11.12. One-Pointed Mind

Übersetzt von Daniel Seuffert.

Als ein Zen-Schüler liebe ich die Idee eines fokussierten Bewußtseins: Tu nur ein Ding zur gleichen Zeit, aber mache es richtig.

Das ist ziemlich genau die gleiche Idee, welche UNIX® richtig funktionieren lässt. Während eine typische Windows®-Applikation versucht alles Vorstellbare zu tun (und daher mit Fehler durchsetzt ist), versucht eine UNIX®-Applikation nur eine Funktion zu erfüllen und das gut.

Der typische UNIX®-Nutzer stellt sich sein eigenes System durch Shell-Skripte zusammen, die er selbst schreibt, und welche die Vorteile bestehender Applikationen dadurch kombinieren, indem sie die Ausgabe eines Programmes als Eingabe in ein anderes Programm durch eine Pipe übergeben.

Wenn Sie ihre eigene UNIX®-Software schreiben, ist es generell eine gute Idee zu betrachten, welcher Teil der Problemlösung durch bestehende Programme bewerkstelligt werden kann. Man schreibt nur die Programme selbst, für die keine vorhandene Lösung existiert.

11.12.1. CSV

Ich will dieses Prinzip an einem besonderen Beispiel aus der realen Welt demonstrieren, mit dem ich kürzlich konfrontiert wurde:

Ich mußte jeweils das elfte Feld von jedem Datensatz aus einer Datenbank extrahieren, die ich von einer Webseite heruntergeladen hatte. Die Datenbank war eine CSV-Datei, d.h. eine Liste von Komma-getrennten Werten. Dies ist ein ziemlich gewöhnliches Format für den Code-Austausch zwischen Menschen, die eine unterschiedliche Datenbank-Software nutzen.

Die erste Zeile der Datei enthält eine Liste der Felder durch Kommata getrennt. Der Rest der Datei enthält die einzelnen Datensätze mit durch Kommata getrennten Werten in jeder Zeile.

Ich versuchte awk unter Nutzung des Kommas als Trenner. Da aber einige Zeilen durch in Bindestriche gesetzte Kommata getrennt waren, extrahierte awk das falsche Feld aus diesen Zeilen.

Daher mußte ich meine eigene Software schreiben, um das elfte Feld aus der CSV-Datei auszulesen. Aber durch Anwendung der UNIX®-Philosophie mußte ich nur einen einfachen Filter schreiben, das Folgende tat:

  • Entferne die erste Zeile aus der Datei.

  • Ändere alle Kommata ohne Anführungszeichen in einen anderen Buchstaben.

  • Entferne alle Anführungszeichen.

Streng genommen könnte ich sed benutzen, um die erste Zeile der Datei zu entfernen, aber das zu Bewerkstelligen war in meinem Programm sehr einfach, also entschloss ich mich dazu und reduzierte dadurch die Größe der Pipeline.

Unter Berücksichtigung aller Faktoren kostete mich das Schreiben dieses Programmes ca. 20 Minuten. Das Schreiben eines Programmes, welches jeweils das elfte Feld aus einer CSV-Datei extrahiert hätte wesentlich länger gedauert und ich hätte es nicht wiederverwenden können, um ein anderes Feld aus irgendeiner anderen Datenbank zu extrahieren.

Diesmal entschied ich mich dazu, etwas mehr Arbeit zu investieren, als man normalerweise für ein typisches Tutorial verwenden würde:

  • Es parst die Kommandozeilen nach Optionen.

  • Es zeigt die richtige Nutzung an, falls es ein falsches Argument findet.

  • Es gibt vernünftige Fehlermeldungen aus.

Hier ist ein Beispiel für seine Nutzung:

Usage: csv [-t<delim>] [-c<comma>] [-p] [-o <outfile>] [-i <infile>]

Alle Parameter sind optional und können in beliebiger Reihenfolge auftauchen.

Der -t-Parameter legt fest, was zu die Kommata zu ersetzen sind. Der tab ist die Vorgabe hierfür. Zum Beispiel wird -t; alle unquotierten Kommata mit Semikolon ersetzen.

