Skip site navigation (1)Skip section navigation (2)

FreeBSD Man Pages

Man Page or Keyword Search:
Man Architecture
Apropos Keyword Search (all sections) Output format
home | help
ral(4)
Ralink Technology IEEE 802.11a/g/n wireless network device
rsu(4)
Realtek RTL8188SU/RTL8192SU USB IEEE 802.11b/g/n wireless network device
run(4)
Ralink Technology USB IEEE 802.11a/g/n wireless network device
uhso(4)
support for several HSxPA devices from Option N.V
urtwn(4)
Realtek RTL8188CU/RTL8188RU/RTL8188EU/RTL8192CU USB IEEE 802.11b/g/n wireless network device
BN_mod_inverse(3)
compute inverse modulo n
Archetype(n)
base class for all [incr Tk] mega-widgets
BLT(n)
Introduction to the BLT library
BN_mod_inverse(3)
compute inverse modulo n
BubBob.py(1)
Generic startup script for bub-n-bros
Client.py(1)
the bub-n-bros client
HPL_pdgesv0(3)
Factor an N x N+1 matrix
HPL_pdgesvK1(3)
Factor an N x N+1 matrix
HPL_pdgesvK2(3)
Factor an N x N+1 matrix
TclX(n)
Extended Tcl: Extended command set for Tcl '
TixIntro(n)
Introduction to the Tix library '" '"
Toplevel(n)
base class for mega-widgets in a top-level window
Widget(n)
base class for mega-widgets within a frame
XmDropSiteManager(3)
Motif-compatible support widget for drag'n'drop
adler(n)
Message digest "adler"
ascii85(n)
Encoding "ascii85"
barchart(n)
Bar chart for plotting X-Y coordinate data
base64(n)
Encoding "base64"
bb.py(1)
the bub-n-bros server
beep(n)
ring the bell
bgexec(n)
Run programs in the background while handling Tk events. kill - Terminate program or send signal
bin(n)
Encoding "bin"
bitmap(n)
Define a new bitmap from a Tcl script
bltdebug(n)
print Tcl commands before execution
breduce(1)
read a portable bitmap and reduce it to 1/N
bsd(n), BSD(n)
Tcl interface to various BSD UNIX functions
busy(n)
Make Tk widgets busy, temporarily blocking user interactions
bz2(n)
Data compression "bz2"
cdbtf2(l), CDBTF2(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting with row interchanges
cdbtrf(l), CDBTRF(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting or row interchanges
class(n), oo::class(n)
class of all classes
clig_Commandline(n), ::clig::Commandline(n)
declare variable to store concatenated argv
clig_Description(n), ::clig::Description(n)
set long description text to be included in a manual page
clig_Double(n), ::clig::Double(n)
declare an option with parameters of type double
clig_Flag(n), ::clig::Flag(n)
declare a flag (boolean, classic) option
clig_Float(n), ::clig::Float(n)
declare an option with parameters of type float
clig_Int(n), ::clig::Int(n)
declare an option with parameters of type int
clig_Long(n), ::clig::Long(n)
declare an option with parameters of type long
clig_Name(n), ::clig::Name(n)
set the program name to be used in the manual page
clig_Rest(n), ::clig::Rest(n)
declare command line arguments not associated with any option
clig_String(n), ::clig::String(n)
declare an option with parameters of type string
clig_Usage(n), ::clig::Usage(n)
declare single line usage-string
clig_Version(n), ::clig::Version(n)
declare version
clig_parseCmdline(n), ::clig::parseCmdline(n)
command line interpreter for Tcl
compound(n)
multi-line compound image type
container(n)
Widget to contain a foreign window
copy(n), oo::copy(n)
create copies of objects and classes
crc(n)
Message digest "crc"
crc-zlib(n)
Message digest "crc-zlib"
critcl_app(n)
CriTcl Application
critcl_apppkg(n), critcl::app(n)
Critcl - Application Package Reference
critcl_bitmap(n), critcl::bitmap(n)
CriTcl Utilities: Bitset en- and decoding
critcl_class(n), critcl::class(n)
CriTcl Utilities: C Classes
critcl_devguide(n)
Critcl - The Developer's Guide
critcl_enum(n), critcl::enum(n)
CriTcl Utilities: String/Integer mapping
critcl_iassoc(n), critcl::iassoc(n)
CriTcl Utilities: Tcl Interp Associations
critcl_installer(n), critcl_install_guide(n)
Critcl - The Installer's Guide
critcl_introduction(n)
Introduction To CriTcl
critcl_literals(n), critcl::literals(n)
CriTcl Utilities: Constant string pools
critcl_pkg(n), critcl(n)
Critcl - Package Reference
critcl_sources(n)
Critcl - How To Get The Sources
critcl_usingit(n), critcl_use(n)
Using Critcl
critcl_util(n), critcl::util(n)
CriTcl Utilities
crypt(n)
Password hashing based on "crypt"
cutbuffer(n)
Manipulate X cut buffer properties
dbus(n)
Tcl library for interacting with the DBus
ddbtf2(l), DDBTF2(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting with row interchanges
ddbtrf(l), DDBTRF(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting or row interchanges
define(n), oo::define(n), oo::objdefine(n)
define and configure classes and objects
dom(n)
Create an in-memory DOM tree from XML
domDoc(n)
Manipulates an instance of a DOM document object
domNode(n)
Manipulates an instance of a DOM node object
dragdrop(n), drag&drop(n)
facilities for handling drag&drop data transfers
eps(n)
Encapsulated PostScript canvas item
expat(n)
Creates an instance of an expat parser object
expatapi(n), CheckExpatParserObj(n), CHandlerSetInstall(n), CHandlerSetRemove(n), CHandlerSetCreate(n), CHandlerSetGetUserData(n), GetExpatInfo(n)
Functions to create, install and remove expat parser object extensions
fd2ps(1)
Translates fdesign output to PostScript Cr n (c) (co
fdesign(1)
Forms Library User Interface Designer Cr n (c) (co
fifo(n)
Create and manipulate u-turn fifo channels
fifo2(n)
Create and manipulate pipe fifo channels
gdtclft(n)
render PNG images
generate-ngram(1)
random sentence generator from N-gram
getdns_context(3)
getdns_context_create, getdns_context_create_with_memory_functions, getdns_context_create_with_extended_memory_functions, getdns_context_destroy, getdns_context_get_api_information -- getdns context create and destroy routines n
getdns_context_set_append_name(3)
getdns_context_set_context_update_callback, getdns_context_set_dns_root_servers, getdns_context_set_dns_transport, getdns_context_set_dnssec_trust_anchors, getdns_context_set_dnssec_allowed_skew, getdns_context_set_follow_redirects, getdns_context_set_limit_outstanding_queries, getdns_context_set_namespaces, getdns_context_set_resolution_type, getdns_context_set_suffix, getdns_context_set_timeout, -- getdns context manipulation routines n
getdns_dict(3)
getdns_dict_create, getdns_dict_create_with_extended_memory_functions, getdns_dict_create_with_memory_functions, getdns_dict_destroy -- getdns dict create and destroy routines n
getdns_list(3)
getdns_list_create, getdns_list_create_with_extended_memory_functions, getdns_list_create_with_memory_functions, getdns_list_destroy -- getdns list create and destroy routines n
gpg(n)
Tcl Interface to GnuPG
graph(n)
2D graph for plotting X-Y coordinate data
groff_hdtbl(7)
groff `hdtbl' macros for generation of tables Some simple formatting macros. Note that we use `.ig' here and not a comment to make `mandb' 2.4.1 (and probably more recent versions also) happy; otherwise the `.char' lines and the stuff which follows is included in the `whatis' database. . [lB] F[n[.fam]][ [rB] F[n[.fam]]] [or] F[n[.fam]]||| [ell] F[n[.fam]].|.|. [oq] F[n[.fam]][oq] [cq] F[n[.fam]][cq] F CR {
haval(n)
Message digest "haval"
hex(n)
Encoding "hex"
hfst-apertium-proc(1)
=Usage: hfst-proc [-a [-p|-C|-x] [-k]|-g|-n|-d|-t] [-W] [-n N] [-c|-w] [-z] [-v|-q|]
htext(n)
Create and manipulate hypertext widgets
igeomap(n)
create and manipulate a geographic map with interactive menus and bindings
img(n), img-intro(n)
Introduction to Img
img-bmp(n)
Img, Windows Bitmap Format (bmp)
img-dted(n)
Img, DTED Format (dted)
img-gif(n)
Img, Graphics Interchange Format (gif)
img-ico(n)
Img, Windows Icon Format (ico)
img-jpeg(n)
Img, Joint Picture Expert Group format (jpeg)
img-pcx(n)
Img, Paintbrush Format (pcx)
img-pixmap(n)
Img, Pixmap Image type (pixmap)
img-png(n)
Img, Portable Network Graphics format (png)
img-ppm(n)
Img, Portable Pixmap format (ppm)
img-ps(n)
Img, Adobe PostScript Format (ps)
img-raw(n)
Img, Raw Data Format (raw)
img-sgi(n)
Img, SGI Native Format (sgi)
img-sun(n)
Img, Sun Raster Format (sun)
img-tga(n)
Img, Truevision Targa Format (tga)
img-tiff(n)
Img, Tagged Image File Format (tiff)
img-window(n)
Img, Tk Windows (window)
img-xbm(n)
Img, X Windows Bitmap Format (xbm)
img-xpm(n)
Img, X Windows Pixmap Format (xpm)
itk(n)
framework for building mega-widgets in Tcl/Tk
itkvars(n)
variables used by [incr Tk]
iwidgets_buttonbox(n), iwidgets::buttonbox(n)
Create and manipulate a manager widget for buttons
iwidgets_calendar(n), iwidgets::calendar(n)
Create and manipulate a monthly calendar
iwidgets_canvasprintbox(n), iwidgets::canvasprintbox(n)
Create and manipulate a canvas print box widget
iwidgets_canvasprintdialog(n), iwidgets::canvasprintdialog(n)
Create and manipulate a canvas print dialog widget
iwidgets_checkbox(n), iwidgets::checkbox(n)
Create and manipulate a checkbox widget
iwidgets_combobox(n), iwidgets::combobox(n)
Create and manipulate combination box widgets
iwidgets_dateentry(n), iwidgets::dateentry(n)
Create and manipulate a dateentry widget
iwidgets_datefield(n), iwidgets::datefield(n)
Create and manipulate a date field widget
iwidgets_dialog(n), iwidgets::dialog(n)
Create and manipulate a dialog widget
iwidgets_dialogshell(n), iwidgets::dialogshell(n)
Create and manipulate a dialog shell widget
iwidgets_disjointlistbox(n), iwidgets::disjointlistbox(n)
Create and manipulate a disjointlistbox widget
iwidgets_entryfield(n), iwidgets::entryfield(n)
Create and manipulate a entry field widget
iwidgets_extbutton(n), iwidgets::extbutton(n)
Extends the behavior of the Tk button by allowing a bitmap or image to coexist with text
iwidgets_extfileselectionbox(n), iwidgets::extfileselectionbox(n)
Create and manipulate a file selection box widget
iwidgets_extfileselectiondialog(n), iwidgets::extfileselectiondialog(n)
Create and manipulate a file selection dialog widget
iwidgets_feedback(n), iwidgets::feedback(n)
Create and manipulate a feedback widget to display feedback on the current status of an ongoing operation to the user
iwidgets_fileselectionbox(n), iwidgets::fileselectionbox(n)
Create and manipulate a file selection box widget
iwidgets_fileselectiondialog(n), iwidgets::fileselectiondialog(n)
Create and manipulate a file selection dialog widget
iwidgets_finddialog(n), iwidgets::finddialog(n)
Create and manipulate a find dialog widget
iwidgets_hierarchy(n), iwidgets::hierarchy(n)
Create and manipulate a hierarchy widget
iwidgets_hyperhelp(n), iwidgets::hyperhelp(n)
Create and manipulate a hyperhelp widget
iwidgets_labeledframe(n), iwidgets::labeledframe(n)
Create and manipulate a labeled frame widget
iwidgets_labeledwidget(n), iwidgets::labeledwidget(n)
Create and manipulate a labeled widget
iwidgets_mainwindow(n), iwidgets::mainwindow(n)
Create and manipulate a mainwindow widget
iwidgets_menubar(n), iwidgets::menubar(n)
Create and manipulate menubar menu widgets
iwidgets_messagebox(n), iwidgets::messagebox(n)
Create and manipulate a messagebox text widget
iwidgets_messagedialog(n), iwidgets::messagedialog(n)
Create and manipulate a message dialog widget
iwidgets_notebook(n), iwidgets::notebook(n)
create and manipulate notebook widgets
iwidgets_optionmenu(n), iwidgets::optionmenu(n)
Create and manipulate a option menu widget
iwidgets_panedwindow(n), iwidgets::panedwindow(n)
Create and manipulate a paned window widget
iwidgets_promptdialog(n), iwidgets::promptdialog(n)
Create and manipulate a prompt dialog widget
iwidgets_pushbutton(n), iwidgets::pushbutton(n)
Create and manipulate a push button widget
iwidgets_radiobox(n), iwidgets::radiobox(n)
Create and manipulate a radiobox widget
iwidgets_scopedobject(n), scopedobject(n)
Create and manipulate a scoped [incr Tcl] class object
iwidgets_scrolledcanvas(n), iwidgets::scrolledcanvas(n)
Create and manipulate scrolled canvas widgets
iwidgets_scrolledframe(n), iwidgets::scrolledframe(n)
Create and manipulate scrolled frame widgets
iwidgets_scrolledhtml(n), iwidgets::scrolledhtml(n)
Create and manipulate a scrolled text widget with the capability of displaying HTML formatted documents
iwidgets_scrolledlistbox(n), iwidgets::scrolledlistbox(n)
Create and manipulate scrolled listbox widgets
iwidgets_scrolledtext(n), iwidgets::scrolledtext(n)
Create and manipulate a scrolled text widget
iwidgets_selectionbox(n), iwidgets::selectionbox(n)
Create and manipulate a selection box widget
