Skip site navigation (1)Skip section navigation (2)

FreeBSD Man Pages

Man Page or Keyword Search:
Man Architecture
Apropos Keyword Search (all sections) Output format
home | help
BSfactor(3)
Compute the incomplete factor of a matrix
BSsetup_factor(3)
Set up the communication for factorization
EC_GROUP_copy(3), EC_GROUP_dup(3), EC_GROUP_method_of(3), EC_GROUP_set_generator(3), EC_GROUP_get0_generator(3), EC_GROUP_get_order(3), EC_GROUP_get_cofactor(3), EC_GROUP_set_curve_name(3), EC_GROUP_get_curve_name(3), EC_GROUP_set_asn1_flag(3), EC_GROUP_get_asn1_flag(3), EC_GROUP_set_point_conversion_form(3), EC_GROUP_get_point_conversion_form(3), EC_GROUP_get0_seed(3), EC_GROUP_get_seed_len(3), EC_GROUP_set_seed(3), EC_GROUP_get_degree(3), EC_GROUP_check(3), EC_GROUP_check_discriminant(3), EC_GROUP_cmp(3), EC_GROUP_get_basis_type(3), EC_GROUP_get_trinomial_basis(3), EC_GROUP_get_pentanomial_basis(3)
Functions for manipulating EC_GROUP objects
HPL_pdfact(3)
recursive panel factorization
HPL_pdgesv0(3)
Factor an N x N+1 matrix
HPL_pdgesvK1(3)
Factor an N x N+1 matrix
HPL_pdgesvK2(3)
Factor an N x N+1 matrix
HPL_pdpancrN(3)
Crout panel factorization
HPL_pdpancrT(3)
Crout panel factorization
HPL_pdpanllN(3)
Left-looking panel factorization
HPL_pdpanllT(3)
Left-looking panel factorization
HPL_pdpanrlN(3)
Right-looking panel factorization
HPL_pdpanrlT(3)
Right-looking panel factorization
HPL_pdrpancrN(3)
Crout recursive panel factorization
HPL_pdrpancrT(3)
Crout recursive panel factorization
HPL_pdrpanllN(3)
Left-looking recursive panel factorization
HPL_pdrpanllT(3)
Left-looking recursive panel factorization
HPL_pdrpanrlN(3)
Right-looking recursive panel factorization
HPL_pdrpanrlT(3)
Right-looking recursive panel factorization
PS_rotate(3)
Sets rotation factor
PS_scale(3)
Sets scaling factor
SoHandleBoxManip(3iv)
transform node with 3D Interface for Editing ScaleFactor and Translation
cdbtf2(l), CDBTF2(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting with row interchanges
cdbtrf(l), CDBTRF(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting or row interchanges
cdttrf(l), CDTTRF(l)
compute an LU factorization of a complex tridiagonal matrix A using elimination without partial pivoting
clanv2(l), CLANV2(l)
compute the Schur factorization of a complex 2-by-2 nonhermitian matrix in standard form
cofactorbddnode(3)
computes the generalized cofactor. man1/alc_origin.1
cscout(1)
C code analyzer and refactoring browser
ddbtf2(l), DDBTF2(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting with row interchanges
ddbtrf(l), DDBTRF(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting or row interchanges
ddttrf(l), DDTTRF(l)
compute an LU factorization of a complex tridiagonal matrix A using elimination without partial pivoting
ecm(1)
integer factorization using ECM, P-1 or P+1
gfactor(1), factor(1)
factor numbers
git-refactor(1)
Create refactor branch
glPixelZoom(3), "glPixelZoom(3)
specify the pixel zoom factors
login_duo(8)
second-factor authentication via Duo login service
mouse_setscale(3)
sets a mouse scale factor
pcdbtrf(l), PCDBTRF(l)
compute a LU factorization of an N-by-N complex banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU
pcdttrf(l), PCDTTRF(l)
compute a LU factorization of an N-by-N complex tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
pcgbtrf(l), PCGBTRF(l)
compute a LU factorization of an N-by-N complex banded distributed matrix with bandwidth BWL, BWU
pcgecon(l), PCGECON(l)
estimate the reciprocal of the condition number of a general distributed complex matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PCGETRF
pcgelq2(l), PCGELQ2(l)
compute a LQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
pcgelqf(l), PCGELQF(l)
compute a LQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
pcgeql2(l), PCGEQL2(l)
compute a QL factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
pcgeqlf(l), PCGEQLF(l)
compute a QL factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
pcgeqpf(l), PCGEQPF(l)
compute a QR factorization with column pivoting of a M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pcgeqr2(l), PCGEQR2(l)
compute a QR factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
pcgeqrf(l), PCGEQRF(l)
compute a QR factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
pcgerq2(l), PCGERQ2(l)
compute a RQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
pcgerqf(l), PCGERQF(l)
compute a RQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
pcgesvx(l), PCGESVX(l)
use the LU factorization to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
