
 FreeBSD, X-Windows, and I18N

 Presented by (in alphabetical order):
 Chia-Liang Kao <clkao@CirX.org>,
 Clive Lin <clive@CirX.org>,
 Michael Chin-Yuan Wu <keichii@iteration.net>

 Topics Discussed:
 1. Introduction
 1.1. What is I18N and L10N?
 1.2. What is XIM?
 1.3. What is Unicode and UTF-8?
 1.4. What are Locales?
 1.5. What are CJK?

 2. Kernel, Basesystem I18N
 2.1. ISO/IEC/POSIX Standards and Charsets
 2.2. Filesystems
 2.2.1. Unicode FFS
 2.2.2. MSDOSFS, SMBFS, and NTFS
 2.2.3. CDROM and DVD Formats
 2.3. IConv
 2.4. libxpg4, wchar*, and setlocale(3)

 3. Userland Applications
 3.1. The FreeBSD Ports System
 3.1.1. Current Implementation
 3.2. Works in Progress
 3.2.1. ports/chinese/zh-i18n
 3.2.2. I18N Options for Respective Ports.
 3.3. The Future of DNS

 4. X-Windows and I18N
 4.1 Programming I18N-compliant X-Windows Applications
 4.1.1. A Simple Example of I18N, X libraries, and XIM
 4.2. The Concept of Fontsets
 4.3. XIM
 4.3.1 XIM Internals
 4.3.2 XIM Applications

 5. Conclusion

 Extract

 This presentation discusses I18N and L10N in FreeBSD, X-Windows, and
 modern UNIX-style operating systems. It covers only the introduction
 level ideas. The paper also discusses proposals and hopes for future
 I18N development projects.

 1. Introduction

 This presentation discusses I18N, L10N in FreeBSD and X-Windows.

 1.1. What is I18N and L10N?

 I18N stands for internationalization, a common way to refer to the
 process of adapting modern operating systems in an international
 environment. (The word "internationalization" has 18 letters between
 the first "i" and the last "n," and it is unclear about who coined
 such a scheme of making acronyms.)

 L10N stands for localization, with the similiary shortening scheme as
 I18N. L10N usually means taking I18N to the next level, making
 userland applications to appear entirely in certain languages.

 1.2. What is XIM?

 XIM stands for the X Input Method protocol, the X Consortium protocol
 defining the communication for "input methods" between XIM clients and
 servers. The writing languages of CJK are character-based, unlike
 those languages whose ‘‘words’’ are made up with ‘‘letters’’. Each
 character in CJK is unique. For instance, there are about 5000
 characters that are frequently used. A typical font package for
 traditional Chinese would contain about 13000 characters. Obviously
 each character must be mapped to a sequence of key combination in
 order to be inputted. An methodology of the encoding mentioned is
 often called ‘‘input method’’. In most cases they are either by the
 pronunciation or shape, of the character.

1

 1.3. What is Unicode?

 Unicode is a character set that supposedly contains all of the
 necessary characters needed by the worlds’ languages.

 1.4. What are Locales?

 The POSIX standard defines locales to be a geopolitical place or area,
 especially in the context of configuring an operating system or
 applications with its character sets, date and time formats, currency
 formats, etc.

 From setlocale(3):
 LC_ALL Set the entire locale generically.

 LC_COLLATE Set a locale for string collation routines. This controls
 alphabetic ordering in strcoll() and strxfrm().

 LC_CTYPE Set a locale for the ctype(3), mbrune(3), multibyte(3) and
 rune(3) functions. This controls recognition of upper and
 lower case, alphabetic or non-alphabetic characters, and so
 on. The real work is done by the setrunelocale() function.

 LC_MESSAGES Set a locale for message catalogs, see catopen(3) function.

 LC_MONETARY Set a locale for formatting monetary values; this affects
 the localeconv() function.

 LC_NUMERIC Set a locale for formatting numbers. This controls the for-
 matting of decimal points in input and output of floating
 point numbers in functions such as printf() and scanf(), as
 well as values returned by localeconv().

 LC_TIME Set a locale for formatting dates and times using the
 strftime() function.

