Skip site navigation (1)Skip section navigation (2)

FreeBSD Man Pages

Man Page or Keyword Search:
Man Architecture
Apropos Keyword Search (all sections) Output format
home | help
IPFW(8)			FreeBSD	System Manager's Manual		       IPFW(8)

NAME
     ipfw -- IP	firewall and traffic shaper control program

SYNOPSIS
     ipfw [-cq]	add rule
     ipfw [-acdefnNStT]	[set N]	{list |	show} [rule | first-last ...]
     ipfw [-f |	-q] [set N] flush
     ipfw [-q] [set N] {delete | zero |	resetlog} [number ...]
     ipfw enable
	  {firewall | altq | one_pass |	debug |	verbose	| dyn_keepalive}
     ipfw disable
	  {firewall | altq | one_pass |	debug |	verbose	| dyn_keepalive}

     ipfw set [disable number ...] [enable number ...]
     ipfw set move [rule] number to number
     ipfw set swap number number
     ipfw set show

     ipfw table	number add addr[/masklen] [value]
     ipfw table	number delete addr[/masklen]
     ipfw table	{number	| all} flush
     ipfw table	{number	| all} list

     ipfw {pipe	| queue} number	config config-options
     ipfw [-s [field]] {pipe | queue} {delete |	list | show} [number ...]

     ipfw [-q] nat number config config-options

     ipfw [-cfnNqS] [-p	preproc	[preproc-flags]] pathname

DESCRIPTION
     The ipfw utility is the user interface for	controlling the	ipfw(4)	fire-
     wall and the dummynet(4) traffic shaper in	FreeBSD.

     An	ipfw configuration, or ruleset,	is made	of a list of rules numbered
     from 1 to 65535.  Packets are passed to ipfw from a number	of different
     places in the protocol stack (depending on	the source and destination of
     the packet, it is possible	that ipfw is invoked multiple times on the
     same packet).  The	packet passed to the firewall is compared against each
     of	the rules in the firewall ruleset.  When a match is found, the action
     corresponding to the matching rule	is performed.

     Depending on the action and certain system	settings, packets can be rein-
     jected into the firewall at some rule after the matching one for further
     processing.

     An	ipfw ruleset always includes a default rule (numbered 65535) which
     cannot be modified	or deleted, and	matches	all packets.  The action asso-
     ciated with the default rule can be either	deny or	allow depending	on how
     the kernel	is configured.

     If	the ruleset includes one or more rules with the	keep-state or limit
     option, then ipfw assumes a stateful behaviour, i.e., upon	a match	it
     will create dynamic rules matching	the exact parameters (addresses	and
     ports) of the matching packet.

     These dynamic rules, which	have a limited lifetime, are checked at	the
     first occurrence of a check-state,	keep-state or limit rule, and are typ-
     ically used to open the firewall on-demand	to legitimate traffic only.
     See the STATEFUL FIREWALL and EXAMPLES Sections below for more informa-
     tion on the stateful behaviour of ipfw.

     All rules (including dynamic ones)	have a few associated counters:	a
     packet count, a byte count, a log count and a timestamp indicating	the
     time of the last match.  Counters can be displayed	or reset with ipfw
     commands.

     Rules can be added	with the add command; deleted individually or in
     groups with the delete command, and globally (except those	in set 31)
     with the flush command; displayed,	optionally with	the content of the
     counters, using the show and list commands.  Finally, counters can	be
     reset with	the zero and resetlog commands.

     Also, each	rule belongs to	one of 32 different sets , and there are ipfw
     commands to atomically manipulate sets, such as enable, disable, swap
     sets, move	all rules in a set to another one, delete all rules in a set.
     These can be useful to install temporary configurations, or to test them.
     See Section SETS OF RULES for more	information on sets.

     The following options are available:

     -a	     While listing, show counter values.  The show command just
	     implies this option.

     -b	     Only show the action and the comment, not the body	of a rule.
	     Implies -c.

     -c	     When entering or showing rules, print them	in compact form, i.e.,
	     without the optional "ip from any to any" string when this	does
	     not carry any additional information.

     -d	     While listing, show dynamic rules in addition to static ones.

     -e	     While listing, if the -d option was specified, also show expired
	     dynamic rules.

     -f	     Do	not ask	for confirmation for commands that can cause problems
	     if	misused, i.e. flush.  If there is no tty associated with the
	     process, this is implied.

     -i	     While listing a table (see	the LOOKUP TABLES section below	for
	     more information on lookup	tables), format	values as IP
	     addresses.	By default, values are shown as	integers.

     -n	     Only check	syntax of the command strings, without actually	pass-
	     ing them to the kernel.

     -N	     Try to resolve addresses and service names	in output.

     -q	     While adding, nating, zeroing, resetlogging or flushing, be quiet
	     about actions (implies -f).  This is useful for adjusting rules
	     by	executing multiple ipfw	commands in a script (e.g.,
	     `sh /etc/rc.firewall'), or	by processing a	file of	many ipfw
	     rules across a remote login session.  It also stops a table add
	     or	delete from failing if the entry already exists	or is not
	     present.  If a flush is performed in normal (verbose) mode	(with
	     the default kernel	configuration),	it prints a message.  Because
	     all rules are flushed, the	message	might not be delivered to the
	     login session, causing the	remote login session to	be closed and
	     the remainder of the ruleset to not be processed.	Access to the
	     console would then	be required to recover.

     -S	     While listing rules, show the set each rule belongs to.  If this
	     flag is not specified, disabled rules will	not be listed.

     -s	[field]
	     While listing pipes, sort according to one	of the four counters
	     (total or current packets or bytes).

     -t	     While listing, show last match timestamp (converted with
	     ctime()).

     -T	     While listing, show last match timestamp (as seconds from the
	     epoch).  This form	can be more convenient for postprocessing by
	     scripts.

     To	ease configuration, rules can be put into a file which is processed
     using ipfw	as shown in the	last synopsis line.  An	absolute pathname must
     be	used.  The file	will be	read line by line and applied as arguments to
     the ipfw utility.

     Optionally, a preprocessor	can be specified using -p preproc where
     pathname is to be piped through.  Useful preprocessors include cpp(1) and
     m4(1).  If	preproc	does not start with a slash (`/') as its first charac-
     ter, the usual PATH name search is	performed.  Care should	be taken with
     this in environments where	not all	file systems are mounted (yet) by the
     time ipfw is being	run (e.g. when they are	mounted	over NFS).  Once -p
     has been specified, any additional	arguments as passed on to the pre-
     processor for interpretation.  This allows	for flexible configuration
     files (like conditionalizing them on the local hostname) and the use of
     macros to centralize frequently required arguments	like IP	addresses.

     The ipfw pipe and queue commands are used to configure the	traffic
     shaper, as	shown in the TRAFFIC SHAPER (DUMMYNET) CONFIGURATION Section
     below.

     If	the world and the kernel get out of sync the ipfw ABI may break, pre-
     venting you from being able to add	any rules.  This can adversely effect
     the booting process.  You can use ipfw disable firewall to	temporarily
     disable the firewall to regain access to the network, allowing you	to fix
     the problem.

PACKET FLOW
     A packet is checked against the active ruleset in multiple	places in the
     protocol stack, under control of several sysctl variables.	 These places
     and variables are shown below, and	it is important	to have	this picture
     in	mind in	order to design	a correct ruleset.

		  ^    to upper	layers	  V
		  |			  |
		  +----------->-----------+
		  ^			  V
	    [ip(6)_input]	    [ip(6)_output]     net.inet(6).ip(6).fw.enable=1
		  |			  |
		  ^			  V
	    [ether_demux]	 [ether_output_frame]  net.link.ether.ipfw=1
		  |			  |
		  +-->--[bdg_forward]-->--+	       net.link.bridge.ipfw=1
		  ^			  V
		  |	 to devices	  |

     As	can be noted from the above picture, the number	of times the same
     packet goes through the firewall can vary between 0 and 4 depending on
     packet source and destination, and	system configuration.

     Note that as packets flow through the stack, headers can be stripped or
     added to it, and so they may or may not be	available for inspection.
     E.g., incoming packets will include the MAC header	when ipfw is invoked
     from ether_demux(), but the same packets will have	the MAC	header
     stripped off when ipfw is invoked from ip_input() or ip6_input().

     Also note that each packet	is always checked against the complete rule-
     set, irrespective of the place where the check occurs, or the source of
     the packet.  If a rule contains some match	patterns or actions which are
     not valid for the place of	invocation (e.g. trying	to match a MAC header
     within ip_input or	ip6_input ), the match pattern will not	match, but a
     not operator in front of such patterns will cause the pattern to always
     match on those packets.  It is thus the responsibility of the programmer,
     if	necessary, to write a suitable ruleset to differentiate	among the pos-
     sible places.  skipto rules can be	useful here, as	an example:

	   # packets from ether_demux or bdg_forward
	   ipfw	add 10 skipto 1000 all from any	to any layer2 in
	   # packets from ip_input
	   ipfw	add 10 skipto 2000 all from any	to any not layer2 in
	   # packets from ip_output
	   ipfw	add 10 skipto 3000 all from any	to any not layer2 out
	   # packets from ether_output_frame
	   ipfw	add 10 skipto 4000 all from any	to any layer2 out

     (yes, at the moment there is no way to differentiate between ether_demux
     and bdg_forward).

SYNTAX
     In	general, each keyword or argument must be provided as a	separate com-
     mand line argument, with no leading or trailing spaces.  Keywords are
     case-sensitive, whereas arguments may or may not be case-sensitive
     depending on their	nature (e.g. uid's are,	hostnames are not).