pcgetf2(l), PCGETF2(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
pcgetrf(l), PCGETRF(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
pcgetri(l), PCGETRI(l)
compute the inverse of a distributed matrix using the LU factorization computed by PCGETRF
pcgetrs(l), PCGETRS(l)
solve a system of distributed linear equations op( sub( A ) ) * X = sub( B ) with a general N-by-N distributed matrix sub( A ) using the LU factorization computed by PCGETRF
pcggqrf(l), PCGGQRF(l)
compute a generalized QR factorization of an N-by-M matrix sub( A ) = A(IA:IA+N-1,JA:JA+M-1) and an N-by-P matrix sub( B ) = B(IB:IB+N-1,JB:JB+P-1)
pcggrqf(l), PCGGRQF(l)
compute a generalized RQ factorization of an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pclaqge(l), PCLAQGE(l)
equilibrate a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using the row and scaling factors in the vectors R and C
pclaqsy(l), PCLAQSY(l)
equilibrate a symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the scaling factors in the vectors SR and SC
pclarft(l), PCLARFT(l)
form the triangular factor T of a complex block reflector H of order n, which is defined as a product of k elementary reflectors
pclarzt(l), PCLARZT(l)
form the triangular factor T of a complex block reflector H of order > n, which is defined as a product of k elementary reflectors as returned by PCTZRZF
pclauu2(l), PCLAUU2(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pclauum(l), PCLAUUM(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pcpbtrf(l), PCPBTRF(l)
compute a Cholesky factorization of an N-by-N complex banded symmetric positive definite distributed matrix with bandwidth BW
pcpocon(l), PCPOCON(l)
estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite distributed matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by PCPOTRF
pcposvx(l), PCPOSVX(l)
use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
pcpotf2(l), PCPOTF2(l)
compute the Cholesky factorization of a complex hermitian positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
pcpotrf(l), PCPOTRF(l)
compute the Cholesky factorization of an N-by-N complex hermitian positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
pcpotri(l), PCPOTRI(l)
compute the inverse of a complex Hermitian positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**H*U or L*L**H computed by PCPOTRF
pcpttrf(l), PCPTTRF(l)
compute a Cholesky factorization of an N-by-N complex tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
pddbtrf(l), PDDBTRF(l)
compute a LU factorization of an N-by-N real banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU
pddttrf(l), PDDTTRF(l)
compute a LU factorization of an N-by-N real tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
pdgbtrf(l), PDGBTRF(l)
compute a LU factorization of an N-by-N real banded distributed matrix with bandwidth BWL, BWU
pdgecon(l), PDGECON(l)
estimate the reciprocal of the condition number of a general distributed real matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PDGETRF
pdgelq2(l), PDGELQ2(l)
compute a LQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
pdgelqf(l), PDGELQF(l)
compute a LQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
pdgeql2(l), PDGEQL2(l)
compute a QL factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
pdgeqlf(l), PDGEQLF(l)
compute a QL factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
pdgeqpf(l), PDGEQPF(l)
compute a QR factorization with column pivoting of a M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pdgeqr2(l), PDGEQR2(l)
compute a QR factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
pdgeqrf(l), PDGEQRF(l)
compute a QR factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
pdgerq2(l), PDGERQ2(l)
compute a RQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
pdgerqf(l), PDGERQF(l)
compute a RQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
pdgesvx(l), PDGESVX(l)
use the LU factorization to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
pdgetf2(l), PDGETF2(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
pdgetrf(l), PDGETRF(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
pdgetri(l), PDGETRI(l)
compute the inverse of a distributed matrix using the LU factorization computed by PDGETRF
pdgetrs(l), PDGETRS(l)
solve a system of distributed linear equations op( sub( A ) ) * X = sub( B ) with a general N-by-N distributed matrix sub( A ) using the LU factorization computed by PDGETRF
pdggqrf(l), PDGGQRF(l)
compute a generalized QR factorization of an N-by-M matrix sub( A ) = A(IA:IA+N-1,JA:JA+M-1) and an N-by-P matrix sub( B ) = B(IB:IB+N-1,JB:JB+P-1)
pdggrqf(l), PDGGRQF(l)