 Common variables that need to be set by the user are LANG, LC_ALL,
 LC_CTYPE, LC_MESSAGES, and another related variable, MM_CHARSET. By
 the POSIX standard, if LANG or LC_ALL is set, all of the LC_*
 variables should automatically assumed to be the same as LANG or
 LC_ALL unless otherwise set by the user. Unfortunately, many programs
 do not follow this behavior and thus create problems for users and
 developers alike.

 1.5 What are CJK?

 CJK stands for Chinese, Japanese, and Korean in alphabetical order.
 Sometimes the V in Vietnamese is added to the acronym and becomes
 CJKV. The CJK languages use glyphs, contain tens of thousands of
 glyphs and are unmappable to European alphabets. Hence, CJK charsets
 use at least 8-bits in encoding instead of 7-bit encodings of European
 languages, creating many problems to applications written to use
 7-bits. (e.g., telnet(1))

 2. Kernel, Basesystem I18N

 2.1. ISO/IEC/ANSI/POSIX Standards

 The usual organizations that govern the computer engineering industry
 makes standards for I18N also. Should you wish for further
 information, please find the related documents from the governing
 organization.

 2.2. Filesystems

 This section discusses the progress of various works in the
 filesystems area of FreeBSD.

 2.2.1. Unicode FFS

 Michael C. Wu (one of the presenters) is currently working on changing
 the Berkeley Fast Filesystem to use the UNICODE charset by default.
 However, because many parts of the FreeBSD distribution were written
 with the assumption that the filesystem is simple ASCII, all of these
 parts will need to be changed before such a goal could be attained.

 The implementation is still at its infant stages. Basically, upon
 completion, FFS should store all of its filenames in raw unicode.
 When the system requests a file, the kernel looks up the locale set by

2

 the user and returns the filenames in the correct charset after
 ICONV’ing from UNICODE to the specified charset.

 2.2.2. MSDOSFS, SMBFS, and NTFS

 Despite repercussions about using commercial filesystems, the
 Microsoft implementations of I18N filesystems are the best available
 currently. Boris Popov <bp@freebsd.org> is working on SMBFS system
 that will be able to present charset filenames. Althought here are
 already several different dirty patchsets to FreeBSD’s MSDOSFS for
 various charsets, many developers feel that having a general solution
 would be best for the future development and maintenance of FreeBSD.
 The FreeBSD NTFS implementation is not able to read the newer UNICODE
 NTFS and we hope to improve that in the future.

 2.2.3. ISO9660 CDROM Formats and DVD Formats

 FreeBSD lacks I18N support in these filesystems, having only a partial
 implementation. Programmers should avoid assuming that the support
 exists.

 2.3. ICONV

 ICONV is a library of functions that converts various character sets
 to and from each other.

 Ongoing work in ICONV by Konstantin Chuguev
 <Konstantin.Chuguev@dante.org.uk> is pivotal to I18N in any area in
 FreeBSD. The base system needs a general interface to converting
 character sets.

 2.4 libxpg4, wchar*, and setlocale(3)

 FreeBSD currently lacks a good libxpg4, and has a patchset not in the
 source tree that implements the ANSI C wchar* functions. Jeroen
 Ruigrok van der Werven <asmodai@freebsd.org> is working on an
 implementation of the xpg4 libraries.

 3. Userland Applications

 3.1. Default FreeBSD Distribution Binaries

 Many parts of /bin, /sbin, /usr/bin, and /usr/sbin is not able to
 display non-ASCII charsets. These programs need to be slowly modified
 by the I18N developers to allow for such functionality.

 Example:
 ‘ps auxwww|grep mpg123‘ while playing an mp3 file with a Chinese filename.
 keichii 601 12.3 0.6 6108 748 p4 R+ \
 12:28^[%/2BIG5-0^BBIG5-0^BU \
 0:04.30 mpg123 ../mp3/\ \
 q\M-$\M-b/\M-%\M-n\M-(\M-U/\M-%\M-n\M-(\M-U - \M-.\M-v\M-$H\M-1\M-!\M-:q.mp3

 ‘export LC_CTYPE=zh_TW.Big5 ; ls /home/keichii/mp3/cmp3001/‘
 ??????.????.mp3 ???s.?????b????.mp3
 ??????.????.mp3 ???s.?????E.mp3
 ???v??.?Z?H?q.mp3 ???s.?u???^??.mp3
 ???v??.????.mp3 ???s.?P??.mp3
 ???v??.?A?^??.mp3 ?????F.?u????.mp3
 ???v??.???g????.mp3 ?w.mp3

 (It is possible to display CJK charsets in modified xterm-subsitutes
 if one does ‘export LC_CTYPE=en_US.ISO_8859-1 ; ls foo‘, which is not
 POSIX compliant.)