     In	ipfw2 you can introduce	spaces after commas ','	to make	the line more
     readable.	You can	also put the entire command (including flags) into a
     single argument.  E.g., the following forms are equivalent:

	   ipfw	-q add deny src-ip 10.0.0.0/24,127.0.0.1/8
	   ipfw	-q add deny src-ip 10.0.0.0/24,	127.0.0.1/8
	   ipfw	"-q add	deny src-ip 10.0.0.0/24, 127.0.0.1/8"

RULE FORMAT
     The format	of ipfw	rules is the following:

	   [rule_number] [set set_number] [prob	match_probability] action
	   [log	[logamount number]] [altq queue] [{tag | untag}	number]	body

     where the body of the rule	specifies which	information is used for	fil-
     tering packets, among the following:

	Layer-2	header fields		      When available
	IPv4 and IPv6 Protocol		      TCP, UDP,	ICMP, etc.
	Source and dest. addresses and ports
	Direction			      See Section PACKET FLOW
	Transmit and receive interface	      By name or address
	Misc. IP header	fields		      Version, type of service,	data-
					      gram length, identification,
					      fragment flag (non-zero IP off-
					      set), Time To Live
	IP options
	IPv6 Extension headers		      Fragmentation, Hop-by-Hop
					      options, Routing Headers,	Source
					      routing rthdr0, Mobile IPv6
					      rthdr2, IPSec options.
	IPv6 Flow-ID
	Misc. TCP header fields		      TCP flags	(SYN, FIN, ACK,	RST,
					      etc.), sequence number, acknowl-
					      edgment number, window
	TCP options
	ICMP types			      for ICMP packets
	ICMP6 types			      for ICMP6	packets
	User/group ID			      When the packet can be associ-
					      ated with	a local	socket.
	Divert status			      Whether a	packet came from a
					      divert socket (e.g., natd(8)).
	Fib annotation state		      Whether a	packet has been	tagged
					      for using	a specific FIB (rout-
					      ing table) in future forwarding
					      decisions.

     Note that some of the above information, e.g. source MAC or IP addresses
     and TCP/UDP ports,	could easily be	spoofed, so filtering on those fields
     alone might not guarantee the desired results.

     rule_number
	     Each rule is associated with a rule_number	in the range 1..65535,
	     with the latter reserved for the default rule.  Rules are checked
	     sequentially by rule number.  Multiple rules can have the same
	     number, in	which case they	are checked (and listed) according to
	     the order in which	they have been added.  If a rule is entered
	     without specifying	a number, the kernel will assign one in	such a
	     way that the rule becomes the last	one before the default rule.
	     Automatic rule numbers are	assigned by incrementing the last non-
	     default rule number by the	value of the sysctl variable
	     net.inet.ip.fw.autoinc_step which defaults	to 100.	 If this is
	     not possible (e.g.	because	we would go beyond the maximum allowed
	     rule number), the number of the last non-default value is used
	     instead.

     set set_number
	     Each rule is associated with a set_number in the range 0..31.
	     Sets can be individually disabled and enabled, so this parameter
	     is	of fundamental importance for atomic ruleset manipulation.  It
	     can be also used to simplify deletion of groups of	rules.	If a
	     rule is entered without specifying	a set number, set 0 will be
	     used.
	     Set 31 is special in that it cannot be disabled, and rules	in set
	     31	are not	deleted	by the ipfw flush command (but you can delete
	     them with the ipfw	delete set 31 command).	 Set 31	is also	used
	     for the default rule.

     prob match_probability
	     A match is	only declared with the specified probability (floating
	     point number between 0 and	1).  This can be useful	for a number
	     of	applications such as random packet drop	or (in conjunction
	     with dummynet) to simulate	the effect of multiple paths leading
	     to	out-of-order packet delivery.

	     Note: this	condition is checked before any	other condition,
	     including ones such as keep-state or check-state which might have
	     side effects.

     log [logamount number]
	     When a packet matches a rule with the log keyword,	a message will
	     be	logged to syslogd(8) with a LOG_SECURITY facility.  The	log-
	     ging only occurs if the sysctl variable net.inet.ip.fw.verbose is
	     set to 1 (which is	the default when the kernel is compiled	with
	     IPFIREWALL_VERBOSE) and the number	of packets logged so far for
	     that particular rule does not exceed the logamount	parameter.  If
	     no	logamount is specified,	the limit is taken from	the sysctl
	     variable net.inet.ip.fw.verbose_limit.  In	both cases, a value of
	     0 removes the logging limit.

	     Once the limit is reached,	logging	can be re-enabled by clearing
	     the logging counter or the	packet counter for that	entry, see the
	     resetlog command.

	     Note: logging is done after all other packet matching conditions
	     have been successfully verified, and before performing the	final
	     action (accept, deny, etc.) on the	packet.

     tag number
	     When a packet matches a rule with the tag keyword,	the numeric
	     tag for the given number in the range 1..65534 will be attached
	     to	the packet.  The tag acts as an	internal marker	(it is not
	     sent out over the wire) that can be used to identify these	pack-
	     ets later on.  This can be	used, for example, to provide trust
	     between interfaces	and to start doing policy-based	filtering.  A
	     packet can	have mutiple tags at the same time.  Tags are
	     "sticky", meaning once a tag is applied to	a packet by a matching
	     rule it exists until explicit removal.  Tags are kept with	the
	     packet everywhere within the kernel, but are lost when packet
	     leaves the	kernel,	for example, on	transmitting packet out	to the
	     network or	sending	packet to a divert(4) socket.

	     To	check for previously applied tags, use the tagged rule option.
	     To	delete previously applied tag, use the untag keyword.

	     Note: since tags are kept with the	packet everywhere in ker-
	     nelspace, they can	be set and unset anywhere in kernel network
	     subsystem (using mbuf_tags(9) facility), not only by means	of
	     ipfw(4) tag and untag keywords.  For example, there can be	a spe-
	     cialized netgraph(4) node doing traffic analyzing and tagging for
	     later inspecting in firewall.

     untag number
	     When a packet matches a rule with the untag keyword, the tag with
	     the number	number is searched among the tags attached to this
	     packet and, if found, removed from	it.  Other tags	bound to
	     packet, if	present, are left untouched.

     altq queue
	     When a packet matches a rule with the altq	keyword, the ALTQ
	     identifier	for the	given queue (see altq(4)) will be attached.
	     Note that this ALTQ tag is	only meaningful	for packets going
	     "out" of IPFW, and	not being rejected or going to divert sockets.
	     Note that if there	is insufficient	memory at the time the packet
	     is	processed, it will not be tagged, so it	is wise	to make	your
	     ALTQ "default" queue policy account for this.  If multiple	altq
	     rules match a single packet, only the first one adds the ALTQ
	     classification tag.  In doing so, traffic may be shaped by	using
	     count altq	queue rules for	classification early in	the ruleset,
	     then later	applying the filtering decision.  For example,
	     check-state and keep-state	rules may come later and provide the
	     actual filtering decisions	in addition to the fallback ALTQ tag.

	     You must run pfctl(8) to set up the queues	before IPFW will be
	     able to look them up by name, and if the ALTQ disciplines are
	     rearranged, the rules in containing the queue identifiers in the
	     kernel will likely	have gone stale	and need to be reloaded.
	     Stale queue identifiers will probably result in misclassifica-
	     tion.

	     All system	ALTQ processing	can be turned on or off	via ipfw
	     enable altq and ipfw disable altq.	 The usage of
	     net.inet.ip.fw.one_pass is	irrelevant to ALTQ traffic shaping, as
	     the actual	rule action is followed	always after adding an ALTQ
	     tag.

   RULE	ACTIONS
     A rule can	be associated with one of the following	actions, which will be
     executed when the packet matches the body of the rule.

     allow | accept | pass | permit
	     Allow packets that	match rule.  The search	terminates.

     check-state
	     Checks the	packet against the dynamic ruleset.  If	a match	is
	     found, execute the	action associated with the rule	which gener-
	     ated this dynamic rule, otherwise move to the next	rule.
	     Check-state rules do not have a body.  If no check-state rule is
	     found, the	dynamic	ruleset	is checked at the first	keep-state or
	     limit rule.

     count   Update counters for all packets that match	rule.  The search con-
	     tinues with the next rule.

     deny | drop
	     Discard packets that match	this rule.  The	search terminates.

     divert port
	     Divert packets that match this rule to the	divert(4) socket bound
	     to	port port.  The	search terminates.

     fwd | forward ipaddr | tablearg[,port]
	     Change the	next-hop on matching packets to	ipaddr,	which can be
	     an	IP address or a	host name.  The	next hop can also be supplied
	     by	the last table looked up for the packet	by using the tablearg
	     keyword instead of	an explicit address.  The search terminates if
	     this rule matches.

	     If	ipaddr is a local address, then	matching packets will be for-
	     warded to port (or	the port number	in the packet if one is	not
	     specified in the rule) on the local machine.
	     If	ipaddr is not a	local address, then the	port number (if	speci-
	     fied) is ignored, and the packet will be forwarded	to the remote
	     address, using the	route as found in the local routing table for
	     that IP.
	     A fwd rule	will not match layer-2 packets (those received on
	     ether_input, ether_output,	or bridged).
	     The fwd action does not change the	contents of the	packet at all.
	     In	particular, the	destination address remains unmodified,	so
	     packets forwarded to another system will usually be rejected by
	     that system unless	there is a matching rule on that system	to
	     capture them.  For	packets	forwarded locally, the local address
	     of	the socket will	be set to the original destination address of
	     the packet.  This makes the netstat(1) entry look rather weird
	     but is intended for use with transparent proxy servers.

	     To	enable fwd a custom kernel needs to be compiled	with the
	     option options IPFIREWALL_FORWARD.

     nat nat_nr
	     Pass packet to a nat instance (for	network	address	translation,
	     address redirect, etc.): see the NETWORK ADDRESS TRANSLATION
	     (NAT) Section for further information.

     pipe pipe_nr
	     Pass packet to a dummynet ``pipe''	(for bandwidth limitation,
	     delay, etc.).  See	the TRAFFIC SHAPER (DUMMYNET) CONFIGURATION
	     Section for further information.  The search terminates; however,
	     on	exit from the pipe and if the sysctl(8)	variable
	     net.inet.ip.fw.one_pass is	not set, the packet is passed again to
	     the firewall code starting	from the next rule.

     queue queue_nr
	     Pass packet to a dummynet ``queue'' (for bandwidth	limitation
	     using WF2Q+).

     reject  (Deprecated).  Synonym for	unreach	host.

     reset   Discard packets that match	this rule, and if the packet is	a TCP
	     packet, try to send a TCP reset (RST) notice.  The	search termi-
	     nates.

     reset6  Discard packets that match	this rule, and if the packet is	a TCP
	     packet, try to send a TCP reset (RST) notice.  The	search termi-
	     nates.

     skipto number | tablearg
	     Skip all subsequent rules numbered	less than number.  The search
	     continues with the	first rule numbered number or higher.  It is
	     possible to use the tablearg keyword with a skipto	for a computed
	     skipto, but care should be	used, as no destination	caching	is
	     possible in this case so the rules	are always walked to find it,
	     starting from the skipto.

     tee port
	     Send a copy of packets matching this rule to the divert(4)	socket
	     bound to port port.  The search continues with the	next rule.

     unreach code
	     Discard packets that match	this rule, and try to send an ICMP
	     unreachable notice	with code code,	where code is a	number from 0
	     to	255, or	one of these aliases: net, host, protocol, port,
	     needfrag, srcfail,	net-unknown, host-unknown, isolated,
	     net-prohib, host-prohib, tosnet, toshost, filter-prohib,
	     host-precedence or	precedence-cutoff.  The	search terminates.

     unreach6 code
	     Discard packets that match	this rule, and try to send an ICMPv6
	     unreachable notice	with code code,	where code is a	number from 0,
	     1,	3 or 4,	or one of these	aliases: no-route, admin-prohib,
	     address or	port.  The search terminates.

     netgraph cookie
	     Divert packet into	netgraph with given cookie.  The search	termi-
	     nates.  If	packet is later	returned from netgraph it is either
	     accepted or continues with	the next rule, depending on
	     net.inet.ip.fw.one_pass sysctl variable.

     ngtee cookie
	     A copy of packet is diverted into netgraph, original packet is
	     either accepted or	continues with the next	rule, depending	on
	     net.inet.ip.fw.one_pass sysctl variable.  See ng_ipfw(4) for more
	     information on netgraph and ngtee actions.

     setfib fibnum
	     The packet	is tagged so as	to use the FIB (routing	table) fibnum
	     in	any subsequent forwarding decisions. Initially this is limited
	     to	the values  0 through 15. See setfib(8).  Processing continues
	     at	the next rule.

