Skip site navigation (1)Skip section navigation (2)

FreeBSD Man Pages

Man Page or Keyword Search:
Man Architecture
Apropos Keyword Search (all sections) Output format
home | help
pem(3)				    OpenSSL				pem(3)

NAME
       PEM, PEM_read_bio_PrivateKey, PEM_read_PrivateKey,
       PEM_write_bio_PrivateKey, PEM_write_PrivateKey,
       PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey,
       PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid,
       PEM_read_bio_PUBKEY, PEM_read_PUBKEY, PEM_write_bio_PUBKEY,
       PEM_write_PUBKEY, PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey,
       PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey,
       PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey,
       PEM_write_bio_RSAPublicKey, PEM_write_RSAPublicKey,
       PEM_read_bio_RSA_PUBKEY,	PEM_read_RSA_PUBKEY, PEM_write_bio_RSA_PUBKEY,
       PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey,
       PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey,
       PEM_write_DSAPrivateKey,	PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY,
       PEM_write_bio_DSA_PUBKEY, PEM_write_DSA_PUBKEY, PEM_read_bio_DSAparams,
       PEM_read_DSAparams, PEM_write_bio_DSAparams, PEM_write_DSAparams,
       PEM_read_bio_DHparams, PEM_read_DHparams, PEM_write_bio_DHparams,
       PEM_write_DHparams, PEM_read_bio_X509, PEM_read_X509,
       PEM_write_bio_X509, PEM_write_X509, PEM_read_bio_X509_AUX,
       PEM_read_X509_AUX, PEM_write_bio_X509_AUX, PEM_write_X509_AUX,
       PEM_read_bio_X509_REQ, PEM_read_X509_REQ, PEM_write_bio_X509_REQ,
       PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW, PEM_write_X509_REQ_NEW,
       PEM_read_bio_X509_CRL, PEM_read_X509_CRL, PEM_write_bio_X509_CRL,
       PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7,
       PEM_write_bio_PKCS7, PEM_write_PKCS7,
       PEM_read_bio_NETSCAPE_CERT_SEQUENCE, PEM_read_NETSCAPE_CERT_SEQUENCE,
       PEM_write_bio_NETSCAPE_CERT_SEQUENCE, PEM_write_NETSCAPE_CERT_SEQUENCE
       - PEM routines

SYNOPSIS
	#include <openssl/pem.h>

	EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
					       pem_password_cb *cb, void *u);

	EVP_PKEY *PEM_read_PrivateKey(FILE *fp,	EVP_PKEY **x,
					       pem_password_cb *cb, void *u);

	int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
					       unsigned	char *kstr, int	klen,
					       pem_password_cb *cb, void *u);

	int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x,	const EVP_CIPHER *enc,
					       unsigned	char *kstr, int	klen,
					       pem_password_cb *cb, void *u);

	int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x,	const EVP_CIPHER *enc,
					       char *kstr, int klen,
					       pem_password_cb *cb, void *u);

	int PEM_write_PKCS8PrivateKey(FILE *fp,	EVP_PKEY *x, const EVP_CIPHER *enc,
					       char *kstr, int klen,
					       pem_password_cb *cb, void *u);

	int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY	*x, int	nid,
					       char *kstr, int klen,
					       pem_password_cb *cb, void *u);

	int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
					       char *kstr, int klen,
					       pem_password_cb *cb, void *u);

	EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY	**x,
					       pem_password_cb *cb, void *u);

	EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
					       pem_password_cb *cb, void *u);

	int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
	int PEM_write_PUBKEY(FILE *fp, EVP_PKEY	*x);

	RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
					       pem_password_cb *cb, void *u);

	RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
					       pem_password_cb *cb, void *u);

	int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
					       unsigned	char *kstr, int	klen,
					       pem_password_cb *cb, void *u);

	int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
					       unsigned	char *kstr, int	klen,
					       pem_password_cb *cb, void *u);

	RSA *PEM_read_bio_RSAPublicKey(BIO *bp,	RSA **x,
					       pem_password_cb *cb, void *u);

	RSA *PEM_read_RSAPublicKey(FILE	*fp, RSA **x,
					       pem_password_cb *cb, void *u);

	int PEM_write_bio_RSAPublicKey(BIO *bp,	RSA *x);

	int PEM_write_RSAPublicKey(FILE	*fp, RSA *x);

	RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
					       pem_password_cb *cb, void *u);

	RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
					       pem_password_cb *cb, void *u);

	int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);

	int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);

	DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
					       pem_password_cb *cb, void *u);

	DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
					       pem_password_cb *cb, void *u);

	int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
					       unsigned	char *kstr, int	klen,
					       pem_password_cb *cb, void *u);

	int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
					       unsigned	char *kstr, int	klen,
					       pem_password_cb *cb, void *u);

	DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
					       pem_password_cb *cb, void *u);

	DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
					       pem_password_cb *cb, void *u);

	int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);

	int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);

	DSA *PEM_read_bio_DSAparams(BIO	*bp, DSA **x, pem_password_cb *cb, void	*u);

	DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb,	void *u);

	int PEM_write_bio_DSAparams(BIO	*bp, DSA *x);

	int PEM_write_DSAparams(FILE *fp, DSA *x);

	DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb,	void *u);

	DH *PEM_read_DHparams(FILE *fp,	DH **x,	pem_password_cb	*cb, void *u);

	int PEM_write_bio_DHparams(BIO *bp, DH *x);

	int PEM_write_DHparams(FILE *fp, DH *x);

	X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb,	void *u);

	X509 *PEM_read_X509(FILE *fp, X509 **x,	pem_password_cb	*cb, void *u);

	int PEM_write_bio_X509(BIO *bp,	X509 *x);

	int PEM_write_X509(FILE	*fp, X509 *x);

	X509 *PEM_read_bio_X509_AUX(BIO	*bp, X509 **x, pem_password_cb *cb, void *u);

	X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);

	int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);

	int PEM_write_X509_AUX(FILE *fp, X509 *x);

	X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
					       pem_password_cb *cb, void *u);

	X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
					       pem_password_cb *cb, void *u);

	int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);

	int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);

	int PEM_write_bio_X509_REQ_NEW(BIO *bp,	X509_REQ *x);

	int PEM_write_X509_REQ_NEW(FILE	*fp, X509_REQ *x);

	X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
					       pem_password_cb *cb, void *u);
	X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
					       pem_password_cb *cb, void *u);
	int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
	int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);

	PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void	*u);

	PKCS7 *PEM_read_PKCS7(FILE *fp,	PKCS7 **x, pem_password_cb *cb,	void *u);

	int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);

	int PEM_write_PKCS7(FILE *fp, PKCS7 *x);

	NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO	*bp,
						       NETSCAPE_CERT_SEQUENCE **x,
						       pem_password_cb *cb, void *u);

	NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp,
						       NETSCAPE_CERT_SEQUENCE **x,
						       pem_password_cb *cb, void *u);

	int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x);

	int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x);

DESCRIPTION
       The PEM functions read or write structures in PEM format. In this sense
       PEM format is simply base64 encoded data	surrounded by header lines.

       For more	details	about the meaning of arguments see the PEM FUNCTION
       ARGUMENTS section.

       Each operation has four functions associated with it. For clarity the
       term "foobar functions" will be used to collectively refer to the
       PEM_read_bio_foobar(), PEM_read_foobar(), PEM_write_bio_foobar()	and
       PEM_write_foobar() functions.

       The PrivateKey functions	read or	write a	private	key in PEM format
       using an	EVP_PKEY structure. The	write routines use "traditional"
       private key format and can handle both RSA and DSA private keys.	The
       read functions can additionally transparently handle PKCS#8 format
       encrypted and unencrypted keys too.

       PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a
       private key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo
       format using PKCS#5 v2.0	password based encryption algorithms. The
       cipher argument specifies the encryption	algoritm to use: unlike	all
       other PEM routines the encryption is applied at the PKCS#8 level	and
       not in the PEM headers. If cipher is NULL then no encryption is used
       and a PKCS#8 PrivateKeyInfo structure is	used instead.

       PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
       also write out a	private	key as a PKCS#8	EncryptedPrivateKeyInfo
       however it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead.
       The algorithm to	use is specified in the	nid parameter and should be
       the NID of the corresponding OBJECT IDENTIFIER (see NOTES section).

       The PUBKEY functions process a public key using an EVP_PKEY structure.
       The public key is encoded as a SubjectPublicKeyInfo structure.

       The RSAPrivateKey functions process an RSA private key using an RSA
       structure. It handles the same formats as the PrivateKey	functions but
       an error	occurs if the private key is not RSA.

