# FreeBSD Man Pages

home | help- BSfactor(3)
- Compute the incomplete factor of a matrix
- BSsetup_factor(3)
- Set up the communication for factorization
- HPL_pdfact(3)
- recursive panel factorization
- HPL_pdgesv0(3)
- Factor an N x N+1 matrix
- HPL_pdgesvK1(3)
- Factor an N x N+1 matrix
- HPL_pdgesvK2(3)
- Factor an N x N+1 matrix
- HPL_pdpancrN(3)
- Crout panel factorization
- HPL_pdpancrT(3)
- Crout panel factorization
- HPL_pdpanllN(3)
- Left-looking panel factorization
- HPL_pdpanllT(3)
- Left-looking panel factorization
- HPL_pdpanrlN(3)
- Right-looking panel factorization
- HPL_pdpanrlT(3)
- Right-looking panel factorization
- HPL_pdrpancrN(3)
- Crout recursive panel factorization
- HPL_pdrpancrT(3)
- Crout recursive panel factorization
- HPL_pdrpanllN(3)
- Left-looking recursive panel factorization
- HPL_pdrpanllT(3)
- Left-looking recursive panel factorization
- HPL_pdrpanrlN(3)
- Right-looking recursive panel factorization
- HPL_pdrpanrlT(3)
- Right-looking recursive panel factorization
- PS_rotate(3)
- Sets rotation factor
- PS_scale(3)
- Sets scaling factor
- SoHandleBoxManip(3iv)
- transform node with 3D Interface for Editing ScaleFactor and Translation
- all_sf(nged)
- obtain shape factors between named regions of an entire mged database
- cdbtf2(l), CDBTF2(l)
- compute an LU factorization of a real m-by-n band matrix A without using partial pivoting with row interchanges
- cdbtrf(l), CDBTRF(l)
- compute an LU factorization of a real m-by-n band matrix A without using partial pivoting or row interchanges
- cdttrf(l), CDTTRF(l)
- compute an LU factorization of a complex tridiagonal matrix A using elimination without partial pivoting
- cgbsvx(l), CGBSVX(l)
- uses the LU factorization to compute the solution to a complex system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
- cgbsvxx(l), CGBSVXX(l)
- CGBSVXX use the LU factorization to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- cgbtf2(l), CGBTF2(l)
- computes an LU factorization of a complex m-by-n band matrix A using partial pivoting with row interchanges
- cgbtrf(l), CGBTRF(l)
- computes an LU factorization of a complex m-by-n band matrix A using partial pivoting with row interchanges
- cgbtrs(l), CGBTRS(l)
- solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general band matrix A using the LU factorization computed by CGBTRF
- cgecon(l), CGECON(l)
- estimates the reciprocal of the condition number of a general complex matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by CGETRF
- cgelq2(l), CGELQ2(l)
- computes an LQ factorization of a complex m by n matrix A
- cgelqf(l), CGELQF(l)
- computes an LQ factorization of a complex M-by-N matrix A
- cgels(l), CGELS(l)
- solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose, using a QR or LQ factorization of A
- cgeql2(l), CGEQL2(l)
- computes a QL factorization of a complex m by n matrix A
- cgeqlf(l), CGEQLF(l)
- computes a QL factorization of a complex M-by-N matrix A
- cgeqp3(l), CGEQP3(l)
- computes a QR factorization with column pivoting of a matrix A
- cgeqr2(l), CGEQR2(l)
- computes a QR factorization of a complex m by n matrix A
- cgeqrf(l), CGEQRF(l)
- computes a QR factorization of a complex M-by-N matrix A
- cgerq2(l), CGERQ2(l)
- computes an RQ factorization of a complex m by n matrix A
- cgerqf(l), CGERQF(l)
- computes an RQ factorization of a complex M-by-N matrix A
- cgesc2(l), CGESC2(l)
- solves a system of linear equations A * X = scale* RHS with a general N-by-N matrix A using the LU factorization with complete pivoting computed by CGETC2
- cgesvx(l), CGESVX(l)
- uses the LU factorization to compute the solution to a complex system of linear equations A * X = B,
- cgesvxx(l), CGESVXX(l)
- CGESVXX use the LU factorization to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- cgetc2(l), CGETC2(l)
- computes an LU factorization, using complete pivoting, of the n-by-n matrix A
- cgetf2(l), CGETF2(l)
- computes an LU factorization of a general m-by-n matrix A using partial pivoting with row interchanges
- cgetrf(l), CGETRF(l)
- computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges
- cgetri(l), CGETRI(l)
- computes the inverse of a matrix using the LU factorization computed by CGETRF
- cgetrs(l), CGETRS(l)
- solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by CGETRF
- cggqrf(l), CGGQRF(l)
- computes a generalized QR factorization of an N-by-M matrix A and an N-by-P matrix B
- cggrqf(l), CGGRQF(l)
- computes a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B
- cgtcon(l), CGTCON(l)
- estimates the reciprocal of the condition number of a complex tridiagonal matrix A using the LU factorization as computed by CGTTRF
- cgtsvx(l), CGTSVX(l)
- uses the LU factorization to compute the solution to a complex system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
- cgttrf(l), CGTTRF(l)
- computes an LU factorization of a complex tridiagonal matrix A using elimination with partial pivoting and row interchanges
- chan_mult(1)
- multiply columns of data by a given factor chan_add - add a given value to columns of data
- checon(l), CHECON(l)
- estimates the reciprocal of the condition number of a complex Hermitian matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by CHETRF
- chesvx(l), CHESVX(l)
- uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B,
- chesvxx(l), CHESVXX(l)
- CHESVXX use the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices
- chetf2(l), CHETF2(l)
- computes the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting method
- chetrf(l), CHETRF(l)
- computes the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting method
- chetri(l), CHETRI(l)
- computes the inverse of a complex Hermitian indefinite matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by CHETRF
- chetrs(l), CHETRS(l)
- solves a system of linear equations A*X = B with a complex Hermitian matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by CHETRF
- chpcon(l), CHPCON(l)
- estimates the reciprocal of the condition number of a complex Hermitian packed matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by CHPTRF
- chpsvx(l), CHPSVX(l)
- uses the diagonal pivoting factorization A = U*D*U**H or A = L*D*L**H to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian matrix stored in packed format and X and B are N-by-NRHS matrices
- chptrf(l), CHPTRF(l)
- computes the factorization of a complex Hermitian packed matrix A using the Bunch-Kaufman diagonal pivoting method
- chptri(l), CHPTRI(l)
- computes the inverse of a complex Hermitian indefinite matrix A in packed storage using the factorization A = U*D*U**H or A = L*D*L**H computed by CHPTRF
- chptrs(l), CHPTRS(l)
- solves a system of linear equations A*X = B with a complex Hermitian matrix A stored in packed format using the factorization A = U*D*U**H or A = L*D*L**H computed by CHPTRF
- clahef(l), CLAHEF(l)
- computes a partial factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting method
- clals0(l), CLALS0(l)
- applies back the multiplying factors of either the left or the right singular vector matrix of a diagonal matrix appended by a row to the right hand side matrix B in solving the least squares problem using the divide-and-conquer SVD approach
- clanv2(l), CLANV2(l)
- compute the Schur factorization of a complex 2-by-2 nonhermitian matrix in standard form
- claqgb(l), CLAQGB(l)
- equilibrates a general M by N band matrix A with KL subdiagonals and KU superdiagonals using the row and scaling factors in the vectors R and C
- claqge(l), CLAQGE(l)
- equilibrates a general M by N matrix A using the row and column scaling factors in the vectors R and C
- claqhb(l), CLAQHB(l)
- equilibrates an Hermitian band matrix A using the scaling factors in the vector S
- claqhe(l), CLAQHE(l)
- equilibrates a Hermitian matrix A using the scaling factors in the vector S
- claqhp(l), CLAQHP(l)
- equilibrates a Hermitian matrix A using the scaling factors in the vector S
- claqp2(l), CLAQP2(l)
- computes a QR factorization with column pivoting of the block A(OFFSET+1:M,1:N)
- claqps(l), CLAQPS(l)
- computes a step of QR factorization with column pivoting of a complex M-by-N matrix A by using Blas-3
- claqsb(l), CLAQSB(l)
- equilibrates a symmetric band matrix A using the scaling factors in the vector S
- claqsp(l), CLAQSP(l)
- equilibrates a symmetric matrix A using the scaling factors in the vector S
- claqsy(l), CLAQSY(l)
- equilibrates a symmetric matrix A using the scaling factors in the vector S
- clarft(l), CLARFT(l)
- forms the triangular factor T of a complex block reflector H of order n, which is defined as a product of k elementary reflectors
- clarzt(l), CLARZT(l)
- forms the triangular factor T of a complex block reflector H of order > n, which is defined as a product of k elementary reflectors
- clasyf(l), CLASYF(l)
- computes a partial factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting method
- clatrz(l), CLATRZ(l)
- factors the M-by-(M+L) complex upper trapezoidal matrix [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means of unitary transformations, where Z is an (M+L)-by-(M+L) unitary matrix and, R and A1 are M-by-M upper triangular matrices
- clauu2(l), CLAUU2(l)
- computes the product U * U(aq or L(aq * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array A
- clauum(l), CLAUUM(l)
- computes the product U * U(aq or L(aq * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array A
- cpbcon(l), CPBCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite band matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPBTRF
- cpbstf(l), CPBSTF(l)
- computes a split Cholesky factorization of a complex Hermitian positive definite band matrix A
- cpbsvx(l), CPBSVX(l)
- uses the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A * X = B,
- cpbtf2(l), CPBTF2(l)
- computes the Cholesky factorization of a complex Hermitian positive definite band matrix A
- cpbtrf(l), CPBTRF(l)
- computes the Cholesky factorization of a complex Hermitian positive definite band matrix A
- cpbtrs(l), CPBTRS(l)
- solves a system of linear equations A*X = B with a Hermitian positive definite band matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPBTRF
- cpftrf(l), CPFTRF(l)
- computes the Cholesky factorization of a complex Hermitian positive definite matrix A
- cpftri(l), CPFTRI(l)
- computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPFTRF
- cpftrs(l), CPFTRS(l)
- solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPFTRF
- cpocon(l), CPOCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF
- cposvx(l), CPOSVX(l)
- uses the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A * X = B,
- cposvxx(l), CPOSVXX(l)
- CPOSVXX use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric positive definite matrix and X and B are N-by-NRHS matrices
- cpotf2(l), CPOTF2(l)
- computes the Cholesky factorization of a complex Hermitian positive definite matrix A
- cpotrf(l), CPOTRF(l)
- computes the Cholesky factorization of a complex Hermitian positive definite matrix A
- cpotri(l), CPOTRI(l)
- computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF
- cpotrs(l), CPOTRS(l)
- solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF
- cppcon(l), CPPCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite packed matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPPTRF
- cppsvx(l), CPPSVX(l)
- uses the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A * X = B,
- cpptrf(l), CPPTRF(l)
- computes the Cholesky factorization of a complex Hermitian positive definite matrix A stored in packed format
- cpptri(l), CPPTRI(l)
- computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPPTRF
- cpptrs(l), CPPTRS(l)
- solves a system of linear equations A*X = B with a Hermitian positive definite matrix A in packed storage using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPPTRF
- cpstf2(l), CPSTF2(l)
- computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix A
- cpstrf(l), CPSTRF(l)
- computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix A
- cptcon(l), CPTCON(l)
- computes the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite tridiagonal matrix using the factorization A = L*D*L**H or A = U**H*D*U computed by CPTTRF
- cpteqr(l), CPTEQR(l)
- computes all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix by first factoring the matrix using SPTTRF and then calling CBDSQR to compute the singular values of the bidiagonal factor
