# FreeBSD Man Pages

home | help- vx(4)
- 3Com EtherLink III / Fast EtherLink III (3c59x) Ethernet driver
- vxge(4)
- Neterion X3100 10GbE Server/Storage adapter driver
- cgbsvx(l), CGBSVX(l)
- uses the LU factorization to compute the solution to a complex system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
- cgbsvxx(l), CGBSVXX(l)
- CGBSVXX use the LU factorization to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- cgeevx(l), CGEEVX(l)
- computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors
- cgesvx(l), CGESVX(l)
- uses the LU factorization to compute the solution to a complex system of linear equations A * X = B,
- cgesvxx(l), CGESVXX(l)
- CGESVXX use the LU factorization to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- cggevx(l), CGGEVX(l)
- computes for a pair of N-by-N complex nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
- cgtsvx(l), CGTSVX(l)
- uses the LU factorization to compute the solution to a complex system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
- chbevx(l), CHBEVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A
- chbgvx(l), CHBGVX(l)
- computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x
- cheevx(l), CHEEVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A
- chegvx(l), CHEGVX(l)
- computes selected eigenvalues, and optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
- chesvx(l), CHESVX(l)
- uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B,
- chesvxx(l), CHESVXX(l)
- CHESVXX use the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices
- chpevx(l), CHPEVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in packed storage
- chpgvx(l), CHPGVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
- chpsvx(l), CHPSVX(l)
- uses the diagonal pivoting factorization A = U*D*U**H or A = L*D*L**H to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian matrix stored in packed format and X and B are N-by-NRHS matrices
- cpbsvx(l), CPBSVX(l)
- uses the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A * X = B,
- cposvx(l), CPOSVX(l)
- uses the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A * X = B,
- cposvxx(l), CPOSVXX(l)
- CPOSVXX use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric positive definite matrix and X and B are N-by-NRHS matrices
- cppsvx(l), CPPSVX(l)
- uses the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A * X = B,
- cptsvx(l), CPTSVX(l)
- uses the factorization A = L*D*L**H to compute the solution to a complex system of linear equations A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal matrix and X and B are N-by-NRHS matrices
- cspsvx(l), CSPSVX(l)
- uses the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and X and B are N-by-NRHS matrices
- csysvx(l), CSYSVX(l)
- uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B,
- csysvxx(l), CSYSVXX(l)
- CSYSVXX use the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices
- dgbsvx(l), DGBSVX(l)
- uses the LU factorization to compute the solution to a real system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
- dgbsvxx(l), DGBSVXX(l)
- DGBSVXX use the LU factorization to compute the solution to a double precision system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- dgeevx(l), DGEEVX(l)
- computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors
- dgesvx(l), DGESVX(l)
- uses the LU factorization to compute the solution to a real system of linear equations A * X = B,
- dgesvxx(l), DGESVXX(l)
- DGESVXX use the LU factorization to compute the solution to a double precision system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- dggevx(l), DGGEVX(l)
- computes for a pair of N-by-N real nonsymmetric matrices (A,B)
- dgtsvx(l), DGTSVX(l)
- uses the LU factorization to compute the solution to a real system of linear equations A * X = B or A**T * X = B,
- dpbsvx(l), DPBSVX(l)
- uses the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A * X = B,
- dposvx(l), DPOSVX(l)
- uses the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A * X = B,
- dposvxx(l), DPOSVXX(l)
- DPOSVXX use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a double precision system of linear equations A * X = B, where A is an N-by-N symmetric positive definite matrix and X and B are N-by-NRHS matrices
- dppsvx(l), DPPSVX(l)
- uses the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A * X = B,
- dptsvx(l), DPTSVX(l)
- uses the factorization A = L*D*L**T to compute the solution to a real system of linear equations A*X = B, where A is an N-by-N symmetric positive definite tridiagonal matrix and X and B are N-by-NRHS matrices
- dsbevx(l), DSBEVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A
- dsbgvx(l), DSBGVX(l)
- computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x
- dspevx(l), DSPEVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage
- dspgvx(l), DSPGVX(l)
- computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
- dspsvx(l), DSPSVX(l)
- uses the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and X and B are N-by-NRHS matrices
- dstevx(l), DSTEVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A
- dsyevx(l), DSYEVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
- dsygvx(l), DSYGVX(l)
- computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
- dsysvx(l), DSYSVX(l)
- uses the diagonal pivoting factorization to compute the solution to a real system of linear equations A * X = B,
- dsysvxx(l), DSYSVXX(l)
- DSYSVXX use the diagonal pivoting factorization to compute the solution to a double precision system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices
- pcgesvx(l), PCGESVX(l)
- use the LU factorization to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- pcheevx(l), PCHEEVX(l)
- compute selected eigenvalues and, optionally, eigenvectors of a complex hermitian matrix A by calling the recommended sequence of ScaLAPACK routines
- pcposvx(l), PCPOSVX(l)
- use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- pdgesvx(l), PDGESVX(l)