iwidgets_selectiondialog(n), iwidgets::selectiondialog(n)
Create and manipulate a selection dialog widget
iwidgets_shell(n), iwidgets::shell(n)
Create and manipulate a shell widget
iwidgets_spindate(n), iwidgets::spindate(n)
Create and manipulate time spinner widgets
iwidgets_spinint(n), iwidgets::spinint(n)
Create and manipulate a integer spinner widget
iwidgets_spinner(n), iwidgets::spinner(n)
Create and manipulate a spinner widget
iwidgets_spintime(n), iwidgets::spintime(n)
Create and manipulate time spinner widgets
iwidgets_tabnotebook(n), iwidgets::tabnotebook(n)
create and manipulate tabnotebook widgets
iwidgets_tabset(n), iwidgets::tabset(n)
create and manipulate tabs as as set
iwidgets_timeentry(n), iwidgets::timeentry(n)
Create and manipulate a timeentry widget
iwidgets_timefield(n), iwidgets::timefield(n)
Create and manipulate a time field widget
iwidgets_toolbar(n), iwidgets::toolbar(n)
Create and manipulate a tool bar
iwidgets_watch(n), iwidgets::watch(n)
Create and manipulate time with a watch widgets
libowfat_array_allocate(3), array_allocate(3)
make sure array has at least n elements allocated
libowfat_taia_addsec(3), taia_addsec(3)
add n seconds to a struct taia
lyx(1), LyX(1)
A Document Processor Cr n (c) (co
lyxclient(1)
send commands to a running LyX editor Cr n (c) (co
md2(n)
Message digest "md2"
md5(n)
Message digest "md5"
md5_otp(n)
Message digest "md5_otp"
md5crypt(n)
Password hashing based on "md5"
memchan(n)
C API for creating memory channels
memchan(n)
Create and manipulate memory channels
midiconf(n), midiconfig(n)
tclmidi command to get or modify the configuration values of a MIDI song
midicopy(n)
tclmidi command to copy a range of events in a MIDI song
mididel(n), mididelete(n)
tclmidi command to delete an event or events in a MIDI song
mididev(n), mididevice(n)
tclmidi command to create a MIDI device and modify the configuration
midievnt(n), midievents(n)
the description tclmidi events
midifeat(n), midifeature(n)
tclmidi command to control hardware specific features on a MIDI device
midifree(n)
tclmidi command to free the space used by a MIDI song
midiget(n)
tclmidi command to get one event from a MIDI song
midigrep(n)
tclmidi command to find events matching a given pattern in a MIDI track
midimake(n)
tclmidi command to create an empty MIDI song
midimerg(n), midimerge(n)
tclmdi command to merge multiple tracks of MIDI songs to one track
midimove(n)
tclmidi command to move a range of events in a MIDI song
midiplay(n)
tclmidi command to play a MIDI song
midiput(n)
tclmidi command to insert an event in a MIDI song
midiread(n)
tclmidi command to read a MIDI song from a Standard MIDI File
midirec(n), midirecord(n)
tclmidi command to record a MIDI song
midirew(n), midirewind(n)
tclmidi command to reset a MIDI song pointer to the beginning
midisplt(n), midisplit(n)
tclmidi command to split a track into a meta track and an other track
midistop(n)
tclmidi command to stop playing or recording a MIDI song
miditime(n)
tclmidi command to get the current MIDI device time
miditrck(n), miditrack(n)
tclmidi command to get information about a MIDI track
midivers(n), midiversion(n)
tclmidi command to report the version
midiwait(n)
tclmidi command to block until playing or recording a MIDI song finishes
midiwrit(n), midiwrite(n)
tclmidi command to write a MIDI song as a Standard MIDI File
mkbingram(1)
make binary N-gram from ARPA N-gram file
mpexpr(n)
Evaluate an expression with multiple precision math
my(n)
invoke any method of current object
mysqltcl(n)
MySQL server access commands for Tcl
nadar(1)
A client of a network tank battle game N.A.D.A.R. for X
nadars(1)
A server of a network tank battle game N.A.D.A.R
next(n), nextto(n)
invoke superclass method implementations
null(n)
Create and manipulate null channels
object(n), oo::object(n)
root class of the class hierarchy
oct(n)
Encoding "oct"
ooInfo(n), info class(n), info object(n)
introspection for classes and objects
otp_words(n)
Encoding "otp_words"
owtcl(n), Owtcl(n)
OWFS library access commands for Tcl
p910nd(8)
port 9100+n printer daemon
pack_fread(3)
Reads n bytes from the stream. Allegro game programming library
pack_fwrite(3)
Writes n bytes to the stream. Allegro game programming library
pcdbsv(l), PCDBSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pcdbtrf(l), PCDBTRF(l)
compute a LU factorization of an N-by-N complex banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU
pcdbtrs(l), PCDBTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pcdbtrsv(l), PCDBTRSV(l)
solve a banded triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pcdtsv(l), PCDTSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pcdttrf(l), PCDTTRF(l)
compute a LU factorization of an N-by-N complex tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
pcdttrs(l), PCDTTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pcdttrsv(l), PCDTTRSV(l)
solve a tridiagonal triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pcgbsv(l), PCGBSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pcgbtrf(l), PCGBTRF(l)
compute a LU factorization of an N-by-N complex banded distributed matrix with bandwidth BWL, BWU
pcgbtrs(l), PCGBTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pcgebd2(l), PCGEBD2(l)
reduce a complex general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form B by an unitary transformation
pcgebrd(l), PCGEBRD(l)
reduce a complex general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form B by an unitary transformation
pcgecon(l), PCGECON(l)
estimate the reciprocal of the condition number of a general distributed complex matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PCGETRF
pcgeequ(l), PCGEEQU(l)
compute row and column scalings intended to equilibrate an M-by-N distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA:JA+N-1) and reduce its condition number
pcgelq2(l), PCGELQ2(l)
compute a LQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
pcgelqf(l), PCGELQF(l)
compute a LQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
pcgels(l), PCGELS(l)
solve overdetermined or underdetermined complex linear systems involving an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1),
pcgeql2(l), PCGEQL2(l)
compute a QL factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
pcgeqlf(l), PCGEQLF(l)
compute a QL factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
pcgeqpf(l), PCGEQPF(l)
compute a QR factorization with column pivoting of a M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pcgeqr2(l), PCGEQR2(l)
compute a QR factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
pcgeqrf(l), PCGEQRF(l)
compute a QR factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
pcgerq2(l), PCGERQ2(l)
compute a RQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
pcgerqf(l), PCGERQF(l)
compute a RQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
pcgesvx(l), PCGESVX(l)
use the LU factorization to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
pcgetf2(l), PCGETF2(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
pcgetrf(l), PCGETRF(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
pcgetrs(l), PCGETRS(l)
solve a system of distributed linear equations op( sub( A ) ) * X = sub( B ) with a general N-by-N distributed matrix sub( A ) using the LU factorization computed by PCGETRF
pcggqrf(l), PCGGQRF(l)
compute a generalized QR factorization of an N-by-M matrix sub( A ) = A(IA:IA+N-1,JA:JA+M-1) and an N-by-P matrix sub( B ) = B(IB:IB+N-1,JB:JB+P-1)
pcggrqf(l), PCGGRQF(l)
compute a generalized RQ factorization of an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pclabrd(l), PCLABRD(l)
reduce the first NB rows and columns of a complex general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form by an unitary transformation Q' * A * P, and returns the matrices X and Y which are needed to apply the transfor- mation to the unreduced part of sub( A )
pclacgv(l), PCLACGV(l)
conjugate a complex vector of length N, sub( X ), where sub( X ) denotes X(IX,JX:JX+N-1) if INCX = DESCX( M_ ) and X(IX:IX+N-1,JX) if INCX = 1, and Notes ===== Each global data object is described by an associated description vector
pclahrd(l), PCLAHRD(l)
reduce the first NB columns of a complex general N-by-(N-K+1) distributed matrix A(IA:IA+N-1,JA:JA+N-K) so that elements below the k-th subdiagonal are zero
pclapiv(l), PCLAPIV(l)
applie either P (permutation matrix indicated by IPIV) or inv( P ) to a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1), resulting in row or column pivoting
pclapv2(l), PCLAPV2(l)
applie either P (permutation matrix indicated by IPIV) or inv( P ) to a M-by-N distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1), resulting in row or column pivoting
pclaqge(l), PCLAQGE(l)
equilibrate a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using the row and scaling factors in the vectors R and C
pclaqsy(l), PCLAQSY(l)
equilibrate a symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the scaling factors in the vectors SR and SC
pclarf(l), PCLARF(l)
applie a complex elementary reflector Q to a complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1), from either the left or the right
pclarfb(l), PCLARFB(l)
applie a complex block reflector Q or its conjugate transpose Q**H to a complex M-by-N distributed matrix sub( C ) denoting C(IC:IC+M-1,JC:JC+N-1), from the left or the right
pclarfc(l), PCLARFC(l)
applie a complex elementary reflector Q**H to a complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1),
pclarfg(l), PCLARFG(l)
generate a complex elementary reflector H of order n, such that H * sub( X ) = H * ( x(iax,jax) ) = ( alpha ), H' * H = I
pclarft(l), PCLARFT(l)
form the triangular factor T of a complex block reflector H of order n, which is defined as a product of k elementary reflectors
pclarz(l), PCLARZ(l)
applie a complex elementary reflector Q to a complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1), from either the left or the right
pclarzb(l), PCLARZB(l)
applie a complex block reflector Q or its conjugate transpose Q**H to a complex M-by-N distributed matrix sub( C ) denoting C(IC:IC+M-1,JC:JC+N-1), from the left or the right
pclarzc(l), PCLARZC(l)
applie a complex elementary reflector Q**H to a complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1),
pclarzt(l), PCLARZT(l)
form the triangular factor T of a complex block reflector H of order > n, which is defined as a product of k elementary reflectors as returned by PCTZRZF
pclascl(l), PCLASCL(l)
multiplie the M-by-N complex distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1) by the real scalar CTO/CFROM
pclase2(l), PCLASE2(l)
initialize an M-by-N distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1) to BETA on the diagonal and ALPHA on the offdiagonals
pclaset(l), PCLASET(l)
initialize an M-by-N distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1) to BETA on the diagonal and ALPHA on the offdiagonals
pclassq(l), PCLASSQ(l)
return the values scl and smsq such that ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
pclaswp(l), PCLASWP(l)
perform a series of row or column interchanges on the distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pclatra(l), PCLATRA(l)
compute the trace of an N-by-N distributed matrix sub( A ) denoting A( IA:IA+N-1, JA:JA+N-1 )
pclatrd(l), PCLATRD(l)
reduce NB rows and columns of a complex Hermitian distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) to complex tridiagonal form by an unitary similarity transformation Q' * sub( A ) * Q, and returns the matrices V and W which are needed to apply the transformation to the unreduced part of sub( A )
pclatrz(l), PCLATRZ(l)
reduce the M-by-N ( M<=N ) complex upper trapezoidal matrix sub( A ) = [A(IA:IA+M-1,JA:JA+M-1) A(IA:IA+M-1,JA+N-L:JA+N-1)]
pclauu2(l), PCLAUU2(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pclauum(l), PCLAUUM(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pcpbsv(l), PCPBSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pcpbtrf(l), PCPBTRF(l)
compute a Cholesky factorization of an N-by-N complex banded symmetric positive definite distributed matrix with bandwidth BW
pcpbtrs(l), PCPBTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pcpbtrsv(l), PCPBTRSV(l)
solve a banded triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pcpoequ(l), PCPOEQU(l)
