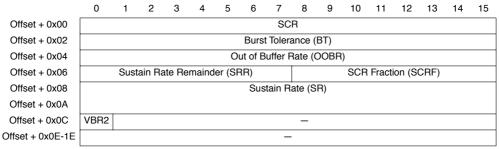
Offset	Bits	Name	Description
0x10	0-1	_	Reserved, should be cleared.
	2–7	VOS	Valid octet size. Partially filled cell mode only. Specifies the number of valid octets from the beginning of the AAL1 user data field. For unstructured service, values 1-47 are valid; for structured service, values 1-46 are valid.
	8	PFM	 Partially filled mode. Partially filled cells mode is not used. Partially filled cells mode is used. The transmitter copies only valid octets from the buffer to the AAL1 cell. The size of the valid octets from the beginning of the AAL1 user data field is specified in the VOS (valid octet size) field.
	9	SRT	Synchronous residual time stamp. Unstructured format only. The MPC8260 supports SRTS generation using external logic. If this mode is enabled, the MPC8260 reads the SRTS from external logic and inserts it into four cells for which SN = 1, 3, 5, or 7. The MPC8260 reads the new SRTS from external logic every eight cells. (See Section 29.15, "SRTS Generation and Clock Recovery Using External Logic.") 0 SRTS mode is not used. 1 SRTS mode is used.
	10	SPF	Structured pointer flag. Indicates that a structured pointer has been inserted in the current block. The user should initialize this field to zero. Used by the CP only.
	11	STF	Structured format 0 Unstructured format is used. 1 Structured format is used.
	12	_	Reserved, should be cleared.
	13–15	SN	Sequence number field. Used by the CP to check the incoming cells SN. Initialize to 0.
0x12	0–3	SRTS Device	Used to select a SRTS device. The SRTS device address is SRTS_BASE[0– 27]+SRTS_DEVICE[28:31]. SRTS_BASE is taken from the parameter RAM and is 16- byte aligned.
	4–15	Block Size	Used only in structured format. Specifies the structured block size (Block Size = 0xFFF = 4 Kbytes maximum).
0x14	0–3	SRTS_TMP	Before a cell with SN = 1 is sent, the CP reads the SRTS code from external SRTS logic, writes it to SRTS_TMP, and then inserts SRTS_TMP into the next four cells with an odd SN.
	4–15	SP	Structured pointer. Used by the CP to calculate the structured pointer. Initialize to 0. Structured format only.

Table 29-23. AAL1-Specific TCT Field Descriptions

29.10.2.3.3 AAL0 Protocol-Specific TCT

Figure 29-33 shows the AAL0 protocol-specific TCT.




Table 29-24 describes AAL0 protocol-specific TCT fields.

Offset	Bits	Name	Description
0x10	0–7	_	Reserved, should be cleared.
	8	0	Must be 0.
	9	CR10	CRC-10 0 CRC10 insertion is disabled. 1 CRC10 insertion is enabled.
	10	_	Reserved, should be cleared.
	11	ACHC	ATM cell header change 0 Normal operation ATM cell header is taken from AAL0 buffer. 1 VPI/VCI (28 bits) are taken from TCT.
	12–15	Reserved, should be cleared.	
0x12– 0x14	-	_	Reserved, should be cleared.

Table 29-24. AAL0-Specific TCT Field Descriptions

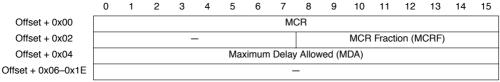
29.10.2.3.4 VBR Protocol-Specific TCTE

Figure 29-34 shows the VBR protocol-specific TCTE.

Figure 29-34. Transmit Connection Table Extension (TCTE)—VBR Protocol-Specific

Table 29-25 describes VBR protocol-specific TCTE fields.

Table 29-25. VBR-Specific TCTE Field Descriptions


Offset	Bits	Name	Description
0x00	_	SCR	Sustain cell rate. Holds the sustain cell rate (in slots) permitted for this channel according to the traffic contract. To pace the channel's sustain cell rate, the APC performs a continuous-state leaky bucket algorithm (GCRA).
0x02	_	ВТ	Burst tolerance. Holds the burst tolerance permitted for this channel according to the traffic contract. The relationship between the BT and the maximum burst size (MBS) is BT=(MBS-2) \times (SCR-PCR) + SCR.
0x04	_	OOBR	Out-of-buffer rate. In out of buffer state (when the transmitter tries to open TxBD whose R bit is not set) the APC reschedules the current channel according to OOBR rate.

Offset	Bits	Name	Description
0x06	0–7	SRR	Sustain rate remainder. Holds the sustain rate remainder after adding the pace fraction field to the additive channel sustain rate. Used by the APC to calculate the channel GCRA (leaky bucket) state. Initialized to 0.
	8–15	SCRF	Holds the sustain cell rate fraction of this channel in units of 1/256 slot.
0x08	_	SR	Sustain rate. Used by the APC to hold the sustain rate after adding the pace field to the additive channel sustain rate. Used by the APC to calculate the channel GCRA (leaky bucket) state.
0x0C	0	VBR2	 VBR type 0 Regular VBR. CLP=0+1 cells are rescheduled by PCR or SCR according to the GCRA state. 1 VBR Type 2. CLP=0 cells are rescheduled by PCR or SCR according to the GCRA state. CLP=1 cells are rescheduled by PCR.
	1–15	-	Reserved, should be cleared.
0x0E– 0x1E	_	_	Reserved, should be cleared.

Table 29-25. VBR-Specific TCTE Field Descriptions (Continued)

29.10.2.3.5 UBR+ Protocol-Specific TCTE

Figure 29-35 shows the UBR+ protocol-specific TCTE.

Figure 29-35. UBR+ Protocol-Specific TCTE

Table 29-26 describes UBR+ protocol-specific TCTE fields.

Table 29-26. UBR+ Protocol-Specific TCTE Field Descriptions

Offset	Bits	Name	Description
0x00	_	MCR	Minimum cell rate for this channel. MCR is in units of APC time slots.
0x02	0–7	-	Reserved, should be cleared.
	8– 15	MCRF	Minimum cell rate fraction. Holds the minimum cell rate fraction of this channel in units of 1/ 256 slot.
0x04	_	MDA	Maximum delay allowed. The maximum time-slot service delay allowed for this priority level before the APC reduces the scheduling rate from PCR to MCR.
0x06– 0x1E	_	_	Reserved, should be cleared.

29.10.2.3.6 ABR Protocol-Specific TCTE

Figure 29-36 shows the ABR protocol-specific TCTE.

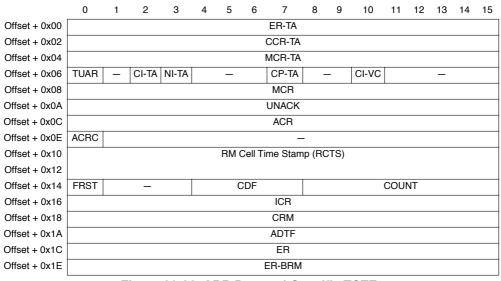


Table 29-27 describes ABR-specific TCTE fields.

Table 29-27. ABR-Specific TCTE Field Descriptions

Offset	Bits	Name	Description						
0x00	_	ER-TA	Explicit rate-turn-around cell. Holds the ER of the last received F-RM cell. If another F-RM cell arrives before the previous F-RM cell was turned around, this field is overwritten by the new RM cell's ER.						
0x02	_	CCR-TA	Current cell rate-turn-around cell. Holds the CCR of the last received F-RM cell. If another F-RM cell arrives before the previous F-RM cell was turned around, this field is overwritten by the new RM cell's CCR.						
0x04	_	MCR-TA	Minimum cell rate-turn-around cell. Holds the MCR of the last received F-RM cell. If another F-RM cell arrives before the previous F-RM cell is turned around, this field is overwritten by the new RM cell's MCR.						
0x06	0	TUAR	Turn-around flag. The CP sets TUAR to indicate that a new F-RM cell was received, which causes the transmitter to send a B-RM cell whenever the ABR flow control permits. Initialize to 0.						
	1	_	Reserved, should be cleared.						
			Congestion indication-turn-around cell. Holds the CI of the last received F-RM cell. If another F-RM cell arrives before the previous F-RM cell was turned around, CI-TA is overwritten by the new RM cell's CI.						
	3	NI-TA	No increase-turn-around cell. Holds the NI of the last received F-RM cell. If another F-RM cell arrives before the previous one was turned around, NI-TA is overwritten by the new RM cell's NI.						

Offset	Bits	Name	Description									
	4–6	_	Reserved, should be cleared.									
	7	CP-TA	Cell loss priority-turn-around cell. Holds the CLP of the last received F-RM cell. If another F-RM cell arrives before the previous one was turned around, CP-TA is overwritten by the new RM cell's CLP.									
	8–9	-	Reserved, should be cleared.									
	10	CI-VC	Congestion indication -VC. Holds the EFCI (explicit forward congestion indication) of the last user data cell. The CI bit of the turned around RM cell is ORed with the CI-VC. Initialize to 0.									
	11–15	-	Reserved, should be cleared.									
0x08	-	MCR	Minimum cell rate Holds the minimum number of cells/sec of the current ABR channel. Uses the ATMF TM 4.0 floating-point format.									
0x0A	-	UNACK	Used by the CP to count F-RM cells sent in an absence of received B-RM cells. Initialize to 0.									
0x0C	-	ACR	Allowed cell rate The cells per second allowed for the current ABR channel. Uses the ATMF TM 4.0 floating-point format. Initialize with ICR.									
0x0E	0	ACRC	ACR change. Indicates a change in ACR. Initialize to one.									
	1–15	-	Reserved, should be cleared.									
0x10	-	RCTS	RM cell time stamp. Used exclusively by the CP. Initialize to zero.									
-	0	FRST	First turn. Used exclusively by the CP. Indicates the first turn of a backward RM cell, which has priority over a data cell. Initialized to 0.									
	1–3	-	Reserved, should be cleared.									
	4–7	CDF	Cutoff decrease factor. Controls the decrease in the ACR associated with missing B-RM cells feedback. CDF represents a negative exponent of two, that is, the cutoff decrease factor = $2^{-\text{CDF}}$. The cutoff decrease factor ranges from 1/64 (CDF=0b0110) to 1 (CDF=0b0000). All other CDF values falling outside this range are invalid.									
	8–15	COUNT	Count. Used only by the CP. Holds the number of cells sent since the last forward RM cell. Initialize with Nrm (in the parameter RAM).									
0x16	-	ICR	Initial cell rate. The number of cells per second of the current ABR channel. The channel's ACR is initialized with ICR. ICR uses the ATMF TM 4.0 floating-point format.									
0x18	-	CRM	Missing RM cells count. Limits the number of forward RM cells that may be sent in the absence of received backward RM cell. The CRM is in units of cells.									
0x1A	-	ADTF	ADTF–ACR decrease time factor. The ADTF period is 500 ms as defined in the TM 4.0. The ADTF value is defined by the system clock and the time stamp timer prescaler; see Section 13.3.7, "RISC Time-Stamp Control Register (RTSCR)." For a time stamp prescaler of 1 μ s, ADTF should be programmed to 500m/(1 μ s × 1024)= 488.									
0x1C	-	ER	Explicit rate. Holds the explicit rate value (in cells/sec) of the current ABR channel. ER is copied to the F-RM cell ER field. The user usually initializes this field to PCR. ER uses the ATMF TM 4.0 floating-point format.									
0x1E	-	ER-BRM	Explicit rate-backward RM cell. Holds the maximum explicit rate value (in cells/sec) allowed for B-RM cells. The ER-TA field which is inserted to each B-RM cell is limited by this value. ER-BRM uses the ATMF TM 4.0 floating-point format.									

Table 29-27. ABR-Specific TCTE Field Descriptions (Continued)

29.10.3 OAM Performance Monitoring Tables

The OAM performance monitoring tables include performance monitoring block test parameters, as shown in Figure 29-37. Each block test needs a 32-byte performance monitoring table in the dual-port RAM. In the connection's RCT and TCT, the user allocates an OAM performance table to a VCC or VPC. See Section 29.6.6, "Performance Monitoring." PMT_BASE in the parameter RAM points to the base address of the tables. The starting address of each PM table is given by PMT_BASE + RCT/TCT[PMT] × 32.

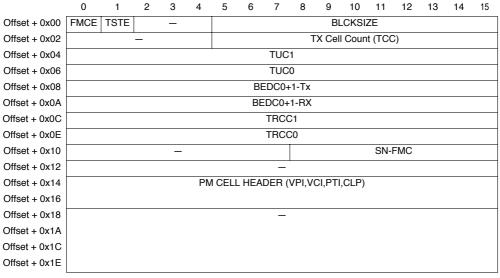
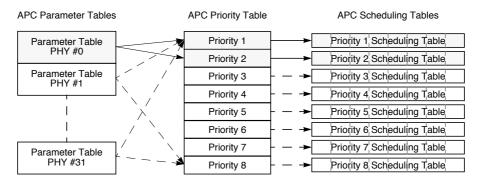


Figure 29-37. OAM Performance Monitoring Table


Table 29-28 describes fields in the performance monitoring table.

Offset	Bits	Name	Description
0x00	0	FMCE	Enables FMC transmission. Initialize to 1.
	1	TSTE	FMC time stamp enable 0 The time stamp field of the FMC is coded with all 1's. 1 The value of the time stamp timer is inserted into the time stamp field of the FMC.
	2–4	_	Reserved, should be cleared.
	5–15	тсс	TX cell count. Used by the CP to count data cells sent. Initialize to zero.
0x02	0–4	-	Reserved, should be cleared.
	5–15	BLCKSIZE	Performance monitoring block size ranging from 1 to 2,047 cells.
0x04	-	TUC1	Total user cell 1. Count of CLP = 1 user cells (modulo 65,536) sent. Initialize to 0.
0x06	-	TUC0	Total user cell 0. Count of CLP = 0 user cells (modulo 65,536) sent. Initialize to 0.
0x08	_	BEDC0+1-Tx	Block error detection code 0+1-transmitted cells. Even parity over the payload of the block of user cells sent since the last FMC. Initialize to 0.
0x0A	-	BEDC0+1-RX	Block error detection code 0+1-received cells. Even parity over the payload of the block of user cells received since the last FMC. Initialize to 0.
0x0C	-	TRCC1	Total received cell 1. Count of CLP = 1 user cells (modulo 65,536) received. Initialize to 0.
0x0E	-	TRCC0	Total received cell 0. Count of CLP = 0 user cells (modulo 65,536) received. Initialize to 0.
0x10	0–7	_	Reserved, should be cleared.
	8–15	SN-FMC	Sequence number of the last FMC sent. Initialize to 0.
0x12	-	_	Reserved, should be cleared.
0x14	_	РМСН	PM cell header. Holds the ATM cell header of the FMC, BRC to be inserted by the CP into the Tx cell flow.
0x18– 0x1E	-	_	Reserved, should be cleared.

Table 29-28. OAM—Performance Monitoring Table Field Descriptions

29.10.4 APC Data Structure

The APC data structure consists of three elements: the APC parameter tables for the PHY devices, the APC priority table, and the APC scheduling tables. See Figure 29-38.

Note: The shaded areas represent the active structures for an example implementation of PHY #0 with two priorities. (The unshaded areas and dashed arrows represent unused structures.)

Figure 29-38. ATM Pace Control Data Structure

29.10.4.1 APC Parameter Tables

Each PHY's APC parameter table, shown in Table 29-29, holds parameters that define the priority table location, the number of priority levels, and other APC parameters. The table resides in the dual-port RAM. The parameter APCP_BASE, described in Section 29.10.1, "Parameter RAM," points to the base address of PHY#0's parameter table.

For multiple PHYs, the table structure is duplicated. Each table resides in 32 bytes of memory. The starting address of each APC parameter table is given by APCP_BASE + PHY $\# \times 32$. Note however that in slave mode with multiple PHYs, the parameter table always resides at APCP_BASE regardless of the PHY address.

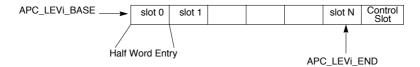
Offset ¹	Name	Width	Description
0x00	APCL_FIRST	Hword	Address of first entry in the priority table. Must be 8-byte aligned. User-initialized.
0x02	APCL_LAST	Hword	Address of last entry in the priority table. Must be 8-byte aligned. User-initialized as APCL_FIRST + 8 x (number_of_priorities - 1).
0x04	APCL_PTR	Hword	Address of current priority entry used by the CP. User-initialized with APCL_FIRST.
0x06	CPS	Byte	Cells per slot. Determines the number of cells sent per APC slot. See Section 29.3.2, "APC Unit Scheduling Mechanism." User-defined. (0x01 = 1 cell; 0xFF = 255 cells.) Note that if ABR is used, CPS must be a power of two.
0x07	CPS_CNT	Byte	Cells sent per APC slot counter. User-initialized to CPS; used by the CP.
0x08	MAX_ITERATIO N	Byte	Max iteration allowed. Number of scan iterations allowed in the APC. User- defined. This parameter limits the time spent in a single APC routine, thereby avoiding excessive APC latency.
0x09	CPS_ABR	Byte	ABR only. Cells per slot represented as a power of two. User-defined. (For example, if CPS is 1, CPS_ABR = 0x00; if CPS is 8, CPS_ABR = 0x03.)

Offset ¹	Name	Width	Description						
0x0A	LINE_RATE_AB R	Hword	ABR only. The PHY line rate in cells/sec, represented in TM 4.0 floating-point format. User-defined.						
0xC	REAL_TSTP	Word	Real-time stamp pointer used internally by the APC. Initialize to 0.						
0x10	APC_STATE Word		Used internally by the APC. Initialize to 0.						

Table 29-29. APC Parameter Table (Continued)

¹Offset values are to APCP_BASE+PHY# × 32. However, in slave mode, the offset is from APCP_BASE regardless of the PHY address.

29.10.4.2 APC Priority Table


Each PHY's APC priority table holds pointers to the APC scheduling table of each priority level. It resides in the dual-port RAM. The priority table can hold up to eight priority levels. Table 29-30 shows the structure of a priority table entry.

Offset	Name	Width	Description				
0x00	APC_LEVi_BASE	Hword	APC level i base address. Pointer to the first slot in the APC scheduling table for level i. Should be half-word aligned. User-defined.				
0x02	APC_LEVI_END	Hword	APC level i end address. Pointer to the last slot in the APC scheduling table for level i. Should be half-word aligned. User-defined.				
0x04	APC_LEVI_RPTR	Hword	APC level i real-time/service pointers. APC table pointers used internally by the				
0x06	APC_LEVi_SPTR	Hword	APC. Initialize both pointers to APC_LEVi_BASE.				

Table 29-30. APC Priority Table Entry

29.10.4.3 APC Scheduling Tables

The APC uses APC scheduling tables (one table for each priority level) to schedule channel transmission. A scheduling table is divided into time slots, as shown in Figure 29-39. Each slot is a half-word entry. Note that the APC scheduling tables should be cleared before the APC unit is enabled.

Figure 29-39. The APC Scheduling Table Structure

Slot N+1 is used as a control slot, as shown in Figure 29-40.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	TCTE		000_0000_0000													

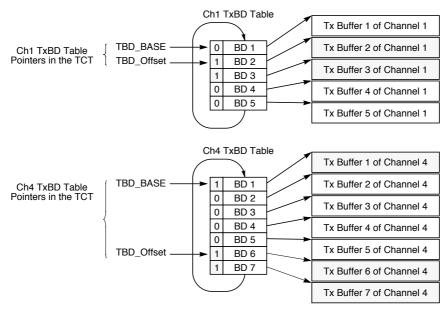
Figure 29-40. Control Slot

Table 29-31 describes control slot fields.

Bits	Name	Description
0	TCTE	Used for external channels only. 0 Channels in this scheduling table do not use external TCTE. (No external VBR, ABR, UBR+ channels) 1 Channels in this scheduling table use external TCTE. (External VBR, ABR, UBR+ channels)
1–15	_	Reserved, should be cleared.

Table 29-31. Control Slot Field Description

29.10.5 ATM Controller Buffer Descriptors (BDs)


Each ATM channel has separate receive and transmit BD tables. The number of BDs per channel and the size of the buffers is user-defined. The last BD in each table holds a wrap indication. Each BD in the TxBD table points to a buffer to send. At the receive side, the user can choose one of two modes:

- Static buffer allocation. In this mode, the user allocates dedicated buffers to each ATM channel (that is, the user associates each BD with one buffer). Static buffer allocation is useful when the connection rate is known and constant and when data must be reassembled in a particular memory space.
- Global buffer allocation. Available for AAL5 only. In this mode, buffer allocation is dynamic. The user allocates receive buffers and places them in global buffer pools. When the CP needs a receive buffer, it first fetches a buffer pointer from one of the global buffer pools and writes the pointer to the current RxBD. Global buffer allocation is optimized for allocating memory among many ATM channels with variable data rates, such as ABR channels.

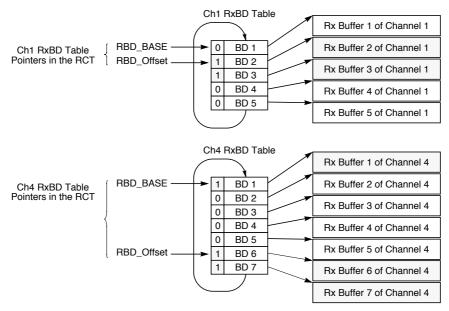
29.10.5.1 Transmit Buffer Operations

The user prepares a table of BDs pointing to the buffers to be sent. The address of the first BD is put in the channel's TCT[TBD_BASE]. The transmit process starts when the core issues an ATM TRANSMIT command. The CP reads the first TxBD in the table and sends its associated buffer. When the current buffer is finished, the CP increments TBD_Offset, which holds the offset from TBD_BASE to the current BD. It then reads the next BD in the table. If the BD is ready (TxBD[R] = 1), the CP continues sending. If the current BD is not ready, the CP polls the ready bit at the channel rate unless TCT[AVCF] = 1, in which case the CP removes the channel from the APC and clears TCT[VCON]. The core must issue a new ATM TRANSMIT command to restart transmission.

Figure 29-41 shows the ready bit in the TxBD tables and their associated buffers for two example ATM channels.

Note: The shaded buffers are ready to be sent; unshaded buffers are waiting to be prepared.

Figure 29-41. Transmit Buffers and BD Table Example


29.10.5.2 Receive Buffers Operation

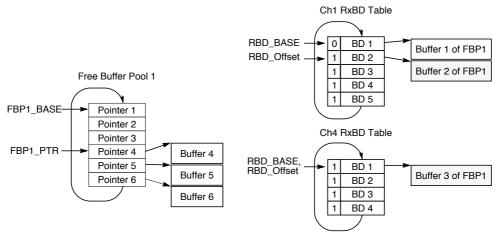
For AAL5 channels, the user should choose to operate in static buffer allocation or in global buffer allocation by writing to RCT[BUFM]. AAL1 and AAL0 channels must use static buffer allocation.

29.10.5.2.1 Static Buffer Allocation

The user prepares a table of BDs pointing to the receive buffers. The address of the first BD is put in the channel's RCT[RBD_BASE]. When an ATM cell arrives, the CP opens the first BD in the table and starts filling its associated buffer with received data. When the current buffer is full, the CP increments RBD_Offset, which is the offset to the current BD from RBD_BASE, and reads the next BD in the table. If the BD is empty (RxBD[E] = 1), the CP continues receiving. If the BD is not empty, a busy condition has occurred and a busy interrupt is sent to the event queue.

Figure 29-42 shows the empty bit in the RxBD tables and their associated buffers for two example ATM channels.

Note: The shaded buffers are empty; unshaded buffers are waiting to be processed.


Figure 29-42. Receive Static Buffer Allocation Example

29.10.5.2.2 Global Buffer Allocation

The user prepares a table of BDs without assigning buffers to them (no buffer pointers). The address of the first BD is put into the channel's RCT[RBD_BASE]. The user also prepares sets of free buffers (of size RCT[MRBLR]) in up to four free buffer pools (chosen in RCT[BPOOL]); see Section 29.10.5.2.3, "Free Buffer Pools."

When an ATM cell arrives, the CP opens the first BD in the table, fetches a buffer pointer from the free buffer pool associated with this channel, and writes the pointer to RxBD[RXDBPTR], the receive data buffer pointer field in the BD. When the current buffer is full, the CP increments RBD_Offset, which is the offset from the RBD_BASE to the current BD, and reads the next BD in the table. If the BD is empty (RxBD[E] = 1), the CP fetches another buffer pointer from the free buffer pool and reception continues. If the BD is not empty, a busy condition occurs and a busy interrupt is sent to the event queue specifying the ATM channel code. As software then processes each full buffer (RxBD[E] = 0), it sets RxBD[E] and copies the buffer pointer back to the free buffer pool.

Figure 29-43 shows two ATM channels' BD tables and one free buffer pool. Both channels are associated with free buffer pool 1. The CP allocates the first two buffers of buffer pool 1 to channel 1 and the third to channel 4.

Notes: Buffers 2 and 3 are receiving data. After buffer 1 is processed, it can be returned to the pool.

Figure 29-43. Receive Global Buffer Allocation Example

29.10.5.2.3 Free Buffer Pools

As Figure 29-44 shows, when a buffer pointer is fetched from a pool, the CP clears the entry's valid bit and increments FBP#_PTR. After the CP uses an entry with the wrap bit set (W = 1), it returns to the first entry in the pool. After a buffer pointer is returned to the pool, the user should set V to indicate that the entry is valid. If the CP tries to read an invalid entry (V = 0), the buffer pool is out of free buffers; the global-buffer-pool-busy event is then set in FCCE[GBPB] and a busy interrupt is sent to the interrupt queue specifying the ATM channel code associated with the pool.

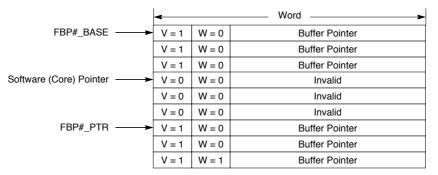


Figure 29-44. Free Buffer Pool Structure

Figure 29-45 describes the structure of a free buffer pool entry.

Part IV. Communications Processor Module

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0x00	×	Ι	w	Ι					Buf	fer Po	inter (BP)				
Offset + 0x02		Buffer Pointer (BP)														

Figure 29-45. Free Buffer Pool Entry

Table 29-32 describes free buffer pool entry fields.

Table 29-32. Free Buffer Pool Entry Field Descriptions

Offset	Bits	Name	Description
0x00	0	v	Valid buffer entry. 0 This free buffer pool entry contains an invalid buffer pointer. 1 This free buffer pool entry contains a valid buffer pointer.
	1	_	Reserved, should be cleared.
	2	w	Wrap bit. When set, this bit indicates the last entry in the circular table. During initialization, the host must clear all W bits in the table except the last one, which must be set.
	3	I	 Red-line interrupt. Can be used to indicate that the free buffer pool has reached a red line and additional buffers should be added to this pool to avoid a busy condition. 0 No interrupt is generated. 1 A red-line interrupt is generated when this buffer is fetched from the free buffer pool.
	4–15	BP	Buffer pointer. Points to the start address of the receive buffer. The four msbs are control bits,
0x02	0–15		and the four msbs of the real buffer pointer are taken from the four msbs of the parameter FBP_ENTRY_EXT in the free buffer pool parameter table.

29.10.5.2.4 Free Buffer Pool Parameter Tables

The free buffer pool parameters are held in parameter tables in the dual-port RAM; see Table 29-33. FBT_BASE in the parameter RAM points to the base address of these tables. Each of the four free buffer pools has its own parameter table with a starting address given by FBT_BASE+ RCT[BPOOL] \times 16.

Offset 1	Bits	Name	Description
0x00	_	FBP_BASE	Free buffer pool base. Holds the pointer to the first entry in the free buffer pool. FBP_BASE should be word aligned. User-defined.
0x04	_	FBP_PTR	Free buffer pool pointer. Pointer to the current entry in the free buffer pool. Initialize to FBP_BASE.
0x08	_	FBP_ENTRY_EXT	Free buffer pool entry extension. FBP_ENTRY_EXT[0–3] holds the four left bits of FBP_ENTRY. FBP_ENTRY_EXT[4–15] should be cleared. User-defined.
0x0A	0	BUSY	The CP sets this bit when it tries to fetch buffer pointer with V bit clear. FCCE[GBPB] is also set. Initialize to zero.
	1	RLI	Red-line interrupt. Set by the CP when it fetches a buffer pointer with I = 1. FCCE[GRLI] is also set. Initialize to zero.
	2–7	_	Reserved, should be cleared.

Table 29-33. Free Buffer Poc	ol Parameter Table
------------------------------	--------------------

Offset 1	Bits	Name	Description
	8	EPD	 Early packet discard. 0 Normal operation. 1 AAL5 frames in progress are received, but new AAL5 frames associated with this pool are discarded. Can be used to implement EPD under core control.
	9–15	_	Reserved, should be cleared.
0x0C	-	FBP_ENTRY	Free buffer pool entry. Initialize with the first entry of the free buffer pool. Note that FBP_ENTRY must be reinitialized when a busy state occurs.

Table 29-33. Free Buffer Pool Parameter Table (Continued)

¹Offset from FBT_BASE+RCT[BPOOL] × 16

29.10.5.3 ATM Controller Buffers

Table 29-34 describes properties of the ATM receive and transmit buffers.

Table 29-34. Receive and Transmit Buffers

AAL	Receive	Transmit			
AAL	Size	Alignment	Size	Alignment	
AAL5	Multiple of 48 octets (except last buffer in frame)	Double word aligned	Any	No requirement	
AAL1	At least 47 octets	No requirement	At least 47 octets	No requirement	
AAL0	52-64 octets.	Burst-aligned	52-64 octets.	No requirement	

29.10.5.4 AAL5 RxBD

Figure 29-46 shows the AAL5 RxBD.

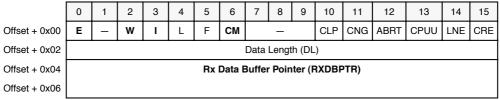


Figure 29-46. AAL5 RxBD

Table 29-35 describes AAL5 RxBD fields.

Offset	Bits	Name	Description
0x00	0	E	 Empty. 0 The buffer associated with this RxBD is full or data reception was aborted due to an error. The core can read or write any fields of this RxBD. The CP does not use this BD again while E remains zero. 1 The buffer associated with this RxBD is empty or reception is in progress. This RxBD and its receive buffer are controlled by the CP. Once E is set, the core should not write any fields of this RxBD.
	1	_	Reserved, should be cleared.
	2	w	 Wrap (final BD in table) 0 This is not the last BD in the RxBD table of the current channel. 1 This is the last BD in the RxBD table of this current channel. After this buffer has been used, the CP receives incoming data into the first BD in the table. The number of RxBDs in this table is programmable and is determined only by the W bit. The current table cannot exceed 64 Kbytes.
	3	I	Interrupt 0 No interrupt is generated after this buffer has been used. 1 An Rx buffer event is sent to the interrupt queue after the ATM controller uses this buffer. FCCE[GINTx] is set in the event register when INT_CNT reaches the global interrupt threshold.
	4	L	Last in frame. Set by the ATM controller for the last buffer in a frame. 0 Buffer is not last in a frame. 1 Buffer is last in a frame. ATM controller writes frame length in DL and updates the error flags.
	5	F	First in frame. Set by the ATM controller for the first buffer in a frame. 0 The buffer is not the first in a frame. 1 The buffer is the first in a frame.
	6	СМ	 Continuous mode 0 Normal operation. 1 The CP does not clear the empty bit after this BD is closed, allowing the associated buffer to be overwritten automatically when the CP next accesses this BD.
	7–9	_	Reserved, should be cleared.
	10	CLP	Cell loss priority. At least one cell associated with the current message was received with CLP = 1. May be set at the last buffer of the message.
	11	CNG	Congestion indication. The last cell associated with the current message was received with PTI middle bit set. CNG may be set at the last buffer of the message.
	12	ABRT	Abort message indication. The current message was received with Length field zero.
	13	CPUU	CPCS-UU+CPI indication. Set when the CPCS-UU+CPI field is non zero. CPUU may be set at the last buffer of the message.
	14	LNE	Rx length error. AAL5 CPCS-PDU length violation. May be set only for the last BD of the frame if the pad length is greater than 47 or less than zero octets.
	15	CRE	Rx CRC error. Indicates CRC32 error in the current AAL5 PDU. Set only for the last BD of the frame.

Table 29-35. AAL5 RxBD Field Descriptions

Offset	Bits	Name	Description
0x02	-	DL	Data length. The number of octets written by the CP into this BD's buffer. It is written by the CP once the BD is closed. In the last BD of a frame, DL contains the total frame length.
0x04		RXDBPTR	Rx data buffer pointer. Points to the first location of the associated buffer; may reside in internal or external memory. This pointer must be burst-aligned.

Table 29-35. AAL5 RxBD Field Descriptions (Continued)

29.10.5.5 AAL1 RxBD

Figure 29-47 shows the AAL1 RxBD.

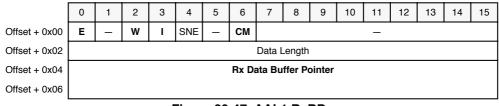
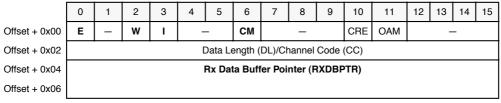


Figure 29-47. AAL1 RxBD


Table 29-36 describes AAL1 RxBD fields.

Offset	Bits	Name	Description
0x00	0	E	 Empty 0 The buffer associated with this RxBD is filled with received data or data reception was aborted due to an error. The core can read or write any fields of this RxBD. The CP cannot use this BD again while E = 0. 1 The buffer is not full. This RxBD and its associated receive buffer are owned by the CP. Once E is set, the core should not write any fields of this RxBD.
	1	_	Reserved, should be cleared.
	2	W	 Wrap (final BD in table) 0 This is not the last BD in the RxBD table of the current channel. 1 This is the last BD in the RxBD table of this current channel. After this buffer is used, the CP receives incoming data into the first BD in the table. The number of RxBDs in this table is programmable and is determined only by the W bit. The current table overall space is constrained to 64 Kbytes.
	3	I	Interrupt 0 No interrupt is generated after this buffer has been used. 1 An Rx buffer event is sent to the interrupt queue after the ATM controller uses this buffer. FCCE[GINTx] is set when the INT_CNT reaches the global interrupt threshold.
	4	SNE	Sequence number error. SNE is set when a sequence number error is detected in the current AAL1 buffer.
	5	_	Reserved, should be cleared.
	6	СМ	Continuous mode 0 Normal operation. 1 The empty bit (RxBD[E]) is not cleared by the CP after this BD is closed, allowing the associated buffer to be overwritten automatically when the CP next accesses this BD.
	7–15	-	Reserved, should be cleared.
0x02	-	DL	Data length. The number of octets the CP writes into the buffer once its BD is closed.
0x04	_	RXDBPTR	Rx data buffer pointer. Points to the first location of the associated buffer; may reside in either internal or external memory. This pointer must be burst-aligned.

Table 29-36. AAL1 RxBD Field Descriptions

29.10.5.6 AAL0 RxBD

Figure 29-48 shows the AAL0 RxBD.

Figure 29-48. AAL0 RxBD

Table 29-37 describes AAL0 RxBD fields.

Offset	Bits	Name	Description
	0	E	 Empty 0 The buffer associated with this RxBD is filled with received data, or data reception was aborted due to an error. The core can examine or write to any fields of this RxBD. The CP does not use this BD again while E remains zero. 1 The Rx buffer is empty or reception is in progress. This RxBD and its associated receive buffer are owned by the CP. Once E is set, the core should not write any fields of this RxBD.
	1	-	Reserved, should be cleared.
	2	w	 Wrap (final BD in table) 0 This is not the last BD in the RxBD table of the current channel. 1 This is the last BD in the RxBD table of the current channel. After this buffer has been used, the CP will receive incoming data into the first BD in the table. The number of RxBDs in this table is programmable and is determined only by the W bit. The current table cannot exceed 64 Kbytes.
	3	I	Interrupt 0 No interrupt is generated after this buffer has been used. 1 An Rx buffer event is sent to the interrupt queue after the ATM controller uses this buffer. FCCE[GINTx] is set when the INT_CNT reaches the global interrupt threshold.
	4–5	-	Reserved, should be cleared.
	6	СМ	Continuous mode 0 Normal operation. 1 The CP does not clear the E bit after this BD is closed, allowing the associated buffer to be overwritten automatically when the CP next accesses this BD.
	7–9	-	Reserved, should be cleared.
	10	CRE	Rx CRC error. Indicates a CRC10 error in the current AAL0 buffer. The CRE bit is considered an error only if the received cell had a CRC10 field in the cell payload.
	11	OAM	Operation and maintenance cell. If OAM is set, the current AAL0 buffer contains an OAM cell. This cell is associated with the channel indicated by the channel code field (CC field).
	12-15	-	Reserved, should be cleared.
0x02	-	DL/CC	Data length/channel code. If RxBD[OAM] is set, this field functions as CC; otherwise, it is DL. Data length is the size in octets of this buffer (MRBLR value). Channel code specifies the channel code associated with this OAM cell.
0x04	-	RXDBPTR	Rx data buffer pointer. Points to the first location of the associated buffer; may reside in either internal or external memory. This pointer must be burst-aligned.

Table 29-37. AAL0 RxBD Field Descriptions

29.10.5.7 AAL5, AAL1 User-Defined Cell-RxBD Extension

In user-defined cell mode, the AAL5 and AAL1 RxBDs are extended to 32 bytes; see Figure 29-49. Note that for AAL0, a complete cell, including the UDC header, is stored in the buffer; the AAL0 BD size is always 8 bytes.

Part IV. Communications Processor Module

Offset + 0x08

Extra Cell Header. Used to store the user-defined cell's extra cell header. The extra cell header can be 1–12 bytes long.

Offset + 0x14

Reserved (12 bytes)

Figure 29-49. User-Defined Cell-RxBD Extension

29.10.5.8 AAL5 TxBDs

Figure 29-50 shows the AAL5 TxBD.

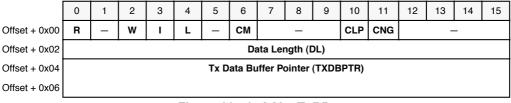
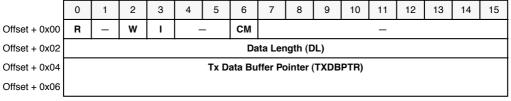


Figure 29-50. AAL5 TxBD


Table 29-38 describes AAL5 TxBD fields.

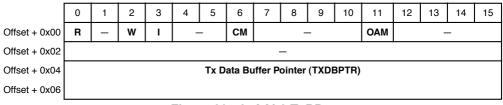
Offset	Bits	Name	Description
	0	R	 Ready 0 The buffer associated with this BD is not ready for transmission. The user is free to manipulate this BD or its associated buffer. The CP clears R after the buffer is sent or after an error condition is encountered. 1 The user-prepared buffer has not been sent or is currently being sent. No fields of this BD may be written by the user once R is set.
	1	-	Reserved, should be cleared.
	2	W	 Wrap (final BD in table) 0 Not the last BD in the TxBD table. 1 Last BD in the TxBD table. After this buffer is used, the CP sends outgoing data from the first BD in the table (the BD pointed to by the channel's TCT[TBD_BASE]). The number of TxBDs in this table is determined only by the W bit. The current table cannot exceed 64 Kbytes.
	3	I	Interrupt 0 No interrupt is generated after this buffer has been serviced. 1 A Tx Buffer event is sent to the interrupt queue after this buffer is serviced. FCCE[GINTx] is set when the INT_CNT counter reaches the global interrupt threshold.
	4	L	Last in frame. Set by the user to indicate the last buffer in a frame. 0 Buffer is not last in a frame. 1 Buffer is last in a frame.
	5	_	Reserved, should be cleared.
	6	СМ	 Continuous mode 0 Normal operation. 1 The CP does not clear R after this BD is closed, allowing the associated buffer to be retransmitted automatically when the CP next accesses this BD. However, the R bit is cleared if an error occurs during transmission, regardless of CM.
	7-9	_	Reserved, should be cleared.
	10	CLP	The ATM cell header CLP bit of the cells associated with the current frame are ORed with this field. This field is valid only in the first BD of the frame.
	11	CNG	The ATM cell header CNG bit of the cells associated with the current frame are ORed with this field. This field is valid only in the first BD of the frame.
	12–15	_	Reserved, should be cleared.
0x02	-	DL	The number of octets the ATM controller should transmit from this BD's buffer. It is not modified by the CP. The value of DL should be greater than zero.
0x04	-	TXDBPTR	Tx data buffer pointer. Points to the address of the associated buffer, which may or may not be 8-byte-aligned. The buffer may reside in either internal or external memory. This value is not modified by the CP.

Table 29-38. AAL5 TxBD Field Descriptions

29.10.5.9 AAL1 TxBDs

Figure 29-51 shows the AAL1 TxBD.

Figure 29-51. AAL1 TxBD


Table 29-39 describes AAL1 TxBD fields.

Offset	Bits	Name	Description
0x00	0	R	 Ready 0 The buffer associated with this BD is not ready for transmission. The user is free to manipulate this BD or its associated buffer. The CP clears this bit after the buffer has been sent or after an error condition is encountered. 1 The buffer prepared for transmission by the user has not been sent or is being sent. No fields of this BD may be written by the user once R is set.
	1	_	Reserved, should be cleared.
	2	W	 Wrap (final BD in table) 0 Not the last BD in the TxBD table. 1 Last BD in the TxBD table. After this buffer is used, the CP sends outgoing data from the first BD in the table (the BD pointed to by the channel's TCT[TBD_BASE]). The number of TxBDs in this table is determined only by the W bit. The current table cannot exceed 64 Kbytes.
	3	I	Interrupt 0 No interrupt is generated after this buffer has been serviced. 1 A Tx buffer event is sent to the interrupt queue after this buffer is serviced. FCCE[GINTx] is set when the INT_CNT counter reaches the global interrupt threshold.
	4–5	_	Reserved, should be cleared.
	6	СМ	Continuous mode 0 Normal operation. 1 The CP does not clear the ready bit after this BD is closed, allowing the associated buffer to be retransmitted automatically when the CP next accesses this BD.
	7–11	_	Reserved, should be cleared.
0x02	-	DL	The number of octets the ATM controller should transmit from this BD's buffer. It is not modified by the CP. The value of DL should be greater than zero.
0x04	-	TXDBPTR	Tx data buffer pointer. Points to the address of the associated buffer. The buffer may reside in either internal or external memory. This value is not modified by the CP.

Table 29-39. AAL1 TxBD Field Descriptions

29.10.5.10 AAL0 TxBDs

Figure 29-52 shows AAL0 TxBDs. Note that the data length field is calculated internally as 52 bytes, plus the extra header length (defined in FPSMR[TEHS]) when in UDC mode.