 3.1. The FreeBSD Ports System

 3.1.1. Current Implementation

 Applications patched for different languages are stored in their
 respective language’s directory. Users must be able to differentiate
 between two of the same ports to use the Port system effectively.

 3.2. Works in Progress

 3.2.1. ports/chinese/zh-i18n

 Clive Lin and Michael C. Wu are working on a Port that works much like
 ports/x11/gnome to depend on many Ports to be installed for a fully
 functional traditional Chinese FreeBSD system. The Port will also

3

 include many configuration files necessary for a Chinese FreeBSD
 system. We hope to propose this as a standard for all languages and
 eventually import an option in sysinstall.

 3.2.2. I18N Options for Respective Ports.

 Due to the current limitations of the Ports system, the build process
 has no way of determining which port to use. We propose that
 bsd.ports.mk should be modified to detect a make.conf option to
 automatically build the correct language port.

 3.3. The Future of DNS

 The DNS authorities of the world are discussing the next generation of
 DNS. They have proposed that each language has its own domain mapped
 in each’s character set. We urge programmers of networking
 applications to leave room for future development on such standards.

 4. X-Windows and I18N

 4.1. Programming I18N-compliant X-Windows Applications

 Each X toolkit has its own I18N implementation. We recommend using
 the latest gtk or qt versions. However, one can create an I18N
 application based only on the X libraries. Please refer to the
 toolkits’ documentations for details.

 4.1.1. A Simple Example of I18N, X libs, and XIM

 fontset = XCreateFontSet(display,base_font_list,,,) ;
 /* Setting locale and hook XIM
 X I18N programming needs to be able to do setlocale(3).
 Ensure that X and libc supports setlocale(3). XSupportsLocale
 is one implementation of such. XSetLocaleModifiers hooks XIM
 to the user’s XIM server as specified by the
 environment varible XMODIFIERS. The only @category supported well
 in X11R6 is @im. */

 #include <X11/Xlib.h>
 #include <X11/Xlocale.h>
 #include <stdio.h>

 main()
 {
 setlocale(LC_CTYPE, "");
 if (XSupportsLocale() != True) {
 printf("\n");
 exit(0);
 }
 /* Hook XIM only if XSupportsLocale success.*/
 XSetLocaleModifiers("");
 }

 /* FontSet */
 Before displaying (drawing) the multibytes words, we have to
 tell X what font we want. Here is the XCreateFontSet(3X11).
 Man XCreateFontSet for details.

 Display *display;
 XFontSet fontset;
 char *base_fontlist="-*-iso8859-1,-*-" ;
 /* We use -*-, X lib will choose proper font available fit to
 current locale */

 char **missing_charset, *def_string;
 int missing_charset_count;

 fontset = XCreateFontSet(display, base_fontlist,
 &missing_charset_list,
 &missing_charset_count,
 &def_string);

 /* Drawing the font:
 XmbDrawImageString(3X11) and XwcDrawImageString(3X11) draws the fonts.
 If your string is simple char *, use XmbDrawImageString(). If your
 string is wchat_t *, use XwcDrawImageString(). No special skills
 here. Just use those 2 functions above instead of XDrawImageString()
 and XDrawImageString16().
 */

4

 4.2. The Concept of Fontsets

 A concept called ‘font set’ is introduced. A fontset contains fonts
 from different character sets. For example, from my .gtkrc:

 style "gtk-default-zh-tw" {
 fontset = "-adobe-helvetica-medium-r-normal--12-*-*-*-*-*-iso8859-*,\
 -default-kai-medium-r-normal--16-*-*-*-*-*-big5-0
 }

 The application should show text in English with -helvetica font and
 Chinese with -kai font, with proper locale setup. While developers may
 need different initialization for locale different toolkits.

 As previously mentioned, Asian characters are mostly of large number,
 thus using true type font is strongly suggested because having fonts
 for all sizes is not economic.