compute a generalized RQ factorization of an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pdlaqge(l), PDLAQGE(l)
equilibrate a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using the row and scaling factors in the vectors R and C
pdlaqsy(l), PDLAQSY(l)
equilibrate a symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the scaling factors in the vectors SR and SC
pdlarft(l), PDLARFT(l)
form the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors
pdlarzt(l), PDLARZT(l)
form the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors as returned by PDTZRZF
pdlauu2(l), PDLAUU2(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pdlauum(l), PDLAUUM(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pdpbtrf(l), PDPBTRF(l)
compute a Cholesky factorization of an N-by-N real banded symmetric positive definite distributed matrix with bandwidth BW
pdpocon(l), PDPOCON(l)
estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite distributed matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by PDPOTRF
pdposvx(l), PDPOSVX(l)
use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
pdpotf2(l), PDPOTF2(l)
compute the Cholesky factorization of a real symmetric positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
pdpotrf(l), PDPOTRF(l)
compute the Cholesky factorization of an N-by-N real symmetric positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
pdpotri(l), PDPOTRI(l)
compute the inverse of a real symmetric positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**T*U or L*L**T computed by PDPOTRF
pdpttrf(l), PDPTTRF(l)
compute a Cholesky factorization of an N-by-N real tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
pixilate(1)
parses an input file containing Cisco PIX 6.2x - PIX 6.3x (normal mask) or Cisco IOS (inverted mask) access-list entries and generates the corresponding packets. For information on writing PIX access lists, see http://www.cisco.com/univercd/cc/td/doc/product/iaabu/pix/pix_62/cmdref/ab.htm#xtocid7 and http://www.cisco.com/warp/public/707/confaccesslists.html#intro for Cisco IOS access-lists. is currently capable of generating TCP/UDP/ICMP (various ICMP types), and IGMP utilizing the Libnet 1.1.x library available from http://www.packetfactory.net. NOTE: Libnet 1.0.x is NOT compatible."
primefactors(3bobcat), FBB::PrimeFactors(3bobcat)
Performs the prime-number factorization of (BigInt) values
psdbtrf(l), PSDBTRF(l)
compute a LU factorization of an N-by-N real banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU
psdttrf(l), PSDTTRF(l)
compute a LU factorization of an N-by-N real tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
psgbtrf(l), PSGBTRF(l)
compute a LU factorization of an N-by-N real banded distributed matrix with bandwidth BWL, BWU
psgecon(l), PSGECON(l)
estimate the reciprocal of the condition number of a general distributed real matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PSGETRF
psgelq2(l), PSGELQ2(l)
compute a LQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
psgelqf(l), PSGELQF(l)
compute a LQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
psgeql2(l), PSGEQL2(l)
compute a QL factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
psgeqlf(l), PSGEQLF(l)
compute a QL factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
psgeqpf(l), PSGEQPF(l)
compute a QR factorization with column pivoting of a M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
psgeqr2(l), PSGEQR2(l)
compute a QR factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
psgeqrf(l), PSGEQRF(l)
compute a QR factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
psgerq2(l), PSGERQ2(l)
compute a RQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
psgerqf(l), PSGERQF(l)
compute a RQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
psgesvx(l), PSGESVX(l)
use the LU factorization to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
psgetf2(l), PSGETF2(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
psgetrf(l), PSGETRF(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
psgetri(l), PSGETRI(l)
compute the inverse of a distributed matrix using the LU factorization computed by PSGETRF
psgetrs(l), PSGETRS(l)
solve a system of distributed linear equations op( sub( A ) ) * X = sub( B ) with a general N-by-N distributed matrix sub( A ) using the LU factorization computed by PSGETRF
psggqrf(l), PSGGQRF(l)
compute a generalized QR factorization of an N-by-M matrix sub( A ) = A(IA:IA+N-1,JA:JA+M-1) and an N-by-P matrix sub( B ) = B(IB:IB+N-1,JB:JB+P-1)
psggrqf(l), PSGGRQF(l)