- cptsvx(l), CPTSVX(l)
- uses the factorization A = L*D*L**H to compute the solution to a complex system of linear equations A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal matrix and X and B are N-by-NRHS matrices
- cpttrf(l), CPTTRF(l)
- computes the L*D*L(aq factorization of a complex Hermitian positive definite tridiagonal matrix A
- cpttrs(l), CPTTRS(l)
- solves a tridiagonal system of the form A * X = B using the factorization A = U(aq*D*U or A = L*D*L(aq computed by CPTTRF
- cptts2(l), CPTTS2(l)
- solves a tridiagonal system of the form A * X = B using the factorization A = U(aq*D*U or A = L*D*L(aq computed by CPTTRF
- cscout(1)
- C code analyzer and refactoring browser
- cspcon(l), CSPCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a complex symmetric packed matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF
- cspsvx(l), CSPSVX(l)
- uses the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and X and B are N-by-NRHS matrices
- csptrf(l), CSPTRF(l)
- computes the factorization of a complex symmetric matrix A stored in packed format using the Bunch-Kaufman diagonal pivoting method
- csptri(l), CSPTRI(l)
- computes the inverse of a complex symmetric indefinite matrix A in packed storage using the factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF
- csptrs(l), CSPTRS(l)
- solves a system of linear equations A*X = B with a complex symmetric matrix A stored in packed format using the factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF
- csycon(l), CSYCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a complex symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSYTRF
- csysvx(l), CSYSVX(l)
- uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B,
- csysvxx(l), CSYSVXX(l)
- CSYSVXX use the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices
- csytf2(l), CSYTF2(l)
- computes the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting method
- csytrf(l), CSYTRF(l)
- computes the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting method
- csytri(l), CSYTRI(l)
- computes the inverse of a complex symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSYTRF
- csytrs(l), CSYTRS(l)
- solves a system of linear equations A*X = B with a complex symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSYTRF
- ctrexc(l), CTREXC(l)
- reorders the Schur factorization of a complex matrix A = Q*T*Q**H, so that the diagonal element of T with row index IFST is moved to row ILST
- ctrsen(l), CTRSEN(l)
- reorders the Schur factorization of a complex matrix A = Q*T*Q**H, so that a selected cluster of eigenvalues appears in the leading positions on the diagonal of the upper triangular matrix T, and the leading columns of Q form an orthonormal basis of the corresponding right invariant subspace
- ddbtf2(l), DDBTF2(l)
- compute an LU factorization of a real m-by-n band matrix A without using partial pivoting with row interchanges
- ddbtrf(l), DDBTRF(l)
- compute an LU factorization of a real m-by-n band matrix A without using partial pivoting or row interchanges
- ddttrf(l), DDTTRF(l)
- compute an LU factorization of a complex tridiagonal matrix A using elimination without partial pivoting
- dgbsvx(l), DGBSVX(l)
- uses the LU factorization to compute the solution to a real system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
- dgbsvxx(l), DGBSVXX(l)
- DGBSVXX use the LU factorization to compute the solution to a double precision system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- dgbtf2(l), DGBTF2(l)
- computes an LU factorization of a real m-by-n band matrix A using partial pivoting with row interchanges
- dgbtrf(l), DGBTRF(l)
- computes an LU factorization of a real m-by-n band matrix A using partial pivoting with row interchanges
- dgbtrs(l), DGBTRS(l)
- solves a system of linear equations A * X = B or A(aq * X = B with a general band matrix A using the LU factorization computed by DGBTRF
- dgecon(l), DGECON(l)
- estimates the reciprocal of the condition number of a general real matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by DGETRF
- dgelq2(l), DGELQ2(l)
- computes an LQ factorization of a real m by n matrix A
- dgelqf(l), DGELQF(l)
- computes an LQ factorization of a real M-by-N matrix A
- dgels(l), DGELS(l)
- solves overdetermined or underdetermined real linear systems involving an M-by-N matrix A, or its transpose, using a QR or LQ factorization of A
- dgeql2(l), DGEQL2(l)
- computes a QL factorization of a real m by n matrix A
- dgeqlf(l), DGEQLF(l)
- computes a QL factorization of a real M-by-N matrix A
- dgeqp3(l), DGEQP3(l)
- computes a QR factorization with column pivoting of a matrix A
- dgeqr2(l), DGEQR2(l)
- computes a QR factorization of a real m by n matrix A
- dgeqrf(l), DGEQRF(l)
- computes a QR factorization of a real M-by-N matrix A
- dgerq2(l), DGERQ2(l)
- computes an RQ factorization of a real m by n matrix A
- dgerqf(l), DGERQF(l)
- computes an RQ factorization of a real M-by-N matrix A
- dgesc2(l), DGESC2(l)
- solves a system of linear equations A * X = scale* RHS with a general N-by-N matrix A using the LU factorization with complete pivoting computed by DGETC2
- dgesvx(l), DGESVX(l)
- uses the LU factorization to compute the solution to a real system of linear equations A * X = B,
- dgesvxx(l), DGESVXX(l)
- DGESVXX use the LU factorization to compute the solution to a double precision system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- dgetc2(l), DGETC2(l)
- computes an LU factorization with complete pivoting of the n-by-n matrix A
- dgetf2(l), DGETF2(l)
- computes an LU factorization of a general m-by-n matrix A using partial pivoting with row interchanges
- dgetrf(l), DGETRF(l)
- computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges
- dgetri(l), DGETRI(l)
- computes the inverse of a matrix using the LU factorization computed by DGETRF
- dgetrs(l), DGETRS(l)
- solves a system of linear equations A * X = B or A(aq * X = B with a general N-by-N matrix A using the LU factorization computed by DGETRF
- dggqrf(l), DGGQRF(l)
- computes a generalized QR factorization of an N-by-M matrix A and an N-by-P matrix B
- dggrqf(l), DGGRQF(l)
- computes a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B
- dgtcon(l), DGTCON(l)
- estimates the reciprocal of the condition number of a real tridiagonal matrix A using the LU factorization as computed by DGTTRF
- dgtsvx(l), DGTSVX(l)
- uses the LU factorization to compute the solution to a real system of linear equations A * X = B or A**T * X = B,
- dgttrf(l), DGTTRF(l)
- computes an LU factorization of a real tridiagonal matrix A using elimination with partial pivoting and row interchanges
- dla_gbrcond(l), DLA_GBRCOND(l)
- DLA_GERCOND Estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( |inv(A)||A| ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinity-norm condition number
- dla_gercond(l), DLA_GERCOND(l)
- DLA_GERCOND estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( |inv(A)||A| ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinity-norm condition number
- dla_porcond(l), DLA_PORCOND(l)
- DLA_PORCOND Estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( |inv(A)||A| ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinity-norm condition number
- dla_syrcond(l), DLA_SYRCOND(l)
- DLA_SYRCOND estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( |inv(A)||A| ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinity-norm condition number
- dlagtf(l), DLAGTF(l)
- factorizes the matrix (T - lambda*I), where T is an n by n tridiagonal matrix and lambda is a scalar, as T - lambda*I = PLU,
- dlagv2(l), DLAGV2(l)
- computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular
- dlals0(l), DLALS0(l)
- applies back the multiplying factors of either the left or the right singular vector matrix of a diagonal matrix appended by a row to the right hand side matrix B in solving the least squares problem using the divide-and-conquer SVD approach
- dlaneg(l), DLANEG(l)
- computes the Sturm count, the number of negative pivots encountered while factoring tridiagonal T - sigma I = L D L^T
- dlanv2(l), DLANV2(l)
- computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form
- dlaqgb(l), DLAQGB(l)
- equilibrates a general M by N band matrix A with KL subdiagonals and KU superdiagonals using the row and scaling factors in the vectors R and C
- dlaqge(l), DLAQGE(l)
- equilibrates a general M by N matrix A using the row and column scaling factors in the vectors R and C
- dlaqp2(l), DLAQP2(l)
- computes a QR factorization with column pivoting of the block A(OFFSET+1:M,1:N)
- dlaqps(l), DLAQPS(l)
- computes a step of QR factorization with column pivoting of a real M-by-N matrix A by using Blas-3
- dlaqsb(l), DLAQSB(l)
- equilibrates a symmetric band matrix A using the scaling factors in the vector S
- dlaqsp(l), DLAQSP(l)
- equilibrates a symmetric matrix A using the scaling factors in the vector S
- dlaqsy(l), DLAQSY(l)
- equilibrates a symmetric matrix A using the scaling factors in the vector S
- dlarft(l), DLARFT(l)
- forms the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors
- dlarzt(l), DLARZT(l)
- forms the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors
- dlasyf(l), DLASYF(l)
- computes a partial factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting method
- dlatdf(l), DLATDF(l)
- uses the LU factorization of the n-by-n matrix Z computed by DGETC2 and computes a contribution to the reciprocal Dif-estimate by solving Z * x = b for x, and choosing the r.h.s
- dlatrz(l), DLATRZ(l)
- factors the M-by-(M+L) real upper trapezoidal matrix [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means of orthogonal transformations
- dlauu2(l), DLAUU2(l)
- computes the product U * U(aq or L(aq * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array A
- dlauum(l), DLAUUM(l)
- dpbcon(l), DPBCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite band matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPBTRF
- dpbstf(l), DPBSTF(l)
- computes a split Cholesky factorization of a real symmetric positive definite band matrix A
- dpbsvx(l), DPBSVX(l)
- uses the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A * X = B,
- dpbtf2(l), DPBTF2(l)
- computes the Cholesky factorization of a real symmetric positive definite band matrix A
- dpbtrf(l), DPBTRF(l)
- computes the Cholesky factorization of a real symmetric positive definite band matrix A
- dpbtrs(l), DPBTRS(l)
- solves a system of linear equations A*X = B with a symmetric positive definite band matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPBTRF
- dpftrf(l), DPFTRF(l)
- computes the Cholesky factorization of a real symmetric positive definite matrix A
- dpftri(l), DPFTRI(l)
- computes the inverse of a (real) symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPFTRF
- dpftrs(l), DPFTRS(l)
- solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPFTRF
- dpocon(l), DPOCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF
- dposvx(l), DPOSVX(l)
- uses the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A * X = B,
- dposvxx(l), DPOSVXX(l)
- DPOSVXX use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a double precision system of linear equations A * X = B, where A is an N-by-N symmetric positive definite matrix and X and B are N-by-NRHS matrices
- dpotf2(l), DPOTF2(l)
- computes the Cholesky factorization of a real symmetric positive definite matrix A
- dpotrf(l), DPOTRF(l)
- computes the Cholesky factorization of a real symmetric positive definite matrix A
- dpotri(l), DPOTRI(l)
- computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF
- dpotrs(l), DPOTRS(l)
- solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF
- dppcon(l), DPPCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite packed matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPPTRF
- dppsvx(l), DPPSVX(l)
- uses the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A * X = B,
- dpptrf(l), DPPTRF(l)
- computes the Cholesky factorization of a real symmetric positive definite matrix A stored in packed format
- dpptri(l), DPPTRI(l)
- computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPPTRF
- dpptrs(l), DPPTRS(l)
- solves a system of linear equations A*X = B with a symmetric positive definite matrix A in packed storage using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPPTRF
- dpstf2(l), DPSTF2(l)
- computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix A
- dpstrf(l), DPSTRF(l)
- computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix A
- dptcon(l), DPTCON(l)
- computes the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite tridiagonal matrix using the factorization A = L*D*L**T or A = U**T*D*U computed by DPTTRF
- dpteqr(l), DPTEQR(l)
- computes all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix by first factoring the matrix using DPTTRF, and then calling DBDSQR to compute the singular values of the bidiagonal factor
- dptsvx(l), DPTSVX(l)
- uses the factorization A = L*D*L**T to compute the solution to a real system of linear equations A*X = B, where A is an N-by-N symmetric positive definite tridiagonal matrix and X and B are N-by-NRHS matrices
- dpttrf(l), DPTTRF(l)
- computes the L*D*L(aq factorization of a real symmetric positive definite tridiagonal matrix A
- dpttrs(l), DPTTRS(l)
- solves a tridiagonal system of the form A * X = B using the L*D*L(aq factorization of A computed by DPTTRF
- dptts2(l), DPTTS2(l)
- solves a tridiagonal system of the form A * X = B using the L*D*L(aq factorization of A computed by DPTTRF
- dspcon(l), DSPCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a real symmetric packed matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by DSPTRF
- dspsvx(l), DSPSVX(l)
- uses the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and X and B are N-by-NRHS matrices
- dsptrf(l), DSPTRF(l)
- computes the factorization of a real symmetric matrix A stored in packed format using the Bunch-Kaufman diagonal pivoting method
- dsptri(l), DSPTRI(l)
- computes the inverse of a real symmetric indefinite matrix A in packed storage using the factorization A = U*D*U**T or A = L*D*L**T computed by DSPTRF
- dsptrs(l), DSPTRS(l)
- solves a system of linear equations A*X = B with a real symmetric matrix A stored in packed format using the factorization A = U*D*U**T or A = L*D*L**T computed by DSPTRF
- dsycon(l), DSYCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a real symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by DSYTRF
- dsysvx(l), DSYSVX(l)
- uses the diagonal pivoting factorization to compute the solution to a real system of linear equations A * X = B,
- dsysvxx(l), DSYSVXX(l)
- DSYSVXX use the diagonal pivoting factorization to compute the solution to a double precision system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices
- dsytf2(l), DSYTF2(l)
- computes the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting method
- dsytrf(l), DSYTRF(l)
- computes the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting method
- dsytri(l), DSYTRI(l)
- computes the inverse of a real symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by DSYTRF
- dsytrs(l), DSYTRS(l)
- solves a system of linear equations A*X = B with a real symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by DSYTRF
- dtrexc(l), DTREXC(l)
- reorders the real Schur factorization of a real matrix A = Q*T*Q**T, so that the diagonal block of T with row index IFST is moved to row ILST
- dtrsen(l), DTRSEN(l)
- reorders the real Schur factorization of a real matrix A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix T,
- ecm(1)
- integer factorization using ECM, P-1 or P+1
- gfactor(1), factor(1)
- factor numbers
- glPixelZoom(3), "glPixelZoom(3)
- specify the pixel zoom factors
- login_duo(8)
- second-factor authentication via Duo login service
- mouse_setscale(3)
- sets a mouse scale factor
- pcdbtrf(l), PCDBTRF(l)
- compute a LU factorization of an N-by-N complex banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU
- pcdttrf(l), PCDTTRF(l)
- compute a LU factorization of an N-by-N complex tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
- pcgbtrf(l), PCGBTRF(l)
- compute a LU factorization of an N-by-N complex banded distributed matrix with bandwidth BWL, BWU
- pcgecon(l), PCGECON(l)
- estimate the reciprocal of the condition number of a general distributed complex matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PCGETRF
- pcgelq2(l), PCGELQ2(l)
- compute a LQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
- pcgelqf(l), PCGELQF(l)
- compute a LQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
- pcgeql2(l), PCGEQL2(l)
- compute a QL factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
- pcgeqlf(l), PCGEQLF(l)
- compute a QL factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
- pcgeqpf(l), PCGEQPF(l)
- compute a QR factorization with column pivoting of a M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
- pcgeqr2(l), PCGEQR2(l)
- compute a QR factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
- pcgeqrf(l), PCGEQRF(l)
- compute a QR factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
- pcgerq2(l), PCGERQ2(l)
- compute a RQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
- pcgerqf(l), PCGERQF(l)
- compute a RQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
- pcgesvx(l), PCGESVX(l)
- use the LU factorization to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- pcgetf2(l), PCGETF2(l)
- compute an LU factorization of a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
- pcgetrf(l), PCGETRF(l)
- compute an LU factorization of a general M-by-N distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
- pcgetri(l), PCGETRI(l)
- compute the inverse of a distributed matrix using the LU factorization computed by PCGETRF
- pcgetrs(l), PCGETRS(l)
- solve a system of distributed linear equations op( sub( A ) ) * X = sub( B ) with a general N-by-N distributed matrix sub( A ) using the LU factorization computed by PCGETRF
- pcggqrf(l), PCGGQRF(l)
- compute a generalized QR factorization of an N-by-M matrix sub( A ) = A(IA:IA+N-1,JA:JA+M-1) and an N-by-P matrix sub( B ) = B(IB:IB+N-1,JB:JB+P-1)
- pcggrqf(l), PCGGRQF(l)
- compute a generalized RQ factorization of an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
- pclaqge(l), PCLAQGE(l)
- equilibrate a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using the row and scaling factors in the vectors R and C
- pclaqsy(l), PCLAQSY(l)
- equilibrate a symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the scaling factors in the vectors SR and SC
- pclarft(l), PCLARFT(l)
- form the triangular factor T of a complex block reflector H of order n, which is defined as a product of k elementary reflectors
- pclarzt(l), PCLARZT(l)
- form the triangular factor T of a complex block reflector H of order > n, which is defined as a product of k elementary reflectors as returned by PCTZRZF
- pclauu2(l), PCLAUU2(l)
- compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
- pclauum(l), PCLAUUM(l)
- compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
- pcpbtrf(l), PCPBTRF(l)
- compute a Cholesky factorization of an N-by-N complex banded symmetric positive definite distributed matrix with bandwidth BW
- pcpocon(l), PCPOCON(l)
- estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite distributed matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by PCPOTRF
- pcposvx(l), PCPOSVX(l)
- use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- pcpotf2(l), PCPOTF2(l)
- compute the Cholesky factorization of a complex hermitian positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
- pcpotrf(l), PCPOTRF(l)
- compute the Cholesky factorization of an N-by-N complex hermitian positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
- pcpotri(l), PCPOTRI(l)
- compute the inverse of a complex Hermitian positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**H*U or L*L**H computed by PCPOTRF
- pcpttrf(l), PCPTTRF(l)
- compute a Cholesky factorization of an N-by-N complex tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
- pddbtrf(l), PDDBTRF(l)
- compute a LU factorization of an N-by-N real banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU
- pddttrf(l), PDDTTRF(l)
- compute a LU factorization of an N-by-N real tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
- pdgbtrf(l), PDGBTRF(l)
- compute a LU factorization of an N-by-N real banded distributed matrix with bandwidth BWL, BWU
- pdgecon(l), PDGECON(l)
- estimate the reciprocal of the condition number of a general distributed real matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PDGETRF
- pdgelq2(l), PDGELQ2(l)
- compute a LQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
- pdgelqf(l), PDGELQF(l)
- compute a LQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
- pdgeql2(l), PDGEQL2(l)
- compute a QL factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
- pdgeqlf(l), PDGEQLF(l)
- compute a QL factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
- pdgeqpf(l), PDGEQPF(l)
- compute a QR factorization with column pivoting of a M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
- pdgeqr2(l), PDGEQR2(l)
- compute a QR factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
- pdgeqrf(l), PDGEQRF(l)
- compute a QR factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
- pdgerq2(l), PDGERQ2(l)
- compute a RQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
- pdgerqf(l), PDGERQF(l)
- compute a RQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
- pdgesvx(l), PDGESVX(l)
- use the LU factorization to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- pdgetf2(l), PDGETF2(l)
- compute an LU factorization of a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
- pdgetrf(l), PDGETRF(l)
- compute an LU factorization of a general M-by-N distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
- pdgetri(l), PDGETRI(l)
- compute the inverse of a distributed matrix using the LU factorization computed by PDGETRF
- pdgetrs(l), PDGETRS(l)
- solve a system of distributed linear equations op( sub( A ) ) * X = sub( B ) with a general N-by-N distributed matrix sub( A ) using the LU factorization computed by PDGETRF
- pdggqrf(l), PDGGQRF(l)
- compute a generalized QR factorization of an N-by-M matrix sub( A ) = A(IA:IA+N-1,JA:JA+M-1) and an N-by-P matrix sub( B ) = B(IB:IB+N-1,JB:JB+P-1)
- pdggrqf(l), PDGGRQF(l)
- compute a generalized RQ factorization of an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
- pdlaqge(l), PDLAQGE(l)
- equilibrate a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using the row and scaling factors in the vectors R and C
- pdlaqsy(l), PDLAQSY(l)
- equilibrate a symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the scaling factors in the vectors SR and SC
- pdlarft(l), PDLARFT(l)
- form the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors
- pdlarzt(l), PDLARZT(l)
- form the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors as returned by PDTZRZF
- pdlauu2(l), PDLAUU2(l)
- compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
- pdlauum(l), PDLAUUM(l)
- compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
- pdpbtrf(l), PDPBTRF(l)
- compute a Cholesky factorization of an N-by-N real banded symmetric positive definite distributed matrix with bandwidth BW
- pdpocon(l), PDPOCON(l)
- estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite distributed matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by PDPOTRF
- pdposvx(l), PDPOSVX(l)
- use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- pdpotf2(l), PDPOTF2(l)
- compute the Cholesky factorization of a real symmetric positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
- pdpotrf(l), PDPOTRF(l)
- compute the Cholesky factorization of an N-by-N real symmetric positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
- pdpotri(l), PDPOTRI(l)
- compute the inverse of a real symmetric positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**T*U or L*L**T computed by PDPOTRF
- pdpttrf(l), PDPTTRF(l)
- compute a Cholesky factorization of an N-by-N real tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
- pixilate(1)
- parses an input file containing Cisco PIX 6.2x - PIX 6.3x (normal mask) or Cisco IOS (inverted mask) access-list entries and generates the corresponding packets. For information on writing PIX access lists, see http://www.cisco.com/univercd/cc/td/doc/product/iaabu/pix/pix_62/cmdref/ab.htm#xtocid7 and http://www.cisco.com/warp/public/707/confaccesslists.html#intro for Cisco IOS access-lists. is currently capable of generating TCP/UDP/ICMP (various ICMP types), and IGMP utilizing the Libnet 1.1.x library available from http://www.packetfactory.net. NOTE: Libnet 1.0.x is NOT compatible."