Figure 29-52. AAL0 TxBDs

Table 29-40 describes AAL0 TxBD fields.

Offset	Bits	Name	Description
0x00	0	R	 Ready 0 The buffer is not ready for transmission. The user can manipulate this BD or its buffer. The CP clears R after the buffer has been sent or after an error occurs. 1 The buffer that the user prepared for transmission has not been sent or is being sent. No fields of this BD may be written by the user once R is set.
	1	-	Reserved, should be cleared.
	2	w	 Wrap (final BD in table) 0 Not the last BD in the TxBD table. 1 Last BD in the TxBD table. After this buffer is used, the CP sends outgoing data from the first BD in the table (the BD pointed to by the channel's TCT[TBD_BASE]). The number of TxBDs in this table is determined by the W bit. The current table is constrained to 64 Kbytes.
	3	I	Interrupt 0 No interrupt is generated after this buffer has been serviced. 1 A Tx buffer event is sent to the interrupt queue after this buffer is serviced. FCCE[GINTx] is set when the INT_CNT counter reaches the global interrupt threshold.
	4–5	_	Reserved, should be cleared.
	6	СМ	Continuous mode 0 Normal operation. 1 The CP does not clear the ready bit after this BD is closed, allowing the associated buffer to be retransmitted automatically when the CP next accesses this BD.
	7–10	-	Reserved, should be cleared.
	11	OAM	Operation and maintenance cell. If OAM is set, the current AAL0 buffer contains an F5 or F4 OAM cell. Performance monitoring calculations are not done on OAM cells.
	11–15	-	Reserved, should be cleared.
0x02	-	-	Reserved, should be cleared.
0x04	-	TXDBPTR	Tx data buffer pointer. Points to the address of the associated buffer, which may or may not be 8-byte-aligned. The buffer may reside in either internal or external memory. This value is not modified by the CP.

29.10.5.11 AAL5, AAL1 User-Defined Cell-TxBD Extension

In user-defined cell mode, the AAL5 and AAL1 TxBDs are extended to 32 bytes; see Figure 29-53. Note that for AAL0 a complete cell, including the UDC header, is stored in the buffer; the AAL0 BD size is always 8 bytes.

Offset + 0x08

Extra Cell Header. Used to store the user-defined cell's extra cell header. The extra cell header can be 1–12 bytes long. Reserved (12 bytes)

Offset + 0x14

Figure 29-53. User-Defined Cell-TxBD Extension

29.10.6 AAL1 Sequence Number (SN) Protection Table (AAL1 Only)

The 32-byte sequence number protection table, pointed to by AAL1_SNPT_BASE in the ATM parameter RAM, resides in dual-port RAM and is used for AAL1 only. The table should be initialized according to Figure 29-54.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0x00		-	-					0x0	000							
Offset + 0x02								0x0	007							
Offset + 0x04								0x0	00D							
Offset + 0x06								0x0	00A							
Offset + 0x08								0x0	00E							
Offset + 0x0A								0x0	009							
Offset + 0x0C								0x0	003							
Offset + 0x0E								0x0	004							
Offset + 0x10								0x0	00B							
Offset + 0x12								0x0	00C							
Offset + 0x14								0x0	006							
Offset + 0x16								0x0	001							
Offset + 0x18								0x0	005							
Offset + 0x1A								0x0	002							
Offset + 0x1C								0x0	800							
Offset + 0x1E								0x0	00F							

Figure 29-54. AAL1 Sequence Number (SN) Protection Table

29.10.7 UNI Statistics Table

The UNI statistics table, shown in Table 29-41, resides in the dual-port RAM and holds UNI statistics parameters. UNI_STATT_BASE points to the base address of this table. Each PHY has its own table with a starting address given by UNI_STATT_BASE+ PHY# $\times 8$.

Offset ¹	Name	Width	Description
0x00	UTOPIAE	Hword	Counts cells dropped as a result of UTOPIA parity error or state machine errors (short or long cells).
0x02	MIC_COUNT	Hword	Counts misinserted cells dropped as a result of address look-up failure.
0x04	CRC10E_COUNT	Hword	Counts cells dropped as a result of CRC10 failure. AAL5-ABR only.
0x06	_	Hword	Reserved, should be cleared.

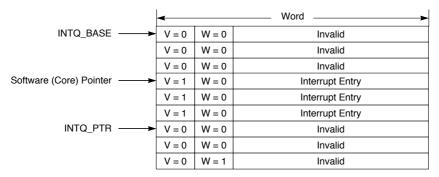
Table 29-41. UNI Statistics Table

¹Offset from UNI_STATT_BASE+PHY# × 8

29.11 ATM Exceptions

The ATM controller interrupt handling involves two principal data structures: FCCEs (FCC event registers) and circular interrupt queues.

Four priority interrupt queues are available. By programming RCT[INTQ] and TCT[INTQ], the user determines which queue receives the interrupt. Channel Rx buffer, Rx frame, or Tx buffer events can be masked by clearing interrupt mask bits in RCT and TCT.


After an interrupt request, the host reads FCCE. If FCCE[GINTx] = 1, at least one entry was added to one of the interrupt queues. After clearing FCCE[GINTx], the host processes the valid interrupt queue entries and clears each entry's valid bit. The host follows this procedure until it reaches an entry with V = 0. See Section 29.11.2, "Interrupt Queue Entry."

The host controls the number of interrupts sent to the core using a counter in the interrupt queue's parameter table; see Section 29.11.3. For each event sent to an interrupt queue, a counter (that has been initialized to a threshold number of interrupts) is decremented. When the counter reaches zero, the global interrupt, FCCE[GINTx], is set.

29.11.1 Interrupt Queues

Interrupt queues are located in external memory. The parameters of each queue are stored in a table. See Section 29.11.3, "Interrupt Queue Parameter Tables."

When an interrupt occurs, the CP writes a new entry to the interrupt queue, the V bit is set, and the queue pointer (INTQ_PTR) is incremented. Once the CP uses an entry with W = 1, it returns to the first entry in the queue. If the CP tries to overwrite a valid entry (V = 1), an overflow condition occurs and the queue's overflow flag, FCCE[INTOx], is set.

Figure 29-55. Interrupt Queue Structure

29.11.2 Interrupt Queue Entry

Each one-word interrupt queue entry provides detailed interrupt information to the host. Figure 29-56 shows an entry.

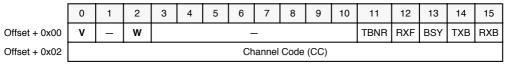


Figure 29-56. Interrupt Queue Entry

Table 29-42 describes interrupt queue entry fields.

Offset	Bits	Name	Description
0x00	0	v	Valid interrupt entry 0 This interrupt queue entry is free and can be use by the CP. 1 This interrupt queue entry is valid. The host should read this interrupt and clear this bit.
	1	-	Reserved, should be cleared.
	2	w	Wrap bit. When set, this is the last interrupt circular table entry. During initialization, the host must clear all W bits in the table except the last one, which must be set.
	3–10	-	Reserved, should be cleared.
	11	TBNR	Tx buffer-not-ready. Set when a transmit buffer-not-ready interrupt is issued. This interrupt is issued when the CP tries to open a TxBD that is not ready ($R = 0$). This interrupt is sent only if TCT[BNM] = 1. This interrupt has an associated channel code. Note that for AAL5, this interrupt is sent only if frame transmission is started. In this case, an abort frame transmission is sent (last cell with length=0), the channel is taken out of the APC, and the TCT[VCON] flag is cleared.
	12	RXF	Rx frame. RXF is set when an Rx frame interrupt is issued. This interrupt is issued at the end of AAL5 PDU reception. This interrupt is issued only if RCT[RXFM] = 1. This interrupt has an associated channel code.
	13	BSY	Busy condition. The BD table or the free buffer pool associated with this channel is busy. Cells were discarded due to this condition. This interrupt has an associated channel code.
	14	ТХВ	Tx buffer. TXB is set when a transmit buffer interrupt is issued. This interrupt is enabled when both TxBD[I] and TCT[IMK] = 1. This interrupt has an associated channel code.
	15	RXB	Rx buffer. RXB is set when an Rx buffer interrupt is issued. This interrupt is enabled when both RxBD[I] and RCT[RXBM] = 1. This interrupt has an associated channel code.
0x02	_	CC	Channel code specifies the channel associated with this interrupt.

Table 29-42. Interrupt Queue Entry Field Description

29.11.3 Interrupt Queue Parameter Tables

The interrupt queue parameters are held in parameter tables in the dual-port RAM; see Table 29-43. INTT_BASE in the parameter RAM points to the base address of these tables. Each of the four interrupt queues has its own parameter table with a starting address given by INTT_BASE+ RCT/TCT[INTQ] × 16.

Offset 1	Name	Width	Description
0x00	INTQ_BASE	Word	Base address of the interrupt queue. User-defined.
0x04	INTQ_PTR	Word	Pointer to interrupt queue entry. Initialize to INTQ_BASE.
0x08	INT_CNT	Half Word	Interrupt counter. Initialize with INT_ICNT. The CP decrements INT_CNT for each interrupt. When INT_CNT reaches zero, the queue's global interrupt flag FCCE[GINTx] is set.
0x0A	INT_ICNT	Half Word	Interrupt initial count. User-defined global interrupt threshold—the number of interrupts required before the CP issues a global interrupt (FCCE[GINTx]).

Table 29-43. Interrupt Queue Parameter Table

Offset 1	Name	Width	Description
0x0C	INTQ_ENTRY		Interrupt queue entry. Must be zero. Note that when an overrun occurs, this entry must be cleared again.

 Table 29-43. Interrupt Queue Parameter Table (Continued)

¹Offset from INTT_BASE+RCT/TCT[INTQ] × 16

29.12 The UTOPIA Interface

The ATM controller interfaces with a PHY device through the UTOPIA interface. The MPC8260 supports UTOPIA level 2 for both master and slave modes.

29.12.1 UTOPIA Interface Master Mode

UTOPIA master signals are shown in Figure 29-57.

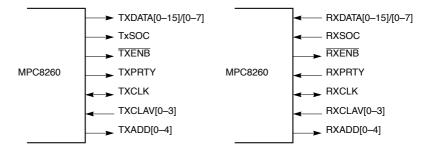


Figure 29-57. UTOPIA Master Mode Signals

Table 29-44 describes UTOPIA master mode signals.

Signal	Description
TxDATA[0-15]/ [0-7]	Carries transmit data from the ATM controller to a PHY device. TxDATA[15]/[7] is the msb when using UTOPIA 16/8, TxDATA[0] is the lsb.
TxSOC	Transmit start of cell. Asserted by the ATM controller when the first byte of a cell is sent on TxDATA lines.
TxENB	Transmit enable. Asserted by the ATM controller when valid data is placed on the TxDATA lines.
TxCLAV[0–3]	Transmit cell available. Asserted by the PHY device to indicate that the PHY has room for a complete cell.
TxPRTY	Transmit parity. Asserted by the ATM controller. It is an odd parity bit over the TxDATA bits.
TxCLK	Transmit clock. Provides the synchronization reference for the TxDATA, TxSOC, TxENB, TxCLAV, TxPRTY signals. All the above signals are sampled at low-to-high transitions of TxCLK.
TxADD[0-4]	Transmit address. Address bus from the ATM controller to the PHY device used to select the appropriate M-PHY device. Each M-PHY device needs to maintain its address. TxADD[4] is the msb.

Signal	Description
RxDATA[0-15] /[0-7]	Carries receive data from the PHY to the ATM controller. RxDATA[15]/[7] is the msb when using UTOPIA 16/8, RxDATA[0] is the lsb.
RxSOC	Receive start of cell. Asserted by the PHY device as the first byte of a cell is received on RxDATA.
RXENB	Receive enable. An ATM controller asserts to indicate that RxDATA and RxSOC will be sampled at the end of the next RxCLK cycle. For multiple PHYs, RxENB is used to three-state RxDATA and RxSOC at each PHY's output. RxDATA and RxSOC should be enabled only in cycles after those with RxENB asserted.
RxCLAV[0-3]	Receive cell available. Asserted by a PHY device when it has a complete cell to give the ATM controller.
RxPRTY	Receive parity. Asserted by the PHY device. It is an odd parity bit over the RxDATA. If there is a RxPRTY error and the receive parity check FPSMR[RxP] is enabled, the cell is discarded. See Section 29.13.2, "FCC Protocol-Specific Mode Register (FPSMR)."
RxCLK	Receiver clock. Synchronization reference for RxDATA, RxSOC, RXENB, RxCLAV, and RxPRTY, all of which are sampled at low-to-high transitions of RxCLK.
RxADD[0-4]	Receive address. Address bus from the ATM controller to the PHY device used to select the appropriate M-PHY device. Each M-PHY device needs to maintain its address. RxADD[4] is the msb.

Table 29-44. UTOPIA Master Mode Signal Descriptions (Continued)

29.12.1.1 UTOPIA Master Multiple PHY Operation

The cell transfer in a multiple PHY ATM port uses cell-level handshaking as defined in the UTOPIA standards. The MPC8260 supports two polling modes:

- Direct polling uses CLAV[0–3] with PHY selection using ADD[0–2]. Up to four PHYs can be supported.
- Multiplex polling uses CLAV[0] and ADD[0–4]. ATM controller polls all active PHYs starting from PHY address 0x0 to the address written in FPSMR[LAST_PHY]. Up to 31 PHY devices are supported.

Both modes support round-robin priority or fixed priority, described in Section 29.13.2, "FCC Protocol-Specific Mode Register (FPSMR)."

29.12.2 UTOPIA Interface Slave Mode

UTOPIA slave signals are shown in Figure 29-58

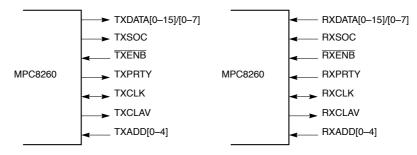


Figure 29-58. UTOPIA Slave Mode Signals

Table 29-45 describes UTOPIA slave mode signals.

Signal	Description
TxDATA[0-15] /[0-7]	Transmit data bus. Carries transmit data from the ATM controller to the master device. TxDATA[15]/ [7] is the msb, TxDATA[0] is the lsb.
TxSOC	Transmit start of cell. Asserted by an ATM controller as the first byte of a cell is sent on the TxDATA lines.
TXENB	Transmit enable. An input to the ATM controller. It is asserted by the UTOPIA master to signal the slave to send data in the next TxCLK cycle.
TxCLAV	Transmit cell available. Asserted by the ATM controller to indicate it has a complete cell to transmit.
TxPRTY	Transmit parity. Asserted by the ATM controller. It is an odd parity bit over the TxDATA.
TxCLK	Transmit clock. Provides the synchronization reference for the TxDATA, TxSOC, TxENB, TxCLAV, and TxPRTY signals. All of the above signals are sampled at low-to-high transitions of TxCLK.
TxADD[0-4]	Transmit address. Address bus from the master to the ATM controller used to select the appropriate M-PHY device.
RxDATA[0- 15]/[0-7]	Receive data bus. Carries receive data from the master to the ATM controller. RxDATA[15]/[7] is the msb, RxDATA[0] is the lsb.
RxSOC	Receive start of cell. Asserted by the master device whenever the first byte of a cell is being received on the RxDATA lines.
RxENB	Receive enable. Asserted by the master device to signal the slave to sample the RxDATA and RxSOC signals.
RxCLAV	Receive cell available. Asserted by the ATM controller to indicate it can receive a complete cell.
RxPRTY	Receive parity. Asserted by the PHY device. It is an odd parity bit over the RxDATA[0–15]. If there is a RxPRTY error and the receive parity check FPSMR[RxP] is enabled, the cell is discarded. See see Section 29.13.2, "FCC Protocol-Specific Mode Register (FPSMR)."
RxCLK	Receive clock. Provides the synchronization reference for the RxDATA, RxSOC, RxENB, RxCLAV, and RxPRTY signals. All the above signals are sampled at low-to-high transitions of RxCLK.
RxADD[0-4]	Receive address. Address bus from master to the ATM controller device used to select the appropriate M-PHY device.

Table 29-45. UTOPIA Slave Mode Signals

29.12.2.1 UTOPIA Slave Multiple PHY Operation

In multiple PHY UTOPIA slave mode, cells are transferred using cell-level handshake as defined by the UTOPIA level-2 standard. The user should write the ATM controller PHY address in FPSMR[PHY ID].

29.12.2.2 UTOPIA Clocking Modes

The UTOPIA clock is generated by one of the MPC8260's baud-rate generators. The user should assign one of the baud rate generators to supply the UTOPIA clock. See Chapter 15, "CPM Multiplexing."

29.12.2.3 UTOPIA Loop-Back Modes

The UTOPIA interface supports loop-back mode. In this mode, the Rx and Tx UTOPIA signals are shorted internally. Output pins are driven; input pins are ignored.

Note that in loop-back mode, the transmitter and receiver must operate in complementary modes. For example, if the transmitter is master, the receiver must be a slave (FPSMR[TUMS] = 0, FPSMR[RUMS] = 1).

Modes are selected through GFMR[DIAG], as shown in Table 29-46.

Table 29-46. UTOPIA Loop-Back Modes

DIAG	Description
00	Normal mode
01	Loop-back. UTOPIA Rx and Tx signals are shorted internally. Output pins are driven, input pins are ignored.
1x	Reserved

29.13 ATM Registers

The following sections describe the configuration of the registers in ATM mode.

29.13.1 General FCC Mode Register (GFMR)

The GFMR mode field should be programmed for ATM mode. To enable transmit and receive functions, ENT and ENR must be set as the last step in the initialization process. Full GFMR details are given in Section 28.2, "General FCC Mode Registers (GFMRx)."

29.13.2 FCC Protocol-Specific Mode Register (FPSMR)

The FCC protocol-specific mode register (FPSMR), shown in Figure 29-59, controls various protocol-specific FCC functions. The user should initialize the FPSMR. Erratic behavior may result if there is an attempt to write to the FPSMR while the transmitter and receiver are enabled.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	TEHS REHS ICD TUMS RUMS LAST PHY/PHY										' ID					
Reset		0000_0000_0000														
R/W		R/W														
Address	0x11304 (FPSMR1), 0x11324 (FPSMR1), 0x11324 (FPSMR1)															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field		_		TUDC	RUDC	RXP	TUMP	_	TSIZE	RSIZE	UPRM	UPLM	RUMP	HECI	_	-
Reset							00	00_00	000_000	0_000						
R/W		R/W														
Address		0x11306 (FPSMR1), 0x11326 (FPSMR2), 0x11326 (FPSMR3)														

Figure 29-59. FCC ATM Mode Register (FPSMR)

Table 29-47 describes FPSMR fields.

Table 29-47. FCC ATM Mode Register (FPSMR)

Bits	Name	Description
0–3	TEHS	Transmit extra header size. Used only in user-defined cell mode to hold the Tx user-defined cells' extra header size. Values between 0-11 are valid. TEHS = 0 generates 1 byte of extra header; TEHS = 11 generates 12 bytes of extra header.
4–7	REHS	Receive extra header size. Used only in user-defined cell mode to hold the Rx user-defined cells' extra header size. Values between 0–11 are valid. For REHS = 0, the receiver expects 1 byte of extra header; for REHS = 11, it expects 12 bytes of extra header.
8	ICD	Idle cells discard 0 Discard idle cells (GFC, VPI, VCI, PTI =0). 1 Do not discard idle cells.
9	TUMS	Transmit UTOPIA master/slave mode 0 Transmit UTOPIA master mode is selected. 1 Transmit UTOPIA slave mode is selected.
10	RUMS	Receive UTOPIA master/slave mode 0 Receive UTOPIA master mode is selected. 1 Receive UTOPIA slave mode is selected.
11–15	LAST PHY/ PHY ID	Last PHY. (Multiple PHY master mode only.) The UTOPIA interface polls all PHYs starting from PHY address 0 and ending with the PHY address specified in LAST PHY. (The number of active PHYs are LAST PHY+1). LAST PHY should be specified in both multiplex and direct-polling modes. PHY ID. (Multiple PHY slave mode only.) Determines the PHY address of the ATM controller when configured as a slave in a multiple PHY ATM port.
16–18	-	Reserved, should be cleared.
19	TUDC	Transmit user-defined cells 0 Regular 53-byte cells. 1 User-defined cells.
20	RUDC	Receive user-defined cells 0 Regular 53-byte cells. 1 User-defined cells.

Bits	Name	Description
21	RxP	Receive parity check. 0 Check Rx parity line. 1 Do not check Rx parity line.
22	TUMP	Transmit UTOPIA multiple PHY mode 0 Transmit UTOPIA single PHY mode is selected. 1 Transmit UTOPIA multiple PHY mode is selected.
23	—	Reserved, should be cleared.
24	TSIZE	Transmit UTOPIA data bus size 0 UTOPIA 8-bit data bus size. 1 UTOPIA 16-bit data bus size.
25	RSIZE	Receive UTOPIA data bus size 0 UTOPIA 8-bit data bus size. 1 UTOPIA 16-bit data bus size.
26	UPRM	 UTOPIA priority mode. 0 Round robin. Polling is done from PHY zero to the PHY specified in LAST PHY. When a PHY is selected, the UTOPIA interface continues to poll the next PHY in order. 1 Fixed priority. Polling is done from PHY zero to the PHY specified in LAST PHY. When a PHY is selected, the UTOPIA interface continues to poll from PHY zero.
27	UPLM	 UTOPIA polling mode. 0 Multiplex polling. Polling is done using RxAdd[0–4] and Clav[0]. Selection is done using RxAdd[0–4]. Up to 31 PHYs can be polled. 1 Direct polling. Polling is done using Clav[0–3]. Selection is done using RxAdd[0–2]. Up to 4 PHYs can be polled.
28	RUMP	Receive UTOPIA multiple PHY mode. 0 Receive UTOPIA single PHY mode is selected. 1 Receive UTOPIA multiple PHY mode is selected.
29	HECI	HEC included. Used in UDC mode only. 0 HEC octet is not included when UDC mode is enabled. 1 HEC octet is included when UDC mode is enabled.
30–31	-	Reserved, should be cleared.

Table 29-47. FCC ATM Mode Register (FPSMR) (Continued)

29.13.3 ATM Event Register (FCCE)/Mask Register (FCCM)

The FCCE register is the ATM controller event register when the FCC operates in ATM mode. When it recognizes an event, the ATM controller sets the corresponding FCCE bit. Interrupts generated by this register can be masked in FCCM. FCCE is memory-mapped and can be read at any time. Bits are cleared by writing ones to them; writing zeros has no effect. Unmasked bits must be cleared before the CP clears the internal interrupt request.

FCCM is the ATM controller mask register. It is a 16-bit read/write register with the same bit format as FCCE. If an FCCM bit is set, the corresponding interrupt is enabled in FCCE. If it is cleared, the corresponding interrupt is masked. FCCM is cleared at reset.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	d – TIRU GRLI GBPB GINT3 GINT2 GINT1 GINT0 INTO3 INTO2									INTO1	INTO0					
Reset	0000_0000_0000															
R/W										R/W						
Address		0x11310 (FCCE1), 0x11330 (FCCE2), 0x11350 (FCCE3)/ 0x11314 (FCCM1), 0x11334 (FCCM2), 0x11354 (FCCM3)														

Figure 29-60. ATM Event Register (FCCE)/FCC Mask Register (FCCM)

Table 29-48 describes FCCE fields.

Table 29-48. FCCE/FCCM Field Descriptions

Bits	Name	Description
0–4	_	Reserved, should be cleared.
5	TIRU	Transmit internal rate underrun. A transmit internal rate counter expired and a cell was not sent because the transmit FIFO was empty. TIRU may be set only when using transmit internal rate mode; see Section 29.13.4, "FCC Transmit Internal Rate Registers (FTIRRx)."
6	GRLI	Global red-line interrupt. GRLI is set when a free buffer pool's RLI flag is set. The RLI flag is also set in the free buffer pool's parameter table.
7	GBPB	Global buffer pool busy interrupt. GBPB is set when a free buffer pool's BUSY flag is set. The BUSY flag is also set in the free buffer pool's parameter table.
8–11	GINTx	Global interrupt. Set when an event is sent to the corresponding interrupt queue. See Section 29.11, "ATM Exceptions."
12– 15	INTOx	Interrupt queue overflow. Set when an overflow condition occurs in the corresponding interrupt queue. This occurs when the CP attempts to overwrite a valid interrupt entry. See Section 29.11.1, "Interrupt Queues."

29.13.4 FCC Transmit Internal Rate Registers (FTIRRx)

The first four PHY devices (address 00-03) have their own FCC transmit internal rate registers (FTIRR*x*_PHY0–FTIRR*x*_PHY3) for use in transmit internal rate mode. In this mode, the total transmission rate is determined by FCC internal rate timers. FTIRR*x*, shown in Figure 29-61, includes the initial value of the internal rate timer. The source clock of the internal rate timers is supplied by one of four baud-rate generators selected in CMXUAR; see Section 15.4.1, "CMX UTOPIA Address Register (CMXUAR)." Note that in slave mode, FTIRR*x*_PHY0 is used regardless of the slave PHY address.

Bits	0	1	2	3	4	5	6	7				
Field	TRM	Initial Value										
Reset		0000_0000										
R/W		R/W										
Address		FCC1: 0x1131F (FTIRR1_PHY0), 0x1131D (FTIRR1_PHY1), 0x1131E (FTIRR1_PHY2), 0x1131F (FTIRR1_PHY3) FCC2: 0x1133F (FTIRR2_PHY0), 0x1133D (FTIRR2_PHY1), 0x1133E (FTIRR2_PHY2), 0x1133F (FTIRR2_PHY3)										

Figure 29-61. FCC Transmit Internal Rate Registers (FTIRRx)

Table 29-49 describes FTIRR*x* fields.

Bits	Name	Description
0	TRM	Transmit mode. 0 External rate mode. 1 Internal rate mode.
1–7	Initial Value	The initial value of the internal rate timer. A value of 0x7F produces the minimum clock rate (BRG CLK divided by 128); 0x00 produces the maximum clock rate (BRG CLK divided by 1).

Figure 29-62 shows how transmit clocks are determined.

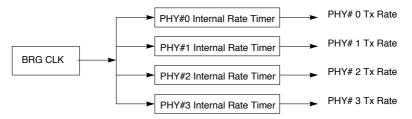


Figure 29-62. FCC Transmit Internal Rate Clocking

Example:

Suppose the MPC8260 is connected to four 155 Mbps PHY devices and the maximum transmission rate is 155 Mbps for the first PHY and 10 Mbps for the rest of the PHYs. The BRG CLK should be set according to the highest rate. If the system clock is 133 MHz, the BRG should be programmed to divide the system clock by 362 to generate cell transmit requests every 362 system clocks:

$$\frac{(133 \text{MHz} \times (53 \times 8))}{155.52 \text{Mbps}} = 362$$

For the 155 Mbps PHY, the FTIRR divider should be programmed to zero (the BRG CLK is divided by one); for the rest of the 10 Mbps PHYs, the FTIRR divider should be programmed to 14 (the BRG CLK is divided by 15).

See also Section 29.16.1, "Using Transmit Internal Rate Mode."

29.14 ATM Transmit Command

The CPM command set includes an ATM TRANSMIT that can be sent to the CP command register (CPCR), described in Section 13.4.1.

The ATM TRANSMIT command (CPCR[opcode] = 0b1010, CPCR[SBC[code]] = 0b01110, CPCR[SBC[page]] = 0b00100 or 0b00101 (FCC1 or FCC2), CPCR[MCN] = 0b0000_1010) turns a passive channel into an active channel by inserting it into the APC scheduling table. Note that an ATM TRANSMIT command should be issued only after the channel's TCT is completely initialized and the channel has BDs ready to transmit. Note also that CPCR[SBC[code]] = 0b01110 and not FCC1 or FCC2 code.

Before issuing the command, the user should initialize COMM_INFO fields in the parameter RAM as described in Figure 29-63.

Offset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0x86			_			СТВ		PHY#					ст	PRI		
0x88	Channel Code (CC)															
0x8A		BT														

Figure 29-63. COMM_INFO Field

Table 29-50 describes COMM_INFO fields

Table 29-50. COMM_INFO Field Descriptions

Offset	Bits	Name	Description
0x86	0–4	-	Reserved, should be cleared.
	5	СТВ	Connection tables bus. Used for external channels only 0 External connection tables reside on the 60x bus. 1 External connection tables reside on the local bus.
	6–10	PHY#	PHY number. In single PHY mode this field should be cleared In multiple PHY mode this field is an index to the APC parameter table associated with this channel.
	11–12	ACT	ATM channel type 00 Other channel 01 VBR channel 1x Reserved
	13-15	PRI	APC priority level. 000-highest priority (APC_LEVEL1), 111-lowest priority (APC_LEVEL8).
0x88	0-15	СС	Channel code. The channel code associated with the current channel.
0x8A	0-15	BT	Burst tolerance. For use by VBR channels only (ACT field is 0b01). Specifies the initial burst tolerance (GCRA burst credit) of the current VC.

MPC8260 PowerQUICC II User's Manual

29.15 SRTS Generation and Clock Recovery Using External Logic

The MPC8260 supports SRTS generation using external logic. If SRTS generation is enabled (TCT[SRT] = 1), the MPC8260 reads SRTS[0-3] from the external SRTS logic and inserts it into 4 cells whose SN fields equal 1, 3, 5, and 7, as shown in Figure 29-64.

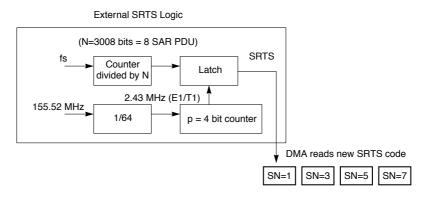


Figure 29-64. AAL1 SRTS Generation Using External Logic

For every eight cells, the external SRTS logic should supply a valid SRTS code. The CP reads the SRTS code from the bus selected in TCT[BIB] using a DMA read cycle of 1-byte data size. Each AAL1 channel can be programmed to select one of 16 addresses available for reading the SRTS result. The SRTS code should be placed on the least-significant nibble of that address (SRTS[0]=lsb, SRTS[3]=msb). The SRTS is synchronized with the sequence count cycle—SRTS[0] is inserted into the cell with SN = 7; SRTS[3] is inserted into the cell with SN = 1. For every eighth AAL1 SAR PDU, the SRTS logic samples a new SRTS and stores it internally. The SRTS is a sample of a 4-bit counter with a 2.43-MHz reference clock (for E1/T1) synchronized with the network clock.

The MPC8260 supports clock recovery using an external SRTS PLL. If SRTS recovery is enabled (RCT[SRT]=1), the MPC8260 tracks the SRTS from four incoming cells whose SN field equals 1, 3, 5, and 7 and writes the result to external SRTS logic, as shown in Figure 29-65.

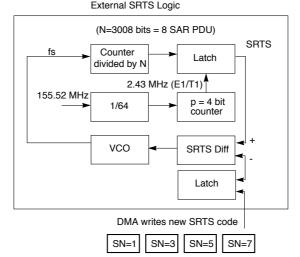


Figure 29-65. AAL1 SRTS Clock Recovery Using External Logic

On every eighth cell, the MPC8260 writes a new SRTS code to the external logic using the bus selected in RCT[BIB]. The CP writes the SRTS code using a DMA write cycle of 1-byte data size. Each AAL1 channel can be programmed to select one of 16 addresses available for writing the SRTS result. The SRTS code is written to the least-significant nibble of that address (SRTS[0]=lsb, SRTS[3]=msb). The SRTS is synchronized with the sequence count cycle—SRTS[3] is read from the cell with SN = 1 and SRTS[0] is read from the cell with SN = 7. The SRTS PLL makes periodic clock adjustments based on the difference between a locally generated SRTS and a remotely generated SRTS retrieved every eight received cells.

29.16 Configuring the ATM Controller for Maximum CPM Performance

The following sections recommend ATM controller configurations to maximize CPM performance.

29.16.1 Using Transmit Internal Rate Mode

When the total transmit rate is less than the PHY rate, use the transmit internal rate mode and configure the internal rate clock to the maximum bit rate required. (See 29.2.1.4, "Transmit External Rate and Internal Rate Modes.") The PHY then automatically fills the unused bandwidth with idle cells, not the ATM controller. If the internal rate mode is not used, CPM performance is consumed generating the idle cell payload and using the scheduling algorithm to fill the unused bandwidth at the higher PHY rate. For example, suppose a system uses a 155.52-Mbps OC-3 device as PHY0, but the maximum required data rate is only 100 Mbps. In transmit internal rate mode, the user can configure the internal rate mechanism to clock the ATM transmitter at a cell rate of 100 Mbps. If the system clock is 133 MHz, program a BRG to divide the system clock by 563 to generate a transmit cell request every 563 CPM clocks:

$$\frac{(133\text{MHz} \times (53 \times 8))}{100\text{Mbps}} = 563$$

Set FTIRR*x*_PHY0[TRM] to enable the transmit internal rate mode and clear FTIRR*x*_PHY0[Initial Value] since there is no need to further divide the BRG. See Section 29.13.4, "FCC Transmit Internal Rate Registers (FTIRR*x*.)."

In external rate mode, however, the transmit cell request frequency is determined by the PHY's maximum rate, not by internal FCC counters. If an OC-3 PHY is used with the ATM controller in external rate mode, the requests must be generated every 362 CPM clocks (assuming a 133-MHz CPM clock). If only 100 Mbps is used for real data, 36% of the transmit cell requests consume CPM processing time sending idle cells.

29.16.2 APC Configuration

Maximizing the number of cells per slot (CPS) and minimizing the priority levels defined in the APC data structure improves CPM performance:

- Cells per slot. CPS defines the maximum number of ATM cells allowed to be sent during a time slot. (See Section 29.3.3.1, "Determining the Cells Per Slot (CPS) in a Scheduling Table.") The scheduling algorithm is more efficient sending multiple cells per time slot using the linked-channel field. Therefore, choose the maximum number of cells per slot allowed by the application.
- Priority levels. The user can configure the APC data structure to have from one to eight priority levels. (See Section 29.3.6, "Determining the Priority of an ATM Channel.") For each time slot, the scheduling algorithm scans all priority levels and maintains pointers for each level. Therefore, enable only the minimum number of priority levels required.

29.16.3 Buffer Configuration

Using statically allocated buffers of optimal sizes also improves CPM performance:

- Buffer size. Opening and closing buffer descriptors consumes CPM processing time. Because smaller buffers require more opening and closing of BDs, the optimal buffer size for maximum CPM performance is equal to the packet size (an AAL5 frame, for example).
- Free buffer pool. When the free buffer pool is used, the CPM dynamically allocates buffers and links them to a channel's BD. In static buffer allocation, the core assigns a fixed data buffer to each BD. (See Section 29.10.5.2, "Receive Buffers Operation.") When allowed by the application, use static buffer allocation to increase CPM performance.

Part IV. Communications Processor Module

Chapter 30 Fast Ethernet Controller

The Ethernet IEEE 802.3 protocol is a widely-used LAN based on the carrier-sense multiple access/collision detect (CSMA/CD) approach. Because Ethernet and IEEE 802.3 protocols are similar and can coexist on the same LAN, both are referred to as Ethernet in this manual, unless otherwise noted. Ethernet/IEEE 802.3 frames are based on the frame structure shown in Figure 30-1.

		 ✓ Frame Length is 64–1,518 Bytes — 								
Preamble	Start Frame Delimiter	Destination Address	Source Address	Type/ Length	Data	Frame Check Sequence				
7 Bytes	1 Byte	6 Bytes	6 Bytes	2 Bytes	46-1500 Bytes	4 Bytes				

Note: The lsb of each octet is transmitted first.

Figure 30-1. Ethernet Frame Structure

The elements of an Ethernet frame are as follows:

- 7-byte preamble of alternating ones and zeros.
- Start frame delimiter (SFD)—Signifies the beginning of the frame.
- 48-bit destination address.
- 48-bit source address. Original versions of the IEEE 802.3 specification allowed 16bit addressing, which has never been used widely.
- Ethernet type field/IEEE 802.3 length field. The type field signifies the protocol used in the rest of the frame, such as TCP/IP; the length field specifies the length of the data portion of the frame. For Ethernet and IEEE 802.3 frames to exist on the same LAN, the length field must be unique from any type fields used in Ethernet. This requirement limits the length of the data portion of the frame to 1,500 bytes and, therefore, the total frame length to 1,518 bytes.
- Data
- Four-bytes frame-check sequence (FCS), which is the standard, 32-bit CCITT-CRC polynomial used in many protocols.

When a station needs to transmit, it waits until the LAN becomes silent for a specified period (interframe gap). When a station starts sending, it continually checks for collisions

Part IV. Communications Processor Module

on the LAN. If a collision is detected, the station forces a jam signal (all ones) on its frame and stops transmitting. Collisions usually occur close to the beginning of a frame. The station then waits a random time period (backoff) before attempting to send again. When the backoff completes, the station waits for silence on the LAN and then begins retransmission on the LAN. This process is called a retry. If the frame is not successfully sent within 15 retries, an error is indicated.

10-Mbps Ethernet basic timing specifications follow:

- Transmits at 0.8 μ s per byte
- The preamble plus start frame delimiter is sent in 6.4 μ s.
- The minimum interframe gap is 9.6 μ s.
- The slot time is $51.2 \ \mu s$.

100-Mbps Ethernet basic timing specifications follow:

- Transmits at 0.08 μ s per byte
- The preamble plus start frame delimiter is sent in 0.64 μ s.
- The minimum interframe gap is $0.96 \ \mu s$.
- The slot time is $5.12 \ \mu s$.

30.1 Fast Ethernet on the MPC8260

When a general FCC mode register (GFMR*x*[MODE]) selects Ethernet protocol, that FCC performs the full set of IEEE 802.3/Ethernet CSMA/CD media access control (MAC) and channel interface functions. Figure 30-2 shows a block diagram of the FCC Ethernet control logic.

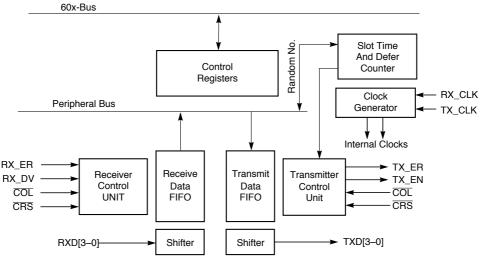
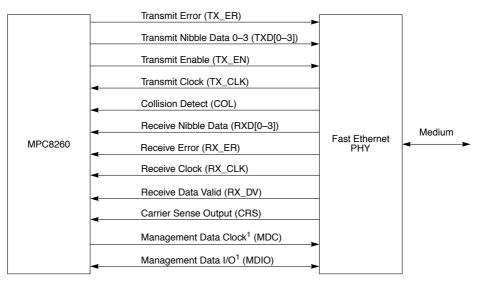


Figure 30-2. Ethernet Block Diagram

30.2 Features

The following is a list of Fast Ethernet key features:


- Support for Fast Ethernet through the MII (media-independent interface)
- Performs MAC (media access control) layer functions of Fast Ethernet and IEEE 802.3x
- Performs framing functions
 - Preamble generation and stripping
 - Destination address checking
 - CRC generation and checking
 - Automatic padding of short frames on transmit
 - Framing error (dribbling bits) handling
- Full collision support
 - Enforces the collision (jamming and TX_ER assertion)
 - Truncated binary exponential backoff algorithm for random wait
 - Two nonaggressive backoff modes
 - Automatic frame retransmission (until retry limit is reached)
 - Automatic discard of incoming collided frames
 - Delay transmission of new frames for specified interframe gap
- Bit rates up to 100 Mbps
- Receives back-to-back frames
- Detection of receive frames that are too long

Part IV. Communications Processor Module

- Multibuffer data structure
- Supports 48-bit addresses in three modes
 - Physical. One 48-bit address recognized or 64-bin hash table for physical addresses
 - Logical. 64-bin group address hash table plus broadcast address checking
 - Promiscuous. Receives all frames regardless of address (a CAM can be used for address filtering)
- External CAM support on system bus interfaces
- Special RMON counters for monitoring network statistics
- Up to eight parallel I/O pins can be sampled and appended to any frame
- Transmitter network management and diagnostics
 - Lost carrier sense
 - Underrun
 - Number of collisions exceeded the maximum allowed
 - Number of retries per frame
 - Deferred frame indication
 - Late collision
- Receiver network management and diagnostics
 - CRC error indication
 - Nonoctet alignment error
 - Frame too short
 - Frame too long
 - Overrun
 - Busy (out of buffers)
- Error counters
 - Discarded frames (out of buffers or overrun occurred)
 - CRC errors
 - Alignment errors
- Internal and external loopback mode
- Supports Fast Ethernet in duplex mode
- Supports pause flow control frames
- Support of out-of-sequence transmit queue (for flow-control frames)
- External buffer descriptors (BDs)

30.3 Connecting the MPC8260 to Fast Ethernet

Figure 30-3 shows the basic components of the media-independent interface (MII) and the signals required to make the Fast Ethernet connection between the MPC8260 and a PHY.

Media-Independent Interface (MII)

¹ The management signals (MDC and MDIO) can be common to all of the Fast Ethernet connections in the system, assuming that each PHY has a different management address. Use parallel I/O port pins to implement MDC and MDIO. (The I^2 C controller cannot be used for this function.)

Figure 30-3. Connecting the MPC8260 to Ethernet

Each FCC has 18 signals, defined by the IEEE 802.3u standard, for connecting to an Ethernet PHY. The two management signals (MDC and MDIO) required by the MII should be implemented separately using the parallel I/O.

The MPC8260 has additional signals for interfacing with an optional external content-addressable memory (CAM), which are described in Section 30.7, "CAM Interface."

The MPC8260 uses the SDMA channels to store every byte received after the start frame delimiter into system memory. On transmit, the user provides the destination address, source address, type/length field, and transmit data. To meet minimum frame requirements, MPC8260 automatically pads frames with fewer than 64 bytes in the data field. The MPC8260 also appends the FCS to the frame.

30.4 Ethernet Channel Frame Transmission

The Ethernet transmitter requires almost no core intervention. When the core enables the transmitter, the Ethernet controller polls the first TxBD in the FCC's TxBD table every 256 serial clocks. If the user has a frame ready to transmit, setting TODR[TOD] eliminates waiting for the next poll. When there is a frame to transmit, the Ethernet controller begins fetching the data from the data buffer and asserts TX_EN. The preamble sequence, start

Part IV. Communications Processor Module

frame delimiter, and frame information are sent in that order; see Figure 30-1. In fullduplex mode, since collisions are ignored, frame transmission maintains only the interframe gap (96 serial clocks) regardless of \overline{CRS} .