compute a generalized RQ factorization of an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pslaqge(l), PSLAQGE(l)
equilibrate a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using the row and scaling factors in the vectors R and C
pslaqsy(l), PSLAQSY(l)
equilibrate a symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the scaling factors in the vectors SR and SC
pslarft(l), PSLARFT(l)
form the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors
pslarzt(l), PSLARZT(l)
form the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors as returned by PSTZRZF
pslauu2(l), PSLAUU2(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pslauum(l), PSLAUUM(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pspbtrf(l), PSPBTRF(l)
compute a Cholesky factorization of an N-by-N real banded symmetric positive definite distributed matrix with bandwidth BW
pspocon(l), PSPOCON(l)
estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite distributed matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by PSPOTRF
psposvx(l), PSPOSVX(l)
use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
pspotf2(l), PSPOTF2(l)
compute the Cholesky factorization of a real symmetric positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
pspotrf(l), PSPOTRF(l)
compute the Cholesky factorization of an N-by-N real symmetric positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
pspotri(l), PSPOTRI(l)
compute the inverse of a real symmetric positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**T*U or L*L**T computed by PSPOTRF
pspttrf(l), PSPTTRF(l)
compute a Cholesky factorization of an N-by-N real tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
pzdbtrf(l), PZDBTRF(l)
compute a LU factorization of an N-by-N complex banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU
pzdttrf(l), PZDTTRF(l)
compute a LU factorization of an N-by-N complex tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
pzgbtrf(l), PZGBTRF(l)
compute a LU factorization of an N-by-N complex banded distributed matrix with bandwidth BWL, BWU
pzgecon(l), PZGECON(l)
estimate the reciprocal of the condition number of a general distributed complex matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PZGETRF
pzgelq2(l), PZGELQ2(l)
compute a LQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
pzgelqf(l), PZGELQF(l)
compute a LQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
pzgeql2(l), PZGEQL2(l)
compute a QL factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
pzgeqlf(l), PZGEQLF(l)
compute a QL factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
pzgeqpf(l), PZGEQPF(l)
compute a QR factorization with column pivoting of a M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pzgeqr2(l), PZGEQR2(l)
compute a QR factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
pzgeqrf(l), PZGEQRF(l)
compute a QR factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
pzgerq2(l), PZGERQ2(l)
compute a RQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
pzgerqf(l), PZGERQF(l)
compute a RQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
pzgesvx(l), PZGESVX(l)
use the LU factorization to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
pzgetf2(l), PZGETF2(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
pzgetrf(l), PZGETRF(l)
compute an LU factorization of a general M-by-N distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
pzgetri(l), PZGETRI(l)
compute the inverse of a distributed matrix using the LU factorization computed by PZGETRF
pzgetrs(l), PZGETRS(l)
solve a system of distributed linear equations op( sub( A ) ) * X = sub( B ) with a general N-by-N distributed matrix sub( A ) using the LU factorization computed by PZGETRF
pzggqrf(l), PZGGQRF(l)
compute a generalized QR factorization of an N-by-M matrix sub( A ) = A(IA:IA+N-1,JA:JA+M-1) and an N-by-P matrix sub( B ) = B(IB:IB+N-1,JB:JB+P-1)
pzggrqf(l), PZGGRQF(l)
compute a generalized RQ factorization of an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
pzlaqge(l), PZLAQGE(l)
equilibrate a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using the row and scaling factors in the vectors R and C
pzlaqsy(l), PZLAQSY(l)
equilibrate a symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the scaling factors in the vectors SR and SC
pzlarft(l), PZLARFT(l)
form the triangular factor T of a complex block reflector H of order n, which is defined as a product of k elementary reflectors
pzlarzt(l), PZLARZT(l)
form the triangular factor T of a complex block reflector H of order > n, which is defined as a product of k elementary reflectors as returned by PZTZRZF
pzlauu2(l), PZLAUU2(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pzlauum(l), PZLAUUM(l)
compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
pzpbtrf(l), PZPBTRF(l)
compute a Cholesky factorization of an N-by-N complex banded symmetric positive definite distributed matrix with bandwidth BW
pzpocon(l), PZPOCON(l)
estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite distributed matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by PZPOTRF
pzposvx(l), PZPOSVX(l)
use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
pzpotf2(l), PZPOTF2(l)
compute the Cholesky factorization of a complex hermitian positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
pzpotrf(l), PZPOTRF(l)
compute the Cholesky factorization of an N-by-N complex hermitian positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
pzpotri(l), PZPOTRI(l)
compute the inverse of a complex Hermitian positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**H*U or L*L**H computed by PZPOTRF
pzpttrf(l), PZPTTRF(l)
compute a Cholesky factorization of an N-by-N complex tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
sc_Integral(3), sc::Integral(3)
The Integral abstract class acts as a factory to provide objects that compute one and two electron integrals
sc_MOIntsTransformFactory(3), sc::MOIntsTransformFactory(3)
MOIntsTransformFactory is a factory that produces MOIntsTransform objects
sc_MOPairIterFactory(3), sc::MOPairIterFactory(3)
This class produces MOPairIter objects
sc_SCMatrixKit(3), sc::SCMatrixKit(3)
The SCMatrixKit abstract class acts as a factory for producing matrices
sdbtf2(l), SDBTF2(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting with row interchanges
sdbtrf(l), SDBTRF(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting or row interchanges
sdttrf(l), SDTTRF(l)
compute an LU factorization of a complex tridiagonal matrix A using elimination without partial pivoting
sprio(1)
view the factors that comprise a job's scheduling priority
zdbtf2(l), ZDBTF2(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting with row interchanges
zdbtrf(l), ZDBTRF(l)
compute an LU factorization of a real m-by-n band matrix A without using partial pivoting or row interchanges
zdttrf(l), ZDTTRF(l)
compute an LU factorization of a complex tridiagonal matrix A using elimination without partial pivoting
zlanv2(l), ZLANV2(l)
compute the Schur factorization of a complex 2-by-2 nonhermitian matrix in standard form
Ace::Graphics::GlyphFactory(3)
Create Ace::Graphics::Glyphs
Apache2::SiteControl::ManagerFactory(3)
An abstract base class to use as a pattern for custom PermissionManager production
Apache2::SiteControl::UserFactory(3)
User factory/persistence
Badger::Apps(3)
factory module for application modules
Badger::Factory(3)
base class factory module
Badger::Factory::Class(3)
class module for Badger::Factory sub-classes
Bigtop::ScriptHelp::Style(3)
Factory for scripts' command line and standard in handlers
Bio::Annotation::AnnotationFactory(3)
Instantiates a new Bio::AnnotationI (or derived class) through a factory
Bio::Cluster::ClusterFactory(3)
Instantiates a new Bio::ClusterI (or derived class) through a factory
Bio::DB::TFBS(3)
Access to a Transcription Factor Binding Site database
Bio::Factory::AnalysisI(3)
An interface to analysis tool factory
Bio::Factory::ApplicationFactoryI(3)
Interface class for Application Factories
Bio::Factory::DriverFactory(3)
Base class for factory classes loading drivers
Bio::Factory::EMBOSS(3)
EMBOSS application factory class
Bio::Factory::FTLocationFactory(3)
A FeatureTable Location Parser
Bio::Factory::LocationFactoryI(3)
A factory interface for generating locations from a string
Bio::Factory::MapFactoryI(3)
A Factory for getting markers
Bio::Factory::ObjectBuilderI(3)
Interface for an object builder
Bio::Factory::ObjectFactory(3)
Instantiates a new Bio::Root::RootI (or derived class) through a factory
Bio::Factory::ObjectFactoryI(3)
A General object creator factory
Bio::Factory::SeqAnalysisParserFactory(3)
class capable of creating SeqAnalysisParserI compliant parsers
Bio::Factory::SeqAnalysisParserFactoryI(3)
interface describing objects capable of creating SeqAnalysisParserI compliant parsers
Bio::Factory::SequenceFactoryI(3)
This interface allows for generic building of sequences in factories which create sequences (like SeqIO)
Bio::Factory::SequenceProcessorI(3)
Interface for chained sequence processing algorithms
Bio::Factory::SequenceStreamI(3)
Interface describing the basics of a Sequence Stream
Bio::Factory::TreeFactoryI(3)
Factory Interface for getting and writing trees from/to a data stream
Bio::Graphics::Glyph::Factory(3)