Ich brauche die -c-Option nicht, aber sie könnte zukünftig nützlich sein. Sie ermöglicht mir festzulegen, daß ich einen anderen Buchstaben als das Kommata mit etwas anderem ersetzen möchte. Zum Beispiel wird der Parameter -c@ alle @-Zeichen ersetzen (nützlich, falls man eine Liste von Email-Adressen in Nutzername und Domain aufsplitten will).

Die -p-Option erhält die erste Zeile, d.h. die erste Zeile der Datei wird nicht gelöscht. Als Vorgabe löschen wir die erste Zeile, weil die CSV-Datei in der ersten Zeile keine Daten, sondern Feldbeschreibungen enthält.

Die Parameter -i- und -o-Optionen erlauben es mir, die Ausgabe- und Eingabedateien festzulegen. Vorgabe sind stdin und stdout, also ist es ein regulärer UNIX®-Filter.

Ich habe sichergestellt, daß sowohl -i filename und -ifilename akzeptiert werden. Genauso habe ich dafür Sorge getragen, daß sowohl Eingabe- als auch Ausgabedateien festgelegt werden können.

Um das elfte Feld jeden Datensatzes zu erhalten kann ich nun folgendes eingeben:

% csv '-t;' data.csv | awk '-F;' '{print $11}'

Der Code speichert die Optionen (bis auf die Dateideskriptoren) in EDX: Das Kommata in DH, den neuen Feldtrenner in DL und das Flag für die -p-Option in dem höchsten Bit von EDX. Ein kurzer Abgleich des Zeichens wird uns also eine schnelle Entscheidung darüber erlauben, was zu tun ist.

Hier ist der Code:

;;;;;;; csv.asm ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Convert a comma-separated file to a something-else separated file.
;
; Started:	31-May-2001
; Updated:	 1-Jun-2001
;
; Copyright (c) 2001 G. Adam Stanislav
; All rights reserved.
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

%include	'system.inc'

%define	BUFSIZE	2048

section	.data
fd.in	dd	stdin
fd.out	dd	stdout
usg	db	'Usage: csv [-t<delim>] [-c<comma>] [-p] [-o <outfile>] [-i <infile>]', 0Ah
usglen	equ	$-usg
iemsg	db	"csv: Can't open input file", 0Ah
iemlen	equ	$-iemsg
oemsg	db	"csv: Can't create output file", 0Ah
oemlen	equ	$-oemsg

section .bss
ibuffer	resb	BUFSIZE
obuffer	resb	BUFSIZE

section	.text
align 4
ierr:
	push	dword iemlen
	push	dword iemsg
	push	dword stderr
	sys.write
	push	dword 1		; return failure
	sys.exit

align 4
oerr:
	push	dword oemlen
	push	dword oemsg
	push	dword stderr
	sys.write
	push	dword 2
	sys.exit

align 4
usage:
	push	dword usglen
	push	dword usg
	push	dword stderr
	sys.write
	push	dword 3
	sys.exit

align 4
global	_start
_start:
	add	esp, byte 8	; discard argc and argv[0]
	mov	edx, (',' << 8) | 9

.arg:
	pop	ecx
	or	ecx, ecx
	je	near .init		; no more arguments

	; ECX contains the pointer to an argument
	cmp	byte [ecx], '-'
	jne	usage

	inc	ecx
	mov	ax, [ecx]

.o:
	cmp	al, 'o'
	jne	.i

	; Make sure we are not asked for the output file twice
	cmp	dword [fd.out], stdout
	jne	usage