   RULE	BODY
     The body of a rule	contains zero or more patterns (such as	specific
     source and	destination addresses or ports,	protocol options, incoming or
     outgoing interfaces, etc.)	 that the packet must match in order to	be
     recognised.  In general, the patterns are connected by (implicit) and
     operators -- i.e.,	all must match in order	for the	rule to	match.	Indi-
     vidual patterns can be prefixed by	the not	operator to reverse the	result
     of	the match, as in

	   ipfw	add 100	allow ip from not 1.2.3.4 to any

     Additionally, sets	of alternative match patterns (or-blocks) can be con-
     structed by putting the patterns in lists enclosed	between	parentheses (
     ) or braces { }, and using	the or operator	as follows:

	   ipfw	add 100	allow ip from {	x or not y or z	} to any

     Only one level of parentheses is allowed.	Beware that most shells	have
     special meanings for parentheses or braces, so it is advisable to put a
     backslash \ in front of them to prevent such interpretations.

     The body of a rule	must in	general	include	a source and destination
     address specifier.	 The keyword any can be	used in	various	places to
     specify that the content of a required field is irrelevant.

     The rule body has the following format:

	   [proto from src to dst] [options]

     The first part (proto from	src to dst) is for backward compatibility with
     earlier versions of FreeBSD.  In modern FreeBSD any match pattern
     (including	MAC headers, IP	protocols, addresses and ports)	can be speci-
     fied in the options section.

     Rule fields have the following meaning:

     proto: protocol | { protocol or ... }

     protocol: [not] protocol-name | protocol-number
	     An	IP protocol specified by number	or name	(for a complete	list
	     see /etc/protocols), or one of the	following keywords:

	     ip4 | ipv4
		     Matches IPv4 packets.

	     ip6 | ipv6
		     Matches IPv6 packets.

	     ip	| all
		     Matches any packet.

	     The ipv6 in proto option will be treated as inner protocol.  And,
	     the ipv4 is not available in proto	option.

	     The { protocol or ... } format (an	or-block) is provided for con-
	     venience only but its use is deprecated.

     src and dst: {addr	| { addr or ...	}} [[not] ports]
	     An	address	(or a list, see	below) optionally followed by ports
	     specifiers.

	     The second	format (or-block with multiple addresses) is provided
	     for convenience only and its use is discouraged.

     addr: [not] {any |	me | me6 | table(number[,value]) | addr-list |
	     addr-set}

     any     matches any IP address.

     me	     matches any IP address configured on an interface in the system.

     me6     matches any IPv6 address configured on an interface in the	sys-
	     tem.  The address list is evaluated at the	time the packet	is an-
	     alysed.

     table(number[,value])
	     Matches any IPv4 address for which	an entry exists	in the lookup
	     table number.  If an optional 32-bit unsigned value is also spec-
	     ified, an entry will match	only if	it has this value.  See	the
	     LOOKUP TABLES section below for more information on lookup
	     tables.

     addr-list:	ip-addr[,addr-list]

     ip-addr:
	     A host or subnet address specified	in one of the following	ways:

	     numeric-ip	| hostname
		     Matches a single IPv4 address, specified as dotted-quad
		     or	a hostname.  Hostnames are resolved at the time	the
		     rule is added to the firewall list.

	     addr/masklen
		     Matches all addresses with	base addr (specified as	an IP
		     address, a	network	number,	or a hostname) and mask	width
		     of	masklen	bits.  As an example, 1.2.3.4/25 or 1.2.3.0/25
		     will match	all IP numbers from 1.2.3.0 to 1.2.3.127 .

	     addr:mask
		     Matches all addresses with	base addr (specified as	an IP
		     address, a	network	number,	or a hostname) and the mask of
		     mask, specified as	a dotted quad.	As an example,
		     1.2.3.4:255.0.255.0 or 1.0.3.0:255.0.255.0	will match
		     1.*.3.*.  This form is advised only for non-contiguous
		     masks.  It	is better to resort to the addr/masklen	format
		     for contiguous masks, which is more compact and less
		     error-prone.

     addr-set: addr[/masklen]{list}

     list: {num	| num-num}[,list]
	     Matches all addresses with	base address addr (specified as	an IP
	     address, a	network	number,	or a hostname) and whose last byte is
	     in	the list between braces	{ } .  Note that there must be no spa-
	     ces between braces	and numbers (spaces after commas are allowed).
	     Elements of the list can be specified as single entries or
	     ranges.  The masklen field	is used	to limit the size of the set
	     of	addresses, and can have	any value between 24 and 32.  If not
	     specified,	it will	be assumed as 24.
	     This format is particularly useful	to handle sparse address sets
	     within a single rule.  Because the	matching occurs	using a	bit-
	     mask, it takes constant time and dramatically reduces the com-
	     plexity of	rulesets.
	     As	an example, an address specified as 1.2.3.4/24{128,35-55,89}
	     or	1.2.3.0/24{128,35-55,89} will match the	following IP
	     addresses:
	     1.2.3.128,	1.2.3.35 to 1.2.3.55, 1.2.3.89 .

     addr6-list: ip6-addr[,addr6-list]

     ip6-addr:
	     A host or subnet specified	one of the following ways:

	     numeric-ip	| hostname
		     Matches a single IPv6 address as allowed by inet_pton(3)
		     or	a hostname.  Hostnames are resolved at the time	the
		     rule is added to the firewall list.

	     addr/masklen
		     Matches all IPv6 addresses	with base addr (specified as
		     allowed by	inet_pton or a hostname) and mask width	of
		     masklen bits.

	     No	support	for sets of IPv6 addresses is provided because IPv6
	     addresses are typically random past the initial prefix.

     ports: {port | port-port}[,ports]
	     For protocols which support port numbers (such as TCP and UDP),
	     optional ports may	be specified as	one or more ports or port
	     ranges, separated by commas but no	spaces,	and an optional	not
	     operator.	The `-'	notation specifies a range of ports (including
	     boundaries).

	     Service names (from /etc/services)	may be used instead of numeric
	     port values.  The length of the port list is limited to 30	ports
	     or	ranges,	though one can specify larger ranges by	using an
	     or-block in the options section of	the rule.

	     A backslash (`\') can be used to escape the dash (`-') character
	     in	a service name (from a shell, the backslash must be typed
	     twice to avoid the	shell itself interpreting it as	an escape
	     character).

		   ipfw	add count tcp from any ftp\\-data-ftp to any

	     Fragmented	packets	which have a non-zero offset (i.e., not	the
	     first fragment) will never	match a	rule which has one or more
	     port specifications.  See the frag	option for details on matching
	     fragmented	packets.

   RULE	OPTIONS	(MATCH PATTERNS)
     Additional	match patterns can be used within rules.  Zero or more of
     these so-called options can be present in a rule, optionally prefixed by
     the not operand, and possibly grouped into	or-blocks.

     The following match patterns can be used (listed in alphabetical order):

     //	this is	a comment.
	     Inserts the specified text	as a comment in	the rule.  Everything
	     following // is considered	as a comment and stored	in the rule.
	     You can have comment-only rules, which are	listed as having a
	     count action followed by the comment.

     bridged
	     Alias for layer2.

     diverted
	     Matches only packets generated by a divert	socket.

     diverted-loopback
	     Matches only packets coming from a	divert socket back into	the IP
	     stack input for delivery.

     diverted-output
	     Matches only packets going	from a divert socket back outward to
	     the IP stack output for delivery.

     dst-ip ip-address
	     Matches IPv4 packets whose	destination IP is one of the
	     address(es) specified as argument.

     {dst-ip6 |	dst-ipv6} ip6-address
	     Matches IPv6 packets whose	destination IP is one of the
	     address(es) specified as argument.

     dst-port ports
	     Matches IP	packets	whose destination port is one of the port(s)
	     specified as argument.

     established
	     Matches TCP packets that have the RST or ACK bits set.

     ext6hdr header
	     Matches IPv6 packets containing the extended header given by
	     header.  Supported	headers	are:

	     Fragment, (frag), Hop-to-hop options (hopopt), any	type of	Rout-
	     ing Header	(route), Source	routing	Routing	Header Type 0
	     (rthdr0), Mobile IPv6 Routing Header Type 2 (rthdr2), Destination
	     options (dstopt), IPSec authentication headers (ah), and IPSec
	     encapsulated security payload headers (esp).

     fib fibnum
	     Matches a packet that has been tagged to use the given FIB	(rout-
	     ing table)	number.

     flow-id labels
	     Matches IPv6 packets containing any of the	flow labels given in
	     labels.  labels is	a comma	seperate list of numeric flow labels.

     frag    Matches packets that are fragments	and not	the first fragment of
	     an	IP datagram.  Note that	these packets will not have the	next
	     protocol header (e.g. TCP,	UDP) so	options	that look into these
	     headers cannot match.

     gid group
	     Matches all TCP or	UDP packets sent by or received	for a group.
	     A group may be specified by name or number.

     jail prisonID
	     Matches all TCP or	UDP packets sent by or received	for the	jail
	     whos prison ID is prisonID.