Factory for Bio::Graphics::Glyph objects
Bio::MAGETAB::Factor(3)
MAGE-TAB experimental factor class
Bio::MAGETAB::FactorValue(3)
MAGE-TAB experimental factor class
Bio::Map::TranscriptionFactor(3)
A transcription factor modelled as a mappable element
Bio::MapIO(3)
A Map Factory object
Bio::Matrix::IO(3)
A factory for Matrix parsing
Bio::Nexml::Factory(3)
A factory module for creating BioPerl and Bio::Phylo objects from/to nexml documents
Bio::Ontology::RelationshipFactory(3)
Instantiates a new Bio::Ontology::RelationshipI (or derived class) through a factory
Bio::Ontology::TermFactory(3)
Instantiates a new Bio::Ontology::TermI (or derived class) through a factory
Bio::OntologyIO(3)
Parser factory for Ontology formats
Bio::Phylo::Factory(3)
Creator of objects, reduces hardcoded class names in code
Bio::PhyloNetwork::Factory(3)
Module to sequentially generate Phylogenetic Networks
Bio::PhyloNetwork::FactoryX(3)
Module to sequentially generate Phylogenetic Networks
Bio::PhyloNetwork::RandomFactory(3)
Module to generate random Phylogenetic Networks
Bio::PhyloNetwork::TreeFactory(3)
Module to sequentially generate Phylogenetic Trees
Bio::PhyloNetwork::TreeFactoryMulti(3)
Module to sequentially generate Phylogenetic Trees
Bio::PhyloNetwork::TreeFactoryX(3)
Module to sequentially generate Phylogenetic Trees
Bio::PopGen::Simulation::Coalescent(3)
A Coalescent simulation factory
Bio::Search::HSP::HSPFactory(3)
A factory to create Bio::Search::HSP::HSPI objects
Bio::Search::Hit::HitFactory(3)
A factory to create Bio::Search::Hit::HitI objects
Bio::Search::Result::ResultFactory(3)
A factory to create Bio::Search::Result::ResultI objects
Bio::Seq::SeqFactory(3)
Instantiation of generic Bio::PrimarySeqI (or derived) objects through a factory
Bio::Seq::SeqFastaSpeedFactory(3)
Rapid creation of Bio::Seq objects through a factory
Bio::SeqEvolution::Factory(3)
Factory object to instantiate sequence evolving classes
Bio::Taxonomy::FactoryI(3)
interface to define how to access NCBI Taxonoy
Bio::Tools::AlignFactory(3)
Base object for alignment factories
Bio::Tools::Run::AnalysisFactory(3)
A directory of analysis tools
Bio::Tools::Run::AnalysisFactory::soap(3)
A SOAP-based access to the list of analysis tools
Bio::Tree::DistanceFactory(3)
Construct a tree using distance based methods
Bio::Tree::RandomFactory(3)
TreeFactory for generating Random Trees
CSS::SAC::ConditionFactory(3)
the default ConditionFactory
CSS::SAC::SelectorFactory(3)
the default SelectorFactory
Catalyst::Helper::Model::Factory(3)
helper for the incredibly lazy
Catalyst::Helper::Model::Factory::PerRequest(3)
helper for the incredibly lazy
Catalyst::Model::Factory(3)
use a plain class as a Catalyst model, instantiating it every time it is requested
Catalyst::Model::Factory::PerRequest(3)
use a plain class as a Catalyst model, instantiating it once per Catalyst request
Class::Factory(3)
Base class for dynamic factory classes
Class::Factory::Util(3)
Provide utility methods for factory classes
Class::MixinFactory(3)
Class Factory with Selection of Mixins
Class::MixinFactory::Changes(3)
Revision history for Class::MixinFactory
Class::MixinFactory::Factory(3)
Class Factory with Selection of Mixins
Class::MixinFactory::HasAFactory(3)
Delegates to a Factory
Class::MixinFactory::InsideOutAttr(3)
Method maker for inside out data
Class::MixinFactory::NEXT(3)
Superclass method redispatch for mixins
Class::MixinFactory::ReadMe(3)
About the Mixin Class Factory
CosEventDomainAdmin_EventDomainFactory(3)
This module implements an Event Domain Factory interface, which is used to create new Event Domain instances
CosNotifyChannelAdmin_EventChannelFactory(3)
This module implements the OMG CosNotifyChannelAdmin::EventChannelFactory interface
CosNotifyFilter_FilterFactory(3)
This module implements the OMG CosNotifyFilter::FilterFactory interface
CosPropertyService_PropertySetDefFactory(3)
This module implements the OMG CosPropertyService::PropertySetDefFactory interface
CosPropertyService_PropertySetFactory(3)
This module implements the OMG CosPropertyService::PropertySetFactory interface
CosTransactions_TransactionFactory(3)
This module implements the OMG CosTransactions::TransactionFactory interface
Crypt::OpenPGP::Cipher(3)
PGP symmetric cipher factory
Crypt::OpenPGP::Digest(3)
PGP message digest factory
Crypt::OpenPGP::Key(3)
OpenPGP key factory
Crypt::OpenPGP::PacketFactory(3)
Parse and save PGP packet streams
Crypt::Random::Source::Factory(3)
Load and instantiate sources of random data
DBIx::Class::Migration::SchemaLoader(3)
Schema Loader Factory
DBIx::SQLEngine::Record::Class(3)
Factory for Record Classes