	; Find the path to output file - it is either at [ECX+1],
	; i.e., -ofile --
	; or in the next argument,
	; i.e., -o file

	inc	ecx
	or	ah, ah
	jne	.openoutput
	pop	ecx
	jecxz	usage

.openoutput:
	push	dword 420	; file mode (644 octal)
	push	dword 0200h | 0400h | 01h
	; O_CREAT | O_TRUNC | O_WRONLY
	push	ecx
	sys.open
	jc	near oerr

	add	esp, byte 12
	mov	[fd.out], eax
	jmp	short .arg

.i:
	cmp	al, 'i'
	jne	.p

	; Make sure we are not asked twice
	cmp	dword [fd.in], stdin
	jne	near usage

	; Find the path to the input file
	inc	ecx
	or	ah, ah
	jne	.openinput
	pop	ecx
	or	ecx, ecx
	je near usage

.openinput:
	push	dword 0		; O_RDONLY
	push	ecx
	sys.open
	jc	near ierr		; open failed

	add	esp, byte 8
	mov	[fd.in], eax
	jmp	.arg

.p:
	cmp	al, 'p'
	jne	.t
	or	ah, ah
	jne	near usage
	or	edx, 1 << 31
	jmp	.arg

.t:
	cmp	al, 't'		; redefine output delimiter
	jne	.c
	or	ah, ah
	je	near usage
	mov	dl, ah
	jmp	.arg

.c:
	cmp	al, 'c'
	jne	near usage
	or	ah, ah
	je	near usage
	mov	dh, ah
	jmp	.arg

align 4
.init:
	sub	eax, eax
	sub	ebx, ebx
	sub	ecx, ecx
	mov	edi, obuffer

	; See if we are to preserve the first line
	or	edx, edx
	js	.loop

.firstline:
	; get rid of the first line
	call	getchar
	cmp	al, 0Ah
	jne	.firstline

.loop:
	; read a byte from stdin
	call	getchar

	; is it a comma (or whatever the user asked for)?
	cmp	al, dh
	jne	.quote

	; Replace the comma with a tab (or whatever the user wants)
	mov	al, dl

.put:
	call	putchar
	jmp	short .loop

.quote:
	cmp	al, '"'
	jne	.put

	; Print everything until you get another quote or EOL. If it
	; is a quote, skip it. If it is EOL, print it.
.qloop:
	call	getchar
	cmp	al, '"'
	je	.loop

	cmp	al, 0Ah
	je	.put

	call	putchar
	jmp	short .qloop

align 4
getchar:
	or	ebx, ebx
	jne	.fetch

	call	read

.fetch:
	lodsb
	dec	ebx
	ret

read:
	jecxz	.read
	call	write

.read:
	push	dword BUFSIZE
	mov	esi, ibuffer
	push	esi
	push	dword [fd.in]
	sys.read
	add	esp, byte 12
	mov	ebx, eax
	or	eax, eax
	je	.done
	sub	eax, eax
	ret

align 4
.done:
	call	write		; flush output buffer

	; close files
	push	dword [fd.in]
	sys.close

	push	dword [fd.out]
	sys.close

	; return success
	push	dword 0
	sys.exit

align 4
putchar:
	stosb
	inc	ecx
	cmp	ecx, BUFSIZE
	je	write
	ret

align 4
write:
	jecxz	.ret	; nothing to write
	sub	edi, ecx	; start of buffer
	push	ecx
	push	edi
	push	dword [fd.out]
	sys.write
	add	esp, byte 12
	sub	eax, eax
	sub	ecx, ecx	; buffer is empty now
.ret:
	ret

Vieles daraus ist aus hex.asm entnommen worden. Aber es gibt einen wichtigen Unterschied: Ich rufe nicht länger write auf, wann immer ich eine Zeilenvorschub ausgebe. Nun kann der Code sogar interaktiv genutzt werden.

Ich habe eine bessere Lösung gefunden für das Interaktivitätsproblem seit ich mit dem Schreiben dieses Kapitels begonnen habe. Ich wollte sichergehen, daß jede Zeile einzeln ausgegeben werden kann, falls erforderlich. Aber schlussendlich gibt es keinen Bedarf jede Zeile einzeln auszugeben, falls nicht-interaktiv genutzt.