compute row and column scalings intended to equilibrate a distributed Hermitian positive definite matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) and reduce its condition number (with respect to the two-norm)
pcposvx(l), PCPOSVX(l)
use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
pcpotf2(l), PCPOTF2(l)
compute the Cholesky factorization of a complex hermitian positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
pcpotrf(l), PCPOTRF(l)
compute the Cholesky factorization of an N-by-N complex hermitian positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
pcpotri(l), PCPOTRI(l)
compute the inverse of a complex Hermitian positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**H*U or L*L**H computed by PCPOTRF
pcpotrs(l), PCPOTRS(l)
solve a system of linear equations sub( A ) * X = sub( B ) A(IA:IA+N-1,JA:JA+N-1)*X = B(IB:IB+N-1,JB:JB+NRHS-1)
pcptsv(l), PCPTSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pcpttrf(l), PCPTTRF(l)
compute a Cholesky factorization of an N-by-N complex tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
pcpttrs(l), PCPTTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pcpttrsv(l), PCPTTRSV(l)
solve a tridiagonal triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pcsrscl(l), PCSRSCL(l)
multiplie an N-element complex distributed vector sub( X ) by the real scalar 1/a
pctrcon(l), PCTRCON(l)
estimate the reciprocal of the condition number of a triangular distributed matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm
pctrti2(l), PCTRTI2(l)
compute the inverse of a complex upper or lower triangular block matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pctrtri(l), PCTRTRI(l)
compute the inverse of a upper or lower triangular distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pctzrzf(l), PCTZRZF(l)
reduce the M-by-N ( M<=N ) complex upper trapezoidal matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper triangular form by means of unitary transformations
pcung2l(l), PCUNG2L(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the last N columns of a product of K elementary reflectors of order M Q = H(k)
pcung2r(l), PCUNG2R(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M Q = H(1) H(2)
pcungl2(l), PCUNGL2(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the first M rows of a product of K elementary reflectors of order N Q = H(k)'
pcunglq(l), PCUNGLQ(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the first M rows of a product of K elementary reflectors of order N Q = H(k)'
pcungql(l), PCUNGQL(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the last N columns of a product of K elementary reflectors of order M Q = H(k)
pcungqr(l), PCUNGQR(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M Q = H(1) H(2)
pcungr2(l), PCUNGR2(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the last M rows of a product of K elementary reflectors of order N Q = H(1)' H(2)'
pcungrq(l), PCUNGRQ(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the last M rows of a product of K elementary reflectors of order N Q = H(1)' H(2)'
pcunm2l(l), PCUNM2L(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pcunm2r(l), PCUNM2R(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pcunmbr(l), PCUNMBR(l)
VECT = 'Q', PCUNMBR overwrites the general complex distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pcunmhr(l), PCUNMHR(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pcunml2(l), PCUNML2(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pcunmlq(l), PCUNMLQ(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pcunmql(l), PCUNMQL(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pcunmqr(l), PCUNMQR(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pcunmr2(l), PCUNMR2(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pcunmr3(l), PCUNMR3(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pcunmrq(l), PCUNMRQ(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pcunmrz(l), PCUNMRZ(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pcunmtr(l), PCUNMTR(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pddbsv(l), PDDBSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pddbtrf(l), PDDBTRF(l)
compute a LU factorization of an N-by-N real banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU
pddbtrs(l), PDDBTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pddbtrsv(l), PDDBTRSV(l)
solve a banded triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pddtsv(l), PDDTSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pddttrf(l), PDDTTRF(l)
compute a LU factorization of an N-by-N real tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
pddttrs(l), PDDTTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pddttrsv(l), PDDTTRSV(l)
solve a tridiagonal triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pdf4tcl(n)
Pdf document generation
pdgbsv(l), PDGBSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pdgbtrf(l), PDGBTRF(l)
compute a LU factorization of an N-by-N real banded distributed matrix with bandwidth BWL, BWU
pdgbtrs(l), PDGBTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pdgebd2(l), PDGEBD2(l)
reduce a real general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form B by an orthogonal transformation
pdgebrd(l), PDGEBRD(l)
reduce a real general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form B by an orthogonal transformation
pdgecon(l), PDGECON(l)
estimate the reciprocal of the condition number of a general distributed real matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PDGETRF
pdgeequ(l), PDGEEQU(l)
compute row and column scalings intended to equilibrate an M-by-N distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA:JA+N-1) and reduce its condition number
pdgelq2(l), PDGELQ2(l)
compute a LQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
pdgelqf(l), PDGELQF(l)
compute a LQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
pdgels(l), PDGELS(l)
solve overdetermined or underdetermined real linear systems involving an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1),
pdgeql2(l), PDGEQL2(l)
compute a QL factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
pdgeqlf(l), PDGEQLF(l)
compute a QL factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
pdgeqpf(l), PDGEQPF(l)
compute a QR factorization with column pivoting of a M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pdgeqr2(l), PDGEQR2(l)
compute a QR factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
pdgeqrf(l), PDGEQRF(l)
compute a QR factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
pdgerq2(l), PDGERQ2(l)
compute a RQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
pdgerqf(l), PDGERQF(l)
compute a RQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
pdgesvd(l), PDGESVD(l)
compute the singular value decomposition (SVD) of an M-by-N matrix A, optionally computing the left and/or right singular vectors
pdgesvx(l), PDGESVX(l)
use the LU factorization to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
pdgetf2(l), PDGETF2(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
pdgetrf(l), PDGETRF(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
pdgetrs(l), PDGETRS(l)
solve a system of distributed linear equations op( sub( A ) ) * X = sub( B ) with a general N-by-N distributed matrix sub( A ) using the LU factorization computed by PDGETRF
pdggqrf(l), PDGGQRF(l)
compute a generalized QR factorization of an N-by-M matrix sub( A ) = A(IA:IA+N-1,JA:JA+M-1) and an N-by-P matrix sub( B ) = B(IB:IB+N-1,JB:JB+P-1)
pdggrqf(l), PDGGRQF(l)
compute a generalized RQ factorization of an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pdlabrd(l), PDLABRD(l)
reduce the first NB rows and columns of a real general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form by an orthogonal transformation Q' * A * P,
pdlahrd(l), PDLAHRD(l)
reduce the first NB columns of a real general N-by-(N-K+1) distributed matrix A(IA:IA+N-1,JA:JA+N-K) so that elements below the k-th subdiagonal are zero
pdlapiv(l), PDLAPIV(l)
applie either P (permutation matrix indicated by IPIV) or inv( P ) to a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1), resulting in row or column pivoting
pdlapv2(l), PDLAPV2(l)
applie either P (permutation matrix indicated by IPIV) or inv( P ) to a M-by-N distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1), resulting in row or column pivoting
pdlaqge(l), PDLAQGE(l)
equilibrate a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using the row and scaling factors in the vectors R and C
pdlaqsy(l), PDLAQSY(l)
equilibrate a symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the scaling factors in the vectors SR and SC
pdlarf(l), PDLARF(l)
applie a real elementary reflector Q (or Q**T) to a real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1), from either the left or the right
pdlarfb(l), PDLARFB(l)
applie a real block reflector Q or its transpose Q**T to a real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1)
pdlarfg(l), PDLARFG(l)
generate a real elementary reflector H of order n, such that H * sub( X ) = H * ( x(iax,jax) ) = ( alpha ), H' * H = I
pdlarft(l), PDLARFT(l)
form the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors
pdlarz(l), PDLARZ(l)
applie a real elementary reflector Q (or Q**T) to a real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1), from either the left or the right
pdlarzb(l), PDLARZB(l)
applie a real block reflector Q or its transpose Q**T to a real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1)
pdlarzt(l), PDLARZT(l)
form the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors as returned by PDTZRZF
pdlascl(l), PDLASCL(l)
multiplie the M-by-N real distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1) by the real scalar CTO/CFROM
pdlase2(l), PDLASE2(l)
initialize an M-by-N distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1) to BETA on the diagonal and ALPHA on the offdiagonals
pdlaset(l), PDLASET(l)
initialize an M-by-N distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1) to BETA on the diagonal and ALPHA on the offdiagonals
pdlassq(l), PDLASSQ(l)
return the values scl and smsq such that ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
pdlaswp(l), PDLASWP(l)
perform a series of row or column interchanges on the distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pdlatra(l), PDLATRA(l)
compute the trace of an N-by-N distributed matrix sub( A ) denoting A( IA:IA+N-1, JA:JA+N-1 )
pdlatrd(l), PDLATRD(l)
reduce NB rows and columns of a real symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) to symmetric tridiagonal form by an orthogonal similarity transformation Q' * sub( A ) * Q,
pdlatrz(l), PDLATRZ(l)
reduce the M-by-N ( M<=N ) real upper trapezoidal matrix sub( A ) = [ A(IA:IA+M-1,JA:JA+M-1) A(IA:IA+M-1,JA+N-L:JA+N-1) ] to upper triangular form by means of orthogonal transformations
pdlauu2(l), PDLAUU2(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pdlauum(l), PDLAUUM(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pdorg2l(l), PDORG2L(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the last N columns of a product of K elementary reflectors of order M Q = H(k)
pdorg2r(l), PDORG2R(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M Q = H(1) H(2)
pdorgl2(l), PDORGL2(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the first M rows of a product of K elementary reflectors of order N Q = H(k)
pdorglq(l), PDORGLQ(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the first M rows of a product of K elementary reflectors of order N Q = H(k)
pdorgql(l), PDORGQL(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the last N columns of a product of K elementary reflectors of order M Q = H(k)
pdorgqr(l), PDORGQR(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M Q = H(1) H(2)
pdorgr2(l), PDORGR2(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the last M rows of a product of K elementary reflectors of order N Q = H(1) H(2)
pdorgrq(l), PDORGRQ(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the last M rows of a product of K elementary reflectors of order N Q = H(1) H(2)
pdorm2l(l), PDORM2L(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pdorm2r(l), PDORM2R(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pdormbr(l), PDORMBR(l)