Dancer2::Core::Factory(3)
Instantiate components by type and name
Dancer2::Core::Role::SessionFactory(3)
Role for session factories
Dancer2::Core::Role::SessionFactory::File(3)
Role for file-based session factories
Dancer::Factory::Hook(3)
Singleton class to create Dancer hooks
Data::FormValidator::ConstraintsFactory(3)
Module to create constraints for HTML::FormValidator
DateTime::TimeZone(3)
Time zone object base class and factory
Devel::Refactor(3)
Perl extension for refactoring Perl code
Excel::Template::Factory(3)
Excel::Template::Factory
FCGI::Client::RecordFactory(3)
FCGI record factory
Forest::Tree::Constructor(3)
An abstract role for tree factories
Games::LMSolve(3)
base class for LM-Solve solvers factories
Genezzo::PushHash::hph(3), Genezzo::PushHash::hph.pm(3)
an impure virtual class module that defines a *hierarchical* "push hash", a hash that generates its own unique key for each value. Values are "pushed" into the hash, similar to pushing into an array. Hierarchical pushhashes must be supplied with a factory method which manufactures additional pushhashes as necessary
Gtk2::Ex::FormFactory(3)
Makes building complex GUI's easy
Gtk2::Ex::FormFactory::Button(3)
A Button in a FormFactory framework
Gtk2::Ex::FormFactory::CheckButton(3)
A CheckButton in a FormFactory framework
Gtk2::Ex::FormFactory::CheckButtonGroup(3)
A group of checkbuttons
Gtk2::Ex::FormFactory::Combo(3)
A Combo in a FormFactory framework
Gtk2::Ex::FormFactory::Container(3)
A container in a FormFactory framework
Gtk2::Ex::FormFactory::Context(3)
Context in a FormFactory framework
Gtk2::Ex::FormFactory::DialogButtons(3)
Standard Ok, Apply, Cancel Buttons
Gtk2::Ex::FormFactory::Entry(3)
An Entry in a FormFactory framework
Gtk2::Ex::FormFactory::ExecFlow(3)
Display a Event::ExecFlow job plan
Gtk2::Ex::FormFactory::Expander(3)
An Expander in a FormFactory framework
Gtk2::Ex::FormFactory::Form(3)
A Form in a FormFactory framework
Gtk2::Ex::FormFactory::GtkWidget(3)
Wrap arbitrary Gtk widgets
Gtk2::Ex::FormFactory::HBox(3)
A HBox in a FormFactory framework
Gtk2::Ex::FormFactory::HPaned(3)
A HPaned container in a FormFactory framework
Gtk2::Ex::FormFactory::HSeparator(3)
A HSeparator in a FormFactory framework
Gtk2::Ex::FormFactory::Image(3)
An Image in a FormFactory framework
Gtk2::Ex::FormFactory::Intro(3)
Introduction into the FormFactory framework
Gtk2::Ex::FormFactory::Label(3)
A Label in a FormFactory framework
Gtk2::Ex::FormFactory::Layout(3)
Do layout in a FormFactory framework
Gtk2::Ex::FormFactory::List(3)
A List in a FormFactory framework
Gtk2::Ex::FormFactory::Loader(3)
Dynamic loading of FormFactory modules
Gtk2::Ex::FormFactory::Menu(3)
A Menu in a FormFactory framework
Gtk2::Ex::FormFactory::Notebook(3)
A Notebook in a FormFactory framework
Gtk2::Ex::FormFactory::Popup(3)
A Popup in a FormFactory framework
Gtk2::Ex::FormFactory::ProgressBar(3)
A ProgressBar in a FormFactory framework
Gtk2::Ex::FormFactory::Proxy(3)
Proxy class for application objects
Gtk2::Ex::FormFactory::ProxyBuffered(3)
Buffering object proxy
Gtk2::Ex::FormFactory::RadioButton(3)
A RadioButton in a FormFactory framework
Gtk2::Ex::FormFactory::Rules(3)
Rule checking in a FormFactory framework
Gtk2::Ex::FormFactory::Table(3)
Complex table layouts made easy
Gtk2::Ex::FormFactory::TextView(3)
A TextView in a FormFactory framework
Gtk2::Ex::FormFactory::Timestamp(3)
Enter a valid timestamp
Gtk2::Ex::FormFactory::ToggleButton(3)
A ToggleButton in a FormFactory framework
Gtk2::Ex::FormFactory::VBox(3)
A VBox in a FormFactory framework
Gtk2::Ex::FormFactory::VPaned(3)
A VPaned container in a FormFactory framework
Gtk2::Ex::FormFactory::VSeparator(3)
A VSeparator in a FormFactory framework
Gtk2::Ex::FormFactory::Widget(3)
Base class for all FormFactory Widgets
Gtk2::Ex::FormFactory::Window(3)
A Window in a FormFactory framework
Gtk2::Ex::FormFactory::YesNo(3)
Yes/No radio buttons in a FormFactory framework
Gtk2::ImageView::Zoom(3)
Functions for dealing with zoom factors
Gtk2::SimpleMenu(3)
A simple interface to Gtk2's ItemFactory for creating application menus
Input::Validator::ConstraintBuilder(3)
Constraint factory
Jabber::NodeFactory(3)
Simple XML Node Factory for Jabber
Math::SymbolicX::ParserExtensionFactory(3)
Generate parser extensions
Metabase::Resource(3)
factory class for Metabase resource descriptors
Mobile::UserAgentFactory(3)
Instantiates and caches Mobile::UserAgent objects
Net::Radius::Server::Base(3)
Base definitions and utility methods and factories
OpenXPKI::Server::Workflow::NICE::Factory(3), Header(3)
"Name" OpenXPKI::Server::Workflow::NICE::Factory