- psdbtrf(l), PSDBTRF(l)
- compute a LU factorization of an N-by-N real banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU
- psdttrf(l), PSDTTRF(l)
- compute a LU factorization of an N-by-N real tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
- psgbtrf(l), PSGBTRF(l)
- compute a LU factorization of an N-by-N real banded distributed matrix with bandwidth BWL, BWU
- psgecon(l), PSGECON(l)
- estimate the reciprocal of the condition number of a general distributed real matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PSGETRF
- psgelq2(l), PSGELQ2(l)
- compute a LQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
- psgelqf(l), PSGELQF(l)
- psgeql2(l), PSGEQL2(l)
- compute a QL factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
- psgeqlf(l), PSGEQLF(l)
- psgeqpf(l), PSGEQPF(l)
- compute a QR factorization with column pivoting of a M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
- psgeqr2(l), PSGEQR2(l)
- compute a QR factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
- psgeqrf(l), PSGEQRF(l)
- psgerq2(l), PSGERQ2(l)
- compute a RQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
- psgerqf(l), PSGERQF(l)
- psgesvx(l), PSGESVX(l)
- use the LU factorization to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- psgetf2(l), PSGETF2(l)
- compute an LU factorization of a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
- psgetrf(l), PSGETRF(l)
- compute an LU factorization of a general M-by-N distributed matrix sub( A ) = (IA:IA+M-1,JA:JA+N-1) using partial pivoting with row interchanges
- psgetri(l), PSGETRI(l)
- compute the inverse of a distributed matrix using the LU factorization computed by PSGETRF
- psgetrs(l), PSGETRS(l)
- solve a system of distributed linear equations op( sub( A ) ) * X = sub( B ) with a general N-by-N distributed matrix sub( A ) using the LU factorization computed by PSGETRF
- psggqrf(l), PSGGQRF(l)
- compute a generalized QR factorization of an N-by-M matrix sub( A ) = A(IA:IA+N-1,JA:JA+M-1) and an N-by-P matrix sub( B ) = B(IB:IB+N-1,JB:JB+P-1)
- psggrqf(l), PSGGRQF(l)
- compute a generalized RQ factorization of an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
- pslaqge(l), PSLAQGE(l)
- equilibrate a general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using the row and scaling factors in the vectors R and C
- pslaqsy(l), PSLAQSY(l)
- equilibrate a symmetric distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the scaling factors in the vectors SR and SC
- pslarft(l), PSLARFT(l)
- form the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors
- pslarzt(l), PSLARZT(l)
- form the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors as returned by PSTZRZF
- pslauu2(l), PSLAUU2(l)
- compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
- pslauum(l), PSLAUUM(l)
- compute the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1)
- pspbtrf(l), PSPBTRF(l)
- compute a Cholesky factorization of an N-by-N real banded symmetric positive definite distributed matrix with bandwidth BW
- pspocon(l), PSPOCON(l)
- estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite distributed matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by PSPOTRF
- psposvx(l), PSPOSVX(l)
- use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- pspotf2(l), PSPOTF2(l)
- compute the Cholesky factorization of a real symmetric positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
- pspotrf(l), PSPOTRF(l)
- compute the Cholesky factorization of an N-by-N real symmetric positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
- pspotri(l), PSPOTRI(l)
- compute the inverse of a real symmetric positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**T*U or L*L**T computed by PSPOTRF
- pspttrf(l), PSPTTRF(l)
- compute a Cholesky factorization of an N-by-N real tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
- pzdbtrf(l), PZDBTRF(l)
- compute a LU factorization of an N-by-N complex banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU
- pzdttrf(l), PZDTTRF(l)
- compute a LU factorization of an N-by-N complex tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
- pzgbtrf(l), PZGBTRF(l)
- compute a LU factorization of an N-by-N complex banded distributed matrix with bandwidth BWL, BWU
- pzgecon(l), PZGECON(l)
- estimate the reciprocal of the condition number of a general distributed complex matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PZGETRF
- pzgelq2(l), PZGELQ2(l)
- compute a LQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
- pzgelqf(l), PZGELQF(l)
- pzgeql2(l), PZGEQL2(l)
- compute a QL factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
- pzgeqlf(l), PZGEQLF(l)
- pzgeqpf(l), PZGEQPF(l)
- pzgeqr2(l), PZGEQR2(l)
- compute a QR factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * R
- pzgeqrf(l), PZGEQRF(l)
- pzgerq2(l), PZGERQ2(l)
- compute a RQ factorization of a complex distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = R * Q
- pzgerqf(l), PZGERQF(l)
- pzgesvx(l), PZGESVX(l)
- use the LU factorization to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- pzgetf2(l), PZGETF2(l)
- pzgetrf(l), PZGETRF(l)
- pzgetri(l), PZGETRI(l)
- compute the inverse of a distributed matrix using the LU factorization computed by PZGETRF
- pzgetrs(l), PZGETRS(l)
- solve a system of distributed linear equations op( sub( A ) ) * X = sub( B ) with a general N-by-N distributed matrix sub( A ) using the LU factorization computed by PZGETRF
- pzggqrf(l), PZGGQRF(l)
- pzggrqf(l), PZGGRQF(l)
- compute a generalized RQ factorization of an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)
- pzlaqge(l), PZLAQGE(l)
- pzlaqsy(l), PZLAQSY(l)
- pzlarft(l), PZLARFT(l)
- form the triangular factor T of a complex block reflector H of order n, which is defined as a product of k elementary reflectors
- pzlarzt(l), PZLARZT(l)
- form the triangular factor T of a complex block reflector H of order > n, which is defined as a product of k elementary reflectors as returned by PZTZRZF
- pzlauu2(l), PZLAUU2(l)
- pzlauum(l), PZLAUUM(l)
- pzpbtrf(l), PZPBTRF(l)
- compute a Cholesky factorization of an N-by-N complex banded symmetric positive definite distributed matrix with bandwidth BW
- pzpocon(l), PZPOCON(l)
- estimate the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite distributed matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by PZPOTRF
- pzposvx(l), PZPOSVX(l)
- use the Cholesky factorization A = U**H*U or A = L*L**H to compute the solution to a complex system of linear equations A(IA:IA+N-1,JA:JA+N-1) * X = B(IB:IB+N-1,JB:JB+NRHS-1),
- pzpotf2(l), PZPOTF2(l)
- compute the Cholesky factorization of a complex hermitian positive definite distributed matrix sub( A )=A(IA:IA+N-1,JA:JA+N-1)
- pzpotrf(l), PZPOTRF(l)
- compute the Cholesky factorization of an N-by-N complex hermitian positive definite distributed matrix sub( A ) denoting A(IA:IA+N-1, JA:JA+N-1)
- pzpotri(l), PZPOTRI(l)
- compute the inverse of a complex Hermitian positive definite distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) using the Cholesky factorization sub( A ) = U**H*U or L*L**H computed by PZPOTRF
- pzpttrf(l), PZPTTRF(l)
- compute a Cholesky factorization of an N-by-N complex tridiagonal symmetric positive definite distributed matrix A(1:N, JA:JA+N-1)
- sc_Integral(3), sc::Integral(3)
- The Integral abstract class acts as a factory to provide objects that compute one and two electron integrals'
- sc_MOIntsTransformFactory(3), sc::MOIntsTransformFactory(3)
- MOIntsTransformFactory is a factory that produces MOIntsTransform objects'
- sc_MOPairIterFactory(3), sc::MOPairIterFactory(3)
- This class produces MOPairIter objects'
- sc_SCMatrixKit(3), sc::SCMatrixKit(3)
- The SCMatrixKit abstract class acts as a factory for producing matrices'
- sca(nged)
- Used to apply a scaling factor
- sdbtf2(l), SDBTF2(l)
- compute an LU factorization of a real m-by-n band matrix A without using partial pivoting with row interchanges
- sdbtrf(l), SDBTRF(l)
- compute an LU factorization of a real m-by-n band matrix A without using partial pivoting or row interchanges
- sdttrf(l), SDTTRF(l)
- compute an LU factorization of a complex tridiagonal matrix A using elimination without partial pivoting
- sgbsvx(l), SGBSVX(l)
- uses the LU factorization to compute the solution to a real system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
- sgbsvxx(l), SGBSVXX(l)
- SGBSVXX use the LU factorization to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- sgbtf2(l), SGBTF2(l)
- computes an LU factorization of a real m-by-n band matrix A using partial pivoting with row interchanges
- sgbtrf(l), SGBTRF(l)
- sgbtrs(l), SGBTRS(l)
- solves a system of linear equations A * X = B or A(aq * X = B with a general band matrix A using the LU factorization computed by SGBTRF
- sgecon(l), SGECON(l)
- estimates the reciprocal of the condition number of a general real matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by SGETRF
- sgelq2(l), SGELQ2(l)
- computes an LQ factorization of a real m by n matrix A
- sgelqf(l), SGELQF(l)
- computes an LQ factorization of a real M-by-N matrix A
- sgels(l), SGELS(l)
- solves overdetermined or underdetermined real linear systems involving an M-by-N matrix A, or its transpose, using a QR or LQ factorization of A
- sgeql2(l), SGEQL2(l)
- computes a QL factorization of a real m by n matrix A
- sgeqlf(l), SGEQLF(l)
- computes a QL factorization of a real M-by-N matrix A
- sgeqp3(l), SGEQP3(l)
- computes a QR factorization with column pivoting of a matrix A
- sgeqr2(l), SGEQR2(l)
- computes a QR factorization of a real m by n matrix A