     icmptypes types
	     Matches ICMP packets whose	ICMP type is in	the list types.	 The
	     list may be specified as any combination of individual types
	     (numeric) separated by commas.  Ranges are	not allowed.  The sup-
	     ported ICMP types are:

	     echo reply	(0), destination unreachable (3), source quench	(4),
	     redirect (5), echo	request	(8), router advertisement (9), router
	     solicitation (10),	time-to-live exceeded (11), IP header bad
	     (12), timestamp request (13), timestamp reply (14), information
	     request (15), information reply (16), address mask	request	(17)
	     and address mask reply (18).

     icmp6types	types
	     Matches ICMP6 packets whose ICMP6 type is in the list of types.
	     The list may be specified as any combination of individual	types
	     (numeric) separated by commas.  Ranges are	not allowed.

     in	| out
	     Matches incoming or outgoing packets, respectively.  in and out
	     are mutually exclusive (in	fact, out is implemented as not	in).

     ipid id-list
	     Matches IPv4 packets whose	ip_id field has	value included in
	     id-list, which is either a	single value or	a list of values or
	     ranges specified in the same way as ports.

     iplen len-list
	     Matches IP	packets	whose total length, including header and data,
	     is	in the set len-list, which is either a single value or a list
	     of	values or ranges specified in the same way as ports.

     ipoptions spec
	     Matches packets whose IPv4	header contains	the comma separated
	     list of options specified in spec.	 The supported IP options are:

	     ssrr (strict source route), lsrr (loose source route), rr (record
	     packet route) and ts (timestamp).	The absence of a particular
	     option may	be denoted with	a `!'.

     ipprecedence precedence
	     Matches IPv4 packets whose	precedence field is equal to
	     precedence.

     ipsec   Matches packets that have IPSEC history associated	with them
	     (i.e., the	packet comes encapsulated in IPSEC, the	kernel has
	     IPSEC support and IPSEC_FILTERTUNNEL option, and can correctly
	     decapsulate it).

	     Note that specifying ipsec	is different from specifying proto
	     ipsec as the latter will only look	at the specific	IP protocol
	     field, irrespective of IPSEC kernel support and the validity of
	     the IPSEC data.

	     Further note that this flag is silently ignored in	kernels	with-
	     out IPSEC support.	 It does not affect rule processing when given
	     and the rules are handled as if with no ipsec flag.

     iptos spec
	     Matches IPv4 packets whose	tos field contains the comma separated
	     list of service types specified in	spec.  The supported IP	types
	     of	service	are:

	     lowdelay (IPTOS_LOWDELAY),	throughput (IPTOS_THROUGHPUT),
	     reliability (IPTOS_RELIABILITY), mincost (IPTOS_MINCOST),
	     congestion	(IPTOS_ECN_CE).	 The absence of	a particular type may
	     be	denoted	with a `!'.

     ipttl ttl-list
	     Matches IPv4 packets whose	time to	live is	included in ttl-list,
	     which is either a single value or a list of values	or ranges
	     specified in the same way as ports.

     ipversion ver
	     Matches IP	packets	whose IP version field is ver.

     keep-state
	     Upon a match, the firewall	will create a dynamic rule, whose
	     default behaviour is to match bidirectional traffic between
	     source and	destination IP/port using the same protocol.  The rule
	     has a limited lifetime (controlled	by a set of sysctl(8) vari-
	     ables), and the lifetime is refreshed every time a	matching
	     packet is found.

     layer2  Matches only layer2 packets, i.e.,	those passed to	ipfw from
	     ether_demux() and ether_output_frame().

     limit {src-addr | src-port	| dst-addr | dst-port} N
	     The firewall will only allow N connections	with the same set of
	     parameters	as specified in	the rule.  One or more of source and
	     destination addresses and ports can be specified.	Currently,
	     only IPv4 flows are supported.

     { MAC | mac } dst-mac src-mac
	     Match packets with	a given	dst-mac	and src-mac addresses, speci-
	     fied as the any keyword (matching any MAC address), or six	groups
	     of	hex digits separated by	colons,	and optionally followed	by a
	     mask indicating the significant bits.  The	mask may be specified
	     using either of the following methods:

	     1.	     A slash (/) followed by the number	of significant bits.
		     For example, an address with 33 significant bits could be
		     specified as:

			   MAC 10:20:30:40:50:60/33 any

	     2.	     An	ampersand (&) followed by a bitmask specified as six
		     groups of hex digits separated by colons.	For example,
		     an	address	in which the last 16 bits are significant
		     could be specified	as:

			   MAC 10:20:30:40:50:60&00:00:00:00:ff:ff any

		     Note that the ampersand character has a special meaning
		     in	many shells and	should generally be escaped.

	     Note that the order of MAC	addresses (destination first, source
	     second) is	the same as on the wire, but the opposite of the one
	     used for IP addresses.

     mac-type mac-type
	     Matches packets whose Ethernet Type field corresponds to one of
	     those specified as	argument.  mac-type is specified in the	same
	     way as port numbers (i.e.,	one or more comma-separated single
	     values or ranges).	 You can use symbolic names for	known values
	     such as vlan, ipv4, ipv6.	Values can be entered as decimal or
	     hexadecimal (if prefixed by 0x), and they are always printed as
	     hexadecimal (unless the -N	option is used,	in which case symbolic
	     resolution	will be	attempted).

     proto protocol
	     Matches packets with the corresponding IP protocol.

     recv | xmit | via {ifX | if* | ipno | any}
	     Matches packets received, transmitted or going through, respec-
	     tively, the interface specified by	exact name (ifX), by device
	     name (if*), by IP address,	or through some	interface.

	     The via keyword causes the	interface to always be checked.	 If
	     recv or xmit is used instead of via, then only the	receive	or
	     transmit interface	(respectively) is checked.  By specifying
	     both, it is possible to match packets based on both receive and
	     transmit interface, e.g.:

		   ipfw	add deny ip from any to	any out	recv ed0 xmit ed1

	     The recv interface	can be tested on either	incoming or outgoing
	     packets, while the	xmit interface can only	be tested on outgoing
	     packets.  So out is required (and in is invalid) whenever xmit is
	     used.

	     A packet may not have a receive or	transmit interface: packets
	     originating from the local	host have no receive interface,	while
	     packets destined for the local host have no transmit interface.

     setup   Matches TCP packets that have the SYN bit set but no ACK bit.
	     This is the short form of ``tcpflags syn,!ack''.

     src-ip ip-address
	     Matches IPv4 packets whose	source IP is one of the	address(es)
	     specified as an argument.

     src-ip6 ip6-address
	     Matches IPv6 packets whose	source IP is one of the	address(es)
	     specified as an argument.

     src-port ports
	     Matches IP	packets	whose source port is one of the	port(s)	speci-
	     fied as argument.

     tagged tag-list
	     Matches packets whose tags	are included in	tag-list, which	is
	     either a single value or a	list of	values or ranges specified in
	     the same way as ports.  Tags can be applied to the	packet using
	     tag rule action parameter (see it's description for details on
	     tags).

     tcpack ack
	     TCP packets only.	Match if the TCP header	acknowledgment number
	     field is set to ack.

     tcpdatalen	tcpdatalen-list
	     Matches TCP packets whose length of TCP data is tcpdatalen-list,
	     which is either a single value or a list of values	or ranges
	     specified in the same way as ports.

     tcpflags spec
	     TCP packets only.	Match if the TCP header	contains the comma
	     separated list of flags specified in spec.	 The supported TCP
	     flags are:

	     fin, syn, rst, psh, ack and urg.  The absence of a	particular
	     flag may be denoted with a	`!'.  A	rule which contains a tcpflags
	     specification can never match a fragmented	packet which has a
	     non-zero offset.  See the frag option for details on matching
	     fragmented	packets.

     tcpseq seq
	     TCP packets only.	Match if the TCP header	sequence number	field
	     is	set to seq.

     tcpwin win
	     TCP packets only.	Match if the TCP header	window field is	set to
	     win.

     tcpoptions	spec
	     TCP packets only.	Match if the TCP header	contains the comma
	     separated list of options specified in spec.  The supported TCP
	     options are:

	     mss (maximum segment size), window	(tcp window advertisement),
	     sack (selective ack), ts (rfc1323 timestamp) and cc (rfc1644
	     t/tcp connection count).  The absence of a	particular option may
	     be	denoted	with a `!'.

     uid user
	     Match all TCP or UDP packets sent by or received for a user.  A
	     user may be matched by name or identification number.

     verrevpath
	     For incoming packets, a routing table lookup is done on the
	     packet's source address.  If the interface	on which the packet
	     entered the system	matches	the outgoing interface for the route,
	     the packet	matches.  If the interfaces do not match up, the
	     packet does not match.  All outgoing packets or packets with no
	     incoming interface	match.

	     The name and functionality	of the option is intentionally similar
	     to	the Cisco IOS command:

		   ip verify unicast reverse-path

	     This option can be	used to	make anti-spoofing rules to reject all
	     packets with source addresses not from this interface.  See also
	     the option	antispoof.

     versrcreach
	     For incoming packets, a routing table lookup is done on the
	     packet's source address.  If a route to the source	address
	     exists, but not the default route or a blackhole/reject route,
	     the packet	matches.  Otherwise, the packet	does not match.	 All
	     outgoing packets match.

	     The name and functionality	of the option is intentionally similar
	     to	the Cisco IOS command:

		   ip verify unicast source reachable-via any

	     This option can be	used to	make anti-spoofing rules to reject all
	     packets whose source address is unreachable.

     antispoof
	     For incoming packets, the packet's	source address is checked if
	     it	belongs	to a directly connected	network.  If the network is
	     directly connected, then the interface the	packet came on in is
	     compared to the interface the network is connected	to.  When
	     incoming interface	and directly connected interface are not the
	     same, the packet does not match.  Otherwise, the packet does
	     match.  All outgoing packets match.

	     This option can be	used to	make anti-spoofing rules to reject all
	     packets that pretend to be	from a directly	connected network but
	     do	not come in through that interface.  This option is similar to
	     but more restricted than verrevpath because it engages only on
	     packets with source addresses of directly connected networks
	     instead of	all source addresses.

LOOKUP TABLES
     Lookup tables are useful to handle	large sparse address sets, typically
     from a hundred to several thousands of entries.  There may	be up to 128
     different lookup tables, numbered 0 to 127.

     Each entry	is represented by an addr[/masklen] and	will match all
     addresses with base addr (specified as an IP address or a hostname) and
     mask width	of masklen bits.  If masklen is	not specified, it defaults to
     32.  When looking up an IP	address	in a table, the	most specific entry
     will match.  Associated with each entry is	a 32-bit unsigned value, which
     can optionally be checked by a rule matching code.	 When adding an	entry,
     if	value is not specified,	it defaults to 0.