There is one internal buffer for out-of-sequence flow control frames (in full-duplex Fast Ethernet). When the Fast Ethernet controller is between frames, this buffer is polled if flow control is enabled. This buffer must contain the whole frame.

However, in half-duplex mode, the controller defers transmission if the line is busy (\overline{CRS} asserted). Before transmitting, the controller waits for carrier sense to become inactive, at which point the controller determines if \overline{CRS} remains negated for 60 serial clocks. If so, the transmission begins after an additional 36 serial clocks (96 serial clocks after \overline{CRS} originally became negated).

If a collision occurs during the transmit frame, the Ethernet controller follows a specified backoff procedure and tries to retransmit the frame until the retry limit is reached. The Ethernet controller stores at least the first 64 bytes of data of the transmit frame in the dual-port RAM, so that the data does not have to be retrieved from system memory in case of a collision. This improves bus usage and latency if the backoff timer output requires an immediate retransmission.

When the end of the current buffer is reached and TxBD[L] = 1, the FCS (32-bit CRC) bytes are appended (if TxBD[TC] = 1), and TX_EN is negated. This notifies the PHY of the need to generate the illegal Manchester encoding that signifies the end of an Ethernet frame. Following the transmission of the FCS, the Ethernet controller writes the frame status bits into the BD and clears TxBD[R]. When the end of the current buffer is reached and TxBD[L] = 0 (a frame is comprised of multiple buffers), only TxBD[R] is cleared.

For both half- and full-duplex modes, an interrupt can be issued depending on TxBD[I]. The Ethernet controller then proceeds to the next TxBD in the table. In this way, the core can be interrupted after each frame, after each buffer, or after a specific buffer is sent. If TxBD[PAD] = 1, the Ethernet controller pads short frames to the value of the minimum frame length register (MINFLR), described in Table 30-2.

To rearrange the transmit queue before the CP finishes sending all frames, issue a GRACEFUL STOP TRANSMIT command. This can be useful for transmitting expedited data ahead of previously linked buffers or for error situations. When the GRACEFUL STOP TRANSMIT command is issued, the Ethernet controller stops immediately if no transmission is in progress or continues transmission until the current frame either finishes or terminates with a collision. When the Ethernet controller is given the RESTART TRANSMIT command, it resumes transmission. The Ethernet controller sends bytes least-significant nibble first.

30.5 Ethernet Channel Frame Reception

The Ethernet receiver is designed to work with almost no core intervention and can perform address recognition, CRC checking, short frame checking, maximum DMA transfer checking, and maximum frame-length checking.

When the core enables the Ethernet receiver, it enters hunt mode when RX_DV is asserted as long as \overline{COL} remains negated (full-duplex mode ignores \overline{COL}). In hunt mode, as data is shifted into the receive shift register four bits at a time, the contents of the register are compared to the contents of the SYN2 field in the FCC's data synchronization register (FDSR). When the registers match, the hunt mode is terminated and character assembly begins.

When the receiver detects the first bytes of a frame, the Ethernet controller performs address recognition functions on the frame; see Section 30.12, "Ethernet Address Recognition." The receiver can receive physical (individual), group (multicast), and broadcast addresses. Because Ethernet receive frame data is not written to memory until the internal address recognition algorithm is complete, bus usage is not wasted on frames not addressed to this station. The receiver can also operate with an external CAM, in which case frame reception continues normally, unless the CAM specifically signals the frame to be rejected. See Section 30.7, "CAM Interface."

If an address is recognized, the Ethernet controller fetches the next RxBD and, if it is empty, starts transferring the incoming frame to the RxBD's associated data buffer.

In half-duplex mode, if a collision is detected during the frame, the RxBDs associated with this frame are reused. Thus, no collision frames are presented to the user except late collisions, which indicate serious LAN problems. When the buffer has been filled, the Ethernet controller clears RxBD[E] and generates an interrupt if RxBD[I] is set. If the incoming frame is larger than the buffer, the Ethernet controller fetches the next RxBD in the table; if it is empty, it continues receiving the rest of the frame.

The RxBD length is determined by MRBLR in the parameter RAM. The user should program MRBLR to be at least 64 bytes. During reception, the Ethernet controller checks for frames that are too short or too long. When the frame ends (\overline{CRS} is negated), the receive CRC field is checked and written to the data buffer. The data length written to the last BD in the Ethernet frame is the length of the entire frame, which enables the software to recognize a frame-too-long condition.

If an external CAM is used (FPSMRx[CAM] = 1), the Ethernet controller adds the two lower bytes of the CAM output at the end of each frame. Note that the data length does not include these two bytes; that is, the extra two bytes could push the buffer length past MRBLR.

When the receive frame is complete, the Ethernet controller sets RxBD[L], writes the other frame status bits into the RxBD, and clears RxBD[E]. The Ethernet controller next generates a maskable interrupt, indicating that a frame was received and is in memory. The

Ethernet controller then waits for a new frame. The Ethernet controller receives serial data least-significant nibble first.

30.6 Flow Control

Because collisions cannot occur in full-duplex mode, Fast Ethernet can operate at the maximum rate. When the rate becomes too fast for a station's receiver, the station's transmitter can send flow-control frames to reduce the rate. Flow-control instructions are transferred by special frames of minimum frame size. The length/type fields of these frames have a special value. Table 30-1 shows the flow-control frame structure.

Size [Octets]	Description	Value	Comment
7	Preamble		
1	SFD		Start frame delimiter
6	Destination address	01-80C2-00-00-01	Multicast address reserved for use in MAC frames
6	Source address		
2	Length/type	88-08	Control frame type
2	MAC opcode	00-01	Pause command
2	MAC parameter		Pause period measured in slot times, most- significant octet first
42	Reserved	-	
4	FCS		Frame check sequence (CRC)

 Table 30-1. Flow Control Frame Structure

When flow-control mode is enabled (FPSMR*x*[FCE]) and the receiver identifies a pauseflow control frame sent to individual or broadcast addresses, transmission stops for the time specified in the control frame. During this pause, only the out-of-sequence frame is sent. Normal transmission resumes after the pause timer stops counting. If another pause-control frame is received during the pause, the period changes to the new value received.

30.7 CAM Interface

The MPC8260 internal address recognition logic can be used in combination with an external CAM. When using a CAM, the FCC must be in promiscuous mode (FPSMRx[PRO] = 1). See Section 30.12, "Ethernet Address Recognition."

The Ethernet controller writes two 32-bit accesses to the CAM and then reads the result in a 32-bit access. If the high bit of the result is set, the frame is rejected; otherwise, the lower 16 bits are attached to the end of the frame.

30.8 Ethernet Parameter RAM

For Ethernet mode, the protocol-specific area of the FCC parameter RAM is mapped as in Table 30-2.

Offset ¹	Name	Width	Description	
0x3C	STAT_BUF	Word	Buffer of internal usage	
0x40	CAM_PTR	Word	CAM address	
0x44	C_MASK	Word	Constant MASK for CRC (initialize to 0xDEBB_20E3). For the 32-bit CRC-CCITT.	
0x48	C_PRES	Word	Preset CRC (initialize to 0xFFFF_FFFF). For the 32-bit CRC-CCITT.	
0x4C	CRCEC ²	Word	CRC error counter. Counts each received frame with a CRC error. Does not count frames not addressed to the station, frames received in the out-of-buffers condition, frames with overrun errors, or frames with alignment errors.	
0x50	ALEC ²	Word	Alignment error counter. Counts frames received with dribbling bits. Does not count frames not addressed to the station, frames received in the out-of-buffers condition, or frames with overrun errors.	
0x54	DISFC ²	Word	Discard frame counter. Incremented for discarded frames because of an out-of- buffers condition or overrun error. The CRC need not be correct for this counter to be incremented.	
0x58	RET_LIM	Hword	Retry limit (typically 15 decimal). Number of retries that should be made to send a frame. If the frame is not sent after this limit is reached, an interrupt can be generated.	
0x5A	RET_CNT	Hword	Retry limit counter. Temporary decrementer used to count retries made.	
0x5C	P_PER	Hword	Persistence. Allows the Ethernet controller to be less persistent after a collision. Normally cleared, P_PER can be from 0 to 9 (9 = least persistent). The value is added to the retry count in the backoff algorithm to reduce the chance of transmission on the next time-slot. Using a less persistent backoff algorithm increases throughput in a congested Ethernet LAN by reducing the chance of collisions. FPSMR[SBT] can also reduce persistence of the Ethernet controller. The Ethernet/802.3 specifications permit the use of P_PER.	
0x5E	BOFF_CNT	Hword	Backoff counter	
0x60	GADDR_H	Word	Group address filters high and low are used in the hash table function of the group	
0x64	GADDR_L	Word	addressing mode. The user may write zeros to these values after reset and before the Ethernet channel is enabled to disable all group hash address recognition functions. The SET GROUP ADDRESS command is used to enable the hash table. See Section 30.13, "Hash Table Algorithm."	
0x68	TFCSTAT	Hword		
0x6A	TFCLEN	Hword	fields in the same format as a regular TxBD. Useful for sending flow control frames. This area's TxBD[R] is always checked between frames, regardless of	
0x6C	TFCPTR	Word	FPSMRx[FCE]. If it is not ready, a regular frame is sent. The user must set TxBD[L] when preparing this BD. If TxBD[I] is set, a TXC event is generated after frame transmission. This area should be cleared when not in use.	
0x70	MFLR	Hword	Maximum frame length register (typically1518 decimal). If the Ethernet controller detects an incoming frame exceeding MFLR, it sets RxBD[LG] (frame too long) in last RxBD, but does not discard the rest of the frame. The controller also reports frame status and length of the received frame in the last RxBD. MFLR includes al frame bytes between the start frame delimiter and the end of the frame.	

Table 30-2. Ethernet-Specific Parameter RAM

Offset ¹	Name	Width	Description	
0x72	PADDR1_H	Hword	The 48-bit individual address of this station. PADDR1_L is the lowest order half-	
0x74	PADDR1_M	Hword	word, and PADDR1_H is the highest order half-word.	
0x76	PADDR1_L	Hword		
0x78	IBD_CNT	Hword	Internal BD counter	
0x7A	IBD_START	Hword	Internal BD start pointer	
0x7C	IBD_END	Hword	Internal BD end pointer	
0x7E	TX_LEN	Hword	Tx frame length counter	
0x80	IBD_BASE	32 Bytes	Internal microcode usage	
0xA0	IADDR_H	Word	Individual address filter high/low. Used in the hash table function of the individual	
0xA4	IADDR_L	Word	addressing mode. The user can write zeros to these values after reset and before the Ethernet channel is enabled to disable all individual hash address recognition functions. Issuing a SET GROUP ADDRESS command enables the hash table. See Section 30.13, "Hash Table Algorithm."	
0xA8	MINFLR	Hword	Minimum frame length register (typically 64 decimal). If the Ethernet receiver detects an incoming frame shorter than MINFLR, it discards that frame unless FPSMR[RSH] (receive short frames) is set, in which case RxBD[SH] (frame too short) is set in the last RxBD. The Ethernet transmitter pads frames that are too short (according to TxBD[PAD] and the PAD value in the parameter RAM). PADs are added to make the transmit frame MINFLR bytes.	
0xAA	TADDR_H	Hword	Allows addition of addresses to the individual and group hashing tables. After an	
0xAC	TADDR_M	Hword	address is placed in TADDR, issue a SET GROUP ADDRESS command. TADDR_L is the lowest-order half-word; TADDR_H is the highest.	
0xAE	TADDR_L	Hword	A zero in the I/G bit indicates an individual address; 1 indicates a group address.	
0xB0	PAD_PTR	Hword	Internal PAD pointer. This internal 32-byte aligned pointer points to a 32-byte buffer filled with pad characters. The pads may be any value, but all the bytes should be the same to assure padding with a specific character. If a specific padding character is not needed, PAD_PTR should equal the internal temporary data pointer TIPTR; see Section 28.7, "FCC Parameter RAM."	
0xB2	_	Hword	Reserved, should be cleared.	
0xB4	CF_RANGE	Hword	Control frame range. Internal usage	
0xB6	MAX_B	Hword	Maximum BD byte count. Internal usage	
0xB8	MAXD1	Hword	Max DMA1 length register (typically 1520 decimal). Lets the user prevent system bus writes after a frame exceeds a specified size. The MAXD1 value is valid only if an address match is detected. If the Ethernet controller detects an incoming Ethernet frame larger than the user-defined value in MAXD1, the rest of the frame is discarded. The Ethernet controller waits for the end of the frame (or until MFLR bytes have been received) and reports the frame status and length (including the discarded bytes) in the last RxBD. This value must be greater than 32.	

Table 30-2. Ethernet-Specific Parameter RAM (Continued)

Offset ¹	Name	Width	Description
0xBA	MAXD2	Hword	Max DMA2 length register (typically 1520 decimal). Lets the user prevent system bus writes after a frame exceeds a specified size. The value of MAXD2 is valid in promiscuous mode when no address match is detected. If the Ethernet controller detects an incoming Ethernet frame larger than the value in MAXD2, the rest of the frame is discarded. The Ethernet controller waits for the end of the frame (or until MFLR bytes are received) and reports frame status and length (including the discarded bytes) in the last RxBD. In a monitor station, MAXD2 can be much less than MAXD1 to receive entire frames addressed to this station, but receive only the headers of all other frames. This value must be less than MAXD1.
0xBC	MAXD	Hword	Rx maximum DMA. Internal usage
0xBE	DMA_CNT	Hword	Rx DMA counter. Temporary down-counter used to track the frame length.
0xC0	OCTC ²	Word	(RMON mode only) The total number of octets of data (including those in bad packets) received on the network (excluding framing bits but including FCS octets).
0xC4	COLC ²	Word	(RMON mode only) The best estimate of the total number of collisions on this Ethernet segment.
0xC8	BROC ²	Word	(RMON mode only) The total number of good packets received that were directed to the broadcast address. Note that this does not include multicast packets.
0xCC	MULC ²	Word	(RMON mode only) The total number of good packets received that were directed to a multicast address. Note that this number does not include packets directed to the broadcast address.
0xD0	USPC ²	Word	(RMON mode only) The total number of packets received that were less than 64 octets (excluding framing bits but including FCS octets) and were otherwise well-formed.
0xD4	FRGC ²	Word	(RMON mode only) The total number of packets received that were less than 64 octets long (excluding framing bits but including FCS octets) and had either a bad FCS with an integral number of octets (FCS error) or a bad FCS with a non-integral number of octets (alignment error). Note that it is entirely normal for etherStatsFragments to increment because it counts both runts (which are normal occurrences due to collisions) and noise hits.
0xD8	OSPC ²	Word	(RMON mode only) The total number of packets received that were longer than 1518 octets (excluding framing bits but including FCS octets) and were otherwise well-formed.
0xDC	JBRC ²	Word	(RMON mode only) The total number of packets received that were longer than 1518 octets (excluding framing bits but including FCS octets), and had either a bad FCS with an integral number of octets (FCS error) or a bad FCS with a non-integral number of octets (alignment error). Note that this definition of jabber is different than the definition in IEEE-802.3 section 8.2.1.5 (10BASE5) and section 10.3.1.4 (10BASE2). These documents define jabber as the condition where any packet exceeds 20 ms. The allowed range to detect jabber is between 20 ms and 150 ms.
0xE0	P64C ²	Word	(RMON mode only) The total number of packets (including bad packets) received that were 64 octets long (excluding framing bits but including FCS octets).
0xE4	P65C ²	Word	(RMON mode only) The total number of packets (including bad packets) received that were between 65 and 127 octets long inclusive (excluding framing bits but including FCS octets).

Offset ¹	Name	Width	Description	
0xE8	P128C ²	Word	(RMON mode only) The total number of packets (including bad packets) received that were between 128 and 255 octets long inclusive (excluding framing bits but including FCS octets).	
0xEC	P256C ²	Word	(RMON mode only) The total number of packets (including bad packets) received that were between 256 and 511 octets long inclusive (excluding framing bits but ncluding FCS octets).	
0xF0	P512C ²	Word	(RMON mode only) The total number of packets (including bad packets) received that were between 512 and 1023 octets long inclusive (excluding framing bits but including FCS octets).	
0xF4	P1024C ²	Word	(RMON mode only) The total number of packets (including bad packets) received that were between 1024 and 1518 octets long inclusive (excluding framing bits but including FCS octets).	
0xF8	CAM_BUF	Word	Internal buffer for CAM result	
0xFC	—	Word	Reserved, should be cleared.	

¹Offset from FCC base: 0x8400 (FCC1), 0x8500 (FCC2) and 0x8600 (FCC3); see Section 13.5.2, "Parameter RAM." ²32-bit (modulo 232) counters maintained by the CP; cleared by the user while the channel is disabled.

30.9 Programming Model

The core configures an FCC to operate as an Ethernet controller using GFMR[MODE]. The receive errors (collision, overrun, nonoctet-aligned frame, short frame, frame too long, and CRC error) are reported through the RxBD. The transmit errors (underrun, heartbeat, late collision, retransmission limit, and carrier sense lost) are reported through the TxBD.

The user should program the FDSR as described in Section 28.4, "FCC Data Synchronization Registers (FDSRx)," with FDSR[SYN2] = 0xD5 and FDSR[SYN1] = 0x55.

30.10 Ethernet Command Set

The transmit and receive commands are issued to the CPCR; see Section 13.4, "Command Set."

NOTE

Before resetting the CPM, configure TX_EN ($\overline{\text{RTS}}$) to be an input.

Transmit commands that apply to Ethernet are described in Table 30-3.

Command	Description
STOP TRANSMIT	When used with the Ethernet controller, this command violates a specific behavior of an Ethernet/IEEE 802.3 station. It should not be used.

 Table 30-3. Transmit Commands

Command	Description
COMMANDS:FA ST COMMUNICATI ONS CONTROLLER (FCC):ETHER NET MODE:TRANSMI T COMMANDS GRACEFUL STOP TRANSMIT	Used to smoothly stop transmission after the current frame finishes sending or undergoes a collision (immediately if there is no frame being sent). FCCE[GRA] is set once transmission stops. Then the Ethernet transmit parameters (including BDs) can be modified by the user. The TBPTR points to the next TxBD in the table. Transmission begins when the R bit of the next BD is set and the RESTART TRANSMIT command is issued. Note that if the GRACEFUL STOP TRANSMIT command is issued and the current transmit frame ends in a collision, the TBPTR points to the beginning of the collided frame with TxBD[R] still set (the frame looks as if it was never sent).
RESTART TRANSMIT	Enables transmission of characters on the transmit channel. It is expected by the Ethernet controller after a GRACEFUL STOP TRANSMIT command or transmitter error (underrun, retransmission limit reached, or late collision). The Ethernet controller resumes transmission from the current TBPTR in the channel TxBD table.
INIT TX PARAMETERS	Initializes all the transmit parameters in this serial channel parameter RAM to their reset state. This command should be issued only when the transmitter is disabled. Note that the INIT TX AND RX PARAMETERS command can also be used to reset the transmit and receive parameters.

Table 30-3. Transmit Commands (Continued)

Receive commands that apply to Ethernet are described in Table 30-4.

Table 30-4. Receive Commands

Command	Description
ENTER HUNT MODE	After the hardware or software is reset and the channel in the FCC mode register is enabled, the channel is in the receive enable mode and uses the first BD in the table. This command is generally used to force the Ethernet receiver to abort reception of the current frame and enter hunt mode. In hunt mode, the Ethernet controller continually scans the input data stream for a transition of carrier sense from inactive to active followed by a preamble sequence and the start frame delimiter. After receiving the command, the current receive buffer is closed and the CRC calculation is reset. Further frame reception uses the next RxBD. Note that short frames pending in the internal FIFO may be lost.
INIT RX PARAMETERS	Initializes all the receive parameters in this serial channel parameter RAM to their reset state and should only be issued when the receiver is disabled. Note that the INIT TX AND RX PARAMETERS command can also be used to reset the receive and transmit parameters.
SET GROUP ADDRESS	Used to set one of the 64 bits of the four individual/group address hash filter registers (GADDR[1–4] or IADDR[1–4]). The individual or group address (48 bits) to be added to the hash table should be written to TADDR_L, TADDR_M, and TADDR_H in the parameter RAM prior to executing this command. The CP checks the I/G bit in the address stored in TADDR to determine whether to use the individual hash table or the group hash table. A 0 in the I/G bit indicates an individual address; 1 indicates a group address. This command can be executed at any time, regardless of whether the Ethernet channel is enabled.

If an address from the hash table must be deleted, the Ethernet channel must be disabled, the hash table registers must be cleared, and the SET GROUP ADDRESS command must be executed for the remaining preferred addresses. This is required because the hash table might have mapped multiple addresses to the same hash table bit.

30.11 RMON Support

The Fast Ethernet controller can automatically gather network statistics required for RMON without the need to receive all addresses using promiscuous mode. Setting FPSMR*x*[MON] enables RMON support.

The RMON statistics and their corresponding counters in the parameter RAM are described in Table 30-5.

Statistic	Description	Counter
etherStatsDropEvents	The total number of events in which packets were detected as dropped by the probe due to lack of resources. Note that this may not be the number of packets dropped; it is the number of times this condition is detected.	DISFC
etherStatsOctets	The total number of octets of data (including those in bad packets) received on the network (excluding framing bits but including FCS octets).	OCTC
etherStatsPkts	The total number of packets (including bad packets, broadcast packets, and multicast packets) received.	USPC + OSPC + FRGC + JBRC + P64C + P65C + P128C + P256C + P512C + P1024C
etherStatsBroadcastPkts	The total number of good packets received that were directed to the broadcast address. Note that this does not include multicast packets.	BROC
etherStatsMulticastPkts	The total number of good packets received that were directed to a multicast address. Note that this number does not include packets directed to the broadcast address.	MULC
etherStatsCRCAlignErrors	The total number of packets received that had a length (excluding framing bits but including FCS octets) of between 64 and 1518 octets, inclusive, but had either an integral number of octets (FCS error) or a bad FCS with a non-integral number of octets (alignment error).	CRCEC + ALEC - FRGC - GBRC
etherStatsUndersizePkts	The total number of packets received that were less than 64 octets long (excluding framing bits but including FCS octets) and were otherwise well-formed.	USPC
etherStatsOversizePkts	The total number of packets received that were longer than 1518 octets (excluding framing bits but including FCS octets) and were otherwise well-formed.	OSPC

Table 30-5. RMON Statistics and Counters

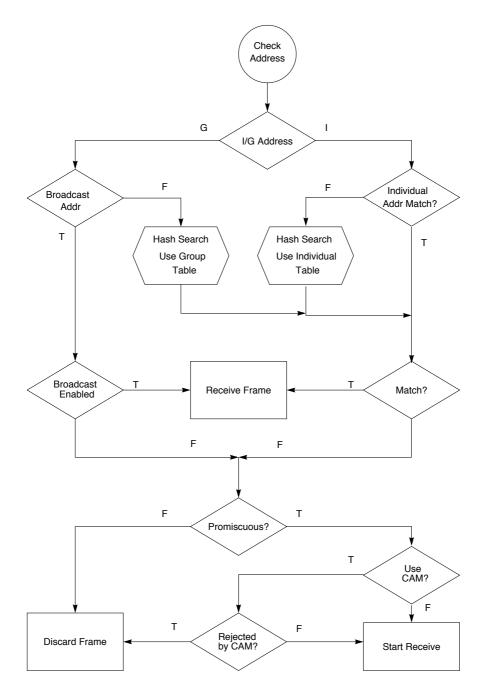

Statistic	Description	Counter
etherStatsFragments	The total number of packets received that were less than 64 octets long (excluding framing bits but including FCS octets) and had either a bad FCS with an integral number of octets (FCS error) or a bad FCS with a non-integral number of octets (alignment error). Note that it is entirely normal for etherStatsFragments to increment, because it counts both runts (which are normal occurrences due to collisions) and noise hits.	FRGC
etherStatsJabbers	The total number of packets received that were longer than 1518 octets (excluding framing bits but including FCS octets) and had either a bad FCS with an integral number of octets (FCS error) or a bad FCS with a non-integral number of octets (alignment error). Note that this definition of jabber is different than the definition in IEEE-802.3 Section 8.2.1.5 (10BASE5) and Section 10.3.1.4 (10BASE2). These documents define jabber as the condition where any packet exceeds 20 ms. The allowed range to detect jabber is between 20 ms and 150 ms.	JBRC
etherStatsCollisions	The best estimate of the total number of collisions on this Ethernet segment.	COLC
etherStatsPkts64Octets	The total number of packets (including bad packets) received that were 64 octets long (excluding framing bits but including FCS octets).	P64C
etherStatsPkts65to127Octets	The total number of packets (including bad packets) received that were between 65 and 127 octets long inclusive (excluding framing bits but including FCS octets).	P65C
etherStatsPkts128to255Octets	The total number of packets (including bad packets) received that were between 128 and 255 octets long inclusive (excluding framing bits but including FCS octets).	P128C
etherStatsPkts256to511Octets	The total number of packets (including bad packets) received that were between 256 and 511 octets long inclusive (excluding framing bits but including FCS octets).	P256C
etherStatsPkts512to1023Octets	The total number of packets (including bad packets) received that were between 512 and 1023 octets long inclusive (excluding framing bits but including FCS octets).	P512C
etherStatsPkts1024to1518Octets	The total number of packets (including bad packets) received that were between 1024 and 1518 octets long inclusive (excluding framing bits but including FCS octets).	P1024C

Table 30-5. RMON Statistics and Counters (Continued)

30.12 Ethernet Address Recognition

The Ethernet controller can filter the received frames based on different addressing types — physical (individual), group (multicast), broadcast (all-ones group address), and promiscuous. The difference between an individual address and a group address is determined by the I/G bit in the destination address field.

Figure 30-4 is a flowchart for address recognition on received frames.

In the physical type of address recognition, the Ethernet controller compares the destination address field of the received frame with the physical address that the user programs in the PADDR. If it fails, the controller performs address recognition on multiple individual addresses using the IADDR_H/L hash table. Since the controller always checks PADDR and the individual hash, for individual address the user must write zeros to the hash in order to avoid a hash match and ones to PADDR in order to avoid individual address match.

In the group type of address recognition, the Ethernet controller determines whether the group address is a broadcast address. If it is a broadcast and broadcast addresses are enabled, the frame is accepted. If the group address is not a broadcast address, the user can perform address recognition on multiple group addresses using the GADDR_H/L hash table. In promiscuous mode, the Ethernet controller receives all of the incoming frames regardless of their address when an external CAM is not used.

If an external CAM is used for address recognition (FPSMR[CAM] = 1), the user should select promiscuous mode; the frame can be rejected if there is no match in the CAM. If the on-chip address recognition functions detect a match, the external CAM is not accessed.

30.13 Hash Table Algorithm

The hash table process used in the individual and group hash filtering operates as follows. The Ethernet controller maps any 48-bit address into one of 64 bins, which are represented by the 64 bits in GADDR_H/L or IADDR_H/L. When the SET GROUP ADDRESS command is executed, the Ethernet controller maps the selected 48-bit address in TADDR into one of the 64 bits. This is performed by passing the 48-bit address through the on-chip 32-bit CRC generator and using 6 bits of the CRC-encoded result to generate a number between 1 and 64. Bit 26 of the CRC result selects between the two GADDRs or IADDRs; bits 27–31 of the CRC result select which bit is set.

The same process is used when the Ethernet controller receives a frame. If the CRC generator selects a bit that is set in the group/individual hash table, the frame is accepted; otherwise, it is rejected. The result is that if eight group addresses are stored in the hash table and random group addresses are received, the hash table prevents roughly 56/64 (87.5%) of the group address frames from reaching memory. The core must further filter those that reach memory to determine if they contain one of the eight preferred addresses.

Better performance is achieved by using the group and individual hash tables in combination. For instance, if eight group and eight physical addresses are stored in their respective hash tables, 87.5% of all frames (not just group address frames) are prevented from reaching memory.

The effectiveness of the hash table declines as the number of addresses increases. For instance, with 128 addresses stored in a 64-bin hash table, the vast majority of the hash table bits are set, preventing only a small fraction of frames from reaching memory. In such instances, an external CAM is advised if the extra bus use cannot be tolerated. See Section 30.7, "CAM Interface."

NOTE

The hash tables cannot be used to reject frames that match a set of selected addresses because unintended addresses can map to the same bit in the hash table. Thus, an external CAM must be used to implement this function.

30.14 Interpacket Gap Time

The minimum interpacket gap time for back-to-back transmission is 96 serial clocks. The receiver receives back-to-back frames with this minimum spacing. In addition, after the backoff algorithm, the transmitter waits for carrier sense to be negated before retransmitting the frame. The retransmission begins 96 serial clocks after carrier sense is negated if it stays negated for at least 60 serial clocks. So if there is no change in the carrier sense indication during the first 60 serial clocks after the retransmission begins 96 clocks after carrier sense is first negated

30.15 Handling Collisions

If a collision occurs during frame transmission, the Ethernet controller continues transmission for at least 32-bit times, transmitting a jam pattern of 32 ones. If the collision occurs during the preamble sequence, the jam pattern is sent after the sequence ends.

If a collision occurs within 64 byte times, the process is retried. The transmitter waits a random number of slot times. (A slot time is 512 bit times.) If a collision occurs after 64 byte times, no retransmission is performed, FCCE[TXE] is set, and the buffer is closed with a late-collision error indication in TxBD[LC]. If a collision occurs during frame reception, reception is stopped. This error is reported only in the RxBD if the frame is at least as long as the MINFLR or if FPSMR[RSH] = 1.

30.16 Internal and External Loopback

Both internal and external loopback are supported by the Ethernet controller. In loopback mode, both receive and transmit FIFO buffers are used and the FCC operates in full-duplex. Both internal and external loopback are configured using combinations of FPSMR[LPB] and GFMR[DIAG]. Because of the full-duplex nature of the loopback operation, the performance of the other FCCs is degraded.

Internal loopback disconnects the FCC from the SI. The receive data is connected to the transmit data. The transmitted data from the transmit FIFO is received immediately into the receive FIFO. There is no heartbeat check in this mode.

In external loopback operation, the Ethernet controller listens for data received from the PHY while it is sending.

30.17 Ethernet Error-Handling Procedure

The Ethernet controller reports frame reception and transmission error conditions using the channel BDs, the error counters, and the FCC event register.

Transmission errors are described in Table 30-6.

Table 30-6. Transmission Errors

Error	Response
Transmitter underrun	The controller sends 32 bits that ensure a CRC error, terminates buffer transmission, closes the buffer, sets TxBD[UN] and FCCE[TXE]. The controller resumes transmission after receiving the RESTART TRANSMIT command.
Carrier sense lost during frame transmission	If no collision is detected in the frame, the controller sets TxBD[CSL] and FCCE[TXE], and it continues the buffer transmission normally. No retries are performed as a result of this error.
Retransmission attempts limit expired	The controller terminates buffer transmission, closes the buffer, sets TxBD[RL] and FCCE[TXE]. Transmission resumes after receiving the RESTART TRANSMIT command.
Late collision	The controller terminates buffer transmission, closes the buffer, sets TxBD[LC] and FCCE[TXE]. The controller resumes transmission after receiving the RESTART TRANSMIT command. Note that late collision parameters are defined in FPSMR[LCW].

Reception errors are described in Table 30-7.

Table 30-7. Reception Errors

Error	Description
Overrun error	The Ethernet controller maintains an internal FIFO buffer for receiving data. If a receiver FIFO buffer overrun occurs, the controller writes the received data byte to the internal FIFO buffer over the previously received byte. The previous data byte and frame status are lost. The controller closes the buffer, sets RxBD[OV] and FCCE[RXF], and increments the discarded frame counter (DISFC). The receiver then enters hunt mode.
Busy error	A frame is received and discarded due to a lack of buffers. The controller sets FCCE[BSY] and increments the discarded frame counter (DISFC).
Non-octet error (dribbling bits)	The Ethernet controller handles a nibble of dribbling bits when the receive frame terminates as nonoctet aligned and it checks the CRC of the frame on the last octet boundary. If there is a CRC error, the frame nonoctet aligned (RxBD[NO]) error is reported, FCCE[RXF] is set, and the alignment error counter (ALEC) in the parameter RAM is incremented. If there is no CRC error, no error is reported.
CRC error	When a CRC error occurs, the controller closes the buffer, and sets RxBD[CR] and FCCE[RXF]. Also, the CRC error counter (CRCEC) in the parameter RAM is incremented. After receiving a frame with a CRC error, the receiver enters hunt mode. CRC checking cannot be disabled, but the CRC error can be ignored if checking is not required.

30.18 Fast Ethernet Registers

The following sections describe registers used for configuring and operating the Fast Ethernet controller.

30.18.1 FCC Ethernet Mode Register (FPSMR)

In Ethernet mode, the FCC protocol-specific mode register, shown in Figure 30-5, functions as the Ethernet mode register.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	HBC FC SBT LPB LCW FDE MON - PRO FCE RSH -															
Reset		0000_0000_0000														
R/W	R/W															
Addr	0x11304 (FPSMR1), 0x11324 (FPSMR2), 0x11324 (FPSMR3)															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field			_			CAM	BRO	_	CF	RC			-	_		
Reset		0000_0000_0000														
R/W		R/W														
Addr		0x11306 (FPSMR1), 0x11326 (FPSMR2), 0x11326 (FPSMR3)														

Figure 30-5. FCC Ethernet Mode Registers (FPSMR)

Table 30-8 describes FPSMR fields.

Table 30-8. FPSMR Ethernet Field Descriptions

Bits	Name	Description
0	HBC	 Heartbeat checking Heartbeat checking is not performed. Do not wait for a collision after transmission. Wait 40 transmit serial clocks for a collision asserted by the transceiver after transmission. TxBD[HB] is set if the heartbeat is not heard within 40 transmit serial clocks.
1	FC	 Force collision Normal operation. The controller forces a collision on transmission of every transmit frame. The MPC8260 should be configured in loopback operation when using this feature, which allows the user to test the MPC8260 collision logic. It causes the retry limit to be exceeded for each transmit frame.
2	SBT	 Stop backoff timer The backoff timer functions normally. The backoff timer (for the random wait after a collision) is stopped whenever carrier sense is active. In this method, the retransmission is less aggressive than the maximum allowed in the IEEE 802.3 standard. The persistence (P_PER) feature in the parameter RAM can be used in combination with the SBT bit (or in place of the SBT bit).
3	LPB	 Local protect bit Receiver is blocked when transmitter sends (default). Receiver is not blocked when transmitter sends. Must be set for full-duplex operation. For loopback operation, GFMR[DIAG] must be programmed also; see Section 28.2, "General FCC Mode Registers (GFMRx)."
4	LCW	Late collision window 0 A late collision is any collision that occurs at least 64 bytes from the preamble. 1 A late collision is any collision that occurs at least 56 bytes from the preamble.

Bits	Name	Description
5	FDE	 Full duplex Ethernet 0 Disable full-duplex. 1 Enable full-duplex. Must be set if FSMR[LPB] is set or external loopback is performed.
6	MON	RMON mode 0 Disable RMON mode. 1 Enable RMON mode.
7–8	-	Reserved, should be cleared.
9	PRO	 Promiscuous Check the destination address of incoming frames. Receive the frame regardless of its address. A CAM can be used for address filtering when FSMR[CAM] is set.
10	FCE	Flow control enable 0 Flow control is not enabled. 1 Flow control is enabled.
11	RSH	Receive short frames 0 Discard short frames (frames smaller than the value specified in MINFLR). 1 Receive short frames.
12–20	-	Reserved, should be cleared.
21	CAM	CAM address matching 0 Normal operation. 1 Use the CAM for address matching; CAM result (16 bits) is added at the end of the frame.
22	BRO	Broadcast address 0 Receive all frames containing the broadcast address. 1 Reject all frames containing the broadcast address unless FSMR[PRO] = 1.
23	-	Reserved, should be cleared.
24–25	CRC	CRC selection 0x Reserved. 10 32-bit CCITT-CRC (Ethernet). X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 +1. Select this to comply with Ethernet specifications. 11 Reserved.
26–31	-	Reserved, should be cleared.

Table 30-8. FPSMR Ethernet Field Descriptions (Continued)

30.18.2 Ethernet Event Register (FCCE)/Mask Register (FCCM)

The FCCE, shown in Figure 30-6, is used as the Ethernet event register when the FCC functions as an Ethernet controller. It generates interrupts and reports events recognized by the Ethernet channel. On recognition of an event, the Ethernet controller sets the corresponding FCCE bit. Interrupts generated by this register can be masked in the Ethernet mask register (FCCM).

The FCCM has the same bit format as FCCE. Setting an FCCM bit enables and clearing a bit masks the corresponding interrupt in the FCCE.

The FCCE can be read at any time. Bits are cleared by writing ones; writing zeros does not

Part IV. Communications Processor Module

affect bit values. Unmasked FCCE bits must be cleared before the CP clears the internal interrupt request.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	–											RXB				
Reset		0000_0000_0000														
R/W		R/W														
Addr		0x11310 (FCCE1), 0x11330 (FCCE2), 0x11350 (FCCE3)/ 0x11314 (FCCM1), 0x11334 (FCCM2), 0x11354 (FCCM3)														

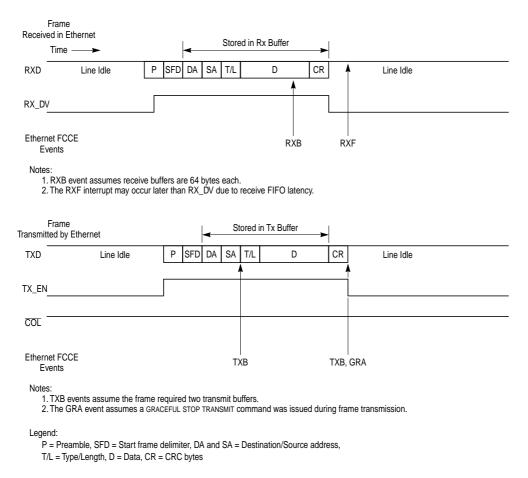

Figure 30-6. Ethernet Event Register (FCCE)/Mask Register (FCCM)

Table 30-9 describes FCCE/FCCM fields.

Table 30-9. FCCE/FCCM Field Descriptions

Bits	Name	Description
0–7	-	Reserved, should be cleared.
8	GRA	Graceful stop complete. A graceful stop, initiated by the GRACEFUL STOP TRANSMIT command, is complete. When the command is issued, GRA is set as soon the transmitter finishes sending a frame in progress. If no frame is in progress, GRA is set immediately.
9	RXC	RX control. A control frame has been received (FSMR[FCE] must be set). As soon as the transmitter finishes sending the current frame, a pause operation is performed.
10	TXC	TX control. An out-of-sequence frame was sent.
11	TXE	Tx error. An error occurred on the transmitter channel.
12	RXF	Rx frame. Set when a complete frame is received on the Ethernet channel.
13	BSY	Busy condition. Set when a frame is received and discarded due to a lack of buffers.
14	ТХВ	Tx buffer. Set when a buffer has been sent on the Ethernet channel.
15	RXB	Rx buffer. A buffer that was not a complete frame is received on the Ethernet channel.

Figure 30-7 shows interrupts that can be generated in the Ethernet protocol.

Figure 30-7. Ethernet Interrupt Events Example

Note that the FCC status register is not valid for the Ethernet protocol. The current state of the MII signals can be read through the parallel ports.

30.19 Ethernet RxBDs

The Ethernet controller uses the RxBD to report information about the received data for each buffer. Figure 30-8 shows the FCC Ethernet RxBD format.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	Е	—	w	I	L	F	_	М	BC	МС	LG	NO	SH	CR	ov	CL
Offset + 2		Data Length														
Offset + 4		Rx Data Buffer Pointer														
Offset + 6																

Figure 30-8. Fast Ethernet Receive Buffer (RxBD)

Table 30-10 describes Ethernet RxBD fields.

Table 30-10. RxBD Field Descriptions

Bits	Name	Description
0	E	 Empty 0 The buffer associated with this RxBD is full or reception terminated due to an error. The core can examine or read to any fields of this RxBD. The CP does not use this BD as long as E = 0. 1 The associated buffer is empty. The RxBD and buffer are owned by the CP. Once E = 1, the core should not write any fields of this RxBD.
1	-	Reserved, should be cleared.
2	w	 Wrap (final BD in RxBD table) Not the last BD in the table. Last BD in the table. After this buffer is used, the CP receives incoming data into the first BD that RBASE points to in the table. The number of RxBDs in this table is programmable and determined only by the W bit. The RxBD table must contain more than one BD in Ethernet mode.
3	I	Interrupt 0 No interrupt is generated after this buffer is used. 1 FCCE[RXB] or FCCE[RXF] are set when this buffer is used by the Ethernet controller. These two bits can cause interrupts if they are enabled.
4	L	Last in frame. Set by the Ethernet controller when this buffer is the last in a frame. This implies the end of the frame or a reception error, in which case one or more of the CL, OV, CR, SH, NO, and LG bits are set. The Ethernet controller writes the number of frame octets to the data length field. 0 Not the last buffer in a frame. 1 Last buffer in a frame.
5	F	First in frame. Set by the Ethernet controller when this buffer is the first in a frame.0 Not the first buffer in a frame.1 First buffer in a frame.
6	_	Reserved, should be cleared.
7	М	Miss. Set by the Ethernet controller for frames that are accepted in promiscuous mode, but are flagged as a miss by the internal address recognition. Thus, while using promiscuous mode, the user uses the miss bit to determine quickly whether the frame is destined for this station. Valid only if RxBD[I] is set. 0 The frame is received because the address is recognized. 1 The frame is received because of promiscuous mode (address is not recognized).
8	BC	Broadcast address. Valid only for the last buffer in a frame $(RxBD[L] = 1)$. The received frame address is the broadcast address.
9	MC	Multicast address. Valid only for the last buffer in a frame (RxBD[L] = 1). The received frame address is a multicast address other than a broadcast address.

Bits	Name	Description
10	LG	Rx frame length violation. A frame length greater than the MFLR (maximum frame length) defined for this FCC is recognized.
11	NO	Rx nonoctet aligned frame. A frame that contained a number of bits not divisible by eight is received and the CRC check at the preceding byte boundary generated an error.
12	SH	Short frame. A frame length less than the MINFLR (minimum frame length) defined for this channel is recognized. This indication is possible only if the FPSMR[RSH] = 1.
13	CR	Rx CRC error. This frame contains a CRC error.
14	OV	Overrun. A receiver overrun occurred during frame reception.
15	CL	Collision. This frame is closed because a collision occurred during frame reception. Set only if a late collision occurs or if FPSMR[RSH] is set. The late collision definition is determined by the setting of FPSMR[LCW].