VECT = 'Q', PDORMBR overwrites the general real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pdormhr(l), PDORMHR(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pdorml2(l), PDORML2(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pdormlq(l), PDORMLQ(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pdormql(l), PDORMQL(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pdormqr(l), PDORMQR(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pdormr2(l), PDORMR2(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pdormr3(l), PDORMR3(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pdormrq(l), PDORMRQ(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pdormrz(l), PDORMRZ(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pdormtr(l), PDORMTR(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pdpbsv(l), PDPBSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pdpbtrf(l), PDPBTRF(l)
compute a Cholesky factorization of an N-by-N real banded symmetric positive definite distributed matrix with bandwidth BW
pdpbtrs(l), PDPBTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pdpbtrsv(l), PDPBTRSV(l)
solve a banded triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pdpoequ(l), PDPOEQU(l)
compute row and column scalings intended to equilibrate a distributed symmetric positive definite matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) and reduce its condition number (with respect to the two-norm)
pdposvx(l), PDPOSVX(l)
use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
pdpotf2(l), PDPOTF2(l)
compute the Cholesky factorization of a real symmetric positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
pdpotrf(l), PDPOTRF(l)
compute the Cholesky factorization of an N-by-N real symmetric positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
pdpotri(l), PDPOTRI(l)
compute the inverse of a real symmetric positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**T*U or L*L**T computed by PDPOTRF
pdpotrs(l), PDPOTRS(l)
solve a system of linear equations sub( A ) * X = sub( B ) A(IA:IA+N-1,JA:JA+N-1)*X = B(IB:IB+N-1,JB:JB+NRHS-1)
pdptsv(l), PDPTSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pdpttrf(l), PDPTTRF(l)
compute a Cholesky factorization of an N-by-N real tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
pdpttrs(l), PDPTTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pdpttrsv(l), PDPTTRSV(l)
solve a tridiagonal triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pdrscl(l), PDRSCL(l)
multiplie an N-element real distributed vector sub( X ) by the real scalar 1/a
pdtrcon(l), PDTRCON(l)
estimate the reciprocal of the condition number of a triangular distributed matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm
pdtrti2(l), PDTRTI2(l)
compute the inverse of a real upper or lower triangular block matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pdtrtri(l), PDTRTRI(l)
compute the inverse of a upper or lower triangular distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pdtzrzf(l), PDTZRZF(l)
reduce the M-by-N ( M<=N ) real upper trapezoidal matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper triangular form by means of orthogonal transformations
pixmap(n)
image type for the XPM file format
psdbsv(l), PSDBSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psdbtrf(l), PSDBTRF(l)
compute a LU factorization of an N-by-N real banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU
psdbtrs(l), PSDBTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psdbtrsv(l), PSDBTRSV(l)
solve a banded triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psdim(1)
calculate optimal page format for n-up printing from a postscript file
psdtsv(l), PSDTSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psdttrf(l), PSDTTRF(l)
compute a LU factorization of an N-by-N real tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
psdttrs(l), PSDTTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psdttrsv(l), PSDTTRSV(l)
solve a tridiagonal triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psgbsv(l), PSGBSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psgbtrf(l), PSGBTRF(l)
compute a LU factorization of an N-by-N real banded distributed matrix with bandwidth BWL, BWU
psgbtrs(l), PSGBTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psgebd2(l), PSGEBD2(l)
reduce a real general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form B by an orthogonal transformation
psgebrd(l), PSGEBRD(l)
reduce a real general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form B by an orthogonal transformation
psgecon(l), PSGECON(l)
estimate the reciprocal of the condition number of a general distributed real matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PSGETRF
psgeequ(l), PSGEEQU(l)
compute row and column scalings intended to equilibrate an M-by-N distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA:JA+N-1) and reduce its condition number
psgelq2(l), PSGELQ2(l)
compute a LQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
psgelqf(l), PSGELQF(l)
compute a LQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
psgels(l), PSGELS(l)
solve overdetermined or underdetermined real linear systems involving an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1),
psgeql2(l), PSGEQL2(l)
compute a QL factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
psgeqlf(l), PSGEQLF(l)
compute a QL factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
psgeqpf(l), PSGEQPF(l)
compute a QR factorization with column pivoting of a M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
psgeqr2(l), PSGEQR2(l)
compute a QR factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
psgeqrf(l), PSGEQRF(l)
compute a QR factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
psgerq2(l), PSGERQ2(l)
compute a RQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
psgerqf(l), PSGERQF(l)
compute a RQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
psgesvd(l), PSGESVD(l)
compute the singular value decomposition (SVD) of an M-by-N matrix A, optionally computing the left and/or right singular vectors
psgesvx(l), PSGESVX(l)
use the LU factorization to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
psgetf2(l), PSGETF2(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
psgetrf(l), PSGETRF(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
psgetrs(l), PSGETRS(l)
solve a system of distributed linear equations op( sub( A ) ) * X = sub( B ) with a general N-by-N distributed matrix sub( A ) using the LU factorization computed by PSGETRF
psggqrf(l), PSGGQRF(l)
compute a generalized QR factorization of an N-by-M matrix sub( A ) = A(IA:IA+N-1,JA:JA+M-1) and an N-by-P matrix sub( B ) = B(IB:IB+N-1,JB:JB+P-1)
psggrqf(l), PSGGRQF(l)
compute a generalized RQ factorization of an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pslabrd(l), PSLABRD(l)
reduce the first NB rows and columns of a real general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form by an orthogonal transformation Q' * A * P,
pslahrd(l), PSLAHRD(l)
reduce the first NB columns of a real general N-by-(N-K+1) distributed matrix A(IA:IA+N-1,JA:JA+N-K) so that elements below the k-th subdiagonal are zero
pslapiv(l), PSLAPIV(l)
applie either P (permutation matrix indicated by IPIV) or inv( P ) to a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1), resulting in row or column pivoting
pslapv2(l), PSLAPV2(l)
applie either P (permutation matrix indicated by IPIV) or inv( P ) to a M-by-N distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1), resulting in row or column pivoting
pslaqge(l), PSLAQGE(l)
equilibrate a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using the row and scaling factors in the vectors R and C
pslaqsy(l), PSLAQSY(l)
equilibrate a symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the scaling factors in the vectors SR and SC
pslarf(l), PSLARF(l)
applie a real elementary reflector Q (or Q**T) to a real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1), from either the left or the right
pslarfb(l), PSLARFB(l)
applie a real block reflector Q or its transpose Q**T to a real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1)
pslarfg(l), PSLARFG(l)
generate a real elementary reflector H of order n, such that H * sub( X ) = H * ( x(iax,jax) ) = ( alpha ), H' * H = I
pslarft(l), PSLARFT(l)
form the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors
pslarz(l), PSLARZ(l)
applie a real elementary reflector Q (or Q**T) to a real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1), from either the left or the right
pslarzb(l), PSLARZB(l)
applie a real block reflector Q or its transpose Q**T to a real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1)
pslarzt(l), PSLARZT(l)
form the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors as returned by PSTZRZF
pslascl(l), PSLASCL(l)
multiplie the M-by-N real distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1) by the real scalar CTO/CFROM
pslase2(l), PSLASE2(l)
initialize an M-by-N distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1) to BETA on the diagonal and ALPHA on the offdiagonals
pslaset(l), PSLASET(l)
initialize an M-by-N distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1) to BETA on the diagonal and ALPHA on the offdiagonals
pslassq(l), PSLASSQ(l)
return the values scl and smsq such that ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
pslaswp(l), PSLASWP(l)
perform a series of row or column interchanges on the distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pslatra(l), PSLATRA(l)
compute the trace of an N-by-N distributed matrix sub( A ) denoting A( IA:IA+N-1, JA:JA+N-1 )
pslatrd(l), PSLATRD(l)
reduce NB rows and columns of a real symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) to symmetric tridiagonal form by an orthogonal similarity transformation Q' * sub( A ) * Q,
pslatrz(l), PSLATRZ(l)
reduce the M-by-N ( M<=N ) real upper trapezoidal matrix sub( A ) = [ A(IA:IA+M-1,JA:JA+M-1) A(IA:IA+M-1,JA+N-L:JA+N-1) ] to upper triangular form by means of orthogonal transformations
pslauu2(l), PSLAUU2(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pslauum(l), PSLAUUM(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
psorg2l(l), PSORG2L(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the last N columns of a product of K elementary reflectors of order M Q = H(k)
psorg2r(l), PSORG2R(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M Q = H(1) H(2)
psorgl2(l), PSORGL2(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the first M rows of a product of K elementary reflectors of order N Q = H(k)
psorglq(l), PSORGLQ(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the first M rows of a product of K elementary reflectors of order N Q = H(k)
psorgql(l), PSORGQL(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the last N columns of a product of K elementary reflectors of order M Q = H(k)
psorgqr(l), PSORGQR(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M Q = H(1) H(2)
psorgr2(l), PSORGR2(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the last M rows of a product of K elementary reflectors of order N Q = H(1) H(2)
psorgrq(l), PSORGRQ(l)
generate an M-by-N real distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the last M rows of a product of K elementary reflectors of order N Q = H(1) H(2)
psorm2l(l), PSORM2L(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
psorm2r(l), PSORM2R(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
psormbr(l), PSORMBR(l)
VECT = 'Q', PSORMBR overwrites the general real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
psormhr(l), PSORMHR(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
psorml2(l), PSORML2(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
psormlq(l), PSORMLQ(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
psormql(l), PSORMQL(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
psormqr(l), PSORMQR(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
psormr2(l), PSORMR2(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
psormr3(l), PSORMR3(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
psormrq(l), PSORMRQ(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
psormrz(l), PSORMRZ(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
psormtr(l), PSORMTR(l)
overwrite the general real M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pspbsv(l), PSPBSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pspbtrf(l), PSPBTRF(l)