     An	entry can be added to a	table (add), removed from a table (delete), a
     table can be examined (list) or flushed (flush).

     Internally, each table is stored in a Radix tree, the same	way as the
     routing table (see	route(4)).

     Lookup tables currently support IPv4 addresses only.

     The tablearg feature provides the ability to use a	value, looked up in
     the table,	as the argument	for a rule action, action parameter or rule
     option.  This can significantly reduce number of rules in some configura-
     tions.  If	two tables are used in a rule, the result of the second	(des-
     tination) is used.	 The tablearg argument can be used with	the following
     actions: nat, pipe, queue,	divert,	tee, netgraph, ngtee, fwd, skipto
     action parameters:	tag, untag, rule options: limit, tagged.

     When used with fwd	it is possible to supply table entries with values
     that are in the form of IP	addresses or hostnames.	 See the EXAMPLES Sec-
     tion for example usage of tables and the tablearg keyword.

     When used with the	skipto action, the user	should be aware	that the code
     will walk the ruleset up to a rule	equal to, or past, the given number,
     and should	therefore try keep the ruleset compact between the skipto and
     the target	rules.

SETS OF	RULES
     Each rule belongs to one of 32 different sets , numbered 0	to 31.	Set 31
     is	reserved for the default rule.

     By	default, rules are put in set 0, unless	you use	the set	N attribute
     when entering a new rule.	Sets can be individually and atomically
     enabled or	disabled, so this mechanism permits an easy way	to store mul-
     tiple configurations of the firewall and quickly (and atomically) switch
     between them.  The	command	to enable/disable sets is

	   ipfw	set [disable number ...] [enable number	...]

     where multiple enable or disable sections can be specified.  Command exe-
     cution is atomic on all the sets specified	in the command.	 By default,
     all sets are enabled.

     When you disable a	set, its rules behave as if they do not	exist in the
     firewall configuration, with only one exception:

	   dynamic rules created from a	rule before it had been	disabled will
	   still be active until they expire.  In order	to delete dynamic
	   rules you have to explicitly	delete the parent rule which generated
	   them.

     The set number of rules can be changed with the command

	   ipfw	set move {rule rule-number | old-set} to new-set

     Also, you can atomically swap two rulesets	with the command

	   ipfw	set swap first-set second-set

     See the EXAMPLES Section on some possible uses of sets of rules.

STATEFUL FIREWALL
     Stateful operation	is a way for the firewall to dynamically create	rules
     for specific flows	when packets that match	a given	pattern	are detected.
     Support for stateful operation comes through the check-state, keep-state
     and limit options of rules.

     Dynamic rules are created when a packet matches a keep-state or limit
     rule, causing the creation	of a dynamic rule which	will match all and
     only packets with a given protocol	between	a src-ip/src-port
     dst-ip/dst-port pair of addresses (src and	dst are	used here only to
     denote the	initial	match addresses, but they are completely equivalent
     afterwards).  Dynamic rules will be checked at the	first check-state,
     keep-state	or limit occurrence, and the action performed upon a match
     will be the same as in the	parent rule.

     Note that no additional attributes	other than protocol and	IP addresses
     and ports are checked on dynamic rules.

     The typical use of	dynamic	rules is to keep a closed firewall configura-
     tion, but let the first TCP SYN packet from the inside network install a
     dynamic rule for the flow so that packets belonging to that session will
     be	allowed	through	the firewall:

	   ipfw	add check-state
	   ipfw	add allow tcp from my-subnet to	any setup keep-state
	   ipfw	add deny tcp from any to any

     A similar approach	can be used for	UDP, where an UDP packet coming	from
     the inside	will install a dynamic rule to let the response	through	the
     firewall:

	   ipfw	add check-state
	   ipfw	add allow udp from my-subnet to	any keep-state
	   ipfw	add deny udp from any to any

     Dynamic rules expire after	some time, which depends on the	status of the
     flow and the setting of some sysctl variables.  See Section SYSCTL
     VARIABLES for more	details.  For TCP sessions, dynamic rules can be
     instructed	to periodically	send keepalive packets to refresh the state of
     the rule when it is about to expire.

     See Section EXAMPLES for more examples on how to use dynamic rules.

TRAFFIC	SHAPER (DUMMYNET) CONFIGURATION
     ipfw is also the user interface for the dummynet traffic shaper.

     dummynet operates by first	using the firewall to classify packets and
     divide them into flows, using any match pattern that can be used in ipfw
     rules.  Depending on local	policies, a flow can contain packets for a
     single TCP	connection, or from/to a given host, or	entire subnet, or a
     protocol type, etc.

     There are two modes of dummynet operation:	``normal'' and ``fast''.  The
     ``normal''	mode tries to emulate a	real link: the dummynet	scheduler
     ensures that the packet will not leave the	pipe faster than it would on
     the real link with	a given	bandwidth.  The	``fast'' mode allows certain
     packets to	bypass the dummynet scheduler (if packet flow does not exceed
     pipe's bandwidth).	 This is the reason why	the ``fast'' mode requires
     less CPU cycles per packet	(on average) and packet	latency	can be signif-
     icantly lower in comparison to a real link	with the same bandwidth.  The
     default mode is ``normal''.  The ``fast'' mode can	be enabled by setting
     the net.inet.ip.dummynet.io_fast sysctl(8)	variable to a non-zero value.

     Packets belonging to the same flow	are then passed	to either of two dif-
     ferent objects, which implement the traffic regulation:

	 pipe	 A pipe	emulates a link	with given bandwidth, propagation
		 delay,	queue size and packet loss rate.  Packets are queued
		 in front of the pipe as they come out from the	classifier,
		 and then transferred to the pipe according to the pipe's
		 parameters.

	 queue	 A queue is an abstraction used	to implement the WF2Q+ (Worst-
		 case Fair Weighted Fair Queueing) policy, which is an effi-
		 cient variant of the WFQ policy.
		 The queue associates a	weight and a reference pipe to each
		 flow, and then	all backlogged (i.e., with packets queued)
		 flows linked to the same pipe share the pipe's	bandwidth pro-
		 portionally to	their weights.	Note that weights are not pri-
		 orities; a flow with a	lower weight is	still guaranteed to
		 get its fraction of the bandwidth even	if a flow with a
		 higher	weight is permanently backlogged.

     In	practice, pipes	can be used to set hard	limits to the bandwidth	that a
     flow can use, whereas queues can be used to determine how different flows
     share the available bandwidth.

     The pipe and queue	configuration commands are the following:

	   pipe	number config pipe-configuration

	   queue number	config queue-configuration

     The following parameters can be configured	for a pipe:

     bw	bandwidth | device
	     Bandwidth,	measured in [K|M]{bit/s|Byte/s}.

	     A value of	0 (default) means unlimited bandwidth.	The unit must
	     immediately follow	the number, as in

		   ipfw	pipe 1 config bw 300Kbit/s

	     If	a device name is specified instead of a	numeric	value, as in

		   ipfw	pipe 1 config bw tun0

	     then the transmit clock is	supplied by the	specified device.  At
	     the moment	only the tun(4)	device supports	this functionality,
	     for use in	conjunction with ppp(8).

     delay ms-delay
	     Propagation delay,	measured in milliseconds.  The value is
	     rounded to	the next multiple of the clock tick (typically 10ms,
	     but it is a good practice to run kernels with ``options HZ=1000''
	     to	reduce the granularity to 1ms or less).	 Default value is 0,
	     meaning no	delay.

     The following parameters can be configured	for a queue:

     pipe pipe_nr
	     Connects a	queue to the specified pipe.  Multiple queues (with
	     the same or different weights) can	be connected to	the same pipe,
	     which specifies the aggregate rate	for the	set of queues.

     weight weight
	     Specifies the weight to be	used for flows matching	this queue.
	     The weight	must be	in the range 1..100, and defaults to 1.

     Finally, the following parameters can be configured for both pipes	and
     queues:

     buckets hash-table-size
	   Specifies the size of the hash table	used for storing the various
	   queues.  Default value is 64	controlled by the sysctl(8) variable
	   net.inet.ip.dummynet.hash_size, allowed range is 16 to 65536.

     mask mask-specifier
	   Packets sent	to a given pipe	or queue by an ipfw rule can be	fur-
	   ther	classified into	multiple flows,	each of	which is then sent to
	   a different dynamic pipe or queue.  A flow identifier is con-
	   structed by masking the IP addresses, ports and protocol types as
	   specified with the mask options in the configuration	of the pipe or
	   queue.  For each different flow identifier, a new pipe or queue is
	   created with	the same parameters as the original object, and	match-
	   ing packets are sent	to it.

	   Thus, when dynamic pipes are	used, each flow	will get the same
	   bandwidth as	defined	by the pipe, whereas when dynamic queues are
	   used, each flow will	share the parent's pipe	bandwidth evenly with
	   other flows generated by the	same queue (note that other queues
	   with	different weights might	be connected to	the same pipe).
	   Available mask specifiers are a combination of one or more of the
	   following:

	   dst-ip mask,	dst-ip6	mask, src-ip mask, src-ip6 mask, dst-port
	   mask, src-port mask,	flow-id	mask, proto mask or all,

	   where the latter means all bits in all fields are significant.

     noerror
	   When	a packet is dropped by a dummynet queue	or pipe, the error is
	   normally reported to	the caller routine in the kernel, in the same
	   way as it happens when a device queue fills up.  Setting this
	   option reports the packet as	successfully delivered,	which can be
	   needed for some experimental	setups where you want to simulate loss
	   or congestion at a remote router.

     plr packet-loss-rate
	   Packet loss rate.  Argument packet-loss-rate	is a floating-point
	   number between 0 and	1, with	0 meaning no loss, 1 meaning 100%
	   loss.  The loss rate	is internally represented on 31	bits.

     queue {slots | sizeKbytes}
	   Queue size, in slots	or KBytes.  Default value is 50	slots, which
	   is the typical queue	size for Ethernet devices.  Note that for slow
	   speed links you should keep the queue size short or your traffic
	   might be affected by	a significant queueing delay.  E.g., 50	max-
	   sized ethernet packets (1500	bytes) mean 600Kbit or 20s of queue on
	   a 30Kbit/s pipe.  Even worse	effects	can result if you get packets
	   from	an interface with a much larger	MTU, e.g. the loopback inter-
	   face	with its 16KB packets.	The sysctl(8) variables
	   net.inet.ip.dummynet.pipe_byte_limit	and
	   net.inet.ip.dummynet.pipe_slot_limit	control	the maximum lengths
	   that	can be specified.

     red | gred	w_q/min_th/max_th/max_p
	   Make	use of the RED (Random Early Detection)	queue management algo-
	   rithm.  w_q and max_p are floating point numbers between 0 and 1 (0
	   not included), while	min_th and max_th are integer numbers specify-
	   ing thresholds for queue management (thresholds are computed	in
	   bytes if the	queue has been defined in bytes, in slots otherwise).
	   The dummynet	also supports the gentle RED variant (gred).  Three
	   sysctl(8) variables can be used to control the RED behaviour:

	   net.inet.ip.dummynet.red_lookup_depth
		   specifies the accuracy in computing the average queue when
		   the link is idle (defaults to 256, must be greater than
		   zero)

	   net.inet.ip.dummynet.red_avg_pkt_size
		   specifies the expected average packet size (defaults	to
		   512,	must be	greater	than zero)

	   net.inet.ip.dummynet.red_max_pkt_size
		   specifies the expected maximum packet size, only used when
		   queue thresholds are	in bytes (defaults to 1500, must be
		   greater than	zero).