Table 30-10. RxBD Field Descriptions (Continued)

Data length is the number of octets the CP writes into this BD data buffer. It is written by the CP as the buffer is closed. When this BD is the last BD in the frame (RxBD[L] = 1), the data length contains the total number of frame octets (including four bytes for CRC). Note that at least as much memory should be allocated for each receive buffer as the size specified in MRBLR. MRBLR should be divisible by 32 and not less than 64.

The receive buffer pointer, which points to the first location of the associated data buffer, can reside in internal or external memory. This value must be divisible by 32.

When a received frame's data length is an exact multiple of MRBLR, the last BD contains only the status and total frame length.

Note that at least two BDs must be prepared before beginning reception.

Figure 30-9 shows how RxBDs are used during Ethernet reception.

Part IV. Communications Processor Module

Figure 30-9. Ethernet Receiving Using RxBDs

30.20 Ethernet TxBDs

Data is sent to the Ethernet controller for transmission on an FCC channel by arranging it in buffers referenced by the channel's TxBD table. The Ethernet controller uses TxBDs to confirm transmission or indicate errors so the core knows when buffers have been serviced. Figure 30-10 shows the FCC Ethernet TxBD format.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	R	PAD	w	I	L	тс	DEF	HB	LC	RL		R	UN	CSL		
Offset + 2		Data length														
Offset + 4		Tx data Buffer Pointer														
Offset + 6																

Figure 30-10. Fast Ethernet Transmit Buffer (TxBD)

Table 30-11 describes Ethernet TxBD fields.

Table 30-11. Ethernet TxBD Field Definitions

Field	Name	Description
0	R	 Ready The buffer associated with this BD is not ready for transmission; the user can manipulate this BD or its associated buffer. The CP clears R after the buffer has been sent or after an error. The buffer is ready to be sent. The buffer is either waiting or in the process of being sent. The user cannot change fields in this BD or its associated buffer once R = 1.
1	PAD	 Short frame padding. Valid only when L = 1; otherwise, it is ignored. Do not add PADs to short frames. Add PADs to short frames. PAD bytes are inserted until the length of the transmitted frame equals the MINFLR. The PAD bytes are stored in a buffer pointed to by PAD_PTR in the parameter RAM.
2	w	 Wrap (final BD in table) Not the last BD in the TxBD table. Last BD in the TxBD table. After this buffer is used, the CP receives incoming data into the first BD that TBASE points to in the table. The number of TxBDs in this table is programmable and determined only by the W bit. The TxBD table must contain more than one BD in Ethernet mode.
3	I	Interrupt 0 No interrupt is generated after this buffer is serviced. 1 FCCE[TXB] or FCCE[TXE] is set after this buffer is serviced. These bits can cause interrupts if they are enabled.
4	L	Last 0 Not the last buffer in the transmit frame. 1 Last buffer in the current transmit frame.
5	тс	 Tx CRC. Valid only when the L bit is set; otherwise, it is ignored. End transmission immediately after the last data byte. Transmit the CRC sequence after the last data byte.
6	DEF	Defer indication. This frame did not have a collision before it was sent but it was sent late because of deferring.
7	HB	Heartbeat. The collision input is not asserted within 40 transmit serial clocks following completion of transmission. This bit cannot be set unless FPSMR[HBC] = 1. Written by the Ethernet controller after sending the associated buffer.
8	LC	Late collision. A collision occurred after the number of bytes defined in FPSMR[LCW] (56 or 64) are sent. The Ethernet controller terminates the transmission and updates LC after sending the buffer.
9	RL	Retransmission limit. The transmitter failed (RET_LIM + 1) attempts to successfully send a message due to repeated collisions. The Ethernet controller updates RL after sending the buffer.

Field	Name	Description
10–13	RC	Retry count. Indicates the number of retries required for this frame to be successfully sent. If RC = 0, the frame is sent correctly the first time. If RC = 15 and RET_LIM = 15 in the parameter RAM, 15 retries were needed. If RC = 15 and RET_LIM > 15, 15 or more retries were needed. The Ethernet controller updates RC after sending the buffer.
14	UN	Underrun. The Ethernet controller encountered a transmitter underrun condition while sending the associated buffer. The Ethernet controller updates UN after sending the buffer.
15	CSL	Carrier sense lost. Carrier sense is lost during frame transmission. The Ethernet controller updates CSL after sending the buffer.

Table 30-11. Ethernet TxBD Field Definitions (Continued)

Data length is the number of octets the Ethernet controller should transmit from this BD data buffer. This value should be greater than zero. The CP never modifies the data length in a TxBD.

Tx data buffer pointer, which contains the address of the associated data buffer, can be even or odd. The buffer can reside in internal or external memory. The CP never modifies the buffer pointer.

Chapter 31 FCC HDLC Controller

Layer 2 of the seven-layer OSI model is the data link layer (DLL), in which HDLC is one of the most common protocols. The framing structure of HDLC is shown in Figure 31-1. HDLC uses a zero insertion/deletion process (commonly known as bit stuffing) to ensure that the bit pattern of the delimiter flag does not occur in the fields between flags. The HDLC frame is synchronous and therefore relies on the physical layer for a method of clocking and of synchronizing the transmitter/receiver.

Because the layer 2 frame can be transmitted over a point-to-point link, a broadcast network, or a packet-and-circuit switched system, an address field is needed for the frame's destination address. The length of this field is commonly 0, 8, or 16 bits, depending on the data link layer protocol. For instance, SDLC and LAPB use an 8-bit address and SS#7 has no address field because it is used always in point-to-point signaling links. LAPD further divides its 16-bit address into different fields to specify various access points within one device. It also defines a broadcast address. Some HDLC-type protocols also permit extended addressing beyond 16 bits.

The 8- or 16-bit control field provides a flow-control number and defines the frame type (control or data). The exact use and structure of this field depends upon the protocol using the frame. Data is transmitted in the data field, which can vary in length depending upon the protocol using the frame. Layer 3 frames are carried in this data field.

Error control is implemented by appending a cyclic redundancy check (CRC) to the frame, which in most protocols is 16-bits long but can be as long as 32-bits. In HDLC, the lsb of each octet is transmitted first and the msb of the CRC is transmitted first.

When GFMR[MODE] selects HDLC mode, that FCC functions as an HDLC controller. When an FCC in HDLC mode is used with a nonmultiplexed modem interface, the FCC outputs are connected directly to the external pins. Modem signals can be supported through the appropriate port pins. The receive and transmit clocks can be supplied either externally or from the bank of baud-rate generators. The HDLC controller can also be connected to one of the TDM channels of the serial interface and used with the TSA. The HDLC controller consists of separate transmit and receive sections whose operations are asynchronous with the core and can either be synchronous or asynchronous with other FCCs. The user can allocate external buffer descriptors (BDs) for receive and transmit tasks so many frames can be sent or received without core intervention.

31.1 Key Features

Key features of the HDLC include the following:

- Flexible data buffers with multiple buffers per frame
- Separate interrupts for frames and buffers (receive and transmit)
- Received frames threshold to reduce interrupt overhead
- Four address comparison registers with masks
- Maintenance of four 16-bit error counters
- Flag/abort/idle generation and detection
- Zero insertion/deletion
- 16- or 32-bit CRC-CCITT generation/checking
- Detection of nonoctet-aligned frames
- Detection of frames that are too long
- Programmable flags (0–15) between successive frames
- External BD table
- Up to T3 rate
- Support of time stamp mode for Rx frames
- Support of nibble mode HDLC (4 bits per clocks)

31.2 HDLC Channel Frame Transmission Processing

The HDLC transmitter is designed to work with almost no core intervention. When the core enables a transmitter, it starts sending flags or idles as programmed in the HDLC mode register (FPSMR). The HDLC controller polls the first BD in the transmit channel BD table. When there is a frame to transmit, the HDLC controller fetches the data (address, control, and information) from the first buffer and begins sending the frame after first inserting the user-specified minimum number of flags between frames. When the end of the current buffer is reached and TxBD[L] (last buffer in frame) is set, the FCC appends the CRC (if selected) and closing flag. In HDLC, the lsb of each octet and the msb of the CRC are sent first. Figure 31-1 shows a typical HDLC frame.

Opening Flag	Address Control		Information (Optional)	CRC	Closing Flag
8 Bits	16 Bits	8 Bits	8n Bits	16 Bits	8 Bits

Figure 31-1. HDLC Framing Structure

After the closing flag is sent, the HDLC controller writes the frame status bits into the BD and clears the R bit. When the end of the current BD is reached and the L (last) bit is not set (working in multibuffer mode), only the R bit is cleared. In either mode, an interrupt can be issued if the I bit in the TxBD is set. The HDLC controller then proceeds to the next TxBD in the table. In this way, the core can be interrupted after each buffer, after a specific buffer, after each frame, or after a number of frames.

To rearrange the transmit queue before the CP has sent all buffers, issue the STOP TRANSMIT command. This can be useful for sending expedited data before previously linked buffers or for error situations. When receiving the STOP TRANSMIT command, the HDLC controller aborts the current frame transmission and starts transmitting idles or flags. When the HDLC controller is given the RESTART TRANSMIT command, it resumes transmission. To insert a high-priority frame without aborting the current frame, the GRACEFUL STOP TRANSMIT command can be issued. A special interrupt (GRA) can be generated in the event register when the current frame is complete.

31.3 HDLC Channel Frame Reception Processing

The HDLC receiver is designed to work with almost no core intervention and can perform address recognition, CRC checking, and maximum frame length checking. The received frame is available for any HDLC-based protocol. When the core enables a receiver, the receiver waits for an opening flag character. When it detects the first byte of the frame, the HDLC controller compares the frame address against the user-programmable addresses. The user has four 16-bit address registers and an address mask available for address matching. The HDLC controller compares the received address field to the user-defined values after masking with the address mask. The HDLC controller can also detect broadcast (all ones) address frames if one address register is written with all ones.

If a match is detected, the HDLC controller checks the prefetched BD; if it is empty, it starts transferring the incoming frame to the BD's associated buffer. When the buffer is full, the HDLC controller clears BD[E] and generates an interrupt if BD[I] = 1. If the incoming frame is larger than the buffer, the HDLC controller fetches the next BD in the table and, if it is empty, continues transferring the frame to the associated buffer.

During this process, the HDLC controller checks for frames that are too long. When the frame ends, the CRC field is checked against the recalculated value and written to the buffer. The data length written to the last BD in the HDLC frame is the length of the entire frame. This enables HDLC protocols that lose frames to correctly recognize a frame-too-long condition.

The HDLC controller then sets the last buffer in frame bit, writes the frame status bits into the BD, and clears the E bit and fetched the next BD. The HDLC controller then generates a maskable interrupt, indicating that a frame was received and is in memory. The HDLC controller then waits for a new frame. Back-to-back frames can be received separated only by a single shared flag.

The user can configure the HDLC controller not to interrupt the core until a specified number of frames have been received. This is configured in the received frames threshold (RFTHR) location of the parameter RAM. This function can be combined with a timer to implement a time-out if fewer than the threshold number of frames are received.

31.4 HDLC Parameter RAM

When an FCC operates in HDLC mode, the protocol-specific area of the FCC parameter RAM is mapped with the HDLC-specific parameters in Table 31-1.

Offset ¹	Name	Width	Description
0x38	-	3 Words	Reserved
0x44	C_MASK	Word	CRC constant. For the 16-bit CRC-CCITT, initialize C_MASK to 0x0000_F0B8. For the 32-bit CRC-CCITT, initialize C_MASK to 0xDEBB_20E3.
0x48	C_PRES	Word	CRC preset. For the 16-bit CRC-CCITT, initialize C_PRES to 0x0000_FFFF. For the 32-bit CRC-CCITT, initialize C_PRES to 0xFFFF_FFFF.
0x4C	DISFC ²	Hword	Discard frame counter. Counts error-free frames discarded due to lack of buffers.
0x4E	CRCEC ²	Hword	CRC error counter. Counts frames not addressed to the user or frames received in the BSY condition, but does not include overrun, \overline{CD} lost, or abort errors.
0x50	ABTSC ²	Hword	Abort sequence counter
0x52	NMARC ²	Hword	Nonmatching address Rx counter. Counts nonmatching addresses received (error-free frames only). See the HMASK and HADDR[1–4] parameter description.
0x54	MAX_CNT	Word	Max_length counter. Temporary decrementing counter that tracks frame length.
0x58	MFLR	Hword	Max frame length register. If the HDLC controller detects an incoming HDLC frame that exceeds the user-defined value in MFLR, the rest of the frame is discarded and the LG (Rx frame too long) bit is set in the last BD belonging to that frame. The HDLC controller waits for the end of the frame and then reports the frame status and length in the last RxBD. MFLR includes all in-frame bytes between the opening and closing flags (address, control, data, and CRC).
0x5A	RFTHR	Hword	Received frames threshold. Used to reduce the interrupt overhead that might otherwise occur when a series of short HDLC frames arrives, each causing an RXF interrupt. By programming RFTHR, the user lowers the frequency of RXF interrupts, which occur only when the RFTHR value is reached. Note that the user should provide enough empty RxBDs to receive the number of frames specified in RFTHR.
0x5C	RFCNT	Hword	Received frames count. A decrementing counter used to implement this feature. Initialize this counter with RFTHR.
0x5E	HMASK	Hword	HMASK and HADDR[1-4]. The HDLC controller reads the frame address from the HDLC
0x60	HADDR1	Hword	receiver, checks it against the four address register values, and masks the result with HMASK. In HMASK, a 1 represents a bit position for which address comparison should
0x62	HADDR2	Hword	occur; 0 represents a masked bit position. When addresses match, the address and subsequent data are written into the buffers. When addresses do not match and the
0x64	HADDR3	Hword	frame is error-free, the nonmatching address received counter (NMARC) is incremented
0x66	HADDR4	Hword	Note that for 8-bit addresses, mask out (clear) the eight high-order bits in HMASK. The eight low-order bits and HADDRx should contain the address byte that immediately follows the opening flag. For example, to recognize a frame that begins 0x7E (flag), 0x68, 0xAA, using 16-bit address recognition, HADDRx should contain 0xAA68 and HMASK should contain 0xFFFF. See Figure 31-2.
0x68	TS_TMP	Hword	Temporary storage
0x6A	TMP_MB	Hword	Temporary storage

Table 31-1. FCC HDLC-Specific Parameter RAM Memory Map

¹Offset from FCC base: 0x8400 (FCC1), 0x8500 (FCC2) and 0x8600 (FCC3); see Section 13.5.2, "Parameter RAM."
²DISFC, CRCEC, ABTSC, and NMARC—These 16-bit (modulo 216) counters are maintained by the CP. The user can initialize them while the channel is disabled.

8-Bit Address Recognition 16-Bit Address Recognition Flag Address Address Control Flag Address Control etc. etc. 0x7E 0x68 0xAA 0x44 0x7E 0x55 0x44 HMASK 0xFFFF HMASK 0x00FF HADDR1 0xAA68 0xXX55 HADDR1 0xFFFF HADDR2 0xXX55 HADDR2 HADDR3 0xAA68 HADDR3 0xXX55

Figure 31-2 shows an example of using HMASK and HADDR[1-4].

Recognizes one 16-bit address (HADDR1) and the 16-bit broadcast address (HADDR2)

0xAA68

Recognizes one 8-bit address (HADDR1)

HADDR4

0xXX55

Figure 31-2. HDLC Address Recognition Example

31.5 Programming Model

The core configures each FCC to operate in the protocol specified in GFMR[MODE]. The HDLC controller uses the same data structure as other modes. This data structure supports multibuffer operation and address comparisons.

31.5.1 HDLC Command Set

HADDR4

The transmit and receive commands are issued to the CPCR; see Section 13.4, "Command Set."

Table 31-2 describes the transmit commands that apply to the HDLC controller.

Table 31-2. Transmit Commands

Command	Description
STOP TRANSMIT	After the hardware or software is reset and the channel is enabled in the FCC mode register, the channel is in transmit enable mode and starts polling the first BD in the table every 256 transmit clocks (immediately if $TODR[TOD] = 1$). STOP TRANSMIT command disables the transmission of frames on the transmit channel. If this command is received by the HDLC controller during frame transmission, transmission is aborted after a maximum of 64 additional bits are sent and the transmit FIFO buffer is flushed. The TBPTR is not advanced, no new BD is accessed, and no new frames are sent for this channel. The transmitter sends an abort sequence consisting of $0x7F$ (if the command was given during frame transmission) and begins sending flags or idles, as indicated by the HDLC mode register. Note that if FPSMR[MFF] = 1, one or more small frames can be flushed from the transmit FIFO buffer. The GRACEFUL STOP TRANSMIT command can be used to avoid this.
GRACEFUL STOP TRANSMIT	Used to stop transmission smoothly rather than abruptly, as performed by the regular STOP TRANSMIT command. It stops transmission after the current frame finishes sending or immediately if no frame is being sent. FCCE[GRA] is set once transmission has stopped. Then the HDLC transmit parameters (including BDs) can be modified. The TBPTR points to the next TxBD in the table. Transmission begins once the R bit of the next BD is set and the RESTART TRANSMIT command is issued.

Command	Description
RESTART TRANSMIT	Enables character transmission on the transmit channel. This command is expected by the HDLC controller after a STOP TRANSMIT command, after a STOP TRANSMIT command is issued and the channel in its FCC mode register is disabled, after a GRACEFUL STOP TRANSMIT command, or after a transmitter error (underrun or CTS lost with no automatic frame retransmission). The HDLC controller resumes sending from the current TBPTR in the channel TxBD table.
INIT TX PARAMETERS	Initializes all transmit parameters in this serial channel parameter RAM to their reset state. This command should only be issued when the transmitter is disabled. Notice that the INIT TX AND RX PARAMETERS command can also be used to reset the transmit and receive parameters.

Table 31-2. Transmit Commands (Continued)

Table 31-3 describes the receive commands that apply to the HDLC controller.

Table 31-3. Receive Commands

Command	Description
ENTER HUNT MODE	After the hardware or software is reset and the channel is enabled in the FCC mode register, the channel is in receive enable mode and uses the first BD in the table. The ENTER HUNT MODE command is generally used to force the HDLC receiver to abort reception of the current frame and enter the hunt mode. In hunt mode, the HDLC controller continually scans the input data stream for the flag sequence. After receiving the command, the current receive buffer is closed and the CRC is reset. Further frame reception uses the next BD.
INIT RX PARAMETERS	Initializes all the receive parameters in this serial channel parameter RAM to their reset state and should be issued only when the receiver is disabled. Notice that the INIT TX AND RX PARAMETERS command resets both receive and transmit parameters.

31.5.2 HDLC Error Handling

The HDLC controller reports frame reception and transmission error conditions using the channel BDs, error counters, and HDLC event register (FCCE). Table 31-4 describes HDLC transmission errors, which are reported through the TxBD.

Error	Description
Transmitter Underrun	When this error occurs, the channel terminates buffer transmission, closes the buffer, sets the underrun (U) bit in the BD, and generates the TXE interrupt if it is enabled. The channel resumes transmission after receiving the RESTART TRANSMIT command.
CTS Lost during Frame Transmission	When this error occurs, the channel terminates buffer transmission, closes the buffer, sets TxBD[CT], and generates a TXE interrupt (if it is enabled). The channel resumes transmission after receiving the RESTART TRANSMIT command.

Table 31-4. HDLC Transmission Errors

Table 31-5 describes HDLC reception errors, which are reported through the RxBD.

Table 31-5. HDLC Reception Errors

Error					Descri	ption							
Overrun Error	The HDLC controller maintains an internal FIFO buffer for receiving data. The CP begins programming the SDMA channel and updating the CRC whenever data is received in the FIFO buffer. When a receive FIFO overrun occurs, the channel writes the received data byte to the internal FIFO buffer over the previously received byte. The previous byte and the frame status are lost. The channel closes the buffer with RxBD[OV] set and generates the RXF interrupt if it is enabled. The receiver then enters hunt mode. Even if the overrun occurs during a frame whose address is not matched in the address recognition logic, an RxBD with data length two is opened to report the overrun and the RXF interrupt is generated if it is enabled.												
CD Lost During Frame Reception	and generates the	When this error occurs, the channel terminates frame reception, closes the buffer, sets RxBD[CD], and generates the RXF interrupt if it is enabled. This error has highest priority. The rest of the frame is lost and other errors are not checked in that frame. At this point, the receiver enters hunt mode.											
Abort Sequence	When this error or setting RxBD[AB] sequence counter The receiver then	The HDLC controller detects an abort sequence when seven or more consecutive ones are received. When this error occurs and the HDLC controller receives a frame, the channel closes the buffer by setting RxBD[AB] and generates the RXF interrupt (if enabled). The channel also increments the abort sequence counter. The CRC and nonoctet error status conditions are not checked on aborted frames. The receiver then enters hunt mode. When an abort sequence is received, the user is given no indication that an HDLC controller is not currently receiving a frame.											
Nonoctet Aligned Frame	When this error of the Rx nonoctet a CRC error status received, the rece nonoctet data por bit, which marks t	ligned fr should b eiver ente tion may	ame bit le disreg ers hunt be deriv	RxBD[N0 arded or mode. A red from	D], and g n nonocte n immed the last b	enerates et frames iate back	s the RX 3. After a <-to-back	F interru nonocte frame is	pt (if it is et alignec s still rec	enabled). The I frame is eived. The			
			Valid	data		1	0	0	0				
CRC Error	When this error occurs, the channel writes the received CRC to the data buffer, closes the buffer, sets RxBD[CR], and generates the RXF interrupt (if it is enabled). The channel also increments the CRC error counter. After receiving a frame with a CRC error, the receiver enters hunt mode. An immediate back-to-back frame is still received. CRC checking cannot be disabled, but the CRC error can be ignored if checking is not required.												

31.6 HDLC Mode Register (FPSMR)

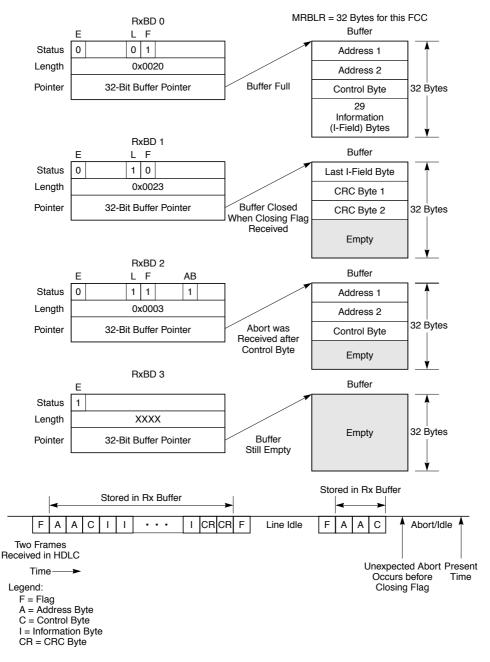
When an FCC is configured for HDLC mode, the FPSMR is used as the HDLC mode register, shown in Figure 31-3.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	NOF FSE MFF -									TS	_					
Reset		0000_0000_0000														
R/W		R/W														
Addr	0x11304 (FPSMR1), 0x11324 (FPSMR2), 0x11324 (FPSMR3)															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	NBL				_				CF	RC			-	_		
Reset		0000_0000_0000														
R/W		R/W														
Addr		0x11306 (FPSMR1), 0x11326 (FPSMR2), 0x11326 (FPSMR3)														

Figure 31-3. HDLC Mode Register (FPSMR)

The FPSMR fields are described in Table 31-6.

Table 31-6. FPSMR Field Descriptions


Bits	Name	Description
0–3	NOF	Number of flags. Minimum number of flags between or before frames (0–15 flags). If NOF = 0000, no flags are inserted between the frames. Thus, for back-to-back frames, the closing flag of one frame is immediately followed by the opening flag of the next frame.
4	FSE	 Flag sharing enable. This bit is valid only if GFMR[RTSM] is set. Normal operation If NOF = 0000, a single shared flag is transmitted between back-to-back frames. Other values of NOF are decremented by 1 when FSE is set. This is useful in signaling system #7 applications.
5	MFF	 Multiple Frames in FIFO Normal operation. The transmit FIFO buffer must never contain more than one HDLC frame. The CTS lost status is reported accurately on a per-frame basis. The receiver is not affected by this bit. The transmit FIFO buffer can contain multiple frames, but lost CTS is not guaranteed to be reported on the exact buffer/frame it occurred on. This option, however, can improve the performance of HDLC transmissions for small back-to-back frames or if the user prefers to strongly limit the number of flags sent between frames. MFF does not affect the receiver.
7–8	-	Reserved, should be cleared.
9	TS	 Time stamp Normal operation. A 32-bit time stamp is added at the beginning of the receive BD data buffer, thus the buffer pointer must be (32-byte aligned - 4). The BD's data length does not include the time stamp. See Section 13.3.7, "RISC Time-Stamp Control Register (RTSCR)."
10–15	-	Reserved, should be cleared.
16	NBL	0 nibble mode disabled (1 bit of data per clock). 1 nibble mode (4 bits of data per clock).
17–23	_	Reserved, should be cleared.

Bits	Name	Description
24-25	CRC	CRC selection 00 16-bit CCITT-CRC (HDLC). X16 + X12 + X5 + 1 01 Reserved 10 32-bit CCITT-CRC (Ethernet and HDLC). X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + 1 11 Reserved
26–31	—	Reserved, should be cleared.

Table 31-6. FPSMR Field Descriptions (Continued)

31.7 HDLC Receive Buffer Descriptor (RxBD)

The HDLC controller uses the RxBD to report on data received for each buffer. Figure 31-4 shows an example of the RxBD process.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	Е	_	w	I	L	F	СМ	_			LG	NO	AB	CR	ov	CD
Offset + 2		Data Length														
Offset + 4		Rx Data Buffer Pointer														
Offset + 6																

Figure 31-5 shows the FCC HDLC RxBD.

Figure 31-5. FCC HDLC Receive Buffer Descriptor (RxBD)

Table 31-7 describes RxBD fields.

Bits	Name	Description
0	E	 Empty 0 The buffer is full with received data or data reception stopped because of an error. The core can read or write to any fields of this RxBD. The CP does not use this BD while E = 0. 1 The buffer associated with this BD is empty. This RxBD and its associated receive buffer are owned by the CP. Once E is set, the core should not write any fields of this RxBD.
1	—	Reserved, should be cleared.
2	w	 Wrap (final BD in table) Not the last BD in the RxBD table. Last BD in the RxBD table. After this buffer is used, the CP receives incoming data into the first BD that RBASE points to in the table. The number of RxBDs in this table is programmable and is determined only by the W bit and the overall space constraints of the dual-port RAM. The RxBD table must contain more than one BD in HDLC mode.
3	I	Interrupt 0 The RXB bit is not set after this buffer is used, but RXF operation remains unaffected. 1 FCCE[RXB] or FCCE[RXF] is set when the HDLC controller uses this buffer. These two bits can cause interrupts if they are enabled.
4	L	Last in frame. Set by the HDLC controller when this buffer is the last one in a frame. This implies the reception of a closing flag or reception of an error, in which case one or more of the CD, OV, AB, and LG bits are set. The HDLC controller writes the number of frame octets to the data length field. 0 Not the last buffer in a frame. 1 Last buffer in a frame.
5	F	First in frame. Set by the HDLC controller when this buffer is the first in a frame.0 Not the first buffer in a frame.1 First buffer in a frame.
6	СМ	 Continuous mode Normal operation. The E bit is not cleared by the CP after this BD is closed, allowing the associated data buffer to be automatically overwritten the next time the CP accesses this BD. However, the E bit is cleared if an error occurs during reception, regardless of the CM bit.
7–9	-	Reserved, should be cleared.
10	LG	Rx frame length violation. A frame length greater than the maximum defined for this channel is recognized, and only the maximum-allowed number of bytes (MFLR) is written to the data buffer. This event is not reported until the RxBD is closed, the RXF bit is set, and the closing flag is received. The number of bytes received between flags is written to the data length field of this BD.

Table 31-7. RxBD field Descriptions

Bits	Name	Description
11	NO	Rx nonoctet-aligned frame. Set when a received frame contains a number of bits not divisible by eight.
12	AB	Rx abort sequence. At least seven consecutive 1s are received during frame reception.
13	CR	Rx CRC error. This frame contains a CRC error. Received CRC bytes are written to the receive buffer.
14	OV	Overrun. A receiver overrun occurs during frame reception.
15	CD	Carrier detect lost. CD has negated during frame reception. This bit is valid only for NMSI mode.

Table 31-7. RxBD field Descriptions (Continued)

The RxBD status bits are written by the HDLC controller after receiving the associated data buffer.

The remaining RxBD parameters are as follows:

- Data length is the number of octets the CP writes into this BD's data buffer. It is written by the CP once the BD is closed. When this is the last BD in the frame (L = 1), this field contains the total number of frame octets, including 2 or 4 bytes for CRC. The memory allocated for this buffer should be no smaller than the MRBLR value.
- Rx data buffer pointer. The receive buffer pointer, which always points to the first location of the associated data buffer, resides in internal or external memory and must be divisible by 32 unless FPSMR[TS] = 1 (see Table 31-6).

31.8 HDLC Transmit Buffer Descriptor (TxBD)

Data is presented to the HDLC controller for transmission on an FCC channel by arranging it in buffers referenced by the channel TxBD table. The HDLC controller confirms transmission (or indicates errors) using the BDs to inform the core that the buffers have been serviced. Figure 31-6 shows the FCC HDLC TxBD.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	R	_	w	I	L	тс	СМ	_							UN	СТ
Offset + 2		Data Length														
Offset + 4		Tx Data Buffer Pointer														
Offset + 6																

Figure 31-6. FCC HDLC Transmit Buffer Descriptor (TxBD)

Table 31-8 describes HDLC TxBD fields.

Bits	Name	Description
0	R	 Ready The buffer associated with this BD is not ready for transmission. The user can manipulate this BD or its associated buffer. The CP clears R after the buffer has been sent or an error occurs. The buffer is ready to be sent. The transmission may have begun, but it has not completed. The user cannot set fields in this BD once R is set.
1	-	Reserved, should be cleared.
2	W	 Wrap (final BD in table) Not the last BD in the TxBD table. Last BD in the TxBD table. After this buffer has been used, the CP sends data from the first BD that TBASE points to in the table. The number of TxBDs in this table is determined only by the W bit and the overall space constraints of the dual-port RAM.
3	I	Interrupt 0 No interrupt is generated after this buffer is serviced. 1 Either FCCE[TXB] or FCCE[TXE] is set when this buffer is serviced by the HDLC controller. These bits can cause interrupts if they are enabled.
4	L	Last 0 Not the last buffer in the frame. 1 Last buffer in the current frame.
5	тс	 Tx CRC.Valid only when the L bit is set. Otherwise, it is ignored. Transmit the closing flag after the last data byte. This setting can be used to send a bad CRC after the data for testing purposes. Transmit the CRC sequence after the last data byte.
6	СМ	 Continuous mode Normal operation. The R bit is not cleared by the CP after this BD is closed, allowing the buffer to be retransmitted automatically the next time the CP accesses this BD. However, the R bit is cleared if an error occurs during transmission, regardless of the CM bit.
7–13	_	Reserved, should be cleared.
14	UN	Underrun. The HDLC controller encounters a transmitter underrun condition while sending the buffer. The HDLC controller writes UN after sending the buffer.
15	СТ	$\overline{\text{CTS}}$ lost. Set when $\overline{\text{CTS}}$ is lost during frame transmission in NMSI mode. If data from more than one buffer is in the FIFO buffer when this error occurs, CT is set in the currently open TxBD. The HDLC controller writes CT after sending the buffer.

The TxBD status bits are written by the HDLC controller after sending the associated data buffer.

Part IV. Communications Processor Module

The remaining TxBD parameters are as follows:

- Data length is the number of bytes the HDLC controller should transmit from this data buffer; it is never modified by the CP. The value of this field should be greater than zero.
- Tx data buffer pointer. The transmit buffer pointer, which contains the address of the associated data buffer, can be even or odd. The buffer can reside in internal or external memory. This value is never modified by the CP.

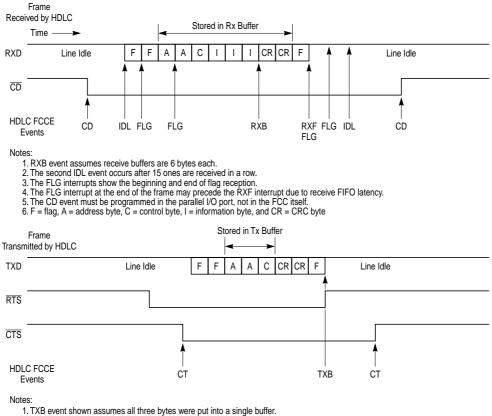
31.9 HDLC Event Register (FCCE)/Mask Register (FCCM)

The FCCE is used as the HDLC event register when the FCC operates as an HDLC controller. The FCCE reports events recognized by the HDLC channel and generates interrupts. On recognition of an event, the HDLC controller sets the corresponding FCCE bit. FCCE bits are cleared by writing ones; writing zeros does not affect bit values. All unmasked bits must be cleared before the CP clears the internal interrupt request.

Interrupts generated by the FCCE can be masked in the HDLC mask register (FCCM), which has the same bit format as FCCE. If an FCCM bit = 1, the corresponding interrupt in the event register is enabled. If the bit is 0, the interrupt is masked.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field				-	_				GRA	– TXE RXF BSY				BSY	тхв	RXB
Reset						00	00_000	0_0000_	_0000							
R/W	R/W															
Addr	0x11310 (FCCE1), 0x11330 (FCCE2), 0x11350 (FCCE3)/ 0x11314 (FCCM1), 0x11334 (FCCM2), 0x11354 (FCCM3)															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field			-	-			FLG	IDL					_			
Reset						00	00_000	0_0000_	_0000							
R/W							F	R/W								
Addr							0x11332 0x1133									

Figure 31-7. HDLC Event Register (FCCE)/Mask Register (FCCM)


Table 31-9 describes FCCE/FCCM fields.

Bits	Name	Description
0–7	-	Reserved, should be cleared.
8	GRA	Graceful stop complete. A graceful stop, which was initiated by the GRACEFUL STOP TRANSMIT command, is now complete. GRA is set as soon as the transmitter finishes transmitting any frame that is in progress when the command was issued. It is set immediately if no frame is in progress when the command is issued.
9–10	_	Reserved, should be cleared.
11	TXE	Tx error. An error (CTS lost or underrun) occurs on the transmitter channel.
12	RXF	Rx frame. A complete frame is received on the HDLC channel. This bit is set no sooner than two clocks after receipt of the last bit of the closing flag.
13	BSY	Busy condition. A frame is received and discarded due to a lack of buffers.
14	ТХВ	Transmit buffer. A buffer is sent on the HDLC channel. TXB is set no sooner than when the last bit of the closing flag begins its transmission if the buffer is the last one in the frame. Otherwise, TXB is set after the last byte of the buffer is written to the transmit FIFO buffer.
15	RXB	Receive buffer. A buffer that is not a complete frame is received on the HDLC channel.
16–21	_	Reserved, should be cleared.
22	FLG	Flag status changed. The HDLC controller stops or starts receiving HDLC flags. The real-time status can be obtained in FCCS; see Section 31.10, "FCC Status Register (FCCS)."
23	IDL	Idle sequence status changed. A change in the status of the serial line is detected on the HDLC line. The real-time status can be read in FCCS; see Section 31.10, "FCC Status Register (FCCS)."
24–31	_	Reserved, should be cleared.

Table 31-9. FCCE/FCCM Field Descriptions

Figure 31-8 shows interrupts that can be generated in the HDLC protocol.

Part IV. Communications Processor Module

2. Example shows one additional opening flag. This is programmable.

3. The CT event must be programmed in the parallel I/O port, not in the FCC itself.

Figure 31-8. HDLC Interrupt Event Example

31.10 FCC Status Register (FCCS)

The FCCS register, shown in Figure 31-9, allows the user to monitor real-time status conditions on the RXD line. The real-time status of the $\overline{\text{CTS}}$ and $\overline{\text{CD}}$ signals are part of the parallel I/O port; see Chapter 35, "Parallel I/O Ports."

Bits	0	1	2	3	4	5	6	7							
Field		— FG — ID													
Reset	0000_0000														
R/W		R													
Addr		0>	(11318 (FCC	S1), 0x11338	(FCCS2), 0x ⁻	1358 (FCCS	3)								

Figure 31-9. FCC Status Register (FCCS)

Table 31-10 describes FCCS bits.

Bits	Name	Description
0–4	-	Reserved, should be cleared.
5	FG	 Flags. While FG is cleared, each time a new bit is received the most recently received 8 bits are examined to see if a flag is present. FG is set as soon as an HDLC flag (0x7E) is received on the line. Once FG is set, it remains set at least 8 bit times while the next 8 bits of input data are examined. If another flag occurs, FG stays set for at least another eight bits. Otherwise, FG is cleared and the search begins again. 0 HDLC flags are not currently being received. 1 HDLC flags are currently being received.
6	_	Reserved, should be cleared.
7	ID	 Idle status. ID is set when the RXD signal is a logic one for 15 or more consecutive bit times; it is cleared after a logic zero is received. 0 The line is busy. 1 The line is idle.

Table 31-10. FCCS Register Field Descriptions

Part IV. Communications Processor Module

Chapter 32 FCC Transparent Controller

The FCC transparent controller functions as a high-speed serial-to-parallel and parallel-toserial converter. Transparent mode provides a clear channel on which the FCC performs no bit-level manipulation—implementing higher-level protocols would require software. Transparent mode is also referred to as a totally transparent or promiscuous operation.

Basic applications for an FCC in transparent mode include the following:

- For data, such as voice, moving serially without the need for protocol processing
- For board-level applications, such as chip-to-chip communications, requiring a serial-to-parallel and parallel-to-serial conversion
- For applications requiring the switching of data paths without altering the protocol encoding itself, such as a multiplexer in which data from a high-speed TDM serial stream is divided into multiple low-speed data streams

An FCC transmitter and receiver can be programmed in transparent mode independently. Setting GFMRx[TTx] enables the transparent transmitter; setting GFMRx[TRx] enables the transparent receiver. Both bits must be set for full-duplex transparent operation. If only one bit is set, the other half of the FCC operates with the protocol programmed in GFMRx[MODE]. This allows loopback modes to transfer data from one memory location to another (using DMA) while the data is converted to a specific serial format. However, the Ethernet and ATM controllers cannot be split in this way. See Section 28.2, "General FCC Mode Registers (GFMRx)."

The FCC in transparent mode can work with the TSA or NMSI and support modem lines using the general-purpose I/O signals. The data can be transmitted and received with msb or lsb first in each octet. The FCC consists of separate transmit and receive sections whose operations are asynchronous with the core and can either be synchronous or asynchronous with respect to the other FCCs. Each clock can be supplied from the internal BRG bank or external signals.

32.1 Features

The following is a list of the transparent controller's important features:

- Flexible data buffers
- Automatic SYNC detection on receive
 - 16-bit pattern
 - 8-bit pattern
 - Automatic sync (always synchronized)
 - External sync signal support
- CRCs can optionally be transmitted and received
- Reverse data mode
- Another protocol can be performed on the FCC's other half (transmitter or receiver) during transparent mode
- External BD table

32.2 Transparent Channel Operation

The transparent transmitter and receiver operates in the same way as the HDLC controller of the FCC (see Chapter 31, "FCC HDLC Controller") except in the following ways:

- 1. The FPSMR does not affect the transparent controller, only the GFMR does.
- 2. In Table 31-1, MFLR, HMASK, RFTHR, and RFCNT must be cleared for proper operation of the transparent receiver.
- Transmitter synchronization has to be achieved using CTS before the transmitter begins sending; see Section 32.3, "Achieving Synchronization in Transparent Mode."

32.3 Achieving Synchronization in Transparent Mode

Once the FCC transmitter is enabled for transparent operation in the GFMR, the TxBD is prepared for the FCC, and the transmit FIFO is preloaded by the SDMA channel, another process must occur before data can be transmitted. It is called transmit synchronization.

Similarly, once the FCC receiver is enabled for transparent operation in the GFMR and the RxBD is made empty for the FCC, receive synchronization must occur before data can be received. The synchronization process gives the user bit-level control of when the transmission and reception begins. The methods for this are as follows:

- An in-line synchronization pattern
- External synchronization signals
- Automatic sync

32.3.1 In-Line Synchronization Pattern

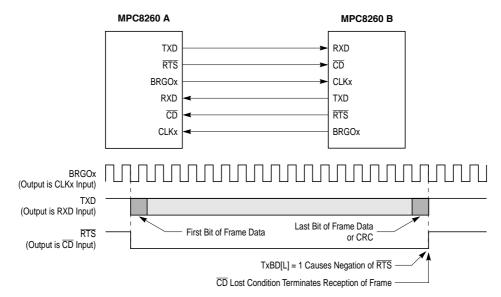
The transparent channel can be programmed to transmit and receive a synchronization pattern if GFMR[SYNL] $\neq 0$; see Section 28.2, "General FCC Mode Registers (GFMRx)." The pattern is defined in the FDSR; see Section 28.4, "FCC Data Synchronization Registers (FDSRx)." GFMR[SYNL] defines the SYNC pattern length. The synchronization pattern is shown in Figure 32-1.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field			8-	Bit Syn	c Patte	rn		_								
Field	16-Bit Sync Pattern															

Figure 32-1. In-Line Synchronization Pattern

The receiver synchronizes on the synchronization pattern located in the FDSR. For instance, if an 8-bit SYNC is selected, reception begins as soon as these eight bits are received, beginning with the first bit following the 8-bit SYNC. This effectively links the transmitter synchronization to the receiver synchronization.

32.3.2 External Synchronization Signals


If GFMR[SYNL] = 00, an external signal is used to begin the sequence. $\overline{\text{CTS}}$ is used for the transmitter and $\overline{\text{CD}}$ is used for the receiver; these signals share the following sampling options.

- The pulse option determines whether $\overline{\text{CD}}$ or $\overline{\text{CTS}}$ need to only be asserted once to begin reception/transmission or whether they must be asserted and stay that way for the duration of the transparent frame. This is controlled by the CDP and CTSP bits of the GFMR. If the user expects a continuous stream of data without interruption, then the pulse operation should be used. However, if the user is trying to identify frames of transparent data, the envelope mode of the these signals should be used.
- The sampling option determines the delay between $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ being asserted and the resulting action by the FCC. These signals can be assumed to be asynchronous to the data and then internally synchronized by the FCC, or they can be assumed to be synchronous to the data giving faster operation. This option allows the $\overline{\text{RTS}}$ of one FCC to be connected to the $\overline{\text{CD}}$ of another FCC (on another MPC8260) and to have the data synchronized and bit aligned. It is also an option to link the transmitter synchronization to the receiver synchronization.

Diagrams for the pulse/envelope and sampling options are in Section 28.11, "FCC Timing Control."