compute a Cholesky factorization of an N-by-N real banded symmetric positive definite distributed matrix with bandwidth BW
pspbtrs(l), PSPBTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pspbtrsv(l), PSPBTRSV(l)
solve a banded triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pspoequ(l), PSPOEQU(l)
compute row and column scalings intended to equilibrate a distributed symmetric positive definite matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) and reduce its condition number (with respect to the two-norm)
psposvx(l), PSPOSVX(l)
use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
pspotf2(l), PSPOTF2(l)
compute the Cholesky factorization of a real symmetric positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
pspotrf(l), PSPOTRF(l)
compute the Cholesky factorization of an N-by-N real symmetric positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
pspotri(l), PSPOTRI(l)
compute the inverse of a real symmetric positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**T*U or L*L**T computed by PSPOTRF
pspotrs(l), PSPOTRS(l)
solve a system of linear equations sub( A ) * X = sub( B ) A(IA:IA+N-1,JA:JA+N-1)*X = B(IB:IB+N-1,JB:JB+NRHS-1)
psptsv(l), PSPTSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pspttrf(l), PSPTTRF(l)
compute a Cholesky factorization of an N-by-N real tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
pspttrs(l), PSPTTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pspttrsv(l), PSPTTRSV(l)
solve a tridiagonal triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psrscl(l), PSRSCL(l)
multiplie an N-element real distributed vector sub( X ) by the real scalar 1/a
pstrcon(l), PSTRCON(l)
estimate the reciprocal of the condition number of a triangular distributed matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm
pstrti2(l), PSTRTI2(l)
compute the inverse of a real upper or lower triangular block matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pstrtri(l), PSTRTRI(l)
compute the inverse of a upper or lower triangular distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pstzrzf(l), PSTZRZF(l)
reduce the M-by-N ( M<=N ) real upper trapezoidal matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper triangular form by means of orthogonal transformations
pzdbsv(l), PZDBSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pzdbtrf(l), PZDBTRF(l)
compute a LU factorization of an N-by-N complex banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU
pzdbtrs(l), PZDBTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pzdbtrsv(l), PZDBTRSV(l)
solve a banded triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pzdrscl(l), PZDRSCL(l)
multiplie an N-element complex distributed vector sub( X ) by the real scalar 1/a
pzdtsv(l), PZDTSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pzdttrf(l), PZDTTRF(l)
compute a LU factorization of an N-by-N complex tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
pzdttrs(l), PZDTTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pzdttrsv(l), PZDTTRSV(l)
solve a tridiagonal triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pzgbsv(l), PZGBSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pzgbtrf(l), PZGBTRF(l)
compute a LU factorization of an N-by-N complex banded distributed matrix with bandwidth BWL, BWU
pzgbtrs(l), PZGBTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pzgebd2(l), PZGEBD2(l)
reduce a complex general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form B by an unitary transformation
pzgebrd(l), PZGEBRD(l)
reduce a complex general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form B by an unitary transformation
pzgecon(l), PZGECON(l)
estimate the reciprocal of the condition number of a general distributed complex matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PZGETRF
pzgeequ(l), PZGEEQU(l)
compute row and column scalings intended to equilibrate an M-by-N distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA:JA+N-1) and reduce its condition number
pzgelq2(l), PZGELQ2(l)
compute a LQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
pzgelqf(l), PZGELQF(l)
compute a LQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
pzgels(l), PZGELS(l)
solve overdetermined or underdetermined complex linear systems involving an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1),
pzgeql2(l), PZGEQL2(l)
compute a QL factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
pzgeqlf(l), PZGEQLF(l)
compute a QL factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
pzgeqpf(l), PZGEQPF(l)
compute a QR factorization with column pivoting of a M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pzgeqr2(l), PZGEQR2(l)
compute a QR factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
pzgeqrf(l), PZGEQRF(l)
compute a QR factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
pzgerq2(l), PZGERQ2(l)
compute a RQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
pzgerqf(l), PZGERQF(l)
compute a RQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
pzgesvx(l), PZGESVX(l)
use the LU factorization to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
pzgetf2(l), PZGETF2(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
pzgetrf(l), PZGETRF(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
pzgetrs(l), PZGETRS(l)
solve a system of distributed linear equations op( sub( A ) ) * X = sub( B ) with a general N-by-N distributed matrix sub( A ) using the LU factorization computed by PZGETRF
pzggqrf(l), PZGGQRF(l)
compute a generalized QR factorization of an N-by-M matrix sub( A ) = A(IA:IA+N-1,JA:JA+M-1) and an N-by-P matrix sub( B ) = B(IB:IB+N-1,JB:JB+P-1)
pzggrqf(l), PZGGRQF(l)
compute a generalized RQ factorization of an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pzlabrd(l), PZLABRD(l)
reduce the first NB rows and columns of a complex general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form by an unitary transformation Q' * A * P, and returns the matrices X and Y which are needed to apply the transfor- mation to the unreduced part of sub( A )
pzlacgv(l), PZLACGV(l)
conjugate a complex vector of length N, sub( X ), where sub( X ) denotes X(IX,JX:JX+N-1) if INCX = DESCX( M_ ) and X(IX:IX+N-1,JX) if INCX = 1, and Notes ===== Each global data object is described by an associated description vector
pzlahrd(l), PZLAHRD(l)
reduce the first NB columns of a complex general N-by-(N-K+1) distributed matrix A(IA:IA+N-1,JA:JA+N-K) so that elements below the k-th subdiagonal are zero
pzlapiv(l), PZLAPIV(l)
applie either P (permutation matrix indicated by IPIV) or inv( P ) to a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1), resulting in row or column pivoting
pzlapv2(l), PZLAPV2(l)
applie either P (permutation matrix indicated by IPIV) or inv( P ) to a M-by-N distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1), resulting in row or column pivoting
pzlaqge(l), PZLAQGE(l)
equilibrate a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using the row and scaling factors in the vectors R and C
pzlaqsy(l), PZLAQSY(l)
equilibrate a symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the scaling factors in the vectors SR and SC
pzlarf(l), PZLARF(l)
applie a complex elementary reflector Q to a complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1), from either the left or the right
pzlarfb(l), PZLARFB(l)
applie a complex block reflector Q or its conjugate transpose Q**H to a complex M-by-N distributed matrix sub( C ) denoting C(IC:IC+M-1,JC:JC+N-1), from the left or the right
pzlarfc(l), PZLARFC(l)
applie a complex elementary reflector Q**H to a complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1),
pzlarfg(l), PZLARFG(l)
generate a complex elementary reflector H of order n, such that H * sub( X ) = H * ( x(iax,jax) ) = ( alpha ), H' * H = I
pzlarft(l), PZLARFT(l)
form the triangular factor T of a complex block reflector H of order n, which is defined as a product of k elementary reflectors
pzlarz(l), PZLARZ(l)
applie a complex elementary reflector Q to a complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1), from either the left or the right
pzlarzb(l), PZLARZB(l)
applie a complex block reflector Q or its conjugate transpose Q**H to a complex M-by-N distributed matrix sub( C ) denoting C(IC:IC+M-1,JC:JC+N-1), from the left or the right
pzlarzc(l), PZLARZC(l)
applie a complex elementary reflector Q**H to a complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1),
pzlarzt(l), PZLARZT(l)
form the triangular factor T of a complex block reflector H of order > n, which is defined as a product of k elementary reflectors as returned by PZTZRZF
pzlascl(l), PZLASCL(l)
multiplie the M-by-N complex distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1) by the real scalar CTO/CFROM
pzlase2(l), PZLASE2(l)
initialize an M-by-N distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1) to BETA on the diagonal and ALPHA on the offdiagonals
pzlaset(l), PZLASET(l)
initialize an M-by-N distributed matrix sub( A ) denoting A(IA:IA+M-1,JA:JA+N-1) to BETA on the diagonal and ALPHA on the offdiagonals
pzlassq(l), PZLASSQ(l)
return the values scl and smsq such that ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
pzlaswp(l), PZLASWP(l)
perform a series of row or column interchanges on the distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pzlatra(l), PZLATRA(l)
compute the trace of an N-by-N distributed matrix sub( A ) denoting A( IA:IA+N-1, JA:JA+N-1 )
pzlatrd(l), PZLATRD(l)
reduce NB rows and columns of a complex Hermitian distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) to complex tridiagonal form by an unitary similarity transformation Q' * sub( A ) * Q, and returns the matrices V and W which are needed to apply the transformation to the unreduced part of sub( A )
pzlatrz(l), PZLATRZ(l)
reduce the M-by-N ( M<=N ) complex upper trapezoidal matrix sub( A ) = [A(IA:IA+M-1,JA:JA+M-1) A(IA:IA+M-1,JA+N-L:JA+N-1)]
pzlauu2(l), PZLAUU2(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pzlauum(l), PZLAUUM(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pzpbsv(l), PZPBSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pzpbtrf(l), PZPBTRF(l)
compute a Cholesky factorization of an N-by-N complex banded symmetric positive definite distributed matrix with bandwidth BW
pzpbtrs(l), PZPBTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pzpbtrsv(l), PZPBTRSV(l)
solve a banded triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pzpoequ(l), PZPOEQU(l)
compute row and column scalings intended to equilibrate a distributed Hermitian positive definite matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) and reduce its condition number (with respect to the two-norm)
pzposvx(l), PZPOSVX(l)
use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
pzpotf2(l), PZPOTF2(l)
compute the Cholesky factorization of a complex hermitian positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
pzpotrf(l), PZPOTRF(l)
compute the Cholesky factorization of an N-by-N complex hermitian positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
pzpotri(l), PZPOTRI(l)
compute the inverse of a complex Hermitian positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**H*U or L*L**H computed by PZPOTRF
pzpotrs(l), PZPOTRS(l)
solve a system of linear equations sub( A ) * X = sub( B ) A(IA:IA+N-1,JA:JA+N-1)*X = B(IB:IB+N-1,JB:JB+NRHS-1)
pzptsv(l), PZPTSV(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pzpttrf(l), PZPTTRF(l)
compute a Cholesky factorization of an N-by-N complex tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
pzpttrs(l), PZPTTRS(l)
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pzpttrsv(l), PZPTTRSV(l)
solve a tridiagonal triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pztrcon(l), PZTRCON(l)
estimate the reciprocal of the condition number of a triangular distributed matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm
pztrti2(l), PZTRTI2(l)
compute the inverse of a complex upper or lower triangular block matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pztrtri(l), PZTRTRI(l)
compute the inverse of a upper or lower triangular distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pztzrzf(l), PZTZRZF(l)
reduce the M-by-N ( M<=N ) complex upper trapezoidal matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper triangular form by means of unitary transformations