     When used with IPv6 data, dummynet	currently has several limitations.
     Information necessary to route link-local packets to an interface is not
     available after processing	by dummynet so those packets are dropped in
     the output	path.  Care should be taken to insure that link-local packets
     are not passed to dummynet.

CHECKLIST
     Here are some important points to consider	when designing your rules:

     +o	 Remember that you filter both packets going in	and out.  Most connec-
	 tions need packets going in both directions.

     +o	 Remember to test very carefully.  It is a good	idea to	be near	the
	 console when doing this.  If you cannot be near the console, use an
	 auto-recovery script such as the one in
	 /usr/share/examples/ipfw/change_rules.sh.

     +o	 Do not	forget the loopback interface.

FINE POINTS
     +o	 There are circumstances where fragmented datagrams are	uncondition-
	 ally dropped.	TCP packets are	dropped	if they	do not contain at
	 least 20 bytes	of TCP header, UDP packets are dropped if they do not
	 contain a full	8 byte UDP header, and ICMP packets are	dropped	if
	 they do not contain 4 bytes of	ICMP header, enough to specify the
	 ICMP type, code, and checksum.	 These packets are simply logged as
	 ``pullup failed'' since there may not be enough good data in the
	 packet	to produce a meaningful	log entry.

     +o	 Another type of packet	is unconditionally dropped, a TCP packet with
	 a fragment offset of one.  This is a valid packet, but	it only	has
	 one use, to try to circumvent firewalls.  When	logging	is enabled,
	 these packets are reported as being dropped by	rule -1.

     +o	 If you	are logged in over a network, loading the kld(4) version of
	 ipfw is probably not as straightforward as you	would think.  I	recom-
	 mend the following command line:

	       kldload ipfw && \
	       ipfw add	32000 allow ip from any	to any

	 Along the same	lines, doing an

	       ipfw flush

	 in similar surroundings is also a bad idea.

     +o	 The ipfw filter list may not be modified if the system	security level
	 is set	to 3 or	higher (see init(8) for	information on system security
	 levels).

PACKET DIVERSION
     A divert(4) socket	bound to the specified port will receive all packets
     diverted to that port.  If	no socket is bound to the destination port, or
     if	the divert module is not loaded, or if the kernel was not compiled
     with divert socket	support, the packets are dropped.

NETWORK	ADDRESS	TRANSLATION (NAT)
     The nat configuration command is the following:

	   nat nat_number config nat-configuration

     The following parameters can be configured:

     ip	ip_address
	     Define an ip address to use for aliasing.

     if	nic  Use ip addres of NIC for aliasing,	dynamically changing it	if
	     NIC's ip address change.

     log     Enable logging on this nat	instance.

     deny_in
	     Deny any incoming connection from outside world.

     same_ports
	     Try to leave the alias port numbers unchanged from	the actual
	     local port	numbers.

     unreg_only
	     Traffic on	the local network not originating from an unregistered
	     address spaces will be ignored.

     reset   Reset table of the	packet aliasing	engine on address change.

     reverse
	     Reverse the way libalias handles aliasing.

     proxy_only
	     Obey transparent proxy rules only,	packet aliasing	is not per-
	     formed.

     To	let the	packet continue	after being (de)aliased, set the sysctl	vari-
     able net.inet.ip.fw.one_pass to 0.	 For more information about aliasing
     modes, refer to libalias(3) See Section EXAMPLES for some examples	about
     nat usage.

REDIRECT AND LSNAT SUPPORT IN IPFW
     Redirect and LSNAT	support	follow closely the syntax used in natd(8) See
     Section EXAMPLES for some examples	on how to do redirect and lsnat.

SCTP NAT SUPPORT
     Sctp nat can be configured	in a simillar manner to	TCP through the	ipfw
     command line tool ipfw(8) , the main difference is	that sctp nat does not
     do	port translation. Since	the local and global side ports	will be	the
     same, there is no need to specify both. Ports are redirected as follows:

	   nat nat_number config if nic	redirect_port sctp
	   ip_address [,addr_list] {[port | port-port] [,ports]}

     Most configuration	can be done in real-time through the interface.	All
     may be changed dynamically, though	the hash_table size will only change
     for new nat instances. See	SYSCTL VARIABLES for more info.

SYSCTL VARIABLES
     A set of sysctl(8)	variables controls the behaviour of the	firewall and
     associated	modules	(dummynet, bridge, sctp	nat).  These are shown below
     together with their default value (but always check with the sysctl(8)
     command what value	is actually in use) and	meaning:

     net.inet.ip.alias.sctp.accept_global_ootb_addip: 0
	     Defines how the nat responds to receipt of	global OOTB ASCONF-
	     AddIP:

	     0	     No	response (unless a partially matching association
		     exists - ports and	vtags match but	global address does
		     not)

	     1	     nat will accept and process all OOTB global AddIP mes-
		     sages.

	     Option 1 should never be selected as this forms a security	risk.
	     An	attacker can establish multiple	fake associations by sending
	     AddIP messages.

     net.inet.ip.alias.sctp.chunk_proc_limit: 5
	     Defines the maximum number	of chunks in an	SCTP packet that will
	     be	parsed for a packet that matches an existing association. This
	     value is enforced to be greater or	equal than
	     net.inet.ip.alias.sctp.initialising_chunk_proc_limit.  A high
	     value is a	DoS risk yet setting too low a value may result	in
	     important control chunks in the packet not	being located and
	     parsed.

     net.inet.ip.alias.sctp.error_on_ootb: 1
	     Defines when the nat responds to any Out-of-the-Blue (OOTB) pack-
	     ets with ErrorM packets. An OOTB packet is	a packet that arrives
	     with no existing association registered in	the nat	and is not an
	     INIT or ASCONF-AddIP packet:

	     0	     ErrorM is never sent in response to OOTB packets.

	     1	     ErrorM is only sent to OOTB packets received on the local
		     side.

	     2	     ErrorM is sent to the local side and on the global	side
		     ONLY if there is a	partial	match (ports and vtags match
		     but the source global IP does not). This value is only
		     useful if the nat is tracking global IP addresses.

	     3	     ErrorM is sent in response	to all OOTB packets on both
		     the local and global side (DoS risk).

	     At	the moment the default is 0, since the ErrorM packet is	not
	     yet supported by most SCTP	stacks.	When it	is supported, and if
	     not tracking global addresses, we recommend setting this value to
	     1 to allow	multi-homed local hosts	to function with the nat.  To
	     track global addresses, we	recommend setting this value to	2 to
	     allow global hosts	to be informed when they need to (re)send an
	     ASCONF-AddIP. Value 3 should never	be chosen (except for debug-
	     ging) as the nat will respond to all OOTB global packets (a DoS
	     risk).

     net.inet.ip.alias.sctp.hashtable_size: 2003
	     Size of hash tables used for nat lookups (100 < prime_number >
	     1000001) This value sets the hash table size for any future cre-
	     ated nat instance and therefore must be set prior to creating a
	     nat instance.  The	table sizes my be changed to suit specific
	     needs. If there will be few concurrent associations, and memory
	     is	scarce,	you may	make these smaller.  If	there will be many
	     thousands (or millions) of	concurrent associations, you should
	     make these	larger.	A prime	number is best for the table size. The
	     sysctl update function will adjust	your input value to the	next
	     highest prime number.

     net.inet.ip.alias.sctp.holddown_time: 0
	     Hold association in table for this	many seconds after receiving a
	     SHUTDOWN-COMPLETE.	 This allows endpoints to correct shutdown
	     gracefully	if a shutdown_complete is lost and retransmissions are
	     required.

     net.inet.ip.alias.sctp.init_timer:	15
	     Timeout value while waiting for (INIT-ACK|AddIP-ACK).  This value
	     cannot be 0.

     net.inet.ip.alias.sctp.initialising_chunk_proc_limit: 2
	     Defines the maximum number	of chunks in an	SCTP packet that will
	     be	parsed when no existing	association exists that	matches	that
	     packet. Ideally this packet will only be an INIT or ASCONF-AddIP
	     packet. A higher value may	become a DoS risk as malformed packets
	     can consume processing resources.

     net.inet.ip.alias.sctp.param_proc_limit: 25
	     Defines the maximum number	of parameters within a chunk that will
	     be	parsed in a packet. As for other similar sysctl	variables,
	     larger values pose	a DoS risk.

     net.inet.ip.alias.sctp.log_level: 0
	     Level of detail in	the system log messages	(0 - minimal, 1	-
	     event, 2 -	info, 3	- detail, 4 - debug, 5 - max debug). May be a
	     good option in high loss environments.

     net.inet.ip.alias.sctp.shutdown_time: 15
	     Timeout value while waiting for SHUTDOWN-COMPLETE.	 This value
	     cannot be 0.

     net.inet.ip.alias.sctp.track_global_addresses: 0
	     Enables/disables global IP	address	tracking within	the nat	and
	     places an upper limit on the number of addresses tracked for each
	     association:

	     0	     Global tracking is	disabled

	     >1	     Enables tracking, the maximum number of addresses tracked
		     for each association is limited to	this value

	     This variable is fully dynamic, the new value will	be adopted for
	     all newly arriving	associations, existing association are treated
	     as	they were previously.  Global tracking will decrease the num-
	     ber of collisions within the nat at a cost	of increased process-
	     ing load, memory usage, complexity, and possible nat state	prob-
	     lems in complex networks with multiple nats.  We recommend	not
	     tracking global IP	addresses, this	will still result in a fully
	     functional	nat.

     net.inet.ip.alias.sctp.up_timer: 300
	     Timeout value to keep an association up with no traffic.  This
	     value cannot be 0.