OpenXPKI::Workflow::Factory(3), Header "Name" OpenXPKI::Workflow::Factory(3)
OpenXPKI specific workflow factory
POE::Component::Client::HTTP::RequestFactory(3)
an HTTP request factory object
POE::Wheel::SocketFactory(3)
non-blocking socket creation
Padre(3)
Perl Application Development and Refactoring Environment
Perl::Critic::Policy::Subroutines::ProhibitExcessComplexity(3)
Minimize complexity by factoring code into smaller subroutines
Perl::Critic::PolicyFactory(3)
Instantiates Policy objects
Plagger::Cookies(3)
cookie_jar factory class
Protocol::XMLRPC::ValueFactory(3)
value objects factory
RDF::Core::NodeFactory(3)
produces literals and resources, generates labels for anonymous resources
RDFStore::NodeFactory(3)
An RDF node factory implementation
RPC::Simple::Factory(3)
Perl extension for creating RPC client
RPC::XML::Parser(3)
Interface for parsers created by RPC::XML::ParserFactory
RPC::XML::ParserFactory(3)
A factory class for RPC::XML::Parser objects
ResourcePool::Factory(3)
A factory to create ResourcePool::Resource objects
ResourcePool::Factory::DBI(3)
A DBI Factory for ResourcePool
ResourcePool::Factory::Net::LDAP(3)
A Net::LDAP Factory for ResourcePool
ResourcePool::Factory::SOAP::Lite(3)
A ResourcePool. Factory for SOAP::Lites
SOAP::WSDL::Client::Base(3)
Factory class for WSDL-based SOAP access
SOAP::WSDL::Factory::Deserializer(3)
Factory for retrieving Deserializer objects
SOAP::WSDL::Factory::Generator(3), SOAP::WSDL::Factory:Generator(3)
Factory for retrieving generator objects
SOAP::WSDL::Factory::Serializer(3)
Factory for retrieving serializer objects
SOAP::WSDL::Factory::Transport(3)
Factory for retrieving transport objects
SQL::Statement::TermFactory(3)
Factory for SQL::Statement::Term instances
SRU::Request(3)
Factories for creating SRU request objects
SRU::Response(3)
A factory for creating SRU response objects
Search::Elasticsearch::Cxn::Factory(3)
Used by CxnPools to create new Cxn instances
TAP::Parser::IteratorFactory(3)
Figures out which SourceHandler objects to use for a given Source
TAP::Parser::ResultFactory(3)
Factory for creating TAP::Parser output objects
Template::Config(3)
Factory module for instantiating other TT2 modules
Test::TempDir::Factory(3)
A factory for creating Test::TempDir::Handle objects
Text::Diff3::Factory(3)
factory for component used by Text::Diff3 modules
Text::Emoticon(3)
Factory class for Yahoo! and MSN emoticons
Tree::Binary::VisitorFactory(3)
A factory object for dispensing Visitor objects
Tree::Simple::VisitorFactory(3)
A factory object for dispensing Visitor objects
WebService::GData::Serialize(3)
Factory class that loads the proper serialize package
Workflow::Factory(3)
Generates new workflow and supporting objects
XML::Grove::Factory(3)
simplify creation of XML::Grove objects
XML::NamespaceFactory(3)
Simple factory objects for SAX namespaced names
XML::Reader::Testcases(3)
Testcontainer for XML::Reader. Refactor/move the tests from XML::Reader out into this module XML::Reader::Testcases. The tests will later be called by the new modules XML::Reader::RS and by XML::Reader::PP
XML::SAX::ParserFactory(3)
Obtain a SAX parser
XML::SAX::PurePerl::Reader(3), XML::Parser::PurePerl::Reader(3)
Abstract Reader factory class
XML::Validate(3)
an XML validator factory
all_sf(nged)
obtain shape factors between named regions of an entire mged database
chan_mult(1)
multiply columns of data by a given factor chan_add - add a given value to columns of data
factor(1), primes(1)
factor a number, generate large primes
mp(3), mpsetminbits(3), mpnew(3), mpfree(3), mpbits(3), mpnorm(3), mpcopy(3), mpassign(3), mprand(3), strtomp(3), mpfmt(3), mptoa(3), betomp(3), mptobe(3), letomp(3), mptole(3), mptoui(3), uitomp(3), mptoi(3), itomp(3), uvtomp(3), mptouv(3), vtomp(3), mptov(3), mpdigdiv(3), mpadd(3), mpsub(3), mpleft(3), mpright(3), mpmul(3), mpexp(3), mpmod(3), mpdiv(3), mpfactorial(3), mpcmp(3), mpextendedgcd(3), mpinvert(3), mpsignif(3), mplowbits0(3), mpvecdigmuladd(3), mpvecdigmulsub(3), mpvecadd(3), mpvecsub(3), mpveccmp(3), mpvecmul(3), mpmagcmp(3), mpmagadd(3), mpmagsub(3), crtpre(3), crtin(3), crtout(3), crtprefree(3), crtresfree(3)
extended precision arithmetic
sca(nged)
Used to apply a scaling factor
shapefact(1)
obtain shape factors between named regions of mged database
status(nged)
Without a subcommand, the status command returns the following information: current state, view size of the current display manager, the conversion factor from local model units to the base units (mm) stored in the database, and the view matrices of the current display manager
home | help