pzung2l(l), PZUNG2L(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the last N columns of a product of K elementary reflectors of order M Q = H(k)
pzung2r(l), PZUNG2R(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M Q = H(1) H(2)
pzungl2(l), PZUNGL2(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the first M rows of a product of K elementary reflectors of order N Q = H(k)'
pzunglq(l), PZUNGLQ(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the first M rows of a product of K elementary reflectors of order N Q = H(k)'
pzungql(l), PZUNGQL(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the last N columns of a product of K elementary reflectors of order M Q = H(k)
pzungqr(l), PZUNGQR(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M Q = H(1) H(2)
pzungr2(l), PZUNGR2(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the last M rows of a product of K elementary reflectors of order N Q = H(1)' H(2)'
pzungrq(l), PZUNGRQ(l)
generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the last M rows of a product of K elementary reflectors of order N Q = H(1)' H(2)'
pzunm2l(l), PZUNM2L(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pzunm2r(l), PZUNM2R(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pzunmbr(l), PZUNMBR(l)
VECT = 'Q', PZUNMBR overwrites the general complex distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pzunmhr(l), PZUNMHR(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pzunml2(l), PZUNML2(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pzunmlq(l), PZUNMLQ(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pzunmql(l), PZUNMQL(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pzunmqr(l), PZUNMQR(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pzunmr2(l), PZUNMR2(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pzunmr3(l), PZUNMR3(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pzunmrq(l), PZUNMRQ(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pzunmrz(l), PZUNMRZ(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
pzunmtr(l), PZUNMTR(l)
overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'
queens(6)
n queens screensaver
quoted-printable(n)
Encoding "quoted-printable"
random(n)
Create and manipulate randomizer channels
ripemd128(n), ripemd-128(n)
Message digest "ripemd-128"
ripemd160(n), ripemd-160(n)
Message digest "ripemd-160"
rocksndiamonds(1), Rocks'n'Diamonds(1)
A game for Unix/X11
rs_ecc(n)
Reed-Solomon error correcting code
rwstats(1)
Print top-N or bottom-N lists or summarize data by protocol
sc_SCMatrix(3), sc::SCMatrix(3)
The SCMatrix class is the abstract base class for general double valued n by m matrices
sc_SymRep(3), sc::SymRep(3)
The SymRep class provides an n dimensional matrix representation of a symmetry operation, such as a rotation or reflection
sdbtf2(l), SDBTF2(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting with row interchanges
sdbtrf(l), SDBTRF(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting or row interchanges
self(n)
method call internal introspection
sgmls(1)
a validating SGML parser An System Conforming to n .br International Standard ISO 8879 Standard Generalized Markup Language
sha(n)
Message digest "sha"
sha1(n)
Message digest "sha1"
sha1_otp(n)
Message digest "sha1_otp"
shape(n)
Set/update/query shaped window information
spline(n)
Fit curves with spline interpolation
sqlite3(n)
an interface to the SQLite3 database engine
stripchart(n)
2D strip chart for plotting x and y coordinate data
strright(3)
return a pointer to the beginning of the rightmost n chars in a string
syslog(n)
send message to syslog from Tcl script
table(n)
Arranges widgets in a table
tabset(n)
Create and manipulate tabset widgets
tcl-mmap(n)
POSIX Message Queues for Tcl
tclgeomap(n), georadius(n), latlonok(n), mapptok(n), lonbtwn(n), gclcross(n), rotatpt(n), scalept(n), domnlat(n), domnlon(n), domnlonpt(n), gwchlon(n), gwchpt(n), dmstodec(n), dectodm(n), dectodms(n), cartg(n), centroid(n), projection(n), lnarr(n), place(n)
commands for manipulating geographic data in Tcl
tclgeomap_procs(n), latitude(n), longitude(n), latlon(n), circle(n), fillsegment(n), grid_list(n), ocean_list(n)
supplementary procedures for tclgeomap
tcllauncher(n)
Tcl application launcher
tclreadline(n)
gnu readline for the tcl scripting language
tdbc(n)
Tcl Database Connectivity
tdbc_connection(n), tdbc::connection(n)
TDBC connection object
tdbc_mapSqlState(n), tdbc::mapSqlState(n)
Map SQLSTATE to error class
tdbc_resultset(n), tdbc::resultset(n)
TDBC result set object
tdbc_statement(n), tdbc::statement(n)
TDBC statement object
tdbc_tokenize(n), tdbc::tokenize(n)
TDBC SQL tokenizer
tdomcmd(n), tdom(n)
tdom is an expat parser object extension to create an in-memory DOM tree from the input while parsing
tex2lyx(1)
translate well-behaved LaTeX into LyX Cr n (c) (co
text2ngram(1)
generate statistical n-gram data from text
thread(n)
Extension for script access to Tcl threading
tile(n)
Tiling versions of Tk widgets
tix(n)
Manipulate internal states of the Tix library '"
tixBalloon(n)
Create and manipulate tixBalloon widgets '" '" '" '"
tixButtonBox(n)
Create and manipulate Tix ButtonBox widgets '" '" '" '"
tixCheckList(n)
Create and manipulate tixCheckList widgets '" '" '" '"
tixComboBox(n)
Create and manipulate tixComboBox widgets '" '" '" '"
tixControl(n)
Create and manipulate tixControl widgets '" '" '" '"
tixDestroy(n)
Destroy Tix Objects '"
tixDirList(n)
Create and manipulate tixDirList widgets '" '" '" '"
tixDirSelectDialog(n)
Create and manipulate directory selection dialogs. '" '" '" '"
tixDirTree(n)
Create and manipulate tixDirTree widgets '" '" '" '"
tixDisplayStyle(n)
Create style object for Tix display items. '"
tixExFileSelectBox(n)
Create and manipulate tixExFileSelectBox widgets '" '" '" '"
tixExFileSelectDialog(n)
Create and manipulate tixExFileSelectDialog widgets '" '" '" '"
tixFileEntry(n)
Create and manipulate tixFileEntry widgets '" '" '" '"
tixFileSelectBox(n)
Create and manipulate Tix FileSelectBox widgets '" '" '"
tixFileSelectDialog(n)
Create and manipulate tixFileSelectDialog widgets '" '" '" '"
tixForm(n)
Geometry manager based on attachment rules '" '" '"
tixGetBoolean(n)
Get the boolean value of a string. '" '" '"
tixGetInt(n)
Get the integer value of a string. '" '" '"
tixGrid(n)
Create and manipulate Tix Grid widgets -background -borderWidth -cursor -font -foreground -height -highlightColor -highlightThickness -relief -selectBackground -selectForeground -width -xScrollCommand -yScrollCommand '"
tixHList(n)
Create and manipulate Tix Hierarchial List widgets '" '" '"
tixInputOnly(n)
Create and manipulate TIX InputOnly widgets '" '" '" '"
tixLabelEntry(n)
Create and manipulate tixLabelEntry widgets '" '" '" '"
tixLabelFrame(n)
Create and manipulate tixLabelFrame widgets '" '" '" '"
tixListNoteBook(n)
Create and manipulate tixListNoteBook widgets '" '" '" '"
tixMeter(n)
Create and manipulate Tix Meter widgets '" '" '"
tixMwm(n)
Communicate with the Motif(tm) window manager. '" '" '"
tixNBFrame(n)
Create and manipulate Tix NoteBook Frame widgets '" '" '"
tixNoteBook(n)
Create and manipulate tixNoteBook widgets '" '" '" '"
tixOptionMenu(n)
Create and manipulate tixOptionMenu widgets '" '" '" '"
tixPanedWindow(n)
Create and manipulate tixPanedWindow widgets '" '"
tixPopupMenu(n)
Create and manipulate tixPopupMenu widgets '" '" '" '"
tixScrolledHList(n)
Create and manipulate Tix ScrolledHList widgets '" '" '" '"
tixScrolledListBox(n)
Create and manipulate Tix ScrolledListBox widgets '" '" '" '"
tixScrolledText(n)
Create and manipulate Tix ScrolledText widgets '" '" '" '"
tixScrolledWindow(n)
Create and manipulate Tix ScrolledWindow widgets '" '" '" '"
tixSelect(n)
Create and manipulate tixSelect widgets '" '" '" '"
tixStdButtonBox(n)
Create and manipulate Tix StdButtonBox widgets '" '" '" '"
tixTList(n)
Create and manipulate Tix Tabular List widgets '" '" '"
tixTree(n)
Create and manipulate tixTree widgets '" '" '" '"
tixUtils(n)
Utility commands in Tix. '" '" '"
tkDND(n), TkDND(n)
Tk Drag and Drop Interface
tkgeomap(n)
a package for displaying geographic lines and points in canvas widgets
tkgeomap_procs(n), xytolatlon(n), latlontoxy(n)
supplementary procedures for geomap_lnarr and geomap_place items
tktray(n)
System Tray Icon Support for Tk on X11
tnc(n)
tnc is an expat parser object extension, that validates the XML stream against the document DTD while parsing
tpool(n)
Part of the Tcl threading extension implementing pools of worker threads
transform(n)
Tcl level transformations
tree(n)
Create and manage tree data objects
treectrl(n)
Create and manipulate hierarchical multicolumn widgets
treeview(n)
Create and manipulate hierarchical table widgets
trf(n), trf-intro(n)
Introduction to Trf
tsv(n)
Part of the Tcl threading extension allowing script level manipulation of data shared between threads
ttrace(n)
Trace-based interpreter initialization
udp(n)
Create UDP sockets in Tcl
unstack(n)
Unstacking channels
ustrncmp(3)
Compares up to n letters of two strings. Allegro game programming library
ustrnicmp(3)
Compares up to n letters of two strings ignoring case. Allegro game programming library
usual(n)
access default option-handling commands for a mega-widget component
uuencode(n)
Encoding "uuencode"
vector(n)
Vector data type for Tcl
vfs(n), ::vfs(n)
Commands and Procedures to create virtual filesystems
vfslib(n), ::vfslib(n)
Procedures to interact with virtual filesystems
watch(n)
call Tcl procedures before and after each command
wdgeomap(n)
create and manipulate a geographic map with interactive menus and bindings
winop(n)
Perform assorted window and image operations
xforms(5)
A GUI Toolkit for X Window Systems Cr n (c) (co
zdbtf2(l), ZDBTF2(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting with row interchanges
zdbtrf(l), ZDBTRF(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting or row interchanges
zero(n)
Create and manipulate zero channels
zip(n)
Data compression "zip"
Algorithm::Evolutionary::Op::ArithCrossover(3)
Arithmetic crossover operator; performs the average of the n parents crossed
Algorithm::Evolutionary::Op::Crossover(3)
n-point crossover operator; puts fragments of the second operand into the first operand
Algorithm::Evolutionary::Op::Gene_Boundary_Crossover(3)
n-point crossover operator that restricts crossing point to gene boundaries
Algorithm::Evolutionary::Op::QuadXOver(3)
N-point crossover operator that changes operands
Array::Group(3)
Convert an array into array of arrayrefs of uniform size N
Bio::Tools::SeqWords(3)
Object holding n-mer statistics for a sequence
Business::EDI(3)
Top level class for generating U.N. EDI interchange objects and subobjects
Business::EDI::Spec(3)
Object class for CSV-based U.N. EDI specifications
CPAN::HandleConfig(3)
internal configuration handling for CPAN.pm n .SS """CLASS->safe_quote ITEM""" .SS "CLASS->safe_quote ITEM" Subsection "CLASS->safe_quote ITEM" Quotes an item to become safe against spaces in shell interpolation. An item is enclosed in double quotes if: - the item contains spaces in the middle - the item does not start with a quote This happens to avoid shell interpolation problems when whitespace is present in directory names. This method uses commands_quote to determine the correct quote. If commands_quote is a space, no quoting will take place. if it starts and ends with the same quote character: leave it as it is if it contains no whitespace: leave it as it is if it contains whitespace, then if it contains quotes: better leave it as it is else: quote it with the correct quote type for the box we're on
CPANPLUS::Internals::Source::Memory(3)