     net.inet.ip.dummynet.expire: 1
	     Lazily delete dynamic pipes/queue once they have no pending traf-
	     fic.  You can disable this	by setting the variable	to 0, in which
	     case the pipes/queues will	only be	deleted	when the threshold is
	     reached.

     net.inet.ip.dummynet.hash_size: 64
	     Default size of the hash table used for dynamic pipes/queues.
	     This value	is used	when no	buckets	option is specified when con-
	     figuring a	pipe/queue.

     net.inet.ip.dummynet.io_fast: 0
	     If	set to a non-zero value, the ``fast'' mode of dummynet opera-
	     tion (see above) is enabled.

     net.inet.ip.dummynet.io_pkt
	     Number of packets passed to dummynet.

     net.inet.ip.dummynet.io_pkt_drop
	     Number of packets dropped by dummynet.

     net.inet.ip.dummynet.io_pkt_fast
	     Number of packets bypassed	by the dummynet	scheduler.

     net.inet.ip.dummynet.max_chain_len: 16
	     Target value for the maximum number of pipes/queues in a hash
	     bucket.  The product max_chain_len*hash_size is used to determine
	     the threshold over	which empty pipes/queues will be expired even
	     when net.inet.ip.dummynet.expire=0.

     net.inet.ip.dummynet.red_lookup_depth: 256

     net.inet.ip.dummynet.red_avg_pkt_size: 512

     net.inet.ip.dummynet.red_max_pkt_size: 1500
	     Parameters	used in	the computations of the	drop probability for
	     the RED algorithm.

     net.inet.ip.dummynet.pipe_byte_limit: 1048576

     net.inet.ip.dummynet.pipe_slot_limit: 100
	     The maximum queue size that can be	specified in bytes or packets.
	     These limits prevent accidental exhaustion	of resources such as
	     mbufs.  If	you raise these	limits,	you should make	sure the sys-
	     tem is configured so that sufficient resources are	available.

     net.inet.ip.fw.autoinc_step: 100
	     Delta between rule	numbers	when auto-generating them.  The	value
	     must be in	the range 1..1000.

     net.inet.ip.fw.curr_dyn_buckets: net.inet.ip.fw.dyn_buckets
	     The current number	of buckets in the hash table for dynamic rules
	     (readonly).

     net.inet.ip.fw.debug: 1
	     Controls debugging	messages produced by ipfw.

     net.inet.ip.fw.default_rule: 65535
	     The default rule number (read-only).  By the design of ipfw, the
	     default rule is the last one, so its number can also serve	as the
	     highest number allowed for	a rule.

     net.inet.ip.fw.dyn_buckets: 256
	     The number	of buckets in the hash table for dynamic rules.	 Must
	     be	a power	of 2, up to 65536.  It only takes effect when all
	     dynamic rules have	expired, so you	are advised to use a flush
	     command to	make sure that the hash	table is resized.

     net.inet.ip.fw.dyn_count: 3
	     Current number of dynamic rules (read-only).

     net.inet.ip.fw.dyn_keepalive: 1
	     Enables generation	of keepalive packets for keep-state rules on
	     TCP sessions.  A keepalive	is generated to	both sides of the con-
	     nection every 5 seconds for the last 20 seconds of	the lifetime
	     of	the rule.

     net.inet.ip.fw.dyn_max: 8192
	     Maximum number of dynamic rules.  When you	hit this limit,	no
	     more dynamic rules	can be installed until old ones	expire.

     net.inet.ip.fw.dyn_ack_lifetime: 300

     net.inet.ip.fw.dyn_syn_lifetime: 20

     net.inet.ip.fw.dyn_fin_lifetime: 1

     net.inet.ip.fw.dyn_rst_lifetime: 1

     net.inet.ip.fw.dyn_udp_lifetime: 5

     net.inet.ip.fw.dyn_short_lifetime:	30
	     These variables control the lifetime, in seconds, of dynamic
	     rules.  Upon the initial SYN exchange the lifetime	is kept	short,
	     then increased after both SYN have	been seen, then	decreased
	     again during the final FIN	exchange or when a RST is received.
	     Both dyn_fin_lifetime and dyn_rst_lifetime	must be	strictly lower
	     than 5 seconds, the period	of repetition of keepalives.  The
	     firewall enforces that.

     net.inet.ip.fw.enable: 1
	     Enables the firewall.  Setting this variable to 0 lets you	run
	     your machine without firewall even	if compiled in.

     net.inet6.ip6.fw.enable: 1
	     provides the same functionality as	above for the IPv6 case.

     net.inet.ip.fw.one_pass: 1
	     When set, the packet exiting from the dummynet pipe or from
	     ng_ipfw(4)	node is	not passed though the firewall again.  Other-
	     wise, after an action, the	packet is reinjected into the firewall
	     at	the next rule.

     net.inet.ip.fw.tables_max:	128
	     Maximum number of tables (read-only).

     net.inet.ip.fw.verbose: 1
	     Enables verbose messages.

     net.inet.ip.fw.verbose_limit: 0
	     Limits the	number of messages produced by a verbose firewall.

     net.inet6.ip6.fw.deny_unknown_exthdrs: 1
	     If	enabled	packets	with unknown IPv6 Extension Headers will be
	     denied.

     net.link.ether.ipfw: 0
	     Controls whether layer-2 packets are passed to ipfw.  Default is
	     no.

     net.link.bridge.ipfw: 0
	     Controls whether bridged packets are passed to ipfw.  Default is
	     no.

EXAMPLES
     There are far too many possible uses of ipfw so this Section will only
     give a small set of examples.

   BASIC PACKET	FILTERING
     This command adds an entry	which denies all tcp packets from
     cracker.evil.org to the telnet port of wolf.tambov.su from	being for-
     warded by the host:

	   ipfw	add deny tcp from cracker.evil.org to wolf.tambov.su telnet

     This one disallows	any connection from the	entire cracker's network to my
     host:

	   ipfw	add deny ip from 123.45.67.0/24	to my.host.org

     A first and efficient way to limit	access (not using dynamic rules) is
     the use of	the following rules:

	   ipfw	add allow tcp from any to any established
	   ipfw	add allow tcp from net1	portlist1 to net2 portlist2 setup
	   ipfw	add allow tcp from net3	portlist3 to net3 portlist3 setup
	   ...
	   ipfw	add deny tcp from any to any

     The first rule will be a quick match for normal TCP packets, but it will
     not match the initial SYN packet, which will be matched by	the setup
     rules only	for selected source/destination	pairs.	All other SYN packets
     will be rejected by the final deny	rule.

     If	you administer one or more subnets, you	can take advantage of the
     address sets and or-blocks	and write extremely compact rulesets which
     selectively enable	services to blocks of clients, as below:

	   goodguys="{ 10.1.2.0/24{20,35,66,18}	or 10.2.3.0/28{6,3,11} }"
	   badguys="10.1.2.0/24{8,38,60}"

	   ipfw	add allow ip from ${goodguys} to any
	   ipfw	add deny ip from ${badguys} to any
	   ... normal policies ...

     The verrevpath option could be used to do automated anti-spoofing by
     adding the	following to the top of	a ruleset:

	   ipfw	add deny ip from any to	any not	verrevpath in

     This rule drops all incoming packets that appear to be coming to the sys-
     tem on the	wrong interface.  For example, a packet	with a source address
     belonging to a host on a protected	internal network would be dropped if
     it	tried to enter the system from an external interface.

     The antispoof option could	be used	to do similar but more restricted
     anti-spoofing by adding the following to the top of a ruleset:

	   ipfw	add deny ip from any to	any not	antispoof in

     This rule drops all incoming packets that appear to be coming from
     another directly connected	system but on the wrong	interface.  For	exam-
     ple, a packet with	a source address of 192.168.0.0/24 , configured	on
     fxp0 , but	coming in on fxp1 would	be dropped.

   DYNAMIC RULES
     In	order to protect a site	from flood attacks involving fake TCP packets,
     it	is safer to use	dynamic	rules:

	   ipfw	add check-state
	   ipfw	add deny tcp from any to any established
	   ipfw	add allow tcp from my-net to any setup keep-state

     This will let the firewall	install	dynamic	rules only for those connec-
     tion which	start with a regular SYN packet	coming from the	inside of our
     network.  Dynamic rules are checked when encountering the first
     check-state or keep-state rule.  A	check-state rule should	usually	be
     placed near the beginning of the ruleset to minimize the amount of	work
     scanning the ruleset.  Your mileage may vary.

     To	limit the number of connections	a user can open	you can	use the	fol-
     lowing type of rules:

	   ipfw	add allow tcp from my-net/24 to	any setup limit	src-addr 10
	   ipfw	add allow tcp from any to me setup limit src-addr 4

     The former	(assuming it runs on a gateway)	will allow each	host on	a /24
     network to	open at	most 10	TCP connections.  The latter can be placed on
     a server to make sure that	a single client	does not use more than 4
     simultaneous connections.

     BEWARE: stateful rules can	be subject to denial-of-service	attacks	by a
     SYN-flood which opens a huge number of dynamic rules.  The	effects	of
     such attacks can be partially limited by acting on	a set of sysctl(8)
     variables which control the operation of the firewall.

     Here is a good usage of the list command to see accounting	records	and
     timestamp information:

	   ipfw	-at list

     or	in short form without timestamps:

	   ipfw	-a list

     which is equivalent to:

	   ipfw	show

     Next rule diverts all incoming packets from 192.168.2.0/24	to divert port
     5000:

	   ipfw	divert 5000 ip from 192.168.2.0/24 to any in

   TRAFFIC SHAPING
     The following rules show some of the applications of ipfw and dummynet
     for simulations and the like.

     This rule drops random incoming packets with a probability	of 5%:

	   ipfw	add prob 0.05 deny ip from any to any in

     A similar effect can be achieved making use of dummynet pipes:

	   ipfw	add pipe 10 ip from any	to any
	   ipfw	pipe 10	config plr 0.05

     We	can use	pipes to artificially limit bandwidth, e.g. on a machine act-
     ing as a router, if we want to limit traffic from local clients on
     192.168.2.0/24 we do:

	   ipfw	add pipe 1 ip from 192.168.2.0/24 to any out
	   ipfw	pipe 1 config bw 300Kbit/s queue 50KBytes

     note that we use the out modifier so that the rule	is not used twice.
     Remember in fact that ipfw	rules are checked both on incoming and outgo-
     ing packets.

     Should we want to simulate	a bidirectional	link with bandwidth limita-
     tions, the	correct	way is the following:

	   ipfw	add pipe 1 ip from any to any out
	   ipfw	add pipe 2 ip from any to any in
	   ipfw	pipe 1 config bw 64Kbit/s queue	10Kbytes
	   ipfw	pipe 2 config bw 64Kbit/s queue	10Kbytes

     The above can be very useful, e.g.	if you want to see how your fancy Web
     page will look for	a residential user who is connected only through a
     slow link.	 You should not	use only one pipe for both directions, unless
     you want to simulate a half-duplex	medium (e.g. AppleTalk,	Ethernet,
     IRDA).  It	is not necessary that both pipes have the same configuration,
     so	we can also simulate asymmetric	links.

     Should we want to verify network performance with the RED queue manage-
     ment algorithm:

	   ipfw	add pipe 1 ip from any to any
	   ipfw	pipe 1 config bw 500Kbit/s queue 100 red 0.002/30/80/0.1

     Another typical application of the	traffic	shaper is to introduce some
     delay in the communication.  This can significantly affect	applications
     which do a	lot of Remote Procedure	Calls, and where the round-trip-time
     of	the connection often becomes a limiting	factor much more than band-
     width:

	   ipfw	add pipe 1 ip from any to any out
	   ipfw	add pipe 2 ip from any to any in
	   ipfw	pipe 1 config delay 250ms bw 1Mbit/s
	   ipfw	pipe 2 config delay 250ms bw 1Mbit/s

     Per-flow queueing can be useful for a variety of purposes.	 A very	simple
     one is counting traffic:

	   ipfw	add pipe 1 tcp from any	to any
	   ipfw	add pipe 1 udp from any	to any
	   ipfw	add pipe 1 ip from any to any
	   ipfw	pipe 1 config mask all

     The above set of rules will create	queues (and collect statistics)	for
     all traffic.  Because the pipes have no limitations, the only effect is
     collecting	statistics.  Note that we need 3 rules,	not just the last one,
     because when ipfw tries to	match IP packets it will not consider ports,
     so	we would not see connections on	separate ports as different ones.

     A more sophisticated example is limiting the outbound traffic on a	net
     with per-host limits, rather than per-network limits:

	   ipfw	add pipe 1 ip from 192.168.2.0/24 to any out
	   ipfw	add pipe 2 ip from any to 192.168.2.0/24 in
	   ipfw	pipe 1 config mask src-ip 0x000000ff bw	200Kbit/s queue
	   20Kbytes
	   ipfw	pipe 2 config mask dst-ip 0x000000ff bw	200Kbit/s queue
	   20Kbytes

   LOOKUP TABLES
     In	the following example, we need to create several traffic bandwidth
     classes and we need different hosts/networks to fall into different
     classes.  We create one pipe for each class and configure them accord-
     ingly.  Then we create a single table and fill it with IP subnets and
     addresses.	 For each subnet/host we set the argument equal	to the number
     of	the pipe that it should	use.  Then we classify traffic using a single
     rule:

	   ipfw	pipe 1 config bw 1000Kbyte/s
	   ipfw	pipe 4 config bw 4000Kbyte/s
	   ...
	   ipfw	table 1	add 192.168.2.0/24 1
	   ipfw	table 1	add 192.168.0.0/27 4
	   ipfw	table 1	add 192.168.0.2	1
	   ...
	   ipfw	add pipe tablearg ip from table(1) to any

     Using the fwd action, the table entries may include hostnames and IP
     addresses.

	   ipfw	table 1	add 192.168.2.0/24 10.23.2.1
	   ipfw	table 1	add 192.168.0.0/27 router1.dmz
	   ...
	   ipfw	add 100	fwd tablearg ip	from any to table(1)

   SETS	OF RULES
     To	add a set of rules atomically, e.g. set	18:

	   ipfw	set disable 18
	   ipfw	add NN set 18 ...	  # repeat as needed
	   ipfw	set enable 18

     To	delete a set of	rules atomically the command is	simply:

	   ipfw	delete set 18

     To	test a ruleset and disable it and regain control if something goes
     wrong:

	   ipfw	set disable 18
	   ipfw	add NN set 18 ...	  # repeat as needed
	   ipfw	set enable 18; echo done; sleep	30 && ipfw set disable 18

     Here if everything	goes well, you press control-C before the "sleep" ter-
     minates, and your ruleset will be left active.  Otherwise,	e.g. if	you
     cannot access your	box, the ruleset will be disabled after	the sleep ter-
     minates thus restoring the	previous situation.

     To	show rules of the specific set:

	   ipfw	set 18 show

     To	show rules of the disabled set:

	   ipfw	-S set 18 show

     To	clear a	specific rule counters of the specific set:

	   ipfw	set 18 zero NN

     To	delete a specific rule of the specific set:

	   ipfw	set 18 delete NN

   NAT,	REDIRECT AND LSNAT
     First redirect all	the traffic to nat instance 123:

	   ipfw	add nat	123 all	from any to any

     Then to configure nat instance 123	to alias all the outgoing traffic with
     ip	192.168.0.123, blocking	all incoming connections, trying to keep same
     ports on both sides, clearing aliasing table on address change and	keep-
     ing a log of traffic/link statistics:

	   ipfw	nat 123	config ip 192.168.0.123	log deny_in reset same_ports

     Or	to change address of instance 123, aliasing table will be cleared (see
     reset option):

	   ipfw	nat 123	config ip 10.0.0.1

     To	see configuration of nat instance 123:

	   ipfw	nat 123	show config

     To	show logs of all the instances in range	111-999:

	   ipfw	nat 111-999 show

     To	see configurations of all instances:

	   ipfw	nat show config

     Or	a redirect rule	with mixed modes could looks like:

	   ipfw	nat 123	config redirect_addr 10.0.0.1 10.0.0.66
			   redirect_port tcp 192.168.0.1:80 500
			   redirect_proto udp 192.168.1.43 192.168.1.1
			   redirect_addr 192.168.0.10,192.168.0.11
				   10.0.0.100 #	LSNAT
			   redirect_port tcp 192.168.0.1:80,192.168.0.10:22
				   500	      #	LSNAT

     or	it could be splitted in:

	   ipfw	nat 1 config redirect_addr 10.0.0.1 10.0.0.66
	   ipfw	nat 2 config redirect_port tcp 192.168.0.1:80 500
	   ipfw	nat 3 config redirect_proto udp	192.168.1.43 192.168.1.1
	   ipfw	nat 4 config redirect_addr
	   192.168.0.10,192.168.0.11,192.168.0.12
					10.0.0.100
	   ipfw	nat 5 config redirect_port tcp
			  192.168.0.1:80,192.168.0.10:22,192.168.0.20:25 500

SEE ALSO
     cpp(1), m4(1), altq(4), divert(4),	dummynet(4), if_bridge(4), ip(4),
     ipfirewall(4), ng_ipfw(4),	protocols(5), services(5), init(8),
     kldload(8), reboot(8), sysctl(8), syslogd(8)

HISTORY
     The ipfw utility first appeared in	FreeBSD	2.0.  dummynet was introduced
     in	FreeBSD	2.2.8.	Stateful extensions were introduced in FreeBSD 4.0.
     ipfw2 was introduced in Summer 2002.

AUTHORS
     Ugen J. S.	Antsilevich,
     Poul-Henning Kamp,
     Alex Nash,
     Archie Cobbs,
     Luigi Rizzo.

     API based upon code written by Daniel Boulet for BSDI.

     In-kernel NAT support written by Paolo Pisati <piso@FreeBSD.org> as part
     of	a Summer of Code 2005 project.

     Work on dummynet traffic shaper supported by Akamba Corp.

     Sctp nat support has been developed by The	Centre for Advanced Internet
     Architectures (CAIA) <http://www.caia.swin.edu.au>.  The primary develop-
     ers and maintainers are David Hayes and Jason But.	 For further informa-
     tion visit: <http://www.caia.swin.edu.au/urp/SONATA>

BUGS
     The syntax	has grown over the years and sometimes it might	be confusing.
     Unfortunately, backward compatibility prevents cleaning up	mistakes made
     in	the definition of the syntax.

     !!! WARNING !!!

     Misconfiguring the	firewall can put your computer in an unusable state,
     possibly shutting down network services and requiring console access to
     regain control of it.

     Incoming packet fragments diverted	by divert are reassembled before
     delivery to the socket.  The action used on those packet is the one from
     the rule which matches the	first fragment of the packet.

     Packets diverted to userland, and then reinserted by a userland process
     may lose various packet attributes.  The packet source interface name
     will be preserved if it is	shorter	than 8 bytes and the userland process
     saves and reuses the sockaddr_in (as does natd(8)); otherwise, it may be
     lost.  If a packet	is reinserted in this manner, later rules may be
     incorrectly applied, making the order of divert rules in the rule
     sequence very important.

     Dummynet drops all	packets	with IPv6 link-local addresses.

     Rules using uid or	gid may	not behave as expected.	 In particular,	incom-
     ing SYN packets may have no uid or	gid associated with them since they do
     not yet belong to a TCP connection, and the uid/gid associated with a
     packet may	not be as expected if the associated process calls setuid(2)
     or	similar	system calls.

     Rule syntax is subject to the command line	environment and	some patterns
     may need to be escaped with the backslash character or quoted appropri-
     ately.

     Due to the	architecture of	libalias(3), ipfw nat is not compatible	with
     the tcp segmentation offloading (TSO). Thus, to reliably nat your network
     traffic, please disable TSO on your NICs using ifconfig(8).

     ICMP error	messages are not implicitly matched by dynamic rules for the
     respective	conversations.	To avoid failures of network error detection
     and path MTU discovery, ICMP error	messages may need to be	allowed
     explicitly	through	static rules.

FreeBSD	10.1		      September	27, 2008		  FreeBSD 10.1

NAME | SYNOPSIS | DESCRIPTION | PACKET FLOW | SYNTAX | RULE FORMAT | LOOKUP TABLES | SETS OF RULES | STATEFUL FIREWALL | TRAFFIC SHAPER (DUMMYNET) CONFIGURATION | CHECKLIST | FINE POINTS | PACKET DIVERSION | NETWORK ADDRESS TRANSLATION (NAT) | REDIRECT AND LSNAT SUPPORT IN IPFW | SCTP NAT SUPPORT | SYSCTL VARIABLES | EXAMPLES | SEE ALSO | HISTORY | AUTHORS | BUGS

Want to link to this manual page? Use this URL:
<https://www.freebsd.org/cgi/man.cgi?query=ipfw&manpath=FreeBSD+7.2-RELEASE>

home | help