Die neue Lösung besteht darin, die Funktion write jedesmal aufzurufen, wenn ich den Eingabepuffer leer vorfinde. Auf diesem Wege liest das Programm im interaktiven Modus eine Zeile aus der Tastatur des Nutzers, verarbeitet sie und stellt fest, ob deren Eingabepuffer leer ist, dann leert es seine Ausgabe und liest die nächste Zeile.

11.12.1.1. Die dunkle Seite des Buffering

Diese Änderung verhindert einen mysteriösen Aufhänger in einem speziellen Fall. Ich bezeichne dies als die dunkle Seite des Buffering, hauptsächlich, weil es eine nicht offensichtliche Gefahr darstellt.

Es ist unwahrscheinlich, daß dies mit dem csv-Programm oben geschieht aber lassen Sie uns einen weiteren Filter betrachten: Nehmen wir an ihre Eingabe sind rohe Daten, die Farbwerte darstellen, wie z.B. die Intensität eines Pixel mit den Farben rot, grün und blau. Unsere Ausgabe wird der negative Wert unserer Eingabe sein.

Solch ein Filter würde sehr einfach zu schreiben sein. Der größte Teil davon würde so aussehen wie all die anderen Filter, die wir bisher geschrieben haben, daher beziehe ich mich nur auf den Kern der Prozedur:

.loop:
	call	getchar
	not	al		; Create a negative
	call	putchar
	jmp	short .loop

Da dieser Filter mit rohen Daten arbeitet ist es unwahrscheinlich, daß er interaktiv genutzt werden wird.

Aber das Programm könnte als Bildbearbeitungssoftware tituliert werden. Wenn es nicht write vor jedem Aufruf von read durchführt, ist die Möglichkeit gegeben, das es sich aufhängt.

Dies könnte passieren:

  1. Der Bildeditor wird unseren Filter laden mittels der C-Funktion popen().

  2. Er wird die erste Zeile von Pixeln laden aus einer Bitmap oder Pixmap.

  3. Er wird die erste Zeile von Pixeln geschrieben in die Pipe, welche zur Variable fd.in unseres Filters führt.

  4. Unser Filter wird jeden Pixel auslesen von der Eingabe, in in seinen negativen Wert umkehren und ihn in den Ausgabepuffer schreiben.

  5. Unser Filter wird die Funktion getchar aufrufen, um das nächste Pixel abzurufen.

  6. Die Funktion getchar wird einen leeren Eingabepuffer vorfinden und daher die Funktion read aufrufen.

  7. read wird den Systemaufruf SYS_read starten.

  8. Der Kernel wird unseren Filter unterbrechen, bis der Bildeditor mehr Daten zur Pipe sendet.

  9. Der Bildedior wird aus der anderen Pipe lesen, welche verbunden ist mit fd.out unseres Filters, damit er die erste Zeile des auszugebenden Bildes setzen kann bevor er uns die zweite Zeile der Eingabe einliest.

  10. Der Kernel unterbricht den Bildeditor, bis er eine Ausgabe unseres Filters erhält, um ihn an den Bildeditor weiterzureichen.

An diesem Punkt wartet unser Filter auf den Bildeditor, daß er ihm mehr Daten zur Verarbeitung schicken möge. Gleichzeitig wartet der Bildeditor darauf, daß unser Filter das Resultat der Berechnung ersten Zeile sendet. Aber das Ergebnis sitzt in unserem Ausgabepuffer.

Der Filter und der Bildeditor werden fortfahren bis in die Ewigkeit aufeinander zu warten (oder zumindest bis sie per kill entsorgt werden). Unsere Software hat den eine Race Condition erreicht.

Das Problem tritt nicht auf, wenn unser Filter seinen Ausgabepuffer leert bevor er vom Kernel mehr Eingabedaten anfordert.

Wenn Sie Fragen zu FreeBSD haben, schicken Sie eine E-Mail an <de-bsd-questions@de.FreeBSD.org>.

Wenn Sie Fragen zu dieser Dokumentation haben, schicken Sie eine E-Mail an <de-bsd-translators@de.FreeBSD.org>.