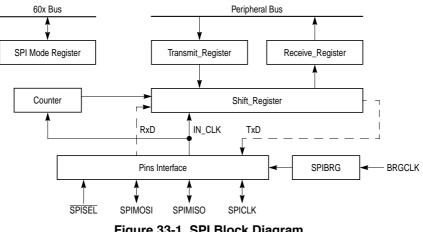
32.3.3 Transparent Synchronization Example

Figure 32-2 shows an example of synchronization using external signals.

Notes:

- 1. Each MPC8260 generates its own transmit clocks. If the transmit and receive clocks are the same, one can generate transmit and receive clocks for the other MPC8260. For example, CLKx on MPC8260 (B) could be used to clock the transmitter and receiver.
- 2. CTS should be configured as always asserted in the parallel I/O port or connected to ground externally.
- 3. The required GSMR configurations are DIAG= 00, CTSS=1, CTSP is a don't care, CDS=1, CDP=0, TTX=1, and TRX=1. REVD and TCRC are application-dependent.
- 4. The transparent frame contains a CRC if TxBD[TC] is set.

Figure 32-2. Sending Transparent Frames between MPC8260s


MPC8260(A) and MPC8260(B) exchange transparent frames and synchronize each other using $\overline{\text{RTS}}$ and $\overline{\text{CD}}$. However, $\overline{\text{CTS}}$ is not required because transmission begins at any time. Thus, $\overline{\text{RTS}}$ is connected directly to the other MPC8260's $\overline{\text{CD}}$. GFMR[SYNL] is not used and transmission and reception from each MPC8260 are independent.

Chapter 33 Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) allows the MPC8260 to exchange data between other MPC8260 chips, the MPC860, the MC68360, the MC68302, the M68HC11 and M68HC05 microcontroller families, and peripheral devices such as EEPROMs, real-time clocks, A/D converters, and ISDN devices.

The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface (receive, transmit, clock and slave select). The SPI block consists of transmitter and receiver sections, an independent baud-rate generator, and a control unit. The transmitter and receiver sections use the same clock, which is derived from the SPI baud rate generator in master mode and generated externally in slave mode. During an SPI transfer, data is sent and received simultaneously.

Because the SPI receiver and transmitter are double-buffered, as shown in Figure 33-1, the effective FIFO size (latency) is 2 characters. The SPI's msb is shifted out first. When the SPI is disabled in the SPI mode register (SPMODE[EN] = 0), it consumes little power.

33.1 Features

The following is a list of the SPI's main features:

- Four-signal interface (SPIMOSI, SPIMISO, SPICLK, and SPISEL) multiplexed with Port B signals
- Full-duplex operation
- Works with data characters from 4 to 16 bits long
- Supports back-to-back character transmission and reception
- Master or slave SPI modes supported
- Multimaster environment support
- Continuous transfer mode for automatic scanning of a peripheral
- Supports maximum clock rates of 25 in master mode and 50 MHz in slave mode, assuming a 100-MHz system clock
- Independent programmable baud rate generator
- Programmable clock phase and polarity
- Open-drain outputs support multimaster configuration
- Local loopback capability for testing

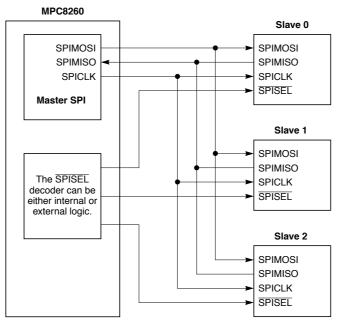
33.2 SPI Clocking and Signal Functions

The SPI can be configured as a slave or as a master in single- or multiple-master environments. The master SPI generates the transfer clock SPICLK using the SPI baud rate generator (BRG). The SPI BRG takes its input from BRGCLK, which is generated in the MPC8260 clock synthesizer.

SPICLK is a gated clock, active only during data transfers. Four combinations of SPICLK phase and polarity can be configured with SPMODE[CI, CP]. SPI signals can also be configured as open-drain to support a multimaster configuration in which a shared SPI signal is driven by the MPC8260 or an external SPI device.

The SPI master-in slave-out SPIMISO signal acts as an input for master devices and as an output for slave devices. Conversely, the master-out slave-in SPIMOSI signal is an output for master devices and an input for slave devices. The dual functionality of these signals allows the SPIs in a multimaster environment to communicate with one another using a common hardware configuration.

• When the SPI is a master, SPICLK is the clock output signal that shifts received data in from SPIMISO and transmitted data out to SPIMOSI. SPI masters must output a slave select signal to enable SPI slave devices by using a separate general-purpose I/O signal. Assertion of an SPI's SPISEL while it is master causes an error. • When the SPI is a slave, SPICLK is the clock input that shifts received data in from SPIMOSI and transmitted data out through SPIMISO. SPISEL is the enable input to the SPI slave. In a multimaster environment, SPISEL (always an input) is used to detect an error when more than one master is operating.


As described in Chapter 35, "Parallel I/O Ports," SPIMISO, SPIMOSI, SPICLK, and $\overline{\text{SPISEL}}$ are multiplexed with port B[28–31] signals, respectively. They are configured as SPI signals through the port B signal assignment register (PBPAR) and the Port B data direction register (PBDIR), specifically by setting PBPAR[DDn] and PBDIR[DRn].

33.3 Configuring the SPI Controller

The SPI can be programmed to work in a single- or multiple-master environment. This section describes SPI master and slave operation in a single-master configuration and then discusses the multi-master environment.

33.3.1 The SPI as a Master Device

In master mode, the SPI sends a message to the slave peripheral, which sends back a simultaneous reply. A single master MPC8260 with multiple slaves can use general-purpose parallel I/O signals to selectively enable slaves, as shown in Figure 33-2. To eliminate the multimaster error in a single-master environment, the master's SPISEL input can be forced inactive by selecting port B[31] for general-purpose I/O (PBPAR[DD31] = 0).

Part IV. Communications Processor Module

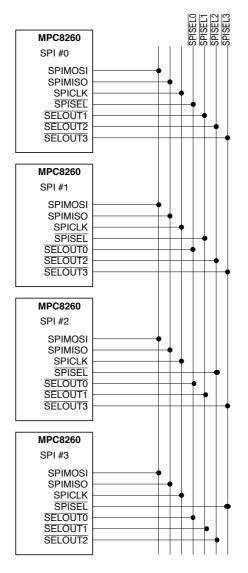
To start exchanging data, the core writes the data to be sent into a buffer, configures a TxBD with TxBD[R] set, and configures one or more RxBDs. The core then sets SPCOM[STR] in the SPI command register to start sending data, which starts once the SDMA channel loads the Tx FIFO with data.

The SPI then generates programmable clock pulses on SPICLK for each character and simultaneously shifts Tx data out on SPIMOSI and Rx data in on SPIMISO. Received data is written into a Rx buffer using the next available RxBD. The SPI keeps sending and receiving characters until the whole buffer is sent or an error occurs. The CP then clears TxBD[R] and RxBD[E] and issues a maskable interrupt to the interrupt controller in the SIU.

When multiple TxBDs are ready, TxBD[L] determines whether the SPI keeps transmitting without SPCOM[STR] being set again. If the current TxBD[L] is cleared, the next TxBD is processed after data from the current buffer is sent. Typically there is no delay on SPIMOSI between buffers. If the current TxBD[L] is set, sending stops after the current buffer is sent. In addition, the RxBD is closed after transmission stops, even if the Rx buffer is not full; therefore, Rx buffers need not be the same length as Tx buffers.

33.3.2 The SPI as a Slave Device

In slave mode, the SPI receives messages from an SPI master and sends a simultaneous reply. The slave's SPISEL must be asserted before Rx clocks are recognized; once SPISEL is asserted, SPICLK becomes an input from the master to the slave. SPICLK can be any frequency from DC to BRGCLK/2 (12.5 MHz for a 25-MHz system).


To prepare for data transfers, the slave's core writes data to be sent into a buffer, configures a TxBD with TxBD[R] set, and configures one or more RxBDs. The core then sets SPCOM[STR] to activate the SPI. Once SPISEL is asserted, the slave shifts data out from SPIMISO and in through SPIMOSI. A maskable interrupt is issued when a full buffer finishes receiving and sending or after an error. The SPI uses successive RxBDs in the table to continue reception until it runs out of Rx buffers or SPISEL is negated.

Transmission continues until no more data is available or $\overline{\text{SPISEL}}$ is negated. If it is negated before all data is sent, it stops but the TxBD stays open. Transmission continues once $\overline{\text{SPISEL}}$ is reasserted and $\overline{\text{SPICLK}}$ begins toggling. After the characters in the buffer are sent, the SPI sends ones as long as $\overline{\text{SPISEL}}$ remains asserted.

33.3.3 The SPI in Multimaster Operation

The SPI can operate in a multimaster environment in which SPI devices are connected to the same bus. In this configuration, the SPIMOSI, SPIMISO, and SPICLK signals of all SPIs are shared; the SPISEL inputs are connected separately, as shown in Figure 33-3. Only one SPI device can act as master at a time—all others must be slaves. When an SPI is configured as a master and its SPISEL input is asserted, a multimaster error occurs because more than one SPI device is a bus master. The SPI sets SPIE[MME] in the SPI event register and a maskable interrupt is issued to the core. It also disables SPI operation and the output

drivers of SPI signals. The core must clear SPMODE[EN] before the SPI is used again. After correcting the problems, clear SPIE[MME] and reenable the SPI.

Notes:

- All signals are open-drain
- For a system with more than two masters, SPISEL and SPIE[MME] do not detect all possible conflicts
- It is the responsibility of software to arbitrate for the SPI bus (with token passing, for example)
- · SELOUTx signals are implemented in software with general-purpose I/O signals

Figure 33-3. Multimaster Configuration

The maximum sustained data rate that the SPI supports is SYSTEMCLK/50. However, the SPI can transfer a single character at much higher rates—SYSTEMCLK/4 in master mode and SYSTEMCLK/2 in slave mode. Gaps should be inserted between multiple characters to keep from exceeding the maximum sustained data rate.

33.4 Programming the SPI Registers

The following sections describe the registers used in configuring and operating the SPI.

33.4.1 SPI Mode Register (SPMODE)

The SPI mode register (SPMODE), shown in Figure 33-4, controls both the SPI operation mode and clock source.

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	_	LOOP	OP CI CP DIV16 REV M/S EN LEN PM					М								
Reset	0000_00						—	0_0000_0000								
R/W		R/W														
Addr		0x11AA0														

Figure 33-4. SPMODE—SPI Mode Register

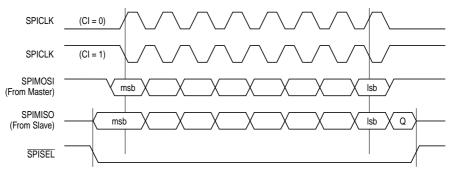
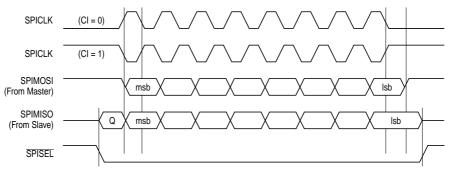

Table 33-1 describes the SPMODE fields.

Table 33-1. SPMODE Field Descriptions

Bits	Name	Description
0	-	Reserved, should be cleared.
1	LOOP	 Loop mode. Enables local loopback operation. 0 Normal operation. 1 Loopback mode. The transmitter output is internally connected to the receiver input. The receiver and transmitter operate normally, except that received data is ignored.
2	CI	Clock invert. Inverts SPI clock polarity. See Figure 33-5 and Figure 33-6. 0 The inactive state of SPICLK is low. 1 The inactive state of SPICLK is high.
3	СР	Clock phase. Selects the transfer format. See Figure 33-5 and Figure 33-6. 0 SPICLK starts toggling at the middle of the data transfer. 1 SPICLK starts toggling at the beginning of the data transfer.
4	DIV16	Divide by 16. Selects the clock source for the SPI baud rate generator when configured as an SPI master. In slave mode, SPICLK is the clock source. 0 BRGCLK is the input to the SPI BRG. 1 BRGCLK/16 is the input to the SPI BRG.
5	REV	Reverse data. Determines the receive and transmit character bit order. 0 Reverse data—Isb of the character sent and received first. 1 Normal operation—msb of the character sent and received first.
6	M/S	Master/slave. Selects master or slave mode. 0 The SPI is a slave. 1 The SPI is a master.

Bits	Name	Description
7	EN	 Enable SPI. Do not change other SPMODE bits when EN is set. 0 The SPI is disabled. The SPI is in a reset state and consumes minimal power. The SPI BRG is not functioning and the input clock is disabled. 1 The SPI is enabled. Configure SPIMOSI, SPIMISO, SPICLK, and SPISEL to connect to the SPI as described in Section 35.2, "Port Registers."
8–11	LEN	Character length in bits per character. Must be between 0011 (4 bits) and 1111 (16 bits). A value less than 4 causes erratic behavior. If the value is not greater than a byte, every byte in memory holds LEN valid bits. If the value is greater than a byte, every half-word holds LEN valid bits. See Section 33.4.1.1, "SPI Examples with Different SPMODE[LEN] Values."
12–15	РМ	Prescale modulus select. Specifies the divide ratio of the prescale divider in the SPI clock generator. BRGCLK is divided by 4 * ([PM0–PM3] + 1), a range from 4 to 64. The clock has a 50% duty cycle.



NOTE: Q = Undefined Signal.

Figure 33-6 shows the SPI transfer format in which SPICLK starts toggling at the beginning of the transfer (SPMODE[CP] = 1).

NOTE: Q = Undefined Signal.

Figure 33-6. SPI Transfer Format with SPMODE[CP] = 1

33.4.1.1 SPI Examples with Different SPMODE[LEN] Values

The examples below show how SPMODE[LEN] is used to determine character length. To help map the process, the conventions shown in Table 33-2 are used in the examples.

Convention	Description
g–v	Binary symbols
x	Deleted bit
1	Original byte boundary
_1	Original 4-bit boundary.

Table 33-2. Example Conventions

Both ____ and __ are used to aid readability.

msb

Once the data string image is determined, it is always transmitted byte by byte with the lsb of the most-significant byte sent first. For all examples below, assume the memory contains the following binary image:

lsb

ghij_klmn_opqr_stuv

Example 1 with LEN=4 (data size=5), the following data is selected: msb xxxj klmn xxxr stuv lsb with REV=0, the data string image is: msb j klmn r stuv lsb the order of the string appearing on the line, a byte at a time is: first nmlk_j__vuts_r last with REV=1, the string has each byte reversed, and the data string image is: msb nmlk j vuts r lsb the order of the string appearing on the line, one byte at a time is: first j klmn r stuv last

Example 2

with LEN=7 (data size=8), the following data is selected: msh ghij klmn opqr stuv lsh the data string is selected: msb ghij_klmn__opqr_stuv lsb with REV=0, the string transmitted, a byte at a time with lsb first is: nmlk jihg vuts rqpo first last with REV=1, the string is byte reversed and transmitted, a byte at a time, with lsb first: ghij klmn opgr stuv first last

Example 3:

with LEN=0xC (data size=13), the following data is selected: msb ghij_klmn_xxxr_stuv lsb

the data string selected	is:	
msb	r_stuv_ghij_klmn	lsb
with REV=0, the string tr	ansmitted, a byte at a time with	lsb first is:
first	vuts_rnmlk_jihg	last
with REV=1, the string is	half-word reversed:	
msb	nmlk_jihgvuts_r	lsb
and transmitted a byte at	a time with 1sb first:	
first	ghij_klmnr_stuv	last

33.4.2 SPI Event/Mask Registers (SPIE/SPIM)

The SPI event register (SPIE) generates interrupts and reports events recognized by the SPI. When an event is recognized, the SPI sets the corresponding SPIE bit. Clear SPIE bits by writing a 1—writing 0 has no effect. Setting a bit in the SPI mask register (SPIM) enables and clearing a bit masks the corresponding interrupt. Unmasked SPIE bits must be cleared before the CP clears internal interrupt requests. Figure 33-7 shows both registers.

Bit	0 1		2	3	4	5	6	7	
Field	-	_	MME	TXE	_	BSY	ТХВ	RXB	
Reset		0000_0000							
R/W		R/W							
Addr		0x11AA6 (SPIE); 0x11AAA (SPIM)							

Table 33-3 describes the SPIE/SPIM fields.

Bits	Name	Description
0–1	-	Reserved, should be cleared.
2	MME	Multimaster error. Set when SPISEL is asserted externally while the SPI is in master mode.
3	TXE	Tx error. Set when an error occurs during transmission.
4	-	Reserved, should be cleared.
5	BSY	Busy. Set after the first character is received but discarded because no Rx buffer is available.
6	ТХВ	Tx buffer. Set when the Tx data of the last character in the buffer is written to the Tx FIFO. Wait two character times to be sure data is completely sent over the transmit signal.
7	RXB	Rx buffer. Set after the last character is written to the Rx buffer and the BD is closed.

33.4.3 SPI Command Register (SPCOM)

The SPI command register (SPCOM), shown in Figure 33-8, is used to start SPI operation.

Bit	0	1 2 3 4 5 6						7	
Field	STR	-							
Reset		0000_0000							
R/W		Write Only							
Addr	0x11AAD								

Table 33-4 describes the SPCOM fields.

Table 33-4. SPCOM Field Descriptions

Bits	Name	Description
0		Start transmit. For an SPI master, setting STR causes the SPI to start transferring data to and from the Tx/Rx buffers if they are prepared. For a slave, setting STR when the SPI is idle causes it to load the Tx data register from the SPI Tx buffer and start sending with the next SPICLK after SPISEL is asserted. STR is cleared automatically after one system clock cycle.
1–7	_	Reserved and should be cleared.

33.5 SPI Parameter RAM

The SPI parameter RAM area is similar to the SCC general-purpose parameter RAM. The CP accesses the SPI parameter table using a user-programmed pointer (SPI_BASE) located in the parameter RAM; see Section 13.5.2, "Parameter RAM." The SPI parameter table can be placed at any 64-byte aligned address in the dual-port RAM's general-purpose area (banks #1–#8). Some parameter values must be user-initialized before the SPI is enabled; the CP initializes the others. Once initialized, parameter RAM values do not usually need to be accessed. They should be changed only when the SPI is inactive. Table 33-5 shows the memory map of the SPI parameter RAM.

Offset ¹	Name	Width	Description					
0x00	RBASE	Hword	Rx/Tx BD table base address. Indicate where the BD tables begin in the dual-port RAM.					
0x02	TBASE	Hword	Setting Rx/TxBD[W] in the last BD in each BD table determines how many BDs are allocated for the Tx and Rx sections of the SPI. Initialize RBASE/TBASE before enabling the SPI. Furthermore, do not configure BD tables of the SPI to overlap any other active controller's parameter RAM. RBASE and TBASE should be divisible by eight.					
0x04	RFCR	Byte	Rx/Tx function code registers. The function code registers contain the transaction					
0x05	TFCR	Byte	specification associated with SDMA channel accesses to external memory. See Section 33.5.1, "Receive/Transmit Function Code Registers (RFCR/TFCR)."					

Table 33-5. SPI Parameter RAM Memory Map

Table 33-5. SPI Parameter RAM Memory	Map (Continued)
--------------------------------------	-----------------

Offset 1	Name	Width	Description
0x06	MRBLR	Hword	Maximum receive buffer length. The SPI has one MRBLR entry to define the maximum number of bytes the MPC8260 writes to a Rx buffer before moving to the next buffer. The MPC8260 can write fewer bytes than MRBLR if an error or end-of-frame occurs, but never exceeds the MRBLR value. User-supplied buffers should be no smaller than MRBLR. Tx buffers are unaffected by MRBLR and can have varying lengths; the number of bytes to be sent is programmed in TxBD[Data Length]. MRBLR is not intended to be changed while the SPI is operating. However it can be changed in a single bus cycle with one 16-bit move (not two 8-bit bus cycles back-to-back). The change takes effect when the CP moves control to the next RxBD. To guarantee the exact RxBD on which the change occurs, change MRBLR only while the SPI receiver is disabled. MRBLR should be greater than zero; it should be an even number if the character length of the data exceeds 8 bits.
0x08	RSTATE	Word	Rx internal state. ² Reserved for CP use.
0x0C	-	Word	The Rx internal data pointer ² is updated by the SDMA channels to show the next address in the buffer to be accessed.
0x10	RBPTR	Hword	RxBD pointer. Points to the current Rx BD being processed or to the next BD to be serviced when idle. After a reset or when the end of the BD table is reached, the CP initializes RBPTR to the RBASE value. Most applications should not modify RBPTR, but it can be updated when the receiver is disabled or when no Rx buffer is in use.
0x12	_	Hword	The Rx internal byte count ² is a down-count value that is initialized with the MRBLR value and decremented with every byte the SDMA channels write.
0x14	_	Word	Rx temp. ² Reserved for CP use.
0x18	TSTATE	Word	Tx internal state. ² Reserved for CP use.
0x1C	-	Word	The Tx internal data pointer ² is updated by the SDMA channels to show the next address in the buffer to be accessed.
0x20	TBPTR	Hword	TxBD pointer. Points to the current Tx BD during frame transmission or the next BD to be processed when idle. After reset or when the end of the Tx BD table is reached, the CP initializes TBPTR to the TBASE value. Most applications do not need to modify TBPTR, but it can be updated when the transmitter is disabled or when no Tx buffer is in use.
0x22	-	Hword	The Tx internal byte count ² is a down-count value initialized with TxBD[Data Length] and decremented with every byte read by the SDMA channels.
0x24	_	Word	Tx temp. ² Reserved for CP use.
0x34	_	Word	SDMA temp.

From the pointer value programmed in SPI_BASE at IMMR + 0x89FC.
 Normally, these parameters need not be accessed. They are listed to help experienced users in debugging.

33.5.1 Receive/Transmit Function Code Registers (RFCR/TFCR)

Figure 33-9 shows the fields in the receive/transmit function code registers (RFCR/TFCR)

Bit	0	1	2	3	4	5	6	7
Field	_		GBL	В	0	TC2	DTB	_
Reset	0000_0000							
R/W	R/W							
Addr	SPI Base + 04 (RFCR)/SPI Base + 05 (TFCR)							

Figure 33-9. RFCR/TFCR—Function Code Registers

Table 33-6 describes the RFCR/TFCR fields.

Table 33-6. RFCR/TFCR Field Descriptions

Bits	Name	Description
0–1	-	Reserved, should be cleared.
2	GBL	Global access bit 0 Disable memory snooping 0 Enable memory snooping
3–4	во	Byte ordering. Set BO to select the required byte ordering for the buffer. If BO is changed on-the-fly, it takes effect at the beginning of the next frame or BD. 00 True little-endian. Note this mode can only be used with 32-bit port size memory. 01 PowerPC little-endian. 1x Big-endian.
5	TC2	Transfer code 2. Contains the transfer code value of TC[2], used during this SDMA channel memory access. TC[0–1] is driven with a 0b11 to identify this SDMA channel access as a DMA-type access.
6	DTB	Data bus indicator. 0 Use 60x bus for SDMA operation. 1 Use local bus for SDMA operation.
7	_	Reserved, should be cleared.

33.6 SPI Commands

Table 33-7 lists transmit/receive commands sent to the CP command register (CPCR).

Table 33-7. SPI Commands

Command	Description
-	Initializes all transmit parameters in the parameter RAM to their reset state and should be issued only when the transmitter is disabled. The INIT TX AND RX PARAMETERS command can also be used to reset both the Tx and Rx parameters.
	Forces the SPI controller to close the current RxBD and use the next BD for subsequently received data. If the controller is not receiving data, no action is taken. Use this command to extract data from a partially full buffer.

Command	Description
	Initializes all receive parameters in the parameter RAM to their reset state. Should be issued only when the receiver is disabled. The INIT TX AND RX PARAMETERS command can also be used to reset both the Tx and Rx parameters.

Table 33-7. SPI Commands (Continued)

33.7 The SPI Buffer Descriptor (BD) Table

As shown in Figure 33-10, BDs are organized into separate RxBD and TxBD tables in dualport RAM. The tables have the same basic configuration as for the SCCs and SMCs and form circular queues that determine the order buffers are transferred. The CP uses BDs to confirm reception and transmission or to indicate error conditions so that the core knows buffers have been serviced. The buffers themselves can be placed in external memory or in any unused parameter area of the dual-port RAM.

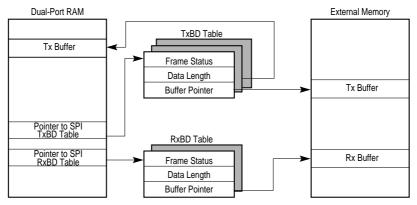


Figure 33-10. SPI Memory Structure

33.7.1 SPI Buffer Descriptors (BDs)

Receive and transmit BDs report information about each buffer transferred and whether a maskable interrupt should be generated. Each 64-bit BD, shown in Figure 33-11 and Figure 33-12, has the following structure:

- The half word at offset + 0 contains status and control bits. The CP updates the status bits after the buffer is sent or received.
- The half word at offset + 2 contains the data length (in bytes) that is sent or received.
 - For an RxBD, this is the number of octets the CP writes into this RxBD's buffer once the BD closes. The CP updates this field after the received data is placed into the buffer. Memory allocated for this buffer should be no smaller than MRBLR.
 - For a TxBD, this is the number of octets the CP should transmit from its buffer. Normally, this value should be greater than zero. If the character length is more

than 8 bits, the data length should be even. For example, to send three characters of 8-bit data, 1 start, and 1 stop, the data length field should be initialized to 3. However, to send three characters of 9-bit data, the data length field should be initialized to 6 since the three 9-bit data fields occupy three half-words in memory. The CP never modifies this field.

- The word at offset + 4 points to the beginning of the buffer.
 - For an RxBD, the pointer must be even and can point to internal or external memory.
 - For a TxBD, the pointer can be even or odd, unless the character exceeds 8 bits, for which it must be even. The buffer can be in internal or external memory.

33.7.1.1 SPI Receive BD (RxBD)

The CP uses RxBDs to report on each received buffer. It closes the current buffer, generates a maskable interrupt, and starts receiving data in the next buffer once the current buffer is full. The CP also closes the buffer when the SPI is configured as a slave and <u>SPISEL</u> is negated, indicating that reception stopped. The core should write RxBD bits before the SPI is enabled. The format of an RxBD is shown in Figure 33-11.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	Е	-	w	Т	L	_	СМ				_				OV	ME
Offset + 2	Data Length															
Offset + 4		Rx Buffer Pointer														
Offset + 6																

Figure 33-11. SPI RxBD

Table 33-8 describes the RxBD status and control fields.

Bits	Name	Description
0	E	 Empty. 0 The buffer is full or stopped receiving because of an error. The core can examine or write to any fields of this RxBD, but the CP does not use this BD while E = 0. 1 The buffer is empty or reception is in progress. The CP owns this RxBD and its buffer. Once E is set, the core should not write any fields of this RxBD.
1	_	Reserved, should be cleared.
2	w	 Wrap (last BD in table). 0 Not the last BD in the RxBD table. 1 Last BD in the RxBD table. After this buffer is used, the CP receives incoming data using the BD pointed to by RBASE (top of the table). The number of BDs in this table is determined only by the W bit and overall space constraints of the dual-port RAM.
3	I	Interrupt. 0 No interrupt is generated after this buffer is filled. 1 SPIE[RXB] is set when this buffer is full, indicating the need for the core to process the buffer. SPIE[RXB] causes an interrupt if not masked.

Bits	Name	Description
4	L	Last. Updated by the SPI when the buffer is closed because SPISEL was negated (slave mode only). Otherwise, RxBD[ME] is set. The SPI updates L after received data is placed in the buffer. 0 This buffer does not contain the last character of the message. 1 This buffer contains the last character of the message.
5	—	Reserved, should be cleared.
6	СМ	 Continuous mode. Master mode only; in slave mode, CM should be cleared. Normal operation. The CP does not clear RxBD[E] after this BD is closed; the buffer is overwritten when the CP next accesses this BD. This allows continuous reception from an SPI slave into one buffer for autoscanning of a serial A/D peripheral with no core overhead.
7–13	—	Reserved, should be cleared.
14	ov	Overrun. Set when a receiver overrun occurs during reception (slave mode only). The SPI updates OV after the received data is placed in the buffer.
15	ME	Multimaster error. Set when this buffer is closed because SPISEL was asserted when the SPI was in master mode. Indicates a synchronization problem between multiple masters on the SPI bus. The SPI updates ME after the received data is placed in the buffer.

Table 33-8. SPI RxBD Status and Control Field Descriptions (Continued)

33.7.1.2 SPI Transmit BD (TxBD)

Data to be sent with the SPI is sent to the CP by arranging it in buffers referenced by TxBDs in the TxBD table. TxBD fields should be prepared before data is sent. The format of an TxBD is shown in Figure 33-12.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	R	_	w	I	L	_	СМ				_				UN	ME
Offset + 2																
Offset + 4																
Offset + 6																

Figure 33-12. SPI TxBD

Table 33-9 describes the TxBD status and control fields.

Table 33-9. SPI TxBD Status and Control Field Descriptions

Bits	Name	Description
0	R	 Ready. 0 The buffer is not ready to be sent. This BD or its buffer can be modified. The CP clears R (unless RxBD[CM] is set) after the buffer is sent (unless RxBD[CM] is set) or an error occurs. 1 The buffer is ready for transmission or is being sent. The BD cannot be modified once R is set.
1	_	Reserved, should be cleared.

Table 33-9. SPI TxBD Status and Control Field Descriptions (Continued)							
Bits	Name	Description					

2	w	 Wrap (last BD in TxBD table). 0 Not the last BD in the table. 1 Last BD in the table. After this buffer is used, the CP receives incoming data using the BD pointed to by TBASE (top of the table). The number of BDs in this table is determined only by the W bit and overall space constraints of the dual-port RAM.
3	1	Interrupt. 0 No interrupt is generated after this buffer is processed. 1 SPIE[TXB] or SPIE[TXE] are set when this buffer is processed and causes interrupts if not masked.
4	L	Last. 0 This buffer does not contain the last character of the message. 1 This buffer contains the last character of the message.
5	-	Reserved, should be cleared.
6	СМ	Continuous mode. Valid only when the SPI is in master mode. In slave mode, it should be cleared. 0 Normal operation. 1 The CP does not clear TxBD[R] after this BD is closed, allowing the buffer to be resent automatically when the CP next accesses this BD.
7–13	_	Reserved, should be cleared.
14	UN	Underrun. Indicates that the SPI encountered a transmitter underrun condition while sending the buffer. This error occurs only when the SPI is in slave mode. The SPI updates UN after it sends the buffer.
15	ME	Multimaster error. Indicates that this buffer is closed because SPISEL was asserted when the SPI was in master mode. A synchronization problem occurred between devices on the SPI bus. The SPI updates ME after sending the buffer.

33.8 SPI Master Programming Example

The following sequence initializes the SPI to run at a high speed in master mode:

- 1. Configure port D to enable SPIMISO, SPIMOSI, SPICLK and SPISEL.
- 2. Configure a parallel I/O signal to operate as the SPI select output signal if needed.
- 3. In address 0x89FC, assign a pointer to the SPI parameter RAM.
- 4. Write RBASE and TBASE in the SPI parameter RAM to point to the RxBD and TxBD tables in the dual-port RAM. Assuming one RxBD followed by one TxBD at the beginning of the dual-port RAM, write RBASE with 0x0000 and TBASE with 0x0008.
- 5. Write RFCR and TFCR with 0x10 for normal operation.
- 6. Write MRBLR with the maximum number of bytes per Rx buffer. For this case, assume 16 bytes, so MRBLR = 0x0010.
- 7. Initialize the RxBD. Assume the Rx buffer is at 0x0000_1000 in main memory. Write 0xB000 to RxBD[Status and Control], 0x0000 to RxBD[Data Length] (optional), and 0x0000_1000 to RxBD[Buffer Pointer].

- 8. Initialize the TxBD. Assume the Tx buffer is at 0x0000_2000 in main memory and contains five 8-bit characters. Write 0xB800 to TxBD[Status and Control], 0x0005 to TxBD[Data Length], and 0x0000_2000 to TxBD[Buffer Pointer].
- 9. Execute the INIT RX AND TX PARAMETERS command by writing 0x2541_0000 to CPCR.
- 10. Write 0xFF to SPIE to clear any previous events.
- 11. Write 0x37 to SPIM to enable all possible SPI interrupts.
- 12. Write 0x0370 to SPMODE to enable normal operation (not loopback), master mode, SPI enabled, 8-bit characters, and the fastest speed possible.
- 13. Set SPCOM[STR] to start the transfer.

After 5 bytes are sent, the TxBD is closed. Additionally, the Rx buffer is closed after 5 bytes are received because TxBD[L] is set.

33.9 SPI Slave Programming Example

The following is an example initialization sequence to follow when the SPI is in slave mode. It is very similar to the SPI master example, except that <u>SPISEL</u> is used instead of a general-purpose I/O signal (as shown in Figure 33-2).

- 1. Enable SPIMISO, SPIMOSI, SPICLK, and SPISEL.
- 2. In address 0x89FC, assign a pointer to the SPI parameter RAM.
- 3. Assuming one RxBD at the beginning of the dual-port RAM followed by one TxBD, write RBASE with 0x0000 and TBASE with 0x0008 in the SPI parameter RAM.
- 4. Write RFCR and TFCR with 0x10 for normal operation.
- 5. Program MRBLR = 0x0010 for 16 bytes, the maximum number of bytes per buffer.
- 6. Initialize the RxBD. Assume the Rx buffer is at 0x0000_1000 in main memory. Write 0xB000 to RxBD[Status and Control], 0x0000 to RxBD[Data Length] (optional), and 0x0000_1000 to RxBD[Buffer Pointer].
- 7. Initialize the TxBD. Assume the Tx buffer is at 0x0000_2000 in main memory and contains five 8-bit characters. Write 0xB800 to TxBD[Status and Control], 0x0005 to TxBD[Data Length], and 0x0000_2000 to TxBD[Buffer Pointer].
- 8. Execute the INIT RX AND TX PARAMETERS command by writing 0x2541_0000 to CPCR.
- 9. Write 0xFF to SPIE to clear any previous events.
- 10. Write 0x37 to SPIM to enable all SPI interrupts.
- 11. Set SPMODE to 0x0170 to enable normal operation (not loopback), slave mode, SPI enabled, and 8-bit characters. BRG speed is ignored in slave mode.
- 12. Set SPCOM[STR] to enable the SPI to be ready once the master begins the transfer.

Note that if the master sends 3 bytes and negates SPISEL, the RxBD is closed but the TxBD

remains open. If the master sends 5 or more bytes, the TxBD is closed after the fifth byte. If the master sends 16 bytes and negates \overline{SPISEL} , the RxBD is closed without triggering an out-of-buffers error. If the master sends more than 16 bytes, the RxBD is closed (full) and an out-of-buffers error occurs after the 17th byte is received.

33.10 Handling Interrupts in the SPI

The following sequence should be followed to handle interrupts in the SPI:

- 1. Once an interrupt occurs, read SPIE to determine the interrupt source. Normally, SPIE bits should be cleared at this time.
- 2. Process the TxBD to reuse it and the RxBD to extract the data from it. To transmit another buffer, simply set TxBD[R], RxBD[E], and SPCOM[STR].
- 3. Execute an **rfi** instruction.

Chapter 34 I²C Controller

The inter-integrated circuit (I²C®) controller lets the MPC8260 exchange data with other I²C devices, such as microcontrollers, EEPROMs, real-time clock devices, A/D converters, and LCD displays. The I²C controller uses a synchronous, multimaster bus that can connect several integrated circuits on a board. It uses two signals—serial data (SDA) and serial clock (SCL)—to carry information between the integrated circuits connected to it.

As shown in Figure 34-1, the I²C controller consists of transmit and receive sections, an independent baud-rate generator (BRG), and a control unit. The transmit and receive sections use the same clock, which is derived from the I²C BRG when in master mode and generated externally when in slave mode. Wait states are inserted during a data transfer if SCL is held low by a slave device. In the middle of a data transfer, the master I²C controller recognizes the need for wait states by monitoring SCL. However, the I²C controller has no automatic time-out mechanism if the slave device does not release SCL; therefore, software should monitor how long SCL stays low to generate bus timeouts.

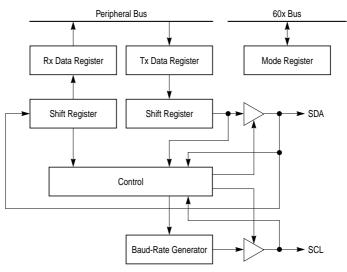


Figure 34-1. I²C Controller Block Diagram

Part IV. Communications Processor Module

The I²C receiver and transmitter are double-buffered, which corresponds to an effective two-character FIFO latency. In normal operation, the transmitter shifts the msb (bit 0) out first. When the I²C is not enabled in the I²C mode register (I2MOD[EN] = 0), it consumes little power.

34.1 Features

The following is a list of the I²C controller's main features:

- Two-signal interface (SDA and SCL)
- Support for master and slave I²C operation
- Multiple-master environment support
- Continuous transfer mode for automatic scanning of a peripheral
- Supports a maximum clock rate of 2,080 KHz (with a CPM utilization of 25%), assuming a 100-MHz system clock.
- Independent, programmable baud-rate generator
- Supports 7-bit I²C addressing
- Open-drain output signals allow multiple master configuration
- Local loopback capability for testing

34.2 I²C Controller Clocking and Signal Functions

The I²C controller can be configured as a master or slave for the serial channel. As a master, the controller's BRG provides the transfer clock. The I²C BRG takes its input from the BRG clock (BRGCLK), which is generated from the CPM clock; see Section 9.8, "System Clock Control Register (SCCR)."

SDA and SCL are bidirectional signals connected to a positive supply voltage through an external pull-up resistor. When the bus is free, both signals are pulled high. The general I^2C master/slave configuration is shown in Figure 34-2.

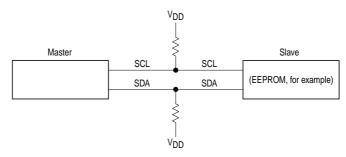


Figure 34-2. I²C Master/Slave General Configuration

When the I²C controller is master, the SCL clock output, taken directly from the I²C BRG, shifts receive data in and transmit data out through SDA. The transmitter arbitrates for the bus during transmission and aborts if it loses arbitration. When the I²C controller is a slave, the SCL clock input shifts data in and out through SDA. The SCL frequency can range from DC to BRGCLK/48.

34.3 I²C Controller Transfers

To initiate a transfer, the master I²C controller sends a message specifying a read or write request to an I²C slave. The first byte of the message consists of a 7-bit slave port address and a R/W request bit. Note that because the R/W request follows the slave port address in the I²C bus specification, the R/W request bit must be placed in the lsb (bit 7) unless operating in reverse data mode; see Section 34.4.1, "I2C Mode Register (I2MOD)."

To write to a slave, the master sends a write request (R/W = 0) along with either the target slave's address or a general call (broadcast) address of all zeros, followed by the data to be written. To read from a slave, the master sends a read request (R/W = 1) and the target slave's address. When the target slave acknowledges the read request, the transfer direction is reversed, and the master receives the slave's transmit buffer(s). If the receiver (master or slave) does not acknowledge each byte transfer in the ninth bit frame, the transmitter signals a transmission error event (I2ER[TXE]). An I²C transfer timing diagram is shown in Figure 34-3.

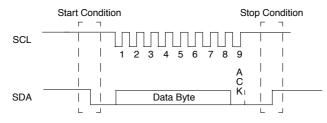


Figure 34-3. I²C Transfer Timing

Select master or slave mode for the controller using the I²C command register (I2COM[M/S]). Set the master's start bit, I2COM[STR], to begin a transfer; setting a slave's I2COM[STR] activates the slave to wait for a transfer request from a master.

If a master or slave transmitter's current TxBD[L] is set, transmission stops once the buffer is sent; that is, I2COM[STR] must be set again to reactivate transfers. If TxBD[L] is zero, once the current buffer is sent, the controller begins processing the next TxBD without waiting for I2COM[STR] to be set again.

The following sections further detail the transfer process.

34.3.1 I²C Master Write (Slave Read)

If the MPC8260 is the master, prepare the transmit buffers and BDs before initiating a write. Initialize the first transmit data byte with the slave address and write request (R/W = 0).

If the MPC8260 is the slave target of the write, prepare receive buffers and BDs to await the master's request. Figure 34-4 shows the timing for a master write.

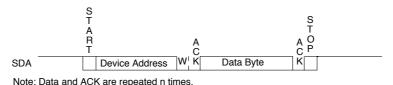


Figure 34-4. I²C Master Write Timing

A master write occurs as follows:

- 1. The master core sets I2COM[STR]. The transfer starts when the SDMA channel loads the Tx FIFO with data and the I²C bus is not busy.
- 2. The I²C master generates a start condition a high-to-low transition on SDA while SCL is high and the transfer clock SCL pulses for each bit shifted out on SDA. If the master transmitter detects a multiple-master collision (by sensing a '0' on SDA while sending a '1'), transmission stops and the channel reverts to slave mode. A maskable interrupt is sent to the master's core so software can try to retransmit later.
- 3. The slave acknowledges each byte and writes to its current receive buffer until a new start or stop condition is detected.
- 4. After sending each byte, the master monitors the acknowledge indication. If the slave receiver fails to acknowledge a byte, transmission stops and the master generates a stop condition—a low-to-high transition on SDA while SCL is high.

34.3.2 I²C Loopback Testing

When in master mode, an I²C controller supports loopback operation for master write requests. The master I²C controller simply issues a write request directed to its own address (programmed in I2ADD). The master's receiver monitors the transmission and reads the transmitted data into its receive buffer. Loopback operation requires no special register programming.

34.3.3 I²C Master Read (Slave Write)

Before initiating a master read with the MPC8260, prepare a transmit buffer of size n+1 bytes, where n is the number of bytes to be read from the slave. The first transmit byte should be initialized to the slave address with R/W = 1. The next n transmit bytes are used strictly for timing and can be left uninitialized. Configure suitable receive buffers and BDs to receive the slave's transmission.

If the MPC8260 is the slave target of the read, prepare the I²C transmit buffers and BDs and activate it by setting I2COM[STR]. Figure 34-5 shows the timing for a master read.