- sgeqrf(l), SGEQRF(l)
- computes a QR factorization of a real M-by-N matrix A
- sgerq2(l), SGERQ2(l)
- computes an RQ factorization of a real m by n matrix A
- sgerqf(l), SGERQF(l)
- computes an RQ factorization of a real M-by-N matrix A
- sgesc2(l), SGESC2(l)
- solves a system of linear equations A * X = scale* RHS with a general N-by-N matrix A using the LU factorization with complete pivoting computed by SGETC2
- sgesvx(l), SGESVX(l)
- uses the LU factorization to compute the solution to a real system of linear equations A * X = B,
- sgesvxx(l), SGESVXX(l)
- SGESVXX use the LU factorization to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- sgetc2(l), SGETC2(l)
- computes an LU factorization with complete pivoting of the n-by-n matrix A
- sgetf2(l), SGETF2(l)
- computes an LU factorization of a general m-by-n matrix A using partial pivoting with row interchanges
- sgetrf(l), SGETRF(l)
- computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges
- sgetri(l), SGETRI(l)
- computes the inverse of a matrix using the LU factorization computed by SGETRF
- sgetrs(l), SGETRS(l)
- solves a system of linear equations A * X = B or A(aq * X = B with a general N-by-N matrix A using the LU factorization computed by SGETRF
- sggqrf(l), SGGQRF(l)
- computes a generalized QR factorization of an N-by-M matrix A and an N-by-P matrix B
- sggrqf(l), SGGRQF(l)
- computes a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B
- sgtcon(l), SGTCON(l)
- estimates the reciprocal of the condition number of a real tridiagonal matrix A using the LU factorization as computed by SGTTRF
- sgtsvx(l), SGTSVX(l)
- uses the LU factorization to compute the solution to a real system of linear equations A * X = B or A**T * X = B,
- sgttrf(l), SGTTRF(l)
- computes an LU factorization of a real tridiagonal matrix A using elimination with partial pivoting and row interchanges
- shapefact(1)
- obtain shape factors between named regions of mged database
- sla_gbrcond(l), SLA_GBRCOND(l)
- SLA_GERCOND Estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( |inv(A)||A| ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinity-norm condition number
- sla_gercond(l), SLA_GERCOND(l)
- SLA_GERCOND estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( |inv(A)||A| ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinity-norm condition number
- sla_porcond(l), SLA_PORCOND(l)
- SLA_PORCOND Estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( |inv(A)||A| ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinity-norm condition number
- sla_syrcond(l), SLA_SYRCOND(l)
- SLA_SYRCOND estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( |inv(A)||A| ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinity-norm condition number
- slagtf(l), SLAGTF(l)
- factorizes the matrix (T - lambda*I), where T is an n by n tridiagonal matrix and lambda is a scalar, as T - lambda*I = PLU,
- slagv2(l), SLAGV2(l)
- computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular
- slals0(l), SLALS0(l)
- applies back the multiplying factors of either the left or the right singular vector matrix of a diagonal matrix appended by a row to the right hand side matrix B in solving the least squares problem using the divide-and-conquer SVD approach
- slaneg(l), SLANEG(l)
- computes the Sturm count, the number of negative pivots encountered while factoring tridiagonal T - sigma I = L D L^T
- slanv2(l), SLANV2(l)
- computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form
- slaqgb(l), SLAQGB(l)
- equilibrates a general M by N band matrix A with KL subdiagonals and KU superdiagonals using the row and scaling factors in the vectors R and C
- slaqge(l), SLAQGE(l)
- equilibrates a general M by N matrix A using the row and column scaling factors in the vectors R and C
- slaqp2(l), SLAQP2(l)
- computes a QR factorization with column pivoting of the block A(OFFSET+1:M,1:N)
- slaqps(l), SLAQPS(l)
- computes a step of QR factorization with column pivoting of a real M-by-N matrix A by using Blas-3
- slaqsb(l), SLAQSB(l)
- equilibrates a symmetric band matrix A using the scaling factors in the vector S
- slaqsp(l), SLAQSP(l)
- equilibrates a symmetric matrix A using the scaling factors in the vector S
- slaqsy(l), SLAQSY(l)
- equilibrates a symmetric matrix A using the scaling factors in the vector S
- slarft(l), SLARFT(l)
- forms the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors
- slarzt(l), SLARZT(l)
- forms the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors
- slasyf(l), SLASYF(l)
- computes a partial factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting method
- slatdf(l), SLATDF(l)
- uses the LU factorization of the n-by-n matrix Z computed by SGETC2 and computes a contribution to the reciprocal Dif-estimate by solving Z * x = b for x, and choosing the r.h.s
- slatrz(l), SLATRZ(l)
- factors the M-by-(M+L) real upper trapezoidal matrix [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means of orthogonal transformations
- slauu2(l), SLAUU2(l)
- slauum(l), SLAUUM(l)
- spbcon(l), SPBCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite band matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF
- spbstf(l), SPBSTF(l)
- computes a split Cholesky factorization of a real symmetric positive definite band matrix A
- spbsvx(l), SPBSVX(l)
- spbtf2(l), SPBTF2(l)
- computes the Cholesky factorization of a real symmetric positive definite band matrix A
- spbtrf(l), SPBTRF(l)
- computes the Cholesky factorization of a real symmetric positive definite band matrix A
- spbtrs(l), SPBTRS(l)
- solves a system of linear equations A*X = B with a symmetric positive definite band matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF
- spftrf(l), SPFTRF(l)
- computes the Cholesky factorization of a real symmetric positive definite matrix A
- spftri(l), SPFTRI(l)
- computes the inverse of a real (symmetric) positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPFTRF
- spftrs(l), SPFTRS(l)
- solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPFTRF
- spocon(l), SPOCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF
- sposvx(l), SPOSVX(l)
- sposvxx(l), SPOSVXX(l)
- SPOSVXX use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric positive definite matrix and X and B are N-by-NRHS matrices
- spotf2(l), SPOTF2(l)
- computes the Cholesky factorization of a real symmetric positive definite matrix A
- spotrf(l), SPOTRF(l)
- computes the Cholesky factorization of a real symmetric positive definite matrix A
- spotri(l), SPOTRI(l)
- computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF
- spotrs(l), SPOTRS(l)
- solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF
- sppcon(l), SPPCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite packed matrix using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPPTRF
- sppsvx(l), SPPSVX(l)
- spptrf(l), SPPTRF(l)
- computes the Cholesky factorization of a real symmetric positive definite matrix A stored in packed format
- spptri(l), SPPTRI(l)
- computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPPTRF
- spptrs(l), SPPTRS(l)
- solves a system of linear equations A*X = B with a symmetric positive definite matrix A in packed storage using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPPTRF
- spstf2(l), SPSTF2(l)
- computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix A
- spstrf(l), SPSTRF(l)
- sptcon(l), SPTCON(l)
- computes the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite tridiagonal matrix using the factorization A = L*D*L**T or A = U**T*D*U computed by SPTTRF
- spteqr(l), SPTEQR(l)
- computes all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix by first factoring the matrix using SPTTRF, and then calling SBDSQR to compute the singular values of the bidiagonal factor
- sptsvx(l), SPTSVX(l)
- uses the factorization A = L*D*L**T to compute the solution to a real system of linear equations A*X = B, where A is an N-by-N symmetric positive definite tridiagonal matrix and X and B are N-by-NRHS matrices
- spttrf(l), SPTTRF(l)
- computes the L*D*L(aq factorization of a real symmetric positive definite tridiagonal matrix A
- spttrs(l), SPTTRS(l)
- solves a tridiagonal system of the form A * X = B using the L*D*L(aq factorization of A computed by SPTTRF
- sptts2(l), SPTTS2(l)
- solves a tridiagonal system of the form A * X = B using the L*D*L(aq factorization of A computed by SPTTRF
- sspcon(l), SSPCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a real symmetric packed matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by SSPTRF
- sspsvx(l), SSPSVX(l)
- uses the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and X and B are N-by-NRHS matrices
- ssptrf(l), SSPTRF(l)
- computes the factorization of a real symmetric matrix A stored in packed format using the Bunch-Kaufman diagonal pivoting method
- ssptri(l), SSPTRI(l)
- computes the inverse of a real symmetric indefinite matrix A in packed storage using the factorization A = U*D*U**T or A = L*D*L**T computed by SSPTRF
- ssptrs(l), SSPTRS(l)
- solves a system of linear equations A*X = B with a real symmetric matrix A stored in packed format using the factorization A = U*D*U**T or A = L*D*L**T computed by SSPTRF
- ssycon(l), SSYCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a real symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by SSYTRF
- ssysvx(l), SSYSVX(l)
- uses the diagonal pivoting factorization to compute the solution to a real system of linear equations A * X = B,
- ssysvxx(l), SSYSVXX(l)
- SSYSVXX use the diagonal pivoting factorization to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices
- ssytf2(l), SSYTF2(l)
- computes the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting method
- ssytrf(l), SSYTRF(l)
- ssytri(l), SSYTRI(l)
- computes the inverse of a real symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by SSYTRF
- ssytrs(l), SSYTRS(l)
- solves a system of linear equations A*X = B with a real symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by SSYTRF
- status(nged)
- Without a subcommand, the status command returns the following information: current state, view size of the current display manager, the conversion factor from local model units to the base units (mm) stored in the database, and the view matrices of the current display manager
- strexc(l), STREXC(l)
- reorders the real Schur factorization of a real matrix A = Q*T*Q**T, so that the diagonal block of T with row index IFST is moved to row ILST
- strsen(l), STRSEN(l)
- reorders the real Schur factorization of a real matrix A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix T,
- zdbtf2(l), ZDBTF2(l)
- zdbtrf(l), ZDBTRF(l)
- zdttrf(l), ZDTTRF(l)
- zgbsvx(l), ZGBSVX(l)
- uses the LU factorization to compute the solution to a complex system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
- zgbsvxx(l), ZGBSVXX(l)
- ZGBSVXX use the LU factorization to compute the solution to a complex*16 system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- zgbtf2(l), ZGBTF2(l)
- computes an LU factorization of a complex m-by-n band matrix A using partial pivoting with row interchanges
- zgbtrf(l), ZGBTRF(l)
- zgbtrs(l), ZGBTRS(l)
- solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general band matrix A using the LU factorization computed by ZGBTRF
- zgecon(l), ZGECON(l)
- estimates the reciprocal of the condition number of a general complex matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by ZGETRF
- zgelq2(l), ZGELQ2(l)
- computes an LQ factorization of a complex m by n matrix A
- zgelqf(l), ZGELQF(l)
- computes an LQ factorization of a complex M-by-N matrix A
- zgels(l), ZGELS(l)
- solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose, using a QR or LQ factorization of A
- zgeql2(l), ZGEQL2(l)
- computes a QL factorization of a complex m by n matrix A
- zgeqlf(l), ZGEQLF(l)
- computes a QL factorization of a complex M-by-N matrix A
- zgeqp3(l), ZGEQP3(l)
- computes a QR factorization with column pivoting of a matrix A
- zgeqr2(l), ZGEQR2(l)
- computes a QR factorization of a complex m by n matrix A
- zgeqrf(l), ZGEQRF(l)
- computes a QR factorization of a complex M-by-N matrix A
- zgerq2(l), ZGERQ2(l)
- computes an RQ factorization of a complex m by n matrix A
- zgerqf(l), ZGERQF(l)
- computes an RQ factorization of a complex M-by-N matrix A
- zgesc2(l), ZGESC2(l)
- solves a system of linear equations A * X = scale* RHS with a general N-by-N matrix A using the LU factorization with complete pivoting computed by ZGETC2
- zgesvx(l), ZGESVX(l)
- uses the LU factorization to compute the solution to a complex system of linear equations A * X = B,
- zgesvxx(l), ZGESVXX(l)
- ZGESVXX use the LU factorization to compute the solution to a complex*16 system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
- zgetc2(l), ZGETC2(l)
- computes an LU factorization, using complete pivoting, of the n-by-n matrix A
- zgetf2(l), ZGETF2(l)
- zgetrf(l), ZGETRF(l)
- zgetri(l), ZGETRI(l)
- computes the inverse of a matrix using the LU factorization computed by ZGETRF
- zgetrs(l), ZGETRS(l)
- solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by ZGETRF
- zggqrf(l), ZGGQRF(l)
- computes a generalized QR factorization of an N-by-M matrix A and an N-by-P matrix B
- zggrqf(l), ZGGRQF(l)
- computes a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B
- zgtcon(l), ZGTCON(l)
- estimates the reciprocal of the condition number of a complex tridiagonal matrix A using the LU factorization as computed by ZGTTRF
- zgtsvx(l), ZGTSVX(l)
- zgttrf(l), ZGTTRF(l)
- computes an LU factorization of a complex tridiagonal matrix A using elimination with partial pivoting and row interchanges
- zhecon(l), ZHECON(l)
- estimates the reciprocal of the condition number of a complex Hermitian matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHETRF
- zhesvx(l), ZHESVX(l)
- uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B,
- zhesvxx(l), ZHESVXX(l)
- ZHESVXX use the diagonal pivoting factorization to compute the solution to a complex*16 system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices
- zhetf2(l), ZHETF2(l)
- computes the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting method
- zhetrf(l), ZHETRF(l)
- zhetri(l), ZHETRI(l)
- computes the inverse of a complex Hermitian indefinite matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHETRF
- zhetrs(l), ZHETRS(l)
- solves a system of linear equations A*X = B with a complex Hermitian matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHETRF
- zhpcon(l), ZHPCON(l)
- estimates the reciprocal of the condition number of a complex Hermitian packed matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHPTRF
- zhpsvx(l), ZHPSVX(l)
- uses the diagonal pivoting factorization A = U*D*U**H or A = L*D*L**H to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian matrix stored in packed format and X and B are N-by-NRHS matrices
- zhptrf(l), ZHPTRF(l)
- computes the factorization of a complex Hermitian packed matrix A using the Bunch-Kaufman diagonal pivoting method
- zhptri(l), ZHPTRI(l)
- computes the inverse of a complex Hermitian indefinite matrix A in packed storage using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHPTRF
- zhptrs(l), ZHPTRS(l)
- solves a system of linear equations A*X = B with a complex Hermitian matrix A stored in packed format using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHPTRF
- zlahef(l), ZLAHEF(l)
- computes a partial factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting method
- zlals0(l), ZLALS0(l)
- zlanv2(l), ZLANV2(l)
- compute the Schur factorization of a complex 2-by-2 nonhermitian matrix in standard form
- zlaqgb(l), ZLAQGB(l)
- zlaqge(l), ZLAQGE(l)
- zlaqhb(l), ZLAQHB(l)
- equilibrates a symmetric band matrix A using the scaling factors in the vector S
- zlaqhe(l), ZLAQHE(l)
- equilibrates a Hermitian matrix A using the scaling factors in the vector S
- zlaqhp(l), ZLAQHP(l)
- equilibrates a Hermitian matrix A using the scaling factors in the vector S
- zlaqp2(l), ZLAQP2(l)
- computes a QR factorization with column pivoting of the block A(OFFSET+1:M,1:N)
- zlaqps(l), ZLAQPS(l)
- computes a step of QR factorization with column pivoting of a complex M-by-N matrix A by using Blas-3
- zlaqsb(l), ZLAQSB(l)
- equilibrates a symmetric band matrix A using the scaling factors in the vector S
- zlaqsp(l), ZLAQSP(l)
- equilibrates a symmetric matrix A using the scaling factors in the vector S
- zlaqsy(l), ZLAQSY(l)
- equilibrates a symmetric matrix A using the scaling factors in the vector S
- zlarft(l), ZLARFT(l)
- forms the triangular factor T of a complex block reflector H of order n, which is defined as a product of k elementary reflectors
- zlarzt(l), ZLARZT(l)
- forms the triangular factor T of a complex block reflector H of order > n, which is defined as a product of k elementary reflectors
- zlasyf(l), ZLASYF(l)
- computes a partial factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting method
- zlatrz(l), ZLATRZ(l)
- factors the M-by-(M+L) complex upper trapezoidal matrix [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means of unitary transformations, where Z is an (M+L)-by-(M+L) unitary matrix and, R and A1 are M-by-M upper triangular matrices
- zlauu2(l), ZLAUU2(l)
- zlauum(l), ZLAUUM(l)
- zpbcon(l), ZPBCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite band matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPBTRF
- zpbstf(l), ZPBSTF(l)
- computes a split Cholesky factorization of a complex Hermitian positive definite band matrix A
- zpbsvx(l), ZPBSVX(l)
- zpbtf2(l), ZPBTF2(l)
- computes the Cholesky factorization of a complex Hermitian positive definite band matrix A
- zpbtrf(l), ZPBTRF(l)
- computes the Cholesky factorization of a complex Hermitian positive definite band matrix A
- zpbtrs(l), ZPBTRS(l)
- solves a system of linear equations A*X = B with a Hermitian positive definite band matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPBTRF
- zpftrf(l), ZPFTRF(l)
- computes the Cholesky factorization of a complex Hermitian positive definite matrix A
- zpftri(l), ZPFTRI(l)
- computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPFTRF
- zpftrs(l), ZPFTRS(l)
- solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPFTRF
- zpocon(l), ZPOCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF
- zposvx(l), ZPOSVX(l)
- zposvxx(l), ZPOSVXX(l)
- ZPOSVXX use the Cholesky factorization A = U**T*U or A = L*L**T to compute the solution to a complex*16 system of linear equations A * X = B, where A is an N-by-N symmetric positive definite matrix and X and B are N-by-NRHS matrices
- zpotf2(l), ZPOTF2(l)
- computes the Cholesky factorization of a complex Hermitian positive definite matrix A
- zpotrf(l), ZPOTRF(l)
- computes the Cholesky factorization of a complex Hermitian positive definite matrix A
- zpotri(l), ZPOTRI(l)
- computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF
- zpotrs(l), ZPOTRS(l)
- solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF
- zppcon(l), ZPPCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite packed matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPPTRF
- zppsvx(l), ZPPSVX(l)
- zpptrf(l), ZPPTRF(l)