       The RSAPublicKey	functions process an RSA public	key using an RSA
       structure. The public key is encoded using a PKCS#1 RSAPublicKey
       structure.

       The RSA_PUBKEY functions	also process an	RSA public key using an	RSA
       structure. However the public key is encoded using a
       SubjectPublicKeyInfo structure and an error occurs if the public	key is
       not RSA.

       The DSAPrivateKey functions process a DSA private key using a DSA
       structure. It handles the same formats as the PrivateKey	functions but
       an error	occurs if the private key is not DSA.

       The DSA_PUBKEY functions	process	a DSA public key using a DSA
       structure. The public key is encoded using a SubjectPublicKeyInfo
       structure and an	error occurs if	the public key is not DSA.

       The DSAparams functions process DSA parameters using a DSA structure.
       The parameters are encoded using	a foobar structure.

       The DHparams functions process DH parameters using a DH structure. The
       parameters are encoded using a PKCS#3 DHparameter structure.

       The X509	functions process an X509 certificate using an X509 structure.
       They will also process a	trusted	X509 certificate but any trust
       settings	are discarded.

       The X509_AUX functions process a	trusted	X509 certificate using an X509
       structure.

       The X509_REQ and	X509_REQ_NEW functions process a PKCS#10 certificate
       request using an	X509_REQ structure. The	X509_REQ write functions use
       CERTIFICATE REQUEST in the header whereas the X509_REQ_NEW functions
       use NEW CERTIFICATE REQUEST (as required	by some	CAs). The X509_REQ
       read functions will handle either form so there are no X509_REQ_NEW
       read functions.

       The X509_CRL functions process an X509 CRL using	an X509_CRL structure.

       The PKCS7 functions process a PKCS#7 ContentInfo	using a	PKCS7
       structure.

       The NETSCAPE_CERT_SEQUENCE functions process a Netscape Certificate
       Sequence	using a	NETSCAPE_CERT_SEQUENCE structure.

PEM FUNCTION ARGUMENTS
       The PEM functions have many common arguments.

       The bp BIO parameter (if	present) specifies the BIO to read from	or
       write to.

       The fp FILE parameter (if present) specifies the	FILE pointer to	read
       from or write to.

       The PEM read functions all take an argument TYPE	**x and	return a TYPE
       * pointer. Where	TYPE is	whatever structure the function	uses. If x is
       NULL then the parameter is ignored. If x	is not NULL but	*x is NULL
       then the	structure returned will	be written to *x. If neither x nor *x
       is NULL then an attempt is made to reuse	the structure at *x (but see
       BUGS and	EXAMPLES sections).  Irrespective of the value of x a pointer
       to the structure	is always returned (or NULL if an error	occurred).

       The PEM functions which write private keys take an enc parameter	which
       specifies the encryption	algorithm to use, encryption is	done at	the
       PEM level. If this parameter is set to NULL then	the private key	is
       written in unencrypted form.

       The cb argument is the callback to use when querying for	the pass
       phrase used for encrypted PEM structures	(normally only private keys).

       For the PEM write routines if the kstr parameter	is not NULL then klen
       bytes at	kstr are used as the passphrase	and cb is ignored.

       If the cb parameters is set to NULL and the u parameter is not NULL
       then the	u parameter is interpreted as a	null terminated	string to use
       as the passphrase. If both cb and u are NULL then the default callback
       routine is used which will typically prompt for the passphrase on the
       current terminal	with echoing turned off.

       The default passphrase callback is sometimes inappropriate (for example
       in a GUI	application) so	an alternative can be supplied.	The callback
       routine has the following form:

	int cb(char *buf, int size, int	rwflag,	void *u);

       buf is the buffer to write the passphrase to. size is the maximum
       length of the passphrase	(i.e. the size of buf).	rwflag is a flag which
       is set to 0 when	reading	and 1 when writing. A typical routine will ask
       the user	to verify the passphrase (for example by prompting for it
       twice) if rwflag	is 1. The u parameter has the same value as the	u
       parameter passed	to the PEM routine. It allows arbitrary	data to	be
       passed to the callback by the application (for example a	window handle
       in a GUI	application). The callback must	return the number of
       characters in the passphrase or 0 if an error occurred.

EXAMPLES
       Although	the PEM	routines take several arguments	in almost all
       applications most of them are set to 0 or NULL.