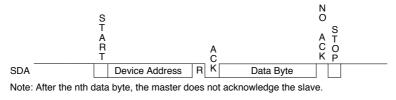


Figure 34-5. I²C Master Read Timing

A master read occurs as follows:

- 1. Set the master's I2COM[STR] to initiate the read. The transfer starts when the SDMA channel loads the transmit FIFO with data and the I²C bus is not busy.
- 2. The slave detects a start condition on SDA and SCL.
- 3. After the first byte is shifted in, the slave compares the received data to its slave address. If the slave is an MPC8260, the address is programmed in its I²C address register (I2ADD).
 - If a match is found, the slave acknowledges the received byte and begins transmitting on the clock pulse immediately following the acknowledge.
 - If a match is found but the slave is not ready, the read request is not acknowledged and the transaction is aborted. If the slave is an MPC8260, a maskable transmission error interrupt is triggered to allow software to prepare data for transmission on the next try.
 - If a mismatch occurs, the slave ignores the message and searches for a new start condition.
- 4. The master acknowledges each byte sent as long as an overrun does not occur. If the master receiver fails to acknowledge a byte, the slave aborts transmission. For a slave MPC8260, the abort generates a maskable interrupt. A maskable interrupt is also issued after a complete buffer is sent or after an error. If an underrun occurs, the MPC8260 slave sends ones until a stop condition is detected.

34.3.4 I²C Multi-Master Considerations

The I²C controller supports a multi-master configuration, in which the I²C controller must alternate between master and slave modes. The I²C controller supports this by implementing I²C master arbitration in hardware. However, due to the nature of the I²C bus and the implementation of the I²C controller, certain software considerations must be made.

Part IV. Communications Processor Module

An MPC8260 I²C controller attempting a master read request could simultaneously be targeted for an external master write (slave read). Both operations trigger the controller's I2CER[RXB] event, but only one operation wins the bus arbitration. To determine which operation caused the interrupt, software must verify that its transmit operation actually completed before assuming that the received data is the result of its read operation.

Problems could also arise if the MPC8260's I²C controller master sets up a transmit buffer and BD for a write request, but then is the target of a read request from another master. Without software precautions, the I²C controller responds to the other master with the transmit buffer originally intended for its own write request. To avoid this situation, a higher-level handshake protocol must be used. For example, a master, before reading a slave, writes the slave with a description of the requested data (which register should be read, for example). This operation is typical with many I²C devices.

34.4 I²C Registers

The following sections describe the I^2C registers.

34.4.1 I²C Mode Register (I2MOD)

The I²C mode register, shown in Figure 34-6, controls the I²C modes and clock source.

Bit	0	1	2	3	4	5	6	7			
Field	_		REVD	GCD	FLT	PDIV		EN			
Reset		0000_0000									
R/W		R/W									
Addr		0x11860									

Figure 34-6. I²C Mode Register (I2MOD)

Table 34-1 describes I2MOD bit functions.

Table 34-1. I2MOD Field Descriptions

Bits	Name	Description
0–1	-	Reserved and should be cleared.
2	REVD	Reverse data. Determines the Rx and Tx character bit order. 0 Normal operation. The msb (bit 0) of a character is transferred first. 1 Reverse data. the lsb (bit 7) of a character is transferred first. Note: Clearing REVD is strongly recommended to ensure consistent bit ordering across devices.
3	GCD	General call disable. Determines whether the receiver acknowledges a general call address. 0 General call address is enabled. 1 General call address is disabled.
4	FLT	Clock filter. Determines if the I ² C input clock SCL is filtered to prevent spikes in a noisy environment. 0 SCL is not filtered. 1 SCL is filtered by a digital filter.

Bits	Name	Description
5–6	PDIV	Predivider. Selects the clock division factor before it is input into the I ² C BRG. The clock source for the I ² C BRG is the BRGCLK generated from the CPM clock; see Section 9.8, "System Clock Control Register (SCCR)." 00 BRGCLK/32 01 BRGCLK/16 10 BRGCLK/4 11 BRGCLK/4 Note: To both save power and reduce noise susceptibility, select the PDIV with the largest division factor (slowest clock) that still meets performance requirements.
7	EN	Enable I^2C operation. 0 I^2C is disabled. The I^2C is in a reset state and consumes minimal power. 1 I^2C is enabled. Do not change other I2MOD bits when EN is set.

Table 34-1. I2MOD Field Descriptions (Continued)

34.4.2 I²C Address Register (I2ADD)

The I²C address register, shown in Figure 34-7, holds the address for this I²C port.

Bit	0	1	2	3	4	5	6	7			
Field	SAD										
Reset	0000_0000										
R/W		R/W									
Addr		0x11864									

Figure 34-7. I²C Address Register (I2ADD)

Table 34-2 describes I2CADD fields.

Table 34-2. I2ADD Field Descriptions

Bits	Name	Description
0–6	SAD	Slave address 0–6. Holds the slave address for the I ² C port.
7	-	Reserved and should be cleared.

34.4.3 I²C Baud Rate Generator Register (I2BRG)

The I²C baud rate generator register, shown in Figure 34-8, sets the divide ratio of the I²C BRG.

Bit	0	1	2	3	4	5	6	7		
Field	DIV									
Reset	1111_1111									
R/W		R/W								
Addr				0x11	1868					

Figure 34-8. I²C Baud Rate Generator Register (I2BRG)

Table 34-3 describes I2BRG fields.

Bits	Name	Description
0–7	DIV	Division ratio 0–7. Specifies the divide ratio of the BRG divider in the I^2C clock generator. The output of the prescaler is divided by 2 * ([DIV0–DIV7] + 3) and the clock has a 50% duty cycle. DIV must be programmed to a minimum value of 3 if the digital filter is disabled and 6 if it is enabled.

Table 34-3. I2BRG Field Descriptions

34.4.4 I²C Event/Mask Registers (I2CER/I2CMR)

The I²C event register (I2CER) is used to generate interrupts and report events. When an event is recognized, the I²C controller sets the corresponding I2CER bit. I2CER bits are cleared by writing ones; writing zeros has no effect. Setting a bit in the I²C mask register (I2CMR) enables and clearing a bit masks the corresponding interrupt. Unmasked I2CER bits must be cleared before the CP clears internal interrupt requests. Figure 34-9 shows both registers.

Bit	0	1	2	3	4	5	6	7		
Field		_		TXE	_	BSY	ТХВ	RXB		
Reset	0000_0000									
R/W	R/W									
Addr			0x1	1870(I2CER)	0x11874 I2C	MR)				

Figure 34-9. I²C Event/Mask Registers (I2CER/I2CMR)

Table 34-4 describes the I2CER/I2CMR fields.

Table 34-4. I2CER/I2CMR Field Descriptions

Bits	Name	Description
0–2	-	Reserved and should be cleared.
3	TXE	Tx error. Set when an error occurs during transmission.
4	-	Reserved and should be cleared.
5	BSY	Busy. Set after the first character is received but discarded because no Rx buffer is available.
6	ТХВ	Tx buffer. Set when the Tx data of the last character in the buffer is written to the Tx FIFO. Two character times must elapse to guarantee that all data has been sent.
7	RXB	Rx buffer. Set after the last character is written to the Rx buffer and the RxBD is closed.

34.4.5 I²C Command Register (I2COM)

The I²C command register, shown in Figure 34-10, is used to start I²C transfers and to select master or slave mode.

Bit	0	1	2	3	4	5	6	7			
Field	STR	-									
Reset		0000_0000									
R/W		R/W									
Addr				0x11	186C						

Figure 34-10. I²C Command Register (I2COM)

Table 34-5 describes I2COM fields.

Table 34-5. I2COM Field Descriptions

Bits	Name	Description
0	STR	Start transmit. In master mode, setting STR causes the l^2C controller to start sending data from the l^2C Tx buffers if they are ready. In slave mode, setting STR when the l^2C controller is idle causes it to load the Tx data register from the l^2C Tx buffer and start sending when it receives an address byte that matches the slave address with R/W = 1. STR is always read as a 0.
1–6	-	Reserved and should be cleared.
7	M/S	Master/slave. Configures the I^2C controller to operate as a master or a slave. 0 I^2C is a slave. 1 I^2C is a master.

34.5 I²C Parameter RAM

The I²C controller parameter table is used for the general I²C parameters and is similar to the SCC general-purpose parameter RAM. The CP accesses the I²C parameter table using a user-programmed pointer (I2C_BASE) located in the parameter RAM; see Section 13.5.2, "Parameter RAM." The I²C parameter table can be placed at any 64-byte aligned address in the dual-port RAM's general-purpose area (banks #1–#8). The user must initialize certain parameter RAM values before the I²C is enabled; the CP initializes the other values. Software usually does not access parameter RAM entries once they are initialized; they should be changed only when the I²C is inactive.

Offset 1	Name	Width	Description						
0x00	RBASE	Hword	x/TxBD table base address. Indicate where the BD tables begin in the dual-port RAM.						
0x02	TBASE	Hword	etting Rx/TxBD[W] in the last BD in each BD table determines how many BDs are llocated for the Tx and Rx sections of the I^2 C. Initialize RBASE/TBASE before enabling he I^2 C. Furthermore, do not configure BD tables of the I^2 C to overlap any other active ontroller's parameter RAM. IBASE and TBASE should be divisible by eight.						
0x04	RFCR	Byte	Rx/Tx function code registers. The function code registers contain the transaction						
0x05	TFCR	Byte	specification associated with SDMA channel accesses to external memory. See Figure 34-11 and Table 34-7.						

Table 34-6. I²C Parameter RAM Memory Map

Offset ¹	Name	Width	Description
0x06	MRBLR	Hword	Maximum receive buffer length. Defines the maximum number of bytes the MPC8260 writes to a Rx buffer before moving to the next buffer. The MPC8260 writes fewer bytes to the buffer than the MRBLR value if an error or end-of-frame occurs. Buffers should not be smaller than MRBLR. Tx buffers are unaffected by MRBLR and can vary in length; the number of bytes to be sent is specified in TxBD[Data Length]. MRBLR is not intended to be changed while the I ² C is operating. However it can be changed in a single bus cycle with one 16-bit move (not two 8-bit bus cycles back-to-back). The change takes effect when the CP moves control to the next RxBD. To guarantee the exact RxBD on which the change occurs, change MRBLR only while the I ² C receiver is disabled. MRBLR should be greater than zero; it should be an even number if the character length of the data exceeds 8 bits.
0x08	RSTATE	Word	Rx internal state. ² Reserved for CP use.
0x0C	RPTR	Word	Rx internal data pointer ² is updated by the SDMA channels to show the next address in the buffer to be accessed.
0x10	RBPTR	Hword	RxBD pointer. Points to the next descriptor the receiver transfers data to when it is in an idle state or to the current descriptor during frame processing for each I ² C channel. After a reset or when the end of the descriptor table is reached, the CP initializes RBPTR to the value in RBASE. Most applications should not write RBPTR, but it can be modified when the receiver is disabled or when no receive buffer is used.
0x12	RCOUNT	Hword	Rx internal byte count ² is a down-count value that is initialized with the MRBLR value and decremented with every byte the SDMA channels write.
0x14	RTEMP	Word	Rx temp. ² Reserved for CP use.
0x18	TSTATE	Word	Tx internal state. ² Reserved for CP use.
0x1C	TPTR	Word	Tx internal data pointer $^{\rm 2}$ is updated by the SDMA channels to show the next address in the buffer to be accessed.
0x20	TBPTR	Hword	TxBD pointer. Points to the next descriptor that the transmitter transfers data from when it is in an idle state or to the current descriptor during frame transmission. After a reset or when the end of the descriptor table is reached, the CP initializes TBPTR to the value in TBASE.Most applications should not write TBPTR, but it can be modified when the transmitter is disabled or when no transmit buffer is used.
0x22	TCOUNT	Hword	Tx internal byte count ² is a down-count value initialized with TxBD[Data Length] and decremented with every byte read by the SDMA channels.
0x24	TTEMP	Word	Tx temp. ² Reserved for CP use.

Table 34-6. I ² C Parar	neter RAM Memory	у Мар	(Continued)
------------------------------------	------------------	-------	-------------

¹From the pointer value programmed in I2C_BASE at IMMR + 0x8AFC.

²Normally, these parameters need not be accessed.

Bit	0	1	2	3	4	5	6	7			
Field			GBL	во		TC2	DTB	-			
Reset	0000_0000										
R/W		R/W									
Addr		I2C_BASE + 04 (RFCR)/I2C_BASE + 05 (TFCR)									

Figure 34-11 shows the RFCR/TFCR bit fields.

Figure 34-11. I²C Function Code Registers (RFCR/TFCR)

Table 34-7 describes the RFCR/TFCR bit fields.

Table 34-7. RFCR/TFCR Field Descriptions

Bits	Name	Description
0–1	-	Reserved, should be cleared.
2	GBL	Global access bit 0 Disable memory snooping 0 Enable memory snooping
3–4	во	Byte ordering. Set BO to select the required byte ordering for the buffer. If BO is changed on-the-fly, it takes effect at the beginning of the next frame or BD. 00 True little-endian. Note this mode can only be used with 32-bit port size memory. 01 PowerPC little-endian. 1x Big-endian.
5	TC2	Transfer code 2. Contains the transfer code value of TC[2], used during this SDMA channel memory access. TC[0–1] is driven with a 0b11 to identify this SDMA channel access as a DMA-type access.
6	DTB	Data bus indicator. 0 Use 60x bus for SDMA operation. 1 Use local bus for SDMA operation.
7	_	Reserved, should be cleared.

34.6 I²C Commands

The I^2C transmit and receive commands, shown in Table 34-8, are issued to the CP command register (CPCR).

Command	Description
INIT TX PARAMETERS	Initializes all transmit parameters in the parameter RAM to their reset state. Should be issued only when the transmitter is disabled. The INIT TX AND RX PARAMETERS command can also be used to reset both the Tx and Rx parameters.
CLOSE RXBD	Forces the I ² C controller to close the current Rx BD and use the next BD for subsequently received data. If the controller is not receiving data, no action is taken. Use this command to extract data from a partially full buffer.
INIT RX PARAMETERS	Initializes all receive parameters in the parameter RAM to their reset state. Should be issued only when the receiver is disabled. The INIT TX AND RX PARAMETERS command can also be used to reset both the Tx and Rx parameters.

Table 34-8. I²C Transmit/Receive Commands

34.7 The I²C Buffer Descriptor (BD) Table

As shown in Figure 34-12, buffer descriptors (BDs) are organized into separate RxBD and TxBD tables in dual-port RAM. The tables have the same basic configuration as for the SCCs and SMCs and form circular queues that determine the order buffers are transferred. The CP uses BDs to confirm reception and transmission or to indicate error conditions so that the core knows buffers have been serviced. The buffers themselves can be placed in external memory or in any unused parameter area of the dual-port RAM.

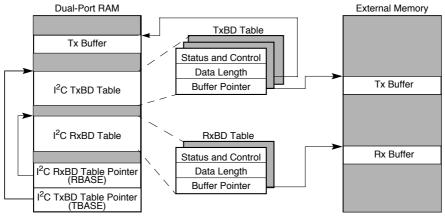


Figure 34-12. I²C Memory Structure

34.7.1 I²C Buffer Descriptors (BDs)

Receive and transmit buffer descriptors report information about each buffer transferred and whether a maskable interrupt should be generated. Each 64-bit BD, shown in Figure 34-13 and Figure 34-14, has the following structure:

- The half word at offset + 0 contains status and control bits. The CP updates the status bits after the buffer is sent or received.
- The half word at offset + 2 contains the data length (in bytes) that is sent or received.
 - For an RxBD, this is the number of octets the CP writes into this RxBD's buffer once the descriptor closes. The CP updates this field after the received data is placed into the associated buffer. Memory allocated for this buffer should be no smaller than MRBLR.
 - For a TxBD, this is the number of octets the CP should transmit from its buffer. Normally, this value should be greater than zero. The CP never modifies this field.
- The word at offset + 4 points to the beginning of the buffer.
 - For an RxBD, the pointer must be even and can point to internal or external memory.
 - For a TxBD, the pointer can be even or odd. The buffer can reside in internal or external memory.

34.7.1.1 I²C Receive Buffer Descriptor (RxBD)

Using RxBDs, the CP reports on each buffer received, closes the current buffer, generates a maskable interrupt, and starts receiving data in the next buffer when the current one is full. It closes the buffer when a stop or start condition is found on the I²C bus or when an overrun error occurs. The core should write RxBD bits before the I²C controller is enabled.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	Е	_	W	Ι	L					_					OV	—
Offset + 2		Data Length														
Offset + 4							RX	Buffe	r Poin	ter						
Offset + 6																

Figure 34-13. I²C RxBD

Table 34-9 describes I²C RxBD status and control bits.

Table 34-9. I²C RxBD Status and Control Bits

Bits	Name	Description
0	E	 Empty. 0 The buffer is full or stopped receiving because of an error. The core can examine or write to any fields of this RxBD, but the CP does not use this BD while E = 0. 1 The buffer is empty or reception is in progress. The CP owns this RxBD and its buffer. Once E is set, the core should not write any fields of this RxBD.
1	-	Reserved and should be cleared.
2	w	 Wrap (last BD in table). 0 Not the last BD in the RxBD table. 1 Last BD in the RxBD table. After this buffer is used, the CP receives incoming data using the BD pointed to by RBASE (top of the table). The number of BDs in this table is determined only by the W bit and overall space constraints of the dual-port RAM.
3	I	Interrupt. 0 No interrupt is generated after this buffer is full. 1 The I2CER[RXB] is set when the CP fills this buffer, indicating that the core needs to process the buffer. The RXB bit can cause an interrupt if it is enabled.
4	L	 Last. The I²C controller sets L. 0 This buffer does not contain the last character of the message. 1 This buffer holds the last character of the message. The I²C controller sets L after all received data is placed into the associated buffer, or because of a stop or start condition or an overrun.
5–13	_	Reserved and should be cleared.
14	OV	Overrun. Set when a receiver overrun occurs during reception. The I ² C controller updates this bit after the received data is placed into the associated buffer.
15	—	Reserved and should be cleared.

34.7.1.2 I²C Transmit Buffer Descriptor (TxBD)

Transmit data is arranged in buffers referenced by TxBDs in the TxBD table. The first word of the TxBD, shown in Figure 34-14, contains status and control bits.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Offset + 0	R		W	Т	L	s				_				NAK	UN	CL
Offset + 2		Data Length														
Offset + 4							Тх	Buffe	r Poin	ter						
Offset + 6																

Figure 34-14. I²C TxBD

Table 34-10 describes I²C TxBD status and control bits.

Table 34-10. I²C TxBD Status and Control Bits

Bits	Name	Description
0	R	 Ready. 0 The buffer is not ready to be sent. This BD or its buffer can be modified. The CP clears R after the buffer is sent or an error occurs. 1 The buffer is ready for transmission or is being sent. The BD cannot be modified once R is set.
1	-	Reserved and should be cleared.
2	w	 Wrap (last BD in TxBD table). 0 Not the last BD in the table. 1 Last BD in the table. After this buffer is used, the CP transmits data using the BD pointed to by TBASE (top of the table). The number of BDs in this table is determined only by the W bit and overall space constraints of the dual-port RAM.
3	I	Interrupt. 0 No interrupt is generated after this buffer is serviced. 1 I2CER[TXB] or I2CER[TXE] is set when the buffer is serviced. If enabled, an interrupt occurs.
4	L	Last. 0 This buffer does not contain the last character of the message. 1 This buffer contains the last character of the message. The I ² C controller generates a stop condition after sending this buffer.
5	S	Generate start condition. Provides ability to send back-to-back frames with one I2COM[STR] trigger. 0 Do not send a start condition before the first byte of the buffer. 1 Send a start condition before the first byte of the buffer. (Used to separate frames.) Note: If this BD is the first one in the frame when I2COM[STR] is triggered, a start condition is sent regardless of the value of TxBD[S].
6–12	—	Reserved and should be cleared.
13	NAK	No acknowledge. Indicates that the transmission was aborted because the last byte sent was not acknowledged. The I ² C controller updates NAK after the buffer is sent.
14	UN	Underrun. Indicates that the I ² C controller encountered a transmitter underrun condition while sending the associated buffer. The I ² C controller updates UN after the buffer is sent.
15	CL	Collision. Indicates that transmission terminated because the transmitter was lost while arbitrating for the bus. The I ² C controller updates CL after the buffer is sent.

Chapter 35 Parallel I/O Ports

The CPM supports four general-purpose I/O ports—ports A, B, C, and D. Each pin in the I/O ports can be configured as a general-purpose I/O signal or as a dedicated peripheral interface signal. Port C is unique in that 16 of its pins can generate interrupts to the interrupt controller.

Each pin can be configured as an input or output and has a latch for data output, read or written at any time, and configured as general-purpose I/O or a dedicated peripheral pin. Part of the pins can be configured as open-drain (the pin can be configured in a wired-OR configuration on the board). The pin drives a zero voltage but three-states when driving a high voltage.

Note that port pins do not have internal pull-up resistors. Due to the CPM's significant flexibility, many dedicated peripheral functions are multiplexed onto the ports. The functions are grouped to maximize the pins' usefulness in the greatest number of MPC8260 applications. The reader may not obtain a full understanding of the pin assignment capability described in this chapter without understanding the CPM peripherals.

35.1 Features

The following is a list of the parallel I/O ports' important features:

- Port A is 32 bits
- Port B is 28 bits
- Port C is 32 bits
- Port D is 28 bits
- All ports are bidirectional
- All ports have alternate on-chip peripheral functions
- All ports are three-stated at system reset
- All pin values can be read while the pin is connected to an on-chip peripheral
- Open-drain capability on some pins
- Port C offers 16 interrupt input pins

35.2 Port Registers

Each port has four memory-mapped, read/write, 32-bit control registers.

35.2.1 Port Open-Drain Registers (PODRA-PODRD)

The port open-drain register (PODR), shown in Figure 35-1, indicates a normal or wired-OR configuration of the port pins.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	OD0 ¹	OD1 ¹	OD2 ¹	OD3 ¹	OD4	OD5	OD6	OD7	OD8	OD9	OD10	OD11	OD12	OD13	OD14	OD15
Reset		0000_0000_0000														
R/W	R/W															
Addr	0x10D0C (PODRA), 0x10D2C (PODRB), 0x10D4C (PODRC), 0x10D6C (PODRD)															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	OD16	OD17	OD18	OD19	OD20	OD21	OD22	OD23	OD24	OD25	OD26	OD27	OD28	OD29	OD30	OD31
Reset							0000	_0000_	_0000_	0000						
R/W								R/	W							
Addr	0x10D0E (PODRA), 0x10D2E (PODRB), 0x10D4E (PODRC), 0x10D6E (PODRD)															

¹ These bits are valid for PODRA and PODRC only

Figure 35-1. Port Open-Drain Registers (PODRA-PODRD)

Table 35-1 describes PODR fields.

Table 35-1. PODRx Field Descriptions

Bits	Name	Description
0–31		Open-drain configuration. Determines whether the corresponding pin is actively driven as an output or is an open-drain driver. Note that bits OD0–OD3 are valid for PODRA and PODRC only. 0 The I/O pin is actively driven as an output. 1 The I/O pin is an open-drain driver. As an output, the pin is driven active-low, otherwise it is three-stated.

35.2.2 Port Data Registers (PDATA-PDATD)

A read of a port data register (PDATx), shown in Figure 35-2, returns the data at the pin, independent of whether the pin is defined as an input or output. This allows detection of output conflicts at the pin by comparing the written data with the data on the pin.

A write to the PDATx is latched and if the equivalent PDIR bit is configured as an output, the value latched for that bit is driven onto its respective pin. PDATx can be read or written at any time and is not initialized.

If a port pin is selected as a general-purpose I/O pin, it can be accessed through the port data register (PDATx). Data written to the PDATx is stored in an output latch. If a port pin is configured as an output, the output latch data is gated onto the port pin. In this case, when PDATx is read, the port pin itself is read. If a port pin is configured as an input, data written

to PDATx is still stored in the output latch, but is prevented from reaching the port pin. In this case, when PDATx is read, the state of the port pin is read.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	D0 ¹	D1 ¹	D2 ¹	D3 ¹	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
Reset		_														
R/W		R/W														
Addr	0x10D10 (PDATA), 0x10D30 (PDATB), 0x10D50 (PDATC), 0x10D70 (PDATD)															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	D16	D17	D18	D19	D20	D21	D22	D23	D24	D25	D26	D27	D28	D29	D30	D31
Reset								-	-							
R/W		R/W														
Addr			0x10	D12 (F	PDATA)	, 0x10[032 (PI	DATB),	0x10D	52 (PC	ATC),	0x10D	72 (PD	ATD)		

¹ These bits are valid for PDATA and PDATC only

Figure 35-2. Port Data Registers (PDATA-PDATD)

35.2.3 Port Data Direction Registers (PDIRA-PDIRD)

The port data direction register(PDIR), shown in Figure 35-3, is cleared at system reset.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	DR0 ¹	DR1 ¹	DR2 ¹	DR3 ¹	DR4	DR5	DR6	DR7	DR8	DR9	DR10	DR11	DR12	DR13	DR14	DR15
Reset	0000_0000_0000															
R/W	R/W															
Addr	0x10D00 (PDIRA), 0x10D20 (PDIRB), 0x10D40 (PDIRC), 0x10D60 (PDIRD)															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	DR16	DR17	DR18	DR19	DR20	DR21	DR22	DR23	DR24	DR25	DR26	DR27	DR28	DR29	DR30	DR31
Reset							0000	_0000_	_0000_	0000						
R/W	R/W															
Addr			0x	10D02	(PDIRA	(), 0x10	D22 (F	DIRB),	0x10D	42 (PD	IRC), 0	x10D62	2 (PDIF	RD)		

¹ These bits are valid for PDIRA and PDIRC only

Figure 35-3. Port Data Direction Register (PDIR)

Table 35-2 describes PDIR fields.

Table 35-2. PDIR Field Descriptions

Bits	Name	Description
0–31		Direction. Indicates whether a pin is used as an input or an output. Note that bits DR0–DR3 are valid for PDIRA and PDIRC only. 0 The corresponding pin is an input. 1 The corresponding pin is an output.

35.2.4 Port Pin Assignment Register (PPAR)

The port pin assignment register (PPAR) is cleared at system reset.

Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	DD0 ¹	DD1 ¹	DD2 ¹	DD3 ¹	DD4	DD5	DD6	DD7	DD8	DD9	DD10	DD11	DD12	DD13	DD14	DD15
Reset	0000_0000_0000															
R/W	R/W															
Addr	0x10D04 (PPARA), 0x10D24 (PPARB), 0x10D44 (PPARC), 0x10D64 (PPARD)															
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	DD16	DD17	DD18	DD19	DD20	DD21	DD22	DD23	DD24	DD25	DD26	DD27	DD28	DD29	DD30	DD31
Reset							0000	_0000_	_0000_	0000						
R/W	R/W															
Addr	0x10D06 (PPARA), 0x10D26 (PPARB), 0x10D46 (PPARC), 0x10D66 (PPARD)															

¹ These bits are valid for PPARA and PPARC only

Figure 35-4. Port Pin Assignment Register (PPARA-PPARD)

Table 35-2 describes PPAR*x* fields.

Table 35-3. PPAR Field Descriptions

Bits	Name	Description
0–31	DDx	 Dedicated enable. Indicates whether a pin is a general-purpose I/O or a dedicated peripheral pin. Note that bits DD0–DD3 are valid for PPARA and PPARC only. 0 General-purpose I/O. The peripheral functions of the pin are not used. 1 Dedicated peripheral function. The pin is used by the internal module. The on-chip peripheral function to which it is dedicated can be determined by other bits such as those is the PDIR.

35.2.5 Port Special Options Registers A–D (PSORA–PSORD)

Figure 35-5 shows the port special options registers (PSOR*x*).

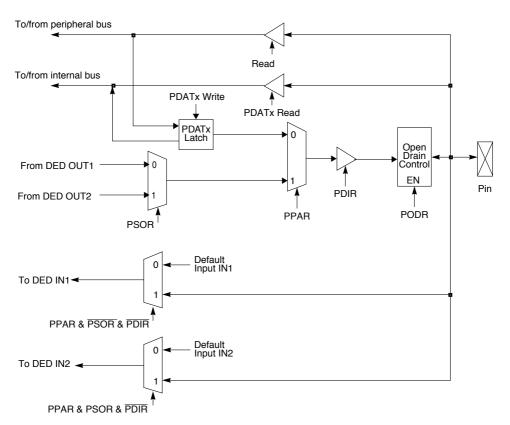
Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	SO0 ¹	SO1 ¹	SO2 ¹	SO3 ¹	SO4	SO5	SO6	S07	SO8	SO9	SO10	SO11	SO12	SO13	SO14	SO15
Reset							0000	_0000_	_0000_	0000						
R/W		R/W														
Addr		0x10D08 (PSORA), 0x10D28 (PSORB), 0x10D48 (PSORC), 0x10D68 (PSORD)														
Bits	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Field	SO16	SO17	SO18	SO19	SO20	SO21	SO22	SO23	SO24	SO25	SO26	SO27	SO28	SO29	SO30	SO31
Reset		0000_0000_0000														
R/W	R/W															
Addr			0x10E	00A (PS	SORA),	0x10D	92A (PS	SORB),	0x10D	4A (PS	SORC),	0x10D	6A (PS	SORD)		

¹ These bits are valid for PSORA and PSORC only

Figure 35-5. Special Options Registers (PSORA–POSRD)

PSOR bits are effective only if the corresponding PPARx[DDx] = 1 (a dedicated peripheral function). Table 35-4 describes PSORx fields.

Table 35-4. PSORx Field Descriptions


Bits	Name	Description
0–31	SOx	Special-option. Determines whether a pin configured for a dedicated function (PPARx[DDx] = 1) uses option 1 or option 2. Note that bits SOO–SO3 are valid for PSORA and PSORC only. Options are described in Section 35.2, "Port Registers." 0 Dedicated peripheral function. Option 1. 1 Dedicated peripheral function. Option 2.

NOTE

If the corresponding PPARx[DDx] = 1 (configured as a general-purpose pin) before programming a PSORx or PDIRx bit, a pin might function for a short period as an unwanted dedicated function and cause unknown behavior.

35.3 Port Block Diagram

Figure 35-6 shows the functional block diagram.

Register Name	0	1	Description
PPARx	General purpose	Dedicated	Port pin assignment
PSORx	Dedicated 1	Dedicated 2	Special operation
PDIRx	Input	Output	Direction ¹
PODRx	Regular	Open drain	
PDATx	0	1	Data

¹Bidirectional signals must be programmed as inputs (PDIR = 0).

Figure 35-6. Port Functional Operation

35.4 Port Pins Functions

Each pin can operate as a general purpose I/O pin or as a dedicated input or output pin.

35.4.1 General Purpose I/O Pins

Each one of the port pins is independently configured as a general-purpose I/O pin if the corresponding port pin assignment register (PPAR) bit is cleared. Each pin is configured as a dedicated on-chip peripheral pin if the corresponding PPAR bit is set. When the port pin is configured as a general-purpose I/O pin, the signal direction for that pin is determined by the corresponding control bit in the port data direction register (PDIR). The port I/O pin is configured as an input if the corresponding PDIR bit is cleared; it is configured as an output if the corresponding PDIR bit is set. All PPAR and PDIR bits are cleared on total system reset, configuring all port pins as general-purpose input pins.

If a port pin is selected as a general-purpose I/O pin, it can be accessed through the port data register (PDATx). Data written to the PDATx is stored in an output latch. If a port pin is configured as an output, the output latch data is gated onto the port pin. In this case, when PDATx is read, the port pin itself is read. If a port pin is configured as an input, data written to PDATx is still stored in the output latch, but is prevented from reaching the port pin. In this case, when PDATx is read, the state of the port pin is read.

35.4.2 Dedicated Pins

When a port pin is not configured as a general-purpose I/O pin, it has a dedicated functionality, as described in the following tables. Note that if an input to a peripheral is not supplied from a pin, a default value is supplied to the on-chip peripheral as listed in the right-most column.

NOTE

Some output functions can be output on 2 different pins. For example, the output for BRG1 can come out on both PC31 and PD19. The user can freely configure such functions to be output on two pins at once. However, there is typically no advantage in doing so unless there is a large fanout where it is advantageous to share the load between two pins.

Many input functions can also come from two different pins; see Section 35.5, "Ports Tables."

35.5 Ports Tables

Table 35-5 through Table 35-8 describe the ports functionality according to the configuration of the port registers (PPAR*x*, PSOR*x*, and PDIR*x*). Each pin can function as a general purpose I/O, one of two dedicated outputs, or one of two dedicated inputs.

As shown in Figure 35-7, some input functions can come from two different pins for flexibility. Secondary option programming is relevant only if primary option is programmed to the default value.

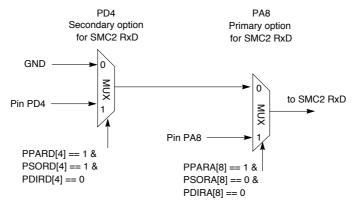


Figure 35-7. Primary and Secondary Option Programming

In the tables below, the default value for a primary option is simply a reference to the secondary option. In the secondary option, the programming is relevant only if the primary option is not used for the function.

Table 35-5 shows the port A pin assignments.

			inction			
Pin	Р	SORA = 0	PSORA = 1			
	PDIRA = 1 (Output)	PDIRA = 0 (Input)	Default Input	PDIRA = 1 (Output)	PDIRA = 0 (Input, or Inout if Specified)	Default Input
PA31	FCC1: TxEnb UTOPIA master	FCC1: TxEnb UTOPIA slave	GND		FCC1: COL MII	GND
PA30	FCC1: TxClav UTOPIA slave	FCC1: TxClav UTOPIA master FCC1: TxClav0 MPHY, master, direct polling	GND	FCC1: RTS	FCC1: CRS MII	GND
PA29	FCC1: TxSOC UTOPIA			FCC1:TX_ER MII		
PA28	FCC1: RxEnb UTOPIA master	FCC1: RxEnb UTOPIA slave	GND	FCC1:TX_EN MII		
PA27		FCC1: RxSOC UTOPIA	GND		FCC1: RX_DV MII	GND
PA26	FCC1: RxClav UTOPIA slave	FCC1: RxClav UTOPIA master FCC1: RxClav0 MPHY, master, direct polling	GND		FCC1: RX_ER MII	GND

Table 35-5. Port A—Dedicated Pin Assignment (PPARA = 1)

Pin	Pin Function									
	P	SORA = 0		PSORA = 1						
	PDIRA = 1 (Output)	PDIRA = 0 (Input)	Default Input	PDIRA = 1 (Output)	PDIRA = 0 (Input, or Inout if Specified)	Default Input				
PA25	FCC1: TxD[0] UTOPIA 8 FCC1: TxD[8] UTOPIA 16			MSNUM[0] ¹						
PA24	FCC1: TxD[1] UTOPIA 8 FCC1: TxD[9] UTOPIA 16			MSNUM[1] ¹						
PA23	FCC1: TxD[2] UTOPIA 8 FCC1: TxD[10] UTOPIA 16									
PA22	FCC1: TxD[3] UTOPIA 8 FCC1: TxD[11] UTOPIA 16									
PA21	FCC1: TxD[4] UTOPIA 8 FCC1: TxD[12] UTOPIA 16 FCC1: TxD[3] MII/HDLC/transp. nibble									
PA20	FCC1: TxD[5] UTOPIA 8 FCC1: TxD[13] UTOPIA 16 FCC1: TxD[2] MII/HDLC/transp nibble									
PA19	FCC1: TxD[6] UTOPIA 8 FCC1: TxD[14] UTOPIA 16 FCC1: TxD[1] MII/HDLC/transp nibble									

Table 35-5. Port A-Dedicated Pin Assignment (PPARA = 1) (Continued)

			Pin Fu	inction			
Pin	P	SORA = 0	PSORA = 1				
	PDIRA = 1 (Output)	PDIRA = 0 (Input)	Default Input	PDIRA = 1 (Output)	PDIRA = 0 (Input, or Inout if Specified)	Default Input	
PA18	FCC1: TxD[7] UTOPIA 8 FCC1: TxD[15] UTOPIA 16 FCC1: TxD[0] MII/HDLC/transp nibble FCC1: TxD HDLC/Transp						
PA17		FCC1: RxD[7] UTOPIA 8 FCC1: RxD[15] UTOPIA 16 FCC1: RxD[0] MII/HDLC/transp. nibble FCC1: RxD HDLC/transp.	GND				
PA16		FCC1: RxD[6] UTOPIA 8 FCC1: RxD[14] UTOPIA 16 FCC1: RxD[1] MII/HDLC/transp nibble	GND				
PA15		FCC1: RxD[5] UTOPIA 8 FCC1: RxD[13] UTOPIA 16 FCC1: RxD[2] MII/HDLC/transp nibble	GND				
PA14		FCC1: RxD[4] UTOPIA 8 FCC1: RxD[12] UTOPIA 16 FCC1: RxD[3] MII/HDLC/transp nibble	GND				
PA13		FCC1: RxD[3] UTOPIA 8 FCC1: RxD[11] UTOPIA 16	GND	MSNUM[2] ¹			

Table 35-5. Port A-Dedicated Pin Assignment (PPARA = 1) (Continued)

	Pin Function									
Pin	Р	SORA = 0		PSORA = 1						
	PDIRA = 1 (Output)	PDIRA = 0 (Input)	Default Input	PDIRA = 1 (Output)	PDIRA = 0 (Input, or Inout if Specified)	Default Input				
PA12		FCC1: RxD[2] UTOPIA 8 FCC1: RxD[10] UTOPIA 16	GND	MSNUM[3] ¹						
PA11		FCC1: RxD[1] UTOPIA 8 FCC1: RxD[9] FCC1 UTOPIA 16	GND	MSNUM[4] ¹						
PA10		FCC1: RxD[0] UTOPIA 8 FCC1: RxD[8] UTOPIA 16	GND	MSNUM[5] ¹						
PA9	SMC2: SMTXD			TDM_A1: L1TXD[0] Output		GND				
PA8		SMC2: SMRXD (primary option)	by PD4		TDM_A1: L1RXD[0] Input, nibble TDM_A1: L1RXD Inout, serial	GND				
PA7		SMC2: SMSYN (primary option)	by PC0		TDM_A1: L1TSYNC/ GRANT	GND				
PA6					TDM_A1: L1RSYNC	GND				
PA5	SCC2: RSTRT			FCC2: RxAddr[2] MPHY master	IDMA4: DREQ	GND				
PA4	FCC2: RxAddr[1] MPHY master	SCC2: REJECT	VDD		IDMA4: DONE Inout	VDD				
PA3	FCC2: RxAddr[0] MPHY master	CLK19	GND	IDMA4: DACK	TDM_A2: L1RXD[1] Nibble	GND				
PA2	FCC2: TxAddr[0] MPHY master	CLK20	GND	IDMA3: DACK						
PA1	FCC2: TxAddr[1] MPHY master	SCC1: REJECT	VDD		IDMA3: DONE Inout	VDD				
PA0	SCC1: RSTRT			FCC2: TxAddr[2] MPHY master	IDMA3: DREQ	GND				

¹MSNUM[0–4] is the sub-block code of the peripheral controller using SDMA; MSNUM[5] indicates which section, transmit or receive, is active during the transfer. See Section 18.2.4, "SDMA Transfer Error MSNUM Registers (PDTEM and LDTEM)."

Part IV. Communications Processor Module

Table 35-6 shows the port B pin assignments.

	Pin Function										
Pin		PSORB = 0	PSORB = 1								
	PDIRB = 1 (Output)	PDIRB = 0 (Input)	Default Input	PDIRB = 1 (Output)	PDIRB = 0 (Input or Inout if Specified)	Default Input					
PB31	FCC2: TX_ER MII	FCC2: RxSOC UTOPIA	GND		TDM_B2: L1TXD Inout	GND					
PB30	FCC2: TxSOC UTOPIA	FCC2: RX_DV MII	GND		TDM_B2: L1RXD Inout	GND					
PB29	FCC2: RxClav UTOPIA slave	FCC2: RxClav UTOPIA master	GND	FCC2: TX_EN MII	TDM_B2:L1RSYNC	GND					
PB28	FCC2: RTS	FCC2: RX_ER MII	GND	SCC1:TXD	TDM_B2: L1TSYNC/GRANT	GND					
PB27	FCC2: TxD[0] UTOPIA 8	FCC2: COL MII	GND		TDM_C2: L1TXD Inout	GND					
PB26	FCC2: TxD[1] UTOPIA 8	FCC2: CRS MII	GND		TDM_C2: L1RXD Inout	GND					
PB25	FCC2: TxD[4] UTOPIA 8 FCC2: TxD[3] MII/HDLC/transp. nibble			TDM_A1: L1TXD[3] Nibble	TDM_C2: L1TSYNC/GRANT	GND					
PB24	FCC2: TxD[5] UTOPIA 8 FCC2: TxD[2] MII/HDLC/transp. nibble	TDM_A1: L1RXD[3] Nibble	GND		TDM_C2:L1RSYNC	GND					
PB23	FCC2: TxD[6] UTOPIA FCC2: TxD[1] MII/HDLC/transp. nibble	TDM_A1: L1RXD[2] Nibble	GND		TDM_D2: L1TXD Inout	GND					
PB22	FCC2: TxD[7] UTOPIA FCC2: TxD[0] MII/HDLC/transp. nibble FCC2: TxD HDLC/transp. serial	TDM_A1: L1RXD[1] Nibble	GND		TDM_D2: L1RXD Inout	GND					
PB21		FCC2: RxD[7] UTOPIA 8 FCC2: RxD[0] MII/HDLC/transp. nibble FCC2: RxD HDLC/transp serial	GND	TDM_A1: L1TXD[2] Nibble	TDM_D2: L1TSYNC/GRANT	GND					

	Pin Function									
Pin		PSORB = 0	PSORB = 1							
	PDIRB = 1 (Output)	PDIRB = 0 (Input)	Default Input	PDIRB = 1 (Output)	PDIRB = 0 (Input or Inout if Specified)	Default Input				
PB20		FCC2: RxD[6] UTOPIA 8 FCC2: RxD[1] MII/HDLC/transp. nibble	GND	TDM_A1-L1TXD[1] Nibble	TDM_D2:L1RSYNC	GND				
PB19		FCC2: RxD[5] UTOPIA 8 FCC2: RxD[2] MII/HDLC/transp. nibble	GND	TDM_D2: L1RQ	TDM_A2: L1RXD[3] Nibble	GND				
PB18		FCC2: RxD[4] UTOPIA 8 FCC2: RxD[3] MII/HDLC/transp. nibble	GND	TDM_D2: L1CLKO	TDM A2: L1RXD[2] Nibble	GND				
PB17	TDM_A1: L1RQ	FCC3: RX_DV MII	GND		CLK17	GND				
PB16	TDM_A1: L1CLKO	FCC3: RX_ER MII	GND		CLK18	GND				
PB15	FCC3: TX_ER MII	SCC2: RXD (primary option)	by PD28		TDM_C1: L1TXD Inout (primary option)	by PD28				
PB14	FCC3: TX_EN MII	SCC3: RXD (primary option)	by PD25		TDM_C1: L1RXD Inout (primary option)	by PD27				
PB13	TDM_B1: L1RQ	FCC3: COL MII	GND	TDM_A2: L1TXD[1] Nibble	TDM_C1: L1TSYNC/GRANT (primary option)	by PD16				
PB12	TDM_B1: L1CLKO	FCC3: CRS MII	GND	SCC2:TXD	TDM_C1: L1RSYNC (primary option)	by PD26				
PB11	FCC2: TxD[0] UTOPIA 8	FCC3: RxD[3] MII/HDLC/transp. nibble	GND		TDM_D1: L1TXD Inout (primary option)	by PD25				
PB10	FCC2: TxD[1] UTOPIA 8	FCC3: RxD[2] MII/HDLC/transp. nibble	GND		TDM_D1: L1RXD Inout (primary option)	by PD24				
PB9	FCC2: TxD[2] UTOPIA 8	FCC3: RxD[1] MII/HDLC/transp. nibble	GND	TDM_A2: L1TXD[2] Nibble	TDM_D1: L1TSYNC/GRANT (primary option)	by PD4				
PB8	FCC2: TxD[3] UTOPIA 8	FCC3: RxD[0] MII/HDLC/transp. nibble FCC3: RxD HDLC/transp. serial	GND	SCC3: TXD	TDM_D1: L1RSYNC (primary option)	by PD23				

Table 35-6. Port B Dedie	cated Pin Assignment	t (PPARB = 1) (Continued)
--------------------------	----------------------	---------------------------

			Pin Fun	ction		
Pin	PSORB = 0			PSORB = 1		
	PDIRB = 1 (Output)	PDIRB = 0 (Input)	Default Input	PDIRB = 1 (Output)	PDIRB = 0 (Input or Inout if Specified)	Default Input
PB7	FCC3: TXD[0] MII/HDLC/transp. nibble FCC3: TXD HDLC/transp. serial	FCC2: RxD[3] UTOPIA 8 (primary option)	by PC10	TDM_A2: L1TXD[0] Output, nibble	TDM_A2: L1TXD Inout, serial (primary option)	by PD22
PB6	FCC3: TXD[1] MII/HDLC/transp. nibble	FCC2: RxD[2] UTOPIA 8 (primary option)	by PC11		TDM_A2: L1RXD Inout, serial TDM_A2: L1RXD[0] Input, nibble (primary option)	by PD21
PB5	FCC3: TXD[2] MII/HDLC/transp. nibble	FCC2: RxD[1] UTOPIA 8 (primary option)	by PD10		TDM_A2: L1TSYNC/GRANT (primary option)	by PC9
PB4	FCC3: TXD[3] MII/HDLC/transp. nibble	FCC2: RxD[0] UTOPIA 8 (primary option)	by PD11	FCC3: RTS	TDM_A2: L1RSYNC (primary option)	by PD20

Table 35-6. Port B Dedicated Pin Assignment (PPARB = 1) (Continued)

Table 35-7 shows the port C pin assignments.