In memory implementation n .SS "$cb->_|_memory_retrieve_source(name => $name, [path => $path, uptodate => BOOL, verbose => BOOL])" .SS "$cb->_|_memory_retrieve_source(name => $name, [path => $path, uptodate => BOOL, verbose => BOOL])" Subsection "$cb->__memory_retrieve_source(name => $name, [path => $path, uptodate => BOOL, verbose => BOOL])" This method retrieves a storabled tree identified by $name. It takes the following arguments: "name" 4 Item "name" The internal name for the source file to retrieve. "uptodate" 4 Item "uptodate" A flag indicating whether the file-cache is up-to-date or not. "path" 4 Item "path" The absolute path to the directory holding the source files. "verbose" 4 Item "verbose" A boolean flag indicating whether or not to be verbose. Will get information from the config file by default. Returns a tree on success, false on failure. n .SS "$cb->_|_memory_save_source([verbose => BOOL, path => $path])" .SS "$cb->_|_memory_save_source([verbose => BOOL, path => $path])" Subsection "$cb->__memory_save_source([verbose => BOOL, path => $path])" This method saves all the parsed trees in storabled format if Storable is available. It takes the following arguments: "path" 4 Item "path" The absolute path to the directory holding the source files. "verbose" 4 Item "verbose" A boolean flag indicating whether or not to be verbose. Will get information from the config file by default. Returns true on success, false on failure
Crypt::Caesar(3)
Decrypt rot-N strings
DBIx::Class::Manual::Troubleshooting(3)
Got a problem? Shoot it. n .SS """Can't locate storage blabla""" .SS "``Can't locate storage blabla''" Subsection "Can't locate storage blabla" You're trying to make a query on a non-connected schema. Make sure you got the current resultset from $schema->resultset('Artist') on a schema object you got back from connect()
Data::Stream::Bulk(3)
N at a time iteration API
Data::Stream::Bulk::DBI(3)
N-at-a-time iteration of DBI statement results
Every(3)
return true every N cycles or S seconds
Font::TTF::AATutils(3)
Utility functions for AAT tables n .SS "($classes, $states) = AAT_read_subtable($fh, $baseOffset, $subtableStart, $limits)" .SS "($classes, $states) = AAT_read_subtable($fh, $baseOffset, $subtableStart, $limits)" Subsection "($classes, $states) = AAT_read_subtable($fh, $baseOffset, $subtableStart, $limits)" n .SS "$length = AAT_write_state_table($fh, $classes, $states, $numExtraTables, $packEntry)" .SS "$length = AAT_write_state_table($fh, $classes, $states, $numExtraTables, $packEntry)" Subsection "$length = AAT_write_state_table($fh, $classes, $states, $numExtraTables, $packEntry)" $packEntry is a subroutine for packing an entry into binary form, called as $dat = $packEntry($entry, $entryTable, $numEntries) where the entry is a comma-separated list of nextStateOffset, flags, actions n .SS "($classes, $states, $entries) = AAT_read_state_table($fh, $numActionWords)" .SS "($classes, $states, $entries) = AAT_read_state_table($fh, $numActionWords)" Subsection "($classes, $states, $entries) = AAT_read_state_table($fh, $numActionWords)" n .SS "($format, $lookup) = AAT_read_lookup($fh, $valueSize, $length, $default)" .SS "($format, $lookup) = AAT_read_lookup($fh, $valueSize, $length, $default)" Subsection "($format, $lookup) = AAT_read_lookup($fh, $valueSize, $length, $default)" n .SS "AAT_write_lookup($fh, $format, $lookup, $valueSize, $default)" .SS "AAT_write_lookup($fh, $format, $lookup, $valueSize, $default)" Subsection "AAT_write_lookup($fh, $format, $lookup, $valueSize, $default)"
Font::TTF::Mort::Chain(3)
Chain Mort subtable for AAT n .SS "$t->new" .SS "$t->new" Subsection "$t->new" n .SS "$t->read($fh)" .SS "$t->read($fh)" Subsection "$t->read($fh)" Reads the chain into memory n .SS "$t->out($fh)" .SS "$t->out($fh)" Subsection "$t->out($fh)" Writes the table to a file either from memory or by copying n .SS "$t->print($fh)" .SS "$t->print($fh)" Subsection "$t->print($fh)" Prints a human-readable representation of the chain
Forest(3)
A collection of n-ary tree related modules
Forest::Tree(3)
An n-ary tree
Forest::Tree::Pure(3)
An n-ary tree
GraphViz2::Parse::ISA(3)
Visualize N Perl class hierarchies as a graph
Gungho::Manual::FAQ(3)
Gungho FAQ n .SH "Q. ""Why Did You Call It Gungho""?" .SH "Q. ``Why Did You Call It Gungho''?" Header "Q. Why Did You Call It Gungho?" It rhymes with Xango, which is its predecessor. n .SH "Q. ""I don't understand the notation of the config""" .SH "Q. ``I don't understand the notation of the config''" Header "Q. I don't understand the notation of the config" To make the notation concise, we use a notation like engine.module = POE. Each level is a key in the hash, so the previous example translates to a config like my $config = { engine => { module => "POE" } } Or, in YAML: engine: module: POE n .SH "Q. ""My requests are being served slow. What can I do?""" .SH "Q. ``My requests are being served slow. What can I do?''" Header "Q. My requests are being served slow. What can I do?" There are actually a number of things that may affect fetch speed
HTML::Display::Common(3)
routines common to all HTML::Display subclasses n .SS "_|_PACKAGE_|_->new %ARGS" .SS "_|_PACKAGE_|_->new %ARGS" Subsection "__PACKAGE__->new %ARGS" Creates a new object as a blessed hash. The passed arguments are stored within the hash. If you need to do other things in your constructor, remember to call this constructor as well : package HTML::Display::WhizBang; use parent HTML::Display::Common; sub new { my ($class) = shift; my %args = @_; my $self = $class->SUPER::new(%args); # do stuff $self; }; n .SS "$display->display %ARGS" .SS "$display->display %ARGS" Subsection "$display->display %ARGS" This is the routine used to display the HTML to the user. It takes the following parameters : html => SCALAR containing the HTML file => SCALAR containing the filename of the file to be displayed base => optional base url for the HTML, so that relative links still work location (synonymous to base) Basic usage : Subsection "Basic usage :" my $html = "<html><body><h1>Hello world!</h1></body></html>"; my $browser = HTML::Display->new(); $browser->display( html => $html ); Location parameter : Subsection "Location parameter :" If you fetch a page from a remote site but still want to display it to the user, the location parameter comes in very handy : my $html = <html><body><img src="/images/hp0.gif"></body></html>; my $browser = HTML::Display->new(); # This will display part of the Google logo $browser->display( html => $html, base => http://www.google.com );
Imager::Graph::Horizontal(3), Imager::Graph::Horizontal(3)
A super class for line/bar charts n .IP "add_data_series(e@data, $series_name)" 4 .IP "add_data_series(e@data, $series_name)" 4 Item "add_data_series(@data, $series_name)" Add a data series to the graph, of the default type. n .IP "add_bar_data_series(e@data, $series_name)" 4 .IP "add_bar_data_series(e@data, $series_name)" 4 Item "add_bar_data_series(@data, $series_name)" Add a bar data series to the graph. n .IP "add_line_data_series(e@data, $series_name)" 4 .IP "add_line_data_series(e@data, $series_name)" 4 Item "add_line_data_series(@data, $series_name)" Add a line data series to the graph. "set_column_padding($int)" 4 Item "set_column_padding($int)" Sets the number of pixels that should go between columns of data. "set_negative_background($color)" 4 Item "set_negative_background($color)" Sets the background color or fill used below the y axis. "draw()" 4 Item "draw()" Draw the graph "show_vertical_gridlines()" 4 Item "show_vertical_gridlines()" Shows vertical gridlines at the y-tics. Feature: vertical_gridlines "set_vertical_gridline_style(color => ..., style => ...)" 4 Item "set_vertical_gridline_style(color => ..., style => ...)" Set the color and style of the lines drawn for gridlines. Style equivalent: vgrid "show_line_markers()" 4 Item "show_line_markers()" "show_line_markers($value)" 4 Item "show_line_markers($value)" Feature: linemarkers. If $value is missing or true, draw markers on a line data series. Note: line markers are drawn by default. "use_automatic_axis()" 4 Item "use_automatic_axis()" Automatically scale the Y axis, based on Chart::Math::Axis. If Chart::Math::Axis isn't installed, this sets an error and returns undef. Returns 1 if it is installed. "set_x_tics($count)" 4 Item "set_x_tics($count)" Set the number of X tics to use. Their value and position will be determined by the data range
Lingua::JA::Summarize::Extract::Plugin::Parser::Ngram(3)
a word parser by N-gram
Lingua::JA::Summarize::Extract::Plugin::Parser::NgramSimple(3)
a word parser by N-gram Simply
MPI_Type_create_subarray(3)
Creates a data type describing an n-dimensional subarray of an n-dimensional array
Math::ConvexHull(3)
Calculate convex hulls using Graham's scan (n*log(n))
Number::Nary(3)
encode and decode numbers as n-ary strings
Number::Tolerant::Type::constant(3)
a tolerance "m == n"
Number::Tolerant::Type::less_than(3)
a tolerance "m < n"
Number::Tolerant::Type::more_than(3)
a tolerance "m > n"
Number::Tolerant::Type::offset(3)
a tolerance "m (-l or +n)"
Number::Tolerant::Type::or_less(3)
a tolerance "m <= n"
Number::Tolerant::Type::or_more(3)
a tolerance "m >= n"
Number::Tolerant::Type::plus_or_minus(3)
a tolerance "m +/- n"
Number::Tolerant::Type::plus_or_minus_pct(3)
a tolerance "m +/- n%"
Number::Tolerant::Type::to(3)
a tolerance "m to n"
OpenXPKI::Server::Workflow::Condition::CheckExistingCertificate(3)
n .SH "SYNOPSIS <condition name=""usable_encryption_certificate_already_exists"" class=""OpenXPKI::Server::Workflow::Condition::CheckExistingCertificate""> <param name=""cert_profile"" value=""I18N_OPENXPKI_PROFILE_USER_FSE""/> <!-- minimum number of days until expiration --> <param name=""min_remaining_validity"" value=""90""/> </condition>" .SH "SYNOPSIS <condition name=``usable_encryption_certificate_already_exists'' class=``OpenXPKI::Server::Workflow::Condition::CheckExistingCertificate''> <param name=``cert_profile'' value=``I18N_OPENXPKI_PROFILE_USER_FSE''/> <!-- minimum number of days until expiration --> <param name=``min_remaining_validity'' value=``90''/> </condition>" Header "SYNOPSIS <condition name=usable_encryption_certificate_already_exists class=OpenXPKI::Server::Workflow::Condition::CheckExistingCertificate> <param name=cert_profile value=I18N_OPENXPKI_PROFILE_USER_FSE/> <!-- minimum number of days until expiration --> <param name=min_remaining_validity value=90/> </condition>"
OpenXPKI::Server::Workflow::Condition::DatapoolEntry(3)
n .SH "SYNOPSIS <condition name=""private_key_not_empty"" class=""OpenXPKI::Server::Workflow::Condition::DatapoolEntry""> <param name=""datapool_key"" value=""$cert_identifier""/> <param name=""datapool_namespace"" value=""certificate.privatekey""/> <param name=""condition"" value=""exists""/> </condition>" .SH "SYNOPSIS <condition name=``private_key_not_empty'' class=``OpenXPKI::Server::Workflow::Condition::DatapoolEntry''> <param name=``datapool_key'' value=``$cert_identifier''/> <param name=``datapool_namespace'' value=``certificate.privatekey''/> <param name=``condition'' value=``exists''/> </condition>" Header "SYNOPSIS <condition name=private_key_not_empty class=OpenXPKI::Server::Workflow::Condition::DatapoolEntry> <param name=datapool_key value=$cert_identifier/> <param name=datapool_namespace value=certificate.privatekey/> <param name=condition value=exists/> </condition>"
OpenXPKI::Server::Workflow::Condition::WorkflowContext(3)
n .SH "SYNOPSIS <condition name=""private_key_not_empty"" class=""OpenXPKI::Server::Workflow::Condition::WorkflowContext""> <param name=""context_key"" value=""private_key""/> <param name=""condition"" value=""exists""/> </condition>" .SH "SYNOPSIS <condition name=``private_key_not_empty'' class=``OpenXPKI::Server::Workflow::Condition::WorkflowContext''> <param name=``context_key'' value=``private_key''/> <param name=``condition'' value=``exists''/> </condition>" Header "SYNOPSIS <condition name=private_key_not_empty class=OpenXPKI::Server::Workflow::Condition::WorkflowContext> <param name=context_key value=private_key/> <param name=condition value=exists/> </condition>" <condition name="profile_contains_encryption" class="OpenXPKI::Server::Workflow::Condition::WorkflowContext"> <param name="context_key" value="cert_profile"/> <param name="condition" value="regex"/> <param name="context_value" value=".*ENCRYPTION.*"/> </condition>
OpenXPKI::Server::Workflow::Condition::WorkflowContextBulk(3)
n .SH "SYNOPSIS <condition name=""private_key_not_empty"" class=""OpenXPKI::Server::Workflow::Condition::WorkflowContextBulk""> <param name=""context_keys"" value=""private_key1,private_key2,...""/> <param name=""condition"" value=""exists""/> </condition>" .SH "SYNOPSIS <condition name=``private_key_not_empty'' class=``OpenXPKI::Server::Workflow::Condition::WorkflowContextBulk''> <param name=``context_keys'' value=``private_key1,private_key2,...''/> <param name=``condition'' value=``exists''/> </condition>" Header "SYNOPSIS <condition name=private_key_not_empty class=OpenXPKI::Server::Workflow::Condition::WorkflowContextBulk> <param name=context_keys value=private_key1,private_key2,.../> <param name=condition value=exists/> </condition>" <condition name="profile_contains_encryption" class="OpenXPKI::Server::Workflow::Condition::WorkflowContextBulk"> <param name="context_keys" value="cert_profile1,cert_profile2"/> <param name="condition" value="regex"/> <param name="context_value" value=".*ENCRYPTION.*"/> </condition>