- computes the Cholesky factorization of a complex Hermitian positive definite matrix A stored in packed format
- zpptri(l), ZPPTRI(l)
- computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPPTRF
- zpptrs(l), ZPPTRS(l)
- solves a system of linear equations A*X = B with a Hermitian positive definite matrix A in packed storage using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPPTRF
- zpstf2(l), ZPSTF2(l)
- computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix A
- zpstrf(l), ZPSTRF(l)
- zptcon(l), ZPTCON(l)
- computes the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite tridiagonal matrix using the factorization A = L*D*L**H or A = U**H*D*U computed by ZPTTRF
- zpteqr(l), ZPTEQR(l)
- computes all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix by first factoring the matrix using DPTTRF and then calling ZBDSQR to compute the singular values of the bidiagonal factor
- zptsvx(l), ZPTSVX(l)
- uses the factorization A = L*D*L**H to compute the solution to a complex system of linear equations A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal matrix and X and B are N-by-NRHS matrices
- zpttrf(l), ZPTTRF(l)
- computes the L*D*L(aq factorization of a complex Hermitian positive definite tridiagonal matrix A
- zpttrs(l), ZPTTRS(l)
- solves a tridiagonal system of the form A * X = B using the factorization A = U(aq*D*U or A = L*D*L(aq computed by ZPTTRF
- zptts2(l), ZPTTS2(l)
- solves a tridiagonal system of the form A * X = B using the factorization A = U(aq*D*U or A = L*D*L(aq computed by ZPTTRF
- zspcon(l), ZSPCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a complex symmetric packed matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSPTRF
- zspsvx(l), ZSPSVX(l)
- uses the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and X and B are N-by-NRHS matrices
- zsptrf(l), ZSPTRF(l)
- computes the factorization of a complex symmetric matrix A stored in packed format using the Bunch-Kaufman diagonal pivoting method
- zsptri(l), ZSPTRI(l)
- computes the inverse of a complex symmetric indefinite matrix A in packed storage using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSPTRF
- zsptrs(l), ZSPTRS(l)
- solves a system of linear equations A*X = B with a complex symmetric matrix A stored in packed format using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSPTRF
- zsycon(l), ZSYCON(l)
- estimates the reciprocal of the condition number (in the 1-norm) of a complex symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSYTRF
- zsysvx(l), ZSYSVX(l)
- zsysvxx(l), ZSYSVXX(l)
- ZSYSVXX use the diagonal pivoting factorization to compute the solution to a complex*16 system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices
- zsytf2(l), ZSYTF2(l)
- computes the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting method
- zsytrf(l), ZSYTRF(l)
- zsytri(l), ZSYTRI(l)
- computes the inverse of a complex symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSYTRF
- zsytrs(l), ZSYTRS(l)
- solves a system of linear equations A*X = B with a complex symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSYTRF
- ztrexc(l), ZTREXC(l)
- reorders the Schur factorization of a complex matrix A = Q*T*Q**H, so that the diagonal element of T with row index IFST is moved to row ILST
- ztrsen(l), ZTRSEN(l)
- reorders the Schur factorization of a complex matrix A = Q*T*Q**H, so that a selected cluster of eigenvalues appears in the leading positions on the diagonal of the upper triangular matrix T, and the leading columns of Q form an orthonormal basis of the corresponding right invariant subspace
- Ace::Graphics::GlyphFactory(3)
- Create Ace::Graphics::Glyphs
- Apache2::SiteControl::ManagerFactory(3)
- An abstract base class to use as a pattern for custom PermissionManager production
- Apache2::SiteControl::UserFactory(3)
- User factory/persistence
- Badger::Factory(3)
- base class factory module
- Badger::Factory::Class(3)
- class module for Badger::Factory sub-classes
- Bio::Annotation::AnnotationFactory(3)
- Instantiates a new Bio::AnnotationI (or derived class) through a factory
- Bio::Cluster::ClusterFactory(3)
- Instantiates a new Bio::ClusterI (or derived class) through a factory
- Bio::DB::TFBS(3)
- Access to a Transcription Factor Binding Site database
- Bio::Factory::AnalysisI(3)
- An interface to analysis tool factory
- Bio::Factory::ApplicationFactoryI(3)
- Interface class for Application Factories
- Bio::Factory::DriverFactory(3)
- Base class for factory classes loading drivers
- Bio::Factory::EMBOSS(3)
- EMBOSS application factory class
- Bio::Factory::FTLocationFactory(3)
- A FeatureTable Location Parser
- Bio::Factory::LocationFactoryI(3)
- A factory interface for generating locations from a string
- Bio::Factory::MapFactoryI(3)
- A Factory for getting markers
- Bio::Factory::ObjectBuilderI(3)
- Interface for an object builder
- Bio::Factory::ObjectFactory(3)
- Instantiates a new Bio::Root::RootI (or derived class) through a factory
- Bio::Factory::ObjectFactoryI(3)
- A General object creator factory
- Bio::Factory::SeqAnalysisParserFactory(3)
- class capable of creating SeqAnalysisParserI compliant parsers
- Bio::Factory::SeqAnalysisParserFactoryI(3)
- interface describing objects capable of creating SeqAnalysisParserI compliant parsers
- Bio::Factory::SequenceFactoryI(3)
- This interface allows for generic building of sequences in factories which create sequences (like SeqIO)
- Bio::Factory::SequenceProcessorI(3)
- Interface for chained sequence processing algorithms
- Bio::Factory::SequenceStreamI(3)
- Interface describing the basics of a Sequence Stream
- Bio::Factory::TreeFactoryI(3)
- Factory Interface for getting and writing trees from/to a data stream
- Bio::Graphics::Glyph::Factory(3)
- Factory for Bio::Graphics::Glyph objects
- Bio::MAGETAB::Factor(3)
- MAGE-TAB experimental factor class
- Bio::MAGETAB::FactorValue(3)
- MAGE-TAB experimental factor class
- Bio::Map::TranscriptionFactor(3)
- A transcription factor modelled as a mappable element
- Bio::MapIO(3)
- A Map Factory object
- Bio::Matrix::IO(3)
- A factory for Matrix parsing
- Bio::Ontology::RelationshipFactory(3)
- Instantiates a new Bio::Ontology::RelationshipI (or derived class) through a factory
- Bio::Ontology::TermFactory(3)
- Instantiates a new Bio::Ontology::TermI (or derived class) through a factory
- Bio::OntologyIO(3)
- Parser factory for Ontology formats
- Bio::Phylo::Factory(3)
- Creator of objects, reduces hardcoded class names in code
- Bio::PhyloNetwork::Factory(3)
- Module to sequentially generate Phylogenetic Networks
- Bio::PhyloNetwork::FactoryX(3)
- Module to sequentially generate Phylogenetic Networks
- Bio::PhyloNetwork::RandomFactory(3)
- Module to generate random Phylogenetic Networks
- Bio::PhyloNetwork::TreeFactory(3)
- Module to sequentially generate Phylogenetic Trees
- Bio::PhyloNetwork::TreeFactoryMulti(3)
- Module to sequentially generate Phylogenetic Trees
- Bio::PhyloNetwork::TreeFactoryX(3)
- Module to sequentially generate Phylogenetic Trees
- Bio::PopGen::Simulation::Coalescent(3)
- A Coalescent simulation factory
- Bio::Search::HSP::HSPFactory(3)
- A factory to create Bio::Search::HSP::HSPI objects
- Bio::Search::Hit::HitFactory(3)
- A factory to create Bio::Search::Hit::HitI objects
- Bio::Search::Result::ResultFactory(3)
- A factory to create Bio::Search::Result::ResultI objects
- Bio::Seq::SeqFactory(3)
- Instantiates a new Bio::PrimarySeqI (or derived class) through a factory
- Bio::Seq::SeqFastaSpeedFactory(3)
- Instantiates a new Bio::PrimarySeqI (or derived class) through a factory
- Bio::SeqEvolution::Factory(3)
- Factory object to instantiate sequence evolving classes
- Bio::Taxonomy::FactoryI(3)
- interface to define how to access NCBI Taxonoy
- Bio::Tools::AlignFactory(3)
- Base object for alignment factories
- Bio::Tools::Run::AnalysisFactory(3)
- A directory of analysis tools
- Bio::Tools::Run::AnalysisFactory::soap(3)
- A SOAP-based access to the list of analysis tools
- Bio::Tree::DistanceFactory(3)
- Construct a tree using distance based methods
- Bio::Tree::RandomFactory(3)
- TreeFactory for generating Random Trees
- CSS::SAC::ConditionFactory(3)
- the default ConditionFactory
- CSS::SAC::SelectorFactory(3)
- the default SelectorFactory
- Catalyst::Helper::Model::Factory(3)
- helper for the incredibly lazy
- Catalyst::Helper::Model::Factory::PerRequest(3)
- helper for the incredibly lazy
- Catalyst::Model::Factory(3)
- use a plain class as a Catalyst model, instantiating it every time it is requested
- Catalyst::Model::Factory::PerRequest(3)
- use a plain class as a Catalyst model, instantiating it once per Catalyst request
- Class::Factory(3)
- Base class for dynamic factory classes
- Class::Factory::Util(3)
- Provide utility methods for factory classes
- Class::MixinFactory(3)
- Class Factory with Selection of Mixins
- Class::MixinFactory::Changes(3)
- Revision history for Class::MixinFactory
- Class::MixinFactory::Factory(3)
- Class Factory with Selection of Mixins
- Class::MixinFactory::HasAFactory(3)
- Delegates to a Factory
- Class::MixinFactory::InsideOutAttr(3)
- Method maker for inside out data
- Class::MixinFactory::NEXT(3)
- Superclass method redispatch for mixins
- Class::MixinFactory::ReadMe(3)
- About the Mixin Class Factory
- Crypt::OpenPGP::Cipher(3)
- PGP symmetric cipher factory
- Crypt::OpenPGP::Digest(3)
- PGP message digest factory
- Crypt::OpenPGP::Key(3)
- OpenPGP key factory
- Crypt::OpenPGP::PacketFactory(3)
- Parse and save PGP packet streams
- Crypt::Random::Source::Factory(3)