Table 35-7. Port C Dedicated Pin Assignment (PPARC = 1)

	Pin Function			unction		
PIN	PSORC = 0			PSORC = 1		
	PDIRC = 1 (Output)	PDIRC = 0 (Input)	Default Input	PDIRC = 1 (Output)	PDIRC = 0 (Input or Inout if Specified)	Default Input
PC31	BRG1: BRGO	CLK1	CLK5			
PC30	FCC2: TxD[3] UTOPIA 8	CLK2	CLK6	Timer1:TOUT		
PC29	BRG2: BRGO	CLK3/TIN2	CLK7		SCC1: CTS ¹ SCC1: CLSN ¹ Ethernet (secondary option)	GND
PC28	Timer2: TOUT	CLK4/TIN1	CLK8		SCC2: CTS ¹ SCC2: CLSN ¹ Ethernet (secondary option)	GND
PC27	FCC3: TxD HDLC/transp. serial FCC3: TxD[0] MII/HDLC/transp. nibble	CLK5	GND	BRG3: BRGO		

	Pin Function					
PIN	PSORC = 0			PSORC = 1		
	PDIRC = 1 (Output)	PDIRC = 0 (Input)	Default Input	PDIRC = 1 (Output)	PDIRC = 0 (Input or Inout if Specified)	Default Input
PC26	Timer3: TOUT	CLK6	GND		TMCLK real-time counter	BRGO1
PC25	FCC2: TxD[2] UTOPIA 8	CLK7	GND	BRG4: BRGO		
PC24	FCC2: TxD[3] UTOPIA 8	CLK8	GND	Timer4: TOUT		
PC23	BRG5: BRGO	CLK9	CLK13	IDMA1: DACK		
PC22		CLK10	CLK14		IDMA1: DONE Inout (primary option)	by PD5
PC21	BRG6: BRGO	CLK11	CLK15			
PC20		CLK12	CLK16		timer1/2: TGATE1	GND
PC19	BRG7: BRGO	CLK13	GND			
PC18		CLK14	GND		timer3/4: TGATE2	GND
PC17	BRG8: BRGO	CLK15/TIN4	GND			
PC16		CLK16/TIN3	GND			
PC15	SMC2: SMTXD	SCC1: CTS SCC1: CLSN Ethernet (primary option)	by PC5	FCC1: TxAddr[0] MPHY, master	FCC1: TxAddr[0] ² MPHY, slave FCC2: TxAddr[4] MPHY, slave	GND
PC14		SCC1: CD SCC1: RENA Ethernet	GND	FCC1: RxAddr[0] MPHY, master	FCC1: RxAddr[0] ² MPHY, slave FCC2: RxAddr[4] MPHY, slave	GND
PC13	TDM_D1: L1RQ	SCC2: CTS SCC2: CLSN Ethernet (primary option)	by PC4	FCC1: TxAddr[1] MPHY, master	FCC1: TxAddr[1] ² MPHY, slave FCC2: TxAddr[3] MPHY, slave	GND
PC12	SI1: L1ST3	SCC2: CD SCC2: RENA Ethernet	GND	FCC1: RxAddr[1] MPHY, master	FCC1: RxAddr[1] ² MPHY, slave FCC2: RxAddr[3] MPHY, slave	GND
PC11	TDM_D1: L1CLKO	SCC3: CTS SCC3: CLSN ¹ Ethernet (primary option)	by PC8	TDM_A2: L1TXD[3] Nibble	FCC2: RxD[2] ¹ UTOPIA 8 (secondary option)	GND

Table 35-7. Port C Dedicated Pin Assignment (PPARC = 1) (Continued)

	Pin Function					
PIN	PSORC = 0		PSORC = 1			
	PDIRC = 1 (Output)	PDIRC = 0 (Input)	Default Input	PDIRC = 1 (Output)	PDIRC = 0 (Input or Inout if Specified)	Default Input
PC10	FCC1: TxD[2] UTOPIA 16	SCC3: CD SCC3: RENA Ethernet	GND	SI1: L1ST4 strobe	FCC2: RxD[3] ¹ UTOPIA (secondary option)	GND
PC9	FCC1:TxD[1] UTOPIA 16	SCC4: CTS SCC4: CLSN Ethernet (primary option)	by PC3	SI2: L1ST1 strobe	TDM_A2: L1TSYNC/ GRANT ¹ (secondary option)	GND
PC8	FCC1: TxD[0] UTOPIA 16	SCC4: CD SCC4: RENA Ethernet	GND	SI2: L1ST2 Strobe	SCC3: CTS ¹ (secondary option)	GND
PC7	TDM_C1: L1RQ	FCC1: CTS	GND	FCC1: TxAddr[2] MPHY master, multiplexed: polling	FCC1: TxAddr[2] ² MPHY, slave, multiplexed polling FCC1: TxClav1 ² MPHY, master, direct polling FCC2: TxAddr[2] MPHY, slave, multiplexed polling	GND
PC6	TDM_C1: L1CLKO	FCC1: CD	GND	FCC1: RxAddr[2] MPHY, master, multiplexed polling	FCC1: RxAddr[2] ² MPHY, slave, multiplexed polling) FCC1: RxClav1 ² MPHY, master, direct polling FCC2: RxAddr[2] MPHY, slave, multiplexed polling	GND
PC5	FCC2: TxClav UTOPIA, slave	FCC2: TxClav UTOPIA, master	GND	SI2: L1ST3 Strobe	FCC2: CTS	GND
PC4	FCC2: RxEnb UTOPIA, master	FCC2: RxEnb UTOPIA, slave	GND	SI2: L1ST4 Strobe	FCC2: CD	GND
PC3	FCC2: TxD[2] UTOPIA 8	FCC3: CTS	GND	IDMA2: DACK	SCC4: CTS ¹ (secondary option)	GND
PC2	FCC2: TxD[3] UTOPIA 8	FCC3: CD	GND		IDMA2: DONE Inout	V _{DD}
PC1	BRG6: BRGO	IDMA2: DREQ	GND	TDM_A2: L1RQ		
PC0	BRG7: BRGO	IDMA1: DREQ	GND	TDM_A2: L1CLKO	SMC2: SMSYN ¹ (secondary option)	GND

Table 35-7. Port C Dedicated Pin Assignment	(PPARC = 1) (Continued)
---	-------------------------

¹Available only when the primary option for this function is not used.

²MPHY Address pins 3,4 (master mode) can come from FCC2, depending on CMXUAR programming. (See Section 15.4.1, "CMX UTOPIA Address Register (CMXUAR)."). Table 35-8 shows the port D pin assignments.

	Pin Function									
Pin	P	SORD = 0	PSORD = 1							
	PDIRD = 1 (Output)	PDIRD = 0 (Input)	Default Input	PDIRD = 1 (Output)	PDIRD = 0 (Input, or Inout if Specified)	Default Input				
PD31		SCC1: RXD	GND							
PD30	FCC2: TxEnb UTOPIA master	FCC2: TxEnb UTOPIA slave	GND	SCC1: TXD						
PD29	SCC1: RTS SCC1: TENA Ethernet			FCC1: RxAddr[3] ¹ MPHY, master, multiplexed polling FCC2: RxAddr[4] MPHY, master, multiplexed polling	FCC1: RxAddr[3] ² MPHY, slave, multiplexed polling FCC1: RxClav2 ² MPHY, master, direct polling FCC2: RxAddr[1] MPHY, slave, multiplexed polling	GND				
PD28	FCC1: TxD[7] UTOPIA 16 bit	SCC2: RXD ³ (secondary option)	GND		TDM_C1: L1TXD ³ Inout (secondary option)	GND				
PD27	SCC2: TXD	FCC1: RxD[7] UTOPIA 16	GND		TDM_C1: L1RXD ³ Inout (secondary option)	GND				
PD26	SCC2: RTS SCC2: TENA Ethernet	FCC1: RxD[6] UTOPIA 16	GND		TDM_C1: L1RSYNC ³ (secondary option)	GND				
PD25	FCC1: TxD[6] UTOPIA 16	SCC3: RXD ³ (secondary option)	GND		TDM_D1: L1TXD ³ Inout (secondary option)	GND				
PD24	SCC3: TXD	FCC1: RxD[5] UTOPIA 16	GND		TDM_D1: L1RXD ³ Inout (secondary option)	GND				
PD23	SCC3: RTS SCC3: TENA Ethernet	FCC1: RxD[4] UTOPIA 16	GND		TDM_D1: L1RSYNC ³ (secondary option)	GND				
PD22	FCC1: TxD[5] UTOPIA 16	SCC4: RXD	GND	TDM_A2: L1TXD[0] ³ Output, nibble (secondary option)	TDM_A2: L1TXD ³ Inout, serial (secondary option)	GND				
PD21	SCC4: TXD	FCC1: RxD[3] UTOPIA 16	GND		TDM_A2: L1RXD ³ Inout, serial TDM_A2: L1RXD[0] ³ Input, nibble (secondary option)	GND				

Table 35-8. Port D Dedicated Pin Assignment (PPARD = 1)

	Pin Function										
Pin	P	SORD = 0	PSORD = 1								
PIN	PDIRD = 1 (Output)	PDIRD = 0 (Input)	Default Input	PDIRD = 1 (Output)	PDIRD = 0 (Input, or Inout if Specified)	Default Input					
PD20	SCC4: RTS SCC4: TENA Ethernet	FCC1: RxD[2] UTOPIA 16	GND		TDM_A2: L1RSYNC ³ (secondary option)	GND					
PD19	FCC1:TxAddr[4] ¹ MPHY, master, multiplexed polling FCC2:TxAddr[3] MPHY, master, multiplexed polling	FCC1: TxAddr[4] ² MPHY, slave, multiplexed polling FCC1: TxClav3 ² MPHY, master, direct polling FCC2: TxAddr[0] MPHY, slave, multiplexed polling	GND	BRG1: BRGO	SPI: SPISEL	V _{DD}					
PD18	FCC1: RxAddr[4] ¹ MPHY, master, multiplexed polling FCC2: RxAddr[3] MPHY, master, multiplexed polling	FCC1: RxAddr[4] ² MPHY, slave, multiplexed polling FCC1: RxClav3 ² MPHY, master, direct polling FCC2: RxAddr[0] MPHY, slave, multiplexed polling	GND		SPI: SPICLK Inout	GND					
PD17	BRG2: BRGO	FCC1: RxPrty UTOPIA	GND		SPI: SPIMOSI Inout	V _{DD}					
PD16	FCC1: TxPrty UTOPIA	TDM_C1: L1TSYNC/ GRANT ³ (secondary option)	GND		SPI: SPIMISO Inout	SPIMO SI					
PD15	TDM_C2: L1RQ	FCC1: RxD[1] UTOPIA 16	GND		I2C: I2CSDA Inout	V _{DD}					
PD14	TDM_C2: L1CLKO	FCC1: RxD[0] UTOPIA 16	GND		I2C: I2CSCL Inout	GND					
PD13	SI1: L1ST1				TDM_B1: L1TXD Inout	GND					
PD12	SI1: L1ST2				TDM_B1: L1RXD Inout	GND					
PD11	TDMB2: L1RQ	FCC2: RxD[0] ³ UTOPIA 8 (secondary option)	GND		TDM_B1: L1TSYNC/ GRANT	GND					
PD10	TDMB2: L1CLKO	FCC2: RxD[1] ³ UTOPIA 8 (secondary option)	GND	BRG4: BRGO	TDM_B1: L1RSYNC	GND					
PD9	SMC1: SMTXD			BRG3: BRGO	FCC2: RxPrty UTOPIA	GND					

Table 35-8. Port D Dedicated Pin Assignment (PPARD = 1) (Continued)

	Pin Function								
Pin	P	SORD = 0	PSORD = 1						
	PDIRD = 1 (Output)	PDIRD = 0 (Input)	Default Input	PDIRD = 1 (Output)	PDIRD = 0 (Input, or Inout if Specified)	Default Input			
PD8	FCC2: TxPrty UTOPIA	SMC1: SMRXD	GND	BRG5: BRGO					
PD7		SMC1: SMSYN	GND	FCC1: TxAddr[3] ¹ MPHY, master, multiplexed polling FCC2: TxAddr[4] MPHY, master, multiplexed polling	FCC1: TxAddr[3] ² MPHY, slave, multiplexed polling FCC1: TxClav2 ² MPHY, master, direct polling FCC2: TxAddr[1] MPHY, slave, multiplexed polling	GND			
PD6	FCC1: TxD[4] UTOPIA 16			IDMA1: DACK					
PD5	FCC1: TxD[3] UTOPIA 16				IDMA1: DONE ³ Inout (secondary option)	V _{DD}			
PD4	BRG8: BRGO	TDM_D1: L1TSYNC/ GRANT ³ (secondary option)	GND	FCC3: RTS	SMC2: SMRXD ³ (secondary option)	GND			

Table 35-8. Port D Dedicated Pin	Assignment (PPARD =	1) (Continued)
----------------------------------	---------------------	----------------

¹MPHY address pins 3 and 4 (master mode) can come from FCC2, depending on CMXUAR programming. (See Section 15.4.1, "CMX UTOPIA Address Register (CMXUAR).")

²MPHY address pins 0–4 (slave mode) can come from FCC2, depending on CMXUAR programming. (See Section 15.4.1, "CMX UTOPIA Address Register (CMXUAR).")

³Available only when the primary option for this function is not used.

35.6 Interrupts from Port C

The port C lines associated with \overline{CDx} and \overline{CTSx} have a mode of operation where the pin can be internally connected to the SCC/FCC but can also generate interrupts. Port C still detects changes on the \overline{CTS} and \overline{CD} pins and asserts the corresponding interrupt request, but the SCC/FCC simultaneously uses \overline{CTS} and/or \overline{CD} to automatically control operation. This lets the user fully implement protocols V.24, X.21, and X.21 bis (with the assistance of other general-purpose I/O lines).

To configure a port C pin as a $\overline{\text{CTS}}$ or $\overline{\text{CD}}$ pin that connects to the SCC/FCC and generates interrupts, these steps should be followed:

- 1. Write the corresponding PPARC bit with a 1 and PSORC bit with 0.
- 2. Write the corresponding PDIRC bit with a zero.
- 3. Set the SIEXR bit (in the interrupt controller) to determine which edges cause interrupts.

- 4. Write the corresponding SIMR (mask register) bit with a 1 to allow interrupts to be generated to the core.
- 5. The pin value can be read at any time using PDATC.

Note

After connecting $\overline{\text{CTS}}$ or $\overline{\text{CD}}$ to the SCC/FCC, the user must also choose the normal operation mode in GSMR[DIAG] to enable and disable SCC/FCC transmission and reception with these pins.

The IDMA-DREQ lines in ports C can assert an external request to the CP instead of asserting an interrupt to the core. Each line can be programmed to assert an interrupt request upon a high-to-low change or any change as configured in SIEXR.

Note

Do not program the IDMA*x*-DREQ pins to assert external requests to the IDMA, unless the IDMA is used. Otherwise, erratic operation occurs.

Appendix A Register Quick Reference Guide

This section provides a brief guide to the core registers.

A.1 PowerPC Registers—User Registers

The implements the user-level registers defined by the PowerPC architecture except those required for supporting floating-point operations (the floating-point register file (FPRs) and the floating-point status and control register (FPSCR)). User-level, PowerPC registers are listed in Table A-1 and Table A-2. Table A-2 lists user-level special-purpose registers (SPRs).

Description	Name	Comments	Access Level	Serialize Access
General-purpose registers	GPRs	The thirty-two 32-bit (GPRs) are used for source and destination operands. See the Programming Environments Manual for more information.	User	-
Condition register	CR	See the Programming Environments Manual	User	Only mtcrf

Table A-1. User-Level PowerPC Registers (Non-SPRs)

Table A-2 lists SPRs defined by the PowerPC architecture implemented on the MPC8260.

Table A-2. User-Level PowerPC SPRs

	SPR Number		Name	Comments	Serialize Access	
Decimal	SPR [5–9]	SPR [0-4]	Name	Comments	Sendilze Access	
1	00000	00001	XER	See the Programming Environments Manual	Write: Full sync Read: Sync relative to load/store operations	
8	00000	01000	LR	See the Programming Environments Manual	No	
9	00000	01001	CTR	See the Programming Environments Manual	No	
268	01000	01100	TBL read ¹	See the Programming	Write (as a store)	
269	01000	01101	TBU read ²	Environments Manual		

¹ Extended opcode for **mftb**, 371 rather than 339.

² Any write (mtspr) to this address causes an implementation-dependent software emulation exception.

A.2 PowerPC Registers—Supervisor Registers

All supervisor-level registers implemented on the MPC8260 are SPRs, except for the machine state register (MSR), described in Table A-3.

Description	Name	Comments	Serialize Access
Machine state register	MSR	See the Programming Environments Manual and MPC603e RISC Microprocessor User's Manual	Write fetch sync

Table A-4 lists supervisor-level SPRs defined by the PowerPC architecture.

	SPR Number		News	0	
Decimal	SPR[5-9]	SPR[0-4]	Name Comments		Serialize Access
18	00000	10010	DSISR	See the Programming Environments Manual	Write: Full sync Read: Sync relative to load/store operations
19	00000	10011	DAR	See the Programming Environments Manual	Write: Full sync Read: Sync relative to load/ store operations
22	00000	10110	DEC	See the Programming Environments Manual	Write
26	00000	11010	SRR0	See the Programming Environments Manual	Write
27	00000	11011	SRR1	See the Programming Environments Manual	Write
272	01000	10000	SPRG0	See the Programming Environments	Write
273	01000	10001	SPRG1	Manual	
274	01000	10010	SPRG2		
275	01000	10011	SPRG3		
284	01000	11100	TBL write ¹	See the Programming Environments	Write (as a store)
285	01000	11101	TBU write ¹	Manual	
287	01000	11111	PVR	See Section 2.3.1.2.4, "Processor Version Register (PVR)."	No (read-only register)

Table A-4. Supervisor-Level PowerPC SPRs

¹ Any read (**mftb**) to this address causes an implementation-dependent software emulation exception.

A.3 MPC8260-Specific SPRs

Table A-2 and Table A-5 list SPRs specific to the MPC8260. Supervisor-level registers are described in Table A-5.

SPR Number		Marra	0		
Decimal	SPR[5-9]	SPR[0-4]	Name	Comments	Serialize Access
976	11110	10000	DMISS	See the MPC603e RISC Microprocessor User's Manual	_
977	11110	10001	DCMP	See the MPC603e RISC Microprocessor User's Manual	_
978	11110	10010	HASH1	See the MPC603e RISC Microprocessor User's Manual	_
979	11110	10011	HASH2	See the MPC603e RISC Microprocessor User's Manual	_
980	11110	10100	IMISS	See the MPC603e RISC Microprocessor User's Manual	_
981	11110	10101	ICMP	See the MPC603e RISC Microprocessor User's Manual	_
982	11110	10110	RPA	See the MPC603e RISC Microprocessor User's Manual	_
1008	11111	10000	HIDO	See Section 2.3.1.2.1, "Hardware Implementation-Dependent Register 0 (HID0)."	-
1009	11111	10001	HID1	See Section 2.3.1.2.2, "Hardware Implementation-Dependent Register 1 (HID1)."	_
1010	11111	10010	IABR	See the MPC603e RISC Microprocessor User's Manual	_
1011	11111	10011	HID2	See Section 2.3.1.2.3, "Hardware Implementation-Dependent Register 2 (HID2)."	_

Table A-5. MPC8260-Specific Supervisor-Level SPRs

Appendixes

Numerics

603e features list, 2-3 60x bus 60x-compatible mode 60x-compatible bus mode, 8-3 address latch enable (ALE), 10-11 BUFCMD, 10-42 EAMUX signal, 10-41 MAR. 10-77 overview 10-101 size calculation, 8-19 60x-to-local bus transaction priority, 10-8 address arbitration, 8-7 ARTRY, 8-23 operations, 8-7 pipelining, 8-9 timing configuration, 8-25 transfer attribute signals, 8-10 transfer termination, 8-23 bandwidth control on the IDMA channel, 18-12 bus protocol address pipelining, 8-7 arbitration phase, 8-5 overview, 8-4 split-bus transactions, 8-7 configuration, 8-2 data asserting TEA, 8-30 data bus arbitration, 8-26 data bus transfers, 8-27 data streaming mode, 8-27 effect of ARTRY assertion, 8-28 normal termination, 8-27 operations, 8-26 port size data bus transfers and PSDVAL termination, 8-28 data transfers alignment, 8-14 burst ordering, 8-14 port size, 8-16 extended transfer mode, 8-20 extended write cycle data bus contents, 8-21 little-endian mode, 8-33 LSDMR register, 10-24 lwarx/stwcx. support, 8-33 MEI protocol, 8-31 memory coherency, 8-31

no-pipeline mode, 8-26 one-level pipeline mode, 8-26 overview, 8-1 pipeline control, 8-26 port size device interfaces, 8-17 processor state signals, 8-32 PSDMR register, 10-21 single-MPC8260 bus mode, 8-2 TBST signal, 8-13 TCn signals, 8-13 terminology, 8-1 TESCRx registers, 10-33 TLBISYNC input, 8-33 TSIZn signals, 8-13 TTn signals, 8-10 write cycle data bus contents, 8-19 60x bus memory controller, see Memory controller

Α

Accessing dual-port RAM, 13-15 Acronyms and abbreviated terms, list, lxi, I-lxviii, II-ii, III-iii, IV-iv AppleTalk mode GSMR, 25-3 programming example, 25-3 PSMR, 25-4 TODR, 25-4 ATM controller AAL1 sequence number protection table, 29-78 AALn RxBD, 29-6, 29-69 AALn TxBD, 29-5, 29-74 ABR flow control, 29-8, 29-20 address compression, 29-15 ATM layer statistics, 29-33 ATM memory structure, 29-37 ATM pace control (APC) unit ATM service types, 29-8 configuration, 29-93 data structures, 29-61 modes, 29-8 overview, 29-8 parameter tables, 29-62 priority table, 29-63 scheduling mechanism, 29-9 scheduling tables, 29-63 traffic type, 29-11 UBR+ traffic, 29-13

VBR traffic, 29-12 ATM TRANSMIT command, 29-90 ATM-to-ATM data forwarding, 29-37 ATM-to-TDM interworking, 29-34 buffer descriptors, 29-64 exceptions, 29-79 external rate mode, 29-6 FCCE, 29-87 FCCM, 29-87 features list, 29-2 FPSMR, 29-85 FTIRRx, 29-88 GFMR register, 29-85 global mode entry (GMODE), 29-41 internal rate mode, 29-6 interrupt queues, 29-79 maximum performance configuration, 29-92 OAM performance monitoring, 29-29, 29-60 OAM support, 29-27 operations and maintenance (OAM) support, 29-27 overview, 29-4 parameter RAM, 29-37 performance monitoring, 29-8 performance, maximum (configuration), 29-92 programming model, 29-85 receive connection table (RCT) AALn protocol-specific RCTs, 29-46 ATM channel code, 29-42 overview, 29-41 raw cell queue, 29-19 RCT entry format, 29-44 registers, 29-85 RxBD, 29-69 RxBD extension, 29-73 SRTS generation using external logic, 29-91 transmit connection table (TCT) AALn protocol-specific TCTs, 29-54 ATM channel code, 29-42 overview, 29-41 TCT entry format, 29-51 transmit connection table extension (TCTE) ABR protocol-specific, 29-58 ATM channel code, 29-42 overview, 29-41 UBR+ protocol-specific, 29-57 VBR protocol-specific, 29-56 transmit rate modes, 29-6 TxBD, 29-74 TxBD extension, 29-78 UDC extended address mode, 29-33 UEAD OFFSET determination, 29-40 UNI statistics table, 29-78 user-defined cells (UDC) extended address mode, 29-33

overview, 29-32 RxBD extension (AAL5/AAL1), 29-73 TxBD extension (AAL5/AAL1), 29-78 user-defined RxBD extension (AAL5/AAL1), 29-73 user-defined TxBD extension (AAL5/AAL1), 29-78 UTOPIA interface, 29-82 VCI filtering, 29-40 VCI/VPI address lookup, 29-14 VC-level address compression tables (VCLT), 29-18 VP-level address compression table (VPLT), 29-17

В

Baud-rate generator (BRG) BRGCLK, 34-2 memory map, 3-8 BCR (bus configuration register), 4-25 BDLE (SCC BISYNC DLE) register, 22-8 BISYNC mode commands, 22-5 control character recognition, 22-6 error handling, 22-9 frame reception, 22-3 frame transmission, 22-2 frames, classes, 22-1 memory map, 22-4 overview, 22-1 parameter RAM, 22-3 programming example, 22-18 programming the controller, 22-17 receiving synchronization sequence, 22-9 RxBD, 22-12 sending synchronization sequence, 22-9 TxBD, 22-14 Block diagrams cascaded mode, 17-4 communications processor (CP), 13-5 communications processor module (CPM), 13-3 CPM multiplexing logic (CMX), 15-2 DPLL receiver, 19-22 dual-bus architecture, 10-3 dual-port RAM, 13-15 Fast Ethernet, 30-3 FCC overview, 28-3 I²C controller, 34-1 IEEE 1149.1 test access port, 12-2 parallel I/O ports, 35-6 PLL block diagram, 9-5 SCC block diagram, 19-2 serial interface, 14-2 serial peripheral interface (SPI), 33-1

system interface unit (SIU) periodic interrupt timer, 4-5 SIU block diagram, 4-1 software watchdog timer, 4-7 system configuration/protection logic, 4-3 time counter (TMCNT), 4-5 system PLL, 9-5 timers, 17-1 Branch processing unit overview, 2-6 BRGCLK, 34-2 BRn (base registers), 10-14 BSYNC (BISYNC SYNC) register, 22-7 BUFCMD (external address and command buffers), 10-42 Buffer descriptors ATM controller receive, 29-65, 29-69 transmit, 29-64, 29-74 BISYNC mode, 22-12 fast communications controllers (FCCs) Fast Ethernet mode receive, 30-23 transmit, 30-26 HDLC mode receive, 31-9 transmit, 31-12 overview receive, 28-9 transmit, 28-9 GCI mode monitor channel, 26-32 HDLC mode, 21-8 I²C controller receive, 34-13 transmit, 34-14 **IDMA** emulation auto buffer, 18-15 IDMA buffers, 18-23 multi-channel controllers (MCCs) receive. 27-21 transmit, 27-23 overview, 19-10 serial management controllers (SMCs), 26-5 serial peripheral interface (SPI) receive, 33-14 transmit, 33-15 transparent mode serial communications controllers (SCCs), 23-9 serial management controllers (SMCs), 26-26 UART mode serial communications controllers (SCCs), 20-15 serial management controllers (SMCs), 26-14 Bus interface hierarchical bus interface example, 10-100 BxTx (byte-select signals), 10-75

Byte stuffing, 22-1 Byte-select signals, 10-75

С

Cascaded mode, 17-3 CHAMR (channel mode register), 27-10 CHAMR (channel mode register, transparent mode), 27-13 Chip-select assertion timing, 10-53 chip-select machine, 10-51 signals, 10-74 write enable deassertion timing, 10-54 Clock glitch detection, 19-26 Clocks basic power structure, 9-10 clock divider, 9-6 clock unit, 9-1 external clock inputs, 9-5 general system clocks, 9-7 input clock interface, 9-1 internal clock signals, 9-6 main PLL, 9-5 memory map, 3-4 OSCM, 9-1 overview, 9-1 PLL block diagram, 9-5 PLL pins, 9-7 SCC clock glitch detection, 19-26 SCCR, 9-8 SCMR, 9-9 skew elimination, 9-6 CMXFCR (CMX FCC clock route register), 15-12 CMXSCR (CMX SCC clock route register), 15-14 CMXSI1CR (CMX SI1 clock route register), 15-10 CMXSI2CR (CMX SI2 clock route register), 15-11 CMXSMR (CMX SMC clock route register), 15-17 CMXUAR (CMX UTOPIA address register), 15-7 Commands ATM TRANSMIT command, 29-90 fast communications controllers (FCCs) Ethernet mode receive commands, 30-13 transmit commands, 30-12 HDLC mode receive commands, 31-6 transmit commands, 31-5 I²C controller, 34-11 IDMA emulation, 18-26 multi-channel controllers (MCCs) receive commands, 27-17 serial peripheral interface (SPI), 33-12

Communications processor (CP) block diagram, 13-5 execution from RAM, 13-7 features list, 13-4 interfacing with the core, 13-6 memory map, 3-9 microcode execution from RAM, 13-7 microcode revision number, 13-10 peripheral interface, 13-6 PowerPC core interface, 13-6 RCCR, 13-7 **REV NUM. 13-10** RTSCR 13-9 RTSR, 13-10 Communications processor module (CPM) ATM controller AAL1 sequence number protection table, 29-78 AALn RxBD, 29-6, 29-69 AALn TxBD, 29-5, 29-74 ABR flow control, 29-8, 29-20 address compression, 29-15 ATM layer statistics, 29-33 ATM memory structure, 29-37 ATM pace control (APC) unit ATM service types, 29-8 configuration, 29-93 data structure, 29-61 modes, 29-8 overview. 29-8 parameter tables, 29-62 priority table, 29-63 scheduling mechanism, 29-9 scheduling tables, 29-63 traffic type, 29-11 UBR+ traffic, 29-13 VBR traffic, 29-12 ATM TRANSMIT command, 29-90 ATM-to-ATM data forwarding, 29-37 ATM-to-TDM interworking, 29-34 buffer descriptors, 29-64 exceptions, 29-79 external rate mode, 29-6 FCCE, 29-87 FCCM, 29-87 features list, 29-2 FPSMR, 29-85 FTIRRx, 29-88 GFMR register, 29-85 global mode entry (GMODE), 29-41 internal rate mode, 29-6 interrupt queues, 29-79 maximum performance configuration, 29-92 OAM performance monitoring, 29-29, 29-60 OAM support, 29-27

operations and maintenance (OAM) support, 29-27 overview, 29-4 parameter RAM, 29-37 performance monitoring, 29-8 performance, maximum (configuration), 29-92 programming model, 29-85 receive connection table (RCT) AALn protocol-specific RCTs, 29-46-29-50 ATM channel code, 29-42 overview, 29-41 raw cell queue, 29-19 RCT entry format, 29-44 registers, 29-85 RxBD, 29-69 RxBD extension, 29-73 SRTS generation using external logic, 29-91 transmit connection table (TCT) AALn protocol-specific TCTs, 29-54-29-56 ATM channel code, 29-42 overview, 29-41 TCT entry format, 29-51 transmit connection table extension (TCTE) ABR protocol-specific, 29-58 ATM channel code, 29-42 overview, 29-41 UBR+ protocol-specific, 29-57 VBR protocol-specific, 29-56 transmit rate modes, 29-6 TxBD, 29-74 TxBD extension, 29-78 UDC extended address mode, 29-33 UEAD OFFSET determination, 29-40 UNI statistics table, 29-78 user-defined cells (UDC) extended address mode, 29-33 overview, 29-32 RxBD extension (AAL5/AAL1), 29-73 TxBD extension (AAL5/AAL1), 29-78 user-defined RxBD extension (AAL5/AAL1), 29-73 user-defined TxBD extension (AAL5/AAL1), 29-78 UTOPIA interface, 29-82 VCI filtering, 29-40 VCI/VPI address lookup, 29-14 VC-level address compression tables (VCLT), 29-18 VP-level address compression table (VPLT), 29-17 block diagram, 13-3 command set command descriptions, 13-14 command execution latency, 13-15

command register example, 13-15 CPCR, 13-11 opcodes, 13-13 overview, 13-11 communications processor (CP) block diagram, 13-5 execution from RAM, 13-7 features list, 13-4 interfacing with the core, 13-6 microcode execution from RAM, 13-7 microcode revision number, 13-10 peripheral interface, 13-6 PowerPC core interface, 13-6 RCCR, 13-7 REV_NUM, 13-10 RTSCR, 13-9 RTSR, 13-10 CPM multiplexing logic (CMX) block diagram, 15-2 overview, 15-1 dual-port RAM accessing dual-port RAM, 13-15 block diagram, 13-15 buffer descriptors, 13-17 memory map, 13-16 overview, 13-15 parameter RAM, 13-17 fast communications controllers (FCCs) Fast Ethernet mode address recognition, 30-15 block diagram, 30-3 CAM interface, 30-8 collision handling, 30-18 connecting to the MPC8260, 30-4 error handling, 30-19 FCCE, 30-21 FCCM, 30-21 features list, 30-3 FPSMR. 30-20 frame reception, 30-7 frame transmission, 30-5 hash table algorithm, 30-17 hash table effectiveness, 30-17 interpacket gap time, 30-18 interrupt events, 30-23 loopback mode, 30-18 parameter RAM, 30-9 programming model, 30-12 registers, 30-19 RMON support, 30-14 RxBD, 30-23 TxBD, 30-26 HDLC mode bit stuffing, 31-1 error control, 31-1

error handling, 31-6 FCCE, 31-14 FCCM, 31-14 FCCS, 31-16 features list, 31-2 FPSMR, 31-7 frame reception, 31-3 frame transmission, 31-2 overview, 31-1 parameter RAM, 31-4 programming model, 31-5 receive commands, 31-6 reception errors, 31-7 RxBD, 31-9 transmission errors, 31-6 transmit commands, 31-5 TxBD, 31-12 overview block diagram, 28-3 disabling FCCs, 28-19 FCCEx, 28-14 FCCMx, 28-14 FCCSx, 28-14 FCRx, 28-13 FDSRx, 28-7 FPSMRx, 28-7 FTODRx, 28-7 GFMRx, 28-3 initialization, 28-14 interrupt handling, 28-15 interrupts, 28-13 overview, 28-2 parameter RAM, 28-10 RxBD, 28-8 saving power, 28-21 switching protocols, 28-21 timing control, 28-15 TxBD, 28-8 transparent mode achieving synchronization, 32-2 external synchronization signals, 32-3 features list, 32-2 in-line synchronization pattern, 32-3 receive operation, 32-2 synchronization example, 32-4 transmit operation, 32-2 features list, 13-1 I²C controller block diagram, 34-1 BRGCLK, 34-2 clocking and pin functions, 34-2 commands, 34-11 features list, 34-2 loopback testing, 34-4 master read (slave write), 34-4

master write (slave read), 34-4 multi-master considerations, 34-5 parameter RAM, 34-9 programming model, 34-6 registers, 34-6 RxBD, 34-13 slave read (master write), 34-4 slave write (master read), 34-4 transfers, 34-3 TxBD, 34-14 **IDMA** emulation auto buffer, 18-15 buffer chaining, 18-15 buffers, 18-23 bus exceptions, 18-27 commands, 18-26 controlling 60x bus bandwidth, 18-12 DACKx, 18-13 DCM, 18-18 DONEx, 18-14 DREOx, 18-13 DTS/STS programming, 18-20 dual-address transfers, 18-10 edge-sensitive mode, 18-13 exceptions, bus, 18-27 external request mode, 18-8 features list, 18-5 IDMR, 18-22 IDSR, 18-22 level-sensitive mode, 18-13 normal mode, 18-9 operand transfers, recognizing, 18-27 operation, 18-14 overview, 18-5 parallel I/O register programming, 18-28 parameter RAM, 18-16 priorities, 18-12 programming examples, 18-29 programming the parallel I/O registers, 18-28 signals, 18-12 single address transfers (fly-by), 18-11 transfers, 18-6 interrupt controller memory map, 3-4 multi-channel controllers (MCCs) CHAMR HDLC mode, 27-10 transparent mode, 27-13 channel extra parameters, 27-5 commands, 27-16 data structure organization, 27-2 exceptions, 27-17 features list, 27-1 global parameters, 27-3

HDLC parameters (channel-specific), 27-8 initialization, 27-24 INTMSK, 27-9 latency, 27-26 MCCE, 27-18 MCCFx, 27-15 MCCM, 27-18 parameters for transparent operation, 27-12 performance, 27-26 receive commands, 27-17 **RSTATE**, 27-11 RxBD, 27-21 super channel table, 27-5 TSTATE, 27-9 TxBD, 27-23 overview, CPM, 13-1 parallel I/O ports block diagram, 35-6 features, 35-1 overview, 35-1 PDATx, 35-2 PDIR*x*, 35-3 pin assignments (port A-port D), 35-8-35-19 PODR*x*, 35-2 port C interrupts, 35-19 port pin functions, 35-6 PPAR, 35-4 programming options, 35-8 PSORx, 35-4 registers, 35-2 resetting registers and parameters for all channels, 13-11 RISC timer tables CP loading tracking, 13-24 features list, 13-19 initializing RISC timer tables, 13-22 interrupt handling, 13-23 overview, 13-18 parameter RAM, 13-19 pulse width modulation (PWM) channels, 13-19 RAM usage, 13-19 RTER, 13-21 RTMR, 13-21 scan algorithm, 13-23 SET TIMER command, 13-22 table entries, 13-21 timer counts, comparing, 13-24 TM_CMD, 13-20 tracking CP loading, 13-24 SDMA channels bus arbitration, 18-2 bus transfers, 18-2 LDTEA, 18-4 LDTEM. 18-4

overview, 18-1 PDTEA, 18-4 PDTEM, 18-4 programming model, 18-3 registers, 18-3 SDMR, 18-4 SDSR, 18-3 serial configuration, 13-3 serial peripheral interface (SPI) block diagram, 33-1 clocking and pin functions, 33-2 commands, 33-12 configuring the SPI, 33-3 features list, 33-2 interrupt handling, 33-18 master mode, 33-3 maximum receive buffer length (MRBLR), 33-11 multi-master operation, 33-4 parameter RAM, 33-10 programming example master, 33-16 slave, 33-17 programming model, 33-6 RxBD, 33-14 slave mode, 33-4 SPCOM, 33-9 SPIE, 33-9 SPIM. 33-9 SPMODE, 33-6 TxBD, 33-15 system interface unit (SIU) 60x bus monitor function, 4-2 add flexibility to CPM interrupt priorities, 4-12 BCR, 4-25 block diagram, 4-1 bus monitor, 4-3 clocks, 4-4 configuration functions, 4-2 configuration/protection logic block diagram, 4-3 encoding the interrupt vector, 4-14 FCC relative priority, 4-12 flexibility of interrupt priorities, 4-12 highest priority interrupt, 4-13 IMMR, 4-34 interrupt controller features list, 4-7 interrupt priorities, add flexibility, 4-12 interrupt source priorities, 4-9 interrupt vector calculation, 4-14 interrupt vector encoding, 4-14 interrupt vector generation, 4-14 L TESCR1, 4-38 L_TESCR2, 4-39 LCL_ACR, 4-29 LCL_ALRH, 4-30 LCL_ALRL, 4-30

local bus monitor function, 4-2 masking interrupt sources, 4-13 MCC relative priority, 4-12 periodic interrupt timer (PIT), 4-5 periodic interrupt timer (PIT) function, 4-2 pin multiplexing, 4-44 PISCR, 4-42 PITC, 4-43 PITR, 4-44 port C interrupts, 4-16 PPC_ACR, 4-28 PPC ALRH, 4-28 PPC_ALRL, 4-29 programming model, 4-17 registers, 4-17 SCC relative priority, 4-12 SCPRR H, 4-19 SCPRR L, 4-20 SICR, 4-17 SIEXR, 4-24 signal multiplexing, 4-44 SIMR H, 4-22 SIMR L. 4-22 SIPNR_H, 4-21 SIPNR_L, 4-21 SIPRR, 4-18 SIUMCR, 4-31 SIVEC, 4-23 software watchdog timer, 4-6 SWR, 4-7 SWSR, 4-36 SYPCR, 4-35 system protection, 4-2 TESCR1, 4-36 **TESCR2**, 4-37 time counter (TMCNT) function, 4-2 overview, 4-4 timers, 4-4 **TMCNT**, 4-41 TMCNTAL, 4-41 TMCNTSC, 4-40 timers memory map, 3-5 Conventions notational conventions, lx, II-ii, III-ii, IV-iv terminology, lxiv CPCR (CP command register), 13-11 CPM multiplexing logic (CMX) overview, 15-1 see also Serial interface (SI) CPM multiplexing, see CPM multiplexing logic (CMX) CPM MUX memory map, 3-12 CPM MUX, see CPM multiplexing logic (CMX)