- use the LU factorization to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- pdposvx(l), PDPOSVX(l)
- use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- pdsyevx(l), PDSYEVX(l)
- compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A by calling the recommended sequence of ScaLAPACK routines
- psgesvx(l), PSGESVX(l)
- use the LU factorization to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- psposvx(l), PSPOSVX(l)
- use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- pssyevx(l), PSSYEVX(l)
- compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A by calling the recommended sequence of ScaLAPACK routines
- pzgesvx(l), PZGESVX(l)
- use the LU factorization to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- pzheevx(l), PZHEEVX(l)
- compute selected eigenvalues and, optionally, eigenvectors of a complex hermitian matrix A by calling the recommended sequence of ScaLAPACK routines
- pzposvx(l), PZPOSVX(l)
- use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- sgbsvx(l), SGBSVX(l)
- uses the LU factorization to compute the solution to a real system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
- sgbsvxx(l), SGBSVXX(l)
- SGBSVXX use the LU factorization to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- sgeevx(l), SGEEVX(l)
- computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors
- sgesvx(l), SGESVX(l)
- uses the LU factorization to compute the solution to a real system of linear equations A * X = B,
- sgesvxx(l), SGESVXX(l)
- SGESVXX use the LU factorization to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- sggevx(l), SGGEVX(l)
- computes for a pair of N-by-N real nonsymmetric matrices (A,B)
- sgtsvx(l), SGTSVX(l)
- uses the LU factorization to compute the solution to a real system of linear equations A * X = B or A**T * X = B,
- spbsvx(l), SPBSVX(l)
- sposvx(l), SPOSVX(l)
- sposvxx(l), SPOSVXX(l)
- SPOSVXX use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric positive definite matrix and X and B are N-by-NRHS matrices
- sppsvx(l), SPPSVX(l)
- sptsvx(l), SPTSVX(l)
- uses the factorization A = L*D*L**T to compute the solution to a real system of linear equations A*X = B, where A is an N-by-N symmetric positive definite tridiagonal matrix and X and B are N-by-NRHS matrices
- ssbevx(l), SSBEVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A
- ssbgvx(l), SSBGVX(l)
- computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x
- sspevx(l), SSPEVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage
- sspgvx(l), SSPGVX(l)
- computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
- sspsvx(l), SSPSVX(l)
- uses the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and X and B are N-by-NRHS matrices
- sstevx(l), SSTEVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A
- ssyevx(l), SSYEVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
- ssygvx(l), SSYGVX(l)
- ssysvx(l), SSYSVX(l)
- uses the diagonal pivoting factorization to compute the solution to a real system of linear equations A * X = B,
- ssysvxx(l), SSYSVXX(l)
- SSYSVXX use the diagonal pivoting factorization to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices
- vximtool(1)
- -- A virtual display server for IRAF IIS protocol clients
- vxmount(1)
- Mount a VxFS filesystem
- vxmount(1)
- Unmount a VxFS filesystem
- zgbsvx(l), ZGBSVX(l)
- uses the LU factorization to compute the solution to a complex system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
- zgbsvxx(l), ZGBSVXX(l)
- ZGBSVXX use the LU factorization to compute the solution to a complex*16 system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- zgeevx(l), ZGEEVX(l)
- computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors
- zgesvx(l), ZGESVX(l)
- uses the LU factorization to compute the solution to a complex system of linear equations A * X = B,
- zgesvxx(l), ZGESVXX(l)
- ZGESVXX use the LU factorization to compute the solution to a complex*16 system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- zggevx(l), ZGGEVX(l)
- computes for a pair of N-by-N complex nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
- zgtsvx(l), ZGTSVX(l)
- zhbevx(l), ZHBEVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A
- zhbgvx(l), ZHBGVX(l)
- computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x
- zheevx(l), ZHEEVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A
- zhegvx(l), ZHEGVX(l)
- computes selected eigenvalues, and optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
- zhesvx(l), ZHESVX(l)
- uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B,
- zhesvxx(l), ZHESVXX(l)
- ZHESVXX use the diagonal pivoting factorization to compute the solution to a complex*16 system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices
- zhpevx(l), ZHPEVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in packed storage
- zhpgvx(l), ZHPGVX(l)
- computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
- zhpsvx(l), ZHPSVX(l)
- uses the diagonal pivoting factorization A = U*D*U**H or A = L*D*L**H to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian matrix stored in packed format and X and B are N-by-NRHS matrices
- zpbsvx(l), ZPBSVX(l)
- zposvx(l), ZPOSVX(l)
- zposvxx(l), ZPOSVXX(l)
- ZPOSVXX use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a complex*16 system of linear equations A * X = B, where A is an N-by-N symmetric positive definite matrix and X and B are N-by-NRHS matrices
- zppsvx(l), ZPPSVX(l)
- zptsvx(l), ZPTSVX(l)
- uses the factorization A = L*D*L**H to compute the solution to a complex system of linear equations A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal matrix and X and B are N-by-NRHS matrices
- zspsvx(l), ZSPSVX(l)
- uses the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and X and B are N-by-NRHS matrices
- zsysvx(l), ZSYSVX(l)
- zsysvxx(l), ZSYSVXX(l)
- ZSYSVXX use the diagonal pivoting factorization to compute the solution to a complex*16 system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices
- erl_set_memory_block(3)
- Custom memory allocation for Erlang on VxWorks(R)