- Load and instantiate sources of random data
- DBIx::SQLEngine::Record::Class(3)
- Factory for Record Classes
- Data::FormValidator::ConstraintsFactory(3)
- Module to create constraints for HTML::FormValidator
- DateTime::TimeZone(3)
- Time zone object base class and factory
- Devel::Refactor(3)
- Perl extension for refactoring Perl code
- FCGI::Client::RecordFactory(3)
- FCGI record factory
- Forest::Tree::Constructor(3)
- An abstract role for tree factories
- Games::LMSolve(3)
- base class for LM-Solve solvers factories
- Genezzo::PushHash::hph(3), Genezzo::PushHash::hph.pm(3)
- an impure virtual class module that defines a *hierarchical* "push hash", a hash that generates its own unique key for each value. Values are "pushed" into the hash, similar to pushing into an array. Hierarchical pushhashes must be supplied with a factory method which manufactures additional pushhashes as necessary
- Gtk2::Ex::FormFactory(3)
- Makes building complex GUI's easy
- Gtk2::Ex::FormFactory::Button(3)
- A Button in a FormFactory framework
- Gtk2::Ex::FormFactory::CheckButton(3)
- A CheckButton in a FormFactory framework
- Gtk2::Ex::FormFactory::CheckButtonGroup(3)
- A group of checkbuttons
- Gtk2::Ex::FormFactory::Combo(3)
- A Combo in a FormFactory framework
- Gtk2::Ex::FormFactory::Container(3)
- A container in a FormFactory framework
- Gtk2::Ex::FormFactory::Context(3)
- Context in a FormFactory framework
- Gtk2::Ex::FormFactory::DialogButtons(3)
- Standard Ok, Apply, Cancel Buttons
- Gtk2::Ex::FormFactory::Entry(3)
- An Entry in a FormFactory framework
- Gtk2::Ex::FormFactory::ExecFlow(3)
- Display a Event::ExecFlow job plan
- Gtk2::Ex::FormFactory::Expander(3)
- An Expander in a FormFactory framework
- Gtk2::Ex::FormFactory::Form(3)
- A Form in a FormFactory framework
- Gtk2::Ex::FormFactory::GtkWidget(3)
- Wrap arbitrary Gtk widgets
- Gtk2::Ex::FormFactory::HBox(3)
- A HBox in a FormFactory framework
- Gtk2::Ex::FormFactory::HPaned(3)
- A HPaned container in a FormFactory framework
- Gtk2::Ex::FormFactory::HSeparator(3)
- A HSeparator in a FormFactory framework
- Gtk2::Ex::FormFactory::Image(3)
- An Image in a FormFactory framework
- Gtk2::Ex::FormFactory::Intro(3)
- Introduction into the FormFactory framework
- Gtk2::Ex::FormFactory::Label(3)
- A Label in a FormFactory framework
- Gtk2::Ex::FormFactory::Layout(3)
- Do layout in a FormFactory framework
- Gtk2::Ex::FormFactory::List(3)
- A List in a FormFactory framework
- Gtk2::Ex::FormFactory::Loader(3)
- Dynamic loading of FormFactory modules
- Gtk2::Ex::FormFactory::Menu(3)
- A Menu in a FormFactory framework
- Gtk2::Ex::FormFactory::Notebook(3)
- A Notebook in a FormFactory framework
- Gtk2::Ex::FormFactory::Popup(3)
- A Popup in a FormFactory framework
- Gtk2::Ex::FormFactory::ProgressBar(3)
- A ProgressBar in a FormFactory framework
- Gtk2::Ex::FormFactory::Proxy(3)
- Proxy class for application objects
- Gtk2::Ex::FormFactory::ProxyBuffered(3)
- Buffering object proxy
- Gtk2::Ex::FormFactory::RadioButton(3)
- A RadioButton in a FormFactory framework
- Gtk2::Ex::FormFactory::Rules(3)
- Rule checking in a FormFactory framework
- Gtk2::Ex::FormFactory::Table(3)
- Complex table layouts made easy
- Gtk2::Ex::FormFactory::TextView(3)
- A TextView in a FormFactory framework
- Gtk2::Ex::FormFactory::Timestamp(3)
- Enter a valid timestamp
- Gtk2::Ex::FormFactory::ToggleButton(3)
- A ToggleButton in a FormFactory framework
- Gtk2::Ex::FormFactory::VBox(3)
- A VBox in a FormFactory framework
- Gtk2::Ex::FormFactory::VPaned(3)
- A VPaned container in a FormFactory framework
- Gtk2::Ex::FormFactory::VSeparator(3)
- A VSeparator in a FormFactory framework
- Gtk2::Ex::FormFactory::Widget(3)
- Base class for all FormFactory Widgets
- Gtk2::Ex::FormFactory::Window(3)
- A Window in a FormFactory framework
- Gtk2::Ex::FormFactory::YesNo(3)
- Yes/No radio buttons in a FormFactory framework
- Gtk2::ImageView::Zoom(3)
- Functions for dealing with zoom factors
- Gtk2::SimpleMenu(3)
- A simple interface to Gtk2's ItemFactory for creating application menus
- Jabber::NodeFactory(3)
- Simple XML Node Factory for Jabber
- Math::SymbolicX::ParserExtensionFactory(3)
- Generate parser extensions
- Metabase::Resource(3)
- factory class for Metabase resource descriptors
- Mobile::UserAgentFactory(3)
- Instantiates and caches Mobile::UserAgent objects
- Net::Radius::Server::Base(3)
- Base definitions and utility methods and factories
- OpenXPKI::Workflow::Factory(3), Header "Name" OpenXPKI::Workflow::Factory(3)
- OpenXPKI specific workflow factory
- POE::Wheel::SocketFactory(3)
- non-blocking socket creation
- Perl::Critic::Policy::Subroutines::ProhibitExcessComplexity(3)
- Minimize complexity by factoring code into smaller subroutines
- Perl::Critic::PolicyFactory(3)
- Instantiates Policy objects
- Plagger::Cookies(3)
- cookie_jar factory class
- Protocol::XMLRPC::ValueFactory(3)
- value objects factory
- RDF::Core::NodeFactory(3)
- produces literals and resources, generates labels for anonymous resources
- RDFStore::NodeFactory(3)
- An RDF node factory implementation
- RPC::Simple::Factory(3)
- Perl extension for creating RPC client
- RPC::XML::Parser(3)
- Interface for parsers created by RPC::XML::ParserFactory
- RPC::XML::ParserFactory(3)
- A factory class for RPC::XML::Parser objects
- ResourcePool::Factory(3)
- A factory to create ResourcePool::Resource objects
- ResourcePool::Factory::DBI(3)
- A DBI Factory for ResourcePool
- ResourcePool::Factory::Net::LDAP(3)
- A Net::LDAP Factory for ResourcePool
- ResourcePool::Factory::SOAP::Lite(3)
- A ResourcePool. Factory for SOAP::Lites
- SOAP::WSDL::Client::Base(3)
- Factory class for WSDL-based SOAP access
- SOAP::WSDL::Factory::Deserializer(3)
- Factory for retrieving Deserializer objects
- SOAP::WSDL::Factory::Generator(3), SOAP::WSDL::Factory:Generator(3)
- Factory for retrieving generator objects
- SOAP::WSDL::Factory::Serializer(3)
- Factory for retrieving serializer objects
- SOAP::WSDL::Factory::Transport(3)
- Factory for retrieving transport objects
- SPOPS::ClassFactory(3)
- Create SPOPS classes from configuration and code
- SPOPS::ClassFactory::DBI(3)
- Define additional configuration methods
- SPOPS::ClassFactory::DefaultBehavior(3)
- Default configuration methods called from SPOPS.pm
- SPOPS::ClassFactory::LDAP(3)
- Create relationships among LDAP objects
- SPOPS::Import(3)
- Factory and parent for importing SPOPS objects
- SPOPS::Import::DBI::TableTransform(3)
- Factory class for database-specific transformations
- SPOPS::Tool::DBI::DiscoverField(3)
- SPOPS::ClassFactory rule implementing autofield discovery
- SQL::Statement::TermFactory(3)
- Factory for SQL::Statement::Term instances
- SRU::Request(3)
- Factories for creating SRU request objects
- SRU::Response(3)
- A factory for creating SRU response objects
- TAP::Parser::IteratorFactory(3)
- Figures out which SourceHandler objects to use for a given Source
- TAP::Parser::ResultFactory(3)
- Factory for creating TAP::Parser output objects
- Template::Config(3)
- Factory module for instantiating other TT2 modules
- Test::TempDir::Factory(3)
- A factory for creating Test::TempDir::Handle objects
- Text::Diff3::Factory(3)
- factory for component used by Text::Diff3 modules
- Text::Emoticon(3)
- Factory class for Yahoo! and MSN emoticons
- Tree::Binary::VisitorFactory(3)
- A factory object for dispensing Visitor objects
- Tree::Simple::VisitorFactory(3)
- A factory object for dispensing Visitor objects
- WebService::GData::Serialize(3)
- Factory class that loads the proper serialize package
- Workflow::Factory(3)
- Generates new workflow and supporting objects
- XML::Grove::Factory(3)
- simplify creation of XML::Grove objects
- XML::SAX::ParserFactory(3)
- Obtain a SAX parser
- XML::SAX::PurePerl::Reader(3), XML::Parser::PurePerl::Reader(3)
- Abstract Reader factory class
- XML::Validate(3)
- an XML validator factory
- CosEventDomainAdmin_EventDomainFactory(3)
- This module implements an Event Domain Factory interface, which is used to create new Event Domain instances
- CosNotifyChannelAdmin_EventChannelFactory(3)
- This module implements the OMG CosNotifyChannelAdmin::EventChannelFactory interface
- CosNotifyFilter_FilterFactory(3)
- This module implements the OMG CosNotifyFilter::FilterFactory interface
- CosPropertyService_PropertySetDefFactory(3)
- This module implements the OMG CosPropertyService::PropertySetDefFactory interface
- CosPropertyService_PropertySetFactory(3)
- This module implements the OMG CosPropertyService::PropertySetFactory interface
- CosTransactions_TransactionFactory(3)
- This module implements the OMG CosTransactions::TransactionFactory interface
- TAP::Parser::IteratorFactory(3)
- Figures out which SourceHandler objects to use for a given Source
- TAP::Parser::ResultFactory(3)
- Factory for creating TAP::Parser output objects
- factor(1)
- factor numbers
- factor(1), primes(1)
- factor a number, generate large primes
- mp(3), mpsetminbits(3), mpnew(3), mpfree(3), mpbits(3), mpnorm(3), mpcopy(3), mpassign(3), mprand(3), strtomp(3), mpfmt(3), mptoa(3), betomp(3), mptobe(3), letomp(3), mptole(3), mptoui(3), uitomp(3), mptoi(3), itomp(3), uvtomp(3), mptouv(3), vtomp(3), mptov(3), mpdigdiv(3), mpadd(3), mpsub(3), mpleft(3), mpright(3), mpmul(3), mpexp(3), mpmod(3), mpdiv(3), mpfactorial(3), mpcmp(3), mpextendedgcd(3), mpinvert(3), mpsignif(3), mplowbits0(3), mpvecdigmuladd(3), mpvecdigmulsub(3), mpvecadd(3), mpvecsub(3), mpveccmp(3), mpvecmul(3), mpmagcmp(3), mpmagadd(3), mpmagsub(3), crtpre(3), crtin(3), crtout(3), crtprefree(3), crtresfree(3)
- extended precision arithmetic