       Read a certificate in PEM format	from a BIO:

	X509 *x;
	x = PEM_read_bio_X509(bp, NULL,	0, NULL);
	if (x == NULL)
	       {
	       /* Error	*/
	       }

       Alternative method:

	X509 *x	= NULL;
	if (!PEM_read_bio_X509(bp, &x, 0, NULL))
	       {
	       /* Error	*/
	       }

       Write a certificate to a	BIO:

	if (!PEM_write_bio_X509(bp, x))
	       {
	       /* Error	*/
	       }

       Write an	unencrypted private key	to a FILE pointer:

	if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL))
	       {
	       /* Error	*/
	       }

       Write a private key (using traditional format) to a BIO using triple
       DES encryption, the pass	phrase is prompted for:

	if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
	       {
	       /* Error	*/
	       }

       Write a private key (using PKCS#8 format) to a BIO using	triple DES
       encryption, using the pass phrase "hello":

	if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(),	NULL, 0, 0, "hello"))
	       {
	       /* Error	*/
	       }

       Read a private key from a BIO using the pass phrase "hello":

	key = PEM_read_bio_PrivateKey(bp, NULL,	0, "hello");
	if (key	== NULL)
	       {
	       /* Error	*/
	       }

       Read a private key from a BIO using a pass phrase callback:

	key = PEM_read_bio_PrivateKey(bp, NULL,	pass_cb, "My Private Key");
	if (key	== NULL)
	       {
	       /* Error	*/
	       }

       Skeleton	pass phrase callback:

	int pass_cb(char *buf, int size, int rwflag, void *u);
	       {
	       int len;
	       char *tmp;
	       /* We'd probably	do something else if 'rwflag' is 1 */
	       printf("Enter pass phrase for \"%s\"\n",	u);

	       /* get pass phrase, length 'len'	into 'tmp' */
	       tmp = "hello";
	       len = strlen(tmp);

	       if (len <= 0) return 0;
	       /* if too long, truncate	*/
	       if (len > size) len = size;
	       memcpy(buf, tmp,	len);
	       return len;
	       }

NOTES
       The old PrivateKey write	routines are retained for compatibility.  New
       applications should write private keys using the
       PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
       because they are	more secure (they use an iteration count of 2048
       whereas the traditional routines	use a count of 1) unless compatibility
       with older versions of OpenSSL is important.

       The PrivateKey read routines can	be used	in all applications because
       they handle all formats transparently.

       A frequent cause	of problems is attempting to use the PEM routines like
       this:

	X509 *x;
	PEM_read_bio_X509(bp, &x, 0, NULL);

       this is a bug because an	attempt	will be	made to	reuse the data at x
       which is	an uninitialised pointer.

PEM ENCRYPTION FORMAT
       This old	PrivateKey routines use	a non standard technique for
       encryption.

       The private key (or other data) takes the following form:

	-----BEGIN RSA PRIVATE KEY-----
	Proc-Type: 4,ENCRYPTED
	DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89

	...base64 encoded data...
	-----END RSA PRIVATE KEY-----

       The line	beginning DEK-Info contains two	comma separated	pieces of
       information: the	encryption algorithm name as used by
       EVP_get_cipherbyname() and an 8 byte salt encoded as a set of
       hexadecimal digits.

       After this is the base64	encoded	encrypted data.

       The encryption key is determined	using EVP_bytestokey(),	using salt and
       an iteration count of 1.	The IV used is the value of salt and *not* the
       IV returned by EVP_bytestokey().

BUGS
       The PEM read routines in	some versions of OpenSSL will not correctly
       reuse an	existing structure. Therefore the following:

	PEM_read_bio_X509(bp, &x, 0, NULL);

       where x already contains	a valid	certificate, may not work, whereas:

	X509_free(x);
	x = PEM_read_bio_X509(bp, NULL,	0, NULL);

       is guaranteed to	work.

RETURN CODES
       The read	routines return	either a pointer to the	structure read or NULL
       if an error occurred.

       The write routines return 1 for success or 0 for	failure.

0.9.8za				  2014-06-05				pem(3)

NAME | SYNOPSIS | DESCRIPTION | PEM FUNCTION ARGUMENTS | EXAMPLES | NOTES | PEM ENCRYPTION FORMAT | BUGS | RETURN CODES

Want to link to this manual page? Use this URL:
<http://www.freebsd.org/cgi/man.cgi?query=pem&sektion=3&manpath=FreeBSD+9.3-RELEASE>

home | help