 Developers may want to specify fonts for certain purposes. In most
 cases, fixed fonts, which annoys I18N users. A mechanism to define
 fontsets with names is important. So that developers could use the
 name ‘‘fixed’’ or ‘‘variable’’ or others, to avoid the distubance of
 I18N harmony.

 4.3. XIM

 Before the adoption of XIM, there were two kinds of mechanism for
 inputing CJK text: embedded input method and private protocol.

 Embedded input method applications, for example, CXTerm, have their
 own mechanism for synthesizing characters built-in, and unusable by
 other applications.

 Private protocols, for example, xcin 2.3 and earlier, uses other
 mechanism provided by the X protocol, for example, XAtom, to
 communicate to applications for character synthesis. Application
 understanding the private protocol could work fine, like xcin2.3 with
 crxvt. But most applications not specifically developed for the
 private protocol will not work without some hack. An example of such
 a hack is XA+CV, which is basically a library preloaded to override
 Xlib functions to take care about xcin2.3 protocol.

 XIM unifies the communication for input method, which makes developers
 without too much knowledge about i18n easily write i18n ready
 applications. In the Xlib level, please refer to the book ‘‘X window
 Programming Manual, developers’ supplement for R6’’. for widget
 toolkits, please see the following section.

 4.3.1. XIM Internals

 An application providing the input method service is called the XIM
 server. Applications needs input method service are called XIM
 clients. But in the view of XIM server, their are just different
 ICs(input context). There might be not only one text field in an XIM
 client, each of them is called a input context. Each input context has
 its own context, including, the characters inputed for unfinished
 synthesis, and buffer for phrase-based input methods, etc.

 4.3.2. XIM Applications

 XIM is implemented in most modern toolkits, including Motif, GTK, QT,
 and is integrated in widgets for inputing text. So developers don’t
 really have to worry about this when using these toolkits normally.
 Leaving Room for I18N

 Programming I18N software is quite easy, contrary to the general
 misconception. Many X toolkits already provide the interface and the
 API to do so. Frequently, a piece of software only requires wrapping
 the displayed strings inside a fontset function. Internationalizing
 the software would simply be extracting the strings used in the
 program and keeping translation in a seperate file to be loaded later.

 The fontset and the strings to be displayed are determined by the
 shell environmental variables in setlocale(3) set by the user or
 administrator. Frequently, we encounter software that respects only
 certain variables. (e.g. respecting LC_ALL but not LC_CTYPE) Such
 applications break POSIX compliance and create problems for I18N
 developers.

5

 Programs that format text or require user input should not be coded
 with the assumption of using only a certain charset (such as ASCII).
 If the program is a X-Windows application, make sure that the XIM
 protocol is respected. The XIM protocol is well documented and
 implemented in all of the newer versions of popular X toolkits except
 for TK. If the program is a console application, simply ensure that
 the setlocale(3) variables are respected.

 5. Conclusion

 The internationalization of FreeBSD will be quite a painful and slow
 process. Due to the amount of legacy in the FreeBSD source tree and
 other contributed sources, we have to modify many expected behaviors
 in addition to adding new functionality to implement I18N. Also, we
 urge that programmers and developers design their software with the
 idea that non-English speaking people may use their software too.

 The lack of standards to follow is quite a shortcoming and very much
 needed. Current POSIX and other standards were not very well
 designed. In the process of internationalizing FreeBSD, we wish to
 promote a generalized standard for open or closed source software.
 There has been talks of organizing an effort for the BSD’s much like
 the KAME Project. In short, a few developers patching and making bad
 patches to software will not be a long term solution.

 Despite the late start of the internationalization efforts in FreeBSD
 and the Open Source world, many completely functional
 internationalized systems can be demostrated by developers and users
 around the world.

 Links of Documents and Related Materials:

 The FreeBSD Project <http://www.freebsd.org>
 XCIN XIM Implementation <http://xcin.linux.org.tw>
 ANSI Standards <http://www.ansi.org>
 The GTK Project <http://www.gtk.org>
 POSIX Standards <http://www.posix.org>
 Troll, Inc. and QT <http://www.troll.no>
 UNICODE <http://www.unicode.org>
 X Consortium <http://www.x.org>
 The XFree86 Project <http://www.xfree.org>
 CJKV Information Processing, by Ken Lunde, published by O’Reilly Books,
 ISBN #1565922247

6