CxTx (chip-select signals), 10-74

D

DCM (IDMA channel mode), 18-18 Digital phase-locked loop (DPLL) operation, 19-22 DSR (data synchronization register) overview, 19-9 UART mode, 20-11 Dual-port RAM accessing dual-port RAM, 13-15 block diagram, 13-15 buffer descriptors, 13-17 memory map, 13-16 overview, 13-15 parameter RAM, 13-17

Ε

EAMUX (external address multiplexing) signal, 10-41 EDO interface connection, MPC8260 to 60x bus. 10-92 Ethernet mode fast communications controller (FCC) address recognition, 30-15 block diagram, 30-3 CAM interface, 30-8 collision handling, 30-18 connecting to the MPC8260, 30-4 error handling, 30-19 FCCE, 30-21 FCCM. 30-21 features list, 30-3 FPSMR, 30-20 frame reception, 30-7 frame transmission, 30-5 hash table algorithm, 30-17 hash table effectiveness, 30-17 interpacket gap time, 30-18 interrupt events, 30-23 loopback mode, 30-18 parameter RAM, 30-9 programming model, 30-12 registers, 30-19 RMON support, 30-14 RxBD, 30-23 TxBD, 30-26 Exceptions exception handling, 10-73 overview, 2-22 Execution units, 2-6

F

Fast communications controllers (FCCs) Fast Ethernet mode address recognition, 30-15 block diagram, 30-3 CAM interface, 30-8 collision handling, 30-18 connecting to the MPC8260, 30-4 error handling, 30-19 FCCE, 30-21 FCCM, 30-21 features list, 30-3 FPSMR, 30-20 frame reception, 30-7 frame transmission, 30-5 hash table algorithm, 30-17 hash table effectiveness, 30-17 interpacket gap time, 30-18 interrupt events, 30-23 loopback mode, 30-18 parameter RAM, 30-9 programming model, 30-12 registers, 30-19 RMON support, 30-14 RxBD, 30-23 TxBD, 30-26 HDLC mode bit stuffing, 31-1 error control, 31-1 error handling, 31-6 FCCE, 31-14 FCCM, 31-14 FCCS, 31-16 features list, 31-2 FPSMR. 31-7 frame reception, 31-3 frame transmission, 31-2 overview, 31-1 parameter RAM, 31-4 programming model, 31-5 receive commands, 31-6 reception errors, 31-7 RxBD, 31-9 transmission errors, 31-6 transmit commands, 31-5 TxBD. 31-12 overview block diagram, 28-3 disabling FCCs, 28-19 FCCEx. 28-14 FCCMx, 28-14 FCCSx, 28-14 FCRx, 28-13 FDSRx, 28-7

FPSMRx, 28-7 FTODRx, 28-7 GFMRx, 28-3 initialization, 28-14 interrupt handling, 28-15 interrupts, 28-13 overview, 28-2 parameter RAM, 28-10 RxBD, 28-8 saving power, 28-21 switching protocols, 28-21 timing control, 28-15 TxBD, 28-8 switching protocols, 28-21 transparent mode features list, 32-2 receive operation, 32-2 synchronization achieving, 32-2 example, 32-4 external signals, 32-3 in-line pattern, 32-3 transmit operation, 32-2 FCCE register ATM, 29-87 Ethernet, 30-21 FCC overview, 28-14 HDLC, 31-14 FCCM register ATM, 29-87 Ethernet, 30-21 FCC overview, 28-14 HDLC, 31-14 FCCS (FCC status) register, 28-14, 31-16 FCRx (function code registers), 28-13 FDSRx (FCC data synchronization registers), 28-7 Features list SIU interrupt controller, 4-7 Features lists communications processor (CP), 13-4 communications processor module (CPM), 13-1 ATM controller, 29-2 parallel I/O ports, 35-1 CPM multiplexing, 15-2 Ethernet mode, 24-3 fast communications controllers (FCCs) Fast Ethernet, 30-3 HDLC mode, 31-2 transparent mode, 32-2 HDLC bus controller, 21-19 I²C controller. 34-2 IDMA emulation, 18-5 implementation-specific, 1-1 memory controller features list, 10-3

new features supported, 10-2 multi-channel controllers (MCCs), 27-1 processor core, 2-3 RISC timer tables, 13-19 serial communications controllers (SCCs) AppleTalk mode, 25-2 BISYNC mode, 22-2 general list, 19-2 HDLC mode, 21-2 transparent mode, 23-1 UART mode, 20-2 serial interface, 14-3 serial management controllers (SMCs) general list, 26-2 transparent mode, 26-21 UART mode, 26-11 UART mode, features not supported, 26-10 serial peripheral interface (SPI), 33-2 timers, 17-2 FPSMR register Ethernet, 30-20 HDLC, 31-7 protocol-specific mode, 28-7 FTIRRx (FCC transmit internal rate registers), 29-88 FTODRx (FCC transmit-on-demand registers), 28-7

G

GCI activation and deactivation, 14-33 programming, 14-33 support, 14-31 General-purpose chip-select machine (GPCM) common features, 10-6 differences between MPC8xx and MPC8260, 10-62 external access termination, 10-60 implementation differences with UPMs and SDRAM machine, 10-7 interface signals, 10-51 MPC8xx versus MPC8260, 10-62 overview, 10-51 SRAM configuration, 10-51 strobe signal behavior, 10-52 terminating external accesses, 10-60 timing configuration, 10-52 General-purpose signals, 10-76 GFMR (general FCC mode register), 28-3, 29-85 GMODE (global mode entry), 29-41 GPLn (general-purpose signals), 10-76 GSMR (general SCC mode register) AppleTalk mode, 25-3 HDLC bus protocol, programming, 21-23 overview, 19-3

Н

HDLC mode accessing the bus, 21-19 bus controller, 21-17 collision detection, 21-17, 21-20 commands, 21-5 delayed RTS mode, 21-21 error handling, 21-6 fast communications controllers (FCCs) bit stuffing, 31-1 error control, 31-1 error handling, 31-6 FCCE, 31-14 FCCM, 31-14 FCCS, 31-16 features list, 31-2 FPSMR, 31-7 frame reception, 31-3 frame transmission, 31-2 overview, 31-1 parameter RAM, 31-4 programming model, 31-5 receive commands, 31-6 reception errors, 31-7 RxBD, 31-9 transmission errors, 31-6 transmit commands, 31-5 TxBD, 31-12 features list, 21-2 GSMR, HDLC bus protocol programming, 21-23 multi-master bus configuration, 21-18 overview, 21-1 parameter RAM, 21-3 performance, increasing, 21-20 programming example, 21-15, 21-23 programming the controller, 21-5 PSMR, 21-7 RxBD, 21-8 single-master bus configuration, 21-19 TxBD, 21-11 using the TSA, 21-22 HID0 register bit settings, 2-12 doze, nap, sleep, DPM bits, 2-12

I

I2ADD (I²C address) register, 34-7
I2BRG (I²C baud rate generator) register, 34-7
I²C controller block diagram, 34-1
BRGCLK, 34-2 clocking and pin functions, 34-2 commands, 34-11

features list, 34-2 loopback testing, 34-4 master read (slave write), 34-4 master write (slave read), 34-4 multi-master considerations, 34-5 parameter RAM, 34-9 programming model, 34-6 registers, 34-6 RxBD, 34-13 slave read (master write), 34-4 slave write (master read), 34-4 transfers, 34-3 TxBD, 34-14 I²C memory map, 3-9 I2CER (I²C event register), 34-8 I2CMR (I²C mask register), 34-8 I2COM (I²C command) register, 34-8 I2MOD (I²C mode) register, 34-6 IDL interface programming, 14-29 IDL interface support, 14-25 **IDMA** emulation auto buffer, 18-15 buffer chaining, 18-15 buffers, 18-23 bus exceptions, 18-27 commands, 18-26 controlling 60x bus bandwidth, 18-12 DACKx, 18-13 DCM, 18-18 **DONE***x*, 18-14 DREQ*x*, 18-13 DTS/STS programming, 18-20 dual-address transfers, 18-10 edge-sensitive mode, 18-13 exception, bus, 18-27 external request mode, 18-8 features list, 18-5 IDMR, 18-22 IDSR, 18-22 level-sensitive mode, 18-13 normal mode, 18-9 operand transfers, recognizing, 18-27 operation, 18-14 overview, 18-5 parallel I/O register programming, 18-28 parameter RAM, 18-16 priorities, 18-12 programming examples, 18-29 programming the parallel I/O registers, 18-28 signals, 18-12 single address transfers (fly-by), 18-11 transfers, 18-6 IDMA parameter RAM, 18-16 IDMR (IDMA mask registers), 18-22

IDSR (IDMA event (status) register), 18-22 IEEE 1149.1 test access port block diagram, 12-2 boundary scan register, 12-3 instruction decoding, 12-29 instruction register, 12-28 nonscan chain operation, 12-30 overview, 12-1 restrictions, 12-30 TAP controller, 12-2 IMMR (internal memory map register), 4-34 Input/output port memory map, 3-5 Instruction field conventions, lxv Instruction timing overview, 2-29 Instruction unit, 2-5 Integer unit overview, 2-6 Interrupts ATM interrupt queues, 29-79 RISC timer tables interrupt handling, 13-23 SCC interrupt handling, 19-16

J

JTAG implementation, 12-28

L

L_TESCR1 (local bus transfer error status and control register 1), 4-38 L_TESCR2 (local bus transfer error status and control register 2), 4-39 L_TESCRx (local bus error status and control registers), 10-33 LCL_ACR (local bus arbiter configuration register), 4-29 LCL ALRH (local bus arbitration high-level register), 4-30 LCL_ALRL (local bus arbitration low-level register), 4-30 LDTEA (SDMA local bus transfer error address register), 18-4 LDTEM (SDMA local bus transfer error MSNUM register), 18-4 Loopback mode, 14-7 LSDMR (local bus SDRAM mode register), 10-24 LSRT (local bus-assigned SDRAM refresh timer) register, 10-32 LURT (local bus-assigned UPM refresh timer) register, 10-30

Μ

MCCE (MCC event) register, 27-18 MCCF*x* (MCC configuration registers), 27-15 MCCM (MCC mask) register, 27-18 MDR (memory data register), 10-28 Memory controller address checking, 10-8 address latch enable (ALE), 10-11 address space checking, 10-8 architecture overview, 10-5 atomic bus operation, 10-10, 10-10 basic architecture, 10-5 basic operation, 10-8 boot chip-select operation, 10-61 controlling the timing of GPL1, GPL2, and CSx, 10-68 CSx timing example, 10-68 delayed read, 10-10 EDO interface connection, MPC8260 to 60x bus, 10-92 error checking and correction (ECC), 10-9 external master support, 10-101 external support, 10-11 features common to all machines, 10-6 features list, 10-3 general-purpose chip-select machine (GPCM) access termination, external, 10-60 assertion timing, 10-53 common features, 10-6 differences between MPC8xx and MPC8260, 10-62 external access termination, 10-60 implementation differences with UPMs and SDRAM machine, 10-7 interface signals, 10-51 MPC8xx versus MPC8260, 10-62 OE timing, 10-57, 10-57 overview, 10-51 programmable wait state configuration, 10-57 **PSDVAL**, 10-57 read access extended hold time, 10-57 relaxed timing, 10-55 SRAM configuration, 10-51 strobe signal behavior, 10-52 terminating external accesses, 10-60 timing configuration, 10-52, 10-52 write enable deassertion timing, 10-54 $\overline{\text{GPL}n}$ timing example, 10-68 implementation differences between machines, 10-7 machine selection, 10-6 MAR in 60x-compatible mode, 10-77 new features supported, 10-2 overview, 10-1 page hit checking, 10-9 parity byte select (PBSE), 10-11 parity checking, 10-9 parity generation, 10-9

programming model, 10-13 PSDVAL, 10-12, 10-57 register descriptions, 10-13 SDRAM machine (synchronous DRAM machine) address multiplexing, 10-37 bank interleaving, 10-36 BSMA bit, 10-37 commands, JEDEC-standard, 10-35 common features, 10-6 configuration example, 10-48 implementation differences with UPMs and GPCM. 10-7 JEDEC-standard commands, 10-35 MODE-SET command timing, 10-46 overview, 10-33 page mode support, 10-36 parameters activate-to-read/write interval, 10-39 column address to first data out, 10-40 last data in to precharge, 10-41 last data out to precharge, 10-40 overview, 10-38 precharge-to-activate interval, 10-38 refresh recovery interval (RFRC), 10-41 pipeline accesses, 10-36 power-on initialization, 10-35 read/write transactions supported, 10-46 refresh. 10-47 SDAM bit, 10-37 supported configurations, 10-35 timing examples, 10-42 TEA generation, 10-9 UPMs (user-programmable machines) access times, handling devices, 10-100 address control bits, 10-77 address multiplexing, 10-77 clock timing, 10-67 common features, 10-6 data sample control, 10-77 data valid. 10-77 differences between MPC8xx and MPC8260, 10-80 DRAM configuration example, 10-79 EDO interface example, 10-92 exception requests, 10-66 hierarchical bus interface example, 10-100 implementation differences with SDRAM machine and GPCM, 10-7 loop control, 10-76 memory access requests, 10-65 memory system interface example, 10-81 MPC8xx versus MPC8260, 10-80 overview, 10-62 programming the UPM, 10-66

RAM array, 10-69 RAM word, 10-70 refresh timer requests, 10-65 register settings, 10-80 requests, 10-64 signal negation, 10-78 signals, 10-62 software requests, 10-66 UPWAIT signal, 10-78 wait mechanism, 10-78 Memory management unit overview, 2-8 Memory management unit overview, 2-26 Memory maps cross-reference guide, 3-1 quick reference guide, 3-1 serial communications controllers (SCCs) BISYNC mode, 22-4 HDLC mode, 21-4 UART mode, 20-4 serial management controllers (SMCs) GCI mode, 26-30 transparent mode, 26-6 UART mode, 26-6 Microcode revision number, 13-10 Modes 60x bus mode 60x-compatible bus mode, 8-3 address latch enable (ALE), 10-11 data streaming mode, 8-27 extended transfer mode, 8-20 no-pipeline mode, 8-26 one-level pipeline mode, 8-26 single-MPC8260 bus mode, 8-2 ATM controller APC modes, 29-8 external rate mode, 29-6 internal rate mode, 29-6 transmit rate modes, 29-6 BISYNC mode, 22-1 cascaded mode, 17-3 echo mode, 26-1 HDLC mode, 21-1 hunt mode, 20-10 **IDMA** emulation edge-sensitive mode, 18-13 external request mode, 18-8 level-sensitive mode, 18-13 normal mode, 18-9 loopback mode, 26-1 NMSI mode, synchronization, 23-3 SCC AppleTalk mode, 25-1, 25-1 serial interface (SI) echo mode, 14-7

serial peripheral interace (SPI) master mode, 33-3 slow go, 17-2 transparent mode overview, 32-1 serial communications controllers (SCCs), 23-1 serial management controllers (SMCs), 26-20 UART mode serial communications controllers (SCCs), 20-1 serial management controllers (SMCs), 26-10 MPTPR (memory refresh timer prescaler register), 10-32 Multi-channel controllers (MCCs) CHAMR HDLC mode, 27-10 transparent mode, 27-13 channel extra parameters, 27-5 commands, 27-16 data structure organization, 27-2 exceptions, 27-17 features list, 27-1 global parameters, 27-3 HDLC parameters (channel-specific), 27-8 initialization, 27-24 INTMSK, 27-9 latency, 27-26 MCCE, 27-18 MCCFx, 27-15 MCCM, 27-18 parameters for transparent operation, 27-12 performance, 27-26 receive commands, 27-17 **RSTATE**, 27-11 RxBD, 27-21 super channel table, 27-5 TSTATE, 27-9 TxBD, 27-23 MxMR (machine x mode registers), 10-26

Ν

NMSI (non-multiplexed serial interface) configuration, 15-4 SMC NMSI connection, receive and transmit, 26-2 synchronization in NMSI mode, transparent operation, 23-3

0

Operations atomic bus operation, 10-10 digital phase-locked loop (DPLL) operation, 19-22 SMC buffer descriptor, 26-5 transparent operation, NMSI sychronization, 23-3 ORx (option registers), 10-16

Ρ

Parallel I/O ports block diagram, 35-6 features, 35-1 overview, 35-1 PDATx, 35-2 PDIR*x*, 35-3 pin assignments (port A-port D), 35-8-35-19 PODRx, 35-2 port C interrupts, 35-19 port pin functions, 35-6 PPAR, 35-4 programming options, 35-8 PSORx, 35-4 registers, 35-2 Parameter RAM ATM controller, 29-37 fast communications controllers (FCCs) Fast Ethernet mode, 30-9 HDLC mode, 31-4 overview, 28-10 HDLC mode, 21-3 I²C controller, 34-9 IDMA emulation, 18-16 serial communications controllers (SCCs) all protocols, 19-13 base addresses, 19-15 BISYNC mode, 22-3 overview, 19-13 UART mode, 20-4 serial management controllers (SMCs) GCI mode, 26-30 overview, 26-6, 26-30 transparent mode, 26-6 UART mode, 26-6 serial peripheral interface (SPI), 33-10 Parity byte select (PBSE), 10-11 PDATx (port data) registers, 35-2 PDIRx (port data direction registers), 35-3 PDTEA (SDMA 60x bus transfer error address register), 18-4 PDTEM (SDMA 60x bus transfer error MSNUM register), 18-4 PISCR (periodic interrupt status and control register), 4-42 PITC (periodic interrupt timer count register), 4-43 PITR (periodic interrupt timer register), 4-44 PODRx (port open-drain registers), 35-2 Power consumption FCCs, 28-21 SCCs, 19-27 PPAR (port pin assignment register), 35-4 PPC_ACR (60x bus arbiter configuration register), 4-28

PPC_ALRH (60x bus arbitration high-level register), 4-28 PPC_ALRL (60x bus arbitration low-level register), 4-29 Programming examples serial communications controllers (SCCs) GSMR (general SCC mode register) AppleTalk mode, 25-3 HDLC bus protocol, 21-23 PSMR (protocol-specific mode register) AppleTalk mode, 25-4 TODR (transmit-on-demand register) AppleTalk mode, 25-4 transparent mode, 23-13 UART mode, 20-22 transparent mode NMSI programming example, 26-29 Promiscuous mode, see Transparent mode Promiscuous operation, 32-1 PSDMR (60x SDRAM mode register), 10-21 PSMR (protocol-specific mode register) AppleTalk mode, 25-4 BISYNC mode, 22-10 Ethernet mode, 24-15 HDLC bus protocol, programming, 21-23 HDLC mode, 21-7 overview, 19-9 transparent mode, 23-9 UART mode, 20-13 PSORx (port special options registers), 35-4 PSRT (60x bus-assigned SDRAM refresh timer) register, 10-31 Pulse width modulation (PWM) channels, 13-19 PURT (60x bus-assigned UPM refresh timer) register, 10-30 PWM channels (pulse width modulation channels), 13-19

R

RAM word, 10-70 RCCR (RISC controller configuration register), 13-7 Registers AppleTalk mode GSMR, 25-3 PSMR, 25-4 TODR, 25-4 ATM controller FCCE, 29-87 FCCM, 29-87 FCCM, 29-87 FPSMR (FCC protocol-specific mode register, 29-85 FTIRR, 29-88 GFMR register, 29-85 BISYNC mode

BDLE, 22-8 BSYNC, 22-7 PSMR, 22-10 SCCE, 22-15 SCCM, 22-15 SCCS, 22-16 communications processor (CP) RCCR, 13-7 RTSCR, 13-9 RTSR, 13-10 communications processor module (CPM) CPCR. 13-11 parallel I/O ports PDATx, 35-2 PDIRx, 35-3 PODRx, 35-2 PPAR, 35-4 PSORx, 35-4 CPM multiplexing CMXFCR, 15-12 CMXSCR, 15-14 CMXSI1CR, 15-10 CMXSI2CR, 15-11 CMXSMR, 15-17 CMXUAR, 15-7 DSR overview, 19-9 UART mode, 20-11 fast communications controllers (FCCs) Fast Ethernet mode FCCE, 30-21 FCCM, 30-21 FPSMR, 30-20 HDLC mode FCCE, 31-14 FCCM, 31-14 FCCS, 31-16 FPSMR, 31-7 overview FCCEx. 28-14 FCCMx, 28-14 FCCSx, 28-14 FCRx, 28-13 FDSRx, 28-7 FPSMRx, 28-7 FTODRx, 28-7 GFMRx, 28-3 interrupts, 28-13 timing control, 28-15 GSMR AppleTalk mode, 25-3 overview, 19-3 HDLC mode PSMR, 21-7

SCCE, 21-12 SCCM, 21-12 SCCS, 21-14 I²C controller I2ADD, 34-7 I2BRG, 34-7 I2CER, 34-8 I2CMR, 34-8 I2COM, 34-8 I2MOD, 34-6 **IDMA** emulation DCM, 18-18 IDMR, 18-22 IDSR, 18-22 IEEE 1149.1 test access port boundary scan registers, 12-3 instruction register, 12-28 memory controller 60x bus control registers, 10-13 BRn, 10-14 GPCM mode ORx, 10-18 L TESCRx, 10-33 MPTPR, 10-32 MxMR, 10-26 SDRAM mode LSDMR, 10-24 LSRT. 10-32 ORx. 10-16 PSDMR, 10-21 PSRT, 10-31 TESCRx, 10-33 UPM mode LURT, 10-30 MDR. 10-28 ORx, 10-20 PURT, 10-30 register settings, 10-80 multi-channel controllers (MCCs) CHAMR HDLC mode, 27-10 CHAMR, 27-13 MCCE, 27-18 MCCFx, 27-15 MCCM, 27-18 **RSTATE**, 27-11 TSTATE, 27-9 PowerPC supervisor-level, A-2, A-3 user-level, A-1 PSMR AppleTalk mode, 25-4 BISYNC mode, 22-10 Ethernet mode, 24-15 overview, 19-9

transparent mode, 23-9 UART mode, 20-13 quick reference guide, A-1 reset mode, 5-5 reset status, 5-4 RFCR, 19-15 RISC timer tables RTER, 13-21 RTMR, 13-21 TM_CMD, 13-20 SCCE BISYNC mode, 22-15 Ethernet mode, 24-21 transparent mode, 23-12 UART mode, 20-19 SCCM BISYNC mode, 22-15 Ethernet mode, 24-21 transparent mode, 23-12 UART mode, 20-19 SCCS BISYNC mode, 22-16 transparent mode, 23-13 UART mode, 20-21 SDMA channels LDTEA, 18-4 LDTEM, 18-4 PDTEA, 18-4 PDTEM, 18-4 SDMR, 18-4 SDSR, 18-3 serial interface (SI) SLxCMDR, 14-24 SLxGMR, 14-17 SIxMR, 14-17 SIxRSR, 14-23 SIxSTR, 14-25 serial management controllers GCI mode SMCE, 26-34 SMCM, 26-34 SMCMRs, 26-3 transparent mode SMCE, 26-28 SMCM, 26-28 UART mode RxBD, 26-14 SMCE, 26-18 SMCM, 26-18 TxBD, 26-16 serial management controllers (SMCs) GCI mode RxBD, 26-33 serial management controllers(SMCs) GCI mode

TxBD, 26-33 serial peripheral interface (SPI) SPCOM, 33-9 SPIE. 33-9 SPIM. 33-9 SPMODE, 33-6 system interface unit (SIU) BCR, 4-25 IMMR, 4-34 L_TESCR1, 4-38 L TESCR2, 4-39 LCL ACR, 4-29 LCL_ALRH, 4-30 LCL_ALRL, 4-30 PISCR, 4-42 PITC, 4-43 PITR, 4-44 PPC_ACR, 4-28 PPC_ALRH, 4-28 PPC_ALRL, 4-29 SCPRR_H, 4-19 SCPRR L, 4-20 SICR, 4-17 SIEXR, 4-24 SIMR_H, 4-22 SIMR_L, 4-22 SIPNR H. 4-21 SIPNR_L, 4-21 SIPRR, 4-18 SIUMCR, 4-31 SIVEC, 4-23 SWR, 4-7 SWSR, 4-36 SYPCR, 4-35 TESCR1, 4-36 TESCR2, 4-37 **TMCNT**, 4-41 TMCNTAL, 4-41 TMCNTSC, 4-40 TFCR, 19-15 timers TCN, 17-8 TCR, 17-8 TER, 17-8 TGCR, 17-4 TMR. 17-6 TRR, 17-7 TODR AppleTalk mode, 25-4 overview, 19-9 TOSEO, 20-10 transparent mode PSMR, 23-9 SCCE, 23-12

SCCM. 23-12 SCCS, 23-13 UART mode DSR, 20-11 PSMR, 20-13 SCCE, 20-19 SCCM, 20-19 SCCS, 20-21 TOSEQ, 20-10 Reset actions, 5-2 causes, 5-1 external HRESET flow, 5-3 external SRESET flow, 5-3 power-on reset flow, 5-2 receiver reset sequence, SCC, 19-27 resetting registers and parameters for all channels, 13-11 software watchdog reset, 5-1 transmitter reset sequence, SCC, 19-27 RFCR (Rx buffer function code register) overview, 19-15 RISC microcontroller. seeCommunications processor (CP) RISC timer tables CP loading tracking, 13-24 features list, 13-19 initializing RISC timer tables, 13-22 interrupt handling, 13-23 overview, 13-18 parameter RAM, 13-19 pulse width modulation (PWM) channels, 13-19 RAM usage, 13-19 RTER, 13-21 RTMR, 13-21 scan algorithm, 13-23 SET TIMER command, 13-22 table entries, 13-21 timer counts, comparing, 13-24 TM CMD, 13-20 tracking CP loading, 13-24 RMR (reset mode) register, 5-5 RSR (reset status) register, 5-4 RSTATE (internal receiver state) register, 27-11 RTER (RISC timer event register), 13-21 RTMR (RISC timer mask register), 13-21 RTSCR (RISC time-stamp control register), 13-9 RTSR (RISC time-stamp register), 13-10

S

SCC memory map, 3-9 SCCE (SCC event) register BISYNC mode, 22-15 HDLC mode, 21-12

transparent mode, 23-12 UART mode, 20-19 SCCE register Ethernet mode, 24-21 SCCM (SCC mask) register BISYNC mode, 22-15 HDLC mode, 21-12 transparent mode, 23-12 UART mode, 20-19 SCCM register Ethernet mode, 24-21 SCCS (SCC status) register BISYNC mode, 22-16 HDLC mode, 21-14 transparent mode, 23-13 UART mode, 20-21 SCIT programming, 14-33 SCPRR_H (CPM high interrupt priority register), 4-19 SCPRR_L (CPM low interrupt priority register), 4-20 SDMA channels bus arbitration, 18-2 bus transfers, 18-2 LDTEA, 18-4 LDTEM. 18-4 overview, 18-1 PDTEA, 18-4 PDTEM, 18-4 programming model, 18-3 registers, 18-3 SDMR, 18-4 SDSR, 18-3 SDMR (SDMA mask register), 18-4 SDRAM interface, see SDRAM machine SDSR (SDMA status register), 18-3 Serial communications controllers (SCCs) AppleTalk mode connecting to AppleTalk, 25-3 operating LocalTalk frame, 25-1 overview, 25-1, 25-1 programming example, 21-23, 25-4 programming the controller, 25-3 BISYNC mode commands, 22-5 control character recognition, 22-6 error handling, 22-9 frame reception, 22-3 frame transmission, 22-2 frames, classes, 22-1 memory map, 22-4 overview, 22-1 parameter RAM, 22-3 programming example, 22-18 programming the controller, 22-17 receiving synchronization sequence, 22-9 RxBD, 22-12

sending synchronization sequence, 22-9 TxBD. 22-14 Ethernet mode address recognition, 24-11 collision handling, 24-13 commands, 24-10 connecting to Ethernet, 24-4 error handling, 24-14 frame reception, 24-6 hash table algorithm, 24-13 loopback, 24-14 overview, 24-1 programming example, 24-23 programming the controller, 24-10 receive buffer, 24-17 transmit buffer, 24-19 HDLC mode accessing the bus, 21-19 bus controller, 21-17 collision detection, 21-17, 21-20 commands, 21-5 delayed RTS mode, 21-21 error handling, 21-6 features list, 21-2 GSMR, HDLC bus protocol programming, 21-23 interrupts, 21-13 memory map, 21-4 multi-master bus configuration, 21-18 overview, 21-1 parameter RAM, 21-3 performance, increasing, 21-20 programming example, 21-15, 21-23 programming the controller, 21-5 PSMR. 21-7 RxBD, 21-8 single-master bus configuration, 21-19 TxBD, 21-11 using the TSA, 21-22 overview buffer descriptors, 19-10 controlling SCC timing, 19-18 DPLL operation, 19-22 features, 19-2 initialization, 19-17 interrupt handling, 19-16 parameter RAM, 19-13 reconfiguration, 19-26 reset sequence, 19-27 switching protocols, 19-27 transparent mode achieving synchronization, 23-3 commands, 23-7 DSR receiver SYNC pattern lengths, 23-3 end of frame detection, 23-6 error handling, 23-8

frame reception, 23-2 frame transmission, 23-2 inherent synchronization, 23-6 in-line synchronization, 23-6 overview, 23-1 programming example, 23-13 RxBD, 23-9 synchronization signals, 23-4 synchronization, user-controlled, 23-5 transmit synchronization, 23-3 TxBD, 23-10 UART mode commands 20-6 control character insertion, 20-10 data handling, character and message-based, 20-5 error reporting, 20-6 features list, 20-2 fractional stop bits, 20-11 handling errors, 20-12 hunt mode, 20-10 memory map, 20-4 normal asynchronous mode, 20-3 overview, 20-1 parameter RAM, 20-4 programming example, 20-22 RxBD, 20-15 S-records loader application, 20-23 status reporting, 20-6 synchronous mode, 20-3 TxBD, 20-18 Serial configuration, 13-3 Serial interface (SI) block diagram, 14-2 enabling connections, 14-7 features, 14-3 GCI support, 14-31 IDL bus implementation programming the IDL, 14-29 IDL interface support, 14-25 overview, 14-4 programming GCI, 14-33 programming RAM entries, 14-10 registers, 14-17 see also CPM multiplexing logic (CMX) SI RAM, 14-8 Serial management controllers (SMCs) buffer descriptors, overview, 26-5 disabling SMCs on-the-fly, 26-9 disabling the receiver, 26-9 disabling the transmitter, 26-9 enabling the receiver, 26-9 enabling the transmitter, 26-9 features list, 26-2 GCI mode

C/I channel handling the SMC, 26-31 reception process, 26-31 RxBD, 26-33 transmission process, 26-31 TxBD, 26-33 commands, 26-32 monitor channel reception process, 26-31 RxBD, 26-32 transmission process, 26-31 TxBD, 26-32 overview, 26-30 parameter RAM, 26-30 memory structure, 26-5 mode selection, 26-3 NMSI connection, receive and transmit, 26-2 parameter RAM GCI mode, 26-30 overview, 26-6, 26-30 transparent mode, 26-6 UART mode, 26-6 power, saving, 26-10 programming the controller, 26-12 protocol switching, 26-10 reinitializing the receiver, 26-10 reinitializing the transmitter, 26-9 selecting modes, 26-3 sending a break, 26-13 sending a preamble, 26-13 switching protocols, 26-10 transparent mode features list, 26-21 overview, 26-20 parameter RAM, 26-6 reception process, 26-21 RxBD, 26-26 TxBD, 26-27 UART mode character mode, 26-12 commands, 26-12 data handling, 26-12 error handling, 26-13 features list, 26-11 features not supported by SMCs, 26-10 frame format, 26-11 message-oriented mode, 26-12 overview, 26-10 parameter RAM, 26-6 programming example, 26-19 reception process, 26-12 RxBD. 26-14 transmission process, 26-11 TxBD, 26-16

Serial peripheral interface (SPI) block diagram, 33-1 clocking and pin functions, 33-2 commands, 33-12 configuring the SPI, 33-3 features list, 33-2 interrupt handling, 33-18 master mode, 33-3 maximum receive buffer length (MRBLR), 33-11 multi-master operation, 33-4 parameter RAM, 33-10 programming example master, 33-16 slave, 33-17 programming model, 33-6 RxBD, 33-14 slave mode, 33-4 SPCOM, 33-9 SPIE, 33-9 SPIM, 33-9 SPMODE, 33-6 TxBD, 33-15 SI memory map, 3-13 SI RAM programming example, 14-13 SICR (SIU interrupt configuration register), 4-17 SIEXR (SIU external interrupt control register), 4-24 Signals 60x bus **TBST**. 8-13 TCn, 8-13 TSIZn, 8-13 TTn, 8-10 byte-select signals, 10-75 chip-select signals, 10-74 clock signals, 9-6 general-purpose signals, 10-76, 10-76 **IDMA** emulation DACKx, 18-13 DONEx. 18-14 DREOx, 18-13 memory controller byte-select signals, 10-11 EAMUX, 10-41 PSDVAL, 10-12, 10-57 SDRAM interface signals, 10-33 UPM interface signals, 10-62 UPM signal negation, 10-78 **UPWAIT**, 10-78 overview, 6-2 SIPMR_H (SIU high interrupt mask register), 4-22 SIPMR L (SIU low interrupt mask register), 4-22 SIPNR_H (SIU high interrupt pending register), 4-21 SIPNR_L (SIU low interrupt pending register), 4-21 SIPRR (SIU interrupt priority register), 4-18 SIU memory map, 3-1

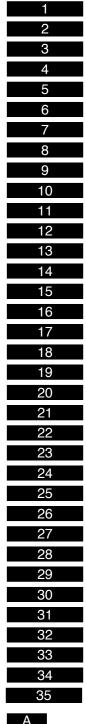
SIUMCR (SIU module configuration register), 4-31 SIVEC (SIU interrupt vector register), 4-23 SMC memory map, 3-12 SMCE (SMC event) register GCI mode, 26-34 transparent mode, 26-28 UART mode, 26-18 SMCM (SMC mask) register GCI mode, 26-34 transparent mode, 26-28 UART mode, 26-18 SMCMRs (SMC mode registers), 26-3 SPCOM (SPI command) register, 33-9 SPI memory map, 3-12 SPIE (SPI event) register, 33-9 SPIM (SPI mask) register, 33-9 SPMODE (SPI mode) register, 33-6 SWR (software watchdog register), 4-7 SWSR (software service register), 4-36 SYPCR (system protection control register), 4-35 System integration timers memory map, 3-4 System interface unit (SIU) 60x bus monitor function, 4-2 BCR, 4-25 block diagram, 4-1 bus monitor, 4-3 clocks, 4-4 configuration functions, 4-2 configuration/protection logic block diagram, 4-3 encoding the interrupt vector, 4-14 FCC relative priority, 4-12 highest priority interrupt, 4-13 IMMR, 4-34 interrupt controller features list, 4-7 interrupt source priorities, 4-9 interrupt vector calculation, 4-14 interrupt vector encoding, 4-14 interrupt vector generation, 4-14 L_TESCR1, 4-38 L TESCR2, 4-39 LCL_ACR, 4-29 LCL_ALRH, 4-30 LCL_ALRL, 4-30 local bus monitor function, 4-2 masking interrupt sources, 4-13 MCC relative priority, 4-12 periodic interrupt timer (PIT), 4-5 periodic interrupt timer (PIT) function, 4-2 pin multiplexing, 4-44 PISCR, 4-42 PITC. 4-43 PITR, 4-44 port C interrupts, 4-16 PPC_ACR, 4-28 PPC_ALRH, 4-28

PPC ALRL, 4-29 programming model, 4-17 registers, 4-17 SCC relative priority, 4-12 SCPRR_H, 4-19 SCPRR L, 4-20 SICR, 4-17 SIEXR, 4-24 signal multiplexing, 4-44 SIMR_H, 4-22, 4-22 SIPNR H, 4-21 SIPNR_L, 4-21 SIPRR, 4-18 SIUMCR, 4-31 SIVEC, 4-23 software watchdog timer, 4-6 SWR, 4-7 SWSR, 4-36 SYPCR, 4-35 system protection, 4-2 TESCR1, 4-36 **TESCR2**, 4-37 time counter (TMCNT) function, 4-2 overview, 4-4 timers, 4-4 **TMCNT**, 4-41 TMCNTAL, 4-41 TMCNTSC, 4-40

Т

TBST (transfer burst) signal, 8-13 TCN (timer counter registers), 17-8 TCn (transfer code) signals, 8-13 TCR (timer capture registers), 17-8 TER (timer event registers), 17-8 Terminology conventions, lxiv TESCRx (60x bus error status and control registers), 4-36, 10-33 TFCR (Tx buffer function code register) overview, 19-15 TGCR (timer global configuration registers), 17-4 Timers block diagram, 17-1 bus monitoring, 17-3 cascaded mode block diagram, 17-4 features, 17-2 general-purpose units, 17-2 pulse measurement, 17-3 Time-slot assigner connecting to the TSA, 14-7 Time-slot assigner (TSA) synchronization in transparent mode, 23-5 Timing

SCC timing, controlling, 19-18 TM_CMD (RISC timer command) register, 13-20 TMCNT (time counter register), 4-41 TMCNTAL (time counter alarm register), 4-41 TMCNTSC (time counter status and control register), 4-40 TMR (timer mode registers), 17-6 TODR (transmit-on-demand register) AppleTalk mode, 25-4 overview, 19-9 TOSEQ (transmit out-of-sequence) register, 20-10 Transparent mode achieving synchronization, 23-3 commands, 23-7 DSR receiver SYNC pattern lengths, 23-3 end of frame detection, 23-6 error handling, 23-8 fast communications controllers (FCCs) features list, 32-2 receive operation, 32-2 synchronization achieving, 32-2 example, 32-4 external signals, 32-3 in-line pattern, 32-3 transmit operation, 32-2 frame reception, 23-2 frame transmission, 23-2 inherent synchronization, 23-6 in-line synchronization, 23-6 overview, 23-1 programming example, 23-13 RxBD, 23-9 serial management controllers (SMCs) features list, 26-21 overview, 26-20 parameter RAM, 26-6 reception process, 26-21 synchronization signals, 23-4 synchronization, user-controlled, 23-5 transmit synchronization, 23-3 TxBD, 23-10 TRR (timer reference registers), 17-7 TSIZn (transfer size) signals, 8-13 TSTATE (internal transmitter state) register, 27-9 TTn (transfer type) signals, 8-10


U

UART mode commands, 20-6 control character insertion, 20-10 data handling, character and message-based, 20-5 error reporting, 20-6 features list, 20-2

fractional stop bits, 20-11 handling errors, 20-12 hunt mode, 20-10 memory map, 20-4 normal asynchronous mode, 20-3 overview, 20-1 parameter RAM, 20-4 programming example, 20-22 RxBD, 20-15 serial management controllers character mode, 26-12 commands, 26-12 data handling, 26-12 error handling, 26-13 features list, 26-11 features not supported by SMCs, 26-10 frame format, 26-11 message-oriented mode, 26-12 overview, 26-10 parameter RAM, 26-6 programming example, 26-19 reception process, 26-12 RxBD, 26-14 transmission process, 26-11 TxBD, 26-16 S-records loader application, 20-23 status reporting, 20-6 synchronous mode, 20-3 TxBD, 20-18 UPMs (user-programmable machines) access times, handling devices, 10-100 address control bits, 10-77 address mulitplexing, 10-77 clock timing, 10-67 data sample control, 10-77 data valid, 10-77 differences between MPC8xx and MPC8260, 10-80 DRAM configuration example, 10-79 EDO interface example, 10-92 exception requests, 10-66 hierarchical bus interface example, 10-100 implementation differences with SDRAM machine and GPCM, 10-7 loop control, 10-76 memory access requests, 10-65 memory system interface example, 10-81 MPC8xx versus MPC8260, 10-80 overview, 10-62 programming the UPM, 10-66 RAM array, 10-69 RAM word, 10-70 refresh timer requests, 10-65 register settings, 10-80 requests, 10-64 signal negation, 10-78

software requests, 10-66 UPWAIT signal, 10-78 wait mechanism, 10-78

Overview PowerPC Processor Core Memory Map System Interface Unit (SIU) Reset **External Signals** 60x Signals The 60x Bus Clocks and Power Control Memory Controller Secondary (L2) Cache Support IEEE 1149.1 Test Access Port Communications Processor Module Overview Serial Interface with Time-Slot Assigner CPM Multiplexing **Baud-Rate Generators (BRGs)** Timers SDMA Channels and IDMA Emulation Serial Communications Controllers (SCCs) SCC UART Mode SCC HDLC Mode SCC BISYNC Mode SCC Transparent Mode SCC Ethernet Mode SCC AppleTalk Mode Serial Management Controllers (SMCs) Multi-Channel Controllers (MCCs) Fast Communications Controllers ATM Controller Fast Ethernet Controller FCC HDLC Controller FCC Transparent Controller Serial Peripheral Interface (SPI) I²C Controller Parallel I/O Ports **Register Quick Reference Guide** Glossary Index IND

GLO

Overview PowerPC Processor Core Memory Map System Interface Unit (SIU) Reset External Signals 60x Signals The 60x Bus **Clocks and Power Control** Memory Controller Secondary (L2) Cache Support IEEE 1149.1 Test Access Port **Communications Processor Module Overview** Serial Interface with Time-Slot Assigner CPM Multiplexing **Baud-Rate Generators (BRGs)** Timers SDMA Channels and IDMA Emulation Serial Communications Controllers (SCCs) SCC UART Mode SCC HDLC Mode SCC BISYNC Mode SCC Transparent Mode SCC Ethernet Mode SCC AppleTalk Mode Serial Management Controllers (SMCs) Multi-Channel Controllers (MCCs) Fast Communications Controllers **ATM Controller** Fast Ethernet Controller FCC HDLC Controller FCC Transparent Controller Serial Peripheral Interface (SPI) I²C Controller Parallel I/O Ports **Register Quick Reference Guide** А Glossary GLO IND Index

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Attention!

This book is a companion to the *PowerPC Microprocessor Family: The Programming Environments*, referred to as *The Programming Environments Manual*. Note that the companion *Programming Environments Manual* exists in two versions. See the Preface for a description of the following two versions:

- PowerPC Microprocessor Family: The Programming Environments, Rev 1 Order #: MPCFPE/AD
- PowerPC Microprocessor Family: The Programming Environments for 32-Bit Microprocessors, Rev 1 Order #: MPCFPE32B/AD

Call the Motorola LDC at 1-800-441-2447 (website: http://ldc.nmd.com) or contact your local sales office to obtain copies.