PDF::API3::Compat::API2::Basic::TTF::Mort::Chain(3)
n .SS "$t->new" .SS "$t->new" Subsection "$t->new" n .SS "$t->read($fh)" .SS "$t->read($fh)" Subsection "$t->read($fh)" Reads the chain into memory n .SS "$t->out($fh)" .SS "$t->out($fh)" Subsection "$t->out($fh)" Writes the table to a file either from memory or by copying n .SS "$t->print($fh)" .SS "$t->print($fh)" Subsection "$t->print($fh)" Prints a human-readable representation of the chain
PDL::ImageND(3)
useful image processing in N dimensions
PDL::Transform(3)
Coordinate transforms, image warping, and N-D functions
Padre::Wx::Browser(3)
Wx front-end for "Padre::Browser" n .SH "Welcome to Padre ""Browser""" .SH "Welcome to Padre Browser" Header "Welcome to Padre Browser" Padre::Wx::Browser ( Wx::Frame )
Padre::Wx::Dialog::OpenURL(3)
a dialog for opening URLs n .SS """new""" .SS "new" Subsection "new" my $find = Padre::Wx::Dialog::OpenURL->new($main); Create and return a Padre::Wx::Dialog::OpenURL Open URL widget. n .SS """modal""" .SS "modal" Subsection "modal" my $url = Padre::Wx::Dialog::OpenURL->modal($main); Single-shot modal dialog call to get a URL from the user. Returns a string if the user clicks OK (it may be a null string if they did not enter anything). Returns undef if the user hits the cancel button
Perl::Metrics::Lite::FileFinder(3)
find perl files in paths n .SS "find_files( @directories_and_files )" .SS "find_files( @directories_and_files )" Subsection "find_files( @directories_and_files )" Uses list_perl_files to find all the readable Perl files and returns a reference to a (possibly empty) list of paths
RDF::Trine::Parser::NQuads(3)
N-Quads Parser
RDF::Trine::Parser::NTriples(3)
N-Triples Parser
RDF::Trine::Parser::Turtle::Constants(3)
Constant definitions for use in parsing Turtle, TriG, and N-Triples
RDF::Trine::Parser::Turtle::Lexer(3)
Tokenizer for parsing Turtle, TriG, and N-Triples
RDF::Trine::Serializer::NQuads(3)
N-Quads Serializer
RDF::Trine::Serializer::NTriples(3)
N-Triples Serializer
RDFStore::Parser::NTriples(3)
This module implements a streaming N-Triples parser
RDFStore::Serializer::NTriples(3), RDFStore::Serilizer::NTriples(3)
Serialise a model/graph to W3C RDF Test Cases N-Triples syntax
Sort::Key::Top(3)
select and sort top n elements
Text::Context::EitherSide(3)
Get n words either side of search keywords
Tree::DAG_Node(3)
An N-ary tree
Tree::Nary(3)
Perl implementation of N-ary search trees
iwidgets_buttonbox(n), iwidgets::buttonbox(n)
Create and manipulate a manager widget for buttons
iwidgets_calendar(n), iwidgets::calendar(n)
Create and manipulate a monthly calendar
iwidgets_canvasprintbox(n), iwidgets::canvasprintbox(n)
Create and manipulate a canvas print box widget
iwidgets_canvasprintdialog(n), iwidgets::canvasprintdialog(n)
Create and manipulate a canvas print dialog widget
iwidgets_checkbox(n), iwidgets::checkbox(n)
Create and manipulate a checkbox widget
iwidgets_combobox(n), iwidgets::combobox(n)
Create and manipulate combination box widgets
iwidgets_dateentry(n), iwidgets::dateentry(n)
Create and manipulate a dateentry widget
iwidgets_datefield(n), iwidgets::datefield(n)
Create and manipulate a date field widget
iwidgets_dialog(n), iwidgets::dialog(n)
Create and manipulate a dialog widget
iwidgets_dialogshell(n), iwidgets::dialogshell(n)
Create and manipulate a dialog shell widget
iwidgets_disjointlistbox(n), iwidgets::disjointlistbox(n)
Create and manipulate a disjointlistbox widget
iwidgets_entryfield(n), iwidgets::entryfield(n)
Create and manipulate a entry field widget
iwidgets_extbutton(n), iwidgets::extbutton(n)
Extends the behavior of the Tk button by allowing a bitmap or image to coexist with text
iwidgets_extfileselectionbox(n), iwidgets::extfileselectionbox(n)
Create and manipulate a file selection box widget
iwidgets_extfileselectiondialog(n), iwidgets::extfileselectiondialog(n)
Create and manipulate a file selection dialog widget
iwidgets_feedback(n), iwidgets::feedback(n)
Create and manipulate a feedback widget to display feedback on the current status of an ongoing operation to the user
iwidgets_fileselectionbox(n), iwidgets::fileselectionbox(n)
Create and manipulate a file selection box widget
iwidgets_fileselectiondialog(n), iwidgets::fileselectiondialog(n)
Create and manipulate a file selection dialog widget
iwidgets_finddialog(n), iwidgets::finddialog(n)
Create and manipulate a find dialog widget
iwidgets_hierarchy(n), iwidgets::hierarchy(n)
Create and manipulate a hierarchy widget
iwidgets_hyperhelp(n), iwidgets::hyperhelp(n)
Create and manipulate a hyperhelp widget
iwidgets_labeledframe(n), iwidgets::labeledframe(n)
Create and manipulate a labeled frame widget
iwidgets_labeledwidget(n), iwidgets::labeledwidget(n)
Create and manipulate a labeled widget
iwidgets_mainwindow(n), iwidgets::mainwindow(n)
Create and manipulate a mainwindow widget
iwidgets_menubar(n), iwidgets::menubar(n)
Create and manipulate menubar menu widgets
iwidgets_messagebox(n), iwidgets::messagebox(n)
Create and manipulate a messagebox text widget
iwidgets_messagedialog(n), iwidgets::messagedialog(n)
Create and manipulate a message dialog widget
iwidgets_notebook(n), iwidgets::notebook(n)
create and manipulate notebook widgets
iwidgets_optionmenu(n), iwidgets::optionmenu(n)
Create and manipulate a option menu widget
iwidgets_panedwindow(n), iwidgets::panedwindow(n)
Create and manipulate a paned window widget
iwidgets_promptdialog(n), iwidgets::promptdialog(n)
Create and manipulate a prompt dialog widget
iwidgets_pushbutton(n), iwidgets::pushbutton(n)
Create and manipulate a push button widget
iwidgets_radiobox(n), iwidgets::radiobox(n)
Create and manipulate a radiobox widget
iwidgets_scopedobject(n), scopedobject(n)
Create and manipulate a scoped [incr Tcl] class object
iwidgets_scrolledcanvas(n), iwidgets::scrolledcanvas(n)
Create and manipulate scrolled canvas widgets
iwidgets_scrolledframe(n), iwidgets::scrolledframe(n)
Create and manipulate scrolled frame widgets
iwidgets_scrolledhtml(n), iwidgets::scrolledhtml(n)
Create and manipulate a scrolled text widget with the capability of displaying HTML formatted documents
iwidgets_scrolledlistbox(n), iwidgets::scrolledlistbox(n)
Create and manipulate scrolled listbox widgets
iwidgets_scrolledtext(n), iwidgets::scrolledtext(n)
Create and manipulate a scrolled text widget
iwidgets_selectionbox(n), iwidgets::selectionbox(n)
Create and manipulate a selection box widget
iwidgets_selectiondialog(n), iwidgets::selectiondialog(n)
Create and manipulate a selection dialog widget
iwidgets_shell(n), iwidgets::shell(n)
Create and manipulate a shell widget
iwidgets_spindate(n), iwidgets::spindate(n)
Create and manipulate time spinner widgets
iwidgets_spinint(n), iwidgets::spinint(n)
Create and manipulate a integer spinner widget
iwidgets_spinner(n), iwidgets::spinner(n)
Create and manipulate a spinner widget
iwidgets_spintime(n), iwidgets::spintime(n)
Create and manipulate time spinner widgets
iwidgets_tabnotebook(n), iwidgets::tabnotebook(n)
create and manipulate tabnotebook widgets
iwidgets_tabset(n), iwidgets::tabset(n)
create and manipulate tabs as as set
iwidgets_timeentry(n), iwidgets::timeentry(n)
Create and manipulate a timeentry widget
iwidgets_timefield(n), iwidgets::timefield(n)
Create and manipulate a time field widget
iwidgets_toolbar(n), iwidgets::toolbar(n)
Create and manipulate a tool bar
iwidgets_watch(n), iwidgets::watch(n)
Create and manipulate time with a watch widgets
libsoldout(3)
Perl extension for libsoldout, a flexible library to parse markdow n language
tkhtml(n)
Widget to render html documents
tstatd(1)
Logs real-time accounting daemon SYNOPSIS tstatd [ options ] plugin [zone1:]wildcard1 .. [zoneN:]wildcardN OPTIONS "-a zone, --agregate-zone=zone" 4 Item "-a zone, --agregate-zone=zone" Agregate data from all anonymous logs (wildcards without explicit zone specified) into zone. Default behavior is to create new zone for each anonymous log from its file name. "-b file, --database-file=file" 4 Item "-b file, --database-file=file" Use file as persistent storage to keep accumulated data across daemon restarts. Default is auto generated from daemon name, specified identity and '.db' suffix. "--basename" 4 Item "--basename" Use only base name (excluding directories and suffix) of anonymous log file for auto-created zones. "-c dir, --change-dir=dir" 4 Item "-c dir, --change-dir=dir" Change current directory to dir before wildcards expanding. "-d, --debug" 4 Item "-d, --debug" Composition of options: --foreground and --log-level=debug. "-f, --foreground" 4 Item "-f, --foreground" Don't detach daemon from control terminal, logging to stderr instead log file or syslog. "--log-facility=name" 4 Item "--log-facility=name" Use name as facility for syslog logging (see syslog (3) for list of available values). Default is 'daemon'. "--log-level=level" 4 Item "--log-level=level" Set minimal logging level to level (see syslog (3) for list of available values). Default is 'notice'. "--log-file=file" 4 Item "--log-file=file" Use logging to file instead of syslog logging (which is default). "-e num, --expand-period=num" 4 Item "-e num, --expand-period=num" Do wildcards re-expanding and checking for new and missed logs every num seconds. Default is '60'. "-h, --help" 4 Item "-h, --help" Print brief help message about available options. "-i string, --identity=string" 4 Item "-i string, --identity=string" Just a string used in title of daemon process, syslog ident (see syslog|(3)), --database-file and --pid-file. Idea behind this options - multiple tstatd instances running simultaneosly. "-l [address:]port, --listen=[address:]port" 4 Item "-l [address:]port, --listen=[address:]port" Specify address and port for TCP listen socket binding. Default is '127.0.0.1:3638'. "--multiple" 4 Item "--multiple" With this option specified same log file could be included into several zones (if log name satisifies several wildcards). Default behavior is to include log file only in first satisified zone. "-n num, --windows-num=num" 4 Item "-n num, --windows-num=num" Set number of sliding-windows to num. Default is '60'. "-o string, --options=string" 4 Item "-o string, --options=string" Comma-separated plugin supported options (like a mount (8) options). "--override-from=file" 4 Item "--override-from=file" Load content of file into plugin package namespace. This is way to easy customize plugin behavior without creating another plugin. "-p file, --pid-file=file" 4 Item "-p file, --pid-file=file" Use file to keep daemon process id. Default is auto generated from daemon name, specified identity and '.pid' suffix. "--parse-error=level" 4 Item "--parse-error=level" Do logging with level (see syslog (3) for available values) about all unparsed log lines. Hint: use 'none' for ignoring such lines. Default is defining by plugin and usually is 'debug'. "-r pattern, --regex=pattern" 4 Item "-r pattern, --regex=pattern" Use pattern instead of plugin default regular expression for matching log lines. "--regex-from=file" 4 Item "--regex-from=file" Load regular expression from file and use instead of plugin default regular expression for matching log lines. "-s num, --store-period=num" 4 Item "-s num, --store-period=num" Store accumulated data in a persistent storage every num seconds. Default is '60'. "--timer=zone:timer:num" 4 Item "--timer=zone:timer:num" Create named timer firing every num seconds for zone. "-u <user>, --user=user" 4 Item "-u <user>, --user=user" Change effective privileges of daemon process to user. "-v, --version" 4 Item "-v, --version" Print version information of tstatd and exit. "-w num, --window-size=<num>" 4 Item "-w num, --window-size=<num>" Set size (duration) of sliding window to num seconds. Default is '10'
ubic-periodic(1), ubic_periodic(1)
run given command every N